TW201103973A - Encapsulant composition and method for fabricating encapsulant - Google Patents

Encapsulant composition and method for fabricating encapsulant Download PDF

Info

Publication number
TW201103973A
TW201103973A TW98124205A TW98124205A TW201103973A TW 201103973 A TW201103973 A TW 201103973A TW 98124205 A TW98124205 A TW 98124205A TW 98124205 A TW98124205 A TW 98124205A TW 201103973 A TW201103973 A TW 201103973A
Authority
TW
Taiwan
Prior art keywords
encapsulating material
carbon number
material composition
group
resin monomer
Prior art date
Application number
TW98124205A
Other languages
Chinese (zh)
Other versions
TWI401305B (en
Inventor
Lung-Chang Liu
Ming-Hua Chung
Tsung-Ju Hsu
Chih-Fen Chang
Jen-Hao Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98124205A priority Critical patent/TWI401305B/en
Publication of TW201103973A publication Critical patent/TW201103973A/en
Application granted granted Critical
Publication of TWI401305B publication Critical patent/TWI401305B/en

Links

Abstract

An encapsulant composition is provided, including 100 parts by weight of resin monomers, 0.1-15 parts by weight of a filler and 0.1-5 parts by weight of an initiator. The resin monomers comprise an epoxy-acrylic resin monomer, a silicone-acrylic resin monomer and an urethane-diacrylic resin monomer. A method for fabricating an encapsulant is also provided.

Description

201103973 六、發明說明: .【發明所屬之技術領域】 本發明係有關於一種封裝材料^ 造方法,其具有高阻錢氣效果,^成物及封裝材料製 件的封裝 柯別適用於固態發光元 【先前技術】 近年來,隨著光電產業的發展, 發光二極體、發光二極體以及〜各種光電產品如有機 繼問世。然而,此些光電襄置内之^電池等光電裝置也相 中之水氣與氧氣的影響而縮短了其#子元件極易受到空氣 光電裝置需經過適當封I以阻絕其用壽命。因此’此些 界之水氣與氧氣,吨升其❹I <電子元件接觸到外 備是將樹脂單體以熱製程聚合為有些封裝材料的製 料及硬化劑予以混合,此種製=脂後,在加入填充 時才能完成。此外,㈣上述㈣時甚至超過十小 t精:地控制樹脂合成之反應條件以及製程之安全性。 因此’封裝材料之製作成本不易降低。 士、目如封裝材料中的樹脂成份主要分為三大類:壓克力 树月曰、環氧樹脂、及矽樹脂(silic〇ne)。在JP7304846中封 裝材料係採用環氧樹脂材料 ,其熱穩定性高,甚至可在 3〇〇C以上的環境中保持穩定性。在US20050042462中封 裝材料係採用矽樹脂聚合物 ,其具有高黏著度與高熱穩定 ’可在250°C以上的環境中保持穩定性。在US2005006296 201103973 中封裝材科係藉201103973 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a packaging material, which has a high-resistance effect, and a package for a product and a package material is suitable for solid-state illumination. Yuan [Prior Art] In recent years, with the development of the optoelectronic industry, light-emitting diodes, light-emitting diodes, and various optoelectronic products such as organic have come out. However, the photoelectric devices such as batteries in such photovoltaic devices are also affected by the influence of water vapor and oxygen, and the # sub-components are highly susceptible to air. The photovoltaic devices need to be properly sealed to prevent their useful life. Therefore, 'the water and oxygen of these circles, tons of ❹I lt; electronic components are in contact with the external materials, the resin monomer is heated to some process materials and hardeners are mixed, this system = fat , can be completed when adding a fill. In addition, (4) even above ten (t) in the above (4): control the reaction conditions of resin synthesis and the safety of the process. Therefore, the manufacturing cost of the packaging material is not easily reduced. The resin components in the packaging materials are mainly divided into three categories: acrylic tree sap, epoxy resin, and silky resin. The sealing material in JP7304846 is made of epoxy resin, which has high thermal stability and can maintain stability even in environments above 3 °C. The encapsulating material in U.S. Patent No. 2,005,042,462 is a silicone resin having high adhesion and high heat stability to maintain stability in an environment above 250 °C. In US2005006296 201103973, the packaging materials department borrowed

172中提到將封裝材料應用於發光二極體裝置内,其 使用的封裝㈣為環氧樹脂切黯。在·33522中接 到將封裝材料應用於太陽能電池裝置内,其使用的封裳材 料為壓克力樹脂、環氧樹脂或矽樹脂。 【發明内容.】 所揭露的封裝材科組成物,包括:1〇〇重量份之樹脂 單體,包括環氧-壓克力(Ej)〇xy_Acrylics)樹脂單體、矽 壓克力樹脂單體及雙官能基氨酯壓克力 (urethane-diacrylics)樹脂單體;0.1-15重量份之填充料; 以及0.1-5重量份之起始劑。 所揭露的封裝材料製造方法,包括:提供一封裝材料 組成物,包括:100重量份之樹脂單體,包括環氧·壓克力 (Epoxy-Acrylics)樹脂單體、矽壓克力樹脂單體及雙官能 基歲醋Μ克力(urethane-diacrylics)樹脂單體;〇·ι_ΐ5重 量份之填充料;以及0.1-5重量份之起始劑;以第一程序聚 合’該封裝材料組成物,其中該第一程序包括:加熱程序、 201103973 紫外光照射程序、 光程序 程序固化該封裝材料序、或前述之組合;以及以第二 第二程序包括:肪 成物,以形成該封裝材料,其中該 為讓本發明之 顯易懂’下文特舉出較佳實=的=、和優點能更明 細說明如下: 乂佳實鈿例,並配合所附圖式,作詳 【實施方式】 本發明特徵之—_ 製程,可快速製敎^由樹脂單體料搭配臨場(in-situ、 材料之製造方法,j"5性能之封裝材料。所揭露的封襄 為快速之條件下製備+較低製減本、較高安全性以及較 料具有優異之阻水之㈣材料。所揭露的封襄材 電產品如發光二極二質與透先率,因而適用於各種夫 充料===:成物中主要成分為樹脂單體1 率且無色之透明封裝材;:::配而製成具有高透井 月旨單體佔100重量份,封裝材料組成物中摘 重量份以及約佔0.M # Λ 劑則分別約佔0.1〜1: 1〇〇重量份為基準。 心Λ係以樹脂單體所佔之 赌單t述=單克體力,-塵克力(E-X—S)糊 月曰早體矽壓克力樹脂單體、及 (urethane-diacrylics )樹脂單體。 月匕土安曰 上述之環氧-壓克力樹脂單體·具有以下化學式: 201103973 ο R2\ /c\ /r1\ \〇’ CH——CH2 || \/ ch2 0 其中,R1與R2各自獨立地為笨基、含碳數介於1〜12 之烷苯基、含碳數介於1〜12之烷基、含碳數介於1〜12之 謎基、含碳數介於1〜12之烧氧基或含碳數介於1〜12之環 烷氧基。環氧-壓克力樹脂單體係作為高分子基材,可提升 封裝材料的接著性質。 上述之雙官能基氨酯壓克力單體具有以下化學式: R6In 172, the encapsulating material is applied to a light-emitting diode device, and the package (4) used is an epoxy resin cut. In the ·33522, the packaging material was applied to a solar cell device, and the sealing materials used were acrylic resin, epoxy resin or enamel resin. SUMMARY OF THE INVENTION The disclosed package material composition comprises: 1 part by weight of resin monomer, including epoxy-acrylic (Ej) 〇 xy_Acrylics resin monomer, ruthenium acrylate resin monomer And a bisethane urethane-diacrylics resin monomer; 0.1 to 15 parts by weight of a filler; and 0.1 to 5 parts by weight of a starter. The disclosed method for manufacturing a package material comprises: providing a package material composition comprising: 100 parts by weight of a resin monomer, including an epoxy resin (Epoxy-Acrylics) resin monomer, and a ruthenium resin resin monomer. And a bifunctional urethane-diacrylics resin monomer; 〇·ι_ΐ 5 parts by weight of the filler; and 0.1-5 parts by weight of the initiator; the first procedure polymerizes the package material composition, Wherein the first program comprises: a heating program, a 201103973 ultraviolet light irradiation program, an optical program program curing the package material sequence, or a combination thereof; and a second second program comprising: a fat product to form the packaging material, wherein In order to make the present invention easy to understand, the following is a more detailed description of the following, and the advantages can be more clearly described as follows: 乂 钿 钿 , , , , , , , , 配合 配合 配合 配合 配合 配合 配合 配合 配合 【 【 【 Features - _ process, can be quickly 敎 ^ by resin monomer material matching on-site (in-situ, material manufacturing methods, j &5; performance of the packaging material. The disclosed seal is prepared under rapid conditions + lower Reduction (4) Materials with higher safety and superior water resistance. The exposed electrical products such as luminescent bipolar and permeability are suitable for various fillings ===: The main component is a resin monomer 1 rate and colorless transparent packaging material;::: formulated to have a high permeability of the monomer to account for 100 parts by weight, the package material composition extract weight and about 0. M # The bismuth agent is about 0.1~1: 1 〇〇 by weight, respectively. The heart Λ is based on the singularity of the resin monomer t = single gram strength, - dust gram force (EX-S) paste month early Body acryl resin monomer and urethane-diacrylics resin monomer. The above epoxy-acrylic resin monomer has the following chemical formula: 201103973 ο R2\ /c\ /r1\ \〇' CH——CH2 || \/ ch2 0 wherein R1 and R2 are each independently a stupid base, an alkylphenyl group having a carbon number of 1 to 12, an alkyl group having a carbon number of 1 to 12, An alkoxy group having a carbon number of 1 to 12, an alkoxy group having a carbon number of 1 to 12, or a cycloalkoxy group having a carbon number of 1 to 12. An epoxy-acrylic resin single system is used. Polymer substrate, Lifting the encapsulating material is then properties of the above-described bifunctional urethane acrylic monomer having the formula: R6

HCHC

CHCH

R4——OCNR4 - OCN

R3—-NCOR3—NCO

R7 CH 其中,R3、R4與R5各自獨立地為苯基、含碳數介於 1〜12之烷苯基、含碳數介於1〜12之烷基、含碳數介於1〜12 之醚基、含碳數介於1〜12之烷氧基或含碳數介於1〜12之 環烷氧基;R6與R7各自獨立地為笨基、含碳數介於1〜12 之烷苯基、含碳數介於1〜12之烷基、含碳數介於1〜12之 醚基、含碳數介於1〜12之烷氧基、含碳數介於1〜12之環 烷氧基或氫。雙官能基氨酯壓克力單體係作為高分子基 材,可提升封裝材料的接著性質。 上述之矽壓克力樹脂單體具有以下化學式: 201103973 R9 R8-R7 CH wherein R3, R4 and R5 are each independently a phenyl group, an alkylphenyl group having a carbon number of from 1 to 12, an alkyl group having a carbon number of from 1 to 12, and a carbon number of from 1 to 12; An ether group, an alkoxy group having a carbon number of 1 to 12 or a cycloalkoxy group having a carbon number of 1 to 12; and R6 and R7 each independently a stupid group and having an alkyl group having a carbon number of 1 to 12 a phenyl group, an alkyl group having a carbon number of 1 to 12, an ether group having a carbon number of 1 to 12, an alkoxy group having a carbon number of 1 to 12, and a ring having a carbon number of 1 to 12 Alkoxy or hydrogen. The bifunctional urethane acryl single system acts as a polymer matrix to enhance the encapsulating properties of the encapsulating material. The above ruthenium resin monomer has the following chemical formula: 201103973 R9 R8-

II

Si-R10 R11Si-R10 R11

I o R,<fc ? ^仏心以^和…各自獨立地為苯基含 石厌數,丨於i〜12之烧苯基、含碳數介於W2之院基、含碳 =介於1〜12之醚基、含碳數介於卜12找氡基或含碳數 ;丨於1〜12之環燒氧基。石夕壓克力樹脂單體係作為高分子基 二I,裝材料的接著性質。此外,石夕壓克力樹脂單 可避免微歧應過快產生_化,賴纽應更好控制。 耳比例為!:!〜3.^3 1 壓克力樹脂單體其中各單體莫 ,.。丄 3 ’較佳為1 : 2 : 1〜3,更佳為]. 2. 2。本發明使用上述三種 ^ . =著強度、折射率及,:==;= 氧化= Ϊ材;:成物中之填充料例如為氧切或 氮化,,金屬或:碳:==素化金屬、例如為 熱起:::路成:中之起始劑包含光起始劑、 、’ σ 熱起始劑例如是過氧化物、偶 201103973 氮化合物、1-經基環己基苯基酮(l-Hydroxy-cyclohexyl-pheny 1-ketone)等自由基引發劑。光起始劑可以是陽離子起 始 劑 例 如峨 陽離子 (iodonium, (4-methylphenyl)[4-(2-methylpropyl)phenyl]-hexafluorophos phate)或環戊二烯過渡金屬錯合物例如Bis(eta 5-2,4-cyclopentadien-l-yl)Bis[2,6-difluoro-3-(lH-pyrrol-l-y l)phenyl]titanium。 上述封裝材料組成物經混合後以臨場方式依序進行一 聚合程序與一固化程序,形成本發明之封裝材料。上述聚 合程序可以是加熱程序、紫外光照射程序、微波程序、或 前述之組合。 在一實施例中,聚合程序是紫外光照射程序或微波程 序’此程序臨場地(in-situ)藉由一深紫外光光源或臨場地 (in-situ)藉由一微波反應器實施。所製備得到之封裝材料 會因照光或微波時間長短以及所使用之光源或微波反應器 之功率的調整,在25ΐ下具有介於1〜100,000 cps之黏度, 較佳地介於5,0〇〇〜30,〇〇〇cps,以及具有高於85%之透光 率’適用於如有機光二極體或發光二極體之發光元件以及 太陽能電池等電子元件之封裝應用。 紫外光聚合程序之施行時間約介於K200分鐘,較佳 約介於1-20分鐘’功率約1〜10000瓦特,較佳丨〜⑺⑽瓦 特。微波聚合程序之施行時間約介於丨〜加^分鐘,較佳約 介於M0分鐘,功率約U0000瓦特,較佳丨〜⑺⑼瓦特。 若使用加熱程序進行聚合,則可在60-150它持續加熱 201103973 1-100小時。 士相對於加熱㈣,使用紫外光與微波聚合除了具有合 成時間短、免溶劑、低成本之優點外,所製備的封裝材料 其阻氣率與接著強度亦特別優異,這可歸因於紫外光與微 波方式的聚合時間較短(特別是微波),可避免高分子鏈過 長阻礙填充料的分散。由於填充料達到充分的均勾,使阻 氣能力與接著強度得以提升。使用微波聚合方法,有別於 Φ 一般傳統加熱法。利用微波深層加熱特性,取代傳統合成 之熱對流傳遞方式,可降低不必要之熱能損耗。且反應物 分子會隨微波場之變化而產生偶極轉動,進而增進其碰撞 次數及有效碰撞機率,而提高反應產率,增加反應速率, 且製程中亦可不使用有機溶劑。用於高阻水阻氣封裝膠之 製備上,由於縮短了高分子的聚合時間,使得填充料達到 充分的均勻,而使阻氣能力與接著強度意外提升。目前已 知的微波加熱方法僅用於小分子合成(如“Synthesis of φ Phthalocyanines by microwave irradiation” U.S Patent 6,491,796);其應用在大分子的聚合會有困難,其原因可能 是微波是一快速加熱程序,合成高分子時容易因聚合速度 太快而膠化(gelation)。所揭露的實施例可以透過適當的單 體選擇克服此一問題,特別是選用反應較慢的石夕壓克力樹 脂早體以使微波反應更好控制。反之,若直接以環氧_壓克 力樹脂單體與雙官能基氨酯壓克力樹脂單體進行微波反 應,則反應太快不易控制,容易凝膠化。 上述樹脂單體經過共聚合之後’進行一固化程序.以完 201103973 成封裝材料的製作。例如可利用照光程序,以使樹脂中之 環氧基產生交聯反應。該照光程序之光源可視所施行之封 裝材料組成物内所使用之光起始劑之種類作選擇’例如紫 外光光源、可見光光源或紅外光光源之一光源,該照光程 序施行時間約介於1〜2〇〇分鐘,所應用之光源功率則約介 於1〜20,000瓦特。上述固化程序例如為一光源為紫外光光 源的照光程序,該照光程序施行時間約介於1-100分鐘’ 較佳約介於1-20分鐘,該光源功率約介於1-10000瓦特, 較佳約介於1-1000瓦特。 所揭露之封裝材料組成物可.以藉由填充料的調配而調 整所形成之封裝材料之透光率,製備出透光率高於85%, 甚至疋面於90%之透明封裝材料。黏著度可達2.5 Kg/cm ; 且其阻水阻氣特性優良,有助於提升電子元件之使用壽 命’特別適用於各種光電產品如無機發光二極體、有機發 光二極體、太陽能電池等。此外,本發明之封裝材料亦可 使用一些涉及阻水阻氣的民生工業如木塑的防水及食品飲 料之包裝等。 本發明之較佳實施例具有以下優點: (1) 製程中僅需持續地攪拌被照光之封裝材料組成物 以及控制所使用光源之功率表現而無須控制系統之反應壓 力與反應溫度,因而可大幅簡化製裎系統之設置情形。 (2) 製程中無須使用溶劑且不需要加熱,可節省能源的 使用且可降低工安意外的發生。 (3) 縮短製程時間。於一實施例中,利用紫外光程序可 201103973 在20分鐘内完成聚合。在另一實施例中,利用微波程序可 在10分鐘内完成聚合。 (4)所得到之封裝材料中之填充料之分散性極佳,可提 升封裝材料之阻水阻氣表現,進而改善被封裝元件之使用 壽命。 以下為所揭露之封裝材料組成物以及封裝材料之製造 方法之各實施例之配方與製備方式,以及比較例之配方與 製備。 表一所示為所應用之光學元件材料之相關資訊。 表一:所應用之光電元件材料 光電元件材 料 來源薇商 說明/備註 ΝΡΒ Aldrich Co. 電洞傳輸材料 Alq3 Aldrich Co. 發光材料 PEDOT Aldrich Co. 電洞傳輸材料 P3HT Aldrich Co. P型半導體材料 PCBM Aldrich Co. η型半導體材料 上述光電元件材料之化學式分別如下所示(其中η代表 單體的重複數目): 11 201103973I o R, <fc ? ^仏心为^和... Each independently is a phenyl-containing stone, the phenyl group in the i~12, the carbon number in the W2, the carbon content = The ether group of 1 to 12, the carbon number is between 12 and the carbon number; and the ring is alkoxy groups of 1 to 12. Shishi Acrylic Resin Single System as a polymer base II, the subsequent properties of the material. In addition, Shishi Acrylic Resin alone can avoid micro-discrimination should be produced too fast, Lai New should be better controlled. The ear ratio is! :! ~3.^3 1 Acrylic resin monomer in which each monomer is Mo, .丄 3 ' is preferably 1: 2 : 1 to 3, more preferably 2. 2. 2. The present invention uses the above three kinds of ^. = strength, refractive index and, ===; = oxidation = coffin;: the filler in the product is, for example, oxygen cutting or nitriding, metal or: carbon: == The metal, for example, the heat:::in: the initiator contains a photoinitiator, , ' σ thermal initiator such as peroxide, even 201103973 nitrogen compound, 1-cyclohexyl phenyl ketone A free radical initiator such as (l-Hydroxy-cyclohexyl-pheny 1-ketone). The photoinitiator may be a cationic initiator such as iodonium, (4-methylphenyl) [4-(2-methylpropyl)phenyl]-hexafluorophos phate) or a cyclopentadienyl transition metal complex such as Bis (eta 5). -2,4-cyclopentadien-l-yl) Bis[2,6-difluoro-3-(lH-pyrrol-lyl)phenyl]titanium. After the above-mentioned encapsulating material composition is mixed, a polymerization process and a curing process are sequentially performed in a fieldwise manner to form the encapsulating material of the present invention. The above polymerization procedure may be a heating procedure, an ultraviolet irradiation procedure, a microwave procedure, or a combination of the foregoing. In one embodiment, the polymerization procedure is an ultraviolet light irradiation procedure or a microwave procedure. The procedure is performed in-situ by a deep ultraviolet light source or in-situ by a microwave reactor. The prepared encapsulating material has a viscosity of 1 to 100,000 cps at 25 Torr, preferably 5,0 因, depending on the length of the illumination or microwave time and the power of the light source or microwave reactor used. ~30, 〇〇〇cps, and light transmittance of more than 85%' is suitable for packaging applications such as light-emitting elements such as organic light-emitting diodes or light-emitting diodes, and electronic components such as solar cells. The UV polymerization process is carried out for a period of time of about K200 minutes, preferably about 1 to 20 minutes' power of about 1 to 10,000 watts, preferably 丨~(7)(10) watts. The application time of the microwave polymerization procedure is about 丨~ plus ^ minutes, preferably about M0 minutes, and the power is about U0000 watts, preferably 丨~(7)(9) watts. If polymerization is carried out using a heating program, it can be continuously heated at 60-150 for 201103973 1-100 hours. Compared with heating (4), the use of ultraviolet light and microwave polymerization has the advantages of short synthesis time, solvent-free and low cost. The prepared packaging material is also excellent in gas barrier rate and adhesion strength, which can be attributed to ultraviolet light. The polymerization time with the microwave method is short (especially microwave), and the excessive length of the polymer chain can be prevented from hindering the dispersion of the filler. As the filler reaches a sufficient uniformity, the gas barrier capacity and the subsequent strength are improved. The microwave polymerization method is different from the conventional heating method of Φ. The use of microwave deep heating characteristics instead of the traditional synthetic heat convection transfer method can reduce unnecessary heat energy loss. Moreover, the reactant molecules will rotate dipolely according to the change of the microwave field, thereby increasing the number of collisions and the probability of effective collision, increasing the reaction yield, increasing the reaction rate, and not using an organic solvent in the process. For the preparation of the high-resistance water-barrier encapsulant, the filler is sufficiently uniform due to the shortening of the polymerization time of the polymer, and the gas barrier capability and the subsequent strength are unexpectedly increased. The currently known microwave heating method is only used for small molecule synthesis (such as "Synthesis of φ Phthalocyanines by microwave irradiation" US Patent 6,491,796); its application in the polymerization of macromolecules may be difficult, the reason may be that the microwave is a fast The heating procedure, when synthesizing a polymer, is liable to gelation due to the polymerization rate being too fast. The disclosed embodiments can overcome this problem by appropriate monomer selection, particularly the slower reaction of the Shiki acrylic precursor to better control the microwave response. On the other hand, if the epoxy-acrylic resin monomer and the difunctional urethane acrylic resin monomer are directly subjected to microwave reaction, the reaction is too fast to control and gelation is easy. After the above resin monomers are copolymerized, a curing process is carried out. The production of the packaging material is completed by 201103973. For example, an illumination procedure can be utilized to cause a crosslinking reaction in the epoxy group in the resin. The light source of the illumination program can be selected according to the type of photoinitiator used in the encapsulating material composition to be implemented, for example, one of an ultraviolet light source, a visible light source or an infrared light source, and the illumination procedure takes about 1 time. ~2〇〇 minutes, the applied light source power is about 1~20,000 watts. The curing process is, for example, an illumination program in which the light source is an ultraviolet light source, and the illumination procedure is performed for about 1-100 minutes, preferably about 1-20 minutes, and the light source power is about 1-10000 watts. The good condition is between 1 and 1000 watts. The disclosed encapsulating material composition can be used to adjust the light transmittance of the formed encapsulating material by the formulation of the filler to prepare a transparent encapsulating material having a light transmittance of more than 85% and even 90%. Adhesiveness up to 2.5 Kg/cm; and its excellent water and gas barrier properties help to improve the service life of electronic components'. It is especially suitable for various optoelectronic products such as inorganic light-emitting diodes, organic light-emitting diodes, solar cells, etc. . In addition, the encapsulating material of the present invention may also be used in some of the water-proof and food-drinking packagings of the Minsheng industry, such as wood-plastics, which are resistant to water and gas. The preferred embodiment of the present invention has the following advantages: (1) It is only necessary to continuously stir the illuminated encapsulating material composition in the process and control the power performance of the used light source without controlling the reaction pressure and reaction temperature of the system, thereby greatly increasing Simplify the setting of the system. (2) No solvent is required in the process and no heating is required, which saves energy and reduces accidents. (3) Shorten the process time. In one embodiment, the polymerization can be completed in 20 minutes using the ultraviolet light program 201103973. In another embodiment, the polymerization can be completed in 10 minutes using a microwave program. (4) The dispersibility of the filler in the obtained encapsulating material is excellent, and the water-blocking gas barrier performance of the encapsulating material can be improved, thereby improving the service life of the packaged component. The formulations and preparations of the various embodiments of the disclosed encapsulating material composition and the encapsulating material, and the formulation and preparation of the comparative examples are as follows. Table 1 shows information about the materials used for the optics. Table 1: Applied Photovoltaic Materials Photovoltaic Materials Sources Weishang Description / Remarks ΝΡΒ Aldrich Co. Hole Transport Materials Alq3 Aldrich Co. Luminescent Materials PEDOT Aldrich Co. Hole Transfer Materials P3HT Aldrich Co. P-Type Semiconductor Materials PCBM Aldrich Co. n-type semiconductor material The chemical formulas of the above-mentioned photovoltaic element materials are as follows (where η represents the number of repeating monomers): 11 201103973

【比較例1】 秤取117 g之甲基丙稀酸苯甲酯單體(Benzyl methacrylate,BZMA)、86g之甲基丙烯酸甲醋單體(Methyl Methacrylate,MAA)、130g之2·經基乙基甲基丙烯酸酯 單體(2-hydroxyl ethyl mathacrylate,2-HEMA)、100 g 之 丙二醇曱醚醋酸脂(PGME A ; propylene glycol monomethyl ether acetate ) 、39 g之二氧化石夕以及6 g之起始劑偶氮 二異丁腈(AIBN ; azobisisobutyronitrile)並將上述材料置 於一容器中,於常溫常壓下利用機械攪拌器攪拌並混合 上述材料而得到一封裝材料組成物。接著將其加熱至1 00 °C,加熱時間為8小時,之後放置至室溫後,加入6g之 1-184(Ciba Co.;光起始劑),進而合成製備出一壓克力共聚 物I。在此,上述封裝材料組成物係依照下述反應式(1) 所示反應而聚合成為此共聚物(其中x、y、z代表單體之 12 201103973 重複數目)。[Comparative Example 1] 117 g of Benzyl methacrylate (BZMA), 86 g of Methyl Methacrylate (MAA), 130 g of 2· 2-hydroxyl ethyl mathacrylate (2-HEMA), 100 g of propylene glycol monomethyl ether acetate, 39 g of sulphur dioxide and 6 g The initiator azobisisobutyronitrile (AIBN; azobisisobutyronitrile) was placed in a container, and the above materials were stirred and mixed with a mechanical stirrer under normal temperature and pressure to obtain a package material composition. Then, it was heated to 100 ° C, and the heating time was 8 hours. After being allowed to stand at room temperature, 6 g of 1-184 (Ciba Co.; photoinitiator) was added to synthesize an acrylic copolymer. I. Here, the above-mentioned encapsulating material composition is polymerized into the copolymer according to the reaction represented by the following reaction formula (1) (wherein x, y, and z represent the repeat number of the monomers 12 201103973).

ο II + H2C=C- c—OH + I CH3 AIBN,二氧化矽,PGMEA heat(100°C, 8 hr)ο II + H2C=C- c-OH + I CH3 AIBN, cerium oxide, PGMEA heat (100 ° C, 8 hr)

O II 一 h2c = c ——c—o 〆一'’ I ch3 1-184 stir, 30 minO II a h2c = c ——c-o 〆一'’ I ch3 1-184 stir, 30 min

immmiImmmi

OH 反應式(1) 接著量測所得到之壓克力共聚物I之黏度、分子量、 黏著強度、硬度、透光率以及折射率等物理性質,所得 到之結果如同表三與表四所示。關於聚合物之物理性質 的量測儀器/量測方法如以下表二所示,其中關於黏度與 分子量之量測可直接量測適當量之共聚物,而關於黏著 強度、硬度、透光率、折射率等性質之量測則可將所製 得之聚合物塗佈於如載玻片之一基板上成為5 cm X 5 cm 見方之一試樣,並將此試樣經過深紫外光之光源照光3 分後使之硬化,接著以表列之量測儀器與量測方法進行 後續之物理性質量測。 表二:物理性質的量測儀器/量測方法 物理性質量測儀器/量測方法 13 201103973 物理性質 量測儀器/量測方法 ' 黏度 Viscolite700(量測溫度為 25°〇 分子量 Waters Alliance GPC V2000 (Reference: Polystyrene; @ 25°C) 黏著強度 萬能拉力機(HungTaCo.)(量測方法:ASTMD1002) 硬度 鉛筆硬度計(ZSH 2090)(量測方法:ASTM D-2240A) 透光率 HITACHnj-3300(量測溫度為 25°C) 折射率 Filmetrics F20 (量測溫度為 25 °C) 【比較例2】 秤取165 g之甲基丙烯酸縮水甘油酯 (Glycidylmethacrylate,GMA)、168 g 之雙酚 A 二曱基丙 烯酸酯(bisphenol A dimethacrylate)、100 g 之丙二醇甲醚 醋酸脂(PGMEA ; propylene glycol monomethyl ether acetate )、39 g之二氧化矽以及6 g之起始劑偶氮二異丁 腈(AIBN ; azobisisobutyronitrile)並將上述材料置於一容 器中’於常溫常壓下利用機械攪拌器攪拌並混合上述材 料而得到一封裝材料組成物。接著將其加熱至100。匚, 加熱時間為8小時’之後放置至室溫後,加入6 g之 I-250(Ciba Co·;光起始劑)’進而合成製備出一壓克力/環 氧共聚物I。在此’上述封裝材料紅成物係依照下述反應 式(2)所示反應而聚合成為此共聚物(其中n、m代表單體 之重複數目)。 201103973OH Reaction Formula (1) Next, the physical properties such as viscosity, molecular weight, adhesion strength, hardness, light transmittance, and refractive index of the obtained acrylic copolymer I were measured, and the results obtained are shown in Tables 3 and 4. . The measuring instrument/measurement method for the physical properties of the polymer is shown in Table 2 below, wherein the measurement of the viscosity and the molecular weight can directly measure the appropriate amount of the copolymer, and regarding the adhesion strength, hardness, light transmittance, The properties of the refractive index and the like can be measured by applying the prepared polymer to a substrate such as a slide glass to a sample of 5 cm X 5 cm square, and passing the sample through a source of deep ultraviolet light. After 3 minutes of light, it is hardened, and then the subsequent physical measurement is performed by the measuring instrument and measuring method. Table 2: Measuring instruments/measuring methods of physical properties Physical mass measuring instruments/measuring methods 13 201103973 Physical mass measuring instruments/measurement methods Viscosity Viscolite 700 (measuring temperature is 25° 〇 molecular weight Waters Alliance GPC V2000 ( Reference: Polystyrene; @ 25°C) Adhesive strength universal tensile machine (HungTaCo.) (measurement method: ASTM D1002) Hardness pencil hardness tester (ZSH 2090) (measurement method: ASTM D-2240A) Light transmittance HITACHnj-3300 ( Measuring temperature is 25 ° C) Refractive index Filmetrics F20 (measuring temperature is 25 ° C) [Comparative Example 2] 165 g of glycidyl methacrylate (GMA), 168 g of bisphenol A Bisphenol A dimethacrylate, 100 g of propylene glycol monomethyl ether acetate, 39 g of cerium oxide and 6 g of the initiator azobisisobutyronitrile (AIBN; Azobisisobutyronitrile) and the above materials are placed in a container. The material is stirred and mixed with a mechanical stirrer at normal temperature and pressure to obtain a package material composition, which is then heated to 100. 匚, After heating for 8 hours', after standing at room temperature, 6 g of I-250 (Ciba Co.; photoinitiator) was added to further synthesize an acryl/epoxy copolymer I. Here, the above-mentioned encapsulating material red compound is polymerized into the copolymer according to the reaction represented by the following reaction formula (2) (where n and m represent the number of repetitions of the monomer).

反應式(2 ) 接著將比較例2所製得之壓克力/環氧共聚物I同比 較例1之方式進行物性量測,所得到的結果如表四與表 五所示。 【比較例3】 秤取 130 g 之甲基丙烯酸縮水甘油酯 (Glycidylmethacrylate,GMA)、203 g 之聚氨醋-壓克力共 單體I、100 g之丙二醇甲_醋酸脂(PGMEA ; propylene glycol monomethyl ether acetate ) 、39 g 之二氧化石夕以及 6g 之起始劑偶氮二異丁腈(AIBN ; azobisisobutyronitrile) 並將上述材料置於一容器中,於常溫常壓下利用機械攪 拌器攪拌並混合上述材料而得到一封裝材料組成物。接 著將其加熱至1〇〇 °C,加熱時間為8小時,之後放置至 室溫後,加入6g之I-250(CibaCo.;光起始劑)與lg之 Tinuvin 622(Ciba Co.;抗氧化劑)·,進而合成製備出一壓克 201103973 力/環氧/聚氨酯共聚物i。在此,上述封裝材料組成物係 依照下述反應式(3)所示反應而聚合成為此共聚物(其中 η、m代表單體之重複數目)。 I ο 〇 、(/ + R—c 飞Reaction Formula (2) Next, the acrylic/epoxy copolymer I obtained in Comparative Example 2 was subjected to physical property measurement in the same manner as in Example 1, and the results obtained are shown in Tables 4 and 5. [Comparative Example 3] Weigh 130 g of glycidyl methacrylate (GMA), 203 g of polyurethane-acrylic comonomer I, 100 g of propylene glycol methyl acetate (PGMEA; propylene glycol) Monomethyl ether acetate ), 39 g of cerium oxide and 6 g of the initiator azobisisobutyronitrile (AIBN; azobisisobutyronitrile) and placed in a container, stirred at room temperature and pressure with a mechanical stirrer The above materials are mixed to obtain a package material composition. Then, it was heated to 1 ° C, and the heating time was 8 hours. After being allowed to stand at room temperature, 6 g of I-250 (Ciba Co.; photoinitiator) and lg of Tinuvin 622 (Ciba Co.; The oxidant) was further synthesized to produce a pressurization 201103973 force/epoxy/polyurethane copolymer i. Here, the above-mentioned encapsulating material composition is polymerized into the copolymer according to the reaction represented by the following reaction formula (3) (where η and m represent the number of repetitions of the monomer). I ο 〇 , (/ + R-c fly

反應式(3) 接著將比較例3所製得之壓克力/環氧/聚氨酯共聚 物I同比較例1之方式進行物性量測,所得到的結果如表 四與表五所示。 【比較例4】 秤取 130 g 之甲基丙稀酸縮水甘油醋 (Glycidylmethacrylate,GMA)、203 g 之聚氨醋-壓克力共 單體II、100 g之丙二醇甲醚醋酸脂(PGMEA ; propylene glycol monomethyl ether acetate ) 、39 g 之二氧化石夕以及 6 g 之起始劑偶氮二異丁腈(AIBN ; azobisisobutyronitrile) 並將上述材料置於一容器中,於常溫常壓下利用機械攪 拌器攪拌並混合上述材料而得到一封裝材料組成物。接 201103973 著將其加熱至100 t,加熱時間為8小時,之後放置至 室溫後,加入6g之I-250(CibaCo.;光起始劑)與lg之 Tinuvin 622(Ciba Co.;抗氧化劑),進而合成製備出一壓克 力/環氧/聚氨酯共聚物II。在此,上述封裝材料組成物係 依照下述反應式(4)所示反應而聚合成為此共聚物(其中 n、m代表單體之重複數目)。Reaction Formula (3) Next, physical properties of the acrylic/epoxy/polyurethane copolymer I obtained in Comparative Example 3 were measured in the same manner as in Comparative Example 1. The results obtained are shown in Tables 4 and 5. [Comparative Example 4] Weigh 130 g of Glycidylmethacrylate (GMA), 203 g of polyurethane-acrylic comonomer II, and 100 g of propylene glycol methyl ether acetate (PGMEA; Propylene glycol monomethyl ether acetate ), 39 g of cerium oxide and 6 g of the initiator azobisisobutyronitrile (AIBN; azobisisobutyronitrile) and the above materials are placed in a container and mechanically stirred at normal temperature and pressure. The above materials were stirred and mixed to obtain a package material composition. It was heated to 100 t at 201103973, and the heating time was 8 hours. After standing at room temperature, 6 g of I-250 (CibaCo.; photoinitiator) and lg of Tinuvin 622 (Ciba Co.; antioxidant) were added. ), and then an acrylic/epoxy/polyurethane copolymer II is synthesized. Here, the above-mentioned encapsulating material composition is polymerized into the copolymer according to the reaction represented by the following reaction formula (4) (wherein n and m represent the number of repetitions of the monomer).

反應式(4) 接著將比較例4所製得之壓克力/環氧/聚氨酯共聚 物II同比較例1之方式進行物性量測,所得到的結果如 表四與表五所示。 【比較例5】 秤取 130 g 之甲基丙烯酸縮水甘油酯 (Glycidylmethacrylate,GMA)、203 g 之聚氨醋-壓克力共 單體III、100 g之丙二醇甲謎醋酸脂(PGMEA ; propylene glycol monomethyl ether acetate ) 、39 g 之二氧化石夕以及 6 之起始劑偶氮二異丁腈(AIBN ; azobisisobutyronitrile) 17 201103973 並將上述材料置於一容器中,於常溫常壓下利用機械攪 拌器攪拌並混合上述材料而得到一封裝材料組成物。接 著將其加熱至100 °C,加熱時間為8小時,之後放置至 室溫後,加入6g之I-250(CibaCo.;光起始劑)與lg之 Tinuvin 622(Ciba Co.;抗氧化劑),進而合成製備出一壓克 力/環氧/聚氨酯共聚物III。在此,上述封裝材料組成物 係依照下述反應式(5)所示反應而聚合成為此共聚物(其 中n、m代表單體之重複數目)。Reaction Formula (4) Next, the acrylic/epoxy/polyurethane copolymer II obtained in Comparative Example 4 was subjected to physical property measurement in the same manner as in Comparative Example 1, and the results obtained are shown in Tables 4 and 5. [Comparative Example 5] Weigh 130 g of Glycidylmethacrylate (GMA), 203 g of polyurethane-acrylic comonomer III, and 100 g of propylene glycol myristic acetate (PGMEA; propylene glycol) Monomethyl ether acetate ) , 39 g of sulphur dioxide and 6 azobisisobutyronitrile (AIBN; azobisisobutyronitrile) 17 201103973 and the above materials are placed in a container, using a mechanical stirrer at normal temperature and pressure The above materials were stirred and mixed to obtain a package material composition. Then, it was heated to 100 ° C for 8 hours, and after standing at room temperature, 6 g of I-250 (CibaCo.; photoinitiator) and lg of Tinuvin 622 (Ciba Co.; antioxidant) were added. Further, an acryl/epoxy/polyurethane copolymer III was synthesized. Here, the above-mentioned encapsulating material composition is polymerized into the copolymer according to the reaction represented by the following reaction formula (5) (where n and m represent the number of repetitions of the monomer).

反應式(5)Reaction formula (5)

接著將比較例5所製得之壓克力/環氧/聚氨酯共聚 物III同比較例1之方式進行物性量測,所得到的結果如 表四與表五所示。 【比較例6】 秤取167 g之矽壓克力單體I、167 g之聚氨酯-壓克 力共單體I、100 g,之丙二醇甲醚醋酸脂(PGMEA ; 201103973 propylene glycol monomethyl ether acetate ) 、39 g 之二氧 化矽以及6 g之起始劑偶氮二異丁腈(AIBN ; azobisisobutyronitrile)並將上述材料置於一容器中,於常 溫常壓下利用機械攪拌器攪拌並混合上述材料而得到一 封裝材料組成物。接著將其加熱至1〇〇 °c,加熱時間為8 小時,之後放置至室溫後,加入6 g之1-184 (Ciba Co.; 光起始劑)’進而合成製備出一矽壓克力/聚氨酯/壓克力 共聚物I。在此’上述封裝材料組成物係依照下述反應式 (6)所示反應雨聚合成為此共聚物(其中x、y、ζ、η代表單 體之重複數目)。 CHs OCH3 -〇CHs I〖n。 /~〇~e~ R—octj· 矽壓克力單體1Next, the acrylic/epoxy/polyurethane copolymer III obtained in Comparative Example 5 was measured for physical properties in the same manner as in Comparative Example 1, and the results obtained are shown in Tables 4 and 5. [Comparative Example 6] Weighing 167 g of hydrazine monomer I, 167 g of polyurethane-acrylic co-monomer I, 100 g, propylene glycol methyl ether acetate (PGMEA; 201103973 propylene glycol monomethyl ether acetate ) 39 g of cerium oxide and 6 g of the initiator azobisisobutyronitrile (AIBN; azobisisobutyronitrile) and the above materials are placed in a container, and the above materials are stirred and mixed by a mechanical stirrer at normal temperature and pressure. A package material composition is obtained. Then, it was heated to 1 ° C, and the heating time was 8 hours. After being allowed to stand at room temperature, 6 g of 1-184 (Ciba Co.; photoinitiator) was added to further synthesize a press. Force / Polyurethane / Acrylic Copolymer I. Here, the above-mentioned encapsulating material composition is polymerized into a copolymer according to the reaction of the following reaction formula (6) (wherein x, y, ζ, η represents the number of repetitions of the monomer). CHs OCH3 -〇CHs I〖n. /~〇~e~ R—octj· 矽压力单单1

聚氨酯-壓克力共單體i OCHa CO- OCHs I 'Si( -OCH3 CH—CH2- :s &Ν,二氧化矽,PGMEA 1-184 heat (100°C, S hr) stir, 30 min (CH2)3 0 * "=0 c--CH2 r1 - 1 -* X CH—CH2— • - CH3 矽壓克力/聚氨酯/壓克力i5 (CH2)6Polyurethane-acrylic co-monomer i OCHa CO- OCHs I 'Si( -OCH3 CH-CH2- :s & Ν, cerium oxide, PGMEA 1-184 heat (100 ° C, S hr) stir, 30 min (CH2)3 0 * "=0 c--CH2 r1 - 1 -* X CH—CH2— • - CH3 矽Acrylic/Polyurethane/Acrylic i5 (CH2)6

(CH2>6 反應式(6 ) 接著將比較例6所製得之矽壓克力/聚氨酯/壓克力 共聚物I同比較例1之方式進行物性量測,所得到的結果 201103973 如表四與表五所示。 【實施例1】 秤取 100 g 之甲基丙烯酸縮水甘油酯 (Glycidylmethacrylate,GMA)、100 g 之聚氨酯-壓克力共單 體I 、100g之矽壓克力共單體(如反應式(7)所示)、 100 g 之丙二醇曱鱗醋酸脂(PGME A ; propylene glycol monomethyl ether acetate ) 、39g 之二氧化石夕以及 6g 之起· 始劑偶氮二異丁腈(AIBN ; azobisisobutyronitrile)並將上 述材料置於一容器中,於常溫常壓下利用機械攪拌器擾 拌並混合上述材料而得到一封裝材料組成物。接著將其 加熱至100 °C,加熱時間為8小時,之後放置至室溫後, 加入6 g之I-250(Ciba Co.;光起始劑)與1 g之Tinuvin 622(Ciba Co.;抗氧化劑),進而合成製備出一壓克力/環氧 /聚氨醋/梦壓克力共聚物I。在此,上述封裝材料組成物鲁 係依照下述反應式(7)所示反應而聚合成為此共聚物(其 中x、y、z代表單體之重複數目)。 20 201103973(CH2 > 6 Reaction Formula (6) Next, the ruthenium acrylic/urethane/acrylic copolymer I obtained in Comparative Example 6 was measured for physical properties in the same manner as in Comparative Example 1, and the obtained result 201103973 is shown in Table 4 And Table 5. [Example 1] Weigh 100 g of Glycidylmethacrylate (GMA), 100 g of polyurethane-acrylic co-monomer I, and 100 g of hydrazine comonomer (as shown in reaction formula (7)), 100 g of propylene glycol monomethyl ether acetate (PGME A; propylene glycol monomethyl ether acetate), 39 g of sulphur dioxide, and 6 g of initiator azobisisobutyronitrile ( AIBN; azobisisobutyronitrile) and the above materials are placed in a container, and the above materials are scrambled and mixed with a mechanical stirrer at normal temperature and pressure to obtain a package material composition, which is then heated to 100 ° C for a heating time of 8 After an hour, after standing at room temperature, 6 g of I-250 (Ciba Co.; photoinitiator) and 1 g of Tinuvin 622 (Ciba Co.; antioxidant) were added to synthesize an acrylic/ Epoxy/polyurethane/dream acrylic copolymer I. Here, the above Lu-based packaging material composition in accordance with the reaction shown in the following reaction formula (7) and polymerized to the copolymer (wherein x, y, z represent the number of repeats of the monomer). 20,201,103,973

甲基丙烯酸縮水甘油酯Glycidyl methacrylate

聚氨酯*壓克力共單體I —Γ 1 + H2C=C —-C-Ο-(Cftt)3 砂壓克力共單體 OCH3I Si—OCH3I OCHs OCH3 HaCO一Si—OCH3Polyurethane*Acrylic Co-monomer I —Γ 1 + H2C=C —-C-Ο-(Cftt)3 Sand Acrylic Co-monomer OCH3I Si—OCH3I OCHs OCH3 HaCO-Si-OCH3

反應式(7) 接著將實施例1所製得之壓克力/環氧共聚物j同比 較例1之方式進行物性量測,所得到的結果如表四與表 五所示。 【實施例2】 科取100 g之曱基丙稀酸縮水甘油酯、1 〇〇 g之聚氨 酯-壓克力共單體Π 、100g之石夕壓克力共單體(如反應 式(8)所示)、100g之丙二醇甲基醚醋酸酉旨(pGMEA ; propylene glycol monomethyl ether acetate)、39 g 之二氧化 石夕以及6 g之起始劑偶氮二異丁腈(aibn ; azobisisobutyronitrile)並將上述材料置於一容器中,於常 溫常壓下利用機械攪拌器攪拌並混合上述材料而得到_ 封裝材料組成物。接著將其加熱至1〇〇 °C,加熱時間為8 小時’之後放置至室溫後,加入6 g乏1-25〇(Ciba C〇二光 21 201103973 起始劑)與1 g之Tinuvin 622(Ciba Co·;抗氧化劑)’進 而合成製備.出一壓克力/環氧/聚氨酯/矽壓克力共聚物 II。在此,上述封裝材料組成物係依照下述反應式(8)所 示反應而聚合成為此共聚物(其中x、y、z代表單體之重 複數目)。Reaction Formula (7) Next, the acrylic/epoxy copolymer j obtained in Example 1 was subjected to physical property measurement in the same manner as in Example 1, and the results obtained are shown in Tables 4 and 5. [Example 2] 100 g of thioglycolic acid glycidyl ester, 1 〇〇g of polyurethane-acrylic co-monomer 、, 100 g of shi chen eutectic monomer (such as reaction formula (8) ))), 100 g of propylene glycol monomethyl ether acetate (pGMEA; propylene glycol monomethyl ether acetate), 39 g of cerium oxide and 6 g of the initiator azobisisobutyronitrile (aibn; azobisisobutyronitrile) The above materials are placed in a container, and the above materials are stirred and mixed with a mechanical stirrer under normal temperature and pressure to obtain a composition of the encapsulating material. Then, it was heated to 1 ° C, and the heating time was 8 hours. After leaving to room temperature, 6 g of 1-25 乏 (Ciba C〇二光21 201103973 starter) and 1 g of Tinuvin 622 were added. (Ciba Co.; Antioxidant)' is further synthesized. An acryl/epoxy/polyurethane/ruthenium acrylate copolymer II is produced. Here, the above-mentioned encapsulating material composition is polymerized into the copolymer according to the reaction shown in the following reaction formula (8) (wherein x, y, and z represent the repeated number of monomers).

甲基丙烯酸縮水甘油酯 聚氨酯-壓克力共單體II 砂壓克力共單體 OCH3Glycidyl methacrylate Polyurethane-Acrylic Co-monomer II Sand Acrylic Co-monomer OCH3

OCH3 H3CO-Si-OCH3OCH3 H3CO-Si-OCH3

反應式(8) 接著將實施例2所製得之壓克力/環氧/聚氨酯/矽壓 克力共聚物II同比較例1之方式進行物性量測,所得到 的結果如表三與表四所示。 .【實施例3】 秤取100 g之曱基丙烯酸縮水甘油醋、100 g之聚氨 酯-壓克力共單體I、l〇〇g之矽壓克力共單體(如反應式 (9)所示)、39 g之二氧化矽以及6 g之光起始劑1-184 並將上述材料置於一容器中,於常溫常壓下利用機械攪 22 201103973 拌器攪拌並混合上述材料而得到一封裝材料組成物。接 著臨場地(in-situ)藉由一深紫外光(UV)光源(其功率約為 100W)施行一照光程序以照射此封裝材料組成物20分 鐘,之後放置至室溫後,加入6 g之1-250 (Ciba Co.;光起 始劑)與lg之Tinuvin 622(CibaCo.;抗氧化劑),進而合 成製備出一壓克力/環氧/聚氨酯/矽壓克力共聚物I UV。 在此,上述封裝材料組成物係依照下述反應式(9)所示反 應而聚合成為此共聚物(其中x、y、z代表單體之重複數 目)°Reaction Formula (8) Next, the acrylic/epoxy/polyurethane/ruthenium acrylate copolymer II obtained in Example 2 was subjected to physical property measurement in the same manner as in Comparative Example 1, and the results obtained are shown in Table 3 and Table. Four is shown. [Example 3] Weigh 100 g of methacrylic acid glycidol vinegar, 100 g of polyurethane-acrylic comonomer I, l〇〇g of 矽 克 eutectic monomer (such as reaction formula (9) Show), 39 g of cerium oxide and 6 g of photoinitiator 1-184 and place the above materials in a container, and stir and mix the above materials under normal temperature and pressure using a mechanical stirrer 22 201103973 stirrer A package material composition. Then, in-situ, a deep ultraviolet (UV) light source (having a power of about 100 W) is used to illuminate the encapsulating material composition for 20 minutes, and then placed at room temperature, and then added to 6 g. 1-250 (Ciba Co.; photoinitiator) and lg of Tinuvin 622 (CibaCo.; antioxidant), and then synthesized to prepare an acrylic / epoxy / polyurethane / 矽 acryl copolymer I UV. Here, the above-mentioned encapsulating material composition is polymerized into a copolymer according to the reaction represented by the following reaction formula (9) (wherein x, y, and z represent the number of repetitions of the monomer).

甲基丙烯酸縮水甘油酯 聚氨酯-壓克力共單體1Glycidyl methacrylate polyurethane-acrylic co-monomer 1

OCHs 矽壓克力共單體 OCH3 OCHs H3CO-Si-OCH3 1-184,二氧化矽 UV(100W,20min)OCHs 矽 克 共 O OCH3 OCHs H3CO-Si-OCH3 1-184, cerium oxide UV (100W, 20min)

反應式(9) 接著將實施例3所製得之壓克力/環氧/聚氨酯/矽壓 克力共聚物I UV同比較例1之方式進行物性量測,所得 到的結果如表三與表四所示。 Γ Γ 1 23 201103973 【實施例4】 秤取100 g之甲基丙烯酸縮水甘油酯、100 g之聚氨 酯·壓克力共單體I、l〇〇g之矽壓克力共單體(如反應式 (10)所示)、39 g之二氧化矽以及6 g之光起始劑1-184 並將上述材料置於一容器中,於常溫常壓下利用機械攪 拌器攪拌並混合上述材料而得到一封裝材料組成物。接 著臨場地(in-situ)藉由一微波(microwave)反應器(其功 率約為800W)施行一微波程序以微波此封裝材料組成物 10分鐘,之後放置至室溫後,加入6 g之1-250 (Ciba Co.; 光起始劑)與1 g之Tinuvin 622(Ciba Co.;抗氧化劑)進 而合成製備出一壓克力/環氧/聚氨酯/矽壓克力共聚物I MW。在此,上述封裝材料組成物係依照下述反應式(10) 所示反應而聚合成為此共聚物(其t x、y、z代表單體之 重複數目)。Reaction formula (9) Next, the acrylic/epoxy/polyurethane/ruthenium acryl copolymer I UV obtained in Example 3 was measured for physical properties in the same manner as in Comparative Example 1, and the results obtained are shown in Table 3 and Table 4 shows. Γ Γ 1 23 201103973 [Example 4] Weigh 100 g of glycidyl methacrylate, 100 g of polyurethane, acrylic comonomer I, l〇〇g of hydrazine comonomer (such as reaction Formula (10)), 39 g of cerium oxide and 6 g of photoinitiator 1-184 and the above materials are placed in a container, and the above materials are stirred and mixed by a mechanical stirrer at normal temperature and pressure. A package material composition is obtained. Next, in-situ, a microwave program is performed by a microwave reactor (having a power of about 800 W) to microwave the package material composition for 10 minutes, and then placed at room temperature, and then 6 g of 1 is added. -250 (Ciba Co.; photoinitiator) and 1 g of Tinuvin 622 (Ciba Co.; antioxidant) were further synthesized to prepare an acrylic/epoxy/polyurethane/ruthenium acrylic copolymer I MW. Here, the above-mentioned encapsulating material composition is polymerized into the copolymer according to the reaction represented by the following reaction formula (10) (where t x , y and z represent the number of repetitions of the monomer).

甲基丙烯酸縮水甘油酯 聚氨酯-壓克力共單體I CH3 〇 OCH3I II I H2C =C —C — 0—(CH2)3—Si—0CH3Glycidyl methacrylate Polyurethane-acrylic co-monomer I CH3 〇 OCH3I II I H2C =C —C — 0—(CH2)3—Si—0CH3

I 矽壓克力共單體 OCH3 0CH3 H3CO-Si-OCH3 AIBN,二氧化矽 微波(800W,1〇 min)I 矽Acrylic co-monomer OCH3 0CH3 H3CO-Si-OCH3 AIBN, cerium oxide Microwave (800W, 1〇 min)

反應式(10) 24 201103973 接著將實施例4所製得之壓克力/環氧/聚氨酯/矽壓 克力共聚物IMW同比較例1之方式進行物性量測,所得 到的結果如表三與表四所示。 表三:封裝材料之黏度與分子量 封裝材料 黏度 (cps) 重量分子量(Mw) 數量分子量(Mn) Mw/ Mn 比較例1 18,500 292,500 124,700 2.35 比較例2 21,800 318,500 149,000 2.14 比較例3 20,3〇〇 311,200 141,400 2.20 比較例4 19,400 304,300 137,200 2.22 比較例5 21,200 312,100 147,500 2.12 比較例6 15,100 263,900 113,900 2.32 實施例1 23,700 371,200 164,100 2.15 實施例2 22,800 397,600 153,600 2.21 實施例3 25,800 371,200 174,800 2.12 實施例4 28,3〇〇 397,600 193,700 2.05Reaction formula (10) 24 201103973 Next, the acrylic/epoxy/polyurethane/ruthenium acryl copolymer IMW obtained in Example 4 was measured for physical properties in the same manner as in Comparative Example 1, and the results obtained are shown in Table 3. As shown in Table 4. Table 3: Viscosity and Molecular Weight of Packaging Materials Packaging Material Viscosity (cps) Weight Molecular Weight (Mw) Quantity Molecular Weight (Mn) Mw/ Mn Comparative Example 1 18,500 292,500 124,700 2.35 Comparative Example 2 21,800 318,500 149,000 2.14 Comparative Example 3 20,3〇〇 311,200 141,400 2.20 Comparative Example 4 19,400 304,300 137,200 2.22 Comparative Example 5 21,200 312,100 147,500 2.12 Comparative Example 6 15,100 263,900 113,900 2.32 Example 1 23,700 371,200 164,100 2.15 Example 2 22,800 397,600 153,600 2.21 Example 3 25,800 371,200 174,800 2.12 Example 4 28, 3〇〇397,600 193,700 2.05

由表三結果可知聚合程序使用in-situ紫外光(實施例 3)以及in-situ微波(實施例4)所得之封裝材料的黏度 比藉由加熱程序所得之封裝材料的黏度高。 表四:封裝材料之物理性質 · 25 201103973 封裝材料 黏著強度(Kg/cm) 硬度 透光率(%) 折射率(η) 比較例1 0.32 2H 92 1.38 比較例2 0.83 3H 86 1.45 比較例3 2.35 3H 87 1.51 比較例4 2.07 Η 91 1.49 比較例5 2.16 2Η 88 1.49 比較例6 1.73 Β 92 1.56 實施例1 2.58 Η 89 1.62 實施例2 2.27 ΗΒ 90 1.60 實施例3 2.93 Η 91 1.61 實施例4 3.26 Η 89 1.61 由表四結果可知封裝材料包含的樹脂單體由環氧-壓 克力樹脂單體、矽壓克力樹脂單體及雙官能基氨酯壓克力 $ 樹脂單體共同組成(實施例1、2、3及4)其黏著強度與 折射率都相對較佳。而其中聚合程序使用in-situ紫外光 (實施例3)以及in-situ微波(實施例4)所得之封裝材 料的黏著強度與折射率更佳。 【實施例5】 將形成有氧化銦錫(ITO)層102之一玻璃基板 26 201103973 100(50/口)浸泡含丙酮、甲醇及去離子之潔淨溶液(重量比 =2:1:1)後以超音波洗淨五分鐘。之後以氧氣電漿⑴2 plasma)處理90秒後,採用蒸鍍方式依序汀〇層ι 〇2上形2 成一電子傳輸層104(採用ΝΡΒ材料,厚度為5〇奈米)、 一發光層1〇6(採用Alq3,厚度為50奈米)、一電子注入 層1〇8(採用氣化經,厚度為3奈米)以及一陰極1採用 鋁,厚度為80奈米)。接著以旋轉塗佈方式將前述實施例 4所製備得到之壓克力/環氧/聚氨酯/矽壓克力共聚物j mw作為封裝材料而將之塗佈至陰極11()上並包覆上述 堆疊膜層之侧壁(stage I: 1500 r.p.m. 20 秒;stage II: 3500 r.p.m. 30秒)’接著以紫外光照射上述封裝材料1Q秒以 固化之因而於上述堆疊膜層之頂面及側壁表面上形成一 封裝層170,並完成了有機發光二極體(〇led)裝置之封 裝’如第1圖所示。在此,有機發光二極體裝置可朝向 遠離破螭基板100之方向發出如綠光之一光線18〇 表五:實施例4所得之聚合物與其他材料應用於〇LEd 封From the results of Table 3, it is understood that the viscosity of the encapsulating material obtained by using the in-situ ultraviolet light (Example 3) and the in-situ microwave (Example 4) in the polymerization procedure is higher than that of the encapsulating material obtained by the heating procedure. Table 4: Physical Properties of Packaging Materials · 25 201103973 Adhesive Strength of Packaging Materials (Kg/cm) Hardness Transmittance (%) Refractive Index (η) Comparative Example 1 0.32 2H 92 1.38 Comparative Example 2 0.83 3H 86 1.45 Comparative Example 3 2.35 3H 87 1.51 Comparative Example 4 2.07 Η 91 1.49 Comparative Example 5 2.16 2Η 88 1.49 Comparative Example 6 1.73 Β 92 1.56 Example 1 2.58 Η 89 1.62 Example 2 2.27 ΗΒ 90 1.60 Example 3 2.93 Η 91 1.61 Example 4 3.26 Η 89 1.61 It can be seen from the results in Table 4 that the resin monomer contained in the encapsulating material is composed of epoxy-acrylic resin monomer, hydrazine acrylate resin monomer and bifunctional urethane acrylic resin monomer. 1, 2, 3 and 4) their adhesion strength and refractive index are relatively better. Further, the polymerization process obtained by using the in-situ ultraviolet light (Example 3) and the in-situ microwave (Example 4) had better adhesion strength and refractive index. [Example 5] A glass substrate 26 201103973 100 (50/mouth) formed with an indium tin oxide (ITO) layer 102 was immersed in a clean solution containing acetone, methanol and deionized (weight ratio = 2:1:1). Wash with ultrasound for five minutes. After treatment with oxygen plasma (1) 2 plasma) for 90 seconds, an electron transport layer 104 (using a germanium material, a thickness of 5 nanometers) and a light-emitting layer 1 are formed by vapor deposition. 〇6 (using Alq3, thickness 50 nm), an electron injection layer 1〇8 (using gasification, thickness of 3 nm) and a cathode 1 using aluminum, thickness of 80 nm). Then, the acrylic/epoxy/polyurethane/ruthenium acryl copolymer j mw prepared in the above Example 4 was applied as a sealing material to the cathode 11 () and coated with the above. The sidewall of the stacked film layer (stage I: 1500 rpm 20 seconds; stage II: 3500 rpm 30 seconds) was then irradiated with ultraviolet light for 1Q seconds to cure on the top and side wall surfaces of the stacked film layer. An encapsulation layer 170 is formed and the package of the organic light emitting diode device is completed as shown in FIG. Here, the organic light emitting diode device can emit light such as green light in a direction away from the broken substrate 100. Table 5: The polymer obtained in Example 4 and other materials are applied to the 〇LEd seal.

封巢狀態 未封裝 EPO-TEK OG112-4 (Epoxy Co.) 33 實施例4 衰減時間* (小時) 定義為亮度衰減為原來一半所需的時間 27 115 201103973 χ人t表五結果可知,相較於商品材料EP〇-TEKOG112-4 聚a程序使用m_situ微波並包含由環氧-壓克力樹脂單 體、石夕壓克力樹脂單體及雙官能純賴克力樹脂單體共 同、、且^的樹脂單體的封裝材料(實施例4),在〇lED應 用上壳度之半衰減期更長,進而增加元件使用壽命。 【實施例6】The encapsulation state is not encapsulated EPO-TEK OG112-4 (Epoxy Co.) 33 Example 4 Decay time* (hour) Defined as the time required for the brightness to decay to half of the original 27 115 201103973 χ人 t表五结果, we can see that The commercial material EP〇-TEKOG112-4 poly a program uses m_situ microwave and contains epoxy-acrylic resin monomer, Shixi acrylic resin monomer and bifunctional pure lycopene resin monomer together, and The encapsulating material of the resin monomer (Example 4) has a longer half-life of the shell length in the 〇lED application, thereby increasing the life of the component. [Embodiment 6]

採用如釗述實加例5之製備步驟,僅將玻璃基板1 〇〇 =換成為 PET (P〇lyethylene terephthalate)基板 2〇〇,因而 φ 完成了可撓式有機光二極體裝置之封裝。在此,於第2 圖中,可撓式有機發光二極體(〇LED)裝置内之構件除了 PET基板200之外皆與實施例5相同,此些構件於第2 圖内之標號係採用第i圖内之標號加上1〇〇表示,'其代 表了相同之構件。此外,如第2圖所示,可撓式有機發 光二極體(OLED)裝置可朝向遠離pET基板2〇〇之方向發 出如綠光之一光線280。 XBy using the preparation step of the fifth example, only the glass substrate 1 〇〇 = was replaced by a PET (P〇lyethylene terephthalate) substrate 2, and thus φ completed the packaging of the flexible organic photodiode device. Here, in FIG. 2, the components in the flexible organic light-emitting diode (LED) device are the same as those in the fifth embodiment except for the PET substrate 200, and the components in the second drawing are labeled. The number in the i-th figure plus 1 〇〇 indicates that 'it represents the same component. Further, as shown in Fig. 2, the flexible organic light-emitting diode (OLED) device emits a light 280 such as green light toward the direction away from the pET substrate 2'. X

28 201103973 聚合程序使用in-situ微波並包含由環氧-壓克力樹脂單 體、矽壓克力樹脂單體及雙官能基氨酯壓克力樹脂單體共 同組成的樹脂單體的封裝材料(實施例4),在可撓式有 機發光二極體應用上半衰減期更長,進而增加元件使用壽 命。 【實施例7】 將螢光粉(Nichia公司產製)各自摻混於實施例1、3 及4所製備得到之聚合物之封裝材料中(重量比為螢光 粉:共聚物=16 : 84)。接著將上述材料各自倒入裝置有藍 光晶片304(厚度為460奈米,15 mil square大小,Tekcore Co.,Taiwan產製)的支架302之一部上,其中藍光晶片304 係透過銲線306連結於支架302之另一部。然後以UV 光固化上述混合材料一分鐘。接著將裝置有藍光晶片304 與螢光粉之封裝材料放入砲彈型透光外殼300内。接著 將上述三種共聚物材質之封裝層370各自完全填滿砲彈 型外殼300之内部並以UV光照射上述材料5分鐘以固 化之,進而完成了一砲彈型發光二極體的建構,如第3 圖所示。此外,如第3圖所示,砲彈型發光二極體可朝 向遠離支架3 02之方向發出如白光之一光線3 80。在此, 矽壓克力-聚氨酯-壓克力共聚物材質之封裝層370於固 化仍保85%以上之透光率,不會劣化砲彈型發光二極體 之發光效率。 29 201103973 所得之聚合物與商品料於LED封 結果28 201103973 Polymerization process using in-situ microwaves and encapsulating materials comprising resin monomers consisting of epoxy-acrylic resin monomer, hydrazine acrylate resin monomer and difunctional urethane acrylate resin monomer (Example 4), in the application of the flexible organic light emitting diode, the half decay period is longer, thereby increasing the component life. [Example 7] Fluorescent powders (manufactured by Nichia Co., Ltd.) were each blended in the encapsulating materials of the polymers prepared in Examples 1, 3 and 4 (weight ratio: phosphor powder: copolymer = 16: 84) ). The materials were then poured into one of the holders 302 of the blue wafer 304 (thickness 460 nm, 15 mil square size, manufactured by Tekcore Co., Taiwan), wherein the blue wafer 304 was connected by a bonding wire 306. In the other part of the bracket 302. The above mixed material was then cured with UV light for one minute. Next, the package material having the blue light wafer 304 and the phosphor powder is placed in the projectile-type light-transmitting outer casing 300. Then, the encapsulating layers 370 of the above three copolymer materials are completely filled inside the shell-type outer casing 300 and irradiated with UV light for 5 minutes to be solidified, thereby completing the construction of a shell-type light-emitting diode, such as the third. The figure shows. Further, as shown in Fig. 3, the bullet-type light-emitting diode can emit a light 380 such as white light toward the direction away from the holder 302. Here, the encapsulating layer 370 of the acryl-polyurethane-acrylic copolymer material retains a light transmittance of 85% or more in curing, and does not deteriorate the luminous efficiency of the bullet-type light-emitting diode. 29 201103973 The obtained polymer and commercial materials are sealed in LED results

表七:實施例1、3及4 ^ ',extract * 卜hole ^ηΜ〇ην„, 疋義為 ,。” 77 extract與77 _分別代表出光率與全反射率 nchip與γ分別代表藍光晶片與封裝膠的折射率 **疋義為壳度衰減為原來一半所需的時間Table 7: Examples 1, 3 and 4 ^ ', extract * Bu hole ^ηΜ〇ην„, 疋义为,” 77 extract and 77 _ respectively represent the light-emitting rate and total reflectance nchip and γ respectively represent the blue wafer and The refractive index of the encapsulant ** is the time required for the shell to decay to half the original

由表七結果可知,相較於商用產品Dow Corning SR 7010 (Dow Chemical Co.),由環氧-壓克力樹脂單體、矽壓 克力樹脂單體及雙官能基氨酯壓克力樹脂單體共同組成的 樹脂單體的封裝材料,在發光二極體應用上半衰減期更 長,進而增加元件使用壽命。其中又以聚合程序使用in-situ 微波(實施例4)效果最佳。 【實施例8】 將ITO破璃(5卩/口)400浸泡含丙酮、甲醇及去離子之 30 201103973 潔淨溶液(重量比=2:1:1)後以超音波洗淨五分鐘。之後以 氧氣電漿(〇2 plasma)處理90秒後,採用旋轉塗佈方式依 序於ITO玻璃400上形成一電洞傳輸層402(採用PEDOT 材料)以及一主動層404(採用P3HT/PCBM材料,重量比 為1:1)。上述膜層之旋轉塗佈條件為電洞傳輸層402 stage I: 1500 r.p.m. 20 秒;stage Π: 3500 r.p.m. 30 秒,主動層 404 為 stage I: 1000 r.p.m. 20 秒;stage II: 2000 r.p.m. 30 秒。接著採用蒸鍍方式依序形成一電子注入層4〇6(採用 氟化鋰)以及一陰極408(採用鋁)於主動層4〇4上。接著以 旋轉塗佈方式將前述實施例4所製備得到之壓克力/環氧/ 聚氨醋/㈣克力共聚物〗Mw料封裝材料而將之塗佈 至陰極408上並包覆上述堆疊膜層之侧壁(旋轉塗佈條件 為 stage I: 1500 r.p.m 2n 20 秒;stage II: 35〇〇 rp m 3〇 秒)’接著以紫外光照射上沭抖 巧J上迷封裝材料1〇秒以固化之因而 於上述堆疊膜層之頂s “、、 及側壁表面上形成一封裝層 7〇,並完成了有機太陽能 _ 電池裝置之封裝,如第4圖所 不。在此,有機太陽能電 接收外來之光線48〇。裝置可透過1T〇玻璃_以 條件 表八: 列封裝測試結果 *致率(%) 衰減比例 31 201103973 〇小時(未封裝) 3.85 — 24小時(未封裝) 1.82 52.7 % 48小時(未封裝) 0.81 79.0 % 表九:使用EPO-TEK OG112-4材料之封裝測試結果 條件 效率(%) 衰減比例 〇小時(封裝) 4.01 - 24小時(封裝) 3.02 24.7% 48小時(封裝) 1.76 56.1% 表十:使用實施例4所得之聚合物之封裝測試結果 條件 效率(%) 衰減比例 〇小時(封裝) 4.06 - 24小時(封裝) 3.63 10.6 % 48小時(封裝) 3.52 13.3 % 由表十結果可知,相較於商用產品EPO-TEK OG112-4,聚合程序使用in-situ微波並包含由環氧-壓克力 樹脂單體、矽壓克力樹脂單體及雙官能基氨酯壓克力樹脂 單體共同組成的樹脂單體的封裝材料(實施例4)具有優 異阻水阻氣性質,在有機太陽能電池裝置應用上,*可使 32 201103973 轉換效率的衰減速度明顯降低,元件使用壽命大幅提升。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。As can be seen from the results in Table 7, compared to the commercial product Dow Corning SR 7010 (Dow Chemical Co.), epoxy-acrylic resin monomer, hydrazine acrylate resin monomer and bifunctional urethane acrylate resin The encapsulating material of the resin monomer composed of the monomers has a longer decay period in the application of the LED, thereby increasing the service life of the component. Among them, the use of in-situ microwaves in the polymerization procedure (Example 4) works best. [Example 8] The ITO glass (5 卩/mouth) 400 was immersed in acetone, methanol, and deionized 30 201103973 clean solution (weight ratio = 2:1:1), and then ultrasonically washed for five minutes. After treatment with oxygen plasma (〇2 plasma) for 90 seconds, a hole transport layer 402 (using PEDOT material) and an active layer 404 (using P3HT/PCBM material) were sequentially formed on the ITO glass 400 by spin coating. The weight ratio is 1:1). The spin coating conditions of the above film layer are hole transport layer 402 stage I: 1500 r.p.m. 20 seconds; stage Π: 3500 r.p.m. 30 seconds, active layer 404 is stage I: 1000 r.p.m. 20 seconds; stage II: 2000 r.p.m. 30 seconds. Next, an electron injecting layer 4?6 (using lithium fluoride) and a cathode 408 (using aluminum) are sequentially formed on the active layer 4?4 by evaporation. Then, the acrylic/epoxy/polyurethane/(tetra) gram copolymer Mw material encapsulating material prepared in the foregoing Example 4 was applied by spin coating to the cathode 408 and coated with the above stack. The side wall of the film layer (spin coating condition is stage I: 1500 rpm 2n 20 seconds; stage II: 35 〇〇rp m 3 〇 second)' then irradiated with ultraviolet light on the 封装 沭After curing, an encapsulation layer 7 is formed on the top s", and the sidewall surface of the stacked film layer, and the encapsulation of the organic solar cell device is completed, as shown in Fig. 4. Here, the organic solar power Receive external light 48〇. The device can pass 1T glass _ conditional table 8: column package test result * rate (%) attenuation ratio 31 201103973 〇 hours (unpackaged) 3.85 — 24 hours (unpackaged) 1.82 52.7 % 48 hours (unpackaged) 0.81 79.0 % Table 9: Package test results using EPO-TEK OG112-4 material Conditional efficiency (%) Attenuation ratio 〇 hours (package) 4.01 - 24 hours (package) 3.02 24.7% 48 hours (package) ) 1.76 56.1% of the table : Packaging test results using the polymer obtained in Example 4 Conditional efficiency (%) Attenuation ratio 〇 hours (package) 4.06 - 24 hours (package) 3.63 10.6 % 48 hours (package) 3.52 13.3 % From the results of Table 10, the phase Compared to the commercial product EPO-TEK OG112-4, the polymerization procedure uses in-situ microwaves and contains epoxy-acrylic resin monomers, hydrazine acrylate resin monomers and difunctional urethane acrylate resin monomers. The encapsulating material of the resin monomer (Example 4) having the same composition has excellent water-blocking gas barrier properties, and in the application of the organic solar cell device, * the attenuation rate of the conversion efficiency of 32 201103973 can be significantly reduced, and the service life of the component is greatly improved. The present invention has been described above by way of a preferred embodiment, and is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

33 201103973 【圖式簡單說明】 第1圖顯示依據本發明一實施例之有機發光二極體裝 置; 第2圖顯示依據本發明一實施例之可撓式有機發光二 極體裝置; 第3圖顯示依據本發明一實施例之砲彈型發光二極體 裝置;以及 第4圖顯示依據本發明一實施例之有機太陽能電池裝 置。 【主要元件符號說明】 100〜玻璃基板; 102、202〜ITO 層; 104、204〜電子傳輸層; 106、.206〜發光層; 108、208〜電子注入層; 110、210〜陰極; 170、270、370、470〜封裝層; 180、280、380、480〜光線; 200〜PET基板; 300〜砲彈型透光外殼; 302〜支架; 304〜藍光晶片, 306〜銲線; 201103973 400〜ITO玻璃; 402〜電洞傳輸層; 404〜主動層; 406〜電子注入層; 40 8〜陰極。33 201103973 [Simplified description of the drawings] Fig. 1 shows an organic light emitting diode device according to an embodiment of the invention; Fig. 2 shows a flexible organic light emitting diode device according to an embodiment of the invention; A bullet-type light emitting diode device according to an embodiment of the present invention is shown; and FIG. 4 shows an organic solar cell device according to an embodiment of the present invention. [Description of main components] 100~glass substrate; 102, 202~ITO layer; 104, 204~ electron transport layer; 106, .206~ light emitting layer; 108, 208~ electron injection layer; 110, 210~ cathode; 270, 370, 470~ encapsulation layer; 180, 280, 380, 480~ light; 200~PET substrate; 300~ shell-type transparent shell; 302~ bracket; 304~blue wafer, 306~ bonding wire; 201103973 400~ITO Glass; 402~ hole transport layer; 404~ active layer; 406~ electron injection layer; 40 8~ cathode.

Claims (1)

201103973 七、申請專利範圍: 1. 一種封裝材料組成物,包括: (a) 100重量份之樹脂單體,包括(al)環氧-壓克力 (Epoxy-Acrylics)樹脂單體、(a2)矽壓克力樹脂單體及(a3) 雙官能基氨醋壓克力(urethane-diacrylics )樹脂單體; (b) 0.1-15重量份之填充料;以及 (c) 0.1-5重量份之起始劑。 2. 如申請專利範圍第1項所述之封裝材料組成物,其 中該封裝材料組成物在25°C下具有介於1〜100,000 cps之 黏度。 3. 如申請專利範圍第1項所述之封裝材料組成物,其 中該封装材料組成物具有高於85%之透光率。 4·如申請專利範圍第丨項所述之封裝材料組成物,其 中樹脂單體莫耳比例(al) : (a2) : (a3)= 1 : 1〜3 : 1〜3。 5·如申請專利範圍第1項所述之封装材料組成物,其 中該環氧-壓克力樹脂單體具有以下化學式:201103973 VII. Patent application scope: 1. A package material composition, including: (a) 100 parts by weight of resin monomer, including (al) epoxy-acrylic resin monomer (a2) a ruthenium resin monomer and (a3) a difunctional urethane-diacrylics resin monomer; (b) 0.1 to 15 parts by weight of a filler; and (c) 0.1 to 5 parts by weight Starting agent. 2. The encapsulating material composition of claim 1, wherein the encapsulating material composition has a viscosity of from 1 to 100,000 cps at 25 °C. 3. The encapsulating material composition of claim 1, wherein the encapsulating material composition has a light transmittance of greater than 85%. 4. The encapsulating material composition as described in the scope of the patent application, wherein the resin monomer molar ratio (al): (a2): (a3) = 1 : 1 to 3 : 1 to 3. 5. The encapsulating material composition of claim 1, wherein the epoxy-acrylic resin monomer has the following chemical formula: 其中,R1與R2各自獨立地為苯基、含碳數介於卜12 之烧苯基、含碳數介於1〜12之院基、含礙數介於1〜a之 醚基、含碳數介於1〜12之烷氧基或含碳數介於丨〜12之環 烷氧基。 < 6.如申請專利範圍第丨項所述之封裴材料組成物,其 36 201103973 中該雙官能基氨酯壓克力單體具有以下化學式: R6 Ο 0 0 OR7 丨―II 4 II 3 II 5 丨丨 H—I HC——CH——C——Ο——R4——OCN-R3—NCO——R5—Ο——C——C-CH Η Η , 其中,R3、R4與R5各自獨立地為苯基、含碳數介於 1〜12之烷苯基、含碳數介於1〜12之烷基、含碳數介於1〜12 之醚基、含碳數介於1〜12之烷氧基或含碳數介於1〜12之 環烷氧基;R6與R7各自獨立地為苯基、含碳數介於1〜12 之烷苯基、含碳數介於1〜12之烷基、含碳數介於1〜12之 醚基、含碳數介於1〜12之烷氧基、含碳數介於1〜12之環 烷氧基或氫。 7.如申請專利範圍第1項所述之封裝材料組成物,其 中該矽壓克力樹脂單體具有以下化學式: R9 R8-Si-R10 I” I 0 I c=〇 c=ch2 r12 , 其中R8、R9、R1G、R11和R12各自獨立地為苯基、含 碳數介於1〜12之烷苯基、含碳數介於1〜12之烷基、含碳 數介於1〜12之醚基、含碳數介於1〜12之烷氧基或含碳數 37 201103973 介於1〜12之環烷氧基。 8. 如申請專利範圍第1項所述之封裝材料組成物,其 中該填充料包括氧化金屬、i素化金屬或氮化金屬。 9. 如申請專利範圍第1項所述之封裝材料組成物,其 中該起始劑包含(cl)光起始劑與(c2)熱起始劑。 10. 如申請專利範圍第9項所述之封裝材料組成物,其 中該熱起始劑包括自由基引發劑。 11. 如申請專利範圍第10項所述之封裝材料組成物, 其中該自由基引發劑是過氧化物或偶氮化合物。 12. 如申請專利範圍第9項所述之封裝材料組成物,其 中該光起始劑包括:陽離子起始劑或環戊二浠過渡金屬錯 合物。 13. 如申請專利範圍第1項所述之封裝材料組成物,其 係用於一光電元件之封裝。 14. 如申請專利範圍第13項所述之封裝材料組成物, 其中該發光元件為有機發光二極體、無機發光二極體、或 太陽能電池。 15. —種封裝材料之製造方法,包括: 提供如申請專利範圍第1-14項任一項之封裝材料組成 物; 以第一程序聚合該封裝材料組成物,其中該第一程序 包括:加熱程序、紫外光照射程序、微波程序、或前述之 組合;以及 以第二程序固化該封裝材料組成物,以形成該封裝材 38 201103973 料,其中該第二程序包括:照光程序。 16. 如申請專利範圍第15項所述之封裝材料之製造方 法,其中該加熱程序之施行時間介於1〜100小時。 17. 如申請專利範圍第16項所述之封裝材料之製造方 法,其中該加熱程序之溫度為介於60〜150°C。 18. 如申請專利範圍第15項所述之封裝材料之製造方 法,其中該紫外光照射程序之施行時間介於1〜200分鐘。 19. 如申請專利範圍第18項所述之封裝材料之製造方 法,其中該紫外光照射程序之功率為介於1〜1〇,〇〇〇瓦特。 20. 如申請專利範圍第15項所述之封裝材料之製造方 法,其中該微波程序之施行時間介於1〜200分鐘。 21. 如申請專利範圍第20項所述之封裝材料之製造方 法,其中該微波程序之功率為介於1〜20,000瓦特。 22. 如申請專利範圍第15項所述之封裝材料之製造方 法,其中該照光程序光源為一紫外光光源、一可見光光源 或一紅外光光源。 39Wherein R1 and R2 are each independently a phenyl group, a phenyl group having a carbon number of 12, a yard group having a carbon number of 1 to 12, an ether group having a hindrance of 1 to a, and a carbon The number of alkoxy groups having a number of from 1 to 12 or a cycloalkoxy group having a carbon number of from 丨 to 12 is used. < 6. The composition of the sealing material according to the scope of the invention of claim 3, wherein the bifunctional urethane acryl monomer has the following chemical formula: R6 Ο 0 0 OR7 丨―II 4 II 3 II 5 丨丨H—I HC——CH——C——Ο——R4——OCN-R3—NCO——R5—Ο——C——C-CH Η Η , where R3, R4 and R5 Each is independently a phenyl group, an alkylphenyl group having a carbon number of 1 to 12, an alkyl group having a carbon number of 1 to 12, an ether group having a carbon number of 1 to 12, and a carbon number of 1 Alkoxy group of 12 or a cycloalkoxy group having a carbon number of 1 to 12; R6 and R7 are each independently a phenyl group, an alkylphenyl group having a carbon number of 1 to 12, and a carbon number of 1 An alkyl group of ~12, an ether group having a carbon number of 1 to 12, an alkoxy group having a carbon number of 1 to 12, a cycloalkoxy group having a carbon number of 1 to 12 or hydrogen. 7. The encapsulating material composition of claim 1, wherein the hydrazine acrylate resin monomer has the following chemical formula: R9 R8-Si-R10 I" I 0 I c = 〇c = ch2 r12 , wherein R8, R9, R1G, R11 and R12 are each independently a phenyl group, an alkylphenyl group having a carbon number of from 1 to 12, an alkyl group having a carbon number of from 1 to 12, and a carbon number of from 1 to 12; An ether group, an alkoxy group having a carbon number of from 1 to 12, or a carbon number of 37 201103973. A cycloalkoxy group of from 1 to 12, 8. The encapsulating material composition according to claim 1, wherein The filler comprises an oxidized metal, an imidized metal or a metal nitride. 9. The encapsulating material composition of claim 1, wherein the initiator comprises (cl) a photoinitiator and (c2) The encapsulating material composition according to claim 9, wherein the thermal initiator comprises a radical initiator. 11. The encapsulating material composition according to claim 10 Wherein the free radical initiator is a peroxide or an azo compound. 12. The package material according to claim 9 a composition, wherein the photoinitiator comprises: a cationic initiator or a cyclopentadienyl transition metal complex. 13. The encapsulating material composition according to claim 1, which is used for a photovoltaic element. 14. The encapsulating material composition according to claim 13, wherein the illuminating element is an organic light emitting diode, an inorganic light emitting diode, or a solar cell. 15. A method of manufacturing a packaging material And comprising: providing an encapsulating material composition according to any one of claims 1-14; polymerizing the encapsulating material composition in a first procedure, wherein the first program comprises: a heating program, an ultraviolet irradiation program, a microwave program Or a combination of the foregoing; and curing the encapsulating material composition in a second process to form the encapsulating material 38 201103973, wherein the second process comprises: an illumination procedure. 16. The package of claim 15 The manufacturing method of the material, wherein the heating procedure is carried out for a period of time ranging from 1 to 100 hours. 17. The manufacture of the packaging material as described in claim 16 of the patent application. The method of manufacturing the encapsulating material according to the fifteenth aspect of the invention, wherein the ultraviolet irradiation procedure is performed for a period of time ranging from 1 to 200 minutes. 19. The method of manufacturing an encapsulating material according to claim 18, wherein the ultraviolet light irradiation process has a power of 1 to 1 〇, 〇〇〇 watt. 20. As claimed in claim 15 The manufacturing method of the packaging material, wherein the microwave program is carried out for a period of time ranging from 1 to 200 minutes. 21. The method of manufacturing an encapsulating material according to claim 20, wherein the microwave program has a power of between 1 and 20,000 watts. 22. The method of fabricating an encapsulating material according to claim 15, wherein the illumination source is an ultraviolet light source, a visible light source or an infrared light source. 39
TW98124205A 2009-07-17 2009-07-17 Encapsulant composition and method for fabricating encapsulant TWI401305B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98124205A TWI401305B (en) 2009-07-17 2009-07-17 Encapsulant composition and method for fabricating encapsulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98124205A TWI401305B (en) 2009-07-17 2009-07-17 Encapsulant composition and method for fabricating encapsulant

Publications (2)

Publication Number Publication Date
TW201103973A true TW201103973A (en) 2011-02-01
TWI401305B TWI401305B (en) 2013-07-11

Family

ID=44813384

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98124205A TWI401305B (en) 2009-07-17 2009-07-17 Encapsulant composition and method for fabricating encapsulant

Country Status (1)

Country Link
TW (1) TWI401305B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW584948B (en) * 2003-05-19 2004-04-21 Windell Corp Package method of electronic devices
TWI347339B (en) * 2006-12-29 2011-08-21 Ind Tech Res Inst Resin composition

Also Published As

Publication number Publication date
TWI401305B (en) 2013-07-11

Similar Documents

Publication Publication Date Title
TWI422632B (en) Method for fabricating encapsulant materials
KR101511829B1 (en) Spherical phosphor, sealing material for wavelength conversion solar battery, solar battery module and method for producing same
JPH03116857A (en) Light emitting or photodetective device
TW201134857A (en) Process for preparing clustered functional polyorganosiloxanes, and methods for their use
WO2007129536A1 (en) Optical semiconductor encapsulating material
JP5841237B2 (en) Resin composition, cured product thereof, and reflecting material for optical semiconductor using the same
TW201510001A (en) Encapsulation material for light emitting diodes
TW201137044A (en) Curable resin composition and cured article thereof
TW200945516A (en) Encapsulant composition and method for fabricating encapsulant material
JP5432456B2 (en) Adamantane copolymer resin, resin composition and use thereof
JP2013087243A (en) Spherical phosphor, sealing material for wavelength conversion type solar battery, solar battery module, and methods for producing them
TW201351048A (en) Photocurable composition, barrier layer including the same and encapsulated apparatus including the same
TW201233726A (en) Curable epoxy resin composition
JP2006131867A (en) Resin composition, optical part produced by using the same and method for producing the part
JP2010006955A (en) Thermosetting resin composition for sealing optical semiconductor
TW201103973A (en) Encapsulant composition and method for fabricating encapsulant
CN101993513B (en) Packaging material composite and method for manufacturing packaging materials
CN101597475B (en) Encapsulation material composition and encapsulation material manufacture method
JP5330633B2 (en) Resin composition, optical member using the same, and method for producing the same
JP2013087242A (en) Spherical phosphor, wavelength conversion type solar cell sealing material, solar cell module, and method of manufacturing them
TW201233729A (en) High refractive polymers, optical elements, and photoelectric devices employing the same
JP6805546B2 (en) Thermosetting resin composition, cured product, substrate for mounting optical semiconductor element and its manufacturing method, optical semiconductor device, and printed wiring board
JP2013213117A (en) Resin composition, and photosemiconductor sealant using the same and photosemiconductor reflector
JP5330632B2 (en) Resin composition, optical member using the same, and method for producing the same
TWI783001B (en) Thermosetting compositions, hardened film and color filter