TW201101497A - Nanotube semiconductor devices and fabrication method thereof - Google Patents

Nanotube semiconductor devices and fabrication method thereof Download PDF

Info

Publication number
TW201101497A
TW201101497A TW099119030A TW99119030A TW201101497A TW 201101497 A TW201101497 A TW 201101497A TW 099119030 A TW099119030 A TW 099119030A TW 99119030 A TW99119030 A TW 99119030A TW 201101497 A TW201101497 A TW 201101497A
Authority
TW
Taiwan
Prior art keywords
layer
region
epitaxial layer
semiconductor
conductivity type
Prior art date
Application number
TW099119030A
Other languages
Chinese (zh)
Other versions
TWI445173B (en
Inventor
Hamza Yilmaz
xiao-bin Wang
Anup Bhalla
John Chen
Hong Chang
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/484,166 external-priority patent/US7910486B2/en
Priority claimed from US12/484,170 external-priority patent/US8299494B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201101497A publication Critical patent/TW201101497A/en
Application granted granted Critical
Publication of TWI445173B publication Critical patent/TWI445173B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Nanotube semiconductor devices and fabrication method thereof, forming a nanotube region using a thin epitaxial layer formed on the sidewall of a trench in the semiconductor body. The thin epitaxial layer has uniform doping concentration. In another embodiment, a first thin epitaxial layer of the same conductivity type as the semiconductor body is formed on the sidewall of a trench in the semiconductor body and a second thin epitaxial layer of the opposite conductivity type is formed on the first epitaxial layer. The first and second epitaxial layers have uniform doping concentration. The thickness and doping concentrations of the first and second epitaxial layers and the semiconductor body are selected to achieve charge balance. In one embodiment, the semiconductor body is a lightly doped P-type substrate.A vertical trench MOSFET, an IGBT, a Schottky diode and a P-N junction diode can be formed using the same N-Epi/P-Epi nanotube structure.

Description

201101497 六、發明說明: 【發明所屬之技術領域】 [0001]本發明是關於奈米管垂直溝道金屬氧化物矽場效應管半 導體裝置,尤其是通過侧壁外延層製備奈米管垂直溝道 金屬氧化物矽場效應管裝置的過程。此外,本發明涉及 電荷平衡功率裝置中的邊緣終端結構。 【先前技術] [0002]金屬氧化物矽場效應管裝置是通過各種橫向的和垂直的 結構形成的。橫向金屬氧化物矽場效應管裝置雖然具有 很快的轉換速度,個,不如垂直金屬氧化物矽場效應管 密集。垂直金屬氧化物矽場效應管裝置可用於製備電晶 體的高密度陣列,但典型的垂直金屬氧化物矽場效應管 卻具有很大的柵漏電容(Cgd)以及漏源電容(Cds)。 因此,垂直金屬氧化物矽場效應管裝置的丨轉換速度更低 遮罩拇極結構電晶體的拇漏電容(Cgd)較低,但是由 於柵極氧化物和N —漂流區重迭部分的非自校準特性,遮 罩柵極結構電晶韙裝置增大了漏源“導通”阻抗(Rds〇n )的變化範圍。此外多晶矽電極、多晶矽層間介質(IpD) 以及溝道刻蝕(側壁角)單位階躍過程,使遮罩栅極結 構電晶體的加工工藝變得複雜而且昂貴。而且,輸出電 容和遮罩柵極多晶矽阻抗的增加,會降低遮罩栅極結構 電晶體的轉換速度。 099119030 藤島昭發明的美國專利5, 981,996提出了 一種垂直溝道 金屬氧化物矽場效應管裝置,通過傾斜離子注入,並用 熱處理進行擴散,將N-型漏極漂流區形成在溝道的側壁 上。通過離子注入和擴散,形成的N-型漏極漂流區具有 表單編號A0101 第4頁/共123頁 d 201101497 /辰度梯度也就是說,摻雜濃度在整個漏極漂流區並不 均勻分佈,在漏極漂流區的水準與豎直方向上變化。 【發明内容】 [0003] Ο ο 099119030 本發明涉種半導體裝置,料導财置通過形成具 有均勻摻雜濃度的漂流區,可改善電晶體的電荷平衡效 應’並提高擊穿電壓特性;通過_個延伸到重摻雜概底 中的"質填充溝道,提高了轉換速度,降低了柵漏電容201101497 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a nanochannel vertical channel metal oxide tantalum field effect transistor semiconductor device, in particular, a vertical channel for preparing a nanotube via a sidewall epitaxial layer The process of metal oxide tantalum field effect device. Furthermore, the present invention relates to an edge termination structure in a charge balancing power device. [Prior Art] [0002] Metal oxide tantalum field effect device is formed by various lateral and vertical structures. Although the lateral metal oxide tantalum field effect device has a fast switching speed, it is not as dense as a vertical metal oxide tantalum field effect transistor. Vertical metal oxide tantalum field effect devices can be used to fabricate high density arrays of electromorphs, but typical vertical metal oxide tantalum field transistors have large gate-drain capacitance (Cgd) and drain-source capacitance (Cds). Therefore, the vertical metal oxide tantalum field effect device has a lower turn-to-turn speed, and the thumb-capacitance (Cgd) of the thumb-structured transistor is lower, but due to the overlap of the gate oxide and the N-drift region. Self-calibration characteristics, the mask gate structure of the transistor device increases the variation range of the drain-source "on" impedance (Rds〇n). In addition, the polysilicon germanium electrode, the polysilicon inter-layer dielectric (IpD), and the channel etching (sidewall angle) unit step process make the processing process of the mask gate structure transistor complicated and expensive. Moreover, the increase in output capacitor and mask gate polysilicon impedance reduces the switching speed of the mask gate structure transistor. U.S. Patent No. 5,981,996, issued to U.S. Pat. On the side wall. The N-type drain drift region formed by ion implantation and diffusion has the form number A0101, page 4 / page 123 d 201101497 / Chen degree gradient, that is, the doping concentration is not uniformly distributed throughout the drain drift region, The level and vertical direction of the drain drift region vary. SUMMARY OF THE INVENTION [0003] ο ο 099119030 The invention relates to a semiconductor device, which can improve the charge balance effect of a transistor by forming a drift region having a uniform doping concentration and improve the breakdown voltage characteristics; A "mass-filled channel that extends into the heavily doped profile improves switching speed and reduces gate-drain capacitance

Cgd等寄生電容,改善了電晶體裝置的轉換性能。 為了達到上述目的,本發明提供了一種半導體裝置,其 包含: —導電類型的第-半導體層,其包含若干個形成 在第一半導體層的頂面中的溝道,這些溝道在第一半導 體層中形成臺面結構; 個第一導電類型的第二半導體層,其位於第一半導體 層的底面上; —個形成在溝道侧壁上的第—導電類型的第_外延層, 第一外延層至少覆蓋第一半導體層中臺面結構的側^ ; 一個形成在第一外延層上的第二導電類型的第二外延層 ,该第一外延層電連接到第二半導體層上; -個形成在溝道中的第一介質層,其緊鄰第二外延層, 所述的第一介質層至少填充部分溝道; -個形成在第-介質層上㈣至少—個第—溝道的側壁 上的拇極介質層; 一個形成在第-介質層上方以及緊鄰所述的栅極介質層 的第一溝道中的柵極導電層, 其中’第-外延層和第二外延層沿溝道的侧 0993278454-0 表單編號麵 ^ 5 I/* 123 I 顺十灯 201101497 摻雜區,第一外延層和第二外延層各自具有均勻一致的 摻雜濃度,第二外延層具有第一厚度和第一摻雜濃度, 第一外延層和第一半導體層的臺面結構均具有第二厚度 和第二平均摻雜濃度,選取合適的第一和第二厚度,以 及第一摻雜濃度和第二平均摻雜濃度,以便在實際運行 中獲得電荷平衡。 本發明提供了一種半導體裝置,其包含:一個承載有源 裝置的有源區以及一個在有源區周圍的截止區,其中截 止區含有·一個截止晶胞的陣列’從與有源區的父界面處 的第一個截止晶胞一直到最後一個截止晶胞。每個截止 晶胞都含有一個第一半導體層的臺面結構,第一外延層 形成在它的侧壁上,第二外延層形成在第一外延層上, 其中臺面結構位於僅用第一介質層,而非柵極導電層填 充的溝道周圍;一個第一導電類型的第一區,形成在臺 面結構的頂面上,並電連接到第一外延層和第一半導體 層上;以及一個第二導電類型的第二區,形成在臺面結 構的頂面上,並電連接到第二外延層上,在臺面結構中 ,第二區與第一區相隔開來,第二區形成在除最後一個 截止晶胞以為的每個截止晶胞中。第一截止晶胞的第一 區電連接到該半導體裝置的源極或發射極電位,最後一 個截止晶胞的第二區電連接到該半導體裝置的漏極或集 電極電位,或漏極附近、或集電極電位。載止晶胞其餘 的第二區電連接到陣列中的下一個截止晶胞的第一區上 。還可選擇,將第一場板置於最後一個截止晶胞和漏極/ 集電極電位之間。如果使用場板的話,最後一個截止晶 胞也要含有一個第二導電類型的第二區。 099119030 表單編號A0101 第6頁/共123頁 0993278454-0 201101497 本發明還提供了—種半導Μ置,其包含: 一個第一導電類型的第_ 半導體其含有形成在第一 丰導體層頂面中的多個溝道 中構成臺㈣構; -料在第-半導體層 一個第二導電類型的第二半導體層 的底面上; ,位於第一半導體層Parasitic capacitance such as Cgd improves the conversion performance of the transistor device. In order to achieve the above object, the present invention provides a semiconductor device comprising: a conductive type of a first semiconductor layer comprising a plurality of channels formed in a top surface of the first semiconductor layer, the channels being in the first semiconductor Forming a mesa structure in the layer; a second semiconductor layer of a first conductivity type on the bottom surface of the first semiconductor layer; a first-epitaxial layer of a first conductivity type formed on the sidewall of the channel, the first epitaxy The layer covers at least a side of the mesa structure in the first semiconductor layer; a second epitaxial layer of a second conductivity type formed on the first epitaxial layer, the first epitaxial layer being electrically connected to the second semiconductor layer; a first dielectric layer in the channel, adjacent to the second epitaxial layer, the first dielectric layer filling at least a portion of the trench; and - forming on the dielectric layer at least (four) at least one of the sidewalls a thumb dielectric layer; a gate conductive layer formed in the first channel above the dielectric layer and adjacent to the gate dielectric layer, wherein the 'first epitaxial layer and the second epitaxial layer along the side of the channel 099327845 4-0 Form number surface ^ 5 I/* 123 I 顺十灯201101497 Doped region, the first epitaxial layer and the second epitaxial layer each have a uniform doping concentration, the second epitaxial layer has a first thickness and the first a doping concentration, the mesa structure of the first epitaxial layer and the first semiconductor layer each having a second thickness and a second average doping concentration, selecting suitable first and second thicknesses, and first doping concentration and second average doping The impurity concentration is such that a charge balance is obtained in actual operation. The present invention provides a semiconductor device comprising: an active region carrying an active device and a cut-off region around the active region, wherein the cut-off region contains an array of cut-off cells from the parent of the active region The first cut-off cell at the interface is up to the last cut-off cell. Each of the cut-off cells includes a mesa structure of a first semiconductor layer, a first epitaxial layer is formed on the sidewall thereof, and a second epitaxial layer is formed on the first epitaxial layer, wherein the mesa structure is located on the first dielectric layer only a first region of the first conductivity type formed on the top surface of the mesa structure and electrically connected to the first epitaxial layer and the first semiconductor layer; and a first a second region of the second conductivity type is formed on the top surface of the mesa structure and electrically connected to the second epitaxial layer. In the mesa structure, the second region is separated from the first region, and the second region is formed in addition to the last A cut-off unit cell is thought to be in each of the cut-off cells. The first region of the first turn-off cell is electrically coupled to the source or emitter potential of the semiconductor device, and the second region of the last turn-off cell is electrically coupled to the drain or collector potential of the semiconductor device, or near the drain , or collector potential. The remaining second region of the carrier cell is electrically coupled to the first region of the next turn-off cell in the array. Alternatively, the first field plate is placed between the last cut-off cell and the drain/collector potential. If a field plate is used, the last cutoff cell also contains a second region of the second conductivity type. 099119030 Form No. A0101 Page 6 / 123 Page 0993278454-0 201101497 The present invention also provides a semiconductor device comprising: a first conductivity type of the first semiconductor comprising a top surface of the first abundance conductor layer Forming a mesa (four) structure in a plurality of channels; feeding on a bottom surface of a second semiconductor layer of a second conductivity type of the first semiconductor layer; and located at the first semiconductor layer

一個形成在溝道側壁上㈣二導電類型的第二外延層, 至少覆蓋第—半導體層的臺面結構的側壁; 一個形成在溝道中的第—介㈣,其緊鄰第二外延層, 該第-介制至少填充部分溝道,· 一個形成在第一 的栅極介質層; 介質層上方的至少一個第一溝道侧壁上a second epitaxial layer of a two-conductivity type formed on the sidewall of the trench, covering at least a sidewall of the mesa structure of the first semiconductor layer; a first dielectric layer formed in the trench, adjacent to the second epitaxial layer, the first Interposing at least a portion of the trench, one formed on the first gate dielectric layer; on the at least one first trench sidewall above the dielectric layer

一個形成在第-介質層上方以及緊鄰栅極介質層的第一 溝道中的栅極導電層, 其中,第二外延層沿溝道側壁形成平行摻雜區,第二外 延層具有均勻一致的摻雜濃度,,:第二外起層具有第一厚 度和第-摻雜濃度,並且第4導趙層的臺面結構具有 第一厚度和第二摻雜濃度,遘取;合'適的第一和第二厚度 以及第一摻雜濃度和第二摻雜濃度,以獲得電荷平衡; 並且 099119030 其申所述的半導體裝置是由一個承載有源裝置的有源區 以及一個有源區周圍的截止區構成的,截止區包含一個 截止晶胞陣列’從與有源區相介面的第一個截止晶胞, 一直到最後一個截止晶胞,每一個截止晶胞都含有: 一個第一半導體層的臺面結構,具有形成在其側壁上的 第二外延層,其中,該臺面結構位於用第一介質層而非 表單編號Α0101 第7頁/共123頁 f 201101497 栅極導電層填充的溝道近鄰; 個形成在臺面結構頂面中的第一導電類型的第一區, 電連接到第一半導體層上;以及 一個形成在臺面結構頂面中的第二導電類型的第二區, 電連接到第二外延層,第二區遠離臺面結構中的第一區 ,並且开> 成在除最後一個截止晶胞以外的每一個截止晶 胞中, 其中,第一個截止晶胞的第一區電連接到半導體裝置的 源極或發射極電勢上,最後一個載止晶胞的第二外延層 電連接到半導體裝置的漏極或集電極電勢上或者漏極 或集電極電勢附近,其餘的截止晶胞的第二區分別電連 接到陣列中其下一個截止晶胞的等一區上。 本發明還提供了一種半導體裝置的製備方法,該方法包 含: 在第-導電類型的第-半導體層的頂面上,形成若干個 溝道,這些溝道在第一半導體層中形成臺面結構; 在第一半導體層的表面上通過外延生長形成一個第二導 電類型的第一外延層,至少覆蓋溝道的側壁; 在溝道中製備第一介質層,其中第一介質層至少填充了 部分溝道; ' 在第一介質層上方以及緊鄰第一外延層的至少一個第一 溝道的側壁上’形成一個栅極介質層; 在第一溝道中形成一個栅極導電層,其中柵極導電層位 於第一介質層上方以及緊鄰柵極介質層;以及 099119030 在第一半導體層的底面上,製備一個第二導電類型的第 二半導體層,其中第-外延層電連接到此第二半導體層 表單編號A0101 第8頁/共123頁 201101497 上, 其中,第一外延層沿溝道的側壁排列,並且具有均勻的 摻雜濃度,第一外延層具有第一厚度以及第一摻雜濃度 ,第一半導體層的臺面結構在水準方向上具有第二厚度 以及第二摻雜濃度,選取合適的第一和第二厚度以及第 一和第二摻雜濃度,以便在實際運行中獲得電荷平衡。 Ο 在其他實施例中,可以使用上述形成Ν-外延層/Ρ-外延層 奈米管結構的製作工藝,來製備溝道金屬氧化物矽場效 應管裝置、絕緣柵雙極電晶體裝置、W特基二極體以及 Ρ-Ν結二極體。 ❹ 本發明提供的半導體裝置的主要特點是,利用外延工藝 製備奈米管區域,以獲得均勻一致的摻雜濃度。製備溝 道侧壁漂流區的傳統工藝是,使用離子注入,隨後退火 和擴散,這會導致漂流區帶有濃度梯度。通過形成具有 均勻摻雜濃度的漂流區,可改善電晶體的電荷平衡效應 ,並提高擊穿電壓特性。此外,本發明所述的半導體裝 置是形成奈米管之後,利用低溫工藝形成的,自此避免 了奈米管區域的向外擴散。傳統的製備工藝採用高溫制 程,例如高達11 oo°c,這將導致形成奈米管區域的薄外 延層向外擴散。 另外,本發明所述的半導體裝置,通過一個延伸到重摻 雜襯底中的介質填充溝道,提高了轉換速度。通過這種 方法,降低了栅漏電容Cgd等寄生電容,改善了電晶體裝 置的轉換性能。以這種方式,本發明所述的半導體裝置 結構,能夠在獲得僅僅依靠垂直電晶體結構才能實現的 高密度優點的同時,還實現了橫向金屬氧化物矽電晶體 099119030 表單編號A0101 第9頁/共123頁 0993278454-0 201101497 的高轉換速度的優勢。 閱讀下文的詳細說明以及附圖後 【實施方式】 [0004] 將更好地掌握本發明a gate conductive layer formed over the first dielectric layer and adjacent to the first dielectric layer of the gate dielectric layer, wherein the second epitaxial layer forms parallel doped regions along the sidewalls of the trench, and the second epitaxial layer has uniform uniform doping a heterogeneous concentration, the second outer layer has a first thickness and a first doping concentration, and the mesa structure of the fourth guiding layer has a first thickness and a second doping concentration, and is drawn; And a second thickness and a first doping concentration and a second doping concentration to obtain a charge balance; and 099119030 wherein the semiconductor device is an active region carrying an active device and a cutoff around an active region Formed by the region, the cut-off region includes a cut-off cell array 'from the first cut-off cell that interfaces with the active region, and one until the last-off cell, each of which has: a first semiconductor layer a mesa structure having a second epitaxial layer formed on a sidewall thereof, wherein the mesa structure is located near a trench filled with a first dielectric layer instead of a form number Α0101 page 7 / 123 page f 201101497 gate conductive layer a first region of a first conductivity type formed in a top surface of the mesa structure electrically connected to the first semiconductor layer; and a second region of a second conductivity type formed in a top surface of the mesa structure, electrically connected And to the second epitaxial layer, the second region is away from the first region in the mesa structure, and is turned into each of the cut-off unit cells except the last one of the cut-off cells, wherein the first one of the first cut-off cells The region is electrically connected to the source or emitter potential of the semiconductor device, and the second epitaxial layer of the last carrier cell is electrically connected to the drain or collector potential of the semiconductor device or near the drain or collector potential, and the rest The second region of the cut-off cell is electrically connected to an equal region of its next cut-off cell in the array, respectively. The present invention also provides a method of fabricating a semiconductor device, the method comprising: forming a plurality of channels on a top surface of a first semiconductor layer of a first conductivity type, the channels forming a mesa structure in the first semiconductor layer; Forming a first epitaxial layer of a second conductivity type by epitaxial growth on the surface of the first semiconductor layer, covering at least a sidewall of the trench; preparing a first dielectric layer in the trench, wherein the first dielectric layer is filled with at least a portion of the trench Forming a gate dielectric layer over the sidewall of the first dielectric layer and adjacent to the sidewall of the at least one first trench of the first epitaxial layer; forming a gate conductive layer in the first trench, wherein the gate conductive layer is located a second semiconductor layer of a second conductivity type is formed over the first dielectric layer and adjacent to the gate dielectric layer; and 099119030 is formed on the bottom surface of the first semiconductor layer, wherein the first epitaxial layer is electrically connected to the second semiconductor layer form number A0101 page 8 / 123 page 201101497, wherein the first epitaxial layer is arranged along the sidewall of the channel and has a uniform doping concentration, The epitaxial layer has a first thickness and a first doping concentration, the mesa structure of the first semiconductor layer has a second thickness and a second doping concentration in the horizontal direction, and the appropriate first and second thicknesses and the first and second are selected Doping concentration to achieve charge balance in actual operation.其他 In other embodiments, the channel metal oxide tantalum field effect device, the insulated gate bipolar transistor device, and the W can be fabricated using the above-described fabrication process for forming a germanium-epitaxial layer/germanium-epitaxial layer nanotube structure. Tetripolar and Ρ-Ν junction diodes. The main feature of the semiconductor device provided by the present invention is that the nanotube region is prepared by an epitaxial process to obtain a uniform doping concentration. The conventional process for preparing the trench sidewall drift region is to use ion implantation followed by annealing and diffusion, which results in a concentration gradient in the drift region. By forming a drift region having a uniform doping concentration, the charge balance effect of the transistor can be improved and the breakdown voltage characteristics can be improved. Further, the semiconductor device of the present invention is formed by a low temperature process after forming a nanotube, thereby preventing outward diffusion of the nanotube region. Conventional fabrication processes use high temperature processes, for example up to 11 oo ° C, which results in the outward diffusion of the thin epitaxial layer forming the nanotube region. Further, the semiconductor device of the present invention increases the switching speed by filling the channel with a medium extending into the heavily doped substrate. In this way, the parasitic capacitance such as the gate-drain capacitance Cgd is lowered, and the conversion performance of the transistor device is improved. In this manner, the semiconductor device structure of the present invention can realize the high-density advantage that can be realized only by the vertical transistor structure, and also realize the lateral metal oxide germanium transistor 099119030 Form No. A0101 Page 9 / A total of 123 pages 0993278454-0 201101497 advantages of high conversion speed. Read the detailed description below and the drawings. [Embodiment] [0004] The present invention will be better grasped.

按照本發明的思路,—種形成在帶有介質填充溝道的半 導體層中的垂直溝道金屬氧化物㈣效應管裝置,含有 一個具有亞微米至幾微米厚度的薄外延層(“奈米管” )’此外延層形成在溝道的側壁上,作為漏極漂流區。 因此,該漏極漂缝的摻雜濃度是均勻—致的。漏極漂 流區中均句的摻雜結構有助於電晶體的電荷平衡,因而 提高了電晶體的擊穿電壓。奈米管外延層的厚度是所需 的閉鎖電料級的函數。對於—铜侧裝置來說夺米 管的厚度為亞微米。對於-侧Qv的裝置,奈米管的^ 度大約為幾微来。 在另-個實施例中,垂直溝道金屬氧化物⑦場效應管裝 置包含-個形成在溝4側壁上的第—薄外延層以及一 個形成在第-外延層上具有減導電類型的第二薄外延 層。第二外延層形成漏極漂職,並且兩⑽卜延層(“ 雙奈求管”)皆有均勻的換雜濃度。第—外延層均句的 換雜濃度進-步改善了電晶體中的電荷平衡即使在更 高的擊穿《τ,域確保電荷平衡4其他實施例中 ’使用含有第-和第二薄外延層的基本垂直溝道金屬氧 化物矽場效應管結構,可以製備絕緣柵雙極電晶體、肖 特基二極體以及Ρ-Ν結型二極體。 099119030 本發明的垂直溝道金屬氡化物矽場效應管裝置,利用杏 米管的理念’實現了低導通狀態電 表單編號Α0101 第10 1/共123頁 阻⑽dS〇n),在溝 0993278454-0 201101497 道的侧壁上形成一個電荷平衡的漂流區(“奈米管,,) 。此外’使用外延層製備奈米管漂流區,以確保均句_ 致的摻雜濃度。由於奈米管非常的薄,因此必須使用言 度可控的方法,緩慢地外延生長奈米管,以便達到所要 求的均勻摻雜濃度。漂流區均勻的高摻雜濃度降低了電 晶體的導通電阻,同時,高度可控的電荷平衡可確保整 個漂流區在水準方向上耗盡,最終獲得高擊穿電壓。 在可選實施例中’具有相反的導電類型的第二奈米管區 ❹ ’位於奈米管漂流區的旁邊。第二奈米管區也是通過外 延層形成的,以使摻雜濃度均勻―致。在傳統裝置中, 垂直溝道金屬氧化物料效應,管形成在基極半導體層中 ,基極半導體層本身具有摻雜度變化。由於耗盡狀態 下整個區域中的電場並不均勻分佈,而且也無法達到電 何平衡’因此這種變化會影響電晶體的擊穿特性。在本 發明所述的垂直溝道金屬氧化物料效應管裝置中,奈 米管漂流區位於奈米管本艘區.旁^邊,它們的摻雜濃度都 〇 &均勻致#目此’奈米管漂流區和奈米管本體區可 以在均勻電場分佈下同樣耗盡”以便獲得高擊穿電壓的 性質。奈来f本體區和奈米管漂流區形成在基極半導體 層上’基極半導體層的摻雜濃度很低,因此它對於電荷 平衡的貝獻微乎其微_、也就是說,基^半導體層本身 所具有的摻雜變化對電荷平衡的影響是可以忽略的。 本發明所述的垂直溝道金屬氧化㈣場效應管裝置的主 要特點是’湘外延藝製備奈米管區域,以獲得均勻 一致的換雜濃度。製備溝道侧壁漂流區的傳統工藝是, 使用離子注入’隨後退火和擴散,這會導致漂流區帶有 099119030 表單煸號A0101 第U頁/共123頁 201101497 濃度梯度。通過形成具有均勻摻雜濃度的漂流區,可改 善電晶體的電荷平衡效應,並提高擊穿電壓特性。此外 ,本發明所述的垂直溝道金屬氧化物矽場效應管裝置是 形成奈米管之後,利用低溫工藝形成的,因此避免了奈 米管區域的向外擴散。傳統的製備工藝採用高溫制程, 例如高達1100°C,這將導致形成奈米管區域的薄外延層 向外擴散。依據本發明的一個實施例,利用低溫製備工 藝,例如在1 000°C甚至更低的溫度下,製成的垂直溝道 金屬氧化物矽場效應管裝置,形成奈米管區域的薄外延 層不會向外擴散,而是仍然嚴格定義摻雜區。 本發明所述的垂直溝道金屬氧化物矽場效應管裝置可適 用於20V至1 200V的擊穿電壓。對於20V至100V的擊穿電 壓,可採用單奈米管漂流區結構。如果擊穿電壓為100V 甚至更高,可採用雙奈米管結構,以便在耗盡區獲得均 勻的電場分佈。 另外,本發明所述的垂直溝道金屬氧化物矽場效應管裝 置,通過一個延伸到重摻雜襯底中的介質填充溝道,提 高了轉換速度。通過這種方法,降低了栅漏電容Cgd等寄 生電容,改善了電晶體裝置的轉換性能。以這種方式, 本發明所述的垂直溝道金屬氧化物矽場效應管裝置結構 ,能夠在獲得僅僅依靠垂直電晶體結構才能實現的高密 度優點的同時,還實現了橫向金屬氧化物矽電晶體的高 轉換速度的優勢。 第1圖表示依據本發明的一個第一實施例,一種垂直溝道 金屬氧化物矽場效應管裝置的剖面圖。參見第1圖,一個 N-型垂直溝道金屬氧化物矽場效應管裝置(“N型金屬氧 099119030 表單編號A0101 第12頁/共123頁 0993278454-0 201101497 化物石夕電晶體”)100,形成在—個並聯電晶體晶胞 和mb的陣列中。使用所需要的—定數量的電晶體晶胞 軸陣列’以獲得-個具有4擊穿電壓刚議(漏源 導通電阻)特性的N型金屬氧化物梦電晶體1〇〇。電 晶體陣列可以是-維陣職二_列,這主要取決於所 包括的電晶體晶胞的數量。例如’―個條紋晶胞結構可 以使用-轉列,-個六角形晶胞結構可以使用二維陣 列,下文還將進一步詳細敍述。 ΟIn accordance with the teachings of the present invention, a vertical channel metal oxide (IV) effect transistor device formed in a semiconductor layer with a dielectric filled trench, comprising a thin epitaxial layer having a thickness of submicron to several microns ("nanotube" This epitaxial layer is formed on the sidewall of the channel as a drain drift region. Therefore, the doping concentration of the drain rinsing is uniform. The doping structure of the mean sentence in the drain drift region contributes to the charge balance of the transistor, thereby increasing the breakdown voltage of the transistor. The thickness of the epitaxial layer of the nanotube is a function of the desired level of latching charge. For the copper side device, the thickness of the rice tube is submicron. For a device with a side Qv, the degree of the nanotube is approximately a few microseconds. In another embodiment, the vertical channel metal oxide 7 field effect transistor device comprises a first thin epitaxial layer formed on the sidewall of the trench 4 and a second formed on the first epitaxial layer having a reduced conductivity type. Thin epitaxial layer. The second epitaxial layer forms a drain drift, and both (10) layers ("double nephew") have uniform impurity concentrations. The change of the impurity concentration of the first-epitaxial layer improves the charge balance in the transistor even in the case of higher breakdown "τ, the domain ensures charge balance 4 in other embodiments" using the first and second thin epitaxy The basic vertical channel metal oxide 矽 field effect transistor structure of the layer can be used to fabricate an insulated gate bipolar transistor, a Schottky diode, and a Ρ-Ν junction type diode. 099119030 The vertical channel metal telluride 矽 field effect tube device of the present invention utilizes the concept of an apricot rice tube to realize a low conduction state electric form number Α0101 10th/123 page resistance (10)dS〇n), in the trench 0993278454-0 A charge-balanced drift zone ("nanotube,") is formed on the sidewall of the 201101497. In addition, the epitaxial layer is used to prepare the nanotube drift zone to ensure uniform doping concentration. Since the nanotube is very Thin, so it is necessary to slowly epitaxially grow the nanotubes in a controlled manner to achieve the desired uniform doping concentration. The uniform high doping concentration in the drift region reduces the on-resistance of the transistor, and at the same time, the height Controlled charge balancing ensures that the entire drift zone is depleted in the horizontal direction, ultimately resulting in a high breakdown voltage. In an alternative embodiment, 'the second nanotube zone 相反 with the opposite conductivity type' is located in the nanotube drift zone The second nanotube region is also formed by an epitaxial layer to make the doping concentration uniform. In the conventional device, the vertical channel metal oxide effect, the tube is formed at the base. In the semiconductor layer, the base semiconductor layer itself has a change in doping degree. Since the electric field in the entire region is not uniformly distributed in the depletion state, and the electric balance cannot be achieved, the change affects the breakdown characteristics of the transistor. In the vertical channel metal oxide material effect tube device of the present invention, the nano tube drifting region is located on the side of the nanotube region, and the doping concentration thereof is 〇& The nanotube drift zone and the nanotube body zone can also be depleted under a uniform electric field distribution" in order to obtain a high breakdown voltage property. The n-f body region and the nanotube drift region are formed on the base semiconductor layer. The base semiconductor layer has a very low doping concentration, so that its contribution to the charge balance is negligible, that is, the base layer itself. The effect of the doping variation on charge balance is negligible. The main feature of the vertical channel metal oxide (IV) field effect tube device of the present invention is that the nano tube region is prepared to obtain a uniform uniform impurity concentration. The conventional process for preparing the trench sidewall drift region is to use ion implantation 'subsequent annealing and diffusion, which results in a drift zone with a 099119030 form nickname A0101 page. By forming a drift region having a uniform doping concentration, the charge balance effect of the transistor can be improved and the breakdown voltage characteristics can be improved. Further, the vertical channel metal oxide tantalum field effect device of the present invention is formed by a low temperature process after forming a nanotube, thereby avoiding outward diffusion of the nanotube region. Conventional fabrication processes employ high temperature processes, for example up to 1100 ° C, which will result in the outward diffusion of thin epitaxial layers forming the nanotube regions. According to one embodiment of the present invention, a vertical channel metal oxide tantalum field effect device is fabricated using a low temperature preparation process, for example, at a temperature of 1 000 ° C or lower, to form a thin epitaxial layer of a nanotube region It does not spread out, but the doping area is still strictly defined. The vertical channel metal oxide tantalum field effect device of the present invention is applicable to a breakdown voltage of 20V to 1 200V. For a breakdown voltage of 20V to 100V, a single nanotube drift zone structure can be employed. If the breakdown voltage is 100V or higher, a double nanotube structure can be used to obtain a uniform electric field distribution in the depletion region. In addition, the vertical channel metal oxide tantalum field effect device of the present invention fills the channel by a medium extending into the heavily doped substrate, thereby increasing the switching speed. In this way, the parasitic capacitance such as the gate-drain capacitance Cgd is lowered, and the conversion performance of the transistor device is improved. In this manner, the vertical channel metal oxide tantalum field effect device structure of the present invention can realize the high-density advantage that can be realized only by the vertical transistor structure, and realize the lateral metal oxide tantalum. The advantage of high conversion speed of the crystal. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a vertical channel metal oxide tantalum field effect transistor device in accordance with a first embodiment of the present invention. Referring to Fig. 1, an N-type vertical channel metal oxide tantalum field effect transistor device ("N-type metal oxide 099119030 Form No. A0101 Page 12/123 Pages 0993278454-0 201101497 Chemical Crystal") 100, Formed in an array of parallel transistor cells and mb. A desired number of transistor cell axis arrays are used to obtain an N-type metal oxide crystal cell having a breakdown voltage (drain-source on-resistance) characteristic. The array of transistors can be - dimensionally arrayed, depending on the number of cell units included. For example, a stripe cell structure can be used - a column, and a hexagonal cell structure can use a two-dimensional array, as will be described in further detail below. Ο

099119030 N型金屬氧化物梦電晶體⑽形成在一個推雜濃度相當高 的N + +襯底102上。N + +觀底1〇2作為電晶體的漏極電極。 氧化物填充的舰112形成在p_科延(卜臺面結構_外 延)層104中。氧化物填充的溝道112中的厚氧化層,將 柵極118從漏財_,這就降低了 Μ電容Cgd,並提 高了電晶體的轉換速度。形成在氧化物填充的溝道1 12上 的薄N-型外延層11()( “奈米管,,),在電晶體ιι〇中起 N-型漏極漂流區的仙。y德極118^在緊鄰拇極 氧化層116的溝道中,柵極氧化層116位於氧化物填充的 溝道112_H型本體區⑽形成在p_臺面結構_ 外延層104中’並幾乎延伸到多晶石夕柵極118的底部邊緣 處。N+源極區122以及P+本體接觸區124形成在p_ 臺面結 構-外延層104的頂部。N +源極區122僅僅延伸到多晶矽 柵極118的頂部H含有蝴磷的⑦玻璃層(BpsG) 126 覆蓋了整個結構,並且在N+源極區122和p+本體接觸區 124處製作開口,以便形成源極接觸電極】,使電接觸 到電b日體1 〇 〇的源極和本體上。 因此’利用薄N-外延層11 0製成的N型金屬氧化物石夕電晶 0993278454-0 表單編號A0101 第13頁/共123頁 201101497 體100的漏極漂流區,具有亞微米至幾微米的厚度以及均 勻一致的摻雜濃度。在一個實施例中,N_外延層n〇的厚 度小於lum。例如,在一個實施例中,N_外延層11〇的厚 度約為10〇nm。對於低壓應用裝置(3〇v左右),奈米管 外延層的寬度或厚度大約在0.05 — 0.2_的範圍内。對於 中壓應用裝置(60-200V),奈米管外延層的寬度或厚度 大約在0.1-〇.24111的範圍内。對於高壓應用裝置(2〇〇¥ 以上),奈iit管外延㈣寬度或厚度大約在〇·2_2μπι的範 圍内。每種電壓水準的奈米管最隹厚度,在一定程度上 取決於所用的外延生長工藝。隨著_義技術的改進 ,最佳厚度也可以變化。 在實際工作中’當㈣金屬氧化物梦電晶體1〇〇處於關閉 狀態時,耗盡層會從Ν-漂流區u〇和ρ_臺面結構_外延層 104之間的Ρ-Ν結向外擴展。薄外延層11〇和厚ρ_臺面結 構-外延層104完全耗盡,以便在電晶體的本體中形成一 個平衡的空間電荷區。此區中的平衡空間電荷能夠獲得 高擊穿電壓。更確切地說’垂直溝道金屬氧化物石夕場效 應管中的電荷平衡’是通過選取Ν-漂流區和卜臺面結構_ 外延層的厚度比以及摻雜濃度比獲得的,即Νχη=ρχρ,其 中Ν表示Ν-漂流區的摻雜濃度,χη表示卜漂流區的厚度, Ρ表不Ρ-臺面結構-外延層的捧雜濃度,Χρ表示ρ_臺面結 構-外延層的厚度。電荷平衡時可以使用高濃度的漂流區 ’以便獲得低導通電阻’並實現高擊穿電壓。Ν_外延層 110中均勻的摻雜濃度,改善了耗盡區中電場的均勾分佈 ,隨之提高了擊穿電壓的性能。 第3 (a)圖至第3 (h)圖表示依據本發明的—個實施例 0993278454-0 099119030 表單編號麵1 第η頁/共123頁 201101497 ,如第1圖所示的垂直溝道金屬氧化物矽場效應管裝置製 備工藝的剖面圖。參見第3 (a)圖,製備過程從摻雜濃 度很高的N++襯底102開始。p-臺面結構-外延層104生長 在襯底102上。參見第3 (b)圖,然後對該結構進行掩膜 和各向異性刻蝕,以便在p—臺面結構-外延層中形成溝道 106。這些溝道徑直穿過p-臺面結構—外延層1〇4,部分 延伸到N ++襯底102中。在其他實施例中,將這些溝道刻 钱到或接近襯底102的地方,使它們並不延伸到襯底中。 ❹ 這些溝道的準確厚度並不起決定作用,只要溝道底部足 夠罪近N ++襯底1〇2,以使襯底可以對隨後形成的薄外延 層的底部進行反向摻雜,下文還將詳細敍述。這樣形成 的P-臺面結構-外延層1〇4包括溝道和臺面結構。選取合 適的卜臺面結構-外延層104摻雜等級,以便在反偏壓下 耗盡時,獲得平衡的空間電荷,而且摻雜等級在一定程 度上是臺面結構寬度的函數。例如,當臺面結構的寬度099119030 N-type metal oxide dream crystal (10) is formed on a N + + substrate 102 having a relatively high dopant concentration. N + + is used as the drain electrode of the transistor. An oxide-filled ship 112 is formed in the p_Keyan (wafer structure_extension) layer 104. The thick oxide layer in the oxide-filled trench 112 removes the gate 118 from the drain, which reduces the tantalum capacitance Cgd and increases the transistor's switching speed. A thin N-type epitaxial layer 11() ("nanotube,") formed on the oxide-filled channel 112, which acts as an N-type drain drift region in the transistor ιι. 118^ In the channel next to the thumb oxide layer 116, the gate oxide layer 116 is located in the oxide-filled channel 112_H-type body region (10) is formed in the p_mesa structure_epitaxial layer 104' and extends almost to the polycrystalline stone At the bottom edge of the gate 118. The N+ source region 122 and the P+ body contact region 124 are formed on top of the p_ mesa structure-epitaxial layer 104. The N+ source region 122 extends only to the top of the polysilicon gate 118. The 7 glass layer (BpsG) 126 covers the entire structure, and an opening is formed at the N+ source region 122 and the p+ body contact region 124 to form a source contact electrode, so that the electrical contact is made to the electric b body 1 〇〇 Source and body. Therefore 'N-type metal oxide made of thin N- epitaxial layer 10 0 278 晶 晶 0993278454-0 Form No. A0101 Page 13 / 123 Page 201101497 The drain drift area of body 100, Having a thickness of submicron to a few microns and a uniform doping concentration. In one embodiment The thickness of the N_ epitaxial layer n 小于 is less than lum. For example, in one embodiment, the thickness of the N − epitaxial layer 11 约为 is about 10 〇 nm. For a low voltage application device (about 3 〇 v), the nanotube epitaxial layer The width or thickness is in the range of about 0.05 - 0.2_. For medium voltage applications (60-200V), the width or thickness of the epitaxial layer of the nanotube is about 0.1-〇.24111. For high-voltage applications ( 2〇〇¥ above), the width or thickness of the epitaxial (iv) is approximately in the range of 〇·2_2μπι. The thickness of the nanotubes of each voltage level depends to some extent on the epitaxial growth process used. _ Yi technology improvement, the optimal thickness can also be changed. In the actual work 'When (4) metal oxide dream crystal 1〇〇 is in the off state, the depletion layer will be from the Ν- drifting area u〇 and ρ_ mesa structure The Ρ-Ν junction between the epitaxial layers 104 expands outward. The thin epitaxial layer 11 〇 and the thick ρ_ mesa structure - the epitaxial layer 104 are completely depleted to form a balanced space charge region in the body of the transistor. The balanced space charge in the zone can get a high hit The voltage. More precisely, the charge balance in the vertical channel metal oxide MOSFET is obtained by selecting the thickness ratio of the Ν-drift region and the mesa structure _ epitaxial layer and the doping concentration ratio, ie Νχη =ρχρ, where Ν denotes the doping concentration of the Ν-drifting zone, χη denotes the thickness of the drifting zone, Ρ表Ρ- mesa structure-the concentration of the epitaxial layer, Χρ denotes the thickness of the ρ_ mesa structure-epitaxial layer. A high concentration drift region can be used in charge balancing to achieve low on-resistance and achieve a high breakdown voltage. The uniform doping concentration in the epitaxial layer 110 improves the uniform distribution of the electric field in the depletion region, and the performance of the breakdown voltage is improved. Figures 3(a) through 3(h) show an embodiment of the present invention 0993278454-0 099119030 Form number face 1 page n / page 123 201101497, vertical channel metal as shown in Figure 1 A cross-sectional view of a process for preparing an oxide tantalum field effect device. Referring to Figure 3(a), the fabrication process begins with a highly doped N++ substrate 102. The p-mesa structure-epitaxial layer 104 is grown on the substrate 102. Referring to Fig. 3(b), the structure is then masked and anisotropically etched to form a trench 106 in the p-mesa structure-epitaxial layer. These channels extend straight through the p-mesa structure - epitaxial layer 1 〇 4 and partially into the N ++ substrate 102. In other embodiments, the channels are engraved to or near the substrate 102 such that they do not extend into the substrate.准确 The exact thickness of these channels does not play a decisive role, as long as the bottom of the channel is sufficiently close to the N ++ substrate 1〇2 so that the substrate can be counter-doped to the bottom of the subsequently formed thin epitaxial layer, It will also be described in detail. The P-mesa structure-epitaxial layer 1〇4 thus formed includes a channel and a mesa structure. A suitable mesa structure-epitaxial layer 104 doping level is selected to achieve a balanced space charge when depleted under reverse bias, and the doping level is a function of the width of the mesa structure to a certain extent. For example, when the width of the mesa structure

為〇· 333Um時,P-臺面結構!·外延層1〇4的摻雜等級約為6 xl016cm-3。 ; 參見第3 (c)圖’通過外延過輕’在半導體襯底的裸露 表面上生長一個N-型外延層110。因此,N-外延層生長在 p一臺面結構-外延層1〇4的側壁和頂面上,以及N ++襯底 1〇2的裸露表面上^在一個可選實施例中,製備溝道1〇6 所使用的堅硬掩膜,可能會在奈米管外延生長過程中留 在P~臺面結構-外延層104上面’這會使N -外延層11〇僅 僅生長在溝道1 〇 6中。然後沉積一個氧化層113,填充溝 道1 〇6,如第3 (d)圖所示。所沉積的氧化層113延伸並 099119030 覆蓋P-臺面結構—外延層104的臺面結構 表單編號A0101 第15頁/共I23頁 由於襯底102 0993278454-0 201101497 (视底)的摻雜濃度極高,即使在外延生長過程中, 乃至其餘的製備過程中.型摻雜物都-直從襯底向外 擴散,因此位於N ++襯底102上的—部分N_外延層ιι〇 ( 如圖中點線圓114所示)會因這種高摻雜漢度的n+ +概底 m的向外擴散而被除去。沉積氧化物之後,再通過化學 機械抛光過程使半導體襯底的表面變得平坦。 拋光過程除去了多餘的氧化物以及P-臺面結構-外延層 104的臺面結構上方的薄弘外延層。 參見第3 (e) ® ’在溝道中向下沉積氧化層113,使氧化 層僅僅填充部分溝道,形成氧化物填充的溝道112。更確 5'將'冗積的氧化層1精准地刻蚀到所需的深度, 使得隨後的_電極與本體區對齊。在溝道的侧壁上生 長-個栅極氣化層116。要通過低溫過程生長柵極氧化層 116 ’以避免薄Ν-外延層110向外擴散。 參見第3 (f)圖’在溝道中沉積—個多晶⑦層並刻触 ,形成嵌入式多晶矽栅極電在一铴實施例中先 將沉積的多晶秒層打磨平,鹿後向下刻姓,使溝道中的 多晶碎層凹陷。形咸多晶__雜118後通過離子注 入過程,在臺面結構-外延層104的臺面結構上部,形 成P本體區12〇,如第3 (g)圖所示。在一個實施例中, 離子/疋以疋角度的注入。然後通過第二次離子注 入形成N +源極區122。所形成的源極區丨22位於本體區 120中,以及溝道側壁近鄰。如第3 (h)圖所示,源極區 122向下延伸到多晶矽柵極電極118的頂部邊緣附近。尤 其是當N +源極區m的深度可控時,料源極區會與多晶石夕 0993278454-0 樹極電極的頂部邊緣對齊,並與一小部分的柵極電極重 099119030 表單編號A0101 第16頁/共123 f 201101497 迭如第3 (h)圖所不’通過第三次離子注入,最終在 靠近源極區122的地方,形成P +本體接觸區124。 沉積介質(例如含有剌的石夕玻璃)層126,覆蓋整個半 導體概底。在-些實_中,通過化學機械拋光過程磨 平含有__玻璃層,然後在含有爛磷㈣玻璃層( BPSG) 126中製作接觸開口,以使N+源極區122和p+本體 接觸區124裸露出來。如第i圖所示,沉積一個帶圖案的 金屬層,並形成源極電極130。然後在整個結構上方沉積 ❹ —個鈍化層(圖中沒有表示幻,以使㈣金屬氧化物珍 電晶體鈍化。 本發明所述的N義金屬氧化物矽電晶體1〇0,可以在電晶 體晶胞的尚密度陣列中形成》對於低壓(3〇v及以下)應 用裝置,可以使用大約〇.8岬的晶胞間距(tcp)、〇 4叫 的臺面結構(p-臺面結構-外延層)寬度以及7511111的1 外延層寬度。兼具均勻一致的高摻雜濃度的薄N_外延層 ,使N型金屬氧化物矽電晶體1〇〇具有穩定可靠的擊穿電 q 壓特性。 4 Γ二 更確切地說,我們已經知道,對1於垂直金屬氧化物矽電 晶體的漂流區和本體之間的有效電荷平衡來說,N -漂流 區和P-臺面結構區的厚度比,與它們各自的摻雜遭度之 間是線性反比關係。而且,我們還知道當垂直溝道金屬 氧化物矽場效應管中每個區域的摻雜濃度都約為1E12cm 2時,它的電荷平衡達到最佳狀態》因此,N-外延層 110和P -臺面結構-外延層104之間的厚度比和摻雜濃度 比存在以下關係: N-外延層的厚度’N-外延層的摻雜量/ cm3 099119030 表單編號A0101 0993278454-0 第17頁/共123頁 201101497 =o.r p-臺面結構-外延層的厚度,p_臺面結構一 外延層的掺雜量/ cm3 lE12cm_2or ri〇12cm-2. >主意:P-臺面結構-外延層的厚度是關於水準方向上的臺 面結構,P-臺面結構-外延層的厚度除以2,是因為在卜 臺面結構-外延層的兩側各有一個N—外延層。卜臺面結構 -外延層的其中一半電荷平衡了一侧的1外延層,另一半 電荷平衡另一側的N-外延層。 在—個實施例中,N-外延層no中每單位體積中的摻雜濃 度至少是P-臺面結構—外延層的兩倍,以便通過來自卜臺 面結構-外延層的p-型雜質,將卜外延層中的摻雜補償降 至最低。在另一個實施例中,一種擊穿電壓為3〇V的N型 金屬氧化物矽電晶體的製備參數如下: 30V金屬氧化物矽場效應管 一 — 寬度 (μιη) 高度 (μιη) 摻雜濃度及備註 溝道 0.20 2.00 50-200Α柵極氧化物 多晶矽栅極 0.16 0.60 Ν++原位摻雜 P-臺面結構-外延層 0.35 1.75 5.7Ε16 cm-3 N—外延層 0.075 2.00 1.33E17cm·3 2 42 pohms*cnf 柵漏電介質 0.20 1.00 Si〇2 多晶矽柵極上方的含有硼酸的 矽玻璃 0.20 0.40 通過化學機械拋光磨平的 含有硼酸的矽玻璃/四乙基 原矽酸鹽 晶胞間距 0.70 N-外延層電阻: A*Rds =42p〇hms-cm'2 在上例中,P-臺面結構-外延層1〇4中每個區域的濃度為 1.99E12 cm_2(近似為2E12 cm-2) ,N-外延層 110 中 每個區域的濃度為9.91E11 cm_2(近似為1E12 cm_2) 099119030 表單編號A0101 第18頁/共123頁 0993278454-0 201101497 。之所以將p-臺面結構-外延層104中每個區域的濃度設 為最佳值1E12 cm 2的兩倍’是因為一個單—p_臺面結構 -外延層104要支援p-臺面結構-外延層側壁上的兩個n一 外延層奈米管漏極漂流區的電荷平衡。也就是說,一個 P臺面結辑-外延層1〇4中每個區域的一半摻雜濃度,要 支持兩個N -外延層奈米管漏極漂流區的其中一個的電荷 平衡》 第2圖表示依據本發明的一個第二實施例,一種垂直溝道 金屬氧化物矽場效應管裝置的剖面圖。參見第2圖,一個 N-3L垂直溝道金屬氧化物矽場效應管裝置(“N型金屬氧 化物石夕電晶體)2 0 0,形喊在一個並聯電晶體晶胞2 〇 1 a 和201b的陣列中。使用一定數量的電晶體晶泰形成陣列 ’以使N型金屬氧化物矽電」晶體2 〇(y具有所需的擊穿電壓 特性。是一維電晶體陣列還是二維電晶體陣列,主要取 決於所用的電晶體晶胞的數量。 N型金屬氧化物矽電晶體2〇〇的結構除了在薄外延層21〇近 ◎ 鄰還有一個另外的薄P-型外延層2〇8之外,其餘結構與如 第1圖所示的N型金屬氧化物岭電晶想1〇〇相同β N_外延層 210和P-外延層208形成一個“雙奈米管,,結構。此外, 電晶體晶胞就形成在P-型外延層2〇4中,p—型外延層2〇4 的摻雜濃度很輕,如第2圖中的“p_臺面結構外延層,,所 示。用薄外延層208限定N-外延層21〇的邊界,構成了具 有均勻摻雜濃度的平行摻雜區。當N外延層21〇和卜外延 層208耗盡時,薄外延層208能夠確保均勻的電場分佈, 因此改善了擊穿電壓特性。 在N螌金屬氧化物矽電晶體200中,使用具有亞微来至幾 099,19030 綱號 _ 第 η 頁/共 123 頁 _454_〇 201101497 微米厚度,以及均勻一致的摻雜濃度的薄外延層2ι〇,形 成漏極漂流區。在一個實施例中,N_外延層21〇的厚度^ 於lum。比如’ N-外延層21〇的厚度在副⑽左右。同樣 地,P-外延層208也具有亞微米厚度以及均勻—致的摻雜 濃度。比如,P-外延層208的厚度在25〇nm左右。p 夕卜延 層208的摻雜濃度大於p_臺面結構—外延層2〇4的摻雜濃 度,小於薄外延層210的摻雜濃度。如上所述,奈米管 =卜 延層(N-外延層210和P-外延層2〇8)的厚度,是裴置+ 要的擊穿電壓水準的一個函數。 而 利用P-外延層208限定N-外延層漏極漂流區邊界所獲得 優勢,在普通電晶體中是無法實現的1當通過傳統的外 延過程製備P-臺面結構外延層2〇4時,,卜臺面結構外延層 204本身就會帶有10%左右的摻雜濃度變化。這種摻雜濃 度的變化,是外延過程中生長厚外延層時的固有結果, 無法避免。當N-型外延層漏極漂流區直接形成在p_臺面 結構-外延層近鄰時,P-臺面結構_外延層的摻雜濃度變 化可能會使這兩個區域耗盡時的電場不均勻。然而,依 I, 據本發明,㈣P-外延層較N_料延層祕漂流區的 邊界。由於薄p_外延層2〇8可以緩慢生長,其推雜濃度和 厚度可以被很好地控制。因此’這也就保證當N_型外延 層210和P-型外延層204耗盡時,它們的p_N結處的電場 均勻分佈。P-臺面結構一外延層204的摻雜濃度可以很低 ’使得它對電荷平衡的貢獻很小,電荷平衡巾的絕大部 分電荷都由薄外延層208提供。因此,卜臺面結構—外延 層204本身固有的摻雜濃度變化,對電荷平衡的影響就可 以忽略了。 099119030 表單編號A0101 第20頁/共123頁 0993278454-0 201101497 第4 (a)圖至第4 (d)圖表示依據本發明的一個實施例 ’利用雙奈米管,製備如第2圖所示的垂直溝道金屬氧化 物發場效應管裝置製備工藝的剖面圖。如第2圖所示的N 型金屬氧化物矽電晶體200除了使用了輕摻雜的P-臺面結 構外延層204以及一個另外的薄P-型外延層208之外,其 餘的製備過程與第1圖所示的N型金屬氧化物矽電晶體100 的製備過程相同。因此,同樣的製備過程如第3 (a)圖 至第3 (h)圖所示,在此不.再贅述。 參見第4 (a)圖,在N + +襯底202上形成一個輕摻雜的P-臺面結構-外延層204,然後刻蝕形成溝道和臺面結構。 通過外延過程,在半導體結構的裸露表面上生長一個p_ 型外延層208。P-型外延層生長在P-臺面結構-外延層 204的侧壁和頂面上,以及N ++襯底202的裸露表面上。 然後’再通過第二次外延過程,在半導體結構的裸露表 面上生長薄外延層210。因此,如第4 (a)圖所示,N-型 外延層210生長在p-型外延層208上。在一個可選實施例 中’刻蝕溝道所使用的堅綾掩膜,可釦會在p_型外延層 208和N-型外延層210的外延生長過程中留在卜臺面結構 -外延層204上面,這會使這些外延層僅僅生長在溝道中 然後沉積一個氧化層213以填充溝道,如第4 (b)圖所示 。所沉積的氧化層213延伸並覆蓋p-臺面結構-外延層 204的臺面結構。當形成N-型外延層210和p-型外延層 208時’它們鄰近N ++襯底102的那一部分(如圖中點線 圓214所示),會因這種N ++襯底2〇2的高摻雜濃度而被 099119030 除去,並被反向摻雜。沉積氧化物之後, 表單煸號A0101 第21頁/共123頁 再通過化學機 0993278454-0 201101497 械拋光過程使半導體襯底的表面變得平坦。化學機械拋 光過程除去了多餘的氡化物以及p-臺面結構-外延層204 的臺面結構上方的薄外延層以及薄p_外延層。 參見第4 (C)圖,向下刻餘氧化層213,直至凹陷在溝道 中,形成氧化物填充的溝道212。在溝道的側壁上生長一 個柵極氧化層216,並沉積―個多晶韻,向下刻姓形成 多晶矽栅極電極218。參見第4 (d)圖,通過離子注入, 形成P-本體區22G、N+源極區222以及P +本體接觸區m 。再將一個介質(例如含有硼酸的矽玻璃)層226,覆蓋 整個半導體結構。磨平含有喊的料璃,並組成圖案 形成接觸開口。然後,形成:源極電極23〇 (第2圖),以 便與N +源極區222和P +本體接觸區224形成電接觸。 選取a適的P臺面結構_外延層2Q4和薄p-型外延層2〇8 的推雜水準(“平均摻雜濃度”),糊當這兩個區域 在反偏壓下耗盡時,同Ν_型外延層21()—域得平衡的空 間電何。Ρ—臺面結構-外延層2Φ4和薄Ε-型外延層208的 換雜水準,是奈来管ρ'型外論她的寬度以及Ρ-臺面結 構-外延層204的寬度的函數。此外 ’如上所述,Ν -型外 延層與P i外延層/ρ_臺面結構外延層的厚度比,同它們 各自的##濃度之間存在線性反比關係。 更破切地說,對於電荷平衡來說,N —型外延層21〇和ρ_型 外延層/ρ-臺面結構—外延層2〇9/2〇4之間的厚度比和摻 雜濃度比存在以下關係. Ν-型外延層的厚度’ Ν_型外延層的摻雜量/ cm_3 -(P-型外延層的厚度’p_型外延層的摻雜量/ cm—3) + (〇. 5 ' 099119030 表單編號A0101 第22頁/共123頁 0993278454-0 201101497 p-型臺面結構-外延層的厚度’p_型臺面結構-外延層的摻 雜量/ cm_3) =0. 5 ^ P-型外延層和p_型臺面結構-外延層的總 厚度’p-型外延層和p-型臺面結構-外延層的平均摻雜量 /cm-3 lE12ciir2〇r ri〇12cm~2。 注意:P-臺面結構-外延層的厚度是關於水準方向上的臺 面結構。When 〇· 333 Um, the P-mesa structure! · The doping level of the epitaxial layer 1 〇 4 is about 6 x l016 cm -3 . See Fig. 3(c) for the growth of an N-type epitaxial layer 110 on the exposed surface of the semiconductor substrate by epitaxy. Therefore, the N- epitaxial layer is grown on the sidewalls and top surface of the p-tablet structure-epitaxial layer 1〇4, and on the exposed surface of the N++ substrate 1〇2. In an alternative embodiment, the channel is prepared. The hard mask used in 1〇6 may remain on the P~ mesa structure-epitaxial layer 104 during the epitaxial growth of the nanotubes. This causes the N- epitaxial layer 11〇 to grow only in the channel 1 〇6. An oxide layer 113 is then deposited to fill the trenches 1 〇 6 as shown in Figure 3(d). The deposited oxide layer 113 extends and the 099119030 covers the P-mesa structure - the mesa structure of the epitaxial layer 104. Form No. A0101 Page 15 / Total I23 Since the doping concentration of the substrate 102 0993278454-0 201101497 (the bottom) is extremely high, Even during the epitaxial growth process, and even during the rest of the preparation process, the type dopants are directly diffused outward from the substrate, so that the partial N_ epilayer layer on the N++ substrate 102 is as shown in the figure. The dotted line circle 114 is removed by the outward diffusion of this highly doped n++ base m. After depositing the oxide, the surface of the semiconductor substrate is flattened by a chemical mechanical polishing process. The polishing process removes excess oxide and a thin epitaxial layer over the mesa structure of the P-mesa structure-epitaxial layer 104. See Section 3 (e) ® ' to deposit oxide layer 113 down the channel so that the oxide layer fills only a portion of the channel, forming an oxide-filled channel 112. More precisely, 5' etches the redundant oxide layer 1 to the desired depth so that the subsequent _ electrodes are aligned with the body region. A gate gasification layer 116 is grown on the sidewalls of the channel. The gate oxide layer 116' is to be grown by a low temperature process to avoid outward diffusion of the thin germanium-epitaxial layer 110. See Fig. 3(f) 'deposited in the trench—a polycrystalline 7 layer and inscribed to form an embedded polysilicon gate. In one embodiment, the deposited polycrystalline layer is first smoothed, and the deer is followed by The surname is engraved to dent the polycrystalline layer in the channel. After the salty polycrystalline __hetero 118 is passed through the ion implantation process, the P body region 12 is formed on the upper portion of the mesa structure-epitaxial layer 104, as shown in Fig. 3(g). In one embodiment, the ions/疋 are implanted at an angle of 疋. The N + source region 122 is then formed by a second ion implantation. The resulting source region 22 is located in the body region 120 and adjacent to the channel sidewalls. As shown in Figure 3(h), source region 122 extends down to the vicinity of the top edge of polysilicon gate electrode 118. In particular, when the depth of the N + source region m is controllable, the source and source regions are aligned with the top edge of the polycrystalline spine 0993278454-0 tree electrode and with a small portion of the gate electrode 099119030 Form No. A0101 Page 16 / a total of 123 f 201101497 As shown in Figure 3 (h), the P + body contact region 124 is formed by a third ion implantation and finally near the source region 122. A layer 126 of deposition medium (e.g., a enamel-containing glass) covers the entire semiconductor substrate. In the case, the __glass layer is smoothed by a chemical mechanical polishing process, and then a contact opening is formed in the ruthenium-containing (tetra) glass layer (BPSG) 126 so that the N+ source region 122 and the p+ body contact region 124 Bare out. As shown in Fig. i, a patterned metal layer is deposited and source electrode 130 is formed. Then, a passivation layer is deposited over the entire structure (there is no illusion in the figure to passivate the (4) metal oxide crystal. The N-type metal oxide germanium transistor of the present invention is 1 〇 0, which can be in the transistor. For the low-voltage (3〇v and below) application device, a cell pitch (tcp) of about 〇8岬, a mesa structure of plutonium (p-mesa structure-epitaxial layer) can be used. The width and the width of the epitaxial layer of 7511111. The uniform N- epitaxial layer with high doping concentration makes the N-type metal oxide tantalum transistor 1〇〇 stable and reliable breakdown voltage and voltage characteristics. More specifically, we have known that for an effective charge balance between a drift region and a body of a vertical metal oxide tantalum transistor, the thickness ratio of the N-drift region to the P-mesa structure region, Their respective doping degrees are linearly inversely proportional. Moreover, we also know that when the doping concentration of each region in the vertical channel metal oxide 矽 field effect transistor is about 1E12 cm 2 , its charge balance is reached. Best state" The thickness ratio between the N- epitaxial layer 110 and the P-mesa structure-epitaxial layer 104 has the following relationship: the thickness of the N- epitaxial layer 'N-the doping amount of the epitaxial layer / cm3 099119030 Form No. A0101 0993278454-0 Page 17 of 123201101497 =or p-mesa structure - thickness of epitaxial layer, p_ mesa structure - doping amount of epitaxial layer / cm3 lE12cm_2or ri〇12cm-2. > idea: P-mesa The thickness of the structure-epitaxial layer is about the mesa structure in the horizontal direction, and the thickness of the P-mesa structure-epitaxial layer is divided by 2 because there is an N-epit layer on both sides of the epitaxial structure-epitaxial layer. One half of the structure-epitaxial layer balances one epitaxial layer on one side and the other half balances the N- epitaxial layer on the other side. In one embodiment, doping per unit volume in the N- epitaxial layer no The concentration is at least twice that of the P-mesa structure-epitaxial layer to minimize doping compensation in the epitaxial layer by p-type impurities from the mesa structure-epitaxial layer. In another embodiment, Production of N-type metal oxide tantalum transistor with breakdown voltage of 3〇V The parameters are as follows: 30V metal oxide 矽 field effect transistor - width (μιη) height (μιη) doping concentration and remark channel 0.20 2.00 50-200 Α gate oxide polysilicon gate 0.16 0.60 Ν ++ in situ doping P - Countertop structure - Epitaxial layer 0.35 1.75 5.7Ε16 cm-3 N- Epitaxial layer 0.075 2.00 1.33E17cm·3 2 42 pohms*cnf Gate leakage dielectric 0.20 1.00 Si〇2 Polycrystalline germanium containing boric acid above the gate of polycrystalline germanium 0.20 0.40 by chemistry Mechanically polished flattened glass/tetraethyl orthosilicate with cell borate spacing of 0.70 N- epitaxial layer resistance: A*Rds = 42p〇hms-cm'2 In the above example, P-mesa structure-epitaxial The concentration of each region in layer 1〇4 is 1.99E12 cm_2 (approximately 2E12 cm-2), and the concentration of each region in the N- epitaxial layer 110 is 9.91E11 cm_2 (approximately 1E12 cm_2). 099119030 Form No. A0101 18 Page / Total 123 pages 0993278454-0 201101497. The reason why the concentration of each region in the p-mesa structure-epitaxial layer 104 is set to an optimum value of 1E12 cm 2 is because a single-p_ mesa structure-epitaxial layer 104 supports p-mesa structure-epitaxial The charge balance of the drain drift regions of the two n-epitaxial nanotubes on the sidewalls of the layer. That is to say, a P-table junction-half doping concentration of each region in the epitaxial layer 1〇4, to support the charge balance of one of the two N- epitaxial nanotube drain drift regions. A cross-sectional view of a vertical channel metal oxide tantalum field effector device in accordance with a second embodiment of the present invention. Referring to Fig. 2, an N-3L vertical channel metal oxide tantalum field effect device ("N-type metal oxide magnetite crystal") is formed in a parallel transistor cell 2 〇 1 a and In the array of 201b, a certain number of transistors are used to form an array 'to make the N-type metal oxide 矽" crystal 2 〇 (y has the required breakdown voltage characteristics. Is it a one-dimensional transistor array or two-dimensional electricity? The crystal array depends mainly on the number of transistor unit cells used. The structure of the N-type metal oxide tantalum transistor 2〇〇 has an additional thin P-type epitaxial layer 2 in addition to the thin epitaxial layer 21 Except for 〇8, the remaining structure is the same as the N-type metal oxide ridge crystal as shown in Fig. 1, and the β N_ epitaxial layer 210 and the P- epitaxial layer 208 form a "double nanotube tube, structure. In addition, the transistor cell is formed in the P-type epitaxial layer 2〇4, and the doping concentration of the p-type epitaxial layer 2〇4 is very light, as in the “p_ mesa structure epitaxial layer in FIG. 2, The boundary of the N- epitaxial layer 21 is defined by a thin epitaxial layer 208 to form a parallel doped region having a uniform doping concentration. When the N epitaxial layer 21 and the epitaxial layer 208 are depleted, the thin epitaxial layer 208 can ensure a uniform electric field distribution, thus improving the breakdown voltage characteristics. In the N螌 metal oxide tantalum transistor 200, the use is sub- Micro-thickness to a few 099, 19030, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The thickness of the N_ epitaxial layer 21 ^ is lum. For example, the thickness of the N- epitaxial layer 21 在 is about the sub-layer (10). Similarly, the P- epitaxial layer 208 also has a submicron thickness and a uniform doping concentration. For example, the thickness of the P- epitaxial layer 208 is about 25 〇 nm. The doping concentration of the p-extension layer 208 is greater than the doping concentration of the p_ mesa structure-epitaxial layer 2〇4, which is smaller than the doping concentration of the thin epitaxial layer 210. As described above, the thickness of the nanotube layer (the N- epitaxial layer 210 and the P- epitaxial layer 2〇8) is a function of the breakdown voltage level of the device + and the P-epitaxial layer is utilized. 208 defines the advantages of the N- epitaxial layer drain drift region boundary, which is not possible in ordinary transistors When the epitaxial layer 2〇4 of the P-mesa structure is prepared by a conventional epitaxial process, the epitaxial layer 204 itself has a doping concentration change of about 10%. This change in doping concentration, It is an intrinsic result when growing a thick epitaxial layer in the epitaxial process, which cannot be avoided. When the drain drift region of the N-type epitaxial layer is directly formed in the p_ mesa structure-epitaxial layer, the doping concentration of the P-mesa structure_epitaxial layer The variation may cause the electric field to be non-uniform when the two regions are depleted. However, according to the present invention, (4) the P- epitaxial layer is closer to the boundary of the N_ material extension layer. Since the thin p- epitaxial layer 2〇8 can grow slowly, its push concentration and thickness can be well controlled. Therefore, this ensures that when the N-type epitaxial layer 210 and the P-type epitaxial layer 204 are depleted, the electric field at their p_N junctions is uniformly distributed. The doping concentration of the P-mesa structure-epitaxial layer 204 can be low so that its contribution to charge balance is small, and the majority of the charge of the charge balancing blanket is provided by the thin epitaxial layer 208. Therefore, the influence of the doping concentration change inherent in the epitaxial layer 204 on the charge balance can be neglected. 099119030 Form No. A0101 Page 20/123 Page 0993278454-0 201101497 Figures 4(a) to 4(d) show the preparation of a double nanotube according to one embodiment of the present invention, as shown in Figure 2 A cross-sectional view of a vertical channel metal oxide FET device fabrication process. The N-type metal oxide tantalum transistor 200 as shown in FIG. 2 except for the lightly doped P-mesa structure epitaxial layer 204 and an additional thin P-type epitaxial layer 208, the remaining preparation process and the The preparation process of the N-type metal oxide tantalum transistor 100 shown in Fig. 1 is the same. Therefore, the same preparation process is as shown in Figures 3(a) to 3(h), and will not be repeated here. Referring to Fig. 4(a), a lightly doped P-mesa structure-epitaxial layer 204 is formed on the N + + substrate 202 and then etched to form a trench and mesa structure. A p_ type epitaxial layer 208 is grown on the exposed surface of the semiconductor structure by an epitaxial process. A P-type epitaxial layer is grown on the sidewalls and top surface of the P-mesa structure-epitaxial layer 204, and on the exposed surface of the N++ substrate 202. A thin epitaxial layer 210 is then grown on the exposed surface of the semiconductor structure by a second epitaxial process. Therefore, as shown in Fig. 4(a), the N-type epitaxial layer 210 is grown on the p-type epitaxial layer 208. In an alternative embodiment, the sturdy mask used to etch the trench can be left in the epitaxial growth process of the p-type epitaxial layer 208 and the N-type epitaxial layer 210. Above 204, this causes the epitaxial layers to grow only in the channel and then deposit an oxide layer 213 to fill the trench, as shown in Figure 4(b). The deposited oxide layer 213 extends and covers the mesa structure of the p-mesa structure-epitaxial layer 204. When the N-type epitaxial layer 210 and the p-type epitaxial layer 208 are formed 'they are adjacent to the portion of the N ++ substrate 102 (as indicated by the dotted circle 214 in the figure), due to the N ++ substrate 2 The high doping concentration of 〇2 is removed by 099119030 and is doped in the opposite direction. After depositing the oxide, the form nickname A0101 Page 21 of 123 passes through the chemical machine 0993278454-0 201101497 The mechanical polishing process flattens the surface of the semiconductor substrate. The chemical mechanical polishing process removes excess germanide and a thin epitaxial layer over the mesa structure of the p-mesa structure-epitaxial layer 204 and a thin p- epitaxial layer. Referring to Fig. 4(C), the residual oxide layer 213 is etched down until it is recessed in the trench to form an oxide filled trench 212. A gate oxide layer 216 is grown on the sidewalls of the trench, and a polycrystalline rhyme is deposited, and a polysilicon gate electrode 218 is formed down. Referring to Fig. 4(d), a P-body region 22G, an N+ source region 222, and a P + body contact region m are formed by ion implantation. A layer of dielectric 226 (e.g., bismuth glass containing boric acid) is then applied over the entire semiconductor structure. Smooth the glass containing the shout and form a pattern to form a contact opening. Then, a source electrode 23 (Fig. 2) is formed to make electrical contact with the N + source region 222 and the P + body contact region 224. Select a suitable P mesa structure _ epitaxial layer 2Q4 and thin p-type epitaxial layer 2 〇 8 push level ("average doping concentration"), paste when these two regions are depleted under reverse bias, the same Ν _ type epitaxial layer 21 () - the domain is balanced by the space. The level of the Ρ-mesa structure-epitaxial layer 2Φ4 and the thin Ε-type epitaxial layer 208 is a function of the width of the ρ' type and the width of the Ρ- mesa structure-epitaxial layer 204. Further, as described above, the thickness ratio of the Ν-type epitaxial layer to the P i epitaxial layer/ρ_ mesa structure epitaxial layer has a linear inverse relationship with their respective ## concentrations. More precisely, for charge balance, the thickness ratio and doping concentration ratio between the N-type epitaxial layer 21〇 and the ρ_type epitaxial layer/ρ-mesa structure-epitaxial layer 2〇9/2〇4 The following relationship exists: thickness of Ν-type epitaxial layer 掺杂 doping amount of Ν_type epitaxial layer / cm_3 - (thickness of p-type epitaxial layer 'doping amount of p_type epitaxial layer / cm-3>) + (〇 5 ' 099119030 Form No. A0101 Page 22 of 123 0993278454-0 201101497 p-type mesa structure - thickness of epitaxial layer 'p_type mesa structure - doping amount of epitaxial layer / cm_3) =0. 5 ^ P - Type epitaxial layer and p_type mesa structure - Total thickness of epitaxial layer 'p-type epitaxial layer and p-type mesa structure - average doping amount of epitaxial layer / cm - 3 lE12ciir2 〇r ri 〇 12 cm~2. Note: The thickness of the P-mesa structure-epitaxial layer is the mesa structure in the direction of the level.

在一個實施例中,一種擊穿電壓為100V的N型金屬氧化物 矽電晶體的製備參數如下: 100V金屬氧化物矽場效應管 寬度 (μπι) 高度 (μπι) 摻雜濃度 溝道 0.50 4.25 500-1000Α構極氧化物 多晶發栅極 0.16 0.60 Ν++原位摻雜 P-臺面結構-外延層 0,50 4.00 5E14cm·3 (或 0.25Ellcm-2 為兩個奈米管N-型外延層 漏極區中每個區域的濃度) P-外延層 0.25 4.00 3.95E16cnf3(或 0.9875E12 cnf2每個區域的濃度) N·外延唐 —^^ 0.125 ______— 0.20 4.00 8E16cm'3 42 pohms*citf2 1.00 Si〇2 •TwJ w|| ~ 多晶矽栅極上方的含有棚酸的 矽玻璃 0.20 一 一, 0.40 通過化學機械拋光磨平的 含有硼酸的矽玻璃/四乙基 原矽酸鹽 晶胞間距 1.75 N-外延層電阻: A*Repi=225 pohms-cm·2; P-外延層以及P-外廷層奈 米管的電阻都與N-外延層 的電阻相等In one embodiment, a preparation parameter of an N-type metal oxide tantalum transistor having a breakdown voltage of 100 V is as follows: 100 V metal oxide tantalum field effect tube width (μπι) height (μπι) doping concentration channel 0.50 4.25 500 -1000 ΑCalcium Oxide Polycrystalline Gate 0.16 0.60 Ν++In-situ doped P-mesa structure-epitaxial layer 0,50 4.00 5E14cm·3 (or 0.25Ellcm-2 for two nanotubes N-type epitaxy Concentration of each region in the drain region of the layer) P- epitaxial layer 0.25 4.00 3.95E16cnf3 (or concentration of each region of 0.9875E12 cnf2) N· epitaxial Tang—^^ 0.125 ______—0.20 4.00 8E16cm'3 42 pohms*citf2 1.00 Si〇2 •TwJ w|| ~ Polystyrene-containing bismuth glass above the polycrystalline germanium gate 0.20 -1, 0.40 矽 glass/tetraethyl orthosilicate containing cell pitch 1.75 N by chemical mechanical polishing - Epitaxial layer resistance: A*Repi=225 pohms-cm·2; The resistance of the P- epitaxial layer and the P-external layer nanotube are equal to the resistance of the N- epitaxial layer

在一個實施例中 一種擊穿電壓為200V的N型金屬氧化物 矽電晶體的製備參數如下 099119030 表單編號A0101 第23頁/共123頁 0993278454-0 201101497 200V金屬氧化物矽場效應管 寬度 (μιη) 高度 (μιη) 摻雜濃度及備註 溝道 0.50 8.25 500-1000人柵極氧化物 多晶石夕拇極 0.16 0.60 Ν++原位摻雜 P-臺面結構-外延層 0.50 8.00 5E14cm-3(〇r0.25Ell cm·2 為兩個奈米管N-型外延 層漏極區中每個區域的濃 度) P-外延層 0.25 8.00 3.95E16 cm-3(或 0.9875E12 cm·2·每個區域 的濃度) N-外延層 0.125 8.00 8E16cm-3 42 p〇hms*cm_2 柵漏電介晳 0.20 1.00 Si02 多晶矽栅極上方的含有硼酸的 矽玻璃 0.20 0.40 通過化學機械拋光磨平的 含有硼酸的矽玻螭/四乙 基原矽酸鹽 晶胞間距 --*---- 1.75 N-外延層電阻: A*Repi = 225pohms-cni'2 P-外延層以及P-外延層奈 米管的電阻都與N-外延 _ 層的電阻相等In one embodiment, a preparation parameter of an N-type metal oxide tantalum transistor having a breakdown voltage of 200 V is as follows: 099119030 Form No. A0101 Page 23 / Total 123 Page 0993278454-0 201101497 200V Metal Oxide Tantalum Effect Tube Width (μιη Height (μιη) doping concentration and remark channel 0.50 8.25 500-1000 human gate oxide polycrystalline octagonal pole 0.16 0.60 Ν ++ in-situ doped P-mesa structure - epitaxial layer 0.50 8.00 5E14cm-3 ( 〇r0.25Ell cm·2 is the concentration of each region in the drain region of the two nanotube N-type epitaxial layers) P- epitaxial layer 0.25 8.00 3.95E16 cm-3 (or 0.9875E12 cm·2·each region Concentration) N- Epitaxial layer 0.125 8.00 8E16cm-3 42 p〇hms*cm_2 Gate leakage clear 0.20 1.00 Si02 Polysilicate glass containing boric acid above the gate of the polycrystalline germanium 0.20 0.40 Polished glass plate containing boric acid by chemical mechanical polishing /Tetraethyl orthosilicate cell spacing -*---- 1.75 N- epitaxial layer resistance: A*Repi = 225pohms-cni'2 P- epitaxial layer and P- epitaxial layer nanotubes have resistance N-epitaxial _ layer resistance is equal

第5圖表不在耗盡狀態下,沿如第⑽所示的n型金屬氧化 物半導體電晶體1()_奈米管漏極漂流區電場分佈的模The fifth graph is not in the depletion state, along the mode of the electric field distribution of the drift region of the n-type metal oxide semiconductor transistor 1()_nanotube as shown in the (10)

小I &卿征/示/瓜跑和P -里面 (曰都耗盡時’線550表示電場沿奈米管漏極漂流 又方向佈’線552表示電場在p—臺面結構外延層 分佈°線554表示電場沿多^夕柵極和氧化物填充的; 方向分佈。如第5圖所示,由於奈米管漏極漂流區的名 ;農度均勻致,並^'電場也在N—外延層奈米管的整個 度方向上Μ分佈,這'賴高了擊穿Μ娜。在. 099119030 第24頁/共丨23頁 H金屬氧化物㈣晶財,柵極下方沒有深層氧^ 表單編也mi平衡。在這種情況下,如第5 0993278454-0 201101497 中的虛線556所示,電場分佈將會發生分化。這種電場梯 度會對電晶體的擊穿電壓特性造成不良影響。 其他半導體裝置 依據本發明的其他方面,上述的N-型外延層/P-型外延層 奈米管電晶體結構,還可用於製備其他半導體裝置。在 一個實施例中,利用N-型外延層/P-型外延層奈米管電晶 體結構製備絕緣栅雙極電晶體裝置。在另一個實施例中 ,利用N-型外延層/P-型外延層奈米管電晶體結構製備肖 特基二極體。而在另一個實施例中,利用N-型外延層/P-型外延層奈米管電晶體結構製備P-N結二極體。這些絕緣 柵雙極電晶體、肖特基二極體以及P-N結二極體都可以通 過如第1圖所示的單奈米管結構,或如第2圖所示的雙奈 米管結構製成。而且製備二極體裝置並不需要半導體晶 胞的溝道中有柵極電極。 此外,在本發明的一個實施例中,可以利用一個電晶體 晶胞(比如第1圖和第2圖中所示的電晶體晶胞)的陣列 ,製備N型金屬氧化物矽電晶體,並且在此電晶體晶胞陣 列中插入一個或多個絕緣栅雙極電晶體裝置、或肖特基 二極體或P-N結二極體,或利用同種N-型外延層/P-型外 延層奈米管電晶體結構組成的這些裝置的任意組合。這 樣形成的垂直N型金屬氧化物矽或P型金屬氧化物矽電晶 體,都與絕緣柵雙極電晶體裝置、宵特基二極體以及/或 P-N結二極體並聯。將絕緣柵雙極電晶體裝置、肖特基二 極體以及/或P-N結二極體,與垂直溝道金屬氧化物矽場 效應管並聯,對於裝置的運轉非常有利,下文還將詳細 介紹。 099119030 表單編號A0101 第25頁/共123頁 0993278454-0 201101497 第6圖表不依據本發明的一個實施例,一種絕緣柵雙極電 晶體裝置的剖面圖。參見第6圖,絕緣栅雙極電晶體妒置 300形成在N-型緩衝層302上,起場攔區的作用。在一個 實施例中,通過外延生長或利用背部植入製傷型緩衝 層302,其厚度為2-15微米。N-型緩衝層302也可以作為 起始襯底。P-型半導體層形成在N型緩衝層3〇2的底面上 ,以構成P+内部發射極區332。金屬層334用於形成集電 極,以便與P+内部發射極區332形成電接觸。如第6 (a) 圖所示,已知在外部裝置接頭的術語中,絕緣柵雙極電 晶體的内部發射極就是集電極,參照知第2圖所示的方法 ’製備其餘的N -型外延層/ p-型外延廣奈米管n型金屬氧 化物矽電晶體。栅極多晶矽電極318位於氧化物填充的溝 道312中,以及柵極介質316近鄰。N-型外延層310以及 P-型外延層308形成在溝道的側壁上。P-型本體區320擔 任絕緣栅雙極電晶體裝置300的内部集電極。金屬層330 構成一個發射極電極,以便與P-本體内部集電極320的P + 接觸區324形成電揍觸,以及通過含有硼酸的矽玻璃326 ,與N +源極區322形成電接觸。如第6 (a)圖所示,已知 在外部裝置接頭的術語中,絕緣柵雙極電晶體的内部集 電極就是發射極。 在一個電晶體陣列中,將絕緣柵雙極電晶體裝置與金屬 氧化物矽場效應管裝置並聯有很多好處。首先’在高頻 轉換應用中,需要使用奈米管絕緣栅雙極電晶體裝置。 其次,在一個普通陣列中,集成使用相同製作方法製備 的絕緣柵雙極電晶體以及金屬氧化物矽場效應管後’無 源襞置的尺寸以及系統成本都將減少,旅且整個系統的 099119030 表單編St A0101 第26頁/共123頁 0993278454-0 201101497 功率耗散也將降低。此外,與使用傳統工藝製備的絕緣 柵雙極電晶體裝置相比,形成絕緣柵雙極電晶體裝置基 極區的N—型外延層奈米管層的摻雜濃度相對較高(例如2 個數量級)。因此’基極區中儲存的電猗將減少,少數 載流子的壽命也將縮短。利用本發明所述的N-型外延層/ P-型外延層奈米管製備工藝製成的絕緣柵雙極電晶體裝 置,將具有更低的集電極-發射極電壓Vce,這就使得傳 導損失更低、轉換速度更快。當然,在其他實施例中,Small I & Qing sign / show / melon run and P - inside (when 曰 is exhausted 'line 550 means electric field drifts along the nanotube drain and direction cloth ' line 552 represents the electric field in the p-mesa structure epitaxial layer distribution ° Line 554 represents the direction distribution of the electric field along the gate and oxide; as shown in Figure 5, due to the name of the drain drift region of the nanotube; the degree of agronomy is uniform, and the electric field is also N- The Μ distribution of the epitaxial layer of the nanotubes in the whole degree of direction, which is higher than the breakdown of the enamel. In 099119030 page 24 / a total of 23 pages of H metal oxide (four) crystal money, there is no deep oxygen below the gate ^ form It is also balanced by mi. In this case, the electric field distribution will differentiate as indicated by the dotted line 556 in No. 5,993,278,454 to 201101497. This electric field gradient adversely affects the breakdown voltage characteristics of the transistor. Semiconductor Device According to other aspects of the present invention, the above-described N-type epitaxial layer/P-type epitaxial layer nanotube structure can also be used to fabricate other semiconductor devices. In one embodiment, an N-type epitaxial layer is utilized. Preparation of Insulated Gate Bipolar Crystals by P-Type Epitaxial Layer Nanotubes In another embodiment, the Schottky diode is fabricated using an N-type epitaxial layer/P-type epitaxial layer nanotube structure. In another embodiment, an N-type epitaxial layer is utilized. P-type epitaxial layer nanotube transistor structure is used to prepare PN junction diode. These insulated gate bipolar transistor, Schottky diode and PN junction diode can pass through the single nephew as shown in Fig. 1. The rice tube structure, or the double nanotube structure as shown in Fig. 2. And the preparation of the diode device does not require a gate electrode in the channel of the semiconductor unit cell. Further, in one embodiment of the invention An N-type metal oxide tantalum transistor can be prepared by using an array of transistor cells (such as the transistor cell shown in FIGS. 1 and 2), and a transistor cell array is inserted into the array. Or a plurality of insulated gate bipolar transistor devices, or Schottky diodes or PN junction diodes, or devices using the same type of N-type epitaxial layer/P-type epitaxial layer nanotube structure Any combination. The vertical N-type metal oxide or P-type metal oxide layer thus formed The crystals are connected in parallel with an insulated gate bipolar transistor device, a stellite diode, and/or a PN junction diode. The insulated gate bipolar transistor device, Schottky diode, and/or PN junction diode The body, in parallel with the vertical channel metal oxide 矽 field effect transistor, is very advantageous for the operation of the device, as will be described in more detail below. 099119030 Form No. A0101 Page 25 / 123 Page 0993278454-0 201101497 The sixth chart is not in accordance with the present invention. One embodiment of an insulated gate bipolar transistor device. Referring to Figure 6, an insulated gate bipolar transistor device 300 is formed on the N-type buffer layer 302 to function as a field stop. In one embodiment, the wound-type buffer layer 302 is implanted by epitaxial growth or by back implantation to a thickness of 2-15 microns. The N-type buffer layer 302 can also serve as a starting substrate. A P-type semiconductor layer is formed on the bottom surface of the N-type buffer layer 3〇2 to constitute a P+ internal emitter region 332. Metal layer 334 is used to form the collector to make electrical contact with P+ internal emitter region 332. As shown in Fig. 6(a), it is known that in the terminology of the external device connector, the internal emitter of the insulated gate bipolar transistor is the collector, and the remaining N-type is prepared by referring to the method shown in Fig. 2 Epitaxial layer / p-type epitaxial wide-nanotube n-type metal oxide tantalum transistor. Gate polysilicon electrode 318 is located in oxide filled trench 312 and gate dielectric 316 is adjacent. An N-type epitaxial layer 310 and a P-type epitaxial layer 308 are formed on the sidewalls of the channel. The P-type body region 320 serves as the internal collector of the insulated gate bipolar transistor device 300. Metal layer 330 forms an emitter electrode to form an electrical contact with P+ contact region 324 of P-body internal collector 320 and electrical contact with N+ source region 322 via bismuth glass 326 containing boric acid. As shown in Figure 6(a), it is known that in the terminology of external device connectors, the internal collector of an insulated gate bipolar transistor is the emitter. In an array of transistors, there are many advantages to connecting an insulated gate bipolar transistor device to a metal oxide tantalum field effect device. First of all, in high frequency conversion applications, a nanotube insulated gate bipolar transistor device is required. Secondly, in a common array, the size and system cost of the 'passive device' will be reduced after the integration of the insulated gate bipolar transistor prepared by the same fabrication method and the metal oxide tantalum field effect transistor, and the whole system is 099119030. Forms St A0101 Page 26 of 123 Page 0993278454-0 201101497 Power dissipation will also be reduced. In addition, the doping concentration of the N-type epitaxial layer of the base layer forming the base region of the insulated gate bipolar transistor device is relatively high compared to the insulated gate bipolar transistor device prepared by the conventional process (for example, 2 Magnitude). Therefore, the amount of electricity stored in the base region will be reduced, and the life of a small number of carriers will also be shortened. The insulated gate bipolar transistor device fabricated by the N-type epitaxial layer/P-type epitaxial layer nano tube preparation process of the present invention will have a lower collector-emitter voltage Vce, which makes conduction Lower losses and faster conversions. Of course, in other embodiments,

絕緣栅雙極電晶體裝置也可以在半導體襯底上單獨形成 ,而無需金屬氧化物矽場效應管或其他裝置。Insulated gate bipolar transistor devices can also be formed separately on a semiconductor substrate without the need for metal oxide germanium field effect transistors or other devices.

第7圖表示依褲本發明的一嗰實施例,一種〖肖特基二極體 的剖面圖。參見第7圖,肖特基二極體4〇〇形成在N+襯底 402上。金屬層442用於提供到N+襯底402的電接觸,以 便形成陰極電極。其餘的N-型外延層/p-型外延層奈米管 N型金屬氧化物矽電晶體,按照如第2圖所示的相同方法 製備,但不同的是並不會形成多’晶矽柵極♦極、本體區 、源極區以及本體接觸區,而是在彔面結構_外延層 404中形成一個淺P +陽極接觸區424。p +陽極接觸區424 是重摻雜的,以便保證此區域中的歐姆接觸。肖特基金 屬層440沉積在半導體結構上方,並至少與N—型外延層 41 〇、P-型外延層4〇8和P-臺面結構-外延層、以及 P+陽極接觸區424相接觸。在肖特基金屬層44〇和卜型外 延層410之間的結446處,形成一個肖特基結。肖特基金 廣層440構成了爲特基一極體400的陽極電極。第?(&) 圖表不肖特基二極艎的電路符號。在—個可選實施例中 ’沉積宵特基金屬之前,要在P-臺面結構_外延層4〇4的 099119030 表單鴆號A0101 第27頁/共123頁 0993278454-0 201101497 頂面上—種P +型植人物(例一或BF2),以便形成 :換雜的邊卜摻雜區438。卜摻雜區438延伸並穿過臺面 ::的整個表面,包括N-型外延層410以及P-型外延層 408 摻雜區438具有降低卜型外延層表面濃度的作用 以調即肖特基勢曼的高度,在肖特基二極體關閉狀態 時’減少漏電流’確保良好的肖特基接觸。 另個實施例中,利用一個如第1圖和第2圖所示的電 晶體晶胞陣列,製備N型金屬氧化物石夕電晶體,而且還將 利用同種N-型外延層/P_型外延層奈米管電晶體結構組成 的肖特基二極體裝置,插入到此電晶體晶胞陣列中。插 入到電晶體陣列中的肖特基二極禮裝置,具有改善電晶 體復位的功能。在一個實施锕中,10%的電晶體晶胞中 都是宵特基二極體。 第8圖表示依據本發明的一個實施例,一種p-N結二極體 的剖面圖。參見第8圖,P_N結二極體500形成在N+襯底 502上。金屬層542用於提供到N +襯底502的電接觸,以 便形成陰極電極❶其餘的N-型外延層/P-型外延層奈米管 N型金屬氧化物矽電晶體,按照如第2圖所示的相同方法 製備’但不同的是並不會形成多晶矽栅極電極、源極區 以及本體接觸區,而是在P-臺面結構外延層504中形成一 個P +陽極接觸區52〇。歐姆金屬層540沉積在半導體結構 上方’並與P+陽極接觸區520相連,形成陽極電極。在P + 陽極接觸區520以及N-型外延層510之間的結546處,形 成一個P-N結。第8 (a)圖表示P-N結二極體500的電路 符號。因此,利用同種N-型外延層/P-型外延層奈米管電 晶體製備工藝製成的P-N結二極體500,可以同利用同種 099119030 表單編號A0101 第28頁/共123頁 0993278454-0 201101497 製備工藝製成的N型金屬氧化物矽或p型氧化物矽電晶體 ,形成在一個陣列中。將P-N結二極體和垂直溝道金屬氣 化物矽場效應管裝置,集成在同一個電晶體陣列中,可 以不再使用外部二極體,減少了成本並且改善了性能。 在第6圖-第8圖中,利用雙奈米管結構製備絕緣柵雙電晶 體裝置、肖特基二極體以及P—N結二極體。在其他實施例 中’可以利用單N-外延層奈米管製備同樣的絕緣柵雙電 晶體裝置、肖特基二極體以及P-N結二極體。 使用P-型襯底的製備過程 依據本發明的另一方面,一種製備含有薄N-型外延層和 P-型外延層(“奈米管”)的垂直溝道金屬氧化物矽場 效應管的方法,是將一個輕摻雜的P-型單晶體襯底作為 裝置的本體。通過外延生長‘或離子注入、形成垂直溝道 金屬氧化矽矽場效應管裝置的背部層。此外,可以利用 同樣的製備方法,製備絕緣柵雙極電晶體裝置、宵特基 二極體以及P-N結二極猶或它們的:組合聚置。更重要的 是,同樣的製備方法還可以製備垂直溝道金屬氧化物石夕 場效應管電晶體晶胞’與一個或多個絕緣柵雙極電晶體 裝置、肖特基二極體以及P-N結二極體的組合,實現並聯 結構’提高功率金屬氧化物矽場效應管裝置的電學性能 第9 (a)圖至第9 (k)圖以及第9 (fl)圖至第9 (11) 圖為依據本發明的可選實施例,製備垂直溝道金屬氧化 物矽場效應管裝置和絕緣柵雙極電晶體裝置的製備工藝 的剖面圖。參見第9 (a)圖,製備垂直溝道金屬氧化物 矽場效應管裝置的方法是,使用一個P-型單晶矽襯底( 099119030 表單編號A0101 第29頁/共123頁 0993278454-0 201101497 P _概底)6 0 4作為起始材料。在一個實施例中,p〜概底 604的摻雜濃度為1E14到1E15 cnf3。如第9 (b)圖所系 ,刻#P-襯底604,形成溝道6〇6。正如上述的製備過程 ,無需使用外延生長,就能在卜襯底6〇4的臺面結構( P-臺面結構襯底”)中形成垂直溝道金屬氧化物矽場效 應管或其他裝置。Fig. 7 is a cross-sectional view showing a Schottky diode according to an embodiment of the present invention. Referring to Fig. 7, a Schottky diode 4 is formed on the N+ substrate 402. Metal layer 442 is used to provide electrical contact to N+ substrate 402 to form a cathode electrode. The remaining N-type epitaxial layer/p-type epitaxial layer nanotube N-type metal oxide tantalum transistor is prepared in the same manner as shown in Fig. 2, but the difference is that no multi-crystal lattice is formed. A shallow P + anode contact region 424 is formed in the facet structure - epitaxial layer 404, the pole, the body region, the source region, and the body contact region. The p + anode contact region 424 is heavily doped to ensure ohmic contact in this region. The Schott Foundation layer 440 is deposited over the semiconductor structure and is in contact with at least the N-type epitaxial layer 41, the P-type epitaxial layer 4A8, the P-mesa structure-epitaxial layer, and the P+ anode contact region 424. At the junction 446 between the Schottky metal layer 44 and the epitaxial layer 410, a Schottky junction is formed. The SCHOTT Fund 440 constitutes the anode electrode of the monopole body 400. The first? (&) The chart does not have Schottky's two-pole circuit symbol. In an alternative embodiment, before depositing the stellite metal, the top surface of the P-mesa structure _ epitaxial layer 4 〇 4 099119030 form nickname A0101 page 27 / 123 page 0993278454-0 201101497 P + type implanted characters (Example 1 or BF2) to form: a mixed side doped region 438. The doped region 438 extends and passes through the entire surface of the mesa:, including the N-type epitaxial layer 410 and the P-type epitaxial layer 408. The doped region 438 has the effect of reducing the surface concentration of the epitaxial layer to adjust the Schottky. The height of the Mann, 'reducing leakage current' when the Schottky diode is off ensures good Schottky contact. In another embodiment, an N-type metal oxide oxide crystal is prepared by using a transistor cell array as shown in FIGS. 1 and 2, and the same N-type epitaxial layer/P_ type is also used. A Schottky diode device composed of an epitaxial nanotube transistor structure is inserted into the transistor cell array. The Schottky diode device inserted into the transistor array has the function of improving the reset of the transistor. In one embodiment, 10% of the crystal unit cells are all thiol diodes. Figure 8 is a cross-sectional view showing a p-N junction diode in accordance with one embodiment of the present invention. Referring to Fig. 8, a P_N junction diode 500 is formed on the N+ substrate 502. The metal layer 542 is used to provide electrical contact to the N + substrate 502 to form a cathode electrode, the remaining N-type epitaxial layer / P-type epitaxial layer of the nanotube N-type metal oxide tantalum transistor, as in the second The same method shown in the figure is prepared 'but differing in that the polysilicon gate electrode, the source region and the body contact region are not formed, but a P + anode contact region 52 is formed in the P-mesa structure epitaxial layer 504. An ohmic metal layer 540 is deposited over the semiconductor structure and is coupled to the P+ anode contact region 520 to form an anode electrode. At the junction 546 between the P + anode contact region 520 and the N-type epitaxial layer 510, a P-N junction is formed. Fig. 8(a) shows the circuit symbol of the P-N junction diode 500. Therefore, the PN junction diode 500 made by the same N-type epitaxial layer/P-type epitaxial layer nano tube transistor preparation process can be used with the same kind of 099119030 Form No. A0101 Page 28 / 123 Page 0993278454-0 201101497 Preparation process N-type metal oxide tantalum or p-type oxide tantalum transistor formed in an array. Integrating the P-N junction diode and the vertical channel metal gas 矽 field effect transistor device in the same transistor array eliminates the need for external diodes, reducing cost and improving performance. In Figs. 6 to 8, an insulated gate double crystal device, a Schottky diode, and a P-N junction diode are prepared using a double nanotube structure. In other embodiments, the same insulated gate dual crystal device, Schottky diode, and P-N junction diode can be fabricated using a single N- epitaxial layer nanotube. Preparation Process Using P-Type Substrate According to another aspect of the present invention, a vertical channel metal oxide tantalum field effect transistor having a thin N-type epitaxial layer and a P-type epitaxial layer ("nanotube") is prepared. The method is to use a lightly doped P-type single crystal substrate as the body of the device. The back layer of the vertical channel metal oxide FET device is formed by epitaxial growth or ion implantation. In addition, the same preparation method can be used to prepare an insulated gate bipolar transistor device, a stellite diode, and a P-N junction diode or a combination thereof. More importantly, the same preparation method can also be used to prepare a vertical channel metal oxide oxide field transistor cell unit' with one or more insulated gate bipolar transistor devices, Schottky diodes, and PN junctions. Combination of diodes to achieve parallel structure 'Electrical performance of improved power metal oxide tantalum field effect device device 9th to 9th (k) and 9th (fl) to 9th (11th) In accordance with an alternative embodiment of the present invention, a cross-sectional view of a fabrication process for a vertical channel metal oxide tantalum field effect device and an insulated gate bipolar transistor device is prepared. Referring to Figure 9(a), a method for fabricating a vertical channel metal oxide tantalum field effect device is to use a P-type single crystal germanium substrate (099119030 Form No. A0101 Page 29 / 123 Page 0993278454-0 201101497 P _ basic) 6 0 4 as a starting material. In one embodiment, the doping concentration of p~ the base 604 is 1E14 to 1E15 cnf3. As shown in Fig. 9(b), the #P-substrate 604 is patterned to form a channel 6〇6. As in the above-described preparation process, a vertical channel metal oxide field effect tube or other device can be formed in the mesa structure (P-mesa structure substrate) of the substrate 6〇4 without using epitaxial growth.

參見第9 (c)圖,通過外延過程,在p—襯底6〇4的表面上 形成一個P-型外延層608。P-型外延層6〇4保角地形成 在P-襯底604的裸露表面上、溝道中以及頂面和底面上。 然後,如第9 (d)圖所示,再通過第二次外延過程,在 P-型外延層608的表面上形成型外延層wo。型外延 層610保角地形成在保角p—型外延層608上。Referring to Fig. 9(c), a P-type epitaxial layer 608 is formed on the surface of the p-substrate 6?4 by an epitaxial process. P-type epitaxial layers 6〇4 are formed conformally on the exposed surface of P-substrate 604, in the trench, and on the top and bottom surfaces. Then, as shown in Fig. 9(d), a type epitaxial layer wo is formed on the surface of the p-type epitaxial layer 608 by the second epitaxial process. The epitaxial layer 610 is formed conformally on the conformal p-type epitaxial layer 608.

如第9 (e)圖所示,下一工序類似於第4 (b)圖至第4 ( d)圖所示的步驟,在P-臺面結構襯底60|的頂面上完成 電晶體結構。更確切地說,用二氧化碎612等介質材料填 充溝道606,並進行背部刻蝕。多晶矽層618形成在溝道 中,以便在栅極介質616近鄰形成栅極端子。然後在p_臺 面結構襯底604的頂面上形成摻雜區。p-本體區62〇隨之 形成。在P-本體區620中,形成重摻雜的N +源極區622以 及重摻雜的P+本體接觸區624。 然後,本實施例繼續完成頂部處理。也就是說,參見第9 (f )圖,在半導體結構的整個表面上方,形成一個絕緣 層(例如含有棚酸的石夕玻璃626 )。在含有硼酸的矽玻璃 626中製作開口,並沉積一個金屬層630,以便與N +源極 區622和P +本體接觸區624相接觸。金屬層630會形成源 極電極還是發射極電極,主要取決於基於底部處理的裝 099119030 表單編號A0101 第30頁/共123頁 0993278454-0 201101497 置類型。在一個可選實施例中,當進行底部處理時,頂 部處理並未完成也不再進行,下文還將詳細介紹。 如第9 (g)圖所示’在本實施例中,頂部處理完成之後 ,對該半導體結構進行背部研磨,除去底部多餘的卜襯 底材料。背部研磨一直進行到氧化物填充的溝道底部’ 也就是一直到氧化層612的底面。因此,在溝道底部多餘 的N -型和P -型外延層就被除去了。 ΟAs shown in Fig. 9(e), the next process is similar to the steps shown in Figs. 4(b) to 4(d), and the crystal structure is completed on the top surface of the P-mesa structure substrate 60|. . More specifically, the channel 606 is filled with a dielectric material such as oxidized 612 and back etched. A polysilicon layer 618 is formed in the channel to form a gate terminal adjacent the gate dielectric 616. A doped region is then formed on the top surface of the p_ mesa structure substrate 604. The p-body region 62 is formed accordingly. In the P-body region 620, a heavily doped N+ source region 622 and a heavily doped P+ body contact region 624 are formed. Then, this embodiment continues to complete the top processing. That is, referring to Fig. 9(f), an insulating layer (e.g., Shixia glass 626 containing shed acid) is formed over the entire surface of the semiconductor structure. An opening is made in the bismuth glass 626 containing boric acid, and a metal layer 630 is deposited to contact the N + source region 622 and the P + body contact region 624. The metal layer 630 will form a source electrode or an emitter electrode, depending mainly on the bottom processing type 099119030 Form No. A0101 Page 30 / 123 Page 0993278454-0 201101497 Type. In an alternative embodiment, when the bottom processing is performed, the top processing is not completed and is not performed, as will be described in more detail below. As shown in Fig. 9(g), in the present embodiment, after the top treatment is completed, the semiconductor structure is back-grinded to remove the excess liner material at the bottom. Back grinding continues until the bottom of the oxide filled trenches', i.e., up to the bottom surface of oxide layer 612. Therefore, the excess N-type and P-type epitaxial layers at the bottom of the channel are removed. Ο

如第9 ( h )圖所示,背部研磨之後,通過背面注入(例 如離子注入或擴散),在P-臺面結構的底部,形成一個 N +摻雜層660。照這樣,一個垂直N型金屬氧化物矽電晶 體600就形成了,其中N +摻雜層660作為漏極、N-外延層 610作為奈米管漏極漂流區、N+區622作為源極,以及多 晶矽層618作為柵極。在其他實施例中,N +層660作為歐 姆接觸,連接到肖特基二極體或P-N結二極體的陰極。如 第9 (i)圖所示,通過快速熱退火或鐳射退火進行局部 植入啟動後,利用底部鍍金屬664,在丰導體結構的底部 形成漏極電極。在一個實施例^,濺鍍背面鍍金屬,所 f 1 卷® i,- i'VK..蔽 用的金屬可選擇鈦、鎳或金"。’ 在另一個實施例中,利用同一種含有N-型和P-型奈米管 的垂直溝道金屬氧化物半導體矽場效應管結構,製備絕 緣栅雙極電晶體。如第9 (h)圖所示,通過背部N +注入 ,形成N+層660之後,再利用第二次背部注入,在絕緣柵 雙極電晶體裝置所要求的位置,形成P+摻雜層662。N+摻 雜層660形成絕緣栅雙極電晶體的N-型緩衝層662或場攔 區,而P+摻雜層662形成絕緣柵雙極電晶體的P+内部發射 極》P+植入物可以是一個薄層,將全部垂直溝道金屬氧 099119030 表單編號A0101 第31頁/共123頁 099327MM-0 201101497 化物半導體矽場效應管結構集成到絕緣柵雙極電晶趙誓 置中,或者將某些特定的半導體結構選擇性地集成到絕 緣柵雙極電晶體裝置中。如第9 (k)圖所示,利用底部 鍍金屬664,形成P+内部發射極662的集電極電極。除了 帶有一個穿過背部植入物的另外的P+層662之外,絕緣才冊 雙極電晶體裝置680的製備過程與n型金屬氧化物;g夕電晶 體600的製備過程相同。P-本體區620在絕緣柵雙極電晶 體裝置680中起背部集電極的作用。頂部鍍金屬63〇構成 發射極電極’接觸P -本體内部集電極區620。 综上所述,如第9 (e)圖所示,在P_臺面.結構6〇4上方形 成電晶體結構之後,在背部、掩嫫或頂部處理未完成之前 ,在進行底部處理的同時,可以完成頂部處理,如第9 ( f)圖所示。第9(fl)圖至第9(11)圖表示利用輕推雜 的P-型單晶體襯底,躲製備垂直溝道金屬氧化㈣場 效應管以及其他裝置,可以選用的處理工藝。參見第9 ( fl)圖’在第9 (e)圖之後’形成一個含有删酸的石夕玻 璃層626,覆蓋在半導艘結構的整個頂面上。然後,在進 行進-步_部處理之前,線通财料絲去多餘的 Ρ-襯底,一直到接近氧化物填充的溝道底部為止,如第9 (g〇圖所示。含有魏㈣玻璃層626會在f部處理過 程中保護金屬氧化物矽場效應管裝置的頂部。在一個實 施例至’背部研磨—直進行到溝道下方2_5微求的地方。 也就是說,在背部研磨處理之後,溝道下方僅剩餘2 5微 米的P-襯底層6G4。當必須利用外延生長在背面形成_ P+層時,底面上剩餘的卜襯底就變得至關重要了。 參見第9 (hi)圖’通過外延生長或離子注人,在背部形 099119030 0993278454-0 表單編號A0101 第32頁/共123頁 成N +屠661。如第9 (hi)圖所示,摻雜物從料層661向 外擴散,將會對位於溝道底部的N-外延層和p_外延層反 向摻雜,以便形成N +層。如果要製備—個垂直1^型金屬氧 化物石夕電晶體,就要直接對N +層661進行底部金屬化。然 而,如果要製備一個絕緣概雙極電晶體裝置,就要通過 外廷生長或離子注入,在背部形成P+層663,如第9 ( j 1)圖所示。尤其是如果要生長P +層663,由於在外延生 長過程中’ P+層663會受到來自頂部金屬的污染,那麼最 好用含有硼酸的矽玻璃層覆蓋在頂部上,而不是將鍍金 屬裸露在外。 ..... . . .. . 如第9 (kl)圖所示’如果要製備一個絕緣柵雙極電晶體 裝置,要在形成P+層663之敗,使用背部金屬化664。然 後,進行頂部處理,以便在含有硼酸的矽玻璃層626中形 成開口,並形成頂部鍍金屬630,如第9 (11)圖所示。 這樣形成的絕緣栅雙極電晶體裝置7 8 0,其中頂部鍍金屬 630作為發射極電極’底部鑛金屬664作為集電極電極。 第9 (a)圖至第9 (11)圖所述的製備過程,可用於製備 一個與絕緣柵雙極電晶體裝置、肖特基二極體和/或P-N 結二極體相結合的金屬氧化物矽電晶體陣列。第10圖表 示依據本發明的一個實施例,利用如第9 (a)圖至第9 ( k)圖所示的工藝’所製備一個與N-型絕緣柵雙極電晶體 相結合的垂直N型金屬氧化物石夕電晶體的剖面圖。第11 ( a)圖表示第10圖所示的集成金屬氧化物矽場效應管和絕 緣柵雙極電晶體裝置的等效電路圖,第11 (b)圖表示第 11 (a)圖所示的金屬氡化物矽場效應管和絕緣柵雙極電 晶體裝置的製作時間圖β參見第10圖,在半導體裝置8〇〇 表單編號Α0101 第33頁/共123頁 201101497 中’除了某些特殊的電晶體晶胞僅僅為了形成絕緣栅雙 極電晶體的内部發射極時,可選用p+層663之外,垂直N 型金屬氧化物矽電晶體8011;)的製備工藝都與絕緣柵雙極 電晶體裝置801a相同。除此之外,垂直N型金屬氧化物石夕 電晶體801b的結構與絕緣栅雙極電晶體裝置80 la也〜樣 °如第11 (a)圖所示,所形成的N-型絕緣栅雙極電晶體 801a與N型金屬氧化物矽電晶體801b並聯。裝置的集電 極和漏極端子通過底部鍍金屬相連,而裝置的發射核和 源極端子通過頂部鍍金屬相連。在實際運行中,絕緣挪 雙極電晶體裝置80 la在N型金屬氧化物矽電晶體8〇11)之 後接通,在N型金屬氧化物矽電晶體801b之前很快關閉 絕緣柵雙極電晶體裝置80 la降低了合成半導體裝置 傳導損毁,N型金屬氧化物矽電晶體80lb提高了它的轉& 性能。結合N型金屬氧化物矽的最佳性能(轉換迷斤)、 及絕緣栅雙極電晶體裝置的最佳性能(¾ “導通, 下的電壓降),合成半導艟裝置SMfl使得製備—種新型力 率裝置結構成為可能。 第12圖表示依攄本發明的一輪實施:¾],利用第9 r 、a)圖 至第9 (e)圖以及第9 (fl)圖至第9 (11)圖 _所不的工 藝’所製備的一個與肖特基二極體相結合的垂直金屬 氧化物矽電晶體的剖面圖。第13圖表示第12圖祕_ 阐所不的結 合金屬氧化物矽場效應管和肖特基二極體的等效電路圖 。參見第12圖,在半導體裝置900中’ N型金屬氣化物 電晶體901a與肖特基二極體901b的製備工藝, 奈米管N-外延層/P-外延層的製備工藝相同 狀態 與基本的 099119030 當在p-臺面 結構604上製備電晶體結構時,對於肖特基二核體 表單編號A0101 第34頁/共123頁 lb而 201101497 言’僅僅形成了 一,仕尽發明 ❹ 的某些實施例中,可以用與Ρ+本體接觸區624相同的步驟 製備Ρ+區625。儘管從第14圖中可能看不出來,但是在這 種情況下,Ρ+區625的深度和濃度將與ρ +本體接觸區624 相同。然後利用背部處理(例如外延生長),形成料層 661 °Ν +層661不僅作W型金屬氧化物石夕電晶體9〇1&和 漏極端子,而且作為肖特基二極體9〇lb的陰極端子。背 部鐘金屬664構成了這兩種裝置的漏極和陰極的接觸電極 。進行頂部處理時,肖特基金屬層6财先形成在晶胞區 中’肖特基二極體也將形成在其卜然後,利用頂部錢 金屬630,將N型金屬氧化物發電晶體9〇1&的源極和本體 ’短接到肖特基二極體9〇lb的陽極上。因此,頂部锻金 屬630就形成了這兩種裝置的源極 '本體和陽極的接觸電 極。如第13圖所示,所形成的N型金屬氧化㈣電晶體 9〇la與肖特基二極體9〇lb並聯在一起^ 第14圖表示依據本發明的_個纽例,利用如第9⑷ Ο 圖至第9⑴圖所示的工藝,所製備的-個與P-N二極體 相結合的絕緣柵雙極電晶體裝置的剖面圖。扣圖表示 第14圖所不的集成絕緣栅雙極電晶體和卜n結二極體的等 效電路圖。參見第14圖,絕緣栅雙極電晶體πηπ^ρ-ν 結-極體mlb的製備工藝,與基本的奈米管n_外延層/ p-外延層的製備工藝相同 晶體結構時,對於二:結構6°4上製備電 、、"一極體i〇oib而言’僅僅形成了 +陽極接觸區627«然後利用 用頂邛處理,形成頂部鍍 便連接絕緣柵雙極電 099119030 的發射:::極端子。然後利用背部處理,通 0993278454-0 第35頁/共123頁 , 201101497 過離子注人,形她層66卜卩+層661不僅作為絕緣柵雙 極電晶體1001a的N-緩衝/場欄層,而且作為p_N結二極 體i〇〇ib的陰極端子。選擇p+層663形成在絕緣栅雙極電 B曰體晶胞中,以便形成絕緣栅雙極電晶體裝置的内部發 射極。通過背部鑛金屬664,形成對於這兩種裝置的集電 極和陰極的接觸電極。因此,如第15圖所示,所形成的 絕緣柵雙極電晶體1001a與p_N結二極體1〇〇11)並聯在一 起。 第16 (a)圖和第16 (b)圖表示依據本發明的—個實施 例,製備垂直溝道金屬氧化物矽場效應管裝置的可選加 工工藝的剖面圖。參見第16 U) @,外延生長P-外延層 608以及N-外延層61〇之後,進行各命異性料注入,以便 在溝道底部反向摻雜N_外延層和?—外延層。N +植入物的 貝穿深度由點線圓692表示。在本實施例中,利用薄遮罩 氧化層1180保護半導體結構的水準表面,不受注入的損 害。各向異性的N +注入,也會對卜臺面結構6〇4頂部的 N-外延層和P-外延層反向摻雜。退火後,會形成如第16 (b)圖所示的結構,其中區域1182出現在p臺面結構 604的頂部以及溝道的底部。在形成電晶體結構之前,通 過化學機械拋光過程(CMP),除去卜臺面結構6〇4頂部 的N+區1182。然後,對進行卜襯底背面磨平,一直到溝 道底部的N +層1182下方,如圖中虛線1184所示。通過外 延生長,形成裝置的N +漏極或N +場欄區。此外,還通過 外延生長,形成P+區,進而形成絕緣栅雙極電晶體裝置 的内部發射極。當進行第16 (a)圖和第16 (b)圖所示 的處理過程時,可以完全不用背部離子注入,僅使用外 099119030 表單編號A0101 第36頁/共123頁 0993278454-0 201101497 延生長就可以形成背部層。這種對溝道底部進行反向摻 雜的方法,也可用於在高摻雜的襯底上,生長p_臺面 結構-外延層的過程。在這種情況下,溝道無需再延伸到 襯底上,只要各向異性的N+植入物穿過溝道底部,並從 襯底向外擴散,—直到制_外延奈米管連接卿+襯底上 〇 综上所述’包括金屬氧化物石夕場效應管裝置、絕緣栅雙 極電晶體裝置、肖特基二極體以及p_N二極體在内的半導 ¢) 體裝置都可以利用本發明所述的N-外延層/p_外延層奈 米管電晶體結構,通過形成—個電晶趙晶胞的陣列來製 備。電晶體晶胞根據應用的需要,採用單奈米管結構或 雙不米€結構。電晶體晶胞的陣列可以是一維陣列或二 維陣列《依據本發明的__個可選實施例,利用六角形電 胃BS胞或方形電晶體晶胞’在一個二維陣列中形成電 晶體晶胞® 第17圖表不依據本發明的一個實施例,一種六角形的電 〇 晶體晶胞陣列的俯視圖。參見第:17圖,:利用電晶體晶胞 1201的二維陣列,形成—個電晶體俥列^.電晶體晶 胞1200是-個含有卜型臺面結構12()4的六角形單位晶胞 ,位於P外延層1208和N-外延層1210周圍。N_外延層 1210外面疋柵極氧化層1216。電晶體陣列12〇〇的溝道都 用多晶石夕柵極1218填充。六角形單位晶胞結構是一種對 稱的晶胞結構。 第18圖表示依據本發明的—個實施例…種方形的電晶 體晶胞陣列的俯視圖。參見第18圖,利用電晶體晶胞 1301的二維陣列,形成一個電晶體陣列1 300。電晶體晶 0993278454-0 099119030 表單編號A0101 第37頁/共123頁 201101497 胞1 300是-個含有P-型臺面結構13〇4的六角形單位晶胞 ,位於P-外延層1308和N-外延層131〇周圍。N_外延層 1310外面是柵極氧化層1316。電晶體陣列13〇〇的溝道都 用多晶矽柵極1318填充。 截止結構 -種形成在龍桃上的功率半㈣裝置,比如功率金 屬氧化矽矽場效應管裝置,可以利用上述單奈米管或雙 奈米管結成,其特點是含有—個有㈣和_個截止 區。有源區是形成電荷平衡裝置的區域。截止區是沒有 有源裝置的區域,用於使有源裝置與積禮電路或晶片的 物理邊緣之間絕緣,並使電場沿農置的週邊分佈。截止 區確保功率半導體裝置獲得電荷平衡,轉合適的擊穿 電壓,並避免晶片週邊過量的裝置贿^只有截止區設 計得當,核使有職和截止區之时較區域不會成 為獲得高擊穿電壓的局限因素,這點非常重要。 更相地說,截止區的仙之—就是將積體電路最高的 工作電壓,分成較小的電壓階躍,每個階躍都小於石夕的 擊穿電壓’並在截止區上料該電㈣躍。在實際工作 中’ N-溝道裝置的截止區將加快電壓增量,直到工作電 壓在晶片邊緣之前,達到最高為止。截止區的另一作用 是,阻止耗盡區到達晶片邊緣。如果耗盡區到達了晶片 邊緣’會引起突變電場裁止,導致半導體裝置的擊穿電 壓減小,或者使在工作電壓下卫作的裝置帶有更高的漏 電流。 099119030 第19圖表示依據本發明的—個實施例,-種含有有源區 和截止區的功率半導體裝置的積體電路(晶片)的俯視 表單編號删丨 第38頁/共123頁 201101497As shown in Fig. 9(h), after back grinding, an N+ doped layer 660 is formed at the bottom of the P-mesa structure by backside implantation (e.g., ion implantation or diffusion). In this manner, a vertical N-type metal oxide tantalum transistor 600 is formed, wherein the N + doped layer 660 serves as a drain, the N- epitaxial layer 610 serves as a nanotube drain drift region, and the N+ region 622 serves as a source. And a polysilicon layer 618 is used as the gate. In other embodiments, the N+ layer 660 acts as an ohmic contact to the cathode of the Schottky diode or P-N junction diode. As shown in Figure 9(i), after local implantation is initiated by rapid thermal annealing or laser annealing, the bottom plating metal 664 is used to form a drain electrode at the bottom of the abundance conductor structure. In one embodiment, the metallization of the backside is plated, and the metal of the f 1 roll® i,-i'VK.. can be selected from titanium, nickel or gold. In another embodiment, an insulated gate bipolar transistor is fabricated using the same vertical channel metal oxide semiconductor field effect transistor structure containing N-type and P-type nanotubes. As shown in Fig. 9(h), after the N+ layer 660 is formed by the back N + implantation, the P+ doping layer 662 is formed at a position required by the insulated gate bipolar transistor device by the second back implant. The N+ doped layer 660 forms an N-type buffer layer 662 or field barrier of the insulated gate bipolar transistor, and the P+ doped layer 662 forms the P+ internal emitter of the insulated gate bipolar transistor. The P+ implant may be a Thin layer, all vertical channel metal oxide 099119030 Form No. A0101 Page 31 / 123 Page 099327MM-0 201101497 The semiconductor field FET structure is integrated into the IGBT, or some specific The semiconductor structure is selectively integrated into an insulated gate bipolar transistor device. As shown in Fig. 9(k), the collector electrode of the P+ internal emitter 662 is formed by the bottom metal plating 664. In addition to having an additional P+ layer 662 through the back implant, the fabrication process of the bipolar transistor device 680 is the same as that of the n-type metal oxide; The P-body region 620 functions as a back collector in the insulated gate bipolar transistor device 680. The top metallization 63 〇 constitutes the emitter electrode 'contacts the P-body internal collector region 620. In summary, as shown in Figure 9 (e), after the formation of the transistor structure above the P_ mesa. structure 6〇4, before the bottom, the mask or the top treatment is not completed, while the bottom treatment is performed, The top processing can be done as shown in Figure 9 (f). The 9th (fl)th to the 9thth (11th)th drawings show the treatment process which can be selected by using a P-type single crystal substrate which is lightly pushed, to prepare a vertical channel metal oxide (four) field effect tube and other devices. Referring to Fig. 9 (fl), 'after the 9th (e) figure', a layer of stone 626 containing acid-cutting is formed to cover the entire top surface of the semi-guided structure. Then, before proceeding to the process, the wire feeds the excess Ρ-substrate until it approaches the bottom of the oxide-filled channel, as shown in Fig. 9 (g〇. Contains Wei (4) The glass layer 626 protects the top of the metal oxide tantalum field device during the f-treatment. In one embodiment to the 'back grinding—straight to the position below the channel 2_5 micro-seeking. That is, in the back grinding After the treatment, only the 25-micron P-substrate layer 6G4 remains under the channel. When the _P+ layer must be formed on the back side by epitaxial growth, the remaining substrate on the bottom surface becomes critical. See Section 9 ( Hi) Figure 'by epitaxial growth or ion implantation, in the back shape 099119030 0993278454-0 Form No. A0101 Page 32 / 123 pages into N + Tu 661. As shown in Figure 9 (hi), dopants from the material The layer 661 is outwardly diffused, and the N- epitaxial layer and the p_ epitaxial layer at the bottom of the channel are reversely doped to form an N + layer. If a vertical 1 ^ type metal oxide magnetite crystal is to be prepared It is necessary to directly metallize the N + layer 661. However, if one is to be prepared An insulated bipolar transistor device is formed by a field growth or ion implantation to form a P+ layer 663 on the back, as shown in Fig. 9 (j 1). Especially if the P + layer 663 is to be grown, due to the epitaxy During the growth process, the P+ layer 663 will be contaminated by the top metal, so it is best to cover the top with a layer of strontium containing boric acid instead of exposing the metallization. ..... . . . . 9 (kl) shown in the figure 'If an insulated gate bipolar transistor device is to be fabricated, the back metallization 664 is used in the formation of the P+ layer 663. Then, a top treatment is performed to obtain a bismuth glass layer 626 containing boric acid. An opening is formed in the middle, and a top metal plating 630 is formed, as shown in Fig. 9 (11). The thus formed insulated gate bipolar transistor device is 78 0 0, wherein the top metal plating 630 is used as the emitter electrode 'bottom mineral metal 664 Collector electrode. The fabrication process described in Figures 9(a) through 9(11) can be used to fabricate an insulated gate bipolar transistor device, Schottky diode and/or PN junction diode. Combined metal oxide tantalum transistor array. Figure 10 According to one embodiment of the present invention, a vertical N-type metal oxide combined with an N-type insulated gate bipolar transistor is prepared using a process as shown in Figures 9(a) through 9(k). A cross-sectional view of the device, the eleventh figure shows an equivalent circuit diagram of the integrated metal oxide tantalum field effect transistor and the insulated gate bipolar transistor device shown in Fig. 10, and Fig. 11(b) shows The fabrication time diagram of the metal telluride 矽 field effect transistor and the insulated gate bipolar transistor device shown in Fig. 11(a) is shown in Fig. 10, in the semiconductor device 8 〇〇 Form No. 1010101 Page 33 of 123 In 201101497, the preparation process of 'N-type metal oxide tantalum transistor 8011 other than p+ layer 663 except 'special transistor cell is only used to form the internal emitter of insulated gate bipolar transistor】) Both are the same as the insulated gate bipolar transistor device 801a. In addition, the structure of the vertical N-type metal oxide magnetite 801b and the insulating gate bipolar transistor device 80 la are also similar. As shown in Fig. 11 (a), the formed N-type insulated gate The bipolar transistor 801a is connected in parallel with the N-type metal oxide tantalum transistor 801b. The collector and drain terminals of the device are connected by metallization at the bottom, and the emitter and source terminals of the device are connected by metallization at the top. In actual operation, the insulated bipolar transistor device 80 la is turned on after the N-type metal oxide tantalum transistor 8〇11), and the insulated gate bipolar is quickly turned off before the N-type metal oxide tantalum transistor 801b. The crystal device 80 la reduces the conduction damage of the synthetic semiconductor device, and the N-type metal oxide tantalum transistor 80 lb improves its turn & performance. Combining the best performance of N-type metal oxide tantalum (conversion), and the best performance of insulated gate bipolar transistor device (3⁄4 "on, under voltage drop"), synthetic semi-conducting device SMfl makes preparation - species A novel force rate device structure is possible. Fig. 12 shows a round implementation according to the invention: 3⁄4], using the 9th, a) to 9th (e) and 9th (fl) to 9th (11) A cross-sectional view of a vertical metal oxide tantalum transistor combined with a Schottky diode prepared by the process of Figure 1-3. Figure 13 shows the combined metal oxide of Figure 12. Equivalent circuit diagram of the field effect transistor and the Schottky diode. See Fig. 12, the preparation process of the N-type metal vaporized transistor 901a and the Schottky diode 901b in the semiconductor device 900, the nanotube The preparation process of the N- epitaxial layer/P- epitaxial layer is the same as that of the basic 099119030. When the transistor structure is prepared on the p-mesa structure 604, for the Schottky dinuclear form number A0101, page 34 / 123 pages lb And 201101497 言 'only formed one, some examples of the invention ❹ The Ρ+ region 625 can be prepared in the same manner as the Ρ+ body contact region 624. Although it may not be visible from Fig. 14, in this case, the depth and concentration of the Ρ+ region 625 will be the same as the ρ + body. The contact region 624 is the same. Then, using the back treatment (for example, epitaxial growth), the formation layer 661 ° Ν + layer 661 is not only used as the W-type metal oxide oxide crystal 9 〇 1 & and the drain terminal, but also as Schottky II The cathode terminal of the electrode body 9 〇 lb. The back clock metal 664 constitutes the contact electrode of the drain and cathode of the two devices. When performing the top treatment, the Schottky metal layer 6 is formed in the cell region. The base diode will also be formed in the second, then, using the top money metal 630, the source and body of the N-type metal oxide power generating crystal 9〇1 & are shorted to the anode of the Schottky diode 9〇lb Therefore, the top forged metal 630 forms the contact electrode of the source 'body and the anode of the two devices. As shown in Fig. 13, the formed N-type metal oxide (tetra) transistor 9〇la and Schottky The diodes 9 lb are connected in parallel ^ Figure 14 shows the _ according to the invention In the example, a cross-sectional view of an insulated gate bipolar transistor device combined with a PN diode is prepared by using the process shown in Figures 9(4) to 9(1). The button diagram indicates that Figure 14 does not. The equivalent circuit diagram of the integrated insulated gate bipolar transistor and the n-junction diode. See Figure 14, the preparation process of the insulated gate bipolar transistor πηπ^ρ-ν junction-pole body mlb, and the basic nano When the preparation process of the tube n_ epitaxial layer/p- epitaxial layer is the same crystal structure, for the second: structure 6 ° 4 on the preparation of electricity, " a polar body i〇oib 'only formed + anode contact area 627 « Then use the top 邛 to form the top plating and connect the insulated gate bipolar electric 099119030's emission::: extreme. Then use the back treatment, through 0993278454-0 page 35 / 123 pages, 201101497 over the ion injection, shape her layer 66 divination + layer 661 not only as the N-buffer / field layer of the insulated gate bipolar transistor 1001a, Moreover, it is a cathode terminal of the p_N junction diode i〇〇ib. A p+ layer 663 is selected to be formed in the insulated gate bipolar B cell to form the internal emitter of the insulated gate bipolar transistor device. Contact electrodes for the collector and cathode of the two devices are formed by the back mineral metal 664. Therefore, as shown in Fig. 15, the formed insulated gate bipolar transistor 1001a and the p_N junction diode 1〇〇11) are connected in parallel. Figures 16(a) and 16(b) are cross-sectional views showing an alternative processing technique for fabricating a vertical channel metal oxide tantalum field effector device in accordance with an embodiment of the present invention. Referring to the 16th U) @, after epitaxially growing the P- epitaxial layer 608 and the N- epitaxial layer 61, each of the excipients is implanted to counter-doping the N- epitaxial layer at the bottom of the trench. - Epitaxial layer. The depth of penetration of the N+ implant is indicated by a dotted circle 692. In the present embodiment, the level of the semiconductor structure is protected by the thin mask oxide layer 1180 from damage by implantation. Anisotropic N + implantation also reversely doping the N- epitaxial layer and the P- epitaxial layer on top of the mesa structure 6〇4. After annealing, a structure as shown in Fig. 16(b) is formed in which a region 1182 appears at the top of the p mesa structure 604 and at the bottom of the channel. The N+ region 1182 at the top of the mesa structure 6〇4 is removed by a chemical mechanical polishing process (CMP) prior to formation of the transistor structure. The backside of the substrate is then smoothed down to the underside of the N+ layer 1182 at the bottom of the trench, as indicated by the dashed line 1184 in the figure. The N + drain or N + field region of the device is formed by epitaxial growth. In addition, a P+ region is formed by epitaxial growth to form an internal emitter of the insulated gate bipolar transistor device. When performing the processing shown in Figures 16(a) and 16(b), you can use the back ion implantation completely, using only 099119030 Form No. A0101 Page 36/123 Page 0993278454-0 201101497 A back layer can be formed. This method of counter-doping the bottom of the channel can also be used to grow the p-mesa structure-epitaxial layer on highly doped substrates. In this case, the channel does not need to extend further onto the substrate as long as the anisotropic N+ implant passes through the bottom of the channel and spreads outward from the substrate—until the _ epitaxial nanotube is connected to the + The above-mentioned semiconductor device including the metal oxide stone MOSFET device, the insulated gate bipolar transistor device, the Schottky diode and the p_N diode can be used on the substrate. The N- epitaxial layer/p_ epitaxial layer nanotube structure described in the present invention is prepared by forming an array of electro-crystal cells. The transistor cell is either a single nanotube structure or a double nanometer structure depending on the application. The array of transistor unit cells may be a one-dimensional array or a two-dimensional array. According to an alternative embodiment of the invention, a hexagonal electro-corporeal BS cell or a square transistor cell cell is used to form electricity in a two-dimensional array. Crystal Cell® Figure 17 is a top view of a hexagonal array of electro-optic crystal cells, not according to one embodiment of the present invention. Referring to Fig. 17, a two-dimensional array of transistor cell 1201 is used to form a transistor array. The transistor cell 1200 is a hexagonal unit cell containing a pad-shaped mesa structure 12()4. Located around the P epitaxial layer 1208 and the N- epitaxial layer 1210. The N- epitaxial layer 1210 has a gate oxide layer 1216 on the outside. The channels of the transistor array 12 are all filled with a polycrystalline gate 1218. The hexagonal unit cell structure is a symmetrical unit cell structure. Figure 18 is a plan view showing an embodiment of a square-shaped electromorphic unit cell array in accordance with the present invention. Referring to Fig. 18, a two-dimensional array of transistor cells 1301 is used to form a transistor array 1 300. Transistor crystal 0993278454-0 099119030 Form No. A0101 Page 37 / 123 Page 201101497 Cell 1 300 is a hexagonal unit cell containing a P-type mesa structure 13〇4, located in the P- epitaxial layer 1308 and N-epitaxial Layer 131 around. The outside of the N_ epitaxial layer 1310 is a gate oxide layer 1316. The channels of the transistor array 13 are all filled with a polysilicon gate 1318. Cut-off structure - a power half (four) device formed on a dragon peach, such as a power metal yttria field effect tube device, which can be formed by using the above single nanotube or double nanotube tube, which is characterized by having one (four) and _ Deadline. The active region is the region where the charge balancing device is formed. The cut-off area is an area where there is no active device for insulating the active device from the physical edge of the gift circuit or the wafer and distributing the electric field along the periphery of the farm. The cut-off area ensures that the power semiconductor device obtains the charge balance, shifts the appropriate breakdown voltage, and avoids excessive device brittleness around the wafer. Only the cut-off area is properly designed, and the high-breakdown voltage is not obtained when the active and cut-off regions are verified. This is very important because of the limitations. To be more specific, the cut-off area is the highest working voltage of the integrated circuit, which is divided into smaller voltage steps, each step is smaller than the breakdown voltage of Shi Xi' and is charged in the cut-off area. (four) jump. In actual operation, the cut-off region of the N-channel device will speed up the voltage increment until the operating voltage reaches its maximum before the edge of the wafer. Another role of the cutoff region is to prevent the depletion region from reaching the edge of the wafer. If the depletion region reaches the edge of the wafer, the abrupt electric field is cut, resulting in a reduction in the breakdown voltage of the semiconductor device or a higher leakage current in the device operating at the operating voltage. FIG. 19 shows a top view of an integrated circuit (wafer) of a power semiconductor device including an active region and a cutoff region in accordance with an embodiment of the present invention. Form No. Page 38 of 123 201101497

圖。參見第19圖,積體電路1400包含一個有源區1450以 及一個截止區1452。金屬氧化物矽場效應管、絕緣柵雙 極電晶體、肖特基二極體以及p-^结二極體等有源裝置, 都位於有源區1450中。截止區1452沿晶片的物理邊緣, 包圍著有源區。因此,截止區1452將有源區1450從晶片 的物理邊緣中隔離出來。作為一個完整的積體電路,晶 片1400被一個鈍化層覆蓋,鈍化層中帶有開口,用於電 接觸到源極電極和柵極電極上。漏極電極(圖中沒有表 示出)位於晶片底部。第丨9圖表示源極金屬連接和柵極 金屬連接的一個典型實施例。如第19圖所示,源極金屬 和柵極金屬接頭位於積體電路14〇〇的有源區145〇中鈍 化層中的開口用於將源極金屬接頭1454和栅極金屬接頭 1456的金屬墊裸露出來。 依據本發明的-個方面’利料動環或奈米管的方法製 成的截止結構’是為了 上述的單奈米錢雙奈米管 結構製備1 力率半導體裝置鱗H止結構位於積體電Figure. Referring to Fig. 19, the integrated circuit 1400 includes an active region 1450 and a cutoff region 1452. Active devices such as metal oxide tantalum field effect transistors, insulated gate bipolar transistors, Schottky diodes, and p-gate junctions are all located in active region 1450. The cut-off region 1452 surrounds the active region along the physical edge of the wafer. Thus, the cutoff region 1452 isolates the active region 1450 from the physical edge of the wafer. As a complete integrated circuit, the wafer 1400 is covered by a passivation layer with openings in the passivation layer for electrical contact to the source and gate electrodes. The drain electrode (not shown) is located at the bottom of the wafer. Figure 9 shows a typical embodiment of a source metal connection and a gate metal connection. As shown in FIG. 19, the source metal and gate metal contacts are located in the active region 145 of the integrated circuit 14A and the openings in the passivation layer are used to metal the source metal tab 1454 and the gate metal tab 1456. The pad is bare. According to the aspect of the present invention, the "cut-off structure made by the method of the magnetic ring or the nanotube" is prepared for the above-described single-nanometer double-nanotube structure. Electricity

路的物理邊緣周圍,並包圍著,力率半導體裝置的有源區 。截止結構將電場分佈在整姻,止區,有利於提高擊穿 電麼。在本實施例中’載止結構是通過上述同樣的單奈 米管或雙奈米管結構製成的。 ”法是使用一尔門乂 替的卜型和N-型區域’其中第一個P-型區接地,中間的 Μ區浮動’ N_型區連接到積體電路最高的工作電壓上 。在實際工作中,每侧—型區都失斷穿通電壓—,驅使 浮動Ρ-型區穿通前-侧一型區的電壓,以使一系列鄰近 的卜型和^龍能夠賴止區中料1,則、於石夕擊穿 099119030 0993278454-0 表單編號Α0101 第39頁/共123頁 201101497 電壓的電壓增量,從接 咏型裝置,、到最兩工作電壓。對 工作電壓上, 利用第—個N-型區輕合到最高 裁止社構㈣電屋在截止區中逐漸下降。本發明所述的 29圖:備和運轉在此不再詳述,請參見第2〇圖-第 示依據本發明的-個實施例,利用雙奈米管工 如備的—個含有有源裝置的積體電路,並將截止結 入積體f路的俯_。參見第_,有料導體裝 =積體電路1 500,含有—個用於承載有源裝置的有源 550。在本說明中,有源裝置為卜型裝置例如垂直n 型金屬氧化物㈣晶體餐魏緣柵雙轉晶體。在第 圖中可以看到有源區155〇中的.最後_^N型金屬氧化 物石夕電晶體晶胞’它包括柵極電極1518、,拇極氧化物 ^16 ] N +源極區1522以及p+本體接觸區1524。N +源極 區1522和P +本體接觸區1524 一同連接到源極電極153〇上 在第20圖中,象徵性地表示出連接線以及端子“s” 。 099119030 對於積體電路1500上的n-溝道裝置’源極電極153〇連接 到源極(或絕緣柵雙極電晶體的發射極)電勢上,源極 電勢通常接地,是積體電路中最低的電勢。Ν型金屬氧化 物石夕電晶體的Ν +襯底(圖中沒有表示出)作為其漏極電 極(或集電極),並連接到積體電路15〇〇的最高工作電 壓上。對於積體電路中的ρ_溝道裝置而言,源極/發射極 電極連接到積體電路的最高卫作電壓上,而漏極/集電極 電極連接到積體電路的最低電勢上(通常接地)。本說 明雖然僅適用於Ν-溝道裝置的截止結構,但通過適當的 變換電壓極性,其工作原理就可適用於帶有卜溝道裝置 表單編號Α0101 第40頁/共123頁 201101497 的積體電路。The physical edge of the road is surrounded by and surrounded by the active area of the force semiconductor device. The cut-off structure distributes the electric field in the whole marriage and the stop zone, which is beneficial to improve the breakdown voltage. In the present embodiment, the carrier structure is made of the same single nanotube or double nanotube structure as described above. "The method is to use a type of P-type and N-type area" where the first P-type area is grounded, and the middle crotch area is floating. The N_-type area is connected to the highest operating voltage of the integrated circuit. In actual work, each side-type area breaks the punch-through voltage--, driving the floating Ρ-type area to pass through the voltage of the front-side type area, so that a series of adjacent types and types can be relied on. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The N-type zone is lightly coupled to the highest cutting organization (4) The electric house gradually declines in the cut-off zone. The 29 diagram of the present invention: preparation and operation are not described in detail here, please refer to Figure 2 - According to an embodiment of the present invention, an integrated circuit including an active device is used by a double-nano-tube, and the cut-off is integrated into the integrated body f. See _, the material conductor is mounted = The integrated circuit 1 500 includes an active 550 for carrying an active device. In the present description, the active device is The device is, for example, a vertical n-type metal oxide (tetra) crystal meal, and a double-turn crystal. In the figure, the active region 155 可以 can be seen. The last _^N-type metal oxide magnetite crystal cell A gate electrode 1518, a thumb electrode ^16] N + source region 1522, and a p + body contact region 1524 are included. The N + source region 1522 and the P + body contact region 1524 are connected together to the source electrode 153. In Fig. 20, the connection line and the terminal "s" are symbolically shown. 099119030 For the n-channel device on the integrated circuit 1500, the source electrode 153 is connected to the source (or the insulated gate bipolar transistor). At the emitter's potential, the source potential is usually grounded and is the lowest potential in the integrated circuit. The Ν-type metal oxide 石 电 衬底 + substrate (not shown) is used as its drain electrode (or set) The electrode) is connected to the highest operating voltage of the integrated circuit 15 。. For the ρ_channel device in the integrated circuit, the source/emitter electrode is connected to the highest operating voltage of the integrated circuit, And the drain/collector electrode is connected to the lowest potential of the integrated circuit Usually grounded. Although this description applies only to the cut-off structure of the Ν-channel device, the working principle can be applied to the form with the channel device Α0101 Page 40 of 123 by appropriately changing the voltage polarity. The integrated circuit of 201101497.

積體電路1500含有一個形成在積體電路的截止區1552中 的截止結構。如第20圖所示,截止結構的一部分鄰近有 源區1550。已知,截止結構從有源區末端一直延伸到帶 有積體電路1500的晶片邊緣,第2〇圖中只能看到截止結 構的一部分。截止結構在晶片邊緣還包含一個末端截止 晶胞,下文將詳細介紹。在本實施例中,截止結構包括 ,通過有源裝置相同的N-外延層/p_外延層雙奈米管結構 ,形成的截止晶胞1554。也就是說,每個截止晶胞都是 由帶有側壁的P-臺面結構層丨5〇4構成的,p_外延層奈米 管1 508和N-纟ft延層奈米管151〇先後覆蓋在側壁上。综上 所述,P-臺面結構層1 504可以是一個p-臺面結構-外延 層,或者是一個P-臺面結構—襯底。截止結構並沒有使用 多晶矽柵極電極,因此截止晶胞1554是被氧化物填充的 溝道1512隔斷的,其中並不形成任何多晶石夕柵極電極。The integrated circuit 1500 has a cut-off structure formed in the cut-off region 1552 of the integrated circuit. As shown in Fig. 20, a portion of the cutoff structure is adjacent to the source region 1550. It is known that the cut-off structure extends from the end of the active region to the edge of the wafer with the integrated circuit 1500, and only a portion of the cut-off structure can be seen in the second figure. The cutoff structure also includes an end stop cell at the edge of the wafer, as described in more detail below. In this embodiment, the cut-off structure includes a cut-off unit cell 1554 formed by the same N- epitaxial layer/p_ epitaxial layer double nanotube structure of the active device. That is to say, each of the cut-off cells is composed of a P-mesa structure layer 丨5〇4 with side walls, and p_ epitaxial layer nanotubes 1 508 and N-纟ft extended layer nanotubes 151 Covered on the side wall. In summary, the P-mesa structure layer 1 504 can be a p-mesa structure-epitaxial layer or a P-mesa structure-substrate. The cut-off structure does not use a polysilicon gate electrode, so the cut-off cell 1554 is interrupted by the oxide-filled channel 1512, in which no polycrystalline gate electrode is formed.

截止晶胞1554相互連接,構成一泉列,交^替的p_型區和n_ 型區’以便提高積趙電路的工作愈遷。更確切地說,N_ 外延層奈米管用作N-型區,帶有p-臺面結構層的p_外延 層奈米管用作P-型區。奈米管和P-臺面結構層通過p和N 型摻雜區互聯,以便構成一系列交替的P-型區和N-型區 。在交替的P和N型區的串聯結構中,第一個p_型區(p_ 外延層奈米管/P-臺面結構層)連接到源極/發射極電勢 上,最後一個N-型區(N-外延層奈米管)連接到漏極/集 電極電勢上。對於N-溝道裝置來說,第一個P—型區接地 ,而最後一個N-型區通過N+襯底連接到積體電路15〇〇的 。所有的其他 最高工作電壓上(第20圖中沒有表示出 099119030 表單編號A0101 第41頁/共123頁 0993278454-0 201101497 p-型區(P_外延層奈米管/卜臺面結構層)都是浮動的。 截止區中的其他N-型區都連接到襯底上,但通過電荷平 衡和電勢差處於義。對於p__溝道裝置,第—個!^〜型區 連接到積體電路的最高工作電虔上,而最後一個P—型區 接地。 099119030 因此,在本實施例中,每個截止晶胞1554中的卜外延層 奈米管1 508和P_臺面結構層15〇4都電連接到—個輕摻雜 的P-型摻雜區156〇( “P_搀雜區,,)上,N_外延層奈米 管1510電連接到—個輕摻雜__型摻雜區i 562 ( u 雜區)上。連續的截止晶胞上的卜換雜區1 562和?一推 雜區,通過金屬·接頭互相連接,形成—系列交 替的卜型和N-型區4本實施例中〜_卜摻雜區156〇 都含有-财摻雜的㈣1563。重摻㈣㈣丨⑹㈣ 區1 563都有利於從㈣摻雜區⑸0、1562到金屬互聯招 頭的歐姆接觸。可選用不同的重捧物心區咖和 1563 ’而且在本發明的其他實施例中,也可省 P+/N+區 1561 和 15&3。 ^本發明賴止穩中一㈣•的P-型區和N-型區 是這樣形成的。通過P-外延層奈料15G8a和P-臺面,士 構層驗a,形成第—個截止晶胞U54a,卜臺面結構層 穿過卜摻㈣56()和_1561,連接到源極電極 1530上。因此’第一個卜型區(卜外延層奈米管 15〇8a/P-臺面結構層15〇4a)接地。n_外延層奈米管 151〇a就在P-外延層奈来管15_和奈米管(帶有下方的 P-臺面結構層)近鄰’它們共同形成第一對或相鄰的p和 區N外延層奈米管151〇a穿過擦雜區和區 A0101 第42百/杜m百The cut-off cells 1554 are connected to each other to form a spring column, and the p_-type region and the n-type region are alternated in order to improve the operation of the product. More specifically, the N_ epitaxial layer nanotube is used as the N-type region, and the p_ epilayer nanotube with the p-mesa structure layer is used as the P-type region. The nanotube and P-mesa structure layers are interconnected by p- and N-type doped regions to form a series of alternating P-type regions and N-type regions. In a series arrangement of alternating P and N-type regions, the first p_-type region (p_ epitaxial layer nanotube/P-mesa structure layer) is connected to the source/emitter potential, and the last N-type region (N- epitaxial layer nanotubes) are connected to the drain/collector potential. For an N-channel device, the first P-type region is grounded, and the last N-type region is connected to the integrated circuit 15A through the N+ substrate. All other highest working voltages (not shown in Figure 20) 099119030 Form No. A0101 Page 41 / 123 Page 0993278454-0 201101497 p-type area (P_ epitaxial layer nanotube / table structure layer) are The other N-type regions in the cut-off region are connected to the substrate, but are in the sense of charge balance and potential difference. For the p__channel device, the first -^~-type region is connected to the highest of the integrated circuit. On the working electrode, the last P-type region is grounded. 099119030 Therefore, in the present embodiment, the epitaxial layer nanotubes 1 508 and the P_ mesa structure layers 15〇4 in each of the cut-off cells 1554 are electrically connected. To a lightly doped P-type doped region 156 〇 ("P_ doping region,"), the N_ epitaxial layer nanotube 1510 is electrically connected to a lightly doped __ doped region i On the 562 (u miscellaneous region), the continuous impurity cell 1 562 and the nucleus region are connected to each other through metal and joints to form a series of alternating types and N-type regions. In the example, the _ 卜 doped region 156 〇 contains -fica doped (four) 1563. Heavy doping (four) (four) 丨 (6) (four) region 1 563 are all beneficial from (four) doping The ohmic contact of the zone (5) 0, 1562 to the metal interconnect header. Different re-emphasis cores and 1563 ' can be selected and in other embodiments of the invention, P+/N+ zones 1561 and 15&3 can also be saved. The P-type region and the N-type region of the invention are formed by the P-epitope layer 15G8a and the P-mesa, and the first layer is formed to form the first cut-off unit U54a. , the mesa structure layer passes through the doping (four) 56 () and _1561, and is connected to the source electrode 1530. Therefore, the 'first epitaxial zone (the epitaxial layer of the nanotubes 15 〇 8a / P - mesa structure layer 15 〇 4a) Grounding. The n_ epitaxial layer of nanotubes 151〇a is in the P- epitaxial layer of the Nei tube 15_ and the nanotubes (with the P-mesa structure below) neighbors 'they form the first pair or phase together The adjacent p and N epitaxial layers of the nanotubes 151〇a pass through the rubbing area and the area A0101 42nd/dm

第42頁/共123頁 0993278454-0 201101497Page 42 of 123 0993278454-0 201101497

1 563,利用金屬互聯接頭1572連接到下一個截止晶胞 1554b中的“下一個” P-外延層奈米管15〇8b/p_臺面結 構層1504b ’ N-外延層奈米管151〇a和N-外延層奈求管 1510b形成下一對鄰近的P和N區。同一個截止晶胞中的 P-外延層奈米管/P-臺面結構層和N_外延層奈米管繼續互 聯,構成一對鄰近的P-型和N-型區,在通過氧化物填充 的溝道隔離開的鄰近截止晶胞中的外延層奈米管和p_ 外延層奈米管/P-臺面結構層互聯起來,繼續串聯到p —型 和N-型區中,構成截止結構:1 563, using the metal interconnection joint 1572 to connect to the "next" P- epitaxial layer nanotubes 15 〇 8b / p_ mesa structure layer 1504b 'N- epitaxial layer nanotubes 151 〇a in the next cut-off unit cell 1554b And the N-epitaxial layer tube 1510b forms a next pair of adjacent P and N regions. The P- epitaxial layer nanotube/P-mesa structure layer and the N_ epitaxial layer nanotube in the same cut-off unit continue to interconnect, forming a pair of adjacent P-type and N-type regions, which are filled by oxide The epitaxial layer nanotubes and the p_ epitaxial layer nanotube/P-mesa structure layer in the adjacent isolated cell are interconnected and continue to be connected in series to the p-type and N-type regions to form a cut-off structure:

在第20圖所示的實施例中,P-摻雜區156〇和[摻雜區 1 562在兩行中交替排列,有利於鄰近的截止晶胞互聯。 如第21圖和第22圖所示’通過積競電路沿α-,Α,線和沿 B-B’線的剖面圖進一步說明’P-外延層奈米管/p-臺面 結構區和N-外延層奈米管區之間的串聯結構。首先參見 第21圖’第21圖表示積體電路1500沿A-A’線的剖面圖 ,垂直N型金屬氧化物矽電晶體1565為有源區1 550中的 最後一個有源裝置’截止ΙΪ1552從含有P-外延層奈求管 15 0 8 a和P -臺面結構層15 0 4a的第‘個截止晶胞15 5 4 a開 始,截止晶胞1554a連接到P-摻雜區1 560和P+區1561上 ,P-摻雜區1560和P+區1561電連接到源極電極153〇上 。因此,第一個截止晶胞1554a中的P-外延層奈米管 1508a和P-臺面結構層是連接到源極電勢上。每個截止晶 胞1554中的N -外延層奈米管1510都連接到N +襯底1502 上,N+襯底1502作為垂直N型金屬氧化物石夕電晶體1555 的漏極端子,通過P-臺面結構1 504/P-外延層奈米管 1508和N-外延層奈米管1510之間的水準方向電荷平衡( 099119030 表單編號A0101 第43頁/共123頁 0993278454-0 201101497 以及電勢差)’在垂直方向上從漏極電勢閉鎖。N +襯底 1 502連接到積體電路1 500的最高工作電壓上。因此,所 有的截止晶胞中的N-外延層奈米管1510都連接到積體電 路1500的最高工作電壓上。如第9 (a)圖至第9 (11) 圖所示,在其他實施例中,N +襯底1 502也可以是一個形 成在P-臺面結構層底面上的N +層。 將第一個截止晶胞1554a中的N-外延層奈米管1510a,連 接到下一個戴止晶胞1 554b中的p—外延層奈米管15〇8b, 是在遠離P-掺雜區156〇、沿截止晶胞的位置上完成的。 更確切地說’用於將截止晶胞1554b中的N-外延層奈米管In the embodiment shown in Fig. 20, the P-doped region 156 〇 and the [doped region 1 562 are alternately arranged in two rows to facilitate interconnection of adjacent cut-off cells. As shown in Fig. 21 and Fig. 22, 'P-epitaxial nanotube/p-mesa structure region and N are further illustrated by the cross-sectional view of the accumulating circuit along the α-, Α, line and along the B-B' line. - a series structure between epitaxial layers of nanotube regions. Referring first to Figure 21, Figure 21 shows a cross-sectional view of integrated circuit 1500 along line A-A'. Vertical N-type metal oxide germanium transistor 1565 is the last active device in active region 1 550 'cutoff ΙΪ 1552 Starting from the first cut-off unit cell 15 5 a containing the P-epitaxial layer and the P- mesa structure layer 15 0 4a, the cut-off unit cell 1554a is connected to the P-doped region 1 560 and P+ On the region 1561, the P-doped region 1560 and the P+ region 1561 are electrically connected to the source electrode 153A. Therefore, the P- epitaxial layer nanotubes 1508a and the P-mesa structure layer in the first cut-off unit cell 1554a are connected to the source potential. The N- epitaxial layer nanotubes 1510 in each of the cut-off cells 1554 are connected to the N + substrate 1502, which serves as the drain terminal of the vertical N-type metal oxide magnetite 1555, through the P- The level-direction charge balance between the mesa structure 1 504/P- epitaxial layer nanotube 1508 and the N- epitaxial layer nanotube 1510 (099119030 Form No. A0101 Page 43/123 pages 0993278454-0 201101497 and potential difference) Blocked from the drain potential in the vertical direction. The N + substrate 1 502 is connected to the highest operating voltage of the integrated circuit 1500. Therefore, all of the N- epitaxial nanotubes 1510 in the cut-off unit cell are connected to the highest operating voltage of the integrated circuit 1500. As shown in Figures 9(a) through 9(11), in other embodiments, the N+ substrate 1 502 may also be an N+ layer formed on the bottom surface of the P-mesa structure layer. Connecting the N- epitaxial layer nanotube 1510a in the first cut-off unit cell 1554a to the p- epitaxial layer nanotube tube 15〇8b in the next stem cell 1 554b is away from the P-doped region 156 〇, completed along the position of the cut-off unit cell. More specifically, the N-epitaxial nanotubes used in the cut-off unit cell 1554b

1510a連接到p-摻雜區1562上的N-掺雜區1562,沿B-B 線沉積’其剖面圖如第22撝所示一參見第22圖,第一 截止晶胞1554a的摻雜區1562,通過金屬互聯接頭 1572電連接到下—個截止晶胞1554b的卜摻雜區1560上 。因此,第一個截止晶胞1554a中的N_外延層奈米管 1 51 0,連接到下—個截止晶胞1554b的P-外延層奈米管 1508b/P-臺面結構層15〇41)上。 然後,截止晶胞1554b的N-摻雜區1562通過金屬接頭 1573,連接到下—個截止晶胞丨^“的卜摻雜區156〇上 (第21圖)。如第21圖和第22圖所示,上述串聯會形成 -長條的載止晶胞,帶有N_外延層奈米管和?一外延層奈 米管/P-臺面結構層串聯在第_個卜外延層奈求管/p臺 面結構層(位於源極/發射極電勢),與最後一個N_外延 層奈米管(位於漏極/集電極電勢)之間,對於積體電路 中的N-溝道裝置而言,n-外延層奈米管連接到最高的工 作電壓上。 099119030 表單編號A0101 第44頁/共123頁 0993278454-0 201101497 如第20圖-第22圖所示,通過增加每個截止晶胞上的電壓 ,所形成的截止結構就可以承受有源裝置的高電壓。更 域切地說,在每一個截止晶胞中,P -外延層奈米管/ P-臺 面結構層和N-外延層奈米管都在穿通電壓νρτ下被夾斷。 由於Ρ-外延層奈米管和Ρ-臺面結構層是浮動的,所以每 個截止晶胞的電壓,都以穿通電壓νρτ為增量地方式增長 ,直到晶片邊緣近鄰的截止晶胞末端達到最高工作電壓 為止。還有一種方式是將截止晶胞作為一系列ΡΝ二極體 。每個截止晶胞的Ρ-臺面結構1504和Ρ-外延層1 508,構 成同一個晶胞中帶有Ν -外延層1510的一個ΡΝ二極體。這 個ΡΝ二極體在閉鎖模式下反向偏置,因此它能承受一定 的電壓。該二極體的Ν部分(1510)通過短路(例如 1 572 )短接到下一個晶胞的Ρ部分( 1 504、1 508 )。 第23圖表示依據本發明的一個實施例,截止結構的電壓 特性圖。首先參見第23圖中的曲線1610,當第一個Ρ-型 區連接到源極電極上時,截止結構的電壓從源極電壓開 始。然後,夾斷第一個Ν-型區,在第一個Ν-型區中達到 穿通電壓(νρτ)。驅使下一個浮動Ρ-型區也保持在穿通 電壓(VpT)。夾斷下一個N-型區,並達到另一個穿通電 壓(νρτ),驅使後面的P-型區達到並保持在兩倍的穿通 電壓(2VpT)。電壓步階繼續增加,直到在晶片邊緣的 最後一個截止晶胞達到最高的工作電壓(例如600V)。 第23圖表示另一種截止結構的電壓特性,下文將詳細介 紹。 N-型區的穿通電壓為N-型區的厚度和摻雜水準的函數。 對於本發明所述的截止結構來說,穿通電壓是N-外延層 099119030 表單編號A0101 第45頁/共123頁 0993278454-0 201101497 奈米管的厚度和摻雜水準 的函數。又由於N-外延層太水 管1510具有均勻—致的 層不未 ,,彳m 的口弋厚度(如第21圖中所示的“ ),因此穿通電壓僅僅是 丁的 认Ύ▲ 外延層奈米管的摻雜太嚯 :函數。典型的穿通電壓的值在__圍内準 圖為—種積體電路的俯視圖,表示依據本發明的 個可選實施例,一個截止月的— ββ 。構的有源區和第一截止护+ 間的交界面。參見第24圖 衣之 積體電路1700包括,利用· 奈未營結構在有源區175〇 用雙 Μ* * ,, /成的有源裝置,並將有源 裝置製成方形晶胞。第24牖 韦掏' .^ 圖表示積體電路1 700的—条, 其中截止區1 752為環形,句冉 ^ L 匕圍在有源區1750周圍。 切地說,第一個截止晶胞A 更確 為一個圚繞並連接著有源區 1750的截止環1 754。同 ^ v , 所述,其餘的同心截止環能夠 =地將電壓從第-個截止環處的源極電勢提 後一個截止環處的積體電路最k作電壓。 如第25圖所示,依據本發 p , 的可選實施例,P-外延層奈 未管和卜臺面結構層都各自連軸卜_區上其中並 不存在重摻雜的p+區,作N 、 ^ , —N外延層奈米管各自連接到N_ 摻雜區上,其中有一個重推 心"地 董摻雜的N+區。只要對P-摻雜區 和N-摻雜_適㈣歐轉觸,職―㈣互聯的截止 晶胞’第25圖巾賴结構就更純於實施。 依據本發明的另-個可選實施例,利用交錯的p和N挣雜 區形成的戴止結構如第26圖所示。也就是說,推雜 區1562、1560並沒有像第2〇圖所示地那樣,形成在同一 直線上。而是每一對互聯的N/P摻雜區都相互交錯或偏離 。將N/P摻雜區交錯,通過避開金屬接頭和金屬互聯接頭 ♦間的最小間距的要求,可以獲得更加緊湊的設計佈局 099119030 第46頁/共123頁 表單編號 ΑΟίοι « μ e u = 201101497 依據本發明的可選實施例,在截止晶胞中形成一個表面 下的P-型植入區,以降低N奈米管的摻雜濃度。第27圖表 示依據本發明的一個第三可選實施例,一種截止結構的 剖面圖,其中截止結構作為使用雙奈米管工藝製成的含 有有源裝置的積體電路的一部分。參見第27圖,積體電 路1 800包含一個截止結構,其製備方法與上述第20圖-第 22圖所示的方法相同。然而,積體電路1 800中的截止結 構還含有形成在P_臺面結構層1804表面下方的P-型植入 區1 880。特別是P-型植入層1880位於表面區下方很深的 地方。在本實施例中,P-摻雜區1860和N-摻雜區1 862, 將P-型植入區1880置於每個截止晶胞中。在一個實施例 中,P-型植入區1880是通過一種將硼作為摻雜劑的高能 植入物形成的。 每個截止晶胞中的P-型植入區1 880都能夠對N-外延層奈 米管181 0進行電荷補償,從而調節穿通電壓。更確切地 說,在P-型植入區1880範圍内,N-外延層奈米管中的有 效N-型摻雜濃度將減小,因此穿通電壓VPT作為N-型摻雜 濃度的函數,也將減小。換言之,P-型植入區將比其餘 的截止晶胞,耗盡地更快,擊穿電壓也更低。P-型植入 區1 808將迫使N-型和P-型區的夾斷,發生在截止晶胞中 較深的地方,遠離表面電荷常常不均勻的P-臺面結構層 1804的表面。將夾斷置於表面以下,會使N-型和P-型區 的擊穿更加均勻。 再轉回到第23圖,曲線1612表示含有表面以下的P-型植 入區1 880的第27圖所示的截止結構的電壓特性。P-型植 099119030 表單編號A0101 第47頁/共123頁 0993278454-0 201101497 入區188G具有降-外延層奈米管的卜型摻雜濃度的效 果,使得每個截止晶胞的穿通電麼v $低。隨著穿通 電壓νρτ的降低,截止區中的電壓比穿通電壓沒有修正 時(曲線1610)增長地更加緩慢。因此,要達到最高工 作電麼(例如600V),需要更多的電壓步階(更多的截 止晶胞)。每個步階都位於更低的,有助於將爽斷 從晶片表面脫離出來。 在上述實施例巾’所述的截止結構是通過雙奈綺結構 形成的。在其他實施例中,截止結構可以通過單奈米管 結構製成。第28圖表雨《據本發明的一個第四可選實施 例,一種截止結構的剖面圖,其中截止結構作為使用單 奈米官工藝製成的含有有源裝置的積體電路的一部分。 參見第28圖,積體電路1 900含有一個形成在截止區1952 中的截止結構,截止區1952中含有截止晶胞1954,除了 僅利用N-外延層奈米管191〇製備之外,截止晶胞1 954其 他的製備方法與第20圖所示的方法相同。p_摻雜區196〇 接觸P-臺面結構層19紗,形成截止結構的卜型區。積體 電路1 900中截止結輪的運行情況,與第2〇圖所示的積體 電路1500中的截止結構相同。 上述截止結構關於截止晶胞的形成,用於逐步提高整個 積體電路的截止區的電壓。在最後一個截止晶胞,對於 N-溝道裝置,電壓已經升高到最高工作電壓(對於p溝 道裝置,電壓則降低至接地電勢)。依據本發明的一個 方面,含有一個場板的末端截止晶胞,在截止結構中, 形成在最後一個截止晶胞和晶片邊緣之間的交界面處。 第29圖表示依據本發明的一個實施例,一種截止結構的 099119030 表單編號A01011510a is connected to the N-doped region 1562 on the p-doped region 1562, deposited along the BB line. The cross-sectional view thereof is shown in FIG. 22, see FIG. 22, the doped region 1562 of the first cut-off unit cell 1554a, Electrically connected to the doped region 1560 of the next turn-off cell 1554b by a metal interconnect connector 1572. Therefore, the N_ epitaxial layer nanotube 1 in the first cut unit cell 1554a is connected to the P- epitaxial layer nanotube 1508b/P-mesa structure layer 15〇41 of the lower cut unit cell 1554b) on. Then, the N-doped region 1562 of the cut-off unit cell 1554b is connected to the under-doped cell 156 通过 via the metal tab 1573 (Fig. 21). As shown in Fig. 21 and 22 As shown in the figure, the above series will form a long-length carrier cell, with an N_ epitaxial layer of nanotubes and an epitaxial layer of nanotubes/P-mesa structure layers connected in series in the __b epitaxial layer. a tube/p mesa structure layer (at the source/emitter potential) and a last N_ epitaxial layer nanotube (at the drain/collector potential) for the N-channel device in the integrated circuit That is, the n- epitaxial layer of the nanotube is connected to the highest operating voltage. 099119030 Form No. A0101 Page 44 / 123 Page 0993278454-0 201101497 As shown in Figure 20 - Figure 22, by adding each cut-off cell The upper voltage, the resulting cut-off structure can withstand the high voltage of the active device. More specifically, in each of the cut-off cells, the P-epitaxial nanotube/P-mesa structure layer and the N-epitaxial The layered nanotubes are pinched off at the punch-through voltage νρτ. Since the Ρ-epitaxial nanotubes and the Ρ-mesa structure are floating Therefore, the voltage of each cut-off unit cell increases in increments of the punch-through voltage νρτ until the end of the cut-off unit cell near the edge of the wafer reaches the highest operating voltage. Another way is to use the cut-off unit cell as a series of two The Ρ-mesa structure 1504 and the Ρ-epitaxial layer 1 508 of each of the cut-off cells constitute a ΡΝ diode of the same unit cell with a Ν-epitaxial layer 1510. The ΡΝ diode is in a latching mode. It is reverse biased so that it can withstand a certain voltage. The Ν portion (1510) of the diode is shorted to the Ρ portion (1 504, 1 508 ) of the next cell by a short circuit (for example, 1 572 ). Figure 23 is a graph showing the voltage characteristics of the cut-off structure in accordance with an embodiment of the present invention. Referring first to the curve 1610 in Figure 23, when the first Ρ-type region is connected to the source electrode, the voltage of the cut-off structure is from the source. The pole voltage begins. Then, the first Ν-type region is pinched off, and the punch-through voltage (νρτ) is reached in the first Ν-type region, driving the next floating Ρ-type region to also maintain the punch-through voltage (VpT). Break an N-type zone and reach another The punch-through voltage (νρτ) drives the subsequent P-type region to reach and maintain twice the punch-through voltage (2VpT). The voltage step continues to increase until the last cut-off cell at the edge of the wafer reaches the highest operating voltage (eg Fig. 23 shows the voltage characteristics of another cut-off structure, which will be described in more detail below. The punch-through voltage of the N-type region is a function of the thickness and doping level of the N-type region. Said, the punch-through voltage is N-epitaxial layer 099119030 Form No. A0101 Page 45 / Total 123 Page 0993278454-0 201101497 The thickness of the nanotube and the level of doping. Moreover, since the N- epitaxial layer of the water pipe 1510 has a uniform layer, the thickness of the port of 彳m (as shown in Fig. 21), the punch-through voltage is only the Ύ Ύ 外延 epitaxial layer The doping of the rice tube is too 嚯: function. The value of the typical punch-through voltage is a top view of the integrated circuit in the __ square, showing an alternative embodiment of the invention, a cut-off month - ββ. The interface between the active region and the first cut-off guard +. See the integrated circuit 1700 of Fig. 24, including the use of the Neibu camp structure in the active area 175 with double Μ* * , / / The source device, and the active device is made into a square unit cell. The 24th 牖 掏 ' . . figure shows the strip of the integrated circuit 1 700, wherein the cutoff region 1 752 is a ring, and the sentence 冉 L L 匕 is active Around the area 1750. The first cut-off unit cell A is more exactly a cut-off ring 1 754 that is wound and connected to the active area 1750. As with ^v, the remaining concentric cut-off rings can The voltage is pulled from the source potential at the first cut-off loop and the integrated circuit at the cut-off loop is the voltage of the k. As shown in Fig. 25. According to an alternative embodiment of the present invention, the P- epitaxial layer and the mesa structure layer are each connected to the axis, and there is no heavily doped p+ region, and N, ^, -N The epitaxial layer nanotubes are each connected to the N_ doped region, wherein there is a n-doped N+ region. As long as the P-doped region and the N-doped _ (four) ohmic touch, The (four) interconnected cut-off cell 'Fig. 25' is more purely implemented. According to another alternative embodiment of the present invention, the staggered structure formed by the staggered p and N miscellaneous regions is as shown in Fig. 26. That is, the dummy regions 1562, 1560 are not formed on the same line as shown in Fig. 2. Instead, each pair of interconnected N/P doped regions are staggered or offset from each other. Interlacing N/P doped regions, by avoiding the minimum spacing between metal joints and metal interconnects ♦, a more compact design layout can be obtained. 099119030 Page 46 of 123 Form No. ΑΟίοι « μ eu = 201101497 In an alternative embodiment of the invention, a subsurface P-type implant region is formed in the cut-off unit cell to Doping concentration of low N nanotubes. Figure 27 is a cross-sectional view showing a cut-off structure as an active device made using a double nanotube process in accordance with a third alternative embodiment of the present invention. A part of the integrated circuit. Referring to Fig. 27, the integrated circuit 1 800 includes a cut-off structure which is prepared in the same manner as the above-described 20th to 22nd. However, the cutoff in the integrated circuit 1 800 The structure also includes a P-type implant region 1 880 formed below the surface of the P-mesa structure layer 1804. In particular, the P-type implant layer 1880 is located deep below the surface area. In the present embodiment, P-doped region 1860 and N-doped region 1 862 place P-type implant region 1880 in each of the cut-off cells. In one embodiment, the P-type implant region 1880 is formed by a high energy implant that uses boron as a dopant. The P-type implant region 1 880 in each of the cut-off cells is capable of charge-compensating the N- epitaxial layer nanotube 1810 to adjust the punch-through voltage. More specifically, the effective N-type dopant concentration in the N- epitaxial nanotubes will decrease in the range of the P-type implant region 1880, so the punch-through voltage VPT is a function of the N-type dopant concentration. It will also decrease. In other words, the P-type implanted region will deplete faster and have a lower breakdown voltage than the remaining cut-off cells. The P-type implant region 1 808 will force pinch-off of the N-type and P-type regions, occurring deeper in the cut-off unit cell, away from the surface of the P-mesa structure layer 1804 where the surface charge is often non-uniform. Placing the pinch-off under the surface will result in a more uniform breakdown of the N-type and P-type regions. Turning again to Fig. 23, a curve 1612 indicates the voltage characteristics of the cutoff structure shown in Fig. 27 of the P-type implanted region 1 880 having a surface below. P-type plant 099119030 Form No. A0101 Page 47 / Total 123 Page 0993278454-0 201101497 Incoming zone 188G has the effect of the doping concentration of the drop-epitaxial nanotubes, so that each of the cut-off cells is energized. $low. As the punch-through voltage νρτ decreases, the voltage in the cut-off region grows more slowly than when the punch-through voltage is not corrected (curve 1610). Therefore, to achieve the highest operating power (for example, 600V), more voltage steps are needed (more channels are blocked). Each step is located lower, helping to break the cool off the wafer surface. The cut-off structure described in the above embodiment is formed by a double-nanostructure. In other embodiments, the cutoff structure can be made from a single nanotube configuration. Figure 28 is a cross-sectional view of a cut-off structure in accordance with a fourth alternative embodiment of the present invention, wherein the cut-off structure is part of an integrated circuit comprising an active device fabricated using a single nanotechnology process. Referring to Fig. 28, the integrated circuit 1 900 includes a cut-off structure formed in the cut-off region 1952, and the cut-off region 1952 contains the cut-off unit cell 1954, except for the preparation using only the N- epitaxial layer nanotube 191, the cut-off crystal. The other preparation methods of Cell 1 954 are the same as those shown in Figure 20. The p-doped region 196 接触 contacts the yarn of the P-mesa structure layer 19 to form a pad-shaped region of the cut-off structure. The operation of the cut-off junction wheel in the integrated circuit 1 900 is the same as that of the integrated circuit 1500 shown in Fig. 2 . The above-described cut-off structure is for gradually forming the voltage of the cut-off region of the integrated circuit with respect to the formation of the cut-off cell. At the last cut-off cell, for an N-channel device, the voltage has risen to the highest operating voltage (for p-channel devices, the voltage is reduced to ground potential). In accordance with one aspect of the invention, an end stop cell comprising a field plate is formed in the cutoff structure at the interface between the last cut cell and the edge of the wafer. Figure 29 shows a zero-cut structure 099119030 form number A0101 in accordance with an embodiment of the present invention.

0993278454-0 第48頁/共123頁 201101497 一個末端截止晶胞的剖面圖,其中截止結構作為使用雙 奈米管工藝製成的含有有源裝置的積體電路的一部分。0993278454-0 Page 48 of 123 201101497 A cross-sectional view of an end-cut cell in which the cut-off structure is part of an integrated circuit containing active devices fabricated using a dual nanotube process.

參見第29圖,積體電路2000含有一個帶有一系列截止晶 胞的截止結構,圖中可以看到其最後一個截止晶胞2〇54ζ 。該截止結構還包括一個末端截止晶胞2056。末端截止 晶胞2056含有一個寬Ρ—臺面結構層2004ζ,多晶矽場板 2090和2091形成在Ρ-臺面結構層2004ζ上,通過介質層 2096,多晶石夕場板2〇90和2091與Ρ-臺面結構層2〇〇4ζ絕 緣。寬Ρ-臺面結構層2〇〇4ζ的寬度f遠大於其他ρ_臺面結 構層的寬度。末端戴.止晶胞205.6還含有一個位於晶片邊 緣的最後一個Ρ-臺面結構層ϊ2#〇4χ,晶类的,劃線槽就位於 晶片邊緣。Ν-外延層奈米管和Ρ-外延層奈米管排列在ρ_ 臺面結構2004ζ和2004χ的側壁旁。在本實施例中,p—臺 面結構層2004ζ的寬度約為40mm。 Ο 場板2090和2091用於承載場板上的電壓降,使最後一個 截止晶胞2054z的N-摻雜區;2〇62的電壓_ ’低於積體電路 的最高工作電壓》末端截止晶胞2056=的N-外延層奈米管 2010x連接到漏極電勢上,也就是最高工作電壓上。場板 2090和2091串聯起來,承載多餘的擊穿電壓,並將電場 從晶片邊緣推回到最後一個截止晶胞2〇54z。更確切地說 ,多晶矽場板2090通過金屬互聯接頭2092,電連接到最 後一個截止晶胞2〇54z上。多晶矽場板2091通過金屬互 聯接頭2093 ’電連接到N-摻雜區2〇62x和N+區2063x上 。N-外延層奈米管2010x連接到N+襯底上,也就是連接 最高工作電壓,並作為溝道停止。因此,多晶矽場板 2091偏向最高工作電壓。場板2〇90和2〇91將電場和耗盡 099119030 表單編號A0101 第49頁/共123頁 0993278454-0 201101497 區反向推至最後一個截止晶胞。因此,末端截止晶胞 2〇56擋住截土結構遠離晶片邊緣。而且,場板還有助於 閉鎖多餘電壓’保護矽表面不受雜質以及不必要的電荷 積累的影響’依靠在邊緣處更加可靠的電荷平衡,建立 —個更加強大的系統。也可選擇,用除了多晶矽、金屬 之外的其他導電材料製備場板。在其他實施例中,僅需 要一個單場板’或省去截止晶胞。如果截止結構不含有 末端戴止晶胞’最後一個截止晶胞2〇54z就只需要將P-摻 雜區連接到前一個N-摻雜區,由於沒有進一步的連接, 因此最後一個截止晶胞2〇54z並不需要N-掺雜區2062 ( 帶有或不帶有N+區)^ 上述說明用於解釋說明本發:明的典型實施例,並不用於 限制範圍。在本發明的範圍內,還可能存在多種修正或 變化。例如,參見第9 (a)圖至第9 ( u )圖所示的製備 過程’用於製備單奈米管,而不是雙奈米管。而且,第 16 (a)圖和第16 (b)圖所示的製備過程,可用於製備 單奈米管,而非雙奈來警。 此外’在上述說明中,本發a㈣各種實闕巾使用的是 從六王饮雜叼佩低或重摻雜的N+襯底牡/ 選實施例中,上述裝置包括金屬氧化物電晶體、峨 雙極電晶體、肖特基二極體以都^ 用重接雜的襯底或極其重摻雜的N++概底製備。 此外,對於單奈米管卫藝或雙奈„工藝,無論概心 何,都只需要將N —型奈米管電連細-型襯底上。也 099119030 是說’觀底作為初始材料,卜料延層生長在概底上 通過刻㈣成臺面結構,如第3 (a) 第3 (' 表單煸號A0101 第50頁/共123頁 圃 201101497 及第4 (a)圖至第4 (d)圖所示的製備方法。在這種情 色 況下’ N-型襯底向外擴散,同N-型奈米管電連接起來。 或者,將襯底作為N -型層,通過離子注入或外延生長, 在P-型臺面結構上形成,便於背部研磨,如第9 (a)圖 至第9 ( 11 )圖所示。形成N-型“襯底”的N-型層,通過 背部研磨以及後續的離子注入或外延工藝,電連接到N_ 型奈米管。 上述實施例僅針·-溝道金屬氧化物料效應管。然而 〇 ’通過反轉每個半導體區域的導電極性,上述奈米管電 晶體結構也可以用於製備P_溝道金屬氧化物料效應管 〇 儘官本發明的内谷已經通過上述優選實施例作了詳細介 紹’但應當遇識到上述的描述不應被認為是對本發明的 限制。在本領域技術人員閱讀了上述内容後,對於本發 明的多種修改和替代都將是顯而易見的。因此,本發明 的保護範圍應由所附的申請專利範圍來限定。Referring to Fig. 29, the integrated circuit 2000 includes a cut-off structure with a series of cut-off cells, and the last cut-off cell 2〇54ζ can be seen in the figure. The cutoff structure also includes an end stop cell 2056. The end stop cell 2056 contains a wide 台-mesa structure layer 2004 ζ, polycrystalline 矽 field plates 2090 and 2091 are formed on the Ρ-mesa structure layer 2004ζ, through the dielectric layer 2096, the polycrystalline slab field plates 2〇90 and 2091 and Ρ- The mesa structure layer is 2〇〇4ζ insulated. The width f of the wide-tower structure layer 2〇〇4ζ is much larger than the width of the other ρ_ mesa structure layers. The end stop cell 205.6 also contains a final Ρ-mesa structure layer ϊ2#〇4χ on the edge of the wafer, and the scribe line is located at the edge of the wafer. The Ν-epitaxial nanotubes and the Ρ-epitaxial nanotubes are arranged next to the sidewalls of the ρ_ mesa structures 2004ζ and 2004χ. In the present embodiment, the width of the p-mesa structure layer 2004 is about 40 mm.场 Field plates 2090 and 2091 are used to carry the voltage drop across the field plate, making the N-doped region of the last turn-off cell 2054z; the voltage _ '2 is lower than the maximum operating voltage of the integrated circuit'. The cell 2056 = N- epitaxial layer nanotube 2010x is connected to the drain potential, that is, at the highest operating voltage. Field plates 2090 and 2091 are connected in series to carry excess breakdown voltage and push the electric field from the edge of the wafer back to the last cut-off cell 2〇54z. More specifically, the polysilicon field plate 2090 is electrically connected to the last cut-off cell 2〇54z through the metal interconnection joint 2092. The polysilicon field plate 2091 is electrically connected to the N-doped region 2〇62x and the N+ region 2063x through the metal interconnection head 2093'. The N- epitaxial nanotube 2010x is connected to the N+ substrate, that is, the highest operating voltage is connected and stopped as a channel. Therefore, the polysilicon field plate 2091 is biased toward the highest operating voltage. Field plates 2〇90 and 2〇91 will drive the electric field and deplete 099119030 Form No. A0101 Page 49/123 Page 0993278454-0 201101497 The area is reversed to the last cut-off unit cell. Thus, the end stop cell 2〇56 blocks the intercept structure away from the edge of the wafer. Moreover, the field plate also helps to block the excess voltage 'protecting the crucible surface from impurities and unnecessary charge buildup', relying on a more reliable charge balance at the edge to create a more powerful system. Alternatively, the field plate may be prepared from a conductive material other than polysilicon or metal. In other embodiments, only a single field plate is required or the cut-off unit cell is omitted. If the cut-off structure does not contain the end-stop cell 'the last cut-off cell 2〇54z, then only the P-doped region needs to be connected to the previous N-doped region. Since there is no further connection, the last cut-off cell 2〇54z does not require N-doped region 2062 (with or without N+ region). The above description is for explaining the exemplary embodiment of the present invention, and is not intended to limit the scope. Many modifications or variations are possible within the scope of the invention. For example, see the preparation process shown in Figures 9(a) through 9(u) for the preparation of a single nanotube instead of a double nanotube. Moreover, the preparation process shown in Figures 16(a) and 16(b) can be used to prepare a single nanotube instead of a double. Further, in the above description, the present invention (a) uses a metal oxide transistor, 峨, in an embodiment of the N+ substrate, which is a low or heavily doped N+ substrate. Bipolar transistors, Schottky diodes are prepared using either a heavily doped substrate or an extremely heavily doped N++ substrate. In addition, for the single-nano tube or the double-neck process, it is only necessary to electrically connect the N-type nanotube to the fine-type substrate. Also 099119030 is to say that the bottom is used as the starting material. The growth of the material is carried out on the basis of the plan (4) into a mesa structure, as in the 3rd (a) 3rd ('Form No. A0101 Page 50 / 123 pages 圃 201101497 and 4 (a) to 4 ( d) The preparation method shown in the figure. Under this erotic condition, the 'N-type substrate is outwardly diffused and electrically connected to the N-type nanotube. Alternatively, the substrate is used as an N-type layer through ion implantation. Or epitaxial growth, formed on the P-type mesa structure for easy back grinding, as shown in Figures 9(a) to 9(11). Form an N-type "substrate" N-type layer through the back Grinding and subsequent ion implantation or epitaxy processes are electrically connected to the N-type nanotube. The above embodiment only has a pin-channel metal oxide effect tube. However, by inverting the conductive polarity of each semiconductor region, the above-mentioned The rice tube crystal structure can also be used to prepare the P_channel metal oxide material effect tube. The above description of the preferred embodiments has been described in detail, but it should be understood that the above description should not be construed as limiting the invention. It is obvious that the scope of the invention should be limited by the scope of the appended claims.

〇 【圖式簡單說明】 '="V〇 [Simple diagram description] '="V

[_帛1圖表示依據本發明的[實施例,一㈣直溝道金属 乳化物石夕場效應音裝置的剖面圖。 第2圖表示依據本發明的第二實施例,一種垂直溝道金屬 氧化物矽場效應管裝置的剖面圖。 第3 (a)圖至第3 (h)圖表示依據本發明的一個實施例 ,如第1圖所㈣垂直溝道金屬氧化物料效應管裝置製 備工藝的剖面圖。 第4 (a)圖至第4 (d)圖表示依據本發明的—個實施例 ,如第2圖所示的垂直溝道金屬氧化物石夕場效應管裝置製 099119030 表單編號A0101 第51頁/共123頁 201101497 備工藝的剖面圖。 第5圖表不在耗盡狀態下’沿如第lB|所示的n型金屬氧* 物半導體電晶體的奈米管漏極漂流區’電場分佈的模擬 結果。 第6圖表示依據本發明的—個實施例,-種絕緣栅雙極電 晶體裝置的剖面圖。 第6 (a)圖表示-種絕緣柵雙極電晶體裝置的電路符號 〇 第7圖表雜據本發_—財關,—種肖特基二極體 的剖面圖。 第7 (a)圖表示一種肖特基二極體的電路符號。 第8圖表示依據本發明的一儀實施例,―種卜^結型二極 體的剖面圖。 第8 (a)圖表示一種P-N結型二極體的電路符號。 第9 (a)圖至第9 (k)圖表示依據本發明的—個可選實 施例,一種垂直溝道金屬氧化物矽場效應备裝置以及一 種絕緣柵雙極電晶體裝置的製備工藝的剖面圖。 第9 (fl)圖至第9 (11)圖表示依據本發明的一個可選 實施例,一種垂直溝道金屬氧化物矽場效應管裝置以及 一種絕緣栅雙極電晶體裝置的製備工藝的剖面圖。 第10圖表示依據本發明的一個實施例,採用如第g (a) 圖至第9 (k)圖所示的工藝’製備一種集成N —型絕緣柵 雙極電晶體的垂直N型金屬氧化物矽場效應管裝置的剖面 圖。 第11 (a)圖表示如第10圖所示的集成金屬氧化物石夕場效 應管和絕緣柵雙極電晶體裝置的等效電路圖。 099119030 表單編號A0101 第52頁/共123頁 0993278454-0 201101497 第11 (b)圖表示如第11 (a)圖所示的金屬氧化物矽場 效應管和絕緣柵雙極電晶體裝置的操作時間表。 第12圖表示依據本發明的一個實施例,採用如第9 (a) 圖至第9 (e)圖以及第9 (fl)圖至第9 (11)圖所示的 工藝製備的集成肖特基二極體的垂直N型金屬氧化物矽電 晶體的剖面圖。 第13圖表示如第12圖所示的集成金屬氧化物矽場效應管 以及宵特基二極體的等效電路圖。 0 第14圖表示依據本發明的一個實施例,如第9 ( & )圖至 第9 (k)圖所示的工藝製備的集成p_N型二極體的絕緣柵 雙極電晶體裝置的剖面圖。ϊ 第15圖表示如第14圖所示的基成絕緣柵雙極電晶體以及 P-N結型二極體的等效電路圖。 第16 (a)圖至第16 (b)圖表示依據本發明的一個實施 例,用於製備垂直溝道金屬氧化物矽場效應管裝置的可 選工藝。 .? V: ,The graph of Fig. 1 shows a cross-sectional view of a (four) straight channel metal emulsifier stone field effect sound device according to the present invention. Fig. 2 is a cross-sectional view showing a vertical channel metal oxide tantalum field effect device according to a second embodiment of the present invention. 3(a) to 3(h) are cross-sectional views showing the process of preparing a vertical channel metal oxide effect tube device as shown in Fig. 1 according to an embodiment of the present invention. 4(a) to 4(d) show an embodiment according to the present invention, as shown in Fig. 2, a vertical channel metal oxide stone MOSFET device 099119030 Form No. A0101 Page 51 / Total 123 pages 201101497 Cross-section of the preparation process. The fifth graph is not a simulation result of the electric field distribution of the nanotube drain drift region of the n-type metal oxide semiconductor transistor as shown in the 1B|throwth state. Figure 6 is a cross-sectional view showing an insulated gate bipolar crystal device in accordance with an embodiment of the present invention. Figure 6 (a) shows the circuit symbol of an insulated gate bipolar transistor device. 〇 The seventh chart is a cross-sectional view of the Schottky diode. Figure 7 (a) shows the circuit symbol of a Schottky diode. Fig. 8 is a cross-sectional view showing an embodiment of an apparatus according to the present invention, a type of junction type diode. Figure 8(a) shows the circuit symbol of a P-N junction diode. 9(a) to 9(k) are diagrams showing an alternate embodiment of a vertical channel metal oxide tantalum field effect device and an insulated gate bipolar transistor device in accordance with an alternative embodiment of the present invention Sectional view. 9(fl) to 9(11) are views showing a cross section of a vertical channel metal oxide tantalum field effect device and an insulated gate bipolar transistor device according to an alternative embodiment of the present invention. Figure. Figure 10 is a diagram showing the vertical N-type metal oxidation of an integrated N-type insulated gate bipolar transistor using the process shown in Figures g(a) through 9(k) in accordance with one embodiment of the present invention. A cross-sectional view of the material field effect tube device. Figure 11 (a) shows an equivalent circuit diagram of the integrated metal oxide stone field effect transistor and the insulated gate bipolar transistor device as shown in Fig. 10. 099119030 Form No. A0101 Page 52 of 123 0993278454-0 201101497 Figure 11 (b) shows the operation time of the metal oxide tantalum field effect transistor and the insulated gate bipolar transistor device as shown in Figure 11 (a) table. Figure 12 is a diagram showing an integrated Schott prepared by the processes shown in Figures 9(a) through 9(e) and 9(fl) through 9(11) in accordance with one embodiment of the present invention. A cross-sectional view of a vertical N-type metal oxide tantalum transistor of a base diode. Fig. 13 is a view showing an equivalent circuit diagram of the integrated metal oxide tantalum field effect transistor and the 宵-based diode as shown in Fig. 12. 0 is a cross-sectional view showing an insulated gate bipolar transistor device of an integrated p_N type dipole fabricated by the processes shown in the 9th (&) to 9th (k) diagrams according to an embodiment of the present invention. Figure. ϊ Fig. 15 shows an equivalent circuit diagram of the base-insulated gate bipolar transistor and the P-N junction diode as shown in Fig. 14. Figures 16(a) through 16(b) illustrate an alternative process for fabricating a vertical channel metal oxide tantalum field effector device in accordance with one embodiment of the present invention. .? V: ,

第1 7圖表示依據本發明的一個實施例,,一種六角形電晶 體晶胞陣列的俯視圖。 第18圖表示依據本發明的一個實施例,一種方形電晶體 晶胞陣列的俯視圖。 第19圖表不依據本發明的一個實施例,一種含有有源區 和截止區的功率半導體裝置的積體電路(晶片)的俯視 圖。 第20圖表不依據本發明的一個實施例,一種截止結構的 俯視圖,其中截止結構作為使用雙奈米管工藝製成的含 有有源裝置的積體電路的一部分。 099119030 表單編號A0101 第53頁/共123頁 0993278454-0 201101497 第21圖表示依據本發明的一個實施例,如第20圖所示的 截止結構沿A-A’線方向上的剖面圖。 第22圖表示依據本發明的一個實施例,如第20圖所示的 截止結構沿B-B’線方向上的剖面圖。 第23圖表示依據本發明的一個實施例,電壓與截止結構 的截止晶胞性質關係曲線。 第24圖為一個積體電路的俯視圖,表示依據本發明的一 個可選實施例,一種截止結構的有源區和第一終止環之 間的交界面。 第25圖表示依據本發明的一個第一可選實施例,一種截 止結構的俯視圖,其中截止結構作為使用雙奈米管工藝 製成的含有有源裝置的積體電路的一部分。 第26圖表示依據本發明的一個第二可選實施例,一種截 止結構的剖面圖,其中截止結構作為使用雙奈米管工藝 製成的含有有源裝置的積體電路的一部分。 第27圖表示依據本發明的一個第三可選實施例,一種截 止結構的剖面圖,其中截止結構作為使用雙奈米管工藝 製成的含有有源裝置的積體電路的一部分。 第28圖表示依據本發明的一個第四可選實施例,一種截 止結構的剖面圖,其中截止結構作為使用單奈米管工藝 製成的含有有源裝置的積體電路的一部分。 第29圖表示依據本發明的一個實施例,一種截止結構的 一個末端截止晶胞的剖面圖,其中截止結構作為使用雙 奈米管工藝製成的含有有源裝置的積體電路的一部分。 【主要元件符號說明】 [0006] 200 N-型垂直溝道金屬氧化物矽場效應管裝置 099119030 表單編號A0101 第54頁/共123頁 0993278454-0 201101497 118、218、318 多晶矽栅極電極 116、216、1216、1316、1516 栅極氧化層 112、 212、312、606、1512 溝道 110、210、310'410、510、610、1210、1310 薄Ν-型外延層 208、308、408、608、1 208、1308 薄Ρ-型外延層 202 Ν ++概底 Ο 104、204、304、404、504 Ρ-臺面結構-外延層 120、220、320、620 Ρ-本體區 230 源極電極 124、224、624、1 524 Ρ +本體接觸區 122、222、322、622、1 522 Ν +源極區 226 介質層 102、202 Ν + +襯底 113、 213 氧化層 114、 214、692 點線圓 ❹ 126、226 沉積介質層 BPSG 有硼磷的矽玻璃層 線550 電場沿納米管漏極漂流區的長度方向分佈 線552 電場在Ρ-臺面結構外延層中的分佈 線5 5 4 電場沿多晶石夕柵極和氧化物填充的溝道方向 分佈 300、680、780、IGBT 絕緣栅雙極電晶體裝置 330、334、630 金屬層 326、626 含有硼酸的矽玻璃 316、616 柵極介質 099119030 表單編號Α0101 第55頁/共123頁 0993278454-0 201101497 302 N-型緩衝層 332 P+内部發射極區 400 肖特基二極體 440、442、542 金屬層 446 肖特基結 424、520、627 淺P+陽極接觸區 438 淺P-摻雜區 402、502、1 502 N+襯底 500 P-N結二極體 540 歐姆金屬層 546 P-N結 604 P-型單晶矽襯底 612 二氧化矽 618 多晶矽層 600 氧化物矽電晶體 660 N +摻雜層 664 底部鍍金屬 662 P +摻雜層 661 N+層 663 P+層 800、900 半導體裝置 801b、1 555 垂直N型金屬氧化物矽電晶體 801a、1001a 絕緣柵雙極電晶體裝置 MOSFET 金屬氧化物場效應管 901b 肖特基二極體 901a N型金屬氧化物矽電晶體 099119030 表單編號A0101 第56頁/共123頁 0993278454-0 201101497 1001b P-N結二極體 604 、 1204 、 1304 、 1504 、 1504a 、 1504b 、 1804 P-臺面結構 1180 薄遮罩氧化層 1182、1563 N+區 1184 虛線 1 200、1 300 電晶體陣列 1201 > 1301 電晶體晶胞 ❹ 1218、1318、1518 多晶矽柵極 1400 晶片 1452、1552、1752、1952 戴止區 1454 源極金屬接頭 1456 柵極金屬接頭 1450、1550、1 750 有源區 1 500 有源半導體裝置的積體電路 1 5 3 0 源極電極 Ο 1 560、1860 P-摻雜區 1 562、1862 N-摻雜區 1561 P+區 1573 金屬接頭 1572 金屬互聯接頭 1554 ' 1554a ' 1554b 截止晶胞 1 508、1 508a、1 508b、1810 P-外延層奈米管 1510、1510a、1510b、1910 N-外延層奈米管 νρτ 穿通電壓 1612 曲線 099119030 0993278454-0 表單編號A0101 第57頁/共123頁 201101497 1 700、1 800、1 900 積體電路 1 754 截止環 1 880、1 808 P-型植入區 099119030 表單編號A0101 第58頁/共123頁Figure 17 shows a top view of a hexagonal array of cell crystal cells in accordance with one embodiment of the present invention. Figure 18 is a top plan view of a square transistor cell array in accordance with one embodiment of the present invention. Figure 19 is a plan view of an integrated circuit (wafer) of a power semiconductor device including an active region and a cutoff region, in accordance with an embodiment of the present invention. The 20th chart is not a top view of a cutoff structure in accordance with an embodiment of the present invention, wherein the cutoff structure is part of an integrated circuit including an active device fabricated using a double nanotube process. 099119030 Form No. A0101 Page 53 of 123 0993278454-0 201101497 Figure 21 shows a cross-sectional view of the cut-off structure taken along line A-A' as shown in Fig. 20, in accordance with an embodiment of the present invention. Figure 22 is a cross-sectional view of the cutoff structure shown in Fig. 20 taken along the line B-B' in accordance with an embodiment of the present invention. Figure 23 is a graph showing the relationship between the voltage and the cut-off cell properties of the cutoff structure in accordance with one embodiment of the present invention. Figure 24 is a top plan view of an integrated circuit showing the interface between the active region of the cutoff structure and the first termination ring in accordance with an alternative embodiment of the present invention. Figure 25 is a plan view showing a cut-off structure as a part of an integrated circuit including an active device fabricated using a double nanotube process in accordance with a first alternative embodiment of the present invention. Figure 26 is a cross-sectional view showing a cut-off structure as a part of an integrated circuit including an active device fabricated using a double nanotube process in accordance with a second alternative embodiment of the present invention. Figure 27 is a cross-sectional view showing a cut-off structure as a part of an integrated circuit including an active device fabricated using a double nanotube process in accordance with a third alternative embodiment of the present invention. Figure 28 is a cross-sectional view showing a cut-off structure as a part of an integrated circuit including an active device fabricated using a single nanotube process in accordance with a fourth alternative embodiment of the present invention. Figure 29 is a cross-sectional view showing an end stop cell of a cutoff structure as part of an integrated circuit containing an active device fabricated using a double nanotube process, in accordance with one embodiment of the present invention. [Main component symbol description] [0006] 200 N-type vertical channel metal oxide tantalum field effect device 099119030 Form No. A0101 Page 54 / 123 Page 0993278454-0 201101497 118, 218, 318 Polysilicon gate electrode 116, 216, 1216, 1316, 1516 gate oxide layers 112, 212, 312, 606, 1512 channels 110, 210, 310'410, 510, 610, 1210, 1310 thin germanium-type epitaxial layers 208, 308, 408, 608 1, 208, 1308 thin germanium-type epitaxial layer 202 Ν ++ basic bottom Ο 104, 204, 304, 404, 504 Ρ - mesa structure - epitaxial layer 120, 220, 320, 620 Ρ - body region 230 source electrode 124 , 224, 624, 1 524 Ρ + body contact regions 122, 222, 322, 622, 1 522 Ν + source region 226 dielectric layer 102, 202 Ν + + substrate 113, 213 oxide layer 114, 214, 692 dotted line ❹ 126, 226 deposition medium layer BPSG borosilicate layer 550 with electric field along the length of the nanotube drift drift line 552 electric field distribution line in the Ρ-mesa structure epitaxial layer 5 5 4 Crystalline gate and oxide filled channel direction distribution 300, 680, 780, IGBT insulated gate bipolar Crystal device 330, 334, 630 metal layer 326, 626 bismuth glass 316, 616 containing boric acid Gate dielectric 099119030 Form number Α 0101 Page 55 / 123 page 0993278454-0 201101497 302 N-type buffer layer 332 P + internal emitter region 400 Schottky diode 440, 442, 542 metal layer 446 Schottky junction 424, 520, 627 shallow P + anode contact region 438 shallow P-doped region 402, 502, 1 502 N + substrate 500 PN junction diode Body 540 ohm metal layer 546 PN junction 604 P-type single crystal germanium substrate 612 cerium oxide 618 polycrystalline germanium layer 600 oxide germanium transistor 660 N + doped layer 664 bottom metallization 662 P + doped layer 661 N + layer 663 P+ layer 800, 900 semiconductor device 801b, 1 555 vertical N-type metal oxide germanium transistor 801a, 1001a insulated gate bipolar transistor device MOSFET metal oxide field effect transistor 901b Schottky diode 901a N-type metal oxide矽Electrical Crystal 099119030 Form No. A0101 Page 56 / Total 123 Page 0993278454-0 201101497 1001b PN junction diode 604, 1204, 1304, 1504, 1504a, 1504b, 1804 P-mesa structure 1180 Thin mask oxide layer 1182, 1563 N+ zone 118 4 dotted line 1 200, 1 300 transistor array 1201 > 1301 transistor cell ❹ 1218, 1318, 1518 polysilicon gate 1400 wafer 1452, 1552, 1752, 1952 wearing area 1454 source metal joint 1456 gate metal joint 1450 , 1550, 1 750 active area 1 500 active semiconductor device integrated circuit 1 5 3 0 source electrode Ο 1 560, 1860 P-doped region 1 562, 1862 N-doped region 1561 P + region 1573 metal connector 1572 metal interconnect connector 1554 ' 1554a ' 1554b cut-off cell 1 508, 1 508a, 1 508b, 1810 P- epitaxial nanotubes 1510, 1510a, 1510b, 1910 N- epilayer nanotube νρτ punch-through voltage 1612 curve 099119030 0993278454 -0 Form No. A0101 Page 57 / Total 123 Page 201101497 1 700, 1 800, 1 900 Integrated Circuit 1 754 Cut-Off Ring 1 880, 1 808 P-Type Implant Area 099119030 Form No. A0101 Page 58 of 123

0993278454-00993278454-0

Claims (1)

201101497 七、申請專利範圍: 種半導體裝置,其特徵在於,該半導體裝置包含: 的第—半導體層’其包含若干個形成在 切成道,這麟道在帛-半導體層 fI成臺面結構; 個第二導電類型的第二 的底面上; +導闕丨位於弟-半導體層 ο —個开/成在溝道側壁上的第—導電類型的第—外延層 一卜k層至)覆蓋第—半導體層中臺面結構的側壁; 曰 誃在第—外延層上的第二導電類型的第二外延層, Μ第-外延層#連接到第二半導想層上; 成傾道中的第―介質層’其緊鄰第二外延層,所 L、第;丨質層至少填充部分溝道; 2形成在第-介質層上方的至少一個第一溝道的側壁上 的柵極介質層; 〇 個形成在第-介㈣上㈣及緊_述的柵極介質層的 第—溝道中的栅極導電層, 第-外延層和第二外延層a道的側壁構成平行摻 2 ’第—外延層和第二外延層各自具有均句一致的捧雜 度,第二外延層具有第一厚度和第-摻雜濃度,第一外 延層和第-半導體層的臺面結構均具有第二厚度和第二平 轉雜違度,第#〇第二厚度以及第一捧雜濃度和第二平 均摻雜濃度達成電荷平衡。 2.如申請專利範圍第1項所述的半導體裝置,其特徵在於, 所述的第二半導體層是由—個極其重推雜的半導體層或重 099119030 表單編號A0101 第59頁/共123頁 0993278454-0 201101497 掺雜的半導體層構成的,所述的第一半導體層為第一導電 類型的輕摻雜外延層。 3. 如申請專利範圍第1項所述的半導體裝置,其特徵在於, 所述的第一半導體層是由一個第一導電類型的輕摻雜半導 體襯底構成的,第二半導體層作為植入層或外延層,在對 第一半導體層進行背部研磨之後,形成在第一半導體層的 底面上。 4. 如申請專利範圍第1項所述的半導體裝置,其特徵在於, 該半導體裝置還包含: 一個第一導電類型的本體區,其形成在第一半導體層的至 少一個第一臺面結構的頂部,該本體區延伸到第一溝道中 的柵極導電層底部邊緣附近的深度;以及 形成在緊鄰第一溝道的側壁的本體區中的一個第二導電類 型的重摻雜源極區,該源極區從第一半導體層的上方,延 伸到柵極導電層頂部邊緣附近的深度;以及 在其中形成的一個垂直溝道金屬氧化矽場效應管,所述的 第二半導體層作為垂直溝道金屬氧化矽場效應管的漏極區 ,第二外延層作為漏極漂流區,栅極導電層作為柵極電極 〇 5. 如申請專利範圍第1項所述的半導體裝置,其特徵在於, 其中第二外延層的厚度約為l〇〇nm,第一外延層的厚度約 為250nm。 6. 如申請專利範圍第1項所述的半導體裝置,其特徵在於, 其中第一外延層的摻雜濃度比第一半導體層更大。 7. 如申請專利範圍第1項所述的半導體裝置,其特徵在於, 其中第二外延層的第一厚度和第一摻雜濃度的乘積,大致 099119030 表單編號A0101 第60頁/共123頁 0993278454-0 201101497 等於第-外延層和第-半導體層的臺面結構 第二平均摻雜濃度乘積的-半。 _ •如申請專利範圍第1項所述的半導體裝置,其特徵在於, 其中第-導電類型是由Ν-型電導型構成,第 由卜型電導型構成。 !疋 •如申請專利範圍第i項所述的半導體裝置,其特徵在於, 其中第一導電類型是由P-型電導型構成,第二導電類 由N-型電導型構成。 疋 Ο201101497 VII. Patent application scope: A semiconductor device, characterized in that: the semiconductor device comprises: a first semiconductor layer comprising a plurality of formed in a dicing channel, wherein the lining is formed in a 台-semiconductor layer fI; a second bottom surface of the second conductivity type; the + lead is located in the di-semiconductor layer, and the first epitaxial layer of the first conductivity type is formed on the sidewall of the trench to cover the first layer a sidewall of the mesa structure in the semiconductor layer; a second epitaxial layer of the second conductivity type on the first epitaxial layer, the first epitaxial layer # is connected to the second semiconducting layer; the first medium in the dip a layer 'directly adjacent to the second epitaxial layer, the L, the first; the enamel layer filling at least a portion of the channel; 2 forming a gate dielectric layer on the sidewall of the at least one first channel above the first dielectric layer; a gate-conducting layer in the first-channel of the gate dielectric layer on the first-fourth (four) and the second-stage epitaxial layer, and the sidewalls of the second epitaxial layer and the second epitaxial layer a parallel doped 2'-th epitaxial layer and The second epitaxial layer each has a uniform sentence Holding the second impurity layer, the second epitaxial layer has a first thickness and a first doping concentration, and the mesa structures of the first epitaxial layer and the first semiconductor layer each have a second thickness and a second translational mismatch, #〇第The second thickness and the first and second average doping concentrations achieve charge balance. 2. The semiconductor device according to claim 1, wherein the second semiconductor layer is made of an extremely heavily doped semiconductor layer or weight 099119030 Form No. A0101 Page 59 of 123 0993278454-0 201101497 A doped semiconductor layer is formed, the first semiconductor layer being a lightly doped epitaxial layer of a first conductivity type. 3. The semiconductor device according to claim 1, wherein the first semiconductor layer is composed of a lightly doped semiconductor substrate of a first conductivity type, and the second semiconductor layer is implanted. The layer or epitaxial layer is formed on the bottom surface of the first semiconductor layer after back grinding the first semiconductor layer. 4. The semiconductor device according to claim 1, wherein the semiconductor device further comprises: a body region of a first conductivity type formed on top of at least one first mesa structure of the first semiconductor layer a body region extending to a depth near a bottom edge of the gate conductive layer in the first channel; and a heavily doped source region of the second conductivity type formed in the body region proximate the sidewall of the first channel, a source region extending from above the first semiconductor layer to a depth near a top edge of the gate conductive layer; and a vertical channel metal ytterbium oxide field effect transistor formed therein, the second semiconductor layer being a vertical channel A semiconductor device according to the first aspect of the invention, wherein the semiconductor device of the first aspect of the invention is characterized in that: The thickness of the second epitaxial layer is about 10 nm, and the thickness of the first epitaxial layer is about 250 nm. 6. The semiconductor device according to claim 1, wherein the first epitaxial layer has a larger doping concentration than the first semiconductor layer. 7. The semiconductor device according to claim 1, wherein the product of the first thickness of the second epitaxial layer and the first doping concentration is substantially 099119030. Form number A0101 page 60/123 page 0993278454 -0 201101497 is equal to - half of the product of the second average doping concentration of the mesa structure of the first epitaxial layer and the first semiconductor layer. The semiconductor device according to claim 1, wherein the first conductivity type is composed of a Ν-type conductivity type, and the first conductivity type is formed. ! The semiconductor device according to claim i, wherein the first conductivity type is composed of a P-type conductivity type, and the second conductivity type is composed of an N-type conductivity type.疋 Ο 099119030 .如申請專利範圍第i項所述的半導體裝置,其特徵在於, 其中對溝道的底部區域反向摻雜,使得第二外延層同第二 半導體層在溝道底部區域電連接。 11 .如申請專利範圍第i項所述的半導體裝置,其特徵在於, 該半導體裝置還包含: 2成在第-半導體層的至少—個第_個臺面結構頂部的一 第一導電類型的本體區’該本體區延伸到第—溝道中的 栅極導電層底部邊緣附近的深度; 形成在緊鄰第-溝道的側壁的本體區中的_個第二 型的重摻雜源極區,該源極卩征 類 原極伸到栅極導 附近的深度; 只丨運緣 在第二半導體層的底面上的一個第 ^ μ w個第—導電類型的第三半導 體層,第三半導體層形成一個内部發射極區,·以及 -個電連接到第三半導體層的集電極, 其中形成的—個絕緣柵雙極電晶體,第二半導體層作衫 絕緣拇雙極電晶體的緩衝或場欄區’本體區作為内部隼電 0993278454-0 極區’源極電極作為發射極電極極 表單編號删1 ^ 61 I/* 123 w 料為柵極電 201101497 極0 12 .如申請專利範圍第1項所述的半導體裝置,其特徵在於, 該半導體裝置還包含: 形成在第一半導體層的一第二臺面結構中的第一導電類型 的陽極接觸區,第二臺面結構緊鄰帶有或不帶有柵極導電 層的第一介質層填充的溝道;以及 形成在第一半導體層的頂面上的一個肖特基金屬層,肖特 基金屬連接第一和第二外延層以及陽極接觸區,肖特基金 屬連接第二外延層形成肖特基結, 其中形成的一個肖特基二極體,第二半導體層作為陰極, 肖特基金屬層作為陽極端子。· 13 .如申請專利範圍第12項所述的半導體裝置,其特徵在於, 該半導體裝置還包含: 一個形成在第一半導體層的第二臺面結構頂面上的第一導 電類型的輕摻雜淺植入區,包圍著陽極接觸區,該輕摻雜 區在第二臺面結構的整個表面上延伸,包括第一和第二外 延層,輕摻雜植入區的掺雜濃度比陽極接觸區更小。 14 .如申請專利範圍第1項所述的半導體裝置,其特徵在於, 該半導體裝置還包含: 形成在第一半導體層的一個第三臺面結構中的一個第一導 電類型的陽極接觸區,該陽極接觸區並延伸到形成在第三 臺面結構侧壁上的第二外延層,第三臺面結構緊鄰帶有或 不帶有柵極導電層的第一介質層填充的溝道,一個P-N結 位於陽極接觸區和第二外延層之間;以及 在第三臺面結構的頂面上的一個歐姆金屬層,與陽極接觸 區電接觸, 099119030 表單編號A0101 第62頁/共123頁 0993278454-0 201101497 其中所形成的一個P-Ν結二極體帶有第二半導體層,該第 二半導體層作為陰極,歐姆金屬層作為陽極端子。 15.如申請專利範圍第〗項所述的半導體裝置,其特徵在於, 該半導體裝置是由一個承載有源裝置的有源區以及一個有 源區周圍的截止區構成的,截止區包含一個截止晶胞陣列 ,從與有源區相交的第一個截止晶胞,一直到最後一個截 止晶胞,其中,每一個截止晶胞都含有:A semiconductor device according to the invention of claim 1, wherein the bottom region of the channel is counter-doped such that the second epitaxial layer is electrically connected to the second semiconductor layer at the bottom region of the channel. 11. The semiconductor device according to claim 1, wherein the semiconductor device further comprises: a body of a first conductivity type at the top of at least one of the first mesa structures of the first semiconductor layer a region 'the body region extending to a depth near a bottom edge of the gate conductive layer in the first channel; forming a second type of heavily doped source region in the body region adjacent to the sidewall of the first channel, the a source 卩 类 类 类 的 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; An internal emitter region, and a collector electrically connected to the third semiconductor layer, wherein an insulated gate bipolar transistor is formed, and the second semiconductor layer serves as a buffer or field column for the shirt-enhanced thumb bipolar transistor The area 'body area as the internal voltage 0993278454-0 pole area 'source electrode as the emitter electrode pole form number delete 1 ^ 61 I / * 123 w material for the gate electricity 201101497 pole 0 12 . If the patent application scope 1 The half The conductor device, further comprising: an anode contact region of a first conductivity type formed in a second mesa structure of the first semiconductor layer, the second mesa structure being in close proximity with or without a gate conduction a channel filled with a first dielectric layer of the layer; and a Schottky metal layer formed on a top surface of the first semiconductor layer, the Schottky metal connecting the first and second epitaxial layers and the anode contact region, Schottky The metal is connected to the second epitaxial layer to form a Schottky junction in which a Schottky diode is formed, the second semiconductor layer serves as a cathode, and the Schottky metal layer serves as an anode terminal. The semiconductor device of claim 12, wherein the semiconductor device further comprises: a lightly doped first conductivity type formed on a top surface of the second mesa structure of the first semiconductor layer a shallow implant region surrounding the anode contact region, the lightly doped region extending over the entire surface of the second mesa structure, including first and second epitaxial layers, the doping concentration of the lightly doped implant region is greater than the anode contact region smaller. 14. The semiconductor device according to claim 1, wherein the semiconductor device further comprises: an anode contact region of a first conductivity type formed in a third mesa structure of the first semiconductor layer, An anode contact region and extending to a second epitaxial layer formed on a sidewall of the third mesa structure, the third mesa structure being in close proximity to a channel filled with a first dielectric layer with or without a gate conductive layer, a PN junction being located Between the anode contact region and the second epitaxial layer; and an ohmic metal layer on the top surface of the third mesa structure, in electrical contact with the anode contact region, 099119030 Form No. A0101 Page 62 / Total 123 Page 0993278454-0 201101497 Where The formed P-Ν junction diode has a second semiconductor layer as a cathode and an ohmic metal layer as an anode terminal. 15. The semiconductor device of claim 1, wherein the semiconductor device is formed by an active region carrying an active device and a cut-off region around the active region, the cut-off region including a cut-off region The cell array, from the first cut-off cell that intersects the active region, to the last turn-off cell, wherein each of the turn-off cells contains: 一個第一半導體層的臺面結構,具有形成在其側壁上的第 外延層以及形成在第一外延層上的第二外延層,臺面結 構位於用第一介質層而非柵極導電層填充的溝道近鄰; 一個形成在臺面結構頂面中的第一導電類型的第一區電 連接到第一外延層和第一半導體層上;以及 一個形成在臺面結構頂面中"霄第二導電麴:型的第二區,電 連接到第二外延層,第二區遠離臺面結構中的第一區,並 且形成在除最後一個截止晶胞以外的每一個截止晶胞中, 其中第一個截止晶胞的第一,區電連接到半導體裝置的源極 或發射極電勢上,最後一個多印-胞够二外延層電連接 到半導體裝置的漏極或集電.極“土,或者漏極或集電極 電勢附近,其餘的截止晶胞的第二區分別電連接到陣列中 其下一個截止晶胞的第一區上。 16.如申請專利範圍第15項所述的半導體裝置其特徵在於, 其中每個截止晶胞還包含: 一個形成在第一區中的第一導電類型的第三區,第三區的 摻雜濃度比第一區更大;以及 一個形成在第二區中的第二導電類型的第四區,第四區的 摻雜濃度比第二區更大。 099119030 表單編號A0101 第63頁/共123頁 0993278454-0 201101497 17 .如申請專利範圍第15項所述的半導體裝置,其特徵在於, 其中每個截止晶胞都在一穿通電壓下被夾斷,截止晶胞的 陣列將截止區的電壓,以穿通電壓的步階,從最低電勢升 尚到最面電勢。 18 .如申請專利範圍第15項所述的半導體裝置,其特徵在於, 其中一個截止晶胞的第一區和第二區與下一個截止晶胞的 第一區和第二區交錯排列。 19 .如申請專利範圍第15項所述的半導體裝置,其特徵在於, 其中每個截止晶胞還包含: 一個形成在臺面結構中的具有第一導電類型摻雜劑的植入 區,位於遠離臺面結構頂面處,植入區的摻雜濃度用於調 節第二外延層的摻雜濃度,以降低截止晶胞的穿通電壓。 20 .如申請專利範圍第19項所述的半導體裝置,其特徵在於, 其中植入區形成在臺面結構中,在第一或第二區的底面下 方。 21 .如申請專利範圍第15項所述的半導體裝置,其特徵在於, 其中截止區更包令—個形成在最後一個截止晶胞近鄰的末 端截止晶胞,末端截止晶胞包含: 一個第一半導體層的末端臺面結構,具有形成在其侧壁上 的第一外延層以及形成在第一外延層上的第二外延層,末 端臺面結構位於用第一外延層填充,而非栅極導電層填充 的溝道近鄰,末端臺面結構的第一寬度比其他截止晶胞的 臺面結構的寬度更大;以及 位於末端臺面結構頂面上的至少一個場板,通過介質層與 末端臺面結構絕緣, 其中最後一個截止晶胞還包含形成在臺面結構頂面中,並 099119030 表單編號A0101 第64頁/共123頁 0993278454-0 201101497 電連接到第二外延層上的的第二導電類型的第二區,第二 區遠離臺面結構中的第一區,並且 其中至少一個場板耦合在最後一個截止晶胞的第二區和半 導體裝置的漏極或集電極電勢之間。 22 如申請專利範圍第21項所述的半導體裝置,其特徵在於, 其中末端截止晶胞的至少一個場板包含: 個位於末端臺面結構頂面上的第一場板,通過介質層與 末端臺面結構絕緣;以及 Ο 一個位於末端臺面結構頂面上的第二場板,通過介質層與 末端臺面結構絕緣,第二場板在第一場板近鄰, 其中第一和第二場板串聯在最後一個裁止晶胞的源極區和 半導體裝置的漏極或集電極電勢之間β 23 .一種半導體裝置,其特徵在於,該半導體裝置包含: 個第導電類型的第一半導體層,其含有形成在第一半 〇 導體層頂面中的多個溝道,這些溝道在第一半導體層中構 成臺面結構;f -個第二導電類型的第二半導體層,位於第一半導體層的 底面上; 一個形成在溝道側壁上的第二導電類型的第二外延層,至 少覆蓋第一半導體層的臺面結構的側壁; -购烕在溝道中的第―介質層,其緊鄰第二外延層,該 第一介質層至少填充部分溝道; -個形成在第―介質層上方的至少—個第—溝道側壁上的 栅極介質層;以及 一個形成在第一介質層上方 道中的栅極導電層, 以及緊鄰柵極介質層的第一溝 099119030 表單編號A0101 第65頁/共123頁 0993278454-0 201101497 其中,第二外延層沿溝道侧壁形成平行摻雜區,第二外延 層具有均勻一致的摻雜濃度,第二外延層具有第一厚度和 第一摻雜濃度,並且第一半導體層的臺面結構具有第二厚 度和第二摻雜濃度,選取合適的第一和第二厚度以及第一 摻雜濃度和第二摻雜濃度,以獲得電荷平衡;並且 其中所述的半導體裝置是由一個承載有源裝置的有源區以 及一個有源區周圍的截止區構成的,截止區包含一個截止 晶胞陣列,從與有源區相介面的第一個截止晶胞,一直到 最後一個載止晶胞,每一個截止晶胞都含有: 一個第一半導體層的臺面結構,具有形成在其側壁上的第 二外延層,其中,該臺面結構位於用第一介質層而非柵極 導電層填充的溝道近鄰; 一個形成在臺面結構頂面中的第一導電類型的第一區,電 連接到第一半導體層上;以及 一個形成在臺面結構頂面中的第二導電類型的第二區,電 連接到第二外延層,第二區遠離臺面結構中的第一區,並 且形成在除最後一個截止晶胞以外的每一個截止晶胞中, 其中,第一個截止晶胞的第一區電連接到半導體裝置的源 極或發射極電勢上,最後一個截止晶胞的第二外延層電連 接到半導體裝置的漏極或集電極電勢上,或者漏極或集電 極電勢附近,其餘的截止晶胞的第二區分別電連接到陣列 中其下一個截止晶胞的第一區上。 24 . —種半導體裝置的製備方法,其特徵在於,該方法包含: 在第一導電類型的第一半導體層的頂面上,形成若干個溝 道,這些溝道在第一半導體層中形成臺面結構; 在第一半導體層的表面上通過外延生長形成一個第二導電 099119030 表單編號A0101 第66頁/共123頁 0993278454-0 201101497 類型的第一外延層,至少覆蓋溝道的側壁; 在溝道中製備第一介質層,其中第一介質層至少填充了部 分溝道; 在第一介質層上方以及緊鄰第一外延層的至少一個第一溝 道的側壁上,形成一個柵極介質層; 〇 在第一溝道中形成一個柵極導電層,其中柵極導電層位於 第一介質層上方以及緊鄰柵極介質層;以及 在第一半導體層的底面上,製備一個第二導電類型的第二 半導體層,其中第一外延層電連接到此第二半導體層上, 其中,第一外延層沿溝道的側壁排列,並且具有均勻的摻 雜濃度, 第一外延層具有第一厚度以及第一摻雜濃度,第一半導體 層的臺面結構在水準方向上具有第二厚度以及第二摻雜濃 度,選取合適的第一和第二厚度以及第一和第二摻雜濃度 ,以便在實際運行中獲得電荷平衡。 25 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,該第二導電類型的第二個半導體層包含一個第 二導電類型的重摻雜半導體襯底,並且在形成多個溝道之 前,此方法還包含: 製備第二導電類型的重摻雜半導體襯底;以及 在半導體襯底的頂面上,製備第一導電類型的第一半導體 層。 26 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,第一導電類型的第一半導體層為輕摻雜的半導 體襯底,並且在製備柵極導電層之後,此方法還包含: 研磨輕摻雜的半導體襯底背部,除去半導體襯底,一直到 099119030 表單編號 A0101 第 67 頁/共 123 頁 0993278454-0 201101497 27 28 · 29 . 30 . 31 . 32 , 099119030 介質填充的溝道底面附近;並且 在剛裸露出來的輕摻雜半導體襯底背部,製備第二導電類 型的第二個半導體層,第二個半導體層為重掺雜。 如申請專利範圍第26項所述的半導體裝置的製備方法,其 特徵在於,製備重摻雜的第二個半導體層包含,在剛裸露 的輕摻雜的半導體襯底背部,進行第二導電類型注入。 如申請專利範圍第26項所述的半導體裝置的製備方法,其 特徵在於,研磨輕摻雜的半導體襯底背部還包含:研磨半 導體襯底的背部,除去半導體襯底,直到第一個介質層底 面為止。 ...... . . .. . 如申請專利範圍第26項所述的半導體裝置的製備方法,其 特徵在於,製備第二導電類螌的重摻雜第二個半導體層包 含:在剛裸露的輕摻雜的半導體襯底背部,外延生長第二 導電類型的重摻雜第二個半導體層。 如申請專利範圍第29項所述的半導體裝置的製備方法,其 特徵在於,研磨輕摻雜的半導體襯底背部,除去半導體襯 底,一直到遠離介質填充的溝道底面的隹一距離。 如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,該方法還包含: 在溝道中製備第一介質層之前,進行第二導電類型的各向 異性離子注入,通過各向異性的離子注入,在溝道底部形 成第二導電類型的摻雜區。 如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,該方法還包含: 在至少一個第一半導體層的臺面結構的頂部,製備一個第 一導電類型的本體區,該本體區延伸到第一溝道中的柵極 表單編號A0101 第68頁/共123頁 0993278454-0 201101497 33 . Ο 34 . Ο 35 . 36 . 37 . 導電層底部邊緣附近的深度; 在緊鄰第一溝道的侧壁的本體區中,製備一個第二導電類 型的重摻雜源極區,該源極區延伸到柵極導電層頂部邊緣 附近的深度;以及 在其中製備一個垂直溝道金屬氧化矽場效應管,第二半導 體層作為垂直溝道金屬氧化矽場效應管的漏極區,第一外 延層作為漏極漂流區,柵極導電層作為柵極電極。 如申請專利範圍第32項所述的半導體裝置的製備方法,其 特徵在於,該方法還包含: 在柵極導電層和第一半導體層上方,製備一個第二介質層 在第一半導體層的頂面上的第二介質層中,形成一個開口 ;以及 在開口中製備一個源極電極,以連接源極區和本體區。 如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,通過外延生長製備一個第二導電類型的第一外 延層,包含:通過外延生長,製備一個厚度等於或小於 200nm的第二導電類型的第一外延層。 如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,在溝道中製備第一介質層,包含: 在溝道中沉積一個氧化層,所沉積的氧化層填滿了溝道, 並覆蓋在第一半導體層的臺面結構上;以及 刻蝕所沉積的氧化層,直到氧化層僅填充部分溝道為止。 如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,第一半導體層比第一外延層的摻雜濃度更小。 如申請專利範圍第24項所述的半導體裝置的製備方法,其 099119030 表單編號A0101 第69頁/共123頁 0993278454-0 201101497 特徵在於,第一外延層的第一厚度和第一摻雜濃度的乘積 ,大致等於第一半導體層的臺面結構的第二厚度和第二摻 雜濃度乘積的一半,所述的第二厚度為第一半導體層的臺 面結構的水準方向尺寸。 38 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,在通過外延生長製備第二導電類型的第一外延 層之前,此方法還包含: 通過外延生長,在第一半導體層上製備第一導電類型的第 二外延層,該第二外延層覆蓋在溝道的側壁上; 其中,通過外延生長,製備第一外延層的步驟包含:通過 外延生長,在第二外延層上製備第二導電類型的第一外延 層, 其中,第一外延層和第二外延層,沿溝道側壁,形成平行 摻雜區,第一外延層和第二外延層各自都具有均勻一致的 掺雜濃度,第一外延層具有第一厚度私第一摻雜濃度,第 二外延層和第一半導體層的一臺面結構均具有第三厚度和 第三平均摻雜濃度,選取合適的第一和第三厚度以及第一 摻雜濃度和第三平均摻雜濃度,以獲得電荷平衡。 39 .如申請專利範圍第38項所述的半導體裝置的製備方法,其 特徵在於,第二導電類型的第二半導體層是由一個第二導 電類型的重摻雜半導體襯底組成的,其中在製備多個溝道 之前,此方法還包含: 製備第二導電類型的重摻雜半導體襯底;以及 在半導體襯底的頂面上製備第一導電類型的第一半導體層 5 其中,形成在第二外延層上的第一外延層,通過半導體襯 099119030 表單編號A0101 第70頁/共123頁 0993278454-0 201101497 底中的摻雜劑向外擴散,電連接到半導體襯底上。 40 .如申請專利範圍第38項所述的半導體裝置的製備方法,其 特徵在於,第二外延層比第一半導體層的摻雜濃度更大。 41 .如申請專利範圍第38項所述的半導體裝置的製備方法,其 特徵在於,第一外延層的第一厚度和第一摻雜濃度的乘積 ,大致等於第二外延層和第一半導體層的臺面結構的第三 厚度和第三平均摻雜濃度乘積的一半。 42 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,第一導電類型是由N-型電導型構成,第二導電 類型是由P-型電導型構成。 43 ,如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,第一導電類型是由P-型電導型構成,第二導電 類型是由N-型電導型構成。 44 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,外延過程之後的工藝是在1 000°C或1 000°C以 下的溫度下進行。 45 .如申請專利範圍第38項所述的半導體裝置的製備方法,其 特徵在於,對溝道的底部區域反向摻雜,使得第一外延層 同第二半導體層電連接。 46 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,還包含: 在第一半導體層的至少一個第一個臺面結構頂部,製備一 個第一導電類型的本體區,該本體區延伸到第一溝道中的 柵極導電層底部邊緣附近的深度; 在緊鄰第一溝道的側壁的本體區中,製備一個第二導電類 型的重摻雜源極區,該源極區延伸到栅極導電層頂部邊緣 099119030 表單編號A0101 第71頁/共123頁 0993278454-0 201101497 附近的深度; 在頂面上製備一個源極電極,以便電接觸源極區和本體區 在第二半導體層的底面上製備一個第一導電類型的内部發 射極層;以及 在底面上製備一個集電極電極,以連接内部發射極層, 在其中製備一個絕緣柵雙極電晶體,第二半導體層作為絕 緣柵雙極電晶體的緩衝或場攔區,本體區作為内部集電極 區*源極電極作為發射極電極’拇極導電層作為橋極電極 〇 47 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,還包含: 在第一半導體層的第二臺面結構中,製備第一導電類型的 陽極接觸區,第二臺面結構在帶有或不帶有栅極導電層的 第一介質層填充的溝道近鄰;以及 在第二臺面結構和第一外延層及陽極接觸區的頂面上,製 備一個肖特基金屬層,肖特基金屬連接第一外延層,以形 成肖特基結’ 在其中所形成的一個肖特基二極體帶有第二半導體層,第 二半導體層作為陰極端子,肖特基金屬層作為陽極端子。 48 .如申請專利範圍第24項所述的半導體裝置的製備方法,其 特徵在於,還包含: 在第一外延層中,進行第一導電類型的淺植入,以調節第 一外延層的肖特基勢壘高度。 49 .如申請專利範圍第24項所述的半導體裝置的製備方法,還 包含: 099119030 表單編號A0101 第72頁/共123頁 0993278454-0 201101497 在第一半導體層的第三臺面結構中,製備一個第一導電類 型的陽極接觸區,並延伸到形成在第三臺面結構側壁上的 第一外延層,第三臺面結構位於帶有或不帶有柵極導電層 的第一介質層填充的溝道近鄰,陽極接觸區和第一外延層 之間形成一P-N結;以及 在第三臺面結構的頂面上,製備一個歐姆金屬層,與陽極 接觸區電接觸; 在其中所形成的一個P-N結二極體帶有第二半導體層,第 二半導體層作為陰極端子,歐姆金屬層作為陽極端子。 0993278454-0 099119030 表單編號A0101 第73頁/共123頁a mesa structure of a first semiconductor layer having a first epitaxial layer formed on a sidewall thereof and a second epitaxial layer formed on the first epitaxial layer, the mesa structure being located in a trench filled with the first dielectric layer instead of the gate conductive layer a channel neighbor; a first region of a first conductivity type formed in a top surface of the mesa structure is electrically connected to the first epitaxial layer and the first semiconductor layer; and a first region formed on the top surface of the mesa structure a second region of the type: electrically connected to the second epitaxial layer, the second region being away from the first region in the mesa structure, and formed in each of the cut-off cells except the last one of the cut-off cells, wherein the first one is cut off The first cell of the unit cell is electrically connected to the source or emitter potential of the semiconductor device, and the last multi-printed cell is electrically connected to the drain or collector of the semiconductor device. Or the vicinity of the collector potential, the second regions of the remaining cut-off cells are electrically connected to the first region of the next one of the cut-off cells in the array. 16. The semiconductor device according to claim 15 is characterized in that Wherein each of the cut-off cells further comprises: a third region of a first conductivity type formed in the first region, the doping concentration of the third region is greater than the first region; and one is formed in the second region The fourth region of the second conductivity type, the doping concentration of the fourth region is greater than that of the second region. 099119030 Form No. A0101 Page 63 / Total 123 Page 0993278454-0 201101497 17 as described in claim 15 The semiconductor device is characterized in that each of the cut-off cells is pinched off at a punch-through voltage, and the array of the cut-off cells will cut off the voltage of the region, in the step of the punch-through voltage, from the lowest potential to the highest The semiconductor device according to claim 15, wherein the first region and the second region of one of the cut-off cells are staggered with the first region and the second region of the next cut-off unit cell. The semiconductor device of claim 15, wherein each of the cut-off cells further comprises: an implant region having a first conductivity type dopant formed in the mesa structure, The doping concentration of the implanted region is used to adjust the doping concentration of the second epitaxial layer to reduce the punch-through voltage of the cut-off cell. 20. The semiconductor device according to claim 19, The invention is characterized in that the implanted region is formed in the mesa structure, below the bottom surface of the first or second region. The semiconductor device according to claim 15, wherein the cut-off region is further ordered An end-cut cell formed in the vicinity of the last one of the cut-off cells, the end-off cell comprising: a terminal mesa structure of the first semiconductor layer, having a first epitaxial layer formed on the sidewall thereof and forming the first epitaxial layer a second epitaxial layer on the layer, the end mesa structure being located adjacent to the channel filled with the first epitaxial layer, rather than the gate conductive layer, the first width of the end mesa structure being greater than the width of the mesa structure of the other off cell And at least one field plate on the top surface of the end mesa structure, insulated from the end mesa structure by the dielectric layer, wherein the last cut cell further comprises a shape In the top surface of the mesa structure, and 099119030, the form number A0101, page 64 / 123 pages 0993278454-0 201101497 is electrically connected to the second region of the second conductivity type on the second epitaxial layer, the second region being away from the mesa structure a first region, and wherein at least one of the field plates is coupled between a second region of the last off cell and a drain or collector potential of the semiconductor device. The semiconductor device according to claim 21, wherein the at least one field plate of the end-cut cell comprises: a first field plate on a top surface of the end mesa structure, through the dielectric layer and the end mesa Structural insulation; and 第二 a second field plate on the top surface of the end mesa structure, insulated from the end mesa structure by the dielectric layer, the second field plate being adjacent to the first field plate, wherein the first and second field plates are connected in series at the end a semiconductor device between the source region of the cell and the drain or collector potential of the semiconductor device. A semiconductor device comprising: a first semiconductor layer of a first conductivity type, comprising: a plurality of channels in a top surface of the first half of the germanium conductor layer, the channels forming a mesa structure in the first semiconductor layer; and f - a second semiconductor layer of the second conductivity type on the bottom surface of the first semiconductor layer a second epitaxial layer of a second conductivity type formed on the sidewall of the trench covering at least a sidewall of the mesa structure of the first semiconductor layer; a first dielectric layer adjacent to the second epitaxial layer, the first dielectric layer filling at least a portion of the trench; a gate dielectric layer formed on at least one of the first trench sidewalls above the first dielectric layer; And a gate conductive layer formed in the upper trace of the first dielectric layer, and a first trench adjacent to the gate dielectric layer. 099119030 Form No. A0101 Page 65 / 123 Page 0993278454-0 201101497 Wherein the second epitaxial layer is along the channel The sidewall forms a parallel doped region, the second epitaxial layer has a uniform doping concentration, the second epitaxial layer has a first thickness and a first doping concentration, and the mesa structure of the first semiconductor layer has a second thickness and a second Doping concentration, selecting suitable first and second thicknesses, and first doping concentration and second doping concentration to obtain charge balance; and wherein said semiconductor device is an active region carrying an active device and A cut-off region around an active region, the cut-off region includes an array of cut-off cells, from the first cut-off cell to the active region, until the last load a cell, each of which has a mesa structure of a first semiconductor layer having a second epitaxial layer formed on a sidewall thereof, wherein the mesa structure is filled with a first dielectric layer instead of a gate conductive layer a channel adjacent; a first region of a first conductivity type formed in a top surface of the mesa structure electrically connected to the first semiconductor layer; and a second region of a second conductivity type formed in a top surface of the mesa structure, Electrically connected to the second epitaxial layer, the second region being away from the first region in the mesa structure, and formed in each of the cut-off unit cells except the last one of the cut-off cells, wherein the first region of the first cut-off unit cell Electrically connected to the source or emitter potential of the semiconductor device, the second epitaxial layer of the last turn-off cell is electrically connected to the drain or collector potential of the semiconductor device, or near the drain or collector potential, and the remaining cutoff The second region of the unit cell is electrically connected to the first region of its next cut-off unit cell in the array, respectively. 24. A method of fabricating a semiconductor device, the method comprising: forming a plurality of channels on a top surface of a first semiconductor layer of a first conductivity type, the channels forming a mesa in the first semiconductor layer Structure; forming a second conductive material on the surface of the first semiconductor layer by epitaxial growth 099119030 Form No. A0101 Page 66 / 123 page 0993278454-0 201101497 Type first epitaxial layer covering at least the sidewall of the channel; Forming a first dielectric layer, wherein the first dielectric layer is filled with at least a portion of the channel; forming a gate dielectric layer over the first dielectric layer and adjacent to sidewalls of the at least one first trench of the first epitaxial layer; Forming a gate conductive layer in the first channel, wherein the gate conductive layer is above the first dielectric layer and adjacent to the gate dielectric layer; and on the bottom surface of the first semiconductor layer, preparing a second semiconductor layer of the second conductivity type Wherein the first epitaxial layer is electrically connected to the second semiconductor layer, wherein the first epitaxial layer is arranged along the sidewall of the trench, and Having a uniform doping concentration, the first epitaxial layer has a first thickness and a first doping concentration, and the mesa structure of the first semiconductor layer has a second thickness and a second doping concentration in the horizontal direction, and a suitable first sum is selected The second thickness and the first and second doping concentrations are such that charge balance is achieved in actual operation. The method of fabricating a semiconductor device according to claim 24, wherein the second semiconductor layer of the second conductivity type comprises a heavily doped semiconductor substrate of a second conductivity type, and is formed Prior to the plurality of channels, the method further comprises: preparing a heavily doped semiconductor substrate of a second conductivity type; and preparing a first semiconductor layer of the first conductivity type on a top surface of the semiconductor substrate. The method of fabricating a semiconductor device according to claim 24, wherein the first semiconductor layer of the first conductivity type is a lightly doped semiconductor substrate, and after the gate conductive layer is prepared, The method further comprises: grinding the back of the lightly doped semiconductor substrate, removing the semiconductor substrate until 099119030 Form No. A0101 Page 67 / 123 Page 0993278454-0 201101497 27 28 · 29 . 30 . 31 . 32 , 099119030 Near the bottom surface of the channel; and on the back of the barely doped semiconductor substrate, a second semiconductor layer of the second conductivity type is prepared, the second semiconductor layer being heavily doped. The method of fabricating a semiconductor device according to claim 26, wherein the preparing the second heavily doped semiconductor layer comprises: performing a second conductivity type on the back of the barely lightly doped semiconductor substrate injection. The method for fabricating a semiconductor device according to claim 26, wherein the polishing the lightly doped semiconductor substrate back further comprises: grinding the back of the semiconductor substrate, removing the semiconductor substrate until the first dielectric layer Up to the bottom. The method for fabricating a semiconductor device according to claim 26, wherein the second conductive layer of the second conductive germanium is prepared by: On the back of the bare lightly doped semiconductor substrate, a heavily doped second semiconductor layer of a second conductivity type is epitaxially grown. A method of fabricating a semiconductor device according to claim 29, wherein the back of the lightly doped semiconductor substrate is polished to remove the semiconductor substrate until a distance away from the bottom surface of the trench filled with the dielectric. The method for fabricating a semiconductor device according to claim 24, wherein the method further comprises: performing an anisotropic ion implantation of the second conductivity type before preparing the first dielectric layer in the channel, A heterogeneous ion implantation forms a doped region of the second conductivity type at the bottom of the channel. The method of fabricating a semiconductor device according to claim 24, wherein the method further comprises: preparing a body region of a first conductivity type on top of the mesa structure of the at least one first semiconductor layer, the body The gate extends to the first channel in the gate form number A0101 page 68 / 123 pages 0993278454-0 201101497 33 . Ο 34 . Ο 35 . 36 . 37 . The depth near the bottom edge of the conductive layer; in close proximity to the first channel In the body region of the sidewall, a heavily doped source region of a second conductivity type is formed, the source region extending to a depth near a top edge of the gate conductive layer; and a vertical channel metal yttrium oxide field is prepared therein The effect transistor, the second semiconductor layer serves as a drain region of the vertical channel metal ytterbium oxide field effect transistor, the first epitaxial layer serves as a drain drift region, and the gate conductive layer functions as a gate electrode. The method of fabricating a semiconductor device according to claim 32, further comprising: preparing a second dielectric layer on top of the first semiconductor layer over the gate conductive layer and the first semiconductor layer An opening is formed in the second dielectric layer on the surface; and a source electrode is prepared in the opening to connect the source region and the body region. The method for fabricating a semiconductor device according to claim 24, wherein the first epitaxial layer of the second conductivity type is prepared by epitaxial growth, comprising: preparing a thickness equal to or less than 200 nm by epitaxial growth A first epitaxial layer of two conductivity types. The method of fabricating a semiconductor device according to claim 24, wherein the preparing the first dielectric layer in the trench comprises: depositing an oxide layer in the trench, and depositing the oxide layer to fill the trench, And covering the mesa structure of the first semiconductor layer; and etching the deposited oxide layer until the oxide layer fills only a part of the channel. The method of fabricating a semiconductor device according to claim 24, wherein the first semiconductor layer has a smaller doping concentration than the first epitaxial layer. The method for fabricating a semiconductor device according to claim 24, wherein the method of the first epitaxial layer and the first doping concentration is characterized by a 099119030 form number A0101 page 69/123 page 0993278454-0 201101497 The product is substantially equal to half the product of the second thickness of the mesa structure of the first semiconductor layer and the second doping concentration, the second thickness being a level dimension of the mesa structure of the first semiconductor layer. 38. The method of fabricating a semiconductor device according to claim 24, wherein before the first epitaxial layer of the second conductivity type is prepared by epitaxial growth, the method further comprises: by epitaxial growth, at the first Preparing a second epitaxial layer of a first conductivity type on the semiconductor layer, the second epitaxial layer covering the sidewall of the trench; wherein, by epitaxial growth, the step of preparing the first epitaxial layer comprises: by epitaxial growth, at the second epitaxy Forming a first epitaxial layer of a second conductivity type on the layer, wherein the first epitaxial layer and the second epitaxial layer form a parallel doped region along the sidewall of the trench, and the first epitaxial layer and the second epitaxial layer are respectively uniform a doping concentration, the first epitaxial layer has a first thickness of a private first doping concentration, and the second epitaxial layer and a mesa structure of the first semiconductor layer each have a third thickness and a third average doping concentration, and a suitable first The first and third thicknesses and the first doping concentration and the third average doping concentration are used to obtain a charge balance. 39. A method of fabricating a semiconductor device according to claim 38, wherein the second semiconductor layer of the second conductivity type is composed of a heavily doped semiconductor substrate of a second conductivity type, wherein Before preparing the plurality of channels, the method further comprises: preparing a heavily doped semiconductor substrate of a second conductivity type; and preparing a first semiconductor layer 5 of a first conductivity type on a top surface of the semiconductor substrate, wherein The first epitaxial layer on the second epitaxial layer is externally diffused and electrically connected to the semiconductor substrate through a semiconductor liner 099119030 Form No. A0101, page 70 / 123 pages 0993278454-0 201101497. 40. A method of fabricating a semiconductor device according to claim 38, wherein the second epitaxial layer has a larger doping concentration than the first semiconductor layer. The method of fabricating a semiconductor device according to claim 38, characterized in that the product of the first thickness of the first epitaxial layer and the first doping concentration is substantially equal to the second epitaxial layer and the first semiconductor layer. The third thickness of the mesa structure is half the product of the third average doping concentration. The method of fabricating a semiconductor device according to claim 24, wherein the first conductivity type is composed of an N-type conductivity type, and the second conductivity type is composed of a P-type conductivity type. The method of fabricating a semiconductor device according to claim 24, wherein the first conductivity type is composed of a P-type conductivity type, and the second conductivity type is composed of an N-type conductivity type. The method of producing a semiconductor device according to claim 24, wherein the process after the epitaxial process is carried out at a temperature of 1 000 ° C or less. The method of fabricating a semiconductor device according to claim 38, characterized in that the bottom region of the channel is counter-doped such that the first epitaxial layer is electrically connected to the second semiconductor layer. The method of fabricating a semiconductor device according to claim 24, further comprising: preparing a body region of a first conductivity type on top of at least one first mesa structure of the first semiconductor layer, The body region extends to a depth near a bottom edge of the gate conductive layer in the first channel; in a body region adjacent to the sidewall of the first channel, a heavily doped source region of the second conductivity type is prepared, the source The region extends to the top edge of the gate conductive layer 099119030 Form No. A0101 Page 71 / 123 Page 0993278454-0 201101497 The depth near; Prepare a source electrode on the top surface to electrically contact the source region and the body region in the second Preparing an internal emitter layer of a first conductivity type on a bottom surface of the semiconductor layer; and preparing a collector electrode on the bottom surface to connect the internal emitter layer, wherein an insulated gate bipolar transistor is formed, and the second semiconductor layer is used as a second semiconductor layer The buffer or field block of the insulated gate bipolar transistor, the body region acts as the inner collector region * the source electrode serves as the emitter electrode 'the thumb The method of manufacturing the semiconductor device according to claim 24, further comprising: preparing the first conductivity type in the second mesa structure of the first semiconductor layer An anode contact region, a second mesa structure adjacent to the channel filled with the first dielectric layer with or without the gate conductive layer; and a top surface of the second mesa structure and the first epitaxial layer and the anode contact region, Preparing a Schottky metal layer, the Schottky metal is connected to the first epitaxial layer to form a Schottky junction. A Schottky diode formed therein has a second semiconductor layer, and the second semiconductor layer serves as a cathode. The terminal, the Schottky metal layer serves as an anode terminal. The method of fabricating a semiconductor device according to claim 24, further comprising: performing shallow implanting of the first conductivity type in the first epitaxial layer to adjust the first epitaxial layer The height of the special barrier. 49. The method for fabricating a semiconductor device according to claim 24, further comprising: 099119030 Form No. A0101, page 72/123, 0993278454-0 201101497 In the third mesa structure of the first semiconductor layer, prepare a An anode contact region of a first conductivity type and extending to a first epitaxial layer formed on a sidewall of the third mesa structure, the third mesa structure being located in a trench filled by the first dielectric layer with or without a gate conductive layer a PN junction is formed between the anode contact region and the first epitaxial layer; and an ohmic metal layer is formed on the top surface of the third mesa structure to be in electrical contact with the anode contact region; a PN junction formed therein The polar body has a second semiconductor layer, the second semiconductor layer serves as a cathode terminal, and the ohmic metal layer serves as an anode terminal. 0993278454-0 099119030 Form Number A0101 Page 73 of 123
TW099119030A 2009-06-12 2010-06-11 Semiconductor devices and fabrication method thereof TWI445173B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/484,166 US7910486B2 (en) 2009-06-12 2009-06-12 Method for forming nanotube semiconductor devices
US12/484,170 US8299494B2 (en) 2009-06-12 2009-06-12 Nanotube semiconductor devices

Publications (2)

Publication Number Publication Date
TW201101497A true TW201101497A (en) 2011-01-01
TWI445173B TWI445173B (en) 2014-07-11

Family

ID=43338914

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119030A TWI445173B (en) 2009-06-12 2010-06-11 Semiconductor devices and fabrication method thereof

Country Status (2)

Country Link
CN (1) CN101924137B (en)
TW (1) TWI445173B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812149B (en) * 2021-04-15 2023-08-11 中國商蘇州晶湛半導體有限公司 Semiconductor structure and its preparation method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598654B2 (en) * 2011-03-16 2013-12-03 Fairchild Semiconductor Corporation MOSFET device with thick trench bottom oxide
TWI470698B (en) * 2011-10-24 2015-01-21 Anpec Electronics Corp Super junction transistor and fabrication method thereof
US9171949B1 (en) * 2014-09-24 2015-10-27 Alpha And Omega Semiconductor Incorporated Semiconductor device including superjunction structure formed using angled implant process
CN105575962A (en) * 2014-10-10 2016-05-11 硕颉科技股份有限公司 Single-piece type hybrid rectifier diode structure
CN104393056B (en) * 2014-11-10 2017-02-15 电子科技大学 Accumulating diode
US9312381B1 (en) * 2015-06-23 2016-04-12 Alpha And Omega Semiconductor Incorporated Lateral super-junction MOSFET device and termination structure
US10205024B2 (en) * 2016-02-05 2019-02-12 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure having field plate and associated fabricating method
US10644102B2 (en) 2017-12-28 2020-05-05 Alpha And Omega Semiconductor (Cayman) Ltd. SGT superjunction MOSFET structure
CN108520874B (en) * 2018-03-28 2021-04-06 南京矽力微电子技术有限公司 Semiconductor device and method for manufacturing the same
CN108346701B (en) * 2018-04-12 2020-05-26 电子科技大学 Shielding gate power DMOS device
CN110099227B (en) * 2019-05-23 2021-10-08 Oppo广东移动通信有限公司 Pixel unit circuit, image processing method and storage medium
CN110391302A (en) * 2019-08-19 2019-10-29 无锡橙芯微电子科技有限公司 Using the super node MOSFET structure and production method of shield grid
CN115223868B (en) * 2022-09-15 2023-01-03 深圳芯能半导体技术有限公司 High-voltage fast recovery diode and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593617B1 (en) * 1998-02-19 2003-07-15 International Business Machines Corporation Field effect transistors with vertical gate side walls and method for making such transistors
US20050145838A1 (en) * 2004-01-07 2005-07-07 International Business Machines Corporation Vertical Carbon Nanotube Field Effect Transistor
US7892956B2 (en) * 2007-09-24 2011-02-22 International Business Machines Corporation Methods of manufacture of vertical nanowire FET devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812149B (en) * 2021-04-15 2023-08-11 中國商蘇州晶湛半導體有限公司 Semiconductor structure and its preparation method

Also Published As

Publication number Publication date
CN101924137B (en) 2012-07-04
CN101924137A (en) 2010-12-22
TWI445173B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
TW201101497A (en) Nanotube semiconductor devices and fabrication method thereof
US10593759B2 (en) Nanotube semiconductor devices
TWI399815B (en) High voltage structure and methods for vertical power devices with improved manufacturability
TWI427801B (en) A lateral super junction device with high substrate-drain breakdown and built-in avalanche clamp diode
CN105097894B (en) Semiconductor devices
TWI455310B (en) Nano-Tube MOSFET Technology And Devices
US7199006B2 (en) Planarization method of manufacturing a superjunction device
US20100317158A1 (en) Method for Forming Nanotube Semiconductor Devices
TW201110318A (en) Integrated schottky diode in high voltage semiconductor device
TW201937726A (en) Schottky diode integrated into superjunction power MOSFETs
CN111180522A (en) Semiconductor device having super junction and silicon-on-oxide layer
US10186573B2 (en) Lateral power MOSFET with non-horizontal RESURF structure
TWI567974B (en) Termination design for nanotube mosfet
CN205376537U (en) Improve super knot MOS device of backward recovery characteristic and snowslide ability
CN210296370U (en) Semiconductor device with a plurality of semiconductor chips