TW201104785A - Apparatus and method of wafer alignment - Google Patents

Apparatus and method of wafer alignment Download PDF

Info

Publication number
TW201104785A
TW201104785A TW99105962A TW99105962A TW201104785A TW 201104785 A TW201104785 A TW 201104785A TW 99105962 A TW99105962 A TW 99105962A TW 99105962 A TW99105962 A TW 99105962A TW 201104785 A TW201104785 A TW 201104785A
Authority
TW
Taiwan
Prior art keywords
wafer
positioning
camera
correction processing
deviation
Prior art date
Application number
TW99105962A
Other languages
Chinese (zh)
Other versions
TWI464827B (en
Inventor
Katsuo Yasuta
Hikaru Masuta
Norihito Suga
Original Assignee
Nihon Micronics Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Micronics Kk filed Critical Nihon Micronics Kk
Publication of TW201104785A publication Critical patent/TW201104785A/en
Application granted granted Critical
Publication of TWI464827B publication Critical patent/TWI464827B/en

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A wafer alignment apparatus is provided to accurately align a position of a wafer in a short period of time. The wafer alignment apparatus includes a controller having a correction processing for correcting a second or subsequent wafers in accordance with a position of a first wafer, a low-magnification correction processing for correcting XYθ directions of the second or subsequent wafers from a displacement amount between predetermined two low-magnification alignment patterns and a reference position, and a high-magnification correction processing for correcting XYθ directions of the second or subsequent wafers from a displacement amount between predetermined two high-magnification alignment patterns and a reference position. A wafer alignment method aligns a plurality of wafers when the wafers are continuously replaced and processed by the same processing functions as the processings of the alignment apparatus.

Description

201104785 六、發明說明: 【發明所屬之技術領域】 本發明,係有關於用以將半導體晶圓以高精確度來進 行定位之晶圓定位裝置以及晶圓定位方法。 【先前技術】 晶圓定位裝置,係爲爲了進行形成在晶圓上之電路的 檢査等之目的,而將該晶圓以高精確度來進行定位之裝置 。於圖2中,展示此晶圓定位裝置之其中一例。圖中之晶 圓定位裝置1,係由工作台2、和XYZ 0平台3、和攝像 機4、以及控制部5所構成。工作台2,係將檢查對象晶 圓W作支持。XYZ 0平台3,係使工作台2在XYZ軸方 向上作移動並且在0軸方向上作旋轉。攝像機4,係面臨 於工作台2地而被設置有1個。攝像機4,係爲用以對於 晶圓W而從其中一端起直到另外一端爲止地作攝影者, XYZ 0平台3係使晶圓W由一端而移動至另一端。 控制部5,係對於藉由攝像機4所攝影了的畫像資訊 作處理,並對於XYZ 0平台3作控制,而進行前述檢査對 象晶圓W之對位。控制部5,具體而言,係由畫像處理裝 置6、和演算裝置7、和顧示裝置8、以及動作控制裝置9 所構成^ 畫像處理裝置6,係對於由攝像機4所取入了的畫像 資訊作處理,並送訊至演算裝置7處。演算裝置7,係將 藉由畫像處理裝置6而作了處理的畫像資訊與基準圖案作 -5- 201104785 重合’並輸出至顯示裝置8處,並且,根據由作業員之操 作指示所致的操作指示訊號,來對於動作控制裝置9作控 制。顯示裝置8,係根據從畫像處理裝置6所輸出之資訊 ,而將畫像作顯示,並且,根據從作業員而來之操作指示 ’而將操作指示訊號輸出至演算裝置7處。動作控制裝置 9’係根據從演算裝置7而來之指示訊號,來對χγζ 0平 台3作控制’而使工作台2在XYZ軸各方向上作移動並 且在0軸方向上作旋轉。 在此種晶圓定位裝置1中,由於係藉由1台的攝像機 4而對於晶圓W作攝影,因此,係有必要經由XYZ 0平台 3來將工作台2從晶圓W之一端而移動至另一端。 具體而言,例如係進行有下述一般之處理程序。亦即 是,如圖3 ( a )中所示一般,經由XYZ 0平台3而使工 作台2朝向右方移動,並對於晶圓W之左側位置偏差量 作測定而進行調整,接著,如圖3 ( b )中所示一般,使工 作台2朝向左方移動,並對於晶圓W之右側位置偏差量 作測定而進行調整•更詳細而言,係藉由攝像機4而對於 晶圓W之左側的定位圖案(在圖3 ( a )所示之例中,係 爲被形成在晶圓W上之特定的晶片C1的特定之電極墊片 pi)作攝影,並對於此電極墊片pi之位置與預先所訂定 了的基準位置之間的偏差量△ X 1、△ Y 1作測定,而後, 藉由攝像機4而對於晶圓W之右側的定位圖案(在圖3 ( b )所示之例中,係爲被形成在晶圓W上之特定的其他之 晶片C2的特定之電極墊片P2)作攝影,並對於此電極墊 -6- 201104785 片P2之位匱與預先所訂定了的基準位置之間的偏差量△ X 2、△ Y 2作測定。接著,如圖4 ( a )中所示一般,經由 XYZ 0平台3而使工作台2再度朝向右方移動,並對於晶 圓W之左側位置偏差量作修正,接著,如圖4 ( b )中所 示一般,使工作台2朝向左方移動’並對於晶圓W之右 側位置偏差量作修正。於此,爲了藉由攝像機4來對於在 晶圓W之兩端處所設定了的定位圖案作攝影,並對位置 偏差量進行測定以及修正,係使工作台2從晶圓W之一 端起直到另一端爲止地而作兩次之往返。 於此情況,若是晶圓W之直徑爲小,則並不會有問 題,但是,隨著晶圓直徑之變大,工作台2之移動距離係 變長,因此,在晶圓W之定位處理中所耗費的時間係變 長。 爲了解決此問題,在專利文獻1、2中,係揭示有面 臨於晶圓W之週緣的位置而安裝4個的攝像機之例子。 又,在專利文獻3中,係揭示有將2個的攝像機以分別藉 由XYZ平台而作了支持的狀態下而具備於晶圓W之兩端 位置處的例子。 又,由於伴隨著晶圓W之加熱試驗或是檢查裝置本 身之發熱等而使周圍被加熱,會有2個的攝像機之間隔因 爲熱膨脹而偏移的事態,爲了對於此2個的攝像機之間隔 的由於熱膨脹而偏移之情況作解決,在專利文獻4中,係 揭示有在熱膨脹後之安定的狀態下而進行檢查之例子。 [先前技術文獻] 201104785 [專利文獻] [專利文獻1]日本特開2002-3 53 1 1 9號公報 [專利文獻2]曰本特開2003 - 1 563 22號公報 [專利文獻3]日本特開平1 0-2 563 50號公報 [專利文獻4]日本特開2005-129778號公報 【發明內容】 [發明所欲解決之課題] 在上述之專利文獻1、2中,面臨於晶圓W之週緣位 置而被設置之4個的攝像機,由於係僅單純地被作固定, 因此,若是不將各攝像機以正確之間隔來作安裝,則會成 爲無法將晶圓W作正確之對位。就算是在將各攝像機以 正確之間隔而作了安裝的情況時,若是由於加熱試驗等而 產生熱膨脹並使各攝像機間之距離改變,則會成爲無法將 晶圓W作正確之對位。 在專利文獻3中,爲了將2個的攝像機正確地作定位 並對於由於熱膨脹所導致之偏移作防止,係將2個的攝像 機藉由XYZ平台來作支持,並對2個的攝像機之位置正 確地作調整。但是,於此情況,XYZ平台係成爲大規模的 裝置,而使設置空間以及成本提升。 在專利文獻4中,由於係在熱膨脹後之安定了的狀態 下進行檢査,因此,能夠將由於熱膨脹所致的偏移消除, 但是,在晶圓W之對位中,係會耗費時間。 本發明,係爲有鑑於此種問題點而進行者,其目的, -8 - 201104785 係在於提供一種:能夠以短時間而正確地進行晶圓之對位 的晶圓定位裝置、以及晶圓定位方法。 [用以解決課題之手段] 本發明之晶圓定位裝置以及晶圓定位方法,係具備有 以下之處理功能。亦即是,係具備有:修正處理,係根據 第1枚之晶圓的位置而對於第2枚以後之晶圓作修正;和 低倍率修正處理,係由預先所訂定之2個的低倍率定位圖 案與基準位置間的偏差量,來對於前述第2枚以後之晶圓 進行XY 0方向的修正;和高倍率修正處理,係由預先所 訂定之2個的高倍率定位圖案與基準位置間的偏差量,來 對於前述第2枚以後之晶圓進行χγ 0方向的修正。 又,在前述低倍率修正處理以及前述高倍率修正處理 中,係設爲:首先,使主攝像機位置在其中一方之前述定 位圖案上,接著,使前述晶圓移動,並使前述輔助攝像機 位置在前述其中一方之定位圖案上,之後,對於前述輔助 攝像機之基準位置與前述其中一方之定位圖案、以及對於 前述主攝像機之基準位置與另外一方之定位圖案,而分別 使其作匹配,並對於偏差量作測定。 [發明之效果] 若藉由本發明,則就算是因爲由加熱試驗等所導致之 攝像機支持部的熱膨脹,而使得各攝像機間之距離有所偏 差,亦能夠將晶圓正確地作對位。能夠將晶圓之移動抑制 -9 - 201104785 在最小限度,而能夠以短時間而正確地進行晶圓之對位。 【實施方式】 以下,針對本發明之實施形態的晶圓定位裝置以及晶 圓定位方法,一面參考所添附之圖面一面作說明。另外, 此晶圓定位裝置,係爲被組入至探針裝置等之半導體晶圓 檢査裝置等之中的裝置》晶圓定位裝置,係爲用以相對於 檢査裝置之探針卡而將晶圓正確地作定位者。 作爲此檢查裝置之其中一例,針對對於半導體晶圓進 行檢查之探針裝置,根據圖1來作說明。探針裝置1 1,其 構成爲,具備有:將被形成有電路之半導體晶圓W載置 於上側面1 3 A處之工作台1 3、和使工作台1 3在XYZ軸方 向以及0旋轉方向上作移動之XYZ 0軸驅動部1 4、和對 於XYZ 0軸驅動部1 4作控制之位置控制部(未圖示)、 和具備有使針尖與前述電路之電極墊片相接觸的探針17 之探針卡1 8、和將探針卡1 8作固定之固定框架1 9、和經 介於探針卡1 8而對於半導體晶圓W上之電路的電性特性 作測定之電性特性測定部(未圖示)。 前述工作台1 3之上側面1 3 A,係被形成爲平坦面狀 ’並被載置有平板狀之半導體晶圓W。通常,在上側面 13A處,係被設置有吸著溝。半導體晶圓W,係在被載置 於上側面1 3 A處的狀態下,而被吸著於吸著溝處並被作固 定。在探針裝置1 1中,係被設置有用以將半導體晶圓W 經由後述之晶圓定位方法而正確地作定位之晶圓定位裝置 -10- 201104785 2卜 此晶圓定位裝置21,係如圖5中所示一般,由面臨於 被ΧΥΖ0軸驅動部14所支持之工作台13地而被設置之主 攝像機24以及輔助攝像機25、和控制部26所構成。 工作台1 3,係爲用以將檢查對象晶圓w面臨於探針 卡18地而作支持之台。在工作台13處,係被設置有:將 晶圓W作吸著並作支持之吸著機構(未圖示)、和爲了 進行加熱試驗而將晶圓W作加熱之加熱裝置(未圖示) 等。 ΧΥΖ0驅動部14,係爲用以支持工作台13,並使該 工作台13在XYZ軸各方向上移動且在0軸方向上作旋轉 的裝置。ΧΥΖ0軸驅動部14,係由下述機構所構成:用以 使工作台13在X軸方向上移動並對於X軸方向之位置作 調整的X軸移動機構28、和用以使工作台13在Y軸方向 上移動並對於Y軸方向之位置作調整的Y軸移動機構29 、和用以使工作台13在Z軸方向上移動並對於Z軸方向 之位置作調整的Z軸移動機構30、和用以使工作台13在 0軸方向上作旋轉並對角度作調整的0軸移動機構31。 主攝像機24,係爲面臨於工作台13地被設置並對於 被工作台1 3所支持之晶圓W作攝影的攝像機。輔助攝像 機2 5,亦同樣的,係爲面臨於工作台1 3地被設置並對於 被工作台1 3所支持之晶圓W作攝影的攝像機。主攝像機 24與輔助攝像機25,係在裝置本體側處,在相互空出有 待定之距離的狀態下,而被固定在特定位置處。主攝像機 ς -11 - 201104785 24與輔助攝像機25係協同動作,並將晶圓W正確地作 位。 控制部26,係爲對於藉由前述主攝像機24以及輔 攝像機25所攝影了的畫像資訊作處理’並對於XYZ 0 驅動部1 4作控制,而藉由此來進行晶圓W之對位的裝 。控制部26,具體而言,係由畫像處理裝置3 3、和演 裝置3 4、和顯示裝置3 5、以及動作控制裝置3 6所構成 在演算裝置3 4處,係被儲存有根據後述之處理程序( 程)來進行晶圓定位之處理功能。 畫像處理裝置33,係爲用以對於由主攝像機24以 輔助攝像機25所取入了的畫像資訊作處理,並送訊至 算裝置34處之裝置。 演算裝置34,係將由主攝像機24以及輔助攝像機 所取入了的畫像資訊、亦即是定位圖案之位置,與基準 置作比較。亦即是,演算裝置34,係將藉由畫像處理裝 33而作了處理的畫像資訊與基準位置作重合,並輸出至 示裝置3 5處,並且,根據指示訊號來對於動作控制裝 36作控制。在演算裝置34中,係被儲存有藉由後述之 程圖而作了展示的處理功能。 顯示裝置3 5,係根據從畫像處理裝置3 3所輸出之 訊,而將畫像作顯示’並且’根據由操作畫面而來之由 業員所進行的操作指示’而將操作指示訊號輸出至演算 置3 4處。動作控制裝置3 6 ’係根據從演算裝置3 4而來 操作指示訊號,來對XYZ 0軸驅動部1 4作控制,而使 定 助 軸 置 算 〇 流 及 演 25 位 置 顯 置 流 資 作 裝 之 工 -12- 201104785 作台13在XYZ軸各方向上作移動並且在0軸方向上作旋 轉。 接著’針對使用有上述構成之晶圓定位裝置2 1的晶 圓定位方法作說明。身爲被儲存在控制部26之演算裝置 34中的處理功能之晶圓定位方法,係藉由於圖6之流程圖 中所展示的處理程序而被進行。 此晶圓定位之處理,係由下述步驟所構成:進行第1 枚之晶圓W的定位之第1晶圓定位處理(步驟S 1 )、和 對於經由該第1晶圓定位處理而進行了定位之第1枚的晶 圓W作測定之第1晶圓測定處理(步驟S2 )、和進行第 2枚以後之晶圓W的定位之第2晶圓定位處理(步驟S3 )、和對·於經由該第2晶圓定位處理而進行了定位之第2 枚以後的晶圓W作測定之第2晶圓測定處理(步驟S4 ) 、和判定是否結束了所有的晶圓w之測定之判定處理( 步驟S5) » 步驟S1之第1晶圓定位處理,係如圖7之流程圖中 所示一般,由下述步驟所構成:判定出晶圓W之3點的 邊緣位置,而特定出晶圓中心,並取得其與理論中心座標 間之偏位(offset)値之邊緣探索處理(步驟S11)、和 根據預先所訂定了的2個的低倍率定位圖案與基準位置間 之偏差量,而進行χγ 0修正之低倍率修正處理(步驟 S 1 2 )、和根據預先所訂定了的2個的高倍率定位圖案與 基準位置間之偏差量’而進行χγ 0修正之高倍率修正處 理(步驟S 1 3 )。關於此些之各步驟的詳細內容’係於後 -13- 201104785 再述,但是,關於步驟S11之邊緣探索處理,由於係適用 有從先前技術起即被進行之方法,因此,係省略詳細之說 明。 步驟S 3之第2晶圓定位處理,係如圖8之流程圖中 所示一般,由下述步驟所構成:與第1枚之晶圓W的處 理中之邊緣探索處理相同之邊緣探索處理(步驟S21)、 和根據預先所訂定了的2個的低倍率定位圖案與基準位置 間之偏差量,而進行XY 0修正之低倍率修正處理(步驟 S22 )、和根據預先所訂定了的2個的高倍率定位圖案與 基準位置間之偏差量,而進行ΧΥ0修正之高倍率修正處 理(步驟S23 )。 接著,參考圖9,對於步驟S12之低倍率修正處理的 處理程序作說明。另外,圖9,係爲對於在第1枚之晶圓 的定位中之處理程序作展示者。首先,進行:判定出晶圓 W之3點的邊緣位置,而特定出晶圓中心,並取得其與理 論中心座標間之偏位値的邊緣探索處理(步驟S3 1 )。 另外,此步驟S31之邊緣探索處理,係藉由與圖7之 流程圖中所示的邊緣探索處理(步驟S11)相同之處理程 序而進行之。 接著,藉由以下之處理程序來進行晶圓W之位置偏 差修正處理。首先,將主攝像機24切換爲低倍率(例如2 倍左右),並藉由X軸移動機構28以及Y軸移動機構29 來使晶圓W移動,而使主攝像機2 4成爲位置在低倍率定 位圖案上(步驟S32 )。接著,將輔助攝像機25切換爲 -14- 201104785 低倍率’並藉由X軸移動機構28以及Y軸移動機構29 來使晶圓W移動,而使輔助攝像機25成爲位置在低倍率 定位圖案上(步驟S33 )。於此,作爲「低倍率定位圖案 」,例如係使用預先被形成在晶圓W上之定位記號,或 者是利用由被形成在晶圓W上之多數的電路晶片所選擇 了的特定之電路晶片的電極墊片中之1個。另外,步驟 S32與步驟S33,係亦可交互作控制並進行平行處理,又 ,亦可進行同時處理。進而,亦可在步驟S32之處理後, 再進行步驟S33之處理。 接著,判定主攝像機24以及輔助攝像機25之基準位 置與低倍率定位圖案是否相匹配(步驟S34 )。亦即是, 在控制部26之顯示裝置35處,將主攝像機24以及輔助 攝像機25之晝像同時作顯示,並同時進行判斷。若是當 兩者並未相匹配的情況時(亦即是NG ),則係判定該NG 之次數是否超過了預先所設定了的次數(步驟S35)。若 是NG之次數並未超過預先所設定了的次數,則係使用晶 圓W上之主攝像機24以及輔助攝像機25之各個,而對 於最初所攝影了的位置之周邊作探索(步驟S36),並再 度判定是否相匹配(步驟S 3 4 )。而後,反覆進行此步驟 S 3 4〜步驟S 3 6,直到成爲相匹配爲止。另外,步驟S 3 6 之周邊探索,係爲進行與前述之步驟S32或步驟S33相同 之處理。 此時,在步驟S35中,當判定爲NG之次數已超過了 預先所設定了的次數的情況時,則係判斷在晶圓W處發 -15- 201104785 生了某些之錯誤,並將該晶圓w回收(步驟S37)。 接著,當在步驟S34中而判定爲兩者係相匹配的情況 時,則對於低倍率定位圖案與基準位置間之XY 0各方向 的偏差量作演算(步驟S38)。而後,根據藉由演算所求 取出之ΧΥ0各方向的偏差量,來進行工作台13之位置、 亦即是晶圓W之XY 0各方向的偏差量之修正(步驟S3 9 )° 接著,步驟S13之高倍率修正處理,係如同在圖1〇 之流程圖中所詳細展示一般,將主攝像機24切換爲高倍 率(例如10倍左右),並藉由X軸移動機構28以及Y 軸移動機構29來使晶圓W移動,而使主攝像機24成爲 位置在高倍率定位圖案上(步驟S41)。接著,將輔助攝 像機25切換爲高倍率,並藉由X軸移動機構28以及Y 軸移動機構29來使晶圓W移動,而使輔助攝像機25成 爲位置在高倍率定位圖案上(步驟S42 )。另外,步驟 S4 1與步驟S42,係亦可交互作控制並進行平行處理,又 ,亦可進行同時處理。進而,亦可在步驟S41之處理後, 再進行步驟S42之處理。 接著,判定主攝像機24以及輔助攝像機2 5之基準位 置與高倍率定位圖案是否相匹配(步驟S43 )。在控制部 26之顯示裝置35處,將主攝像機24以及輔助攝像機25 之畫像同時作顯示,並同時進行判斷。若是當兩者並未相 匹配的情況時(亦即是NG ),則係判定該NG之次數是 否超過了預先所設定了的次數(步驟S44)。若是NG之 -16- 201104785 次數並未超過預先所設定了的次數,則係使用晶圓W上 之主攝像機24以及輔助攝像機25之各個,而對於最初所 攝影了的位置之周邊作探索(步驟S45),並再度判定是 否相匹配(步驟S43 )。而後,反覆進行此步驟S43〜步 驟S45,直到成爲相匹配爲止。另外,步驟S45之周邊探 索,係爲進行與前述之步驟S41或步驟S42相同之處理。 此時,在步驟S44中,當判定爲NG之次數已超過了 預先所設定了的次數的情況時,則係判斷在晶圓W處發 生了某些之錯誤,並將該晶圓W回收(步驟S 46)。 接著,當在步驟S43中而判定爲兩者係相匹配的情況 時,則對於高倍率定位圖案與基準位置間之XY 0各方向 的偏差量作演算(步驟S47)。而後,根據藉由演算所求 取出之ΧΥ0各方向的偏差量,來進行工作台13之位置、 亦即是晶圓W之ΧΥ0各方向的偏差量之修正(步驟S48 )° 接著,參考圖11,對於在第2枚以後之晶圓的定位中 之低倍率修正處理的處理程序作說明。在第2枚以後之晶 圓的定位中之低倍率修正處理程序,基本上亦係與前述之 第1枚的晶圓之情況相同,但是,於此,首先係在步驟 S5 1中進行初期設定(初期位置修正)。具體而言,係使 用在進行第1枚的晶圓或者是前一次所測定了的晶圓之定 位時所得到的ΧΥ Θ各方向之偏差修正量(晶圓中心之XY 方向的位置偏差修正量、晶圓W之角度0方向之偏差修 正量、以及2個的低倍率定位圖案之XY方向的偏差修正 -17- 201104785 量),來對於接下來的步驟s52之邊緣探索時的初期位置 作修正。 而後,進行步驟s52以後之處理。另外’此步驟S52 以後之處理,由於係與前述之第1枚的晶圓之定位中的低 倍率修正處理程序(步驟S31〜S39)相同,故係省略其 說明。 在第2枚以後之晶圓的定位中之高倍率修正處理程序 ,基本上亦係與前述之第1枚的晶圓之情況相同’但是’ 與前述第2枚以後之低倍率修正處理程序相同的’首先’ 係進行初期設定(初期位置修正)。其後續之處理’由於 係與前述之第1枚的晶圓之定位中的高倍率修正處理程序 相同,故係省略其說明。 接著,參考圖12〜圖18,針對將第2枚以後之晶圓 W的ΧΥ0各方向之偏差量作修正的處理程序作說明。於 此,作爲定位圖案,係如同在圖12中而槪略展示一般, 設爲由被形成在晶圓W上之多數的晶片中,從在直徑方 向上而相對向之2個的晶片之各個中而分別選擇1個電極 墊片,並使用之。 首先,如圖13中所示一般,藉由主攝像機24,來對 於身爲被形成在晶圓W上之2個的定位圖案中之其中一 者的晶片C1上之墊片41的位置作測定。接著,如圖1 4 中所示一般,使工作台13移動至輔助攝像機25側之理論 位置處’並藉由輔助攝像機25來對於晶片C1上之墊片 4 1作測定’而求取出其與先前藉由主攝像機24所測定了 -18- 201104785 的位置間之偏差量ΔΧ1、ΔΥ1。於此,所謂輔助攝像機 25側之理論位置,係指使用有下述之偏差修正量而作了修 正的位置:亦即是,該偏差量,係指在相對於並不存在有 由於熱膨脹所導致之輔助攝像機25的位移等之狀態下的 原本之輔助攝像機25側的位置,而進行了第1枚之晶圓 的定位時,所得到的XY 0各方向之偏差修正量。又,相 對於第3枚以後之晶圓的輔助攝像機25側之理論位置, 係爲使用前一次之偏差修正量而作了修正的位置。 接著,如圖15中所示一般,使工作台13移動至主攝 像機24側之理論位置處,並藉由主攝像機24來對於身爲 在晶圓W上所形成了的2個的定位圖案中之另外一者的 晶片C2上之電極墊片42作攝影,並測定出其與基準位置 間的偏差量△ X2、△ Y2。而後,如圖1 6中所示一般,藉 由輔助攝像機25來對於晶片C1上之電極墊片41作攝影 ,並求取出其與基準位置間的偏差量ΔΧ3、ΔΥ3。於此 ,所謂主攝像機24側之理論位置,係指使用有下述之偏 差修正量而作了修正的位置:亦即是,該偏差量,係指在 相對於並不存在有由於熱膨脹所導致之主攝像機24的位 移等之狀態下的原本之主攝像機24側的位置,而進行了 第1枚之晶圓的定位時,所得到的ΧΥ0各方向之偏差修 正量。又’相對於第3枚以後之晶圓的主攝像機24側之 理論位置,係爲使用前一次之偏差修正量而作了修正的位 置。 進而’如圖17中所示一般,再度以使主攝像機24位 -19- 201104785 置在晶片Cl之電極墊片42上的方式,來使工作台13移 動,接著,以對於藉由前述之測定所求取出了的偏差量作 修正的方式、具體而言,以使電極墊片41之位置與基準 位置相一致的方式,來對於工作台13而在ΧΥ0各方向上 作微調整。而後,如圖1 8中所示一般,以使輔助攝像機 25位置在晶片C1之電極墊片41上的方式,來使工作台 13移動,接著,以對於藉由前述之測定所求取出了的偏差 量作修正的方式、具體而言,亦對於上述圖17之結果作 考慮地而以使電極墊片41之位置與基準位置相一致的方 式,來對於工作台13而在ΧΥ0各方向上作微調整。 接下來,針對本發明之實施形態的晶圓定位裝置中之 決定晶圓定位的基準位置之處理程序,一面參考圖19〜圖 2 1 —面作說明。 在圖示之晶圓定位裝置中,係在工作台1 3之外緣部 處,設置有定位記號43,並使用此定位記號43來進行晶 圓定位。 首先,如圖19中所示一般,藉由主攝像機24來對於 定位記號43作攝影,並將基準位置與定位記號43作對位 。接著,如圖20中所示一般,使工作台1 3作主攝像機24 與輔助攝像機25之理論距離的量之移動,並藉由輔助攝 像機25來對於定位記號43作攝影,再求取出其與基準位 置間的偏差量△ X、△ Y »而後,如圖2 1中所示一般,使 工作台13在ΧΥ0各方向上作移動,而進行先前之偏差量 △ X、ΔΥ的修正。於此,所謂理論距離,係指當並不存 -20- 201104785 在有由於熱膨脹所導致之主攝像機24以及輔助攝像機25 間的距離之變化等的狀態時,原本之主攝像機24與輔助 攝像機25之間的距離。 經由以上之工程,而決定晶圓定位之基準位置,而後 ,經由前述之晶圓定位處理程序,來進行第1枚以及第2 枚以後之晶圓定位以及測定。 另外,在上述之處理程序中,雖係利用有被設置在工 作台1 3處之定位記號43,但是,除此之外,亦可設爲: 進行與圖7之步驟S11的邊緣探索相同之處理,而進行工 作台〗3之中心位置的決定,並藉由此來決定晶圓定位之 基準位置。 藉由如同上述一般地作處理,就算是由於加熱試驗等 而使得將主攝像機24以及輔助攝像機25作支持之支持部 產生熱膨脹並使此主攝像機24以及輔助攝像機25之間的 距離有所變化,亦能夠因應於主攝像機24以及輔助攝像 機2 5之畫像資訊而進行細微的修正,因此,能夠將前述 由於熱膨脹所導致的主攝像機24以及輔助攝像機25之位 移作吸收,並將晶圓W作正確的對位。 此時,主攝像機24以及輔助攝像機25,由於係僅需 要作固定,因此,不會有使設置空間變得膨大的情況,而 能夠以低成本來實現晶圓定位裝置。 進而,在本實施形態之晶圓定位方法中,由於將工作 台1 3朝向左右而大幅移動的情況係僅有1次,之後只需 要使其作些許的移動即可,因此能夠在短時間內而正確地 -21 - 201104785 進行晶圓之對位。 其結果,當將多數之晶圓W連續性地作替換而進行 檢查等時,能夠在短時間內而進行新的晶圓W之定位, 而能夠謀求檢查等之作業的高效率化。 [變形例] 在前述實施形態中,於第2枚以後之晶圓W的處理 中,邊緣探索處理,係因應於將晶圓W供給至工作台13 處之裝載器(未圖示)的性能而被作設置。亦即是,當將 晶圓W搬入至工作台1 3處之裝載器的性能爲佳,而能夠 將晶圓W正確地載置於工作台1 3上的情況時,則亦可將 邊緣探索處理(圖9之步驟S31以及圖1 1之步驟S52 ) 省略。 [產業上之利用可能性] 本發明之晶圓定位裝置以及晶圓定位方法,在所有之 身爲被使用於晶圓W之檢查工程或是處理工程中的檢查 裝置或是處理裝置且需要將晶圓W作正確的定位之裝置 中,係均可作使用。 【圖式簡單說明】 [圖1 ]對於被組入有本發明之實施形態的晶圓定位裝 置之探針裝置作展示的槪略構成圖。 [圖2]展示先前技術之晶圓定位裝置的槪略構成圖。 -22- 201104785 3] 展示先前技術之晶圓定位裝置的動作之槪略構 成圖。 4] ¾示先前技術之晶圓定位裝置的動作之槪略構 成圖。 t®1 於本發明之實施形態的晶圓定位裝置作展示 之槪略構成圖。 6 ]對於本發明之實施形態的晶圓定位方法作展示 之流程圖。 7]對於在本發明之實施形態的晶圓定位方法中之 第1枚的晶圓之定位處理作展示之流程圖。 [I® 8 ]對於在本發明之實施形態的晶圓定位方法中之 第2枚以後的晶圓之定位處理作展示之流程圖。 [圖9]對於在本發明之實施形態的晶圓定位方法中之 對第1枚的晶圓所進行之低倍率修正處理作展示之流程圖 〇 [圖1 〇]對於本發明之實施形態的晶圓定位方法之高倍 率修正處理作展示之流程圖。 [圖1 1 ]對於在本發明之實施形態的晶圓定位方法中之 對第2枚以後的晶圓所進行之低倍率修正處理作展示之流 程圖。 [圖1 2]對於在本發明之實施形態的晶圓定位方法中之 定位圖案與攝像機間的關係作模式性展示之圖。 [圖13]對於在本發明之實施形態的晶圓定位方法中之 修正處理程序作模式性展示的圖’並且爲正藉由主攝像機 201104785 而對於其中一方之定位圖案的位置作測定之圖。 [圖14]對於在本發明之實施形態的晶圓定位方法中之 修正處理程序作模式性展示的圖,並且爲正藉由輔助攝像 機而對於其中一方之定位圖案的位置作測定之圖。 [圖15]對於在本發明之實施形態的晶圓定位方法中之 修正處理程序作模式性展示的圖,並且爲正藉由主攝像機 而對於另外一方之定位圖案的位置作測定之圖。 [圖1 6]對於在本發明之實施形態的晶圓定位方法中之 修正處理程序作模式性展示的圖,並且爲正藉由輔助攝像 機而對於其中一方之定位圖案的位置作測定之圖。 [圖17]對於在本發明之實施形態的晶圓定位方法中之 修正處理程序作模式性展示的圖,並且爲正藉由主攝像機 而對於另外一方之定位圖案的位置作測定之圖。 [圖18]對於在本發明之實施形態的晶圓定位方法中之 修正處理程序作模式性展示的圖,並且爲正藉由輔助攝像 機而對於其中一方之定位圖案的位置作測定之圖。 [圖19]對於在本發明之實施形態的晶圓定位方法中之 決定晶圓定位之基準位置的處理程序作模式性展示的圖, 並且爲正藉由主攝像機而進行工作台外緣部的定位記號之 對位的圖。 [圖20]對於在本發明之實施形態的晶圓定位方法中之 決定晶圓定位之基準位置的處理程序作模式性展示的圖, 並且爲正藉由輔助攝像機而求取出定位記號與基準位置間 之偏差量的圖。 -24- 201104785 [0 2 1 ]對於在本發明之實施形態的晶圓定位方法中之 & Μ定位之基準位置的處理程序作模式性展示的圖, 並且爲ΙΕ在使工作台在χγ0各方向上作移動而對於先前 之偏差量作修正的圖。 【主要元件符號說明】 1、 21 :晶圓定位裝置 2、 13 :工作台 3 : ΧΥΖ Θ平台 4 :攝像機 5、 26 :控制部 6、 3 3 :畫像處理裝置 7、 3 4 :演算裝置 8、 35 :顯示裝置 9 ' 3 6 :動作控制裝置 1 1 :探針裝置 1 3 :工作台 14 : ΧΥΖ 0軸驅動部 1 7 :探針 1 8 :探針卡 19 :固定框架 24 :主攝像機 2 5 :輔助攝像機 28: X軸移動機構BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer positioning apparatus and a wafer positioning method for positioning a semiconductor wafer with high precision. [Prior Art] The wafer positioning device is a device for positioning the wafer with high precision for the purpose of performing inspection of a circuit formed on a wafer or the like. An example of such a wafer positioning device is shown in FIG. The crystal positioning device 1 in the figure is composed of a table 2, an XYZ 0 platform 3, a camera 4, and a control unit 5. On the workbench 2, the object wafer W is inspected for support. The XYZ 0 platform 3 moves the table 2 in the XYZ axis direction and rotates in the 0 axis direction. The camera 4 is provided with one facing the workbench 2. The camera 4 is used as a photographer for the wafer W from one end to the other end, and the XYZ 0 platform 3 moves the wafer W from one end to the other. The control unit 5 performs processing on the image information photographed by the camera 4, and controls the XYZ 0 platform 3 to perform alignment of the inspection target wafer W. Specifically, the control unit 5 is composed of the image processing device 6, the calculation device 7, the display device 8, and the operation control device 9, and is an image taken by the camera 4. The information is processed and sent to the calculation device 7. In the calculation device 7, the image information processed by the image processing device 6 is overlapped with the reference pattern -5 - 201104785 and output to the display device 8, and the operation is performed according to the operation instruction of the operator. The indication signal is used to control the motion control device 9. The display device 8 displays the image based on the information output from the image processing device 6, and outputs an operation instruction signal to the calculation device 7 based on the operation instruction from the worker. The motion control device 9' controls the χγζ0 platform 3 based on the instruction signal from the calculation device 7, and moves the table 2 in all directions of the XYZ axis and rotates in the 0-axis direction. In such a wafer positioning apparatus 1, since the wafer W is photographed by one camera 4, it is necessary to move the stage 2 from one end of the wafer W via the XYZ 0 platform 3. To the other end. Specifically, for example, the following general processing procedures are performed. That is, as shown in FIG. 3( a ), the table 2 is moved to the right side via the XYZ 0 platform 3, and the amount of positional deviation on the left side of the wafer W is measured, and then, as shown in FIG. Generally, as shown in 3 (b), the table 2 is moved to the left, and the amount of deviation of the position of the wafer W is adjusted. In more detail, the wafer 4 is used by the camera 4. The positioning pattern on the left side (in the example shown in FIG. 3(a), is a specific electrode pad pi of a specific wafer C1 formed on the wafer W), and the electrode pad pi is The deviation amount Δ X 1 , Δ Y 1 between the position and the predetermined reference position is measured, and then the positioning pattern on the right side of the wafer W by the camera 4 (shown in FIG. 3( b ) In the example, the specific electrode pad P2) of the specific other wafer C2 formed on the wafer W is photographed, and the position of the electrode pad -6-201104785 piece P2 is determined in advance. The amount of deviation between the reference positions Δ X 2 and Δ Y 2 was measured. Next, as shown in FIG. 4( a ), the table 2 is moved to the right again via the XYZ 0 platform 3, and the amount of position deviation on the left side of the wafer W is corrected, and then, as shown in FIG. 4(b). As shown in the above, the table 2 is moved toward the left side and the amount of positional deviation on the right side of the wafer W is corrected. Here, in order to photograph the positioning pattern set at both ends of the wafer W by the camera 4, and to measure and correct the positional deviation amount, the table 2 is moved from one end of the wafer W to the other. Two round trips from one end to the end. In this case, if the diameter of the wafer W is small, there is no problem. However, as the wafer diameter becomes larger, the moving distance of the stage 2 becomes longer, and therefore, the positioning processing on the wafer W is performed. The time spent in the process is lengthened. In order to solve this problem, Patent Documents 1 and 2 disclose an example in which four cameras are mounted at a position facing the periphery of the wafer W. Further, Patent Document 3 discloses an example in which two cameras are provided at both ends of the wafer W in a state where they are supported by the XYZ stage. In addition, since the surroundings are heated by the heating test of the wafer W or the heat of the inspection apparatus itself, there is a case where the distance between the two cameras is shifted due to thermal expansion, and the interval between the two cameras is used. In the case of the problem of the thermal expansion and the offset, it is disclosed in Patent Document 4 that an inspection is performed in a state in which the thermal expansion is stabilized. [Prior Art Document] 201104785 [Patent Document 1] JP-A-2002-3 53 1 1 9 (Patent Document 2) JP-A-2003- 1 563 22 (Patent Document 3) [Problems to be Solved by the Invention] In the above-mentioned Patent Documents 1 and 2, the wafer W is faced. The four cameras that are placed at the peripheral position are simply fixed. Therefore, if the cameras are not mounted at the correct intervals, the wafer W cannot be properly aligned. Even in the case where the cameras are mounted at the correct intervals, if the thermal expansion occurs due to a heating test or the like and the distance between the cameras is changed, the wafer W cannot be properly aligned. In Patent Document 3, in order to correctly position two cameras and prevent the offset due to thermal expansion, two cameras are supported by the XYZ platform, and the positions of the two cameras are provided. Make the adjustments correctly. However, in this case, the XYZ platform becomes a large-scale device, which increases the installation space and costs. In Patent Document 4, since the inspection is performed in a state where the thermal expansion is stabilized, the offset due to thermal expansion can be eliminated. However, it takes time to align the wafer W. The present invention has been made in view of such a problem, and the object thereof is to provide a wafer positioning device capable of accurately performing wafer alignment in a short time and wafer positioning. method. [Means for Solving the Problem] The wafer positioning device and the wafer positioning method of the present invention have the following processing functions. In other words, the correction processing is performed by correcting the wafer after the second wafer based on the position of the wafer of the first wafer, and the low magnification correction processing is performed by two low magnifications set in advance. The amount of deviation between the positioning pattern and the reference position is corrected in the XY 0 direction for the second and subsequent wafers; and the high magnification correction processing is performed between the two high-rate positioning patterns and the reference position defined in advance. The amount of deviation is corrected for the χγ 0 direction of the second and subsequent wafers. Further, in the low magnification correction processing and the high magnification correction processing, first, the main camera position is placed on one of the positioning patterns, and then the wafer is moved, and the auxiliary camera position is set. In the positioning pattern of one of the above, the reference position of the auxiliary camera and the positioning pattern of the one of the auxiliary cameras, and the reference position of the main camera and the other positioning pattern are respectively matched and offset. The amount is measured. [Effect of the Invention] According to the present invention, even if the distance between the cameras is deviated due to thermal expansion of the camera support portion due to a heating test or the like, the wafer can be correctly aligned. It is possible to suppress wafer movement -9 - 201104785 to a minimum, and to correctly perform wafer alignment in a short time. [Embodiment] Hereinafter, a wafer positioning device and a wafer positioning method according to an embodiment of the present invention will be described with reference to the attached drawings. Further, the wafer positioning device is a device incorporated in a semiconductor wafer inspection device or the like of a probe device or the like, and is a wafer positioning device for crystallizing the probe card with respect to the inspection device. The circle is correctly positioned. As an example of the inspection apparatus, a probe apparatus for inspecting a semiconductor wafer will be described with reference to Fig. 1 . The probe device 1 1 is configured to include a semiconductor wafer W on which a circuit is formed, a table 13 placed on the upper side surface 1 3 A, and a table 13 in the XYZ axis direction and 0. An XYZ 0-axis driving unit 14 that moves in the rotational direction, a position control unit (not shown) that controls the XYZ 0-axis driving unit 14 , and a contact with the electrode pad of the circuit are provided. The probe card 18 of the probe 17 and the fixed frame 19 for fixing the probe card 18 and the electrical characteristics of the circuit on the semiconductor wafer W are interposed between the probe card 18. Electrical property measuring unit (not shown). The upper surface 1 3 A of the table 13 is formed into a flat surface shape and a flat semiconductor wafer W is placed thereon. Usually, at the upper side 13A, a suction groove is provided. The semiconductor wafer W is placed in the absorbing groove and fixed in a state of being placed on the upper side surface 1 3 A. In the probe device 1 1 , a wafer positioning device for temporarily positioning the semiconductor wafer W via a wafer positioning method described later is provided. As shown in FIG. 5, the main camera 24, the auxiliary camera 25, and the control unit 26 which are provided facing the table 13 supported by the ΧΥΖ-axis driving unit 14 are generally provided. The stage 13 is a table for supporting the inspection target wafer w facing the probe card 18. The table 13 is provided with a suction mechanism (not shown) for sucking and supporting the wafer W, and a heating device for heating the wafer W for heating test (not shown). ) Wait. The ΧΥΖ0 driving unit 14 is a device for supporting the table 13, and moving the table 13 in all directions of the XYZ axis and rotating in the 0-axis direction. The ΧΥΖ0-axis driving unit 14 is constituted by an X-axis moving mechanism 28 for moving the table 13 in the X-axis direction and adjusting the position in the X-axis direction, and for making the table 13 a Y-axis moving mechanism 29 that moves in the Y-axis direction and adjusts the position in the Y-axis direction, and a Z-axis moving mechanism 30 that moves the table 13 in the Z-axis direction and adjusts the position in the Z-axis direction, And a zero-axis moving mechanism 31 for rotating the table 13 in the 0-axis direction and adjusting the angle. The main camera 24 is a camera that is disposed facing the table 13 and that photographs the wafer W supported by the table 13. Similarly, the auxiliary camera 2 5 is a camera that is disposed facing the table 13 and photographs the wafer W supported by the table 13 . The main camera 24 and the auxiliary camera 25 are attached to the apparatus main body side, and are fixed at a specific position while being vacant with each other to be determined. The main camera ς -11 - 201104785 24 cooperates with the auxiliary camera 25 to correctly position the wafer W. The control unit 26 performs processing on the image information captured by the main camera 24 and the sub camera 25 and controls the XYZ 0 driving unit 14 to thereby perform alignment of the wafer W. Installed. Specifically, the control unit 26 is composed of the image processing device 3 3, the display device 34, the display device 35, and the operation control device 36, and is stored in the calculation device 34, and is stored in accordance with the following. The processing program (Process) is used to perform the processing of wafer positioning. The image processing device 33 is a device for processing image information taken by the main camera 24 with the auxiliary camera 25 and transmitting it to the computer 34. The calculation device 34 compares the image information taken by the main camera 24 and the auxiliary camera, that is, the position of the positioning pattern, with the reference. In other words, the calculation device 34 overlaps the image information processed by the image processing device 33 with the reference position, and outputs it to the display device 35, and the action control device 36 is made based on the instruction signal. control. In the calculation device 34, a processing function which is displayed by a flowchart described later is stored. The display device 35 outputs the operation instruction signal to the calculation based on the image output from the image processing device 33 and displays the image 'and' based on the operation instruction made by the operator from the operation screen. Set 3 4 places. The motion control device 3 6 ' controls the XYZ 0 -axis drive unit 14 according to the operation of the instruction signal from the calculation device 34 , and sets the fixed axis to calculate the turbulence and the 25 position display flow device .工-12-201104785 The stage 13 moves in all directions of the XYZ axis and rotates in the 0-axis direction. Next, a description will be given of a method of positioning a wafer using the wafer positioning device 2 1 having the above configuration. The wafer positioning method as the processing function stored in the arithmetic unit 34 of the control unit 26 is performed by the processing program shown in the flowchart of Fig. 6. The processing of the wafer positioning is performed by the first step of performing the positioning of the first wafer W (step S1) and the positioning processing via the first wafer. The first wafer measurement process in which the first wafer W is positioned is measured (step S2), and the second wafer positioning process (step S3) in which the wafer W is positioned after the second and subsequent steps (step S3) The second wafer measurement process (step S4) of measuring the second and subsequent wafers W that have been positioned by the second wafer positioning process, and determining whether or not the measurement of all the wafers w has been completed. Judgment Process (Step S5) » The first wafer positioning process of step S1 is generally as shown in the flowchart of FIG. 7, and is composed of the following steps: determining the edge position of the three points of the wafer W, and specifying The wafer center is taken out, and the edge search processing (step S11) of the offset between the coordinates and the theoretical center coordinates is obtained, and the deviation between the two low-magnification positioning patterns and the reference position set in advance is determined. a quantity, and performing a low magnification correction process of χγ 0 correction (step S 1 2 ), and The high-magnification correction process of χγ 0 correction is performed by the amount of deviation between the two high-magnification positioning patterns and the reference position set in advance (step S 1 3 ). The details of each of these steps are described in the following paragraphs - 201104785. However, regarding the edge search processing of step S11, since the method which is performed from the prior art is applied, the detailed description is omitted. Description. The second wafer positioning process of step S3 is generally performed by the following steps: the edge search processing similar to the edge search processing in the processing of the first wafer W is performed as shown in the flowchart of FIG. (Step S21), and a low magnification correction process (step S22) of performing XY 0 correction based on the amount of deviation between the two low-magnification positioning patterns and the reference position set in advance (step S22), and according to the predetermined The amount of deviation between the two high-magnification positioning patterns and the reference position is subjected to a high-magnification correction process of ΧΥ0 correction (step S23). Next, a processing procedure of the low magnification correction processing of step S12 will be described with reference to Fig. 9 . In addition, Fig. 9 is a display for the processing procedure in the positioning of the first wafer. First, it is determined that the edge position of the three points of the wafer W is determined, and the center of the wafer is specified, and the edge search processing between the center and the center of the wafer is obtained (step S3 1). Further, the edge search processing of this step S31 is performed by the same processing procedure as the edge search processing (step S11) shown in the flowchart of Fig. 7. Next, the positional deviation correction processing of the wafer W is performed by the following processing procedure. First, the main camera 24 is switched to a low magnification (for example, about 2 times), and the wafer W is moved by the X-axis moving mechanism 28 and the Y-axis moving mechanism 29, so that the main camera 24 is positioned at a low magnification. On the pattern (step S32). Next, the auxiliary camera 25 is switched to the -14-201104785 low magnification ' and the wafer W is moved by the X-axis moving mechanism 28 and the Y-axis moving mechanism 29, so that the auxiliary camera 25 is positioned on the low-magnification positioning pattern ( Step S33). Here, as the "low-magnification positioning pattern", for example, a positioning mark formed on the wafer W in advance or a specific circuit chip selected from a plurality of circuit wafers formed on the wafer W is used. One of the electrode pads. In addition, in step S32 and step S33, the control may be performed interactively and parallel processing, or simultaneous processing may be performed. Further, after the processing of step S32, the processing of step S33 may be performed. Next, it is determined whether or not the reference positions of the main camera 24 and the sub camera 25 match the low magnification positioning pattern (step S34). That is, at the display device 35 of the control unit 26, the images of the main camera 24 and the auxiliary camera 25 are simultaneously displayed and judged simultaneously. If the two do not match (i.e., NG), it is determined whether the number of times of the NG exceeds the number of times set in advance (step S35). If the number of NGs does not exceed the number of times set in advance, each of the main camera 24 and the auxiliary camera 25 on the wafer W is used to explore the periphery of the first photographed position (step S36), and It is determined again whether or not they match (step S 3 4 ). Then, this step S 3 4 to step S 3 6 is repeated until it becomes matched. Further, the peripheral search in step S36 is performed in the same manner as the above-described step S32 or step S33. At this time, in step S35, when it is determined that the number of NGs has exceeded the number of times set in advance, it is determined that some errors are generated at the wafer W -15-201104785, and the The wafer w is recovered (step S37). Next, when it is determined in step S34 that the two systems are matched, the amount of deviation in each direction of XY 0 between the low-magnification positioning pattern and the reference position is calculated (step S38). Then, based on the amount of deviation in each direction of the ΧΥ0 obtained by the calculation, the position of the table 13, that is, the amount of deviation of each direction of the XY 0 of the wafer W is corrected (step S3 9). Next, the step The high-magnification correction processing of S13 is performed by switching the main camera 24 to a high magnification (for example, about 10 times) as shown in the flowchart of FIG. 1 , and by the X-axis moving mechanism 28 and the Y-axis moving mechanism. The wafer W is moved by 29 to position the main camera 24 on the high-magnification positioning pattern (step S41). Next, the auxiliary camera 25 is switched to a high magnification, and the wafer W is moved by the X-axis moving mechanism 28 and the Y-axis moving mechanism 29, so that the auxiliary camera 25 is positioned at the high-magnification positioning pattern (step S42). In addition, in step S4 1 and step S42, the control may be performed interactively and parallel processing, or simultaneous processing may be performed. Further, after the process of step S41, the process of step S42 may be performed. Next, it is determined whether or not the reference positions of the main camera 24 and the sub camera 25 match the high-magnification positioning pattern (step S43). At the display device 35 of the control unit 26, the images of the main camera 24 and the auxiliary camera 25 are simultaneously displayed, and the determination is simultaneously made. If the two do not match (i.e., NG), it is determined whether the number of times of the NG exceeds the number set in advance (step S44). If the number of NG-16-201104785 does not exceed the preset number of times, the main camera 24 and the auxiliary camera 25 on the wafer W are used, and the periphery of the initially photographed position is explored (steps). S45), and it is determined again whether or not they match (step S43). Then, this step S43 to step S45 are repeated until they match. Further, the peripheral search in step S45 is performed in the same manner as the above-described step S41 or step S42. At this time, in step S44, when it is determined that the number of NGs has exceeded the number of times set in advance, it is determined that some error has occurred at the wafer W, and the wafer W is recovered ( Step S46). Next, when it is determined in step S43 that the two systems are matched, the amount of deviation in each direction of XY 0 between the high-magnification positioning pattern and the reference position is calculated (step S47). Then, based on the amount of deviation in each direction of the ΧΥ0 obtained by the calculation, the position of the table 13, that is, the correction amount of each direction of the wafer W, is corrected (step S48). Next, referring to FIG. The processing procedure of the low magnification correction processing in the positioning of the wafer after the second and subsequent wafers will be described. The low magnification correction processing procedure in the positioning of the wafer after the second and second is basically the same as the case of the first wafer described above. However, first, the initial setting is performed in step S51. (Initial position correction). Specifically, the amount of deviation correction in each direction obtained by positioning the first wafer or the wafer measured by the previous wafer (the positional deviation correction amount in the XY direction of the wafer center) is used. The deviation correction amount in the 0 direction of the wafer W and the deviation correction in the XY direction of the two low-magnification positioning patterns -17-201104785), and correcting the initial position at the edge search of the next step s52 . Then, the processing after step s52 is performed. Further, since the processing in the step S52 and subsequent steps is the same as the low magnification correction processing program (steps S31 to S39) in positioning the wafer of the first wafer described above, the description thereof is omitted. The high-magnification correction processing procedure in the positioning of the second and subsequent wafers is basically the same as in the case of the first wafer described above, but the same as the low-magnification correction processing program after the second and subsequent steps. The 'first' is the initial setting (initial position correction). The subsequent processing ' is the same as the high-magnification correction processing procedure in the positioning of the first wafer described above, and therefore the description thereof will be omitted. Next, a processing procedure for correcting the amount of deviation in each direction of the wafer W of the second and subsequent wafers will be described with reference to Figs. 12 to 18 . Here, as the positioning pattern, as shown in FIG. 12, it is generally shown that each of the wafers formed on the wafer W is opposed to two wafers in the diametrical direction. Select one electrode spacer separately and use it. First, as shown in FIG. 13, generally, the position of the spacer 41 on the wafer C1 which is one of the two positioning patterns formed on the wafer W is measured by the main camera 24. . Next, as shown in FIG. 14 , the table 13 is moved to the theoretical position on the side of the auxiliary camera 25 and is detected by the auxiliary camera 25 for the spacer 4 1 on the wafer C1. The amount of deviation ΔΧ1, ΔΥ1 between the positions of -18-201104785 was previously measured by the main camera 24. Here, the theoretical position on the auxiliary camera 25 side refers to a position corrected by using the following deviation correction amount: that is, the deviation amount means that there is no thermal expansion due to the absence of thermal expansion. When the positioning of the first wafer is performed in the state of the auxiliary camera 25 in the state of the displacement of the auxiliary camera 25 or the like, the deviation correction amount in each direction of the obtained XY 0 is obtained. Further, the theoretical position on the auxiliary camera 25 side with respect to the third and subsequent wafers is the position corrected using the previous deviation correction amount. Next, as shown in FIG. 15, generally, the table 13 is moved to the theoretical position on the side of the main camera 24, and by the main camera 24, it is placed in two positioning patterns which are formed on the wafer W. The electrode pad 42 on the wafer C2 of the other one is photographed, and the amount of deviation Δ X2 and Δ Y2 from the reference position is measured. Then, as shown in Fig. 16, the electrode pad 41 on the wafer C1 is photographed by the auxiliary camera 25, and the amount of deviation ΔΧ3, ΔΥ3 from the reference position is extracted. Here, the theoretical position on the side of the main camera 24 refers to a position corrected by using the following deviation correction amount: that is, the deviation amount means that there is no thermal expansion due to the relative existence. When the position of the main camera 24 in the state of the displacement of the main camera 24 is the same, and the positioning of the first wafer is performed, the deviation correction amount in each direction of the ΧΥ0 is obtained. Further, the theoretical position of the main camera 24 side with respect to the third and subsequent wafers is a position corrected using the previous deviation correction amount. Further, as shown in FIG. 17, the table 13 is moved again by placing the main camera 24 positions -19-201104785 on the electrode pads 42 of the wafer C1, and then, for the measurement by the foregoing. The manner in which the amount of deviation obtained is corrected, specifically, the position of the electrode pad 41 is adjusted so as to coincide with the reference position, and the table 13 is finely adjusted in all directions. Then, as shown in Fig. 18, the table 13 is moved in such a manner that the auxiliary camera 25 is positioned on the electrode pad 41 of the wafer C1, and then taken out for the measurement by the aforementioned measurement. The manner in which the amount of deviation is corrected, specifically, the result of the above-described FIG. 17 is considered, and the position of the electrode pad 41 is made to coincide with the reference position, so that the table 13 is made in the ΧΥ0 direction. Micro adjustment. Next, a processing procedure for determining the reference position of the wafer positioning in the wafer positioning apparatus according to the embodiment of the present invention will be described with reference to Figs. 19 to 21 . In the wafer positioning apparatus shown in the drawing, a positioning mark 43 is provided at the outer edge portion of the table 13, and the positioning mark 43 is used for crystal positioning. First, as shown in Fig. 19, the positioning mark 43 is photographed by the main camera 24, and the reference position is aligned with the positioning mark 43. Next, as shown in FIG. 20, the table 13 is used as the movement of the theoretical distance between the main camera 24 and the auxiliary camera 25, and the auxiliary camera 25 is used to photograph the positioning mark 43 and then retrieved. The amount of deviation Δ X, Δ Y » between the reference positions is then shifted in the ΧΥ0 direction as shown in Fig. 21, and the previous deviation amounts Δ X and Δ Υ are corrected. Here, the theoretical distance refers to the original main camera 24 and the auxiliary camera 25 when there is no state in which there is a change in the distance between the main camera 24 and the sub camera 25 due to thermal expansion, -20-201104785. the distance between. Through the above process, the reference position of the wafer positioning is determined, and then the wafer positioning and measurement of the first and second wafers are performed through the wafer positioning processing program described above. Further, in the above-described processing program, the positioning mark 43 provided at the table 13 is used. Alternatively, it may be the same as the edge search in step S11 of FIG. Processing, and determining the center position of the workbench 3, and thereby determining the reference position of the wafer positioning. By generally processing as described above, even if the support portion supporting the main camera 24 and the sub camera 25 is thermally expanded by the heating test or the like and the distance between the main camera 24 and the sub camera 25 is changed, It is also possible to perform fine correction in accordance with the portrait information of the main camera 24 and the auxiliary camera 25, so that the displacement of the main camera 24 and the auxiliary camera 25 due to thermal expansion can be absorbed and the wafer W can be corrected. The opposite. At this time, since the main camera 24 and the sub camera 25 need only be fixed, the installation space is not enlarged, and the wafer positioning device can be realized at low cost. Further, in the wafer positioning method of the present embodiment, since the table 13 is moved to the left and right and moved largely, the movement is only required once, and then only a small movement is required, so that it can be performed in a short time. And correctly - 21 - 201104785 wafer alignment. As a result, when a large number of wafers W are continuously replaced and inspected, etc., positioning of a new wafer W can be performed in a short time, and work such as inspection can be improved. [Modification] In the above-described embodiment, in the processing of the wafer W after the second and subsequent stages, the edge search processing is performed in accordance with the performance of the loader (not shown) for supplying the wafer W to the stage 13. And was set as the setting. That is, when the performance of the loader that carries the wafer W to the table 13 is good, and the wafer W can be correctly placed on the table 13, the edge can also be explored. The processing (step S31 of Fig. 9 and step S52 of Fig. 11) is omitted. [Industrial Applicability] The wafer positioning device and the wafer positioning method of the present invention are all used as inspection devices or processing devices used in inspection or processing of wafer W and need to be The wafer W can be used in a device for proper positioning. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] A schematic diagram showing a configuration of a probe device incorporating a wafer positioning device according to an embodiment of the present invention. [Fig. 2] A schematic block diagram showing a prior art wafer positioning device. -22- 201104785 3] A schematic diagram showing the operation of the prior art wafer positioning device. 4] 3⁄4 shows a schematic diagram of the operation of the prior art wafer positioning device. T®1 is a schematic diagram showing a wafer positioning device according to an embodiment of the present invention. 6] A flow chart showing a wafer positioning method according to an embodiment of the present invention. 7] A flowchart showing a positioning process of the first wafer in the wafer positioning method according to the embodiment of the present invention. [I® 8] A flow chart showing the positioning processing of the second and subsequent wafers in the wafer positioning method according to the embodiment of the present invention. FIG. 9 is a flow chart showing a low-magnification correction process performed on a first wafer in the wafer positioning method according to the embodiment of the present invention. FIG. 1 is a view showing an embodiment of the present invention. The high-rate correction processing of the wafer positioning method is shown as a flow chart. [Fig. 11] A flowchart showing a low-magnification correction process performed on a wafer after the second and subsequent wafers in the wafer positioning method according to the embodiment of the present invention. [Fig. 1 2] A diagram showing a schematic relationship between a positioning pattern and a camera in a wafer positioning method according to an embodiment of the present invention. Fig. 13 is a view schematically showing a correction processing program in the wafer positioning method according to the embodiment of the present invention, and is a view for measuring the position of one of the positioning patterns by the main camera 201104785. Fig. 14 is a view schematically showing a correction processing program in the wafer positioning method according to the embodiment of the present invention, and is a view for measuring the position of one of the positioning patterns by the auxiliary camera. Fig. 15 is a view schematically showing a correction processing program in the wafer positioning method according to the embodiment of the present invention, and is a view for measuring the position of the other positioning pattern by the main camera. Fig. 16 is a view schematically showing a correction processing program in the wafer positioning method according to the embodiment of the present invention, and is a view for measuring the position of one of the positioning patterns by the auxiliary camera. Fig. 17 is a view schematically showing a correction processing program in the wafer positioning method according to the embodiment of the present invention, and is a view for measuring the position of the other positioning pattern by the main camera. Fig. 18 is a view schematically showing a correction processing program in the wafer positioning method according to the embodiment of the present invention, and is a view for measuring the position of one of the positioning patterns by the auxiliary camera. 19 is a view schematically showing a processing procedure for determining a reference position of wafer positioning in the wafer positioning method according to the embodiment of the present invention, and is performing the outer edge portion of the table by the main camera. A map of the alignment of the positioning marks. FIG. 20 is a view schematically showing a processing procedure for determining a reference position of wafer positioning in the wafer positioning method according to the embodiment of the present invention, and is for taking out the positioning mark and the reference position by the auxiliary camera. FIG. A graph of the amount of deviation between. -24- 201104785 [0 2 1] A schematic diagram showing a processing procedure of the reference position of the & Μ positioning in the wafer positioning method according to the embodiment of the present invention, and ΙΕ is making the table at χγ0 A map in which the direction is shifted and the previous amount of deviation is corrected. [Description of main component symbols] 1. 21: wafer positioning device 2, 13: table 3: ΧΥΖ Θ platform 4: cameras 5, 26: control units 6, 3 3: image processing devices 7, 3 4: calculation device 8 35: Display device 9' 3 6 : Motion control device 1 1 : Probe device 1 3 : Table 14 : ΧΥΖ 0-axis drive unit 1 7 : Probe 1 8 : Probe card 19 : Fixed frame 24 : Main camera 2 5 : Auxiliary camera 28: X-axis moving mechanism

C -25- 201104785 29 : 30 : 3 1: 41、 43 : Y軸移動機構 Ζ軸移動機構 0軸旋轉機構 42 :電極墊片 定位記號C -25- 201104785 29 : 30 : 3 1: 41, 43 : Y-axis moving mechanism Ζ axis moving mechanism 0-axis rotating mechanism 42 : Electrode gasket Positioning mark

Claims (1)

201104785 七、申請專利範圍: 1. —種晶圓定位裝置,其特徵爲,具備有: 工作台,係將檢查對象晶圓作支持;和 XYZ 平台,係將該工作台作支持,而使前述晶圓在 XYZ軸方向上作移動並且在0軸方向上作旋轉;和 主攝像機,係面臨於前述工作台地被設置,並對於被 載置於該工作台上之前述晶圓作攝影;和 輔助攝像機,係在與該主攝像機空出有預先所設定了 的距離之狀態下,而面臨於前述工作台地被設置,並對於 被載置在該工作台上之前述晶圓作攝影;和 控制部,係對於藉由前述主攝像機以及輔助攝像機所 攝影了的畫像資訊作處理,並對於前述XYZ 0平台作控制 '而進行目U述晶圓之對位, 前述控制部,係具備有: 修正處理,係根據第1枚之晶圓的位置而對於第2枚 以後之晶圓作修正;和 低倍率修正處理,係由預先所訂定之2個的低倍率定 位圖案與基準位置間的偏差量,來對於前述第2枚以後之 晶圓進行XY 0方向的修正;和 高倍率修正處理,係由預先所訂定之2個的高倍率定 位圖案與基準位置間的偏差量,來對於前述第2枚以後之 晶圓進行XY 0方向的修正。 2. 如申請專利範圍第1項所記載之晶圓定位裝置,其 中,前述控制部,係在前述低倍率修正處理以及前述高倍 -27- 201104785 率修正處理中,首先,使前述主攝像機位置在其中一方之 前述定位圖案上,接著,使前述晶圓移動,並使前述輔助 攝像機位置在前述其中一方之定位圖案上,之後,對於前 述輔助攝像機之基準位置與前述其中一方之定位圖案、以 及對於前述主攝像機之基準位置與另外一方之定位圖案, 而分別使其作匹配,並對於偏差量作測定。 3 · —種晶圓定位方法,係爲在將複數之晶圓連續地更 換而進行處理時,而進行該晶圓之定位的晶圓定位方法, 其特徵爲,具備有: 修正處理,係根據第1枚之晶圓的位置而對於第2枚 以後之晶圓作修正;和 低倍率修正處理,係由預先所訂定之2個的低倍率定 位圖案與基準位置間的偏差量,來對於前述第2枚以後之 晶圓進行XY 0方向的修正;和 高倍率修正處理,係由預先所訂定之2個的高倍率定 位圖案與基準位置間的偏差量,來對於前述第2枚以後之 晶圓進行XY 0方向的修正。 4 .如申請專利範圍第3項所記載之晶圓定位方法,其 中,在前述低倍率修正處理以及前述高倍率修正處理中, 首先,使主攝像機位置在其中一方之前述定位圖案上,接 著,使前述晶圓移動,並使輔助攝像機位置在前述其中一 方之定位圖案上,之後,對於前述輔助攝像機之基準位置 與前述其中一方之定位圖案、以及對於前述主攝像機之基 準位置與另外一方之定位圖案,而分別使其作匹配,並對 於偏差量作測定。 -28-201104785 VII. Patent application scope: 1. A wafer positioning device, which is characterized in that: a workbench is used to support the inspection target wafer; and an XYZ platform is used to support the workbench, and the foregoing The wafer is moved in the XYZ axis direction and rotated in the 0-axis direction; and the main camera is disposed facing the aforementioned workbench, and photographs the aforementioned wafer placed on the workbench; and assists The camera is disposed facing the workbench in a state in which the main camera is vacant with a predetermined distance, and photographs the wafer placed on the workbench; and the control unit The image information captured by the main camera and the auxiliary camera is processed, and the wafer is aligned with the XYZ 0 platform. The control unit includes: correction processing According to the position of the first wafer, the second and subsequent wafers are corrected; and the low magnification correction processing is performed by two low-rate positioning patterns which are predetermined in advance. The amount of deviation from the reference position is corrected in the XY 0 direction for the second and subsequent wafers; and the high magnification correction processing is performed by the deviation between the two high-magnification positioning patterns and the reference position defined in advance. For the second and subsequent wafers, the XY 0 direction is corrected. 2. The wafer positioning device according to claim 1, wherein the control unit first sets the main camera position in the low magnification correction processing and the high magnification -27-201104785 rate correction processing. And moving the wafer to the positioning pattern of one of the positioning patterns, and positioning the auxiliary camera on one of the positioning patterns, and then positioning the reference position of the auxiliary camera and the positioning pattern of the one of the auxiliary cameras, and The reference position of the main camera and the positioning pattern of the other camera are matched to each other, and the amount of deviation is measured. A wafer positioning method is a wafer positioning method for performing positioning of a wafer when a plurality of wafers are continuously replaced and processed, and is characterized in that: The position of the first wafer is corrected for the second and subsequent wafers; and the low magnification correction processing is performed by the amount of deviation between the two low-rate positioning patterns and the reference position defined in advance. The second and subsequent wafers are corrected in the XY 0 direction; and the high-magnification correction processing is performed on the second and subsequent crystals by the amount of deviation between the two high-magnification positioning patterns and the reference position set in advance. The circle is corrected in the XY 0 direction. The wafer positioning method according to claim 3, wherein in the low magnification correction processing and the high magnification correction processing, first, the main camera position is placed on one of the positioning patterns, and then Moving the wafer and positioning the auxiliary camera on one of the positioning patterns, and then positioning the reference position of the auxiliary camera with one of the positioning patterns of the auxiliary camera and the reference position of the main camera and the other side The patterns are individually matched and measured for the amount of deviation. -28-
TW099105962A 2009-03-16 2010-03-02 Apparatus and method of wafer alignment TWI464827B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009063254 2009-03-16
JP2010014369A JP2010245508A (en) 2009-03-16 2010-01-26 Wafer alignment device and wafer alignment method

Publications (2)

Publication Number Publication Date
TW201104785A true TW201104785A (en) 2011-02-01
TWI464827B TWI464827B (en) 2014-12-11

Family

ID=43098133

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099105962A TWI464827B (en) 2009-03-16 2010-03-02 Apparatus and method of wafer alignment

Country Status (2)

Country Link
JP (1) JP2010245508A (en)
TW (1) TWI464827B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692834B (en) * 2017-09-19 2020-05-01 日商芝浦機械電子裝置股份有限公司 Packaging device and packaging method of electronic parts

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102553834A (en) * 2010-12-16 2012-07-11 江阴格朗瑞科技有限公司 Aligned type strip test separator with dual-camera combination
JP2013077678A (en) 2011-09-30 2013-04-25 Sony Corp Imaging device, electronic apparatus, and manufacturing method
US9000798B2 (en) * 2012-06-13 2015-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Method of test probe alignment control
JP5718978B2 (en) * 2013-05-28 2015-05-13 株式会社東京精密 Wafer inspection method
JP6242119B2 (en) * 2013-08-29 2017-12-06 株式会社ピーエムティー Exposure apparatus having a wide-angle rotation mechanism
WO2016084147A1 (en) * 2014-11-26 2016-06-02 株式会社東京精密 Wafer inspection method
CN105445643A (en) * 2015-11-12 2016-03-30 杭州长川科技股份有限公司 Full-automatic prober image positioning system
CN105486995B (en) * 2015-12-07 2018-08-17 杭州长川科技股份有限公司 Full-automatic probe station image positioning device and visual aligning method
US11156993B2 (en) * 2016-06-02 2021-10-26 Universal Instruments Corporation Semiconductor die offset compensation variation
JP7458161B2 (en) * 2019-09-24 2024-03-29 東京エレクトロン株式会社 Inspection device control method and inspection device
CN112053985B (en) * 2020-07-03 2024-02-02 北京华卓精科科技股份有限公司 Wafer alignment device and alignment method thereof
US11532524B2 (en) 2020-07-27 2022-12-20 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit test method and structure thereof
CN115902327B (en) * 2023-02-23 2023-05-26 长春光华微电子设备工程中心有限公司 Calibration method for probe station positioning compensation and probe station

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140548A (en) * 1986-12-02 1988-06-13 Canon Inc Alignment method of planar object
JP2595995B2 (en) * 1987-10-09 1997-04-02 ソニー株式会社 Assembly equipment
JPH0936202A (en) * 1995-07-14 1997-02-07 Nikon Corp Positioning method
JPH10256350A (en) * 1997-03-06 1998-09-25 Toshiba Corp Semiconductor manufacturing method and apparatus therefor
JP2000156336A (en) * 1998-11-20 2000-06-06 Nikon Corp Method and device for alignment
JP4542724B2 (en) * 2001-05-28 2010-09-15 Okiセミコンダクタ株式会社 Autofocus device
JP2004200383A (en) * 2002-12-18 2004-07-15 Tokyo Seimitsu Co Ltd Aligning method
JP2009054962A (en) * 2007-08-29 2009-03-12 Nikon Corp Positioning detector
JP5309503B2 (en) * 2007-08-30 2013-10-09 株式会社ニコン POSITIONING DEVICE, POSITIONING METHOD, AND SEMICONDUCTOR MANUFACTURING DEVICE HAVING THEM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692834B (en) * 2017-09-19 2020-05-01 日商芝浦機械電子裝置股份有限公司 Packaging device and packaging method of electronic parts

Also Published As

Publication number Publication date
TWI464827B (en) 2014-12-11
JP2010245508A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
TW201104785A (en) Apparatus and method of wafer alignment
US8271919B2 (en) Method for correcting image rendering data, method for rendering image, method for manufacturing wiring board, and image rendering system
TWI490478B (en) Substrate inspection device
JP5343326B2 (en) Substrate bonding apparatus and substrate bonding method
TW201246416A (en) Die Bonder and Semiconductor Manufacturing Method
US10191394B2 (en) Distortion detection method, exposure apparatus, exposure method, and device manufacturing method
JP2017036974A (en) Image processing device, calibration method and calibration program
JP2007225522A (en) Method of measuring deformation amount of substrate
WO2019013274A1 (en) Device and method for positioning first object in relation to second object
JP2008014700A (en) Workpiece inspection method and workpiece inspection device
JP2010045099A (en) Display method for alignment mark image, and alignment device
JP2007059640A (en) Visual inspection equipment
KR20100105366A (en) Apparatus and method of wafer alignment
JP5211904B2 (en) Single crystal material plane alignment apparatus and plane alignment method
JP2002280288A (en) Reference wafer for calibration, method of calibration, method and device for detecting position, and aligner
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
TW201027094A (en) Array test apparatus and method of measuring position of point on substrate thereof
JP3450752B2 (en) Mask alignment method for rectangular beam
JP2006112933A (en) Alignment mark inspection method and program
JP5370828B2 (en) TFT array inspection apparatus and TFT substrate alignment method
TW201013324A (en) Exposure apparatus and device manufacturing method
JP2014003312A (en) Substrate joining device and substrate joining method
JP2009054962A (en) Positioning detector
JP2006114841A (en) Bonding apparatus
TWI841852B (en) Mounting device and mounting method