TW201104213A - Surface detection of shovel accessory and automatic quality detection apparatus - Google Patents

Surface detection of shovel accessory and automatic quality detection apparatus Download PDF

Info

Publication number
TW201104213A
TW201104213A TW98124671A TW98124671A TW201104213A TW 201104213 A TW201104213 A TW 201104213A TW 98124671 A TW98124671 A TW 98124671A TW 98124671 A TW98124671 A TW 98124671A TW 201104213 A TW201104213 A TW 201104213A
Authority
TW
Taiwan
Prior art keywords
control computer
detection
measurement result
point
result
Prior art date
Application number
TW98124671A
Other languages
Chinese (zh)
Other versions
TWI379988B (en
Inventor
Wen-Yuh Jywe
Hung-Shu Wang
Bo-Wei Chen
Jyun-Jia Yang
Ming-Chi Chiang
Wei-Cheng Tsai
Wei-Chung Chang
jia-hong Chen
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW98124671A priority Critical patent/TW201104213A/en
Publication of TW201104213A publication Critical patent/TW201104213A/en
Application granted granted Critical
Publication of TWI379988B publication Critical patent/TWI379988B/zh

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A surface detection of shovel accessory and automatic quality detection apparatus, which includes a three-dimensional moving measurement and a control computer electrically connected with the three-dimensional moving measurement apparatus, wherein three-dimensional moving measurement apparatus contains a measurement apparatus main body and a displacement sensing apparatus. The measurement apparatus main body is the optical scan apparatus, which can control a moving arm to carry out the three-dimensional move and includes a scan terminal; the control computer controls the moving azimuth of the moving arm to carry out the high-degree scanning according to the sensing result of the displacement sensing apparatus. The control computer, after obtaining the result of high-degree scanning, analyzes the scanning result to judge whether the surface pattern of the work piece conforms to the requirement of quality assurance.

Description

201104213 六、發明說明: 【發明所屬之技術領域】 本發明是一種用於三維表面型態量測骏置及方法,尤 其是關於一種可用於逆向表面型態重建的掃描與表面品質 自動分析檢測之裝置及方法。 【先前技術】 鏟配技術是高精度高負荷的硬轨工具機組立過程中奠 #纟基礎的重要步驟,當硬轨軌道面裝配時均以精密鍵花處 理,鏟配技術為將硬軌滑動面較高粗缝處鐘除,使機具精 度提昇,且鏟花凹槽(鏟斑)處能儲存潤滑油,使配合面接觸 ㈣時更為平滑’提高硬軌滑動面精度壽命。(鐘斑含油)阻 尼愈大減振效果愈佳’加工時之動態剛性也越大(動態彈性 越小)’精度也越南。鏟花(鏟配)技術對整體工具機產業精 度〇口貝及可罪度具有決定性的影響。傳統的鐘配技術乃是 φ ㉔保工具機平面滑道緊密而平順的最有效方法,是確保精 度與產品耐用性的關鍵技術,但傳統鐘配件的粗鐘檢測, 是把顯色劑塗在標準治具上(如花^平台),再將卫件與標 準治具接觸摩擦後,讓需要被鏟掉的地方顯露出來,並配 合千分量錶與厚薄規來判斷面的平整高低差,這樣的檢則 方式不僅精密度不足’且過程相當繁項而不易使用。 另外,也有部分的研究以影像感應裝置(如ccd)拍攝 表面塗有顯影劑之工件後,以灰階影像分析方式解析工件 的表面型態或鏟花品質。 然而,不論顯色劑塗佈或以影像分析的方式,其過裎 201104213 都比較複雜,而且,都僅能達到非 .... 吊間略的尚點檢測,無 法進一步分析工件的其他表面型熊, -^ ^ ^ . 〜 4如表面、鏟花孔满 化形冰度、工件表面溝槽邊角形狀 【發明内容】 為解決前述的既有的鏟配高點摔 測之_ # # π u n 、’、手奴、表面型態檢 判之和確度不佳及過程繁冗等技 锸ώ去 灯閃碭,本發明係提供〆 種自動化的鏟配工件量測裝置, ’、 η ^ 听尺既有問題,遠到枯· # 知確分析鏟配工件表面型態品質之目的。 、 配合解決前述技術問題及達成 Μ 战則述發明目的,本發明201104213 VI. Description of the Invention: [Technical Field] The present invention is a three-dimensional surface type measurement and method, and particularly relates to an automatic scanning and surface quality analysis and detection which can be used for reverse surface type reconstruction Apparatus and method. [Prior Art] The shovel-matching technology is an important step in the foundation of the high-precision and high-load hard-rail tool unit. When the hard-track surface is assembled, it is treated with a precision key flower, and the shovel is used to slide the hard track. The higher the thick seam is removed, the precision of the machine is improved, and the lubricating oil can be stored in the groove (scraping), so that the mating surface is smoother when it contacts (4), and the precision life of the hard surface is improved. (The oil in the bell spot) The better the damping effect, the better the dynamic rigidity during processing (the smaller the dynamic elasticity) The precision is also in Vietnam. Shovel (shovel) technology has a decisive impact on the overall machine tool industry's precision and guilt. The traditional clock-matching technology is the most effective method for ensuring the smoothness and smoothness of the flat slide of the φ 24 tool. It is the key technology to ensure the accuracy and durability of the product. However, the coarse clock detection of the traditional clock accessories is to apply the developer to the On the standard jig (such as the flower platform), after the friction between the guard and the standard jig, the place that needs to be shoveled is exposed, and the surface of the surface is judged by the weight gauge and the thickness gauge. The method of inspection is not only insufficiently precise, and the process is quite complicated and not easy to use. In addition, some studies have used image sensing devices (such as ccd) to capture the surface of the workpiece coated with the developer, and then analyze the surface pattern or the quality of the shovel by gray-scale image analysis. However, regardless of the application of the developer or the image analysis method, the overpass 201104213 is complicated, and it can only achieve the detection of the sling, and the other surface types of the workpiece cannot be further analyzed. Bear, -^ ^ ^ . ~ 4 such as surface, shovel flower full-form ice, workpiece surface groove corner shape [Summary] To solve the aforementioned existing shovel with high point _ _ # # π ', 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 There are problems, far to dry. # Exactly analyze the purpose of the surface quality of the shovel. The present invention cooperates with solving the aforementioned technical problems and achieving the goal of the invention.

知供一種鏟配件表面檢測及自 本I _ _ ^ 勒化口口質檢測裝置,苴句含 二、准移動量測以及電性連接 八 制電腦,其中: ,准移動量測裝置之一控 該三維移動量測裝置包含一量測 感測庐詈,兮θ 、裝置本體以及一位移 彳裒置,该$測裝置本體係為可 描裝置,I άΓ 仃一維移動的光學掃 掃描端早係m 6 τ —、准度之移動’其包含一 而子係固疋設於該移動臂之自由端; °亥位移感測裝置感應該移動 電腦; ’之位置並回報予該控制 該控制電腦依據該位移感測裝 移動臂之移動# π 之感應,.,α果,控制該 別進行高戶播》 卸描柒子及該標示模組分 描結果予以儲在而k θ 僳2之知描位置及高度掃 碎存而為一量測結果; 該控制電腦對該量測結果, 進仃檢測曲面高點數量、 201104213 檢測高點分佈比例、檢測曲面高低點分佈型態、檢測曲面 真平度及檢測溝槽邊角形狀,其中: 該檢測曲面高點數量,係該控制電腦將該量測結果之 尚度掃描結果大於一高度閥值之每一取樣點設定為—高點 ’且計算單位面積之高點的數量; 门‘ 該檢測高點分佈比例,係該控制電腦計算該量測結果 中之尚點於單位面積内的比例; 該檢測曲面高低點分佈型態,係該控制電腦以圖形顯 示方式顯示該量測結果之高點與低於該高度閥值之低點的 分佈型態; ‘‘· 該檢測曲面真平度,係該控制電腦計算該量測結果之 表面平整度;及 士該檢測溝槽邊角形狀,為該控制電腦計算該量測結果 中高度低於一閥值之油路溝槽區域之一邊角之角度。 其中,該位移感測裝置為—雷射位移感測裝置,該量 測裝置本體之表面固定設有— 汉射鏡係置於該雷射位移感 >則1¾•置之輸出雷射光之光學路徑上。 其中’該控制電腦執行該檢測曲面高點數量、檢測高 點分佈導檢測曲面高低點分佈型態、檢測曲面真平度 及檢測溝槽邊角形狀之前,杰m —曰 巧乂狀 < 則,先對該量測結果先予以濾除大 於取樣頻率之高頻變化雜^?你 、, ^•化雜δί1後,亚將該量測結果予以斜率 補正。 藉此,本發明所提供 丨代供之鐘配件表面檢測及自動化品質 檢測裝置’不僅可以取得生 忖工件表面型態,而且也可以對量 測獲得之數據直接分析、划 ^判斷,讓使用者於量測後,可以 201104213 知悉忒工件之表面鏟花是否符合品質需求,因此,達到快 速且精確獲得表面型態檢測結果之技術效果。 【實施方式】 °月> 考第一圖及第二圖,其為本發明之鏟配件表面檢 測及自動化。。質檢測裝置的實施例,其包含—三維移動量 測(10)以及電性連接該三維移動量測裝置⑽之一控制電腦 (2Q)。該三維移動量測裝置(10)包含-量測裝置本體(12)以 及位移感測裝置。4) ’該量測裝置本體。2)係為可進行三 ㈣動的光學掃描裝置,其可控制-移動臂進行三維度之 ^動。其中’該量測裝置本體(12)包含-掃描端子(122)固 疋方…亥移動臂之自由端,該掃描端子。2。受該量測裝置本 體^)之控制對„工件(3Q)之表面型態輪廓進行掃描,其中 騎私端子(122)可為—光學非接觸式的雷射讀寫端子。 為了讓控制電腦(20)得以精確控制該量測裝置本體(1〇) •,掃描端子(122)之路徑移動、量測、數值讀取…等動作, :位#感職置(14)感應該移動臂之位置並回報予該控制電 腦(1幻,使該控制電腦(2〇)可以精確獲悉該掃描端子ου) 之即時位置。其中,該位移感測裝置(14)之種類不限定,其 可為内裝於該量測裝置本體(12)之一光學尺,或者如本實施 :射位移感測裝置;本實施例之該雷射位移感測裝 係持續㉟出-雷射光至該量測裝置本體(12)之一反射鏡 124)’並依據該反射鏡(124)反射之雷射光的光程差判斷該 ^田端子(122)之位置,如此,該控制電腦(2G)即可依據該 移感測裝置(14)之感測結果控制該掃描端子(122)之位移 201104213 與感測。 °月參考第二A〜F圖’其為本發明之鐘配件表面檢測及 自=品質檢測方法之流程目,該鏟配件表面檢測及自動 化。口貝核,則方法係由該鏟配件表面檢測及自動化品質檢測 裝置所執行,該鏟配件表面檢測及自動化品質檢測方法之 步驟包含:掃描取得三維數據(8”、檢測曲面高點數量(82) 、檢測高點分佈比例(83)、檢測曲面高低點分佈型態(84)、 檢測曲面真平度(85)及檢測溝槽邊角形狀(86)。 該掃描取得三維數據(81)步驟中,為該量測裝置本體 (1〇)使該掃描料(122)對該工件(3Q)之表面進行掃描取 得該工件⑽)之表現型態。該掃描取得三維數據(8”之實施 步驟可包含: 以弓,,字型掃描鐘花工件(811):係該量測裝置本選 (1〇)接受該控制電腦(20)的控制,對該工件(3〇)表面以,,弓 字型或字型等轉折迴旋移動的路徑進行掃描。 以純文字(txt)樓儲存2維線性數據資料(812):該控 電腦(20)由該量測裝置本體(1〇)持續取得掃描結果,並將工沾 果以純文字_之方式予以儲存,為了便於後續資料分析^ ⑹空制電腦(2(3)可在儲存㈣,㈣描結果以2維矩 式予以儲存。舉例而言’該控制電腦(2〇)可以依據該 置^體⑽之掃描端子(122)於b件(3Q)之平面座標位置 (X-Y)順序,儲存成為矩陣之數據形式。 濾波(813) ··該控制電腦(2〇)將取得的量測結果予 波’所謂的遽波,為該控制電腦(2〇)濾除量測結果’: 頻(快速變化)雜訊資訊,該高頻雜訊資訊的可能原因可^ 201104213 自於該量㈣置本體(1Q)本身設備因為移動造成的雜訊,該 控制電腦(20)可以在進行該卫件(3Q)量測之前,先讓該量測 =置本體(1G)執行—校正量測以取得該量測裝置本體(⑼之 背景雜訊,使該控制電腦(20)於本步驟(81 3)時,將量測結 果減去所得的背景雜訊。 斜率補正(814广該控制電腦(20)將量測結果進行斜率 補正。由於前述步驟(811)之量測結果可能會有系統性的傾 斜,因此,該控制電腦(20)可對前述的量測結果統計後予以 分析是否存在傾斜的現象,若確實具有此一現象時,則將 傾斜的現象予以斜率補正。 形成瘥體曲面3D數據資料(815):該控制電腦(2〇)完成 前述的濾波(813)及該斜率補正(814)後,將量測結果予以儲 存,由於里測結果為代表該工件(3〇)之平面位置的每一個量 測位置點的高度狀態,因此,每一個量測點除了具備高度 (Z)座標之外,也同時包含X、γ軸之座標,故該控制電腦 (20)所儲存的量測結果事實上是一個三維(3D)之曲面上的座 標。 «月參考第二B圖,該檢測曲面高點數量(8 2)步驟中, 為該控制電腦(20)將量測結果處理形成3D數據資料後,進 行該工件(30)之3D數據資料的高點數量檢測,其步驟可包 含: 設定閥值(821):該控制電腦(2〇)接受使用者之預先設 疋尚度(Z)閥值,該尚度閥值用以找出前述的3 D數據資 料超過該高度閥值之「高點」。 圖形二值化(822):該控制電腦(2〇)以所設定的該高度 201104213 閥值將前述的3D數據資料予以二值化,換言之,所有之 值大於等於該高度閥值的取樣點於二值化後其高度設定為 1,反之,則設定為0。 尋邊及分群(823):完成該二值化之後,該控制電腦 (20)尋找超過高度閥值的一取樣點叢集之邊界,並且,依 據找出的邊界將各取樣點叢集予以分群。由於工件(3〇)表 面超過該高度閥值的範圍通常超過前述該量測裝置本體 (1 0)之每一點的取樣距離,因此,超過該高度閥值的高點通 常會組成該取樣點叢集,所以本步驟(823)可以找出該取樣 點叢集的邊緣,並依據找出的邊緣予以分群(分開每一個取 樣點叢集)。 找出尚點XY座標位置(824):該控制電腦(20)找出該 取樣點叢集内的每一個高點的χγ座標位置。 計算高點總數(825):該控制電腦(2〇)計算所有超過該 閥值之各高點的數量。 顯示高點圖形(826):該控制電腦(2〇)透過其一顯示器 ,將找出的尚點予以圖形化顯示,超過閥值之點、範圍以 預設的顏色(如:紅色)標示。 設定檢測標準(827):該控制電腦(2〇)接受使用者預先 輸入設定之一檢測標準尺寸,例如,該檢測標準尺寸為每 平方英叶2 0點咼點且為每平方英对2 〇 %的接觸率。 以檢測標準尺寸依步進移動做鏟花面檢測(828):該控 制電腦(20)以該檢測標準尺寸逐一進行鏟花面之檢測,使 該控制電腦(20)以每一個檢測標準尺寸為單位輸出高點 數量對檢測標準尺寸之數據,例如檢測範圍内是否有達到 201104213 每平方英吋20點高點。 該檢測尚點分佈比例(83)步驟,其步驟包含設定閥值 (831)、圖形二值化(832)、尋邊及分群(833)、計算高點所 佔的比例(834)、顯示比例數據(835) '設定檢測標準(836) 以檢測標準尺寸依步進移動做鏟花面檢測(837卜與該檢測 曲面高點數量(82)之各項步驟相較,該檢測高點分佈比例 (83)步驟之主要差別在於該計算高點所佔的比例(834)及該 顯示比例數據(835)步驟,其中,該計算高點所佔的比例 (834)為將完成二值化、尋邊及分群後所得的數據予以計算 同點所佔面積或1測點數的比例,之後,該控制電腦(2〇) 於進行該顯示比例數據(835)步驟時,將計算獲得的比例數 據予以顯示。 該檢測曲面高低點分佈型態(84)步驟中,請參考第三[ 圖,為該控制電腦(20)將前述之3D數據資料繪製2 5[ 或3D之曲面。所謂的分佈型態,係指該工件(3〇)表面的各 個區域的高低點的分佈狀態,在最佳的狀況下,該工件 (30)之整體表面的各區域鐘花高低點深度應該—^ ,基於 此一原則,本步驟係為該控制電腦(2〇)係預先接受使用者 設定該卫件表面(3Q)之表面之—鐘斑深度值大小(例如: 13_)’並且對此一鐘斑深度值設定_微小的允許誤差值< 例如」_,當進行本步驟之檢測㈣高低點分佈型態時, 除了將以前述方式呈現曲面高低點分佈型態的25〇或此 圖形’且也會判斷所顯示的圖形區域之鐘斑深度值大小是 否符合規範。舉例說明《,假設該工件(3〇)表面之某一區 域的深…5,經過本步驟之圖形與深度分佈結果顯示 10 201104213 ,此一區域的深度超過所設定的容許範圍(13±ium),因此 屬於不合格。該檢測曲面真平度(85)步驟,請參考第三E 圖’為該控制電腦(20)計算與判斷該3D數據資料所記:的 曲面之一真平度(flatness)是否符合預設的一真平度閥值。 本步驟(85)之細部步驟可以包含:設定閥值(851)、刪除溝 槽數據後做接觸面補正(852)、計算誤差(853)及建立3D顯 示(854卜其中,該設定閥值(851)步驟係為該控制電腦(2〇) 接受使用者預先設定一真平度閥值。該刪除溝槽數據後做 接觸面補正(852)步驟中,為該控制電腦(2〇)將3d數據資 料中低於前述的高度閥值之部分(溝槽)_,之H㈣ 電腦(852)將高於該高度閥值之各取樣點之高度(z)值數據予 以補正,以刪除量測之數據結果包含太多的極值 value,太高或太深)影響表面真平度之真實性。 忒叶异誤差(853)步驟中,為該控制電腦(2〇)計算大於 該高度閥值之各取樣點的標準差,以計算該3 真平度,以瞭解該工件(3。)之表面平整性。 “抖之 建立3D顯示(854)㈣,為該控制電腦(2〇)將刪除溝 槽之後的3D數據資料以3D圖形的方式予以顯示,並同時 顯-前述步驟所計算與判斷的真平度是否符合規範。所以 ’使用者可以可從2.50或3D之結果圖形看到工件(3〇〉表 面:伙情;兄,也會顯示工件(3〇)之真平度的數值且是否在 所的的設定内。 該檢測溝槽邊角形狀(86)步驟,為該控制電腦(2〇)比 这30數據資料所驗3D圖形,關於該工件_表面 201104213 一溝槽區域(例如:油路溝槽)部分之-邊角形狀是否符合-邊角$狀仏準。所s胃的邊角形狀指該溝槽部分與鄰近之取 •樣點或區域之連接部位,其可能呈現平滑曲面型態、純角 &或銳角型態等’因此,該控制電腦(20)可以比較每-個溝槽之邊角形狀是否符合該邊角形狀標準,藉以判定各 :冓‘之邊角形狀疋否符合要求。舉例而言,該邊角形狀標 準可月b疋定義邊角兩邊之切線之夾角必須大於刪度(邊角 ①狀‘準)’藉以判斷檢測該溝槽之邊角是否符合要求。 因此依據則14的裝置及方;去,當本實施例對該工件 ⑽)完成表面型態掃播之後,同時可對該K3Q)之表面型 態自動進仃各項品保檢測,所以,本發明除了可以自動化 進订表面型處建立,同時也可以依據表面型態數據自動化 進行^保參數檢測,讓使用者可以直接獲得品保檢測之結 果,藉以判定該工件(30)是否符合其需求。 .【圖式簡單說明】 第一圖為本發明實施例之立體圖。 第二圖為本發明實施例之局部放大立體圖。 第三A〜F圖為本發明實施例之流程圖。 【主要元件符號說明】 (10)三維移動量測裝置 (12)量測裝置本體 (1 22)掃描端子 201104213 (124)反射鏡 (14)位移感測裝置 (20)控制電腦 (30)工件Knowing the surface detection of a shovel accessory and the self-testing device of the I _ _ ^ ^ mouth, the haiku contains two, the quasi-moving measurement and the electrical connection of the eight-computer, among which: one of the quasi-mobile measuring devices The three-dimensional movement measuring device comprises a measuring sensor 庐詈, 兮θ, a device body and a displacement device, wherein the system is a measurable device, and the I άΓ 仃 one-dimensional moving optical scanning scanning end is early a m 6 τ — movement of the degree of accuracy ′ which includes a sub-system fixed to the free end of the moving arm; a position sensing device that senses the mobile computer; a position and a return to the control computer According to the displacement sensing, the movement of the moving arm, the movement of the #π, the α, the control, the high-casting, the unloading of the dice, and the description of the labeling component are stored and the knowledge of k θ 僳 2 is stored. The position and height of the trace are saved as a measurement result; the control computer measures the measurement result, the number of high points of the detection surface, the distribution ratio of the detection high point of 201104213, the distribution pattern of the high and low points of the detection surface, and the true flatness of the detection surface And detecting the groove corner shape Shape, wherein: the number of high points of the detected surface is determined by the control computer to set the sampling result of the measurement result greater than a height threshold to - high point and calculate the number of high points per unit area The door 'the height distribution ratio of the detection is calculated by the control computer to calculate the ratio of the point in the unit area to the unit area; the height and low point distribution pattern of the detection surface is displayed by the control computer in a graphical display manner. The height of the test result and the distribution pattern below the low point of the height threshold; ''· The surface flatness of the test surface is calculated by the computer to calculate the surface flatness of the measurement result; The angular shape is an angle calculated by the control computer for one of the corners of the oil passage groove region whose height is lower than a threshold value in the measurement result. Wherein, the displacement sensing device is a laser displacement sensing device, and the surface of the measuring device body is fixedly disposed - the Han mirror is placed in the laser displacement sense > the optical light of the output laser light On the path. Where the control computer performs the detection of the number of high points of the curved surface, detects the distribution of the high and low points of the high-point distribution guide detection surface, detects the true flatness of the curved surface, and detects the shape of the groove corners, then the j-m is awkwardly < Firstly, the measurement result is first filtered out of the high-frequency variation of the sampling frequency. After you, ^• δδ1, the measurement result is corrected by the slope. Therefore, the surface detection and automatic quality detecting device of the clock accessory provided by the present invention can not only obtain the surface type of the raw material, but also directly analyze and determine the data obtained by the measurement, so as to let the user After the measurement, it is possible to know whether the surface shovel of the workpiece meets the quality requirement, so that the technical effect of obtaining the surface type detection result quickly and accurately is achieved. [Embodiment] ° Month> The first and second figures are the surface inspection and automation of the shovel accessory of the present invention. . An embodiment of the quality detecting device includes a three-dimensional movement measurement (10) and a control computer (2Q) electrically connected to the three-dimensional movement measuring device (10). The three-dimensional movement measuring device (10) includes a measuring device body (12) and a displacement sensing device. 4) 'The measuring device body. 2) It is an optical scanning device capable of three (four) motion, which can control the moving arm to perform three-dimensional motion. Wherein the measuring device body (12) comprises a scanning terminal (122), a free end of the moving arm, and a scanning terminal. 2. The surface profile of the workpiece (3Q) is scanned by the control body of the measuring device, wherein the riding terminal (122) can be an optical non-contact laser reading and writing terminal. 20) It is possible to precisely control the measuring device body (1〇) •, the scanning terminal (122) path movement, measurement, numerical reading, etc., etc.: position #感职置(14) sense the position of the moving arm And returning to the control computer (1 magic, so that the control computer (2〇) can accurately know the instantaneous position of the scanning terminal ου), wherein the type of the displacement sensing device (14) is not limited, it can be built-in The optical scale of the measuring device body (12), or the present embodiment: the displacement displacement sensing device; the laser displacement sensing device of the embodiment continues to 35 out-laser light to the measuring device body ( 12) one of the mirrors 124)' and determining the position of the field terminal (122) according to the optical path difference of the laser light reflected by the mirror (124), so that the control computer (2G) can be based on the shift The sensing result of the measuring device (14) controls the displacement of the scanning terminal (122) 201104213 and the sense According to the second A to F figure of the present invention, it is the process of surface inspection and self-quality detection method of the clock accessory of the present invention, the surface detection and automation of the shovel accessory. The method of the mouth nucleus is based on the surface of the shovel accessory. The detection and automatic quality inspection device performs the steps of the surface inspection and automated quality detection method of the shovel accessory: scanning and obtaining three-dimensional data (8", detecting the number of curved surface high points (82), detecting the distribution ratio of the high point (83), detecting The surface height and low point distribution pattern (84), the detection surface true flatness (85), and the detection groove corner shape (86). The scanning obtains the three-dimensional data (81) step, which is the measuring device body (1〇) The scanning material (122) scans the surface of the workpiece (3Q) to obtain the expression pattern of the workpiece (10). The step of obtaining the three-dimensional data (8" by the scanning may include: scanning the clockwork workpiece (811) with a bow, the font: the measuring device is selected (1) to accept the control of the control computer (20), The surface of the workpiece (3〇) is scanned by a path of turning, turning, or the like. The 2D linear data (812) is stored in a plain text (txt): the computer (20) is measured by the measurement The device body (1〇) continuously obtains the scanning result, and saves the worker's fruit in pure text _ for the purpose of facilitating subsequent data analysis. (6) Empty computer (2(3) can be stored (4), (4) The result is 2D. The moment is stored. For example, the control computer (2〇) can be stored in the data form of the matrix according to the plane coordinate position (XY) of the b element (3Q) of the scanning terminal (122) of the device (10). Filtering (813) · The control computer (2〇) will take the measured result to the wave 'so-called chopping, filter the measurement result for the control computer (2〇)': frequency (fast change) noise Information, the possible reason for the high frequency noise information can be ^ 201104213 from the amount (four) to the body 1Q) The noise caused by the movement of the device itself, the control computer (20) can perform the measurement = set the body (1G) before the measurement (3Q) measurement - correct the measurement to obtain the amount Measure the background noise of the device body ((9), so that the control computer (20) subtracts the background noise from the measurement result when the step (81 3) is used. Slope correction (814 Guang This control computer (20) will The measurement result is corrected by the slope. Since the measurement result of the foregoing step (811) may be systematically tilted, the control computer (20) may analyze the measurement result and analyze whether there is a tilt phenomenon. If there is such a phenomenon, the slope phenomenon is corrected by the slope. The formation of the body surface 3D data (815): the control computer (2〇) completes the aforementioned filtering (813) and the slope correction (814) The measurement result is stored. Since the result of the measurement is the height state of each measurement position point representing the plane position of the workpiece (3〇), each measurement point has a height (Z) coordinate. , also contains X, The coordinate of the axis, so the measurement result stored by the control computer (20) is actually a coordinate on a three-dimensional (3D) surface. «May reference to the second B picture, the number of high points of the detection surface (8 2) After the control computer (20) processes the measurement result to form a 3D data file, the high point quantity detection of the 3D data data of the workpiece (30) is performed, and the step may include: setting a threshold (821): the control The computer (2〇) accepts the user's pre-set (Z) threshold, which is used to find out that the aforementioned 3D data exceeds the “high point” of the height threshold. (822): The control computer (2〇) binarizes the aforementioned 3D data data with the set threshold of the height of 102104213, in other words, all sampling points whose value is greater than or equal to the height threshold are binarized. Its height is set to 1, otherwise it is set to 0. Edge finding and grouping (823): After completing the binarization, the control computer (20) finds a boundary of a cluster of sampling points that exceeds the height threshold, and groups the clusters of sampling points according to the found boundary. Since the surface of the workpiece (3〇) exceeds the height threshold generally exceeds the sampling distance of each point of the aforementioned measuring device body (10), a high point exceeding the height threshold usually constitutes the sampling point cluster. Therefore, this step (823) can find the edge of the cluster of sampling points and group them according to the found edges (separate each cluster of sampling points). Find the XY coordinate position (824): The control computer (20) finds the χ γ coordinate position of each high point in the cluster of sampling points. Calculate the total number of high points (825): The control computer (2〇) calculates the number of all high points that exceed the threshold. Display high point graphic (826): The control computer (2〇) graphically displays the found points through its display. The point and range beyond the threshold are indicated by a preset color (such as red). Setting the detection standard (827): The control computer (2〇) accepts one of the user's pre-input settings to detect the standard size. For example, the detection standard size is 200 points per square inch and 2 square feet per square inch. % contact rate. The shovel surface detection is performed by stepping movement according to the detection standard size (828): the control computer (20) performs the shovel surface detection one by one according to the detection standard size, so that the control computer (20) has a standard size for each detection. The unit outputs the number of high points to the data of the detection standard size, for example, whether there is a high point of 201,104,213 square feet per square inch in the detection range. The detection of the point distribution ratio (83) step includes the steps of setting a threshold (831), graph binarization (832), edge finding and grouping (833), calculating the proportion of the high point (834), and displaying the ratio. Data (835) 'Set the detection standard (836) to detect the standard size according to the step movement to do the shovel surface detection (837) compared with the steps of the detection of the number of high points (82), the detection of the high point distribution ratio The main difference of the (83) step is the ratio of the calculated high point (834) and the display scale data (835) step, wherein the proportion of the calculated high point (834) is that the binarization will be completed and the search will be completed. The data obtained after edge and grouping is calculated as the ratio of the area occupied by the same point or the number of points measured. Then, the control computer (2〇) performs the calculation of the scaled data (835), and the calculated scale data is given. In the step of detecting the height and low point distribution of the curved surface (84), please refer to the third [Figure, for the control computer (20) to draw the aforementioned 3D data data 2 5 [ or 3D surface. The so-called distribution pattern , refers to the height of each area of the surface of the workpiece (3〇) The distribution state of the point, under the best condition, the height of the high and low points of each area of the whole surface of the workpiece (30) should be -^. Based on this principle, this step is the control computer (2〇) system in advance Accepting the user's setting of the surface of the guard surface (3Q) - the depth of the spot depth value (for example: 13_)' and setting a small allowable error value for this one spot depth value < For example, "_" The detection of the steps (4) When the high and low distribution patterns are used, in addition to the 25〇 or the pattern of the surface high and low point distribution patterns in the foregoing manner, it is also judged whether the size of the depth of the displayed pattern area conforms to the specification. Description, assuming that the depth of a certain area of the surface of the workpiece (3〇) is 5, after the pattern and depth distribution result of this step is displayed, 10 201104213, the depth of this area exceeds the set allowable range (13±ium), Therefore, it is unqualified. For the detection of the surface true flatness (85) step, please refer to the third E diagram' for the control computer (20) to calculate and determine whether the flatness of one of the surfaces recorded by the 3D data is consistent. Preset A normal flatness threshold. The detailed steps of step (85) may include: setting the threshold (851), deleting the groove data, making contact surface correction (852), calculating the error (853), and establishing a 3D display (854) Wherein, the setting threshold (851) step is that the control computer (2〇) accepts a preset value of the true flatness of the user. The step of correcting the groove data and performing the contact surface correction (852) step is the control computer. (2〇) The portion of the 3d data that is lower than the aforementioned height threshold (groove)_, the H(4) computer (852) will correct the height (z) value of each sampling point above the height threshold. The result of deleting the measured data contains too many extreme values, too high or too deep) to affect the authenticity of the surface flatness. In the step of error (853), the standard deviation of each sampling point larger than the height threshold is calculated for the control computer (2〇) to calculate the true flatness to understand the surface smoothness of the workpiece (3.) Sex. "Shake the 3D display (854) (4), for the control computer (2 〇) will delete the 3D data after the groove is displayed in 3D graphics, and simultaneously - the true flatness calculated and judged in the previous steps It conforms to the specification. So the user can see the workpiece from the result graph of 2.50 or 3D (3〇> surface: friendship; brother, also shows the value of the true flatness of the workpiece (3〇) and whether it is in the setting The step of detecting the corner shape of the groove (86) is a 3D pattern of the control computer (2〇) than the 30 data data, and a groove area (for example: oil channel groove) about the workpiece_surface 201104213 Partially - whether the shape of the corner conforms to the - corner angle. The shape of the corner of the stomach refers to the joint between the groove portion and the adjacent sample point or region, which may present a smooth curved surface shape, pure Angle & or acute angle type, etc. 'Thus, the control computer (20) can compare whether the shape of the corner of each groove conforms to the shape of the corner shape, thereby determining whether the shape of the corner of each of the 冓's meets the requirements. For example, the corner shape standard can be determined by the month b The angle between the tangent of the two sides of the corner must be greater than the degree of deletion (the corner 1 'quasi)) to determine whether the edge of the groove is required to meet the requirements. Therefore, according to the device and the side of the 14; After the surface type sweeping of the workpiece (10)), the surface type of the K3Q) can be automatically tested for various quality assurances. Therefore, the present invention can be established in addition to the surface shape of the automated binding surface, and can also be based on the surface type. The state data is automatically automated to perform parameter detection, so that the user can directly obtain the result of the quality assurance test, thereby determining whether the workpiece (30) meets its requirements. [Simplified Schematic] The first figure is a perspective view of an embodiment of the present invention. The second figure is a partially enlarged perspective view of an embodiment of the present invention. The third A to F drawings are flowcharts of an embodiment of the present invention. [Description of main component symbols] (10) Three-dimensional movement measuring device (12) Measuring device body (1 22) Scanning terminal 201104213 (124) Mirror (14) Displacement sensing device (20) Control computer (30) workpiece

Claims (1)

201104213 七、申請專利範圍·· 1·-種鏟配件表面檢測及自動化品質 卜三維移動量測以及電性連接該三維 ”包 控制電腦,其中·· d裝置之一 該三維移動量測裝置包 感測裝置,該量測裝置本體係為可= =位移 _,其可控制一移動臂進行三維度= 知描端子係固定設於該移動臂之自由端; 〃匕3 電腦該位移感測裝置感應該移動臂之位置並回報予該控制 移動據該位移感測裝置之感應結果,控制該 別進一:方位,以及控制該掃描端子及該標示模組分 ::::度掃描,並將複數個取樣點之掃描位置及高度掃 …果予以儲存而為一量測結果; ,控制電腦對該量測結果,進行檢測曲面高點數量、 :::點分佈比例、檢測曲面高低點分佈型態'檢測曲面 /、十度及檢測溝槽邊角形狀,其中: 4檢測曲面★點數f,係該控制電腦將該量測結果 -度掃描結果大於一高度閥值之每一取樣點 •否6 , 日兮4*曾 〇〇 4 畔异早位面積之高點的數量; 忒榀測咼點分佈比例,係該控制電腦計算該量測結 中之高點於單位面積内的比例; ° 顯八Λ'則曲面尚低點分佈型態,係該控制電腦以圖形 =方式顯示該量測結果之高點與低於該高度間值的分佈 係該控制電腦計算該量測結果201104213 VII. Patent application scope ····----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Measuring device, the measuring device is capable of == displacement_, which can control a moving arm to perform three-dimensionality = the known terminal is fixed at the free end of the moving arm; 〃匕3 computer senses the displacement sensing device The position of the arm should be moved and reported to the control to move the sensing result according to the displacement sensing device, control the other: orientation, and control the scanning terminal and the marking mode component:::: degree scanning, and a plurality of The scanning position and height of the sampling point are stored as a measurement result; the control computer measures the measurement result, and detects the number of high surface points, ::: point distribution ratio, and detects the distribution pattern of the surface high and low points' Detect surface /, ten degrees and detect the shape of the groove corner, wherein: 4 detecting the surface ★ the number of points f, the control computer will measure the result - the degree of the scan result is greater than a height threshold Sampling point • No 6 , the number of high points of the 4th morning and early morning area of the Japanese 兮 4* Zeng ;; 忒榀 分布 分布 分布 , , , , , , 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制The ratio of ° ° Λ Λ 'the surface is still low point distribution type, the control computer displays the high point of the measurement result and the distribution below the height value in the form of graph = the control computer calculates the measurement result 201104213 該檢測曲面真平度 之表面乎整度;及 該檢測溝槽邊角形狀,為該控制電腦計算該量測結 果中高度低於-間值之—油路溝槽區域之—邊角之角度。 申月專利範圍帛1項所述之鐘配件表面檢測及自 動化品質檢測裝置,# μ位移感測裝置為一雷射位移感測裝 置,該量測裝置本體之表面固定設有-反射鏡係置於該雷 射位移感測裝置之輸出雷射光之光學路徑上。 3·如申請專利範圍帛!或2項所述之鐘配件表面檢測 及二動化品質檢測農置,該控制電腦執行該檢測曲面高點 數s、檢測高點分佈比例、檢測曲面高低點分佈型態、檢 測曲面真平度及檢測溝槽邊角形狀之前,先對該量測結果 先予以濾除大於取樣頻率之高頻變化雜訊後,並將該量測 結果予以斜率補正。 八、圖式:(如次頁) 15201104213 The surface flatness of the detected surface is flat; and the shape of the edge of the detecting groove is calculated by the control computer for the height of the measurement result that is lower than the - value - the angle of the groove of the oil path . The invention relates to the surface detection and automatic quality detecting device of the clock accessory described in the item 申1, the #μ displacement sensing device is a laser displacement sensing device, and the surface of the measuring device body is fixedly provided with a mirror system The optical path of the output laser light of the laser displacement sensing device. 3. If you apply for a patent range! Or the surface detection and the second-moving quality detection of the two-piece clock accessories, the control computer performs the detection of the high-point s of the curved surface, detects the distribution ratio of the high point, detects the distribution pattern of the high and low points of the curved surface, and detects the true flatness of the curved surface and Before detecting the shape of the groove corner, the measurement result is first filtered out of the high frequency variation noise larger than the sampling frequency, and the measurement result is corrected by the slope. Eight, schema: (such as the next page) 15
TW98124671A 2009-07-22 2009-07-22 Surface detection of shovel accessory and automatic quality detection apparatus TW201104213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98124671A TW201104213A (en) 2009-07-22 2009-07-22 Surface detection of shovel accessory and automatic quality detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98124671A TW201104213A (en) 2009-07-22 2009-07-22 Surface detection of shovel accessory and automatic quality detection apparatus

Publications (2)

Publication Number Publication Date
TW201104213A true TW201104213A (en) 2011-02-01
TWI379988B TWI379988B (en) 2012-12-21

Family

ID=44813520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98124671A TW201104213A (en) 2009-07-22 2009-07-22 Surface detection of shovel accessory and automatic quality detection apparatus

Country Status (1)

Country Link
TW (1) TW201104213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450787B (en) * 2011-09-22 2014-09-01 Univ Nat Formosa Processing method of numerical control of shovel
TWI609353B (en) * 2016-11-22 2017-12-21 Prec Machinery Research&Development Center Combined Image Scraping Quality Evaluation System
TWI803768B (en) * 2020-08-06 2023-06-01 國立虎尾科技大學 Machine production and build information digitization system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450787B (en) * 2011-09-22 2014-09-01 Univ Nat Formosa Processing method of numerical control of shovel
TWI609353B (en) * 2016-11-22 2017-12-21 Prec Machinery Research&Development Center Combined Image Scraping Quality Evaluation System
TWI803768B (en) * 2020-08-06 2023-06-01 國立虎尾科技大學 Machine production and build information digitization system

Also Published As

Publication number Publication date
TWI379988B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
CN201133812Y (en) Bullet or tools trace measuring apparatus
US10102631B2 (en) Edge detection bias correction value calculation method, edge detection bias correction method, and edge detection bias correcting program
CN108801164B (en) Method and system for testing gap value of workpiece based on laser
JP2004333312A (en) Method of calibrating surface condition measuring apparatus, program of calibrating surface condition measuring apparatus, recording medium with recorded calibration program and surface condition measuring apparatus
JP5350169B2 (en) Offset amount calibration method and surface texture measuring machine
CN101140163A (en) Contact and non-contact type dual-purpose surface roughness measuring systems
CN101685003B (en) Measurement system and method for measuring deformation values in noncontact way
CN103363923A (en) Non-contact type gear tooth direction measuring method of laser vision distance measurement
US7507145B1 (en) Automated sectioning tomographic measurement system
TW201104213A (en) Surface detection of shovel accessory and automatic quality detection apparatus
JP4323267B2 (en) Shape measuring device, shape measuring method, shape analyzing device, shape analyzing program, and recording medium
CN105115407A (en) Portable multifunctional planeness detection device and application method therefor
TW201124227A (en) Scrape method of automated scraping workpiece surface.
US9352422B2 (en) Electronic welding seam gauge
CN206740051U (en) Portable piece surface microsize defectoscopy instrument
Chen et al. Examining the profile accuracy of grinding wheels used for microdrill fluting by an image-based contour matching method
TWI291545B (en) An electrical connector pin test method and apparatus thereof
JP2011027440A5 (en)
KR100994741B1 (en) The method of measuring unknown curve with measurement step optimization based on the surface curvature using 3 dimensional coordinate measuring machine
JP2004286457A (en) Jig, method, and program for calibrating surface property measuring instrument and recording medium recording calibration program
JP2009294093A (en) Method and system for inspecting weld part
JP2016024067A (en) Measurement method and measurement device
CN207585481U (en) Band steel two sides width difference detection device
JP2007113916A (en) Grain size gauge
CN104880169B (en) A kind of four-dimensional scanning probe micromorphology measuring systems of XYZ β