TW201100888A - Wire-grid polarizer and method of fabricating same - Google Patents

Wire-grid polarizer and method of fabricating same Download PDF

Info

Publication number
TW201100888A
TW201100888A TW099113662A TW99113662A TW201100888A TW 201100888 A TW201100888 A TW 201100888A TW 099113662 A TW099113662 A TW 099113662A TW 99113662 A TW99113662 A TW 99113662A TW 201100888 A TW201100888 A TW 201100888A
Authority
TW
Taiwan
Prior art keywords
ridge
layer
wire grid
liquid crystal
grid type
Prior art date
Application number
TW099113662A
Other languages
Chinese (zh)
Inventor
Yuriko Kaida
Hiroshi Sakamoto
Yosuke Akita
Hiromi Sakurai
Yasuhiro Ikeda
Eiji Shidoji
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of TW201100888A publication Critical patent/TW201100888A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Abstract

Provided is a wire-grid polarizer having high degree of polarization and high p-polarized light transmission and a low back s-polarized light reflectance, and also provided is a method of fabricating same. A wire-grid polarizer (10) comprises a light-transmissive substrate (14) having a surface on which a plurality of ribs (12) which decreases in width gradually from the bottom toward the top are formed in parallel with a flat part (13) formed therebetween and at a predetermined pitch (Pp), a first reflective layer (20) composed of a metal material and covering the first side surface (16) of the rib (12), and a first absorption layer (22) composed of a light-absorbing material which absorbs light more than the metal material and existing between the rib (12) and the first reflective layer (20) to cover the first side surface (16) of the ribs (12) entirely. A method of fabricating the wire-grid polarizer (10) comprises a step for forming the first absorption layer (22) and the first reflective layer (20) by oblique deposition. A liquid crystal display equipped with the wire-grid polarizer (10) is also provided.

Description

201100888 六、發明說明: c名务明戶斤屬才支名奸々貝j 技術領域 本發明係有關於一種線柵型偏光件及其製造方法。 背景技術 用於液晶顯示裝置、背投式投影電視及前投式投影機 4影像顯示裝置’且在可見光區域顯示出偏光分離能力的 偏光件(亦稱為偏光分離元件)包括有吸收型偏光件及反射 型偏光件。 舉例而言’吸收型偏光件為使碘等二色性色素 (dichroism pigment)定向於樹脂薄膜中的偏光件。可是,由 於吸收型偏光件會吸收一部分偏光,故光的利用效率很 低。 另一方面,反射型偏光件會使未射入偏光件而反射的 光再次射入偏光件,故可提高光的利用效率。因此,以液 晶顯示裝置等的高亮度化為目的,對反射型偏光件的需求 曰趨提高。 反射型偏光件包括有:由雙折射樹脂積層體所構成之 直線偏光件、由膽固醇型液晶所構成之圓偏光件及線栅型 偏光件。 可疋,直線偏光件及圓偏光件的偏光分離能力很低。 因此顯示出尚偏光分離能力的線柵型偏光件正備受注目。 在柵!偏光件具有複數金屬細線互相平行配列在透光 3 201100888 性基板上的構造。金屬細線的間距與入射光波長相較下足 夠短時’從線柵型偏光件之形成有凸條側(以下記為表面側) 射入之光當中,具有與金屬細線垂直之電場向量的成分 (即’ P偏光)會透射,而具有與金屬細線平行之電場向量的 成分(即,s偏光)則會反射。 在可見光區域顯示出偏光分離能力的線拇型偏光件已 知有下述者。 (1)於業已在透光性基板表面以預定間距形成的複數 凸條上形成金屬層’而製成金屬細線的線栅型偏光件(專利 文獻1、2)。 由於(1)的線栅型偏光件係以金屬蒸鍍方式形成金屬細 線,因此生產性較佳。但是,在將(1)的線柵型偏光件貼著 在液晶顯示裝置中液晶面板之背光源側表面時,從液晶面 板側(線柵型偏光件之未形成凸條側,以下記為裏面側)入 射之S偏光會因金屬細線而反射,致使所顯示影像之對比降 低。 而,由裏面側入射之S偏光反射率(以下記為裏面s偏光 反射率)已受抑制的線柵型偏光件,則已有下述者被提案。 (2)於業已在透光性基板表面上以預定間距形成之截 面呈矩形的複數凸條上部形成有黑色層及金屬層的線栅 里偏光件(專Μ文獻3的第28(a) 、(b)圖)。 先行技術文獻 專利文獻 專利文獻1:曰本特開2006_003447號公報 201100888 專利文獻2 :國際公開第2006/064693號手冊(美國公開 2008/0129931) 專利文獻3:國際公開第2〇〇8/〇84856號手冊 【考务明内容-j 發明揭示 發明所欲解決之課題 但是,前述(2)之(a)的線柵型偏光件具有下列問題。201100888 VI. Description of the Invention: C. The present invention relates to a wire grid type polarizer and a method of manufacturing the same. BACKGROUND OF THE INVENTION A polarizing member (also referred to as a polarization separating element) for a liquid crystal display device, a rear projection type projection television, and a front projection type projector 4 image display device and exhibiting a polarization separation capability in a visible light region includes an absorption type polarizing member. And reflective polarizers. For example, the absorbing polarizer is a polarizer that directs a dichroism pigment such as iodine to the resin film. However, since the absorbing polarizer absorbs a part of the polarized light, the light utilization efficiency is low. On the other hand, the reflective polarizer causes the light that is not incident on the polarizer to be incident on the polarizer again, so that the light use efficiency can be improved. Therefore, the demand for the reflective polarizer has been increasing for the purpose of increasing the luminance of the liquid crystal display device or the like. The reflective polarizer includes a linear polarizer composed of a birefringent resin laminate, a circular polarizer composed of a cholesteric liquid crystal, and a wire grid polarizer. However, the polarization separation ability of the linear polarizer and the circular polarizer is low. Therefore, a wire grid type polarizer which exhibits a polarization separation capability is attracting attention. In the grid! The polarizer has a structure in which a plurality of metal thin wires are arranged in parallel with each other on a transparent substrate. When the pitch of the fine metal wires is sufficiently shorter than the wavelength of the incident light, the light beam vector having a ridge line side (hereinafter referred to as a surface side) formed by the wire grid type polarizer has a composition of an electric field vector perpendicular to the thin metal wire ( That is, 'P-polarized light' is transmitted, and a component having an electric field vector parallel to the thin metal wire (that is, s-polarized light) is reflected. A linear thumb polarizer which exhibits a polarization separation ability in the visible light region is known as follows. (1) A wire-grid type polarizer in which a metal layer is formed on a plurality of ridges formed at a predetermined pitch on a surface of a light-transmitting substrate to form a metal thin wire (Patent Documents 1 and 2). Since the wire grid type polarizer of (1) is formed of metal thin wires by metal vapor deposition, productivity is preferable. However, when the wire-grid polarizer of (1) is attached to the backlight side surface of the liquid crystal panel in the liquid crystal display device, the liquid crystal panel side is not formed on the side of the liquid crystal panel (the wire-grid type polarizer is not formed, and the inside is hereinafter referred to as the inside). The side S incident light is reflected by the thin metal wires, resulting in a decrease in the contrast of the displayed image. On the other hand, a wire grid type polarizer in which the S-polarized reflectance (hereinafter referred to as s-polarized reflectance) incident on the back side has been suppressed has been proposed. (2) A wire-grid polarizer in which a black layer and a metal layer are formed on a portion of a plurality of ridges having a rectangular cross section formed at a predetermined pitch on a surface of a light-transmitting substrate (Special Document No. 28(a), (b) Figure). PRIOR ART DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT 1: 曰本特开 2006_003447号号 201100888 Patent Document 2: International Publication No. 2006/064693 (U.S. Publication No. 2008/0129931) Patent Document 3: International Publication No. 2〇〇8/〇84856 The manual of the invention is disclosed in the present invention. However, the wire grid type polarizer of the above (2) (a) has the following problems.

⑴凸條的截面形狀為矩形,且矩形凸條之上部形成有L 字形的金屬層’因此P偏光的透射率低,導蘭顯示影像之 亮度降低。 (II) 由於黑色層僅形成在凸條頂部,無法充分抑制裏面 s偏光反射率,導致所顯示影像之對比降低。 (III) 為獲得襄面8偏光反射率的抑制效果,有必要將黑 色層側貼附於液晶面板上,但黑色層側呈現凹凸狀,使得 線柵型偏光件不易_在液晶面板上。又,光學特性可能 受到貼附時所用接著劑的影響而降低。 (IV) 由於來自背光源的光線自透光性基板側入射,空 亂與透光性基板間之界面會發生p偏光的反射,使所顯示 影像之亮度降低。 此外,則述(2)之(b)的線柵型偏光件則具有下列的問 題。 ⑴凸條的戴面开>狀為矩形,且矩形凸條之上部形成有 L子升/的金屬層’因此⑽光的透射率低,導致所顯示影像 之亮度降低。 201100888(1) The cross-sectional shape of the ridge is a rectangle, and an L-shaped metal layer is formed on the upper portion of the rectangular ridge. Therefore, the transmittance of the P-polarized light is low, and the brightness of the image displayed by the blue-light is lowered. (II) Since the black layer is formed only on the top of the ridge, the reflectance of the inside s polarized light cannot be sufficiently suppressed, resulting in a decrease in the contrast of the displayed image. (III) In order to obtain the effect of suppressing the polarized light reflectance of the facet 8, it is necessary to attach the side of the black layer to the liquid crystal panel, but the side of the black layer is uneven, so that the wire grid type polarizer is not easily formed on the liquid crystal panel. Also, the optical characteristics may be lowered by the influence of the adhesive used in the attachment. (IV) Since light from the backlight is incident from the side of the light-transmissive substrate, p-polarized light is reflected at the interface between the air and the light-transmitting substrate, and the brightness of the displayed image is lowered. Further, the wire grid type polarizer of (b) (b) has the following problems. (1) The wearing surface of the ridge is a rectangle, and a metal layer of L liter/ is formed on the upper portion of the rectangular ridge. Therefore, the transmittance of the light (10) is low, resulting in a decrease in the brightness of the displayed image. 201100888

⑼由於金屬層僅形成在凸條頂 ⑽黑色層並未完全被覆凸條—邊^切低' 偏光反射率的_不夠充分,導致 ^ ’使得晨面S 本發明係提供一種具有高偏光度和高2之=低。 裏面S偏歧射率低的線栅型偏光件及其製造=射率,且 解決課題之手段 〉 本發明之線柵型偏光件之特徵在於包 板,係表面形成右滿齡^ γ4 .透光性基 /成有複數凸條者,該等㈣ 於該等凸條_平坦部相互 ㈣成 該等痛备Λ/欠办 依預疋間距而形成, 層,被产Γ見度由底部朝向頂部漸漸變狹窄;第1反射 述凸條之第1側面’且由金屬材料構成;及第i 吸收層,存在於前述凸條* 純攝成’及弟 、+、几故 4俅/、則述弟1反射層之間,並被覆前 t條之第1側面整面,且由比前述金屬㈣更會吸收光之 光吸收性材料構成。 前述第1吸收層之厚度以3〜2〇nm為佳。 本^月之線栅型偏光件宜更具有一基底層,該基底層 存在於别述凸條之第1#j面與前述第1吸收層之間並被覆 前述凸條之第1側面整面’且由金屬材料構成。 本發明之線栅型偏光件宜更具有一第2吸收層,該第2 吸收層被覆&述凸條之第2側面整面,且由前述光吸收性材 料構成。 本發明之線栅型偏光件宜更具有一第2反射層,該第2 反射層被覆前述第2吸收層表面,且由金屬材料構成。 前述凸條之直交於其長度方向之截面形狀宜為三角形 201100888 或梯形。 前述間隔Pp宜為300nm以下。 本發明之線柵型偏光件的製造方法係用以製造包含透 光性基板、第1反射層及第1吸收層之線柵型偏光件的方 法,該透光性基板係表面形成有複數凸條者,該等複數凸 條係隔著形成於該等凸條間的平坦部相互平行,且依預定 間距而形成,又,該等複數凸條之寬度由底部朝向頂部漸 漸變狹窄;該第1反射層被覆前述凸條之第1側面,且由金 〇 V 屬材料構成;該第1吸收層存在於前述凸條之第1側面與前 述第1反射層之間,並被覆前述凸條之第1側面整面,且由 比前述金屬材料更會吸收光之光吸收性材料構成; 該線柵型偏光件之製造方法的特徵在於: 以蒸鍵量為3〜20nm之條件,自一方向蒸鑛前述光吸收 ' 材料而形成前述第1吸收層,該方向大致垂直相交於前述凸 條之長度方向,且相對於前述凸條之高度方向在第1側面之 側構成25〜40°之角度, 於蒸鍍量為15〜50nm之條件下,自另一方向蒸鍍前述 金屬材料而形成前述第1反射層,該另一方向略為垂直相交 於前述凸條之長度方向,且相對於前述凸條之高度方向在 第1側面之側構成25〜50°之角度。 -前述凸條之直交於其長度方向之截面形狀宜為三角形 , 或梯形。 前述凸條宜由光硬化樹脂或熱可塑性樹脂構成,且利 用壓印法形成者為佳。 201100888 本發明之液 於一對基 及前述本 白白顯示裝置之特徵在於包含有·· 板間挾S固持有液晶層之液晶面板;背光單元., =柵型偏光件,係配置成使形成有凸條之二面作 背光單元側,且使沒有形成凸條之侧的面 顯不裝置之目視側。 Θ伙日日 、、本發明之液晶顯示農置宜更具有吸收型偏光件 述、泉柵型偏光件配置於前賴日日日面板之—邊的表面 吸收型偏光件配置於前錢晶面板上相對於配置 2 柵型偏光件之側為相反側之表®。 ,〜 一又,前述線栅型偏光件宜配置於前述液晶面板上位於 前述背光單元_表面,且前収收魏光_配置於前 通液晶面板上相對於前述背光單元側為相反側之表面。 本發明之液晶顯示裝置宜更具有吸收型偏光件,且前 述線栅型偏光件與前述液晶面板的前述—對基板中之一基 板二體化,前述吸收型偏光件配置於前述液晶面板上相對 於刚述線柵型偏光件—體化之側為相反側之基板表面。 ^ A述線柵型偏光件宜與前述液晶面板上位於前述 月光早讀的前述基板—體化,前述吸收型偏光件則配置 於刖述液晶面板上相對於前述背光單元側為相反側之基板 表面。 本發明之液晶顯示裝置宜更具有一吸收型偏光件,前 述線柵型偏光件配置於前述液晶面板的前述一 對基板中之 基板的液晶層側’前述吸收型偏光件配置於前述液晶面 板上相對於配置有前述綠柵型偏光件之側為相反側之基板 201100888 表面。 又 =線柵型偏光件更宜配置於前料晶面板的前 述一對基板中位於前述背光單元㈣基板之液晶層側,前 光 ί吸收型偏光件則配置於前述液晶面板上相對於前述背 單元側為相反側之表面。 發明效果 本發明之線栅型偏光件具有高偏光度及高Ρ偏光透射(9) Since the metal layer is formed only on the top of the ridge (10), the black layer is not completely covered with the ridge - the edge is cut low, and the polarization reflectance is insufficient, resulting in the fact that the invention provides a high degree of polarization and High 2 = low. A wire grid type polarizer having a low S-disparity rate and its manufacturing = radiance, and means for solving the problem. The wire grid type polarizer of the present invention is characterized in that a cladding plate is formed on the surface to form a right full age ^ γ4. The light base / formed with a plurality of ridges, the (4) in the ridges _ flat part of each other (four) into the pain Λ / owe according to the pre-pitch spacing, the layer, the visibility is from the bottom toward The top portion is gradually narrowed; the first reflection is the first side surface of the ridge and is made of a metal material; and the ith absorbing layer is present in the ridge * and is purely formed as 'and brother, +, and so many 4 俅 /, then The reflective layer between the first and second reflection layers is covered with a light absorbing material that absorbs light more than the metal (four). The thickness of the first absorption layer is preferably 3 to 2 nm. Preferably, the wire grid type polarizer of the present month has a base layer which is present between the first #j surface of the ridge and the first absorbing layer and covers the entire first side of the ridge 'And consists of a metal material. Preferably, the wire grid type polarizer of the present invention further has a second absorbing layer covering the entire second surface of the ridge and comprising the light absorbing material. Preferably, the wire grid type polarizer of the present invention further has a second reflection layer covering the surface of the second absorption layer and made of a metal material. The cross-sectional shape of the aforementioned ribs orthogonal to the longitudinal direction thereof is preferably a triangle 201100888 or a trapezoid. The aforementioned interval Pp is preferably 300 nm or less. A method of manufacturing a wire grid polarizer according to the present invention is a method for producing a wire grid polarizer including a light-transmitting substrate, a first reflective layer, and a first absorption layer, wherein the light-transmitting substrate has a plurality of convex surfaces formed thereon And the plurality of ribs are parallel to each other and formed at a predetermined interval, and the width of the plurality of ridges gradually narrows from the bottom toward the top; a reflective layer covering the first side surface of the ridge and comprising a metal quinone V material; the first absorbing layer being present between the first side surface of the ridge and the first reflective layer, and covering the ridge The first side surface is entirely made of a light absorbing material that absorbs light more than the metal material. The method for manufacturing the wire grid type polarizer is characterized in that steaming is performed in one direction under the condition of a steaming amount of 3 to 20 nm. The first light absorbing layer is formed by the light absorbing material, and the direction intersects substantially perpendicularly in the longitudinal direction of the ridge, and forms an angle of 25 to 40° on the side of the first side surface with respect to the height direction of the ridge. The amount of evaporation is 15~5 Under the condition of 0 nm, the metal material is vapor-deposited from the other direction to form the first reflective layer, and the other direction is slightly perpendicular to the longitudinal direction of the ridge, and the first side is opposite to the height direction of the ridge The sides constitute an angle of 25 to 50°. - The cross-sectional shape of the aforementioned ribs orthogonal to the longitudinal direction thereof is preferably a triangle or a trapezoid. The ridges are preferably composed of a photocurable resin or a thermoplastic resin, and are preferably formed by an imprint method. 201100888 The liquid of the present invention is characterized in that the pair of bases and the white display device are characterized by comprising: a liquid crystal panel in which the liquid crystal layer is held between the plates; the backlight unit, the gate type polarizer is configured to form The two sides of the ridge are used as the backlight unit side, and the side on which the side of the ridge is not formed is displayed on the visual side of the device. On the day of the squad, the liquid crystal display of the present invention has an absorbing type of polarizing element, and the horizontal grating type polarizing element is disposed on the front side of the front panel. The surface absorbing polarizer is disposed on the front slab. The upper side is opposite to the side on which the two-gate polarizer is disposed. Further, the wire grid type polarizer is disposed on the surface of the backlight unit on the liquid crystal panel, and the front surface is disposed on the surface of the front liquid crystal panel opposite to the side of the backlight unit. . Preferably, the liquid crystal display device of the present invention further has an absorbing polarizer, and the wire grid polarizer is dimerized with one of the substrates of the liquid crystal panel, and the absorbing polarizer is disposed on the liquid crystal panel. The side of the wire-grid polarizer is the surface of the substrate on the opposite side. ^ A wire grid type polarizer is preferably formed with the substrate on the liquid crystal panel which is located in the moonlight early reading, and the absorption type polarizer is disposed on the substrate opposite to the backlight unit side of the liquid crystal panel. surface. Preferably, the liquid crystal display device of the present invention further comprises an absorbing polarizer, wherein the wire grid polarizer is disposed on the liquid crystal layer side of the substrate of the pair of substrates of the liquid crystal panel. The absorbing polarizer is disposed on the liquid crystal panel. The surface of the substrate 201100888 is opposite to the side on which the green gate type polarizer is disposed. Further, the wire grid type polarizer is disposed on the liquid crystal layer side of the backlight unit (four) substrate of the pair of substrates of the front crystal panel, and the front light absorption type polarizer is disposed on the liquid crystal panel with respect to the back surface. The unit side is the surface on the opposite side. Effect of the Invention The wire grid type polarizer of the present invention has high polarization and high Ρ polarized light transmission

Ο 率,且S偏光反射率低。又,襄面側可貼附於液晶面板,所 以能輕易將線柵型偏光件貼附於液晶面板上。再者,由於 來自背光_光係從表關人射,而可抑#偏光在該界面 的反射。 藉由本發明之線柵型偏光件的製造方法,可生產性良 好地製造具有高偏光度及高Ρ偏光透射率且裏面3偏光反射 率低的線柵型偏光件。 特別疋,依據本發明之較佳態樣,可製得具有99.2%以 上之偏光度之線柵型偏光件,且該線栅型偏光件於波長 450nm、550nm、700nm下具有35%以上(宜為38%以上更 且達40%以上)之尚ρ偏光透射率,且於相同各波長下具有 35%以上之高表面s偏光反射率,於相同各波長下具有小於 2〇%之裏面s偏光反射率。 本發明之液晶顯示裝置具有高亮度,且對比的降低也 受到抑制。 圖式簡單說明 第1圖為立體圖,顯示本發明之線栅型偏光件之—例。 9 201100888 弟2圖為立體圖’顯不本發明之線棚型偏光件之他例。 第3圖為立體圖,顯示本發明之線柵型偏光件之他例。 第4圖為立體圖’顯不本發明之線棚型偏光件之他例。 苐5圖為立體圖,顯不本發明之線棚型偏光件之他例。 第6圖為立體圖,顯示本發明之線柵型偏光件之他例。 第7圖為載面圖,顯示本發明之液晶顯示裝置之一例。 I:實施方式3 發明之實施形態 &lt;線栅型偏光件&gt; 本發明之線栅型偏光件具有:透光性基板,其表面形 成有複數由底部朝向頂部寬度逐漸變窄的凸條,該等複數 凸條係隔著形成於該等凸條間的平坦部而相互平行且依 預定間距地形成於表面;第1反射層,係被覆前述凸條之 第1側面’且由金屬材料構成;第丨吸收層,係存在於凸條 之第1側面與第1反射層之間,並被覆凸條之第1側面整面, 且由較金屬材料更會吸收光之光吸收性材料構成。該等凸 條之第1側面上的第1反射層及第1吸收層呈現朝凸條長度 方向延伸之帶狀,相當於構成線柵型偏光件之金屬細線。 於本發明中,以預定間距朝透光性基板之一方向延伸而形 成於前述透光性基板表面的凸條(例如,長度方向之截面形 狀為三角形或梯形之凸條)中,其相對側面中之一方稱為第 1側面’另一方則稱為第2側面。 本發明之線柵型偏光件亦可具有由金屬材料構成之 基底層’該基底層存在於凸條之第1側面與第1吸收層之 201100888 間’並被覆τϋ條之第1側面整面。再者,亦可於凸條之第2 側面(即凸條之另一側面)具有由光吸收性材料構成且被覆 該第2側面整面之第2吸收層。又,本發明之線栅型偏光件 可更具有被覆第2吸收層表面且由金屬材料構成之第2反 射層。 於本發明中,被覆一詞並非限定於層直接形成在表面 之情況’亦包含前述層隔著其他層而以覆蓋方式形成於前 述表面之情況。 於本說明書中,「〜」係以包含其前後所記載之數值作 為下限值及上限值之意來使用。 (透光性基板) 透光性基板係一種於線柵型偏光件之使用波長範圍内 具有透光性之基板。透光性係指光可穿透之意,使用波長 範圍具體而言係400nm~800nm的範圍。較佳情況下, 400nm〜800nm範圍内之平均透光率為85%以上。 〇 本發明中,凸條係指自透光性基板之主表面(平坦部) 豎起且該豎起沿一方向延伸之部分。凸條係與透光性基板 之主表面為-體,可由與透光性基板之主表面相同的二光 性材料構成’亦可由與透光性基板之主表面相異的透光性 材料構成。凸條以與透光性基板之主表面為—體,且由與 透光性基板之主表面相同的透光性材料構成為俨,且…為 藉著成形透光性基板之至少主表面而形成的凸條。 複數凸條僅需形成為每-凸條之對應側面在實質上平 行即可,亦可不形成為完全平行。再者, 雖然各凸條以於 11 201100888 面内最易表現光學異向性的直線狀為佳,但在鄰接之凸條 不互相接觸的範園内,亦可呈曲線狀或折線狀。 凸條之截面(與凸條之長度方向及透光性基板之主表 面垂直相交之方向)形狀係跨長度方向大致固定,且在複數 凸條中’其等之截面形狀亦宜均呈大致固定。凸條之截面 形狀呈現寬度自底部(透紐基板的主表面)朝向頂部逐漸 變窄的形狀。舉例而言,具體之截面形狀可列舉如三角形 及梯形等。f域㈣狀之角與邊(側面)亦可為φ線狀。再 者,平行或大致平行地形成於透光性基板主表面之複數凸 條之間的間距寬度(即平坦部之寬度)宜分別呈固定或大致 固定。 於本發明中,凸條之頂部意指前述截面形狀之最高部 分沿長度方向延續的部分。凸條之頂部為面或線皆可。例 如田截面形狀為梯形時,凸條頂部形成面,當截面形狀 為角开^寺&amp;條頂部形成線。本發明中,凸條頂部以外 之表面稱為凸條側面。另外,相鄰兩凸條間的平坦部(由鄰 接之兩凸條所$成之溝的底面)並非凸條之表面,而是視為 透光性基板之主表面^ ' t透光性基板的衬料可列舉如光硬化樹脂 、熱可塑性樹 脂及玻璃等,概,關印絲成凸狀_來看以 光硬化樹脂或熱可塑性減 王樹舳為佳,而從能以光壓印法形成 凸條之觀點以及具優異耐熱性與耐久性之觀點來看,以光 硬化樹脂尤佳。就生連 產性的硯點來看,光硬化樹脂宜為: 將可藉光自由基聚合而 q尤硬化之光硬化性組成物予以光硬 12 201100888 化後所獲得的光硬化樹脂。 光硬化性組成物以光硬化後之硬化膜對於水的接觸角 大於90°者為佳。若該硬化膜對於水的接觸角大於90°,則 藉由光壓印法形成凸條之際,與模具間之離型性變得良 好,而可做出高精確度的轉印,所得到的線柵型偏光件將 能充分發揮目的性能。又,即使該接觸角提高,亦不妨礙 各吸收層或基底層的附著。 (第1反射層) 苐1反射層呈現沿凸條長度方向延伸之線條,相當於構 成線柵型偏光件之金屬細線。第1反射層被覆凸條之第1側 面的一部分或整面。而就裏面s偏光反射率可降至更低之觀 點來看,第1反射層以被覆凸條之第1側面的一部分為佳。 第1反射層亦可被覆凸條頂部之一部分或全部。另外,第1 反射層亦可被覆凸條之第1側面所鄰接的平坦部之—部分。 被覆凸條之第1側面的第1反射層係以呈現連續不斷者 為慣例。凸條之第1側面雖說宜由第1反射層所連續被覆, 但由於製造上的問題等,有時亦會有極小部分的第丨側面未 受第1反射層所被覆的情況。即使於該情況下,只要第丄側 面大致連續地由第1反射層所被覆,便視同第1側面係由第i 反射層所連續被覆。 第1反射層的金屬材料僅需為對可見光具高反射率且 具充分導電性者即可,並以慮及耐蝕性等特性者為佳。 金屬材料可列舉如金屬單體、合金以及含有摻雜物或 不純物的金屬等。具體來講,可列舉如鋁、銀、鎮、紹人 13 201100888 金以及銀合金等,從對可見光具有高反射率、可見光吸收 較少以及具有高導電率等觀點來看,則以鋁、鋁合金、銀 以及鎂為佳,又特別以鋁及鋁合金為佳。 (第2反射層) 第2反射層呈現沿凸條長度方向延伸之線條’相當於構 成線栅型偏光件之金屬細線。第2反射層被覆凸條之第2側 面的一部分或整面。就裏面s偏光反射率可降至更低的觀點 來看,第2反射層以被覆凸條之第2側面的一部分為佳。第2 反射層亦可被覆凸條頂部之一部分或全部。另外’第2反射 層亦可被覆凸條之第2側面所鄰接的平坦部之一部分。 被覆凸條之第2側面的第2反射層係以沿第2側面之長 向呈連續不斷者為慣例。凸條之第2側面雖說宜由第2反射 層所連續被覆,但由於製造上的問題等,有時亦會有極小 部分的第2側面未受第2反射層所被覆的情況。即使於該情 況下,只要第2側面大致連續地由第2反射層所被覆,便視 同第2側面由第2反射層所連續被覆。 由於第2反射層的存在,被覆凸條的金屬材料量增加, 而可在透射率之降低量少的狀態下提高消光比。 第2反射層的金屬材料可列舉與第1反射層之金屬材料 相同者。 (第1吸收層) 第1吸收層係存在於凸條的第丨側面與第1反射層之 間,被覆凸條的第1側面整面。第1吸收層可被覆凸條頂部 之一部分或全部。從具有優異的p偏光透射率之觀點來看, 201100888 第1吸收層以不被覆凸條頂部為宜。第1吸收層亦可被覆凸 條之第1側面所鄰接的平坦部之一部分。 ΟΟ rate, and S polarized light reflectance is low. Further, the side of the kneading surface can be attached to the liquid crystal panel, so that the wire grid type polarizing member can be easily attached to the liquid crystal panel. Furthermore, since the backlight _ light system is emitted from the surface, the reflection of the polarized light at the interface can be suppressed. According to the method for producing a wire grid type polarizer of the present invention, a wire grid type polarizer having high polarization and high Ρ polarized light transmittance and low inside 3 polarized light reflectivity can be produced with good productivity. In particular, according to a preferred embodiment of the present invention, a wire grid type polarizer having a polarization degree of 99.2% or more can be obtained, and the wire grid type polarizer has a wavelength of more than 35% at wavelengths of 450 nm, 550 nm, and 700 nm (suitable It is more than 38% and more than 40%), and has a high surface s polarized reflectance of 35% or more at the same wavelength, and has an inner s polarized light of less than 2% at the same wavelength. Reflectivity. The liquid crystal display device of the present invention has high luminance, and the reduction in contrast is also suppressed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an example of a wire grid type polarizing member of the present invention. 9 201100888 Brother 2 is a perspective view of a wire shed type polarizer of the present invention. Fig. 3 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 4 is a perspective view showing another example of the wire shed type polarizer of the present invention. Fig. 5 is a perspective view showing another example of the wire shed type polarizing member of the present invention. Fig. 6 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 7 is a plan view showing an example of a liquid crystal display device of the present invention. I. Embodiment 3 Embodiment of the invention <Wire-grid type polarizer> The wire grid type polarizer of the present invention has a translucent substrate having a plurality of ridges whose width gradually narrows from the bottom toward the top. The plurality of ridges are formed on the surface at a predetermined pitch in parallel with each other across the flat portion formed between the ridges; the first reflective layer covers the first side ′ of the ridge and is made of a metal material The second absorption layer is formed between the first side surface of the ridge and the first reflection layer, and covers the entire surface of the first side surface of the ridge, and is made of a light absorbing material that absorbs light more than a metal material. The first reflection layer and the first absorption layer on the first side surface of the ridges have a strip shape extending in the longitudinal direction of the ribs, and correspond to the metal thin wires constituting the wire grid type polarizer. In the present invention, the ridges (for example, ridges having a triangular or trapezoidal cross-sectional shape in the longitudinal direction) formed on the surface of the light-transmitting substrate at a predetermined pitch in the direction of the light-transmitting substrate are opposite sides. One of the parties is referred to as the first side and the other is referred to as the second side. The wire grid type polarizer of the present invention may have a base layer made of a metal material. The base layer is present between the first side surface of the ridge and the first absorbing layer, and covers the entire surface of the first side surface of the τ beam. Further, a second absorption layer made of a light absorbing material and covering the entire surface of the second side surface may be provided on the second side surface of the ridge (i.e., the other side surface of the ridge). Further, the wire grid type polarizer of the present invention may further have a second reflection layer made of a metal material covering the surface of the second absorption layer. In the present invention, the term "covered" is not limited to the case where the layer is directly formed on the surface. The case where the layer is formed on the surface by covering the other layer via the other layer is also included. In the present specification, "~" is used in the sense that the numerical values described before and after are included as the lower limit and the upper limit. (Transparent Substrate) The translucent substrate is a substrate having translucency in the wavelength range of use of the wire grid type polarizer. Translucent means that light is permeable, and the wavelength range of use is specifically in the range of 400 nm to 800 nm. Preferably, the average light transmittance in the range of 400 nm to 800 nm is 85% or more. In the present invention, the rib refers to a portion which rises from the main surface (flat portion) of the light-transmitting substrate and which rises in one direction. The main surface of the ridge strip and the light-transmitting substrate is a body, and may be made of the same light-emitting material as the main surface of the light-transmitting substrate. 'It may also be made of a light-transmitting material different from the main surface of the light-transmitting substrate. . The ridge is made of a light-transmissive material which is the same as the main surface of the light-transmissive substrate, and is formed of a light-transmitting material which is the same as the main surface of the light-transmissive substrate, and is formed by molding at least the main surface of the light-transmitting substrate. Formed ribs. The plurality of ridges need only be formed such that the corresponding sides of each rib are substantially parallel or not completely parallel. Further, although each of the ridges is preferably a linear shape which is most likely to exhibit optical anisotropy in the plane of 11 201100888, it may be curved or polygonal in a circular garden in which adjacent ridges do not contact each other. The cross-section of the ridge (the direction perpendicular to the longitudinal direction of the ridge and the main surface of the light-transmissive substrate) is substantially fixed across the longitudinal direction, and the cross-sectional shapes of the ridges are generally substantially fixed. . The cross-sectional shape of the ridges exhibits a shape in which the width gradually narrows from the bottom (the main surface of the through-substrate substrate) toward the top. For example, specific cross-sectional shapes include, for example, a triangle and a trapezoid. The angle of the f-domain (four) and the side (side) may also be φ-line. Further, the pitch width (i.e., the width of the flat portion) formed between the plurality of ridges formed in parallel or substantially in parallel with the main surface of the light-transmitting substrate is preferably fixed or substantially fixed, respectively. In the present invention, the top of the ridge means a portion in which the highest portion of the aforementioned cross-sectional shape continues in the longitudinal direction. The top of the rib can be either face or line. For example, when the cross-sectional shape of the field is trapezoidal, the top of the ridge forms a face, and when the cross-sectional shape is a corner open, the top of the temple & strip forms a line. In the present invention, the surface other than the top of the ridge is referred to as the side of the ridge. In addition, the flat portion between the adjacent two ridges (the bottom surface of the groove formed by the adjacent two ribs) is not the surface of the ridge, but is regarded as the main surface of the light-transmitting substrate. The lining material may be, for example, a photo-curable resin, a thermoplastic resin, or a glass. In general, the screen-off filament is convex. It is preferable to use a photo-curable resin or a thermoplastic resin to reduce the eucalyptus, and to form a embossing by photoimprinting. From the viewpoint of the article and the viewpoint of excellent heat resistance and durability, it is particularly preferable to use a photocurable resin. In view of the point of production, the photo-curing resin is preferably a photocurable resin obtained by photohardening a composition which can be photo-hardened by photo-radical polymerization and hardened. The photocurable composition is preferably one in which the contact angle of the cured film after photohardening is more than 90° with respect to water. When the contact angle of the cured film to water is more than 90°, when the ridge is formed by photoimprinting, the release property from the mold becomes good, and high-accuracy transfer can be obtained. The wire grid type polarizer will be able to fully perform its intended function. Further, even if the contact angle is increased, the adhesion of each of the absorbing layers or the underlayer is not hindered. (First reflection layer) The reflection layer of 苐1 has a line extending in the longitudinal direction of the ridge, and corresponds to a thin metal wire constituting the wire grid type polarizer. The first reflective layer covers a part of the first side surface of the ridge or the entire surface. On the other hand, the first reflective layer is preferably a part of the first side surface of the covered ridge. The first reflective layer may also cover part or all of the top of the ridge. Further, the first reflection layer may cover a portion of the flat portion adjacent to the first side surface of the ridge. It is customary for the first reflecting layer on the first side surface of the covering ridge to be continuous. Although the first side surface of the ridge is preferably continuously covered by the first reflection layer, there may be a case where the second side surface of the ridge is not covered by the first reflection layer due to a manufacturing problem or the like. Even in this case, as long as the second side surface is substantially continuously covered by the first reflecting layer, the first side surface is continuously covered by the i-th reflecting layer. The metal material of the first reflective layer is only required to have high reflectance for visible light and sufficient conductivity, and it is preferable to take into consideration characteristics such as corrosion resistance. The metal material may, for example, be a metal monomer, an alloy, a metal containing a dopant or an impurity, or the like. Specifically, for example, aluminum, silver, town, Shaoren 13 201100888 gold, silver alloy, etc., from the viewpoints of high reflectance to visible light, less visible light absorption, and high electrical conductivity, aluminum, aluminum Alloys, silver and magnesium are preferred, and aluminum and aluminum alloys are preferred. (Second reflection layer) The second reflection layer has a line ′ extending in the longitudinal direction of the ridge, which corresponds to a thin metal wire constituting the wire grid type polarizer. The second reflection layer covers a part of the second side surface of the ridge or the entire surface. In view of the fact that the s-polar reflectance of the inside s can be lowered to a lower level, the second reflecting layer is preferably a part of the second side surface of the covering ridge. The second reflective layer may also cover part or all of the top of the rib. Further, the second reflection layer may cover a portion of the flat portion adjacent to the second side surface of the ridge. It is customary for the second reflecting layer on the second side surface of the covering ridge to be continuous along the longitudinal direction of the second side surface. Although the second side surface of the ridge is preferably continuously covered by the second reflecting layer, the second side surface of the extremely small portion may not be covered by the second reflecting layer due to manufacturing problems or the like. Even in this case, as long as the second side surface is substantially continuously covered by the second reflection layer, the second side surface is continuously covered by the second reflection layer. Due to the presence of the second reflecting layer, the amount of the metal material covering the ridges is increased, and the extinction ratio can be increased in a state where the amount of decrease in the transmittance is small. The metal material of the second reflection layer is the same as the metal material of the first reflection layer. (First Absorbing Layer) The first absorbing layer is present between the first side surface of the ridge and the first reflecting layer, and covers the entire surface of the first side surface of the ridge. The first absorbent layer may cover a part or all of the top of the ridge. From the viewpoint of having excellent p-polarized light transmittance, the first absorbent layer of 201100888 is preferably not coated with the top of the ridge. The first absorbing layer may also cover a portion of the flat portion adjacent to the first side surface of the rib. Ο

被覆凸條之第1側面的第1吸收層係以沿第1側面之長 向呈現連續不斷者為慣例。雖凸條之第1側面以由第1吸收 層所完全被覆者為佳’但由於製造上的問題等,有時亦會 有極小部分的第1側面未受第1吸收層所被覆的情況。即使 於該情況下,只要第1側面大致整面由第1吸收層所被覆, 便視同第1側面整面由第1吸收層所被覆。 以第1吸收層被覆凸條之第1侧面整面,藉此線柵型偏 光件的裏面S偏光反射率將會降低。 第1吸收層之光吸收性材料僅需為較第丨反射層之金屬 材料更能吸收光之材料即可。令各材料之光吸收程度為: 於厚度60nm之薄膜狀態下,對波長55〇nm之光的吸收率。 該吸收率係以下式定義。 波長55〇nm之光吸收率(%)=1〇〇_[波長55〇nm2光透射 率(%)]-[波長550nm之光反射率(0/〇)] 具體來講’光吸收性材料可列舉如:錄、絡、鈦、鶴、 麵、触她等減㈣金屬;氧祕及減料無機氧 ’,及氮切等無機氮化物;碳㈣及碳化飽等 無機碳化物1及,碳黑及奈米碳料碳化合物;但是, 無機乳化物在形成第丨吸收層之際,會因金屬與氧反應產生 ^熱導致凸條«變形’因此不甚理想。從具有高光吸收 ^生產性之觀點來看,光吸收性材料仙鎳、絡以及 敛為佳。 15 201100888 (基底層) 基底層係存在於凸條的第1側面與第1吸收層之間,被 覆凸條的第1側面整面。 基底層可被覆凸條頂部之一部分或全部。又,基底層 亦可被覆凸條之第1側面所鄰接的平坦部之一部分。 被覆凸條之第1側面的基底層係以沿第1側面長向呈連 續不斷者為慣例。雖凸條之第1側面宜由基底層所完全被 覆,但由於製造上的問題等,有時亦會有極小部分的第1側 面未受基底層所被覆的情況。即使於該情況下,只要第1側 面大致整面由基底層所被覆,便視同第1側面整面由基底層 被覆著。 因光吸收性材料所構成之第1吸收層的壓縮應力大,易 使凸條朝與其長度方向垂直相交的方向變形(彎曲)。由金屬 材料構成之基底層則具有緩和第1吸收層之壓縮應力的作 用。 因此,基底層之金屬材料以少發生廢縮應力者為佳, 具體而言,可列舉如铭、銀、鎂、铭合金以及銀合金等, 而從在可見光區域中之反射率較高的觀點來看,以鋁及鋁 合金為理想。 (第2吸收層) 第2吸收層被覆凸條的第2側面整面。第2吸收層可被覆 凸條頂部之一部分或全部,亦可被覆凸條之第2側面所鄰接 的平坦部之一部分。 被覆凸條之第2側面的第2吸收層係以沿第2側面之長 16 201100888 向呈連續不斷者為慣例。凸條之第2側面雖說宜由第2吸收 層所完全被覆,但由於製造上的問題等,有時亦會有極小 部分的第2側面未受第2吸收層所被覆的情況。即使於該情 況下’只要第2側面大致整面由第2吸收層所被覆,便視同 第2側面整面由第2吸收層所被覆。 因光吸收性材料所構成之第1吸收層的壓縮應力大,易 使凸條朝與其長度方向垂直相交的方向變形(彎曲)。由光吸 收性材料所構成之第2吸收層則藉著與第1吸收層相對而具 有使壓縮應力互相抵消的作用。 因此,第2吸收層之光吸收性材料僅需為與第丨吸收層 之光吸收性材料相同者即可,又以完全相同者為佳。 &lt;線栅型偏光件之製造方法&gt; 於製作出表面以預定間距形成有相互平行之複數凸條 的透光性基板後,依序形成各層而製出線栅型偏光件。 (透光性基板之製作) 透光性基板之製作方法可列舉如壓印法(光壓印法、熱 壓印法)及《彡法等,從可生產性良好地軸凸條且可使透 光性基板大_化等觀點來看,以壓印法為佳,且從可生 產性更佳地形成凸條以及可將模具上之溝槽高精確度地轉 印4觀點來看,則以光壓印法尤佳。 舉例來說,光壓印法為如下所述之方法:藉由電子束 微影法(electronbeamlith〇graphy)與敍刻法的組合製出以 預定間卿翁相互平行之複數溝_模具,並使該模具 之溝槽轉印於已塗佈於任意基材表面的級化性組成物, 17 201100888 同時使該光硬化性組成物光硬化。 利用光壓印法的透光性基板之製作,具體來講宜經由 下列步驟(i)〜(iv)來進行: ⑴於基材表面塗布光硬化性組成物之步驟。 (ii)使以預定間距形成有相互平行之複數溝槽的模具 緊壓於光硬化性組成物’以使丨緖與光硬化性組成物相接 的步驟。 (i i i)在將模«壓於光硬化性組成物之狀態下,照射放 射線(紫外線'電子束等)使光硬化性組硬化,而製作出 具有對應模具溝槽之複數凸條的透光性基板之步驟。 (iv)從透光性基板上分離模具之步驟。 此外,所付基材上之透光性基板可在與基材呈一體的 狀態下直接進行各層之形成。此外,亦可依需要而於各層 形成後將透紐基㈣絲轉。再者,可在將製作於基 材上之透先性基板與基材分離後,再進行後述各層之形成。 具體來講宜經由 利用熱壓印法料紐基板之製作, 下列步驟(i)〜(iii)來進行: •驟 (1)於基材表面形成熱可塑性樹脂的被轉印膜之步, 或者是製作熱可塑性樹脂的被轉印薄膜之步驟。、 緊壓距形成有相互平行之《溝槽的模具 緊壓於經加熱至熱可塑性 或被轉印薄膜相接,而製作出 =叫溝槽與被轉印膜 條的透光性基板之步驟。/、有對應模具溝槽之複數凸 18 201100888 (Hi)使透光性基板冷卻至較Tg.Tm更低的溫度,並將 模具自透光性基板分離之步驟。 此外,所得基材上之透光性基板可在與基材呈一體的 狀態下直接進行各層之形成。亦可依需要而於各層形成後 將透光性基板與基材分離。再者,可在將製作絲材上之 透光性基板與基材分離後,再進行後述各層之形成。 能用於壓印法賴具材料可列舉如⑪、錄、石英及樹 脂等,從轉印精確度之觀點來看,以樹脂為佳。而樹脂又 可列舉如氟樹脂(乙稀·四氟乙稀共聚物等)、環狀稀煙、聚 矽氧樹脂、環氧樹脂以及丙烯酸樹脂等。從模具精確度之 觀點來看,i·乂光硬化性丙烯酸樹脂為#。從重複轉印耐久 度的觀點來看,樹脂模具宜於表面具有厚度2〜1()咖之無機 膜。無機制以氧化♦、氧化鈦以及氧化料氧化膜為佳。 (各層之形成) 各層宜以蒸鐘法形成。蒸錄法可列舉如物理蒸鑛法 (PVD)或是化學蒸鍍法(CVD),且以真空蒸鍍法、滅鑛法以 及離子鍍覆法輕,尤喊线鍍法為佳。真线鑛法易 於控制所欲附著之微粒子龍紐基板的人射方向,而容 易實行後狀斜向蒸H法。由於各狀形成有必要將各材 料選擇性地爭錄於凸條各側面,因此喊鑛法而言,以利 用真二蒸鑛法之斜向洛鍛法最為理想。 (基底層之形成) 具體來講,可在蒸鑛量為3〜15nm的條件下,從大致垂 直相交於凸條長度方向且相對於凸條高度方向係與第㈣ 19 201100888 面之側呈25〜4G。角之方向蒸鑛金屬材料,藉此形成基底 層。角度以30〜45。為佳,蒸鍍量則以5〜15nm為佳。 所謂蒸鍍量為3〜15nm的條件,乃意指:於凸條形成金 屬層之際,未形成凸條之區域(呈平坦之平坦部份)表面蒸鍍 金屬或金屬化合物所形成之金屬層的厚度會成為3〜15mn 之條件,於該條件下以斜向驗法形絲底層。再者,形 成下列第1吸收層、第2吸收層、第1反射層以及第2反射層 時,其蒸鍍量之條件亦相同。 (第1吸收層之形成) 具體來講’可在蒸鍵量為3〜20nm的條件下,從大致垂 直相交於凸條長度方向且相對於凸條高度方向係與第1側 面之側里25〜4G。角之方向蒸鍍光吸收性材料藉此而形成 第1吸收層。角度以3㈡5。為佳,祕量則以Mb為佳。 (第2吸收層之形成) 具體來講’可在蒸鍵量為3〜2〇nm的條件下,從大致垂 直相交於凸條長度方向且相對於凸條高度方向係與第2側 面之側呈25〜4〇。狀方向蒸鍍光吸收性㈣,藉此形成第2 吸收層。角度以30〜40。為佳,蒸鍍量則以5~15nm為佳。 (第1反射層之形成) 具體來講,可在蒸鍍量為15~50nm的條件下,從大致 垂直相交於凸條長度方向且相對於凸條高度方向係與第丄 側面之側呈25〜5〇。角之方向蒸鍍金屬材料,藉此形成第i 反射層。角度以30〜45。為佳’蒸鍍量則以2〇〜45nm為佳。 (第2反射層之形成) 20 201100888 具體來溝,可在蒸鍍量為15〜50nm的條件下,從大致 垂直相交於凸條長度方向且相對於凸條高度方向係與第2 側面之側呈25〜50。角之方向蒸鑛金屬材料,藉此形成第2 反射層。角度以30〜45。為佳,蒸鍍量則以20〜45nm為佳。 &lt;線栅型偏光件之實施型態&gt; 以下’使用圖式說明本發明之線柵型偏光件的實施形 態。下述圖式為模式圖,實際上的線柵型偏光件並不具有 如圖所示般合乎理論且理想的形狀。舉例來講,實際上的 線栅型偏光件中,多少會有凸條等的形狀變形,發生各層 厚度不均勻的情況也不少。 再者’令本發明中凸條及各層的個別尺寸為:於線柵 型偏光件截面的掃描式電子顯微鏡像或穿透式電子顯微鏡 像中’測定5個凸條及該凸條上各層的個別尺寸最大值,並 將5個該最大值取平均者。 [第1實施形態] 第1圖為立體圖,顯示本發明之線柵型偏光件之第1實 施形態。線柵型偏光件10具有:透光性基板14,其表面上 形成有沿同圖箭頭A方向延伸且截面形狀為梯形之複數凸 條12’該等凸條12係隔著溝槽(形成於凸條12之間)的平坦部 13相互平行且依預定間距pp而形成;第1反射層20,係由金 屬材料所構成’且被覆凸條12之第1側面16的一部分表面; 第1吸收層22 ’係由光吸收性材料所構成,且存在於凸條12 之苐1側面與弟1反射層2 0之間’並被覆凸條12之第1側面16 整面。第1反射層20沿著凸條12之長度方向延伸而構成金屬 21 201100888 細線。 (透光性基板)It is customary for the first absorbent layer on the first side surface of the covering ridge to be continuous along the longitudinal direction of the first side surface. It is preferable that the first side surface of the ridge is completely covered by the first absorbing layer. However, there is a case where a very small portion of the first side surface is not covered by the first absorbing layer due to a manufacturing problem or the like. Even in this case, as long as the first side surface is substantially covered by the first absorbing layer, the entire first surface is covered by the first absorbing layer. The entire surface of the first side surface of the ridge is covered with the first absorbing layer, whereby the polarized reflectance of the inside S of the wire grid type polarizer is lowered. The light absorbing material of the first absorbing layer only needs to be a material which absorbs light more than the metal material of the ninth reflecting layer. The light absorption degree of each material is: the absorption rate of light having a wavelength of 55 〇 nm in a film state having a thickness of 60 nm. This absorption rate is defined by the following formula. Light absorption at a wavelength of 55 〇 nm (%) = 1 〇〇 _ [wavelength 55 〇 nm 2 light transmittance (%)] - [wave reflectance at a wavelength of 550 nm (0 / 〇)] Specifically, 'light absorbing material Examples include: recording, complex, titanium, crane, surface, touching her and other (four) metals; oxygen secret and reducing inorganic oxygen', and inorganic nitrides such as nitrogen cutting; carbon (four) and carbonized saturated inorganic carbides 1 and Carbon black and nano carbon carbon compounds; however, when the inorganic emulsion forms a ninth absorption layer, it is less desirable because the metal reacts with oxygen to cause heat to cause the ridge "deformation". From the viewpoint of high light absorption and productivity, the light absorbing material is preferably nickel, complex and condensed. 15 201100888 (base layer) The base layer is present between the first side surface of the ridge and the first absorbing layer, covering the entire surface of the first side surface of the ridge. The base layer may be partially or wholly covered by one of the tops of the ribs. Further, the base layer may be covered with a portion of the flat portion adjacent to the first side surface of the ridge. It is customary for the base layer of the first side surface of the covering ridge to be continuously continuous along the first side surface. Although the first side surface of the ridge is preferably completely covered by the base layer, there may be cases where a very small portion of the first side surface is not covered by the base layer due to a manufacturing problem or the like. Even in this case, as long as the first side surface is substantially covered by the base layer, the entire surface of the first side surface is covered by the base layer. Since the first absorbent layer composed of the light absorbing material has a large compressive stress, the ridges are easily deformed (bent) in a direction perpendicular to the longitudinal direction. The base layer made of a metal material has a function of alleviating the compressive stress of the first absorbent layer. Therefore, it is preferable that the metal material of the underlayer is less subject to a reduction in shrinkage stress, and specific examples thereof include, for example, Ming, Silver, Magnesium, Ming alloy, and silver alloy, and the viewpoint of high reflectance in the visible light region is high. In view of it, aluminum and aluminum alloys are ideal. (Second Absorbing Layer) The second absorbent layer covers the entire surface of the second side surface of the ridge. The second absorbent layer may cover part or all of the top of the ridge, or may cover a portion of the flat portion adjacent to the second side of the ridge. It is customary for the second absorbent layer on the second side of the covering ridge to be continuous along the length of the second side 16 201100888. Although the second side surface of the ridge is preferably completely covered by the second absorbing layer, the second side surface of the extremely small portion may not be covered by the second absorbing layer due to manufacturing problems or the like. Even in this case, as long as the second side surface is substantially covered by the second absorbent layer, the entire second surface is covered by the second absorbent layer. Since the first absorbent layer composed of the light absorbing material has a large compressive stress, the ridges are easily deformed (bent) in a direction perpendicular to the longitudinal direction. The second absorbing layer composed of the light absorbing material has a function of canceling the compressive stress by opposing the first absorbing layer. Therefore, the light absorbing material of the second absorbing layer only needs to be the same as the light absorbing material of the second absorbing layer, and it is preferably the same. &lt;Manufacturing method of wire grid type polarizer&gt; After a light-transmissive substrate having a plurality of mutually parallel ridges formed at a predetermined pitch is formed, each layer is sequentially formed to form a wire grid type polarizer. (Production of a light-transmissive substrate) Examples of the method for producing a light-transmitting substrate include an imprint method (photolithography method, hot stamping method), and the like, and a shaft ridge can be produced from a good productivity. From the viewpoint of large-scale optical substrate, etc., it is preferable to use an imprint method, and to form a ridge from a more productive property and to transfer the groove on the mold with high precision, the viewpoint is Photoimprinting is especially good. For example, photoimprinting is a method in which a combination of electron beam lithography and lithography is used to produce a plurality of trenches that are parallel to each other in a predetermined interval. The groove of the mold is transferred to a graded composition that has been applied to the surface of any substrate, and the photocurable composition is photohardened at the same time. The production of the light-transmitting substrate by photoimprinting is specifically carried out via the following steps (i) to (iv): (1) a step of applying a photocurable composition to the surface of the substrate. (ii) a step of pressing a mold having a plurality of grooves parallel to each other at a predetermined interval to the photocurable composition to bring the film into contact with the photocurable composition. (iii) irradiating radiation (ultraviolet 'electron beam, etc.) to the photocurable group in a state where the mold is pressed against the photocurable composition, and the light transmittance of the plurality of ridges having the corresponding mold grooves is produced. The steps of the substrate. (iv) a step of separating the mold from the light-transmitting substrate. Further, the light-transmitting substrate on the substrate to be applied can be directly formed into a layer in a state of being integrated with the substrate. In addition, the neodymium (four) wire may be rotated after the formation of each layer as needed. Further, after the transparent substrate formed on the substrate is separated from the substrate, the formation of each layer described later can be carried out. Specifically, it is preferably carried out by the following steps (i) to (iii) by using a hot stamping substrate, or: (1) step of forming a transfer film of a thermoplastic resin on the surface of the substrate, or It is a step of producing a transfer film of a thermoplastic resin. Steps of forming a translucent substrate with a groove and a film to be transferred are formed by pressing the molds of the grooves in a manner that is parallel to the heat-plasticity or the transfer film is joined to each other. . /, there are complex protrusions corresponding to the mold grooves. 18 201100888 (Hi) The step of cooling the light-transmitting substrate to a temperature lower than Tg.Tm and separating the mold from the light-transmitting substrate. Further, the light-transmitting substrate on the obtained substrate can be directly formed into layers in a state of being integrated with the substrate. The light-transmitting substrate may be separated from the substrate after formation of each layer as needed. Further, after the light-transmitting substrate on the wire material is separated from the substrate, the formation of each layer described later can be carried out. The materials which can be used for the imprinting method are, for example, 11, recording, quartz, and resin, and from the viewpoint of transfer accuracy, resin is preferred. Further, examples of the resin include a fluororesin (such as ethylene/tetrafluoroethylene copolymer), a ring-shaped flue gas, a polyoxymethylene resin, an epoxy resin, and an acrylic resin. From the viewpoint of mold precision, the i-light curing acrylic resin is #. From the viewpoint of repeating the durability of the transfer, the resin mold preferably has an inorganic film having a thickness of 2 to 1 (). There is no mechanism to oxidize ♦, titanium oxide and oxide oxide film. (Formation of each layer) Each layer is preferably formed by a steaming method. The steaming method may, for example, be a physical vapor deposition method (PVD) or a chemical vapor deposition method (CVD), and is preferably a vacuum vapor deposition method, a mineralization method, and an ion plating method. The true line method is easy to control the direction of the human shot of the microparticles of the substrate to be attached, and it is easy to implement the post-slope steaming method. Because of the formation of various shapes, it is necessary to selectively compete for each material on each side of the ridge. Therefore, the oblique forging method using the true two-steaming method is most desirable. (Formation of the base layer) Specifically, under the condition that the amount of the ore is 3 to 15 nm, the direction perpendicular to the longitudinal direction of the ridge and the height direction of the ridge and the side of the (4) 19 201100888 surface are 25 ~4G. The metal material is vaporized in the direction of the corners, thereby forming a base layer. The angle is 30~45. Preferably, the amount of vapor deposition is preferably 5 to 15 nm. The condition that the amount of vapor deposition is 3 to 15 nm means that a metal layer formed by vapor-depositing a metal or a metal compound on a surface where a ridge is not formed (a flat flat portion) is formed when a metal layer is formed in a ridge. The thickness will be 3 to 15 mn, and under this condition, the underlayer of the filament is examined obliquely. Further, when the following first absorption layer, second absorption layer, first reflection layer, and second reflection layer are formed, the conditions of the vapor deposition amount are also the same. (Formation of the first absorption layer) Specifically, it can be formed in a direction perpendicular to the longitudinal direction of the ridge and to the side of the first side surface with respect to the height direction of the ridge 25 under the condition that the amount of the steamed bond is 3 to 20 nm. ~4G. The light absorbing material is vapor-deposited in the direction of the corners to form the first absorption layer. The angle is 3 (two) 5. For better, the secret is Mb. (Formation of the second absorption layer) Specifically, it can be intersected in the longitudinal direction of the ridge and perpendicular to the height direction of the ridge and the side of the second side surface under the condition that the amount of the steamed bond is 3 to 2 〇 nm. It is 25~4〇. The light absorption property (IV) is vapor-deposited in the form of a shape, whereby the second absorption layer is formed. The angle is 30~40. Preferably, the evaporation amount is preferably 5 to 15 nm. (Formation of the first reflective layer) Specifically, under the condition that the vapor deposition amount is 15 to 50 nm, the side perpendicular to the longitudinal direction of the ridge and the side of the ridge side with respect to the height direction of the ridge can be 25 ~5〇. A metal material is vapor-deposited in the direction of the corners, thereby forming an i-th reflective layer. The angle is 30~45. It is better that the amount of vapor deposition is preferably 2 〇 to 45 nm. (Formation of the second reflection layer) 20 201100888 The specific groove can be perpendicularly intersected in the longitudinal direction of the ridge and perpendicular to the height direction of the ridge and the side of the second side under the condition that the deposition amount is 15 to 50 nm. It is 25~50. The metal material is vaporized in the direction of the corners, thereby forming a second reflecting layer. The angle is 30~45. Preferably, the evaporation amount is preferably 20 to 45 nm. &lt;Implementation Pattern of Wire Grid Type Polarizer&gt; The following is a description of the embodiment of the wire grid type polarizer of the present invention. The following figure is a pattern diagram, and the actual wire grid type polarizer does not have a theoretical and ideal shape as shown. For example, in the actual wire grid type polarizer, the shape of the ridges or the like is somewhat deformed, and the thickness of each layer is uneven. Furthermore, in the present invention, the individual dimensions of the ridges and the layers are: in the scanning electron microscope image or the transmission electron microscope image of the cross section of the wire grid type polarizer, 'measure 5 ribs and layers on the ribs The individual size is the maximum and the five are the average. [First Embodiment] Fig. 1 is a perspective view showing a first embodiment of the wire grid type polarizer of the present invention. The wire grid type polarizer 10 has a light-transmissive substrate 14 having a plurality of ridges 12 ′ extending along the direction of the arrow A and having a trapezoidal cross-sectional shape, and the ribs 12 are formed by the grooves (formed on the surface) The flat portions 13 between the ridges 12 are parallel to each other and formed at a predetermined pitch pp; the first reflective layer 20 is made of a metal material and covers a part of the surface of the first side face 16 of the ridge 12; The layer 22' is composed of a light absorbing material and exists between the side of the ridge 1 of the ridge 12 and the reflection layer 20 of the ridge 1 and covers the entire surface of the first side 16 of the rib 12. The first reflective layer 20 extends along the longitudinal direction of the ridge 12 to constitute a metal 21 201100888 thin line. (translucent substrate)

Pp係凸條12之底部寬度Dpb與形成於凸條12間之平坦 部13之寬度的總和。Pp宜為3〇〇nm以下,且以5〇〜3〇〇1^之 範圍為佳,以50〜250mn尤佳。若Pp在3〇〇nm以下,將表現 出高表面s偏光反射率,且即使於4〇〇nm左右的短波長區域 亦可表現出高偏光度。再者,可抑制繞射所引起之著色現 象。又,若Pp在50〜200nm,則易於利用蒸鍍來形成各層。The sum of the bottom width Dpb of the Pp rib 12 and the width of the flat portion 13 formed between the ridges 12. Pp is preferably 3 〇〇 nm or less, and preferably 5 〇 to 3 〇〇 1 ^, and preferably 50 to 250 mn. When Pp is 3 〇〇 nm or less, a high surface s polarized reflectance is exhibited, and a high polarization degree can be exhibited even in a short wavelength region of about 4 〇〇 nm. Furthermore, the coloring caused by the diffraction can be suppressed. Further, when Pp is 50 to 200 nm, it is easy to form each layer by vapor deposition.

Dpb與Pp之比(Dpb/Pp)係以〇 1〜〇 7為佳,而以〇 25〜〇 55 更佳。若Dpb/Pp達0.1以上,可表現出高偏光度。而藉著使The ratio of Dpb to Pp (Dpb/Pp) is preferably 〇 1 to 〇 7 and more preferably 〇 25 to 〇 55. If Dpb/Pp is 0.1 or more, high polarization can be exhibited. By making

Dpb/Pp降低至〇_7以下,可抑制由干涉所造成之透射光著色 現象。 從容易利用蒸鍍形成各層的觀點來看,Dpb以 30〜100nm為佳。 凸條之截面形狀為梯形時,凸條12之頂部19之寬度]〇1^ 宜為Dpb之一半以下,且以4〇nm以下為佳,以2〇nm以下尤 佳。若Dpt為Dpb之一半以下,卩偏光透射率將更加提高,且 角度相依性將會充分降低。 凸條12之高度Hp宜為8〇〜500nm,且以80〜400nm為 佳,以120〜300nm尤佳,以⑽〜⑽咖為最佳。若邱達肋⑽ 以上,偏光分離能力將會充分提高。若11]?為5〇〇11111以下, 則波長色散將減少。再者,若Hp在8〇〜270nm,則易於利用 蒸錄形成各層。 第1側面16相對於構成透光性基板平坦部之主表面的 22 201100888 傾斜角Θ1及第2側面18的傾斜角02宜為3〇。以上且小於卯 。,以50°以上且小於9『為佳,又以7()。以上且小於9『尤 佳’以75°以上小於9〇°為最佳。W與Θ2可相同亦可相異。 透光性基板14之厚度Hs以0.5〜1〇〇〇_為佳,且以卜4〇 &quot;m更佳。 (第1反射層) 第1反射層2〇於凸條12寬度方向上之厚度最大值Drl以 滿足下式(I)為佳。 0.2x(Pp-Dpb)$ Drl $ 〇.5x(Pp-Dpb)... (I) 若Drl達0.2x(Pp-Dpb)以上,將表現出高p偏光透射率, 且波長色政小。若Drl為〇.5x(Pp-Dpb)以下,偏光分離能力 將充分提南。 第1反射層20之高度Hrl宜為80〜500nm,以80〜400nm 為佳,更以120〜300nm為佳。Hrl若在80nm以上,第1反射 層20的結晶化將受抑制,而表現出高s偏光反射率。Hr 1若 在500nm以下,即使於短波長區域中,偏光分離能力仍會充 分提高。Dpb/Pp is reduced to below 〇7, which suppresses the phenomenon of transmitted light coloring caused by interference. From the viewpoint of easily forming each layer by vapor deposition, Dpb is preferably 30 to 100 nm. When the cross-sectional shape of the ridge is trapezoidal, the width 〇1 of the top 19 of the ridge 12 is preferably one-half or less of Dpb, preferably 4 Å or less, more preferably 2 Å or less. If Dpt is less than one-half of Dpb, the polarized light transmission will be more improved and the angle dependence will be sufficiently reduced. The height Hp of the ridges 12 is preferably from 8 Å to 500 nm, preferably from 80 to 400 nm, more preferably from 120 to 300 nm, and most preferably from (10) to (10). If Qiu Da rib (10) or more, the polarization separation ability will be fully improved. If 11]? is 5〇〇11111 or less, the wavelength dispersion will be reduced. Further, when Hp is from 8 Å to 270 nm, it is easy to form each layer by vapor recording. The angle 1 of the first side surface 16 with respect to the main surface constituting the flat portion of the light-transmissive substrate is preferably 3 〇 with respect to the inclination angle Θ 1 of the 201100888 inclination angle Θ 1 and the second side surface 18 . Above and less than 卯. It is better to use 50° or more and less than 9′, and 7 (). Above and less than 9 "Easy" is preferably 75 or more and less than 9 〇. W and Θ2 may be the same or different. The thickness Hs of the light-transmitting substrate 14 is preferably 0.5 to 1 Å, and more preferably 4 Å &quot; m. (First reflection layer) The thickness maximum value Dr1 of the first reflection layer 2 in the width direction of the ridge 12 is preferably such that the following formula (I) is satisfied. 0.2x(Pp-Dpb)$ Drl $ 〇.5x(Pp-Dpb)... (I) If Drl is above 0.2x (Pp-Dpb), it will exhibit high p-polarized transmittance and small wavelength chromaticity. . If Drl is below 〇.5x (Pp-Dpb), the polarization separation capability will be fully advanced. The height Hrl of the first reflective layer 20 is preferably 80 to 500 nm, preferably 80 to 400 nm, more preferably 120 to 300 nm. When Hrl is 80 nm or more, crystallization of the first reflective layer 20 is suppressed, and high s polarized reflectance is exhibited. When Hr 1 is below 500 nm, the polarization separation ability is sufficiently improved even in a short wavelength region.

Hrl/Hp以0·5〜1為佳,以0.6〜1更佳。Hrl/Hp若在1以下, 偏光分離能力將上昇。Hrl/Hp若在0.5以上,光學特性之角 度相依性將充分降低。 當第1反射層20被覆凸條12頂部之一部分或全部時,從 抑制透射率下降的觀點來看,其於頂部之高度以20nm以下 為佳。 (第1吸收層) 23 201100888 第1吸收層22於凸條12寬度方向上之厚度最大值Dal以 3〜20nm為佳,以5〜15nm更佳。Dal若在3nm以上,裏面8偏 光反射率將充分降低。Dal若在20nm以下,將可將第1吸收 層22之壓縮應力抑制成較低。 由於第1吸收層被覆第!側面整面而形成,因此第1吸收 層22之高度Hal大致與Hp相同。 [第2實施形態] 第2圖為立體圖,顯示本發明之線柵型偏光件之第2實 施形態。線柵型偏光件1〇具有:透光性基板14,其表面形 成有截面形狀為梯形之複數凸條12,該等凸條12係隔著溝 槽(形成於凸條12之間)的平坦部13而相互平行且依預定間 距Pp形成;第1反射層20,係由金屬材料所構成,且被覆凸 條12之第1側面16之一部分表面;第1吸收層22,係由光吸 收性材料所構成,存在於凸條丨2之第1側面與第1反射層2〇 之間,且被覆凸條12之第1側面16之整面;基底層24,係由 金屬材料所構成,存在於凸條12與第1吸收層22之間,且被 覆凸條12之第1側面16之整面。 在第2實施形態中’就與第1、2實施形態之線柵型偏光 件10相同結構的部分,則省略其說明。 (基底層) 基底層24於凸條12寬度方向上之厚度最大值Dbl以 3〜20nm為佳,且以5〜15nm更佳。Dbl若在3nm以上,將可 充分緩和第1吸收層22中之壓縮應力。Dbl若在20nm以下, 則裏面s偏光反射率之上昇將可受到抑制。 24 201100888 由於基底層被覆第1側面整面而形成,因此基底層24 之高度Hbl與Hp大致相同。 [第3實施形態] 第3圖為立體圖,顯示本發明之線栅型偏光件之第3實 施形態。線柵型偏光件10具有:透光性基板14,其表面形 成有截面形狀為梯形之複數凸條12,該等凸條12係隔著溝 槽(形成於凸條12之間)的平坦部13而相互平行且依預定間 距Pp形成,第1反射層2〇,係由金屬材料所構成,且被覆凸 條12之第1侧面16之一部分表面;第!吸收層22,係由光吸 收性材料所構成’存在於凸條12與第1反射層2〇之間,且被 覆凸條12之第1側面16整面;第2吸收層26,係由光吸收性 材料所構成,且被覆凸條12之第2侧面18整面。 在第3實施形態中,就與第丨實施形態之線柵型偏光件 10相同結構的部分,則省略其說明。 (第2吸收層) 第2吸收層26於凸條12寬度方向上之厚度最大值Da2以 3〜20nm為佳,且以5〜15nm更佳。Da2若在3nm以上,裏面s 偏光反射率將充分降低。Da2若在20nm以下,將可將第2吸 收層26之壓縮應力抑制成較低。 從使第1吸收層22與第2吸收層26的壓縮應力互相抵消 的觀點來看,Da2宜為Dal厚度之0.55〜2倍,且以0.55〜1.5 倍更佳。 由於第2吸收層被覆第2側面整面而形成,因此第2吸收 層26之高度Ha2與Hp大致相同。 25 201100888 [第4實施形態] 第4圖為立體圖,顯示本發明之線栅型偏光件之第4實 施形態。線柵型偏光件1〇具有:透光性基板14,其表面形 成有截面形狀為梯形之複數凸條12,該等凸條12係隔著溝 槽(形成於凸條12之間)的平坦部13而相互平行且依預定間 距Pp形成,第1反射層2〇,係由金屬材料所構成,且被覆凸 條12之第1側面16之一部分表面;第1吸收層π,係由光吸 收性材料所構成,存在於凸條12之第1側面與第1反射層20 之間,且被覆凸條12之第1側面16整面;基底層24,係由金 屬材料所構成,存在於凸條12與第1吸收層22之間,且被覆 凸條12之第1側面16整面;第2吸收層26,係由光吸收性材 料所構成,且被覆凸條12之第2側面18整面。 在第4實施形態中,就與第1〜3實施形態之線柵型偏光 件10相同結構的部分,則省略其說明。 [第5實施形態] 第5圖為立體圖,表示本發明之線柵型偏光件之第5實 施形態。線栅型偏光件10具有:透光性基板14,其表面形 成有截面形狀為梯形之複數凸條12,該等凸條12係隔著溝 槽(形成於凸條12之間)的平坦部13而相互平行且依預定間 距Pp形成;第1反射層2〇,係由金屬材料所構成,且被覆凸 條12之第1側面16之一部分表面;第1吸收層22,係由光吸 收性材料所構成,存在於凸條12與第1反射層20之間,且被 覆凸條12之第1側面16整面;第2反射層28,係由金屬材料 所構成,且被覆凸條12之第2側面18之一部分;第2吸收層 26 201100888 26,係由光吸收性材料所構成,存在於凸條12與第2反射層 28之間,且被覆凸條12之第2側面18之整面。 在第5實施形態中,就與第1〜4實施形態之線柵型偏光 件10相同結構的部分,則省略其說明。 (第2反射層) 第2反射層28於凸條12寬度方向上之厚度最大值Dr2宜 滿足下式(Π)。 0.2x(Pp-Dpb)^ Dr2 ^ 0.5x(Pp-Dpb)··· (II)Hrl/Hp is preferably 0·5 to 1 and more preferably 0.6 to 1. If Hrl/Hp is below 1, the polarization separation ability will increase. When Hrl/Hp is 0.5 or more, the angular dependence of optical characteristics is sufficiently lowered. When the first reflecting layer 20 covers part or all of the top of the ridge 12, the height at the top is preferably 20 nm or less from the viewpoint of suppressing the decrease in transmittance. (First absorption layer) 23 201100888 The thickness maximum value Da of the first absorption layer 22 in the width direction of the ridge 12 is preferably 3 to 20 nm, more preferably 5 to 15 nm. If Dal is above 3 nm, the internal 8 light reflectance will be sufficiently reduced. When Dal is 20 nm or less, the compressive stress of the first absorption layer 22 can be suppressed to be low. Because the first absorption layer is covered! Since the side surface is formed on the entire surface, the height Hal of the first absorption layer 22 is substantially the same as Hp. [Second Embodiment] Fig. 2 is a perspective view showing a second embodiment of the wire grid type polarizer of the present invention. The wire grid type polarizer 1A has a light-transmissive substrate 14 having a plurality of ridges 12 having a trapezoidal cross-sectional shape formed on the surface thereof, and the ridges 12 are flat across the grooves (formed between the ridges 12). The portions 13 are parallel to each other and formed at a predetermined pitch Pp; the first reflective layer 20 is made of a metal material and covers a surface of one of the first side faces 16 of the ridges 12; and the first absorbing layer 22 is made of light absorbing. The material is formed between the first side surface of the ridge 2 and the first reflection layer 2, and covers the entire surface of the first side surface 16 of the ridge 12; the base layer 24 is made of a metal material and exists. The entire surface of the first side surface 16 of the ridge 12 is covered between the ridge 12 and the first absorbing layer 22. In the second embodiment, the same components as those of the wire grid type polarizer 10 of the first and second embodiments are not described. (Base Layer) The thickness maximum value Db1 of the base layer 24 in the width direction of the ridge 12 is preferably 3 to 20 nm, and more preferably 5 to 15 nm. When Dbl is 3 nm or more, the compressive stress in the first absorption layer 22 can be sufficiently alleviated. If Dbl is below 20 nm, the increase in the s-polar reflectance of the inside can be suppressed. 24 201100888 Since the base layer is formed covering the entire surface of the first side surface, the height Hb1 of the base layer 24 is substantially the same as Hp. [Third Embodiment] Fig. 3 is a perspective view showing a third embodiment of the wire grid type polarizer of the present invention. The wire grid type polarizer 10 has a translucent substrate 14 having a plurality of ridges 12 having a trapezoidal cross-sectional shape formed on the surface thereof, and the ribs 12 are flat portions of the grooves (formed between the ridges 12). 13 is parallel to each other and formed at a predetermined pitch Pp, and the first reflective layer 2 is made of a metal material and covers a part of the surface of the first side surface 16 of the ridge 12; The absorbing layer 22 is formed of a light absorbing material and exists between the ridge 12 and the first reflecting layer 2, and covers the entire surface of the first side surface 16 of the ridge 12; the second absorbing layer 26 is made of light. The absorbent material is formed and covers the entire surface of the second side surface 18 of the ridge 12. In the third embodiment, the same components as those of the wire grid type polarizer 10 of the second embodiment will not be described. (Second Absorbing Layer) The thickness maximum value Da2 of the second absorbent layer 26 in the width direction of the ridge 12 is preferably 3 to 20 nm, more preferably 5 to 15 nm. If Da2 is above 3 nm, the s-polar reflectance inside will be sufficiently reduced. When Da2 is 20 nm or less, the compressive stress of the second absorption layer 26 can be suppressed to be low. From the viewpoint of canceling the compressive stress of the first absorption layer 22 and the second absorption layer 26, Da2 is preferably 0.55 to 2 times the thickness of Dal, and more preferably 0.55 to 1.5 times. Since the second absorption layer is formed covering the entire surface of the second side surface, the heights Ha2 and Hp of the second absorption layer 26 are substantially the same. [Fourth Embodiment] Fig. 4 is a perspective view showing a fourth embodiment of the wire grid type polarizer of the present invention. The wire grid type polarizer 1A has a light-transmissive substrate 14 having a plurality of ridges 12 having a trapezoidal cross-sectional shape formed on the surface thereof, and the ridges 12 are flat across the grooves (formed between the ridges 12). The portions 13 are parallel to each other and formed at a predetermined pitch Pp. The first reflective layer 2 is made of a metal material and covers a surface of one of the first side faces 16 of the ridges 12. The first absorbing layer π is absorbed by light. The material is formed between the first side surface of the ridge 12 and the first reflective layer 20, and covers the entire surface of the first side surface 16 of the ridge 12; the base layer 24 is made of a metal material and exists in the convex portion. Between the strip 12 and the first absorbing layer 22, and covering the first side surface 16 of the ridge 12, the second absorbing layer 26 is made of a light absorbing material, and the second side surface 18 of the covering rib 12 is completed. surface. In the fourth embodiment, the description of the same components as those of the wire grid type polarizer 10 of the first to third embodiments will be omitted. [Fifth Embodiment] Fig. 5 is a perspective view showing a fifth embodiment of the wire grid type polarizer of the present invention. The wire grid type polarizer 10 has a translucent substrate 14 having a plurality of ridges 12 having a trapezoidal cross-sectional shape formed on the surface thereof, and the ribs 12 are flat portions of the grooves (formed between the ridges 12). 13 is formed parallel to each other and at a predetermined pitch Pp; the first reflective layer 2 is made of a metal material and covers a surface of one of the first side faces 16 of the ridges 12; and the first absorbing layer 22 is made of light absorbing. The material is formed between the ridge 12 and the first reflective layer 20, and covers the entire surface of the first side surface 16 of the ridge 12; the second reflective layer 28 is made of a metal material, and the ridge 12 is covered. One of the second side faces 18; the second absorbent layer 26 201100888 26 is composed of a light absorbing material, exists between the ridges 12 and the second reflective layer 28, and covers the entire second side 18 of the ridges 12. surface. In the fifth embodiment, the same components as those of the wire grid type polarizer 10 of the first to fourth embodiments are not described. (Second Reflective Layer) The thickness maximum value Dr2 of the second reflecting layer 28 in the width direction of the ridge 12 should preferably satisfy the following formula (Π). 0.2x(Pp-Dpb)^ Dr2 ^ 0.5x(Pp-Dpb)··· (II)

Dr2若在0_2x(Pp-Dpb)以上,將表現出高p偏光透射率, 且波長色散小。Dr2若在〇.5x(Pp-Dpb)以下,偏光分離能力 將充分提高。 第2反射層28之高度Hr2宜為80〜500nm,且以80〜400nm 為佳,以120〜300nm更佳。Hr2若在80nm以上,第2反射層 28之結晶化將受到抑制’且表現出高s偏光反射率。Hr2若 在500nm以下,即使於短波長區域中,偏光分離能力仍會充 分提南。If Dr2 is above 0_2x (Pp-Dpb), it will exhibit high p-polarized light transmittance and small wavelength dispersion. If Dr2 is below 〇.5x (Pp-Dpb), the polarization separation ability will be sufficiently improved. The height Hr2 of the second reflecting layer 28 is preferably 80 to 500 nm, preferably 80 to 400 nm, more preferably 120 to 300 nm. When Hr2 is 80 nm or more, crystallization of the second reflection layer 28 is suppressed&apos; and a high s-polarized reflectance is exhibited. If Hr2 is below 500 nm, even in the short-wavelength region, the polarization separation capability will be sufficiently advanced.

Hr2/Hp以0.5〜1為佳,且以〇_6〜1更佳。Hr2/Hp若在1以 下’偏光分離能力將提昇。Hr2/Hp若在〇.5以上,光學特性 之角度相依性將充分降低。 在苐2反射層28被覆凸條12頂部之一部分或全部的情 況下,從抑制透光性的減少之觀點來看,其於頂部之高度 以20nm以下為佳。 前述本發明第1〜5各實施態樣之線栅型偏光件的第丨〜5 圖之說明中,係針對令凸條之第1側面為同凸條之右側面且 27 201100888 於該第1側面上形成有第1吸收層、第1反射層及基底層的例 子予以說明’並針對令凸條之第2側面為同凸條之左側面且 該第2側面上形成有第2吸收層及第2反射層的例子予以說 明,但毋庸贅述的是,亦可令各圖面的凸條之第1侧面為同 凸條之左側面,令凸條之第2側面為同凸條之右側面。 &lt;各實施形態之線柵型偏光件的製造方法&gt; [第1實施形態之線柵型偏光件的製造方法] 可於透光性基板14的凸條12之第1側面16表面形成第1 吸收層22,並於該第1吸收層22表面形成第i反射層2〇,藉 此製造第1實施形態之線柵型偏光件1〇。 (第1吸收層之形成) 如第6圖所示,可在前述蒸鍍量為3〜2〇nm之條件下, 從大致垂直相交於凸條12之長度方向[且相對於凸條丨$之 高度方向Η係與第1側面16之侧呈25〜4〇。之角度0 R的方向 vi蒸鍍光吸收性材料,藉此形成第丨吸收層22。 ° 洛鍍可在總蒸鍍量為3〜2〇nm之條件下分成η次(但耵 以上之整數)進行。第i次(但⑻〜W之整數)之角度2 1+1次之角度0 '+1以0 '+ι&lt;0、為佳。 蒸鍍源可列舉如光吸收性材料(鎳、路、鈦、轉、名 飽及飢等減雜金屬;氧化鉻及氧化料無機氧化白,、 亂化鈦及lut料無軌化物;碳化缺碳化纟目等無 化物;碳黑及奈米碳管等碳化合物等),從吸”大义 產性高低的觀點來看,以鎳、鉻及鈦為佳。 、、生 (第1反射層之形成) 28 201100888 如第6圖所示,可在前述蒸鍍量為15〜5〇nm之條件下, 從大致垂直相交於凸條12之長度方向L且相對於凸條12之 南度方向Η係與第1側面16之側呈25〜50。之角度0 R的方向 VI蒸鍍金屬材料,藉此形成第〗反射層20。 蒸鍍可在總蒸鍍量為15〜5 Onm之條件下分成(但η為 2以上之整數)進行。第i次(但i為1〜η-1之整數)之角度0\與 第i+Ι次之角度0、+1以0Ri+1&lt;0Ri為佳。 蒸鍍源可列舉如金屬材料(鋁、銀、鎂、鋁合金及銀合 金等)’從對可見光具有高反射率、可見光之吸收較少且具 有高導電率的觀點來看,以鋁、鋁合金、銀以及鎂為佳, 且以紹及銘合金尤佳。 [第2實施形態之線柵型偏光件的製造方法] 可於透光性基板14的凸條12之第1側面16表面形成基 底層24,於該基底層24表面形成第1吸收層22,再於該第1 吸收層22之表面形成第1反射層20,藉此製造第2實施形態 之線柵型偏光件10。 在第2實施形態中,就與第1實施形態之線柵型偏光件 10相同結構的部分,將省略其說明。 (基底層之形成) 如第6圖所示,可在前述蒸鍍量為3〜15nm之條件下, 從大致垂直相交於凸條12之長度方向L且相對於凸條12之 高度方向Η係與第1側面16之側呈25〜40 °之角度0 R的方向 VI蒸鍍金屬材料,藉此形成基底層24。 蒸鐘可在總蒸鍍量為3〜15nm之條件下分成η次(但η為2 29 201100888 以上之整數)進行。第丨次(但i為卜n-l之整數)之角度6»Ri與第 i+Ι次之角度Θ '+1以Θ Ri+1&lt;0 Ri為佳。 蒸鍍源可列舉如金屬材料(鋁、銀、鎂、鋁合金及銀合 金等)’從可見光區域之反射率高低的觀點來看,以鋁及鋁 合金為佳。 [第3實施形態之線柵型偏光件的製造方法] 第3實施形態之線栅型偏光件10可藉由於第1實施形態 的製造方法中加入下列步驟來製造。 於任意階段加入:在透光性基板14的凸條12之第2側面 18表面形成第2吸收層26的步驟。 在第3實施形態中,就與第1實施形態之線柵型偏光件 10相同結構的部分,將省略其說明。 (第2吸收層之形成) 如第ό圖所示,可在前述蒸鑛量為3〜2〇nrn之條件下, 從大致垂直相交於凸條12之長度方向L且相對於凸條以之 高度方向Η係與第2側面18之側呈25〜40。之角度0L的方向 V2蒸鍍光吸收性材料,藉此形成第2吸收層%。 蒸鍍可在總蒸鍍量為3〜20nm之條件下分成^欠(但11為2 以上之整數)進行。第i次(但i為1〜n]之整數)之角度θ、與第 i+Ι次之角度0S+丨以為佳。 、Hr2/Hp is preferably 0.5 to 1, and more preferably 〇6 to 1. If Hr2/Hp is below 1 , the polarization separation capability will increase. When Hr2/Hp is at 〇.5 or more, the angular dependence of optical characteristics is sufficiently lowered. In the case where the 苐2 reflection layer 28 covers part or all of the top of the ridge 12, the height at the top is preferably 20 nm or less from the viewpoint of suppressing reduction in light transmittance. In the description of the fifth to fifth figures of the wire grid type polarizer according to the first to fifth embodiments of the present invention, the first side surface of the ridge is the right side surface of the same ridge and 27 201100888 is the first An example in which the first absorption layer, the first reflection layer, and the base layer are formed on the side surface is described] and the second side surface of the ridge is a left side surface of the same ridge and the second absorption layer is formed on the second side surface. An example of the second reflecting layer will be described. However, it should be noted that the first side surface of the ridge of each drawing may be the left side of the same ridge, and the second side of the ridge may be the right side of the same ridge. . &lt;Manufacturing Method of Wire-Grid Polarizer of Each Embodiment&gt; [Method of Manufacturing Wire-Grid Polarizer of First Embodiment] The surface of the first side surface 16 of the ridges 12 of the light-transmitting substrate 14 can be formed. The absorbing layer 22 is formed on the surface of the first absorbing layer 22, and the y-reflecting layer 2 is formed on the surface of the first absorbing layer 22, whereby the wire-grid polarizer 1A of the first embodiment is manufactured. (Formation of the first absorption layer) As shown in Fig. 6, it is possible to intersect the longitudinal direction of the ridge 12 substantially perpendicularly under the condition that the vapor deposition amount is 3 to 2 〇 nm [and with respect to the ridges 丨 $ The height direction of the tether is 25 to 4 inches from the side of the first side face 16. The angle 0 R direction vi vapor-deposits the light absorbing material, thereby forming the second absorbing layer 22. ° Luo plating can be carried out in n times (but 耵 above the integer) under the condition that the total evaporation amount is 3 to 2 〇 nm. The angle of the i-th (but (8) to W integer) 2 1+1-time angle 0 '+1 is 0 '+ι&lt;0, preferably. The vapor deposition source may, for example, be a light absorbing material (nickel, road, titanium, turn, name, and hunger, etc.; oxidized chromium and oxidized material, inorganic oxidized white, disordered titanium and lut material, orbital; carbonization, carbonization, carbonization Nickel, chromium, and titanium are preferred from the viewpoint of high productivity, such as carbon black and carbon compounds such as carbon nanotubes. (Production of the first reflective layer) 28 201100888 As shown in Fig. 6, the vapor deposition amount is 15 to 5 〇 nm, and the vertical direction intersects the longitudinal direction L of the ridge 12 and is inclined with respect to the south direction of the ridge 12 The side of the first side face 16 is 25 to 50. The metal material is vapor-deposited in the direction VI of the angle 0 R, thereby forming the first reflective layer 20. The vapor deposition can be divided into a total evaporation amount of 15 to 5 Onm. (but η is an integer of 2 or more). The angle 0\ of the i-th (but i is an integer of 1 to η-1) and the angle of the i-th order are 0, and +1 is 0Ri+1 &lt; 0Ri. The evaporation source may be exemplified by a metal material (aluminum, silver, magnesium, an aluminum alloy, a silver alloy, etc.), which has high reflectance to visible light, less absorption of visible light, and high conductivity. In view of the above, the aluminum, the aluminum alloy, the silver, and the magnesium are preferable, and the alloy is preferably used. [The method of manufacturing the wire grid type polarizer of the second embodiment] The convexity of the light-transmitting substrate 14 The base layer 24 is formed on the surface of the first side surface 16 of the strip 12, the first absorption layer 22 is formed on the surface of the base layer 24, and the first reflection layer 20 is formed on the surface of the first absorption layer 22, thereby producing the second embodiment. In the second embodiment, the same components as those of the wire-grid polarizer 10 of the first embodiment will be omitted. (Formation of the underlayer) As shown in Fig. 6 Under the condition that the vapor deposition amount is 3 to 15 nm, the longitudinal direction intersects the longitudinal direction L of the ridge 12 substantially perpendicularly with respect to the height direction of the ridge 12 and the side of the first side surface 16 is 25 to 40 °. The metal material is vapor-deposited in the direction VI of the angle R, thereby forming the underlayer 24. The vapor clock can be divided into n times (but η is an integer of 2 29 201100888 or more) under the condition that the total vapor deposition amount is 3 to 15 nm. The angle of the third time (but i is an integer of nl) 6»Ri and the angle of the i+th order Θ '+1 is preferably Ri+1&lt;0 Ri. The vapor deposition source may be, for example, a metal material (aluminum, silver, magnesium, aluminum alloy, or silver alloy). From the viewpoint of the reflectance in the visible light region, aluminum and an aluminum alloy are preferred. [Line 3] The method of manufacturing the gate-type polarizer] The wire-grid polarizer 10 of the third embodiment can be manufactured by adding the following steps to the manufacturing method of the first embodiment. At any stage, the ridges of the light-transmitting substrate 14 are added. The step of forming the second absorption layer 26 on the surface of the second side surface 18 of the first embodiment is the same as that of the wire grid type polarizer 10 of the first embodiment. (Formation of the second absorption layer), as shown in the figure, can be perpendicularly intersected in the longitudinal direction L of the ridge 12 and relative to the ridge under the condition that the amount of the smelting is 3 to 2 〇nrn. The height direction of the tether and the side of the second side face 18 are 25 to 40. The angle of 0 L is V2, and the light absorbing material is vapor-deposited, whereby the second absorbing layer % is formed. The vapor deposition can be carried out by dividing the total vapor deposition amount to 3 to 20 nm (but 11 is an integer of 2 or more). The angle θ of the i-th (but i is an integer of 1 to n) and the angle 0S+ of the i+th order are preferred. ,

蒸鑛源可列舉如光吸收性材料⑽、絡、欽、L 銦、叙鎳、鉻以域等)’從吸”大彳、和生產性高低的觀 點來看,以鎳、鉻及鈦為佳。 [第4實施形態之線柵型偏光件的製造方法] 30 201100888 第4實施形態之線栅型偏光件1 〇可藉由於第2實施形態 的製造方法中加入下列步驟來製造。 於任意階段加入:在透光性基板14的凸條12之第2側面 18表面形成第2吸收層26的步驟。 在第4實施形態中,就與第1〜3實施形態之線栅型偏光 件10相同結構的部分,將省略其說明。 [第5實施形態之線栅型偏光件的製造方法] 第5實施形態之線柵型偏光件1〇可藉由於第3實施形態 的製造方法中加入下列步驟來製造。 於任意階段加入:在2吸收層26表面形成第2反射層28 的步驟。 在第5實施形態中,就與第1〜4實施形態之線栅型偏光 件10相同結構的部分,將省略其說明。 (第2反射層之形成) 如弟6圖所示,可於前述蒸鑛量為15〜50nm之條件下, 從大致垂直相交於凸條12之長度方向L且相對於凸條12之 高度方向Η係與第2側面18之側呈25〜50。之角度0L的方向 V2蒸鍍金屬材料,藉此形成第2反射層28。 蒸鍍可在總蒸鍍量為15〜5 Onm之條件下分成“欠(但η為 2以上之整數)進行。第i次(但i為1〜η-1之整數)之角度01^與 第1+1次之角度0 \+1以(9 Li+丨&lt;6&gt;Li為佳。 蒸錄源可列舉如金屬材料(鋁、銀、鎂、鋁合金及銀合 金等)’從對可見光具有高反射率、可見光之吸收較少且具 有南導電率的觀點來看,以鋁、鋁合金、銀以及鎂為佳, 31 201100888 且以鋁及鋁合金尤佳。 舉例來說,第1〜5實施形態的製造方法中之角度0 r( 0 L)可藉由使用下列之蒸鍍裝置來調整。 即,可變更透光性基板14傾斜度的蒸鍍裝置,該透光 性基板係與蒸鍍源作對向配置,以使蒸鍍源位在方向V1(V2) 之延長線上,該方向V1(V2)係大致垂直相交於凸條12之長 度方向L ’且相對於凸條12之高度方向η係與第丨側面16(第2 側面18)之側呈角度0 R( 0 l)。 以上所說明本發明之線柵型偏光件中,形成於透光性 基板表面之複數凸條的截面形狀為寬度自底部朝向頂部漸 窄之形狀,且該凸條之第1側面係由第丨反射層所被覆,因 此表現出南偏光度以及南p偏光透射率。又,被覆凸條之第 1側面整面的第1吸收層存在於凸條與第1反射層之間’因此 裏面s偏光反射率低。 再者,以上所說明之本發明之線柵型偏光件的製造方 法中,係於蒸鍍量為3〜20nm之條件下,從大致垂直相交於 凸條之長度方向且相對於凸條之高度方向係與第丨側面之 側呈25〜40角之方向蒸鍍光吸收性材料而形成第i吸收 層’且在蒸鑛量為15〜50nm之條件下,從大致垂直相交於 凸條之長度方向且相對於凸條之高度方向係與第丨側面之 側呈25~40角之方向蒸鍍金屬材料而形成第射層因 此,可生產性良好地製造偏光度及p偏光透射率高,且裏面 s偏光反射率低的線栅型偏光件。 &lt;液晶顯示裝置&gt; 32 201100888 本發明之液晶顯示裝置包含有:於一對基板間挾合固 . 持有液晶層之液晶面板;背光單元;及前述本發明之線柵 . 型偏光件,係配置成使形成有凸條之側的面作為前述背光 單70側,且使沒有形成凸條之側的面作為液晶顯示裝置之 目視側。 線柵型偏光件亦可配置於液晶面板一邊之表面,而以 配置於背光單元側的液晶面板之表面為佳。 0 又’線柵型偏光件如日本特開2006-139283號公報之第 15圖所載,亦可在與液晶面板的—對基板中之一基板呈一 體化的狀態下配置,且以與背光單元側之液晶面板的前述 基板一體化為佳。 ' 再者,線柵型偏光件如日本特許第4412388號公報之第 14圖所載,亦可配置於液晶面板的一對基板中之一基板的 靠液晶層側(即液晶面板之内部),且宜配置於液晶面板的一 對基板中之背光單元側之基板的靠液晶層側。 〇 從薄型化之觀點來看’本發明之液晶顯示裝置宜具有 吸收型偏光件,且該吸收型偏光件配置於線栅型偏光件所 配置側之相反側的液晶面板表面。 吸收型偏光件更宜配置在背光單元側之相反側的液晶 面板表面。 第7圖為截面圖’顯不本發明之液晶顯示裝置之一例。 液晶顯示裝置30具有:於一對的基板31及基板就間挟合 固持有液晶層33之液晶面板34 ;背光單元% ;貼著於液晶 面板34之背光單元35側表面的本發明之製造方法所得線拇 33 201100888 型偏光件10,貼著在背光單元3 5側之相反側的液晶面板34 表面之吸收型偏光件36。 以上所說明本發明之液晶顯示裝置中,由於具有偏光 度及ρ偏光透射率均高的線柵型偏光件,因此亮度甚高。 又,本發明之液晶顯示裝置中,其中一面(凸條形成側 之面,即表面)之s偏光反射率高且另一面(凸條未形成側之 面,即裏面)之S偏光反射率低的本發明之製造方法所得線栅 型偏光件因配置成凸條形成側之面為背光單元側且凸條未 形成側之面為液晶顯示裝置之目視側,因此對比的降低將 受到抑制。 實施例 以下,藉由實施例更加詳細地說明本發明,但本發明 並不侷限於該等實施例。 例1〜30為實施例,例31〜34為比較例。 (凸條及各層之個別尺寸) 於線栅型偏光件截面的穿透式電子顯微鏡像中測定5 個凸條及该凸條上各層的個別尺寸最大值(但,如、以2、The source of the steamed minerals may be, for example, a light absorbing material (10), a complex, a chin, a lanthanum, a ruthenium, a ruthenium or a ruthenium, etc.), from the viewpoint of "absorption" and high productivity, and nickel, chromium and titanium. [The method of manufacturing the wire grid type polarizer of the fourth embodiment] 30 201100888 The wire grid type polarizer 1 of the fourth embodiment can be manufactured by adding the following steps to the manufacturing method of the second embodiment. In the fourth step, the second absorption layer 26 is formed on the surface of the second side surface 18 of the ridges 12 of the light-transmitting substrate 14. In the fourth embodiment, the wire-grid polarizer 10 of the first to third embodiments is added. The description of the portion of the same structure will be omitted. [The method of manufacturing the wire-grid polarizer of the fifth embodiment] The wire-grid polarizer of the fifth embodiment can be added to the following method by the manufacturing method of the third embodiment. In the fifth step, the second reflecting layer 28 is formed on the surface of the second absorbing layer 26. In the fifth embodiment, the same structure as the wire grid polarizer 10 of the first to fourth embodiments is added. The description will be omitted. (Formation of the second reflection layer) As shown in FIG. 6, the side of the second side surface 18 can be slanted from the longitudinal direction L of the ridge 12 and the height direction of the ridge 12 substantially perpendicularly under the condition that the amount of smelting is 15 to 50 nm. The second reflective layer 28 is formed by vapor-depositing a metal material in a direction V2 of an angle of 25 to 50. The vapor deposition can be divided into "under (but η is 2 or more) under the condition that the total vapor deposition amount is 15 to 5 Onm. The integer) is performed. The angle 01^ of the i-th (but i is an integer of 1 to η-1) and the angle 0\+1 of the 1st-th order are preferably (9 Li+丨&lt;6&gt; Li. The steam source can be enumerated as Metal materials (aluminum, silver, magnesium, aluminum alloys, silver alloys, etc.) are made of aluminum, aluminum alloy, silver, and magnesium from the viewpoints of high reflectance to visible light, less absorption of visible light, and south conductivity. Preferably, the aluminum alloy and the aluminum alloy are particularly preferable. For example, the angle 0 r (0 L) in the manufacturing method of the first to fifth embodiments can be adjusted by using the following vapor deposition device. The vapor deposition device that changes the inclination of the light-transmitting substrate 14 is disposed opposite to the vapor deposition source such that the vapor deposition source is positioned on an extension line of the direction V1 (V2), and the direction V1 (V2) is The invention is substantially perpendicular to the longitudinal direction L′ of the ridge 12 and is at an angle of 0 R( 0 l) with respect to the side of the second side surface 18 (the second side surface 18) with respect to the height direction η of the ridge 12 . In the wire grid type polarizer, the cross-sectional shape of the plurality of ridges formed on the surface of the light-transmitting substrate is a shape in which the width is gradually narrowed from the bottom toward the top, and the ridge is formed Since the first side surface is covered by the second reflective layer, the south polarizing light and the south p polarized light transmittance are exhibited. Further, the first absorption layer covering the entire first surface of the convex strip is present in the convex strip and the first reflective layer. In the method of manufacturing the wire grid type polarizer of the present invention described above, the method of manufacturing the wire grid type polarizer described above is substantially perpendicular to the convexity under the condition that the vapor deposition amount is 3 to 20 nm. In the longitudinal direction of the strip, the light absorbing material is vapor-deposited in a direction of 25 to 40 in the direction of the height of the ridge and the side of the second side to form the ith absorbing layer', and the amount of the smelting is 15 to 50 nm. Then, a metal layer is formed by vapor-depositing a metal material in a direction perpendicular to the longitudinal direction of the ridge and perpendicular to the height direction of the ridge and at a side angle of 25 to 40 with respect to the side of the second side surface, thereby producing a first shot layer. A wire grid type polarizer having a high degree of polarization and p-polarized transmittance and low s-polar reflectance is formed. <Liquid crystal display device> 32 201100888 The liquid crystal display device of the present invention comprises: entanglement between a pair of substrates a liquid crystal panel holding a liquid crystal layer; The light unit; and the wire grid type polarizer of the present invention are arranged such that the surface on the side where the ridge is formed is the side of the backlight unit 70, and the surface on the side where the ridge is not formed is used as a visual inspection of the liquid crystal display device The wire grid type polarizer may be disposed on the surface of one side of the liquid crystal panel, and is preferably a surface of the liquid crystal panel disposed on the backlight unit side. 0 Further, the wire grid type polarizer is disclosed in Japanese Laid-Open Patent Publication No. 2006-139283 As shown in Fig. 15, it may be arranged in a state of being integrated with one of the substrates of the liquid crystal panel, and it is preferably integrated with the substrate of the liquid crystal panel on the backlight unit side. The grid-type polarizing member may be disposed on the liquid crystal layer side (ie, inside the liquid crystal panel) of one of the pair of substrates of the liquid crystal panel, as shown in FIG. 14 of Japanese Patent No. 4412388, and is preferably disposed in the liquid crystal layer. The substrate on the backlight unit side of the pair of substrates of the panel is on the liquid crystal layer side.液晶 The liquid crystal display device of the present invention preferably has an absorbing polarizer, and the absorbing polarizer is disposed on the surface of the liquid crystal panel opposite to the side on which the wire grid polarizer is disposed. The absorbing polarizer is preferably disposed on the surface of the liquid crystal panel on the opposite side of the backlight unit side. Fig. 7 is a cross-sectional view showing an example of a liquid crystal display device of the present invention. The liquid crystal display device 30 has a liquid crystal panel 34 in which a liquid crystal layer 33 is sandwiched between a pair of substrates 31 and a substrate, and a backlight unit %; the manufacturing of the present invention attached to the side surface of the backlight unit 35 of the liquid crystal panel 34 The obtained thumb 33 201100888 type polarizer 10 is attached to the absorptive polarizer 36 on the surface of the liquid crystal panel 34 on the opposite side of the backlight unit 35 side. As described above, in the liquid crystal display device of the present invention, since the wire grid type polarizer having both the polarization degree and the ρ polarized light transmittance is high, the brightness is extremely high. Further, in the liquid crystal display device of the present invention, the s-light reflectance of the one surface (the surface on the side where the ridges are formed, that is, the surface) is high, and the S-polar reflectance of the other surface (the surface on which the ridges are not formed, that is, the inside) is low. In the wire grid type polarizer obtained by the manufacturing method of the present invention, since the surface on which the ridge forming side is disposed is the backlight unit side and the surface on which the ridge is not formed is the visual side of the liquid crystal display device, the reduction in contrast is suppressed. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the invention should not be construed as limited. Examples 1 to 30 are examples, and examples 31 to 34 are comparative examples. (the individual dimensions of the ridges and the layers) The maximum size of each of the five ridges and the layers on the ridges is determined in the transmission electron microscope image of the cross section of the wire grid type polarizer (however, for example, 2

Db卜Dal&amp;Da2為前述定義值),並將該5個最大值取平均, 而求得凸條及各層之個別尺寸。 (P偏光透射率) P偏光透射率使用紫外可見光分光光度計(JASCO社 ' )糊定。將附屬之偏光件設置於絲與線栅型 偏=之間’使吸收軸之方向與線柵型偏光件的金屬細線 之長軸平行,並從線柵型偏光件之表面侧(凸條形成側)或裏 34 201100888 面側(凸條未形成側)射入偏光,以此方式進行測定。令測定 波長為450nm、550nm、700nm。 令P偏光透射率40%以上為S,35%以上且小於40%為 A ’ 30%以上且小於35%為B,小於30%為X。 (s偏光反射率)Db Bu Dal &amp; Da2 is the aforementioned defined value), and the five maximum values are averaged to obtain the ridges and the individual sizes of the layers. (P-polarized transmittance) P-polarized transmittance was determined using an ultraviolet-visible spectrophotometer (JASCO). The auxiliary polarizer is disposed between the wire and the wire grid type = 'the direction of the absorption axis is parallel to the long axis of the metal thin wire of the wire grid type polarizer, and is formed from the surface side of the wire grid type polarizer Side) or inside 34 201100888 The side of the face (the side where the ridge does not form) is incident on the polarized light, and the measurement is performed in this manner. The measurement wavelengths were 450 nm, 550 nm, and 700 nm. The P polarizing transmittance of 40% or more is S, 35% or more and less than 40% is A ′ 30% or more and less than 35% is B, and less than 30% is X. (s polarized reflectance)

s偏光透射率使用紫外可見光分光光度計(JASCO社 製’ V-7200)作測定。將附屬之偏光件設置於光源與線柵型 偏光件之間,使吸收軸的方向與線柵型偏光件的金屬細線 之長軸垂直相交,並以5度之角度對線柵型偏光件之表面或 裏面射入偏光,以此方式進行測定。令測定波長為45〇nm、 550nm、700nm。 令表面s偏光反射率40%以上為S,35%以上且小於40% 為A,30%以上且小於35°/。為B。 又’令表面s偏光反射率小於10%為s,1〇%以上且小於 20%為A,20%以上為B,小於20%為X。 (偏光度) 偏光度由下式計算求得。 偏光度saTp-TsVCTp+Ts))0·5 但,Tp為表面p偏光透射率,Ts為表面s偏光透射率。 令偏光度99.5%以上為S ’ 99.2%以上且小於99.5%為 A,99%以上且小於99.2%為B,小於99%為X。 (亮度) 亮度係以下列方法測定。 於2吋大小之LED侧光式背光源上,依序重疊線柵型偏 35 201100888 光件及液晶晶胞。線棚型偏光件設置成晨面側為液晶晶胞 側。液晶晶胞使用僅上側設有換系偏光板者。 於暗室内啟動背光源以及液晶晶胞。使液晶晶胞全面 之顯示為白色顯示,並用色彩亮度計(TOPCON社製, BM-5AS)以視角0.1 °測定點亮10分鐘後之中心亮度B31。接 著使液晶晶胞全面之顯示為黑色顯示,測定此時之亮度 B32。 使用相同背光源,於其上重疊上側及下側皆具備碘系 偏光板之液晶晶胞。於暗室内啟動背光源以及液晶晶胞’ 同樣地測定使液晶單元全面之顯示為白色顯示時的中心亮 度B2卜 使用上述測定所得之值,由下式求得亮度提昇率。 亮度提昇率=(B3 2-B21 )/B21X100 令亮度提昇率25%以上為S,20%以上且小於25%為A, 15%以上且小於20°/。為B,小於15%為X。 (對比) 使用上述測定所得之值,由下式求得對比。 對比=B31/B32 令對比1000以上為S,500以上且小於1000為A,300以 上且小於500為B,小於300%為X。 (光吸收性材料之吸收率的測定) 光吸收性材料之吸收率係以下列方法估計。 (鎳之吸收率) 於真空蒸鍍裝置(昭和真空社製,SEC-16CM)内部,使 36 201100888 厚度:0.55mm之5忖石英晶圓相對於標乾作水平設置,在 壓力:1.2xl(T4Pa之條件下,於石鼓曰向 - 上蒸麟使其厚度 成為60nm。 使用紫外可見光分光光度計(jASc〇社製,v_72〇〇),求 得上面形成有㈣膜的石英晶K於波長55()nm下之透射率 及反射率。以石英晶圓作為空白對照組(以姐&quot;。 吸收率由下式推算求得。 〇 波長55〇nm之光的吸收率(%)=1〇〇-波長550nm之光的 透射率(%)-波長550nm之光的反射率(0/〇) 透射率:1%,反射率:25%,吸收率:74%。 (鈦之吸收率) 以與鎳同樣之方法推算吸收率。 透射率· 0.5% ’反射率:18% ,吸收率:Μ」%。 ' (鉻之吸收率) 以與鎳同樣之方法推算吸收率。 Q 透射率:2% ’反射率:15% ’吸收率:87%。 (鋁之吸收率) 以與鎳同樣之方法推算吸收率。 透射率:〇% ’反射率:95%,吸收率:5%。 (光硬化性組成物之調製) 於女裝有攪拌機及冷卻管之l〇〇〇mL之4 口燒瓶中裝 入: 單體1(新中村化學工業社製,NK Ester a-DPH,二新 戊醇八丙稀酸醋 ’ dipentaerythritol hexaacrylate)60g ; 37 201100888 單體2(新中村化學工業社製,NK Ester A-NPG,新戊 一醇一丙細酸醋 ’ neopentylglycol diacrylate)40g ; 光聚合起始劑(Ciba Specialty Chemicals社製’ IRGACURE907)4.0g ; 含氟界面活性劑(旭硝子社製,氟丙烯酸酯 (CH2=CHCOO(CH2)2(CF2)8F)與丙烯酸丁酯的共募聚物,含 氟量:約30質量%,質量平均分子量:約3000)0 lg ; 聚合抑制劑(和光純藥社製,Q13〇l)l.〇g;以及 環己酮65.0g。 在令燒瓶内部為常溫及遮光的狀態下,攪拌丨小時進行 均勻化’接著’ 一邊攪拌燒瓶内部一邊慢慢添加膠體狀二 氧化矽100g(固體含量:3〇g),更在令燒瓶内部為常溫及遮 光的狀態下攪拌1小時進行均勻化。接著,添加環己酮 340g,在令燒瓶内部為常溫及遮光的狀態下攪拌H、時,而 製得光硬化性組成物1的溶液。 [例1] 在厚度ΙΟΟμιη之高透光聚對苯二甲酸乙二酯(pET)薄 膜(Teijin Dupont社製,Teijin Tetoron 03,lOOmmx 100mm) 表面’藉由旋轉塗佈法塗佈光硬化性組成物1,形成厚度 5μιη之光硬化性組成物1的塗膜。 於25°C及0_5Mpa(計示壓力)下,將以預定間距形成有 互相平行之複數溝槽(隔著形成於該溝槽之間的平坦部而 相互平行)的石英製模具(面積:l^OmmxlSOnmi,圖案面積: lOOmmxlOOmm’溝槽間距Pp: 140nm,溝槽上部寬度Dpb : 38 201100888 60nm,溝槽底部寬度Dpt : 20nm,溝槽深度Hp : 200nm, 溝槽長度:100mm,溝槽截面形狀:大致呈梯形)緊壓於接 觸光硬化性組成物1之塗膜,以使溝槽與光硬化性組成 之塗膜相接。 於保持該狀態下’從PET薄膜側照射高壓水銀燈(頻 率.1.5kHz〜2.0kHz ’ 主波長光.255nm、315nm及365nm, 於365nm下的照射能量:l〇〇〇mj)的光達15秒,使光硬化性 組成物1硬化,而製作出具有對應石英製模具之溝槽的複數 凸條以及該凸條間之平坦部的透光性基板1 (凸條間距Pp : 140nm,凸條底部寬度Dpb : 60nm,凸條頂部寬度Dpt : 2〇nm,凸條高度Hp : 200nm,0 1及0 2 ·· 84。)。將石英製 模具從透光性基板1慢慢分離。 使用可變更與蒸鍍源相對向之透光性基板丨傾斜度的 真空蒸鍍裝置(昭和真空社製,SEC-16CM),在壓力:ι2χ l〇_4Pa之條件下,以表1所示方向v、角度以及蒸鍍量t 洛錢鎳作為第1次蒸鍍,而於透光性基板丨的凸條之第丨側面 上形成第1吸收層’接著,以表1所示方向V、角度0 R以及 蒸鍍量t蒸鍍鋁作為第2次蒸鍍,而於前述第1吸收層面上形 成第1反射層,製得裏面貼著有PET薄膜之線栅型偏光件。 此外,蒸鍍量t係利用以晶體振盪器作為膜厚感測器之 獏厚監測器來測定。 [例2、3] 將形成第1吸收層之鎳變更為鈦或鉻,除此之外皆與例 1相同而製得線柵型偏光件。 39 201100888 [例4] 令形成第1反射層之際的角度6&gt;R為表1所示角度,除此 之外皆與例1相同而製得線柵型偏光件。 [例5] 於壓力:1.2xlO_4Pa之條件下,以表1所示方向V、角度 0 R以及蒸鍍量t蒸鍍鋁作為第1次蒸鍍,而在與例1同樣方式 製出之透光性基板1的凸條第1側面上形成基底層,接著, 以表1所示方向V、角度0 R以及蒸鍍量t蒸鍍鎳作為第2次蒸 鍍,而於前述基底層面上形成第1吸收層,接著,以表1所 示方向V、角度6&gt;R以及蒸鍍量t蒸鍍鋁作為第3次蒸鍍,而 於前述第1吸收層之面上形成第1反射層,製得裏面貼著有 PET薄膜之線栅型偏光件。 [例 6、7] 將形成第1吸收層之鎳變更為鈦或鉻,除此之外皆與例 5相同而製得線柵型偏光件。 [例8] 令形成第1反射層之際的角度0R為表1所示角度,除此 之外皆與例6相同而製得線柵型偏光件。 [例9] 於壓力:1.2xlO_4Pa之條件下,以表1所示方向V、角度 0 L以及蒸鍍量t蒸鍍鎳作為第1次蒸鍍,而在與例1同樣方式 製出之透光性基板1的凸條第2側面上形成第2吸收層,接 著,以表1所示方向V、角度0R以及蒸鍍量t蒸鍍鎳作為第2 次蒸鍍,而於前述凸條第1側面上形成第1吸收層,接著, 40 201100888 以表1所示方向v、角度0R以及蒸鍍量t蒸鍍鋁作為第3次蒸 鑑而形成第1反射層,製得裏面貼著有PET薄膜之線柵型偏 光件。 [例 10、11] 將形成第1吸收層以及第2吸收層之鎳變更為鈦或鉻, 除此之外皆與例9相同而製得線栅型偏光件。 [例 12] 〇 令形成第1反射層之際的角度0R為表1所示角度,除此 之外皆與例10相同而製得線栅型偏光件。 [例 13] 於壓力:l_2xl0_4pa之條件下,以表丨所示方向v、角度 • ^以及蒸鍍量t蒸鍍銘作為第1次蒸鑛,而在與例w樣方式 - 製作之透光性基板1的凸條第1侧面上形絲底層,接著, 从表1所示方向v、角度Θ L以及蒸錢量t蒸鑛鎳作為第2次蒸 錢’而於前述凸條第2側面上形成第2吸收層,接著,以表丄 Ο 戶斤示方向V、角度以及蒸鑛量t蒸鑛錄作為第3次蒸鑛, 而於前述基底層之面上形成第!吸收層,接著,以表i所示 :向v、角度0R以及蒸錢量t蒸鑛紹作為第4次蒸錢,而於 ,述第1吸收層之面上形成第!反射層,製得裏面貼著有PET 薄犋之線柵型偏光件。 [例 14、15] 將形成第1吸收層以及第2吸收層之錄變更為欽或絡, 承此之外皆與例13相同而製得線栅型偏光件。 [例 16] 41 201100888 令形成第1反射層之際的角度為表丨所示角度除此 之外皆與例14相同而製得線栅型偏光件。 ' [例 17] 於壓力:1.2xl〇-4Pa之條件下,以表丨所示方向乂、角度 以及蒸鑛量t蒸鑛鎳作為第!次蒸鑛,而錢例旧樣方式 製作之透光性基板1的凸條第丨側面上形成第丨吸收層,接 著’以表1所示方向V、肖度以及蒸鑛量t蒸錢鎳作為第2 次蒸鍍,而於前述凸條第2側面上形成第2吸收層,接著, 以表1所示方向V、角度以及舰4t蒸鍍銘,而於前述 第1吸收層之面上形成第1反射層,接著,以表丨所示方向V、 角度0 L以及蒸鍍量t蒸鍍鋁而於前述第2吸收層面上形成第 2反射層,製得裏面貼著有pet薄膜之線柵型偏光件。 [例 18、19] 將形成第1吸收層以及第2吸收層之鎳變更為鈦或鉻, 除此之外皆與例17相同而製得線柵型偏光件。 [例 20] 令形成第2反射層之際的角度0L為表丨所示角度,除此 之外皆與例18相同而製得線柵型偏光件。 [例 21] 模具使用以預定間距形成有互相平行之複數溝槽(隔 著形成於該溝槽之間的平坦部而相互平行)的石英製模具 (面積:150mmxl50mm,圖案面積:lOOmmxlOOmm,溝槽 間距Pp: 140nm,溝槽寬度Dpb: 60nm,溝槽深度Hp : 200nm, 溝槽長度:100mm,溝槽截面形狀:大致呈等腰三角形), 42 201100888 除此之外皆與例1相同,而製作出具有對應石英製模具之溝 槽的複數凸條以及該凸條間之平坦部的透光性基板2 (凸條 間距Pp: 140nm,凸條寬度〇{)1):6〇11111,凸條高度Ηρ:2〇〇ηηι, ‘ 0 1及 0 2 : 87。)。 使用透光性基板2 ’除此之外皆與例丨相同而製得線柵 型偏光件。 [例 22] ❹使用與例21同樣方式製作之透光性基板2,並令形成第 1反射層之際的角度0R為表2所示角度,除此之外皆與例【 相同而製得線柵型偏光件。 [例 23] 使用與例21同樣方式製作之透光性基板2 ,除此之外皆 與例5相同而製得線栅型偏光件。 • [例 24] 使用與例21同樣方式製作之透光性基板2 ,並令形成第 〇 1反射層之際的角度61 R為表2所示角度,除此之外皆與例5 相同而製得線柵型偏光件。 [例 25] 使用與例21同樣方式製作之透光性基板2 ,除此之外皆 與例9相同而製得線栅型偏光件。 [例 26] 使賴例21 _方輕叙絲性基板2 ,並令形成第 1反射層之際的角度為表2所示角度除此之外皆與例9 相同而製得線柵型偏光件。 43 201100888 [例 27] 使用與例21同樣方式製作之透光性基板2,除此之外皆 與例13相同而製得線柵型偏光件。 [例 28] 使用”例21同樣方式製作之透光性基板2,並令形成第 1反射層之際的角度Μ為表2所示角度,除此之外皆與例13 相同而製得線柵型偏光件。 [例 29] 使用與例21同樣方式製作之透光性基板2,除此之外皆 與例17相同而製得線栅型偏光件。 [例 30] 使用與例21同樣方式製作之透光性基板2,並令形成第 1反射層之際的角度θ%形成第2反射層 之際的角度01為 表2所不角度’除此之外皆與例17相同而製得線栅型偏光 件。 [例 31] 模具使用以預定間距形成有互相平行之複數溝槽(隔 著形成於該溝槽之間的平坦部而相互平行)的石英製模具 (面積:150mmxl50mm’ 圖案面積:1〇〇mmxl〇〇_,溝槽 間距Pp: 150mn,溝槽寬度Dpb: 6〇nm,溝槽深度Hp: 2〇〇nm, 溝槽長度:l〇〇mm,溝槽截面形狀:矩形),除此之外皆與 例1相同,而製作出具有對應石英製模具之溝槽的複數凸條 以及該凸條間之平坦部的透光性基板3(凸條間距Pp : 150nm,凸條寬度Dpb : 60nm,凸條高度Hp : 2〇〇nm,0 1 44 201100888 及 6&gt; 2 : 90°)。 使用光硬化性基板3,並使用與例1同樣之真空蒸鍍裝 置’於壓力:1.2xl(T4Pa之條件下,一邊導入〇.2nm/sec的氧 氣’一邊以表2所示方向V、角度0R以及蒸鍍量t蒸鍍鉻並 使其氧化而作為第1次蒸鍍,而於透光性基板3的凸條之第1 側面上形成第1吸收層(氧化絡層)。接著,停止導入氧氣, 以表2所示方向V、角度0R以及蒸鍍量t蒸鍍鋁,而於前述 第1吸收層之面上形成第1反射層(鋁層),製得裏面貼著有 PET薄膜之線栅型偏光件。 氧化鉻層及最外層之鋁層僅形成於凸條的頂部附近。 氧化鉻層於凸條寬度方向上之最大寬度為67nm,高度為 45nm。鋁層於凸條寬度方向上之最大寬度為75nm,高度為 117nm ° [例 32] 使用例31作成之透光性基板3,並使用與例1同樣之真 空蒸鍍裝置,於壓力:1.2xl〇—4Pa之條件下,以表2所示方 向V、角度0R以及蒸鍍量t蒸鍍鋁作為第i次蒸鍍,而於透 光性基板3的凸條之第1側面上形成第1反射層(鋁層)。接 著,一邊導入0.2nm/sec的氧氣,一邊以表2所示方向V、角 度以及蒸鍍量t蒸鑛鉻並使其氧化,而於前述前述第丄反 射層面上形成第1吸收層(氧化鉻層),製得裏面貼著有PET 薄膜之線柵型偏光件。 鋁層及最外層之氧化鉻層僅形成於凸條的頂部附近。 銘層於凸條寬度方向上之最大寬度為7〇mn,高度為 45 201100888 116nm。最外層之氧化鉻層於凸條寬度方向上之最大寬度為 74nm,高度為20nm。 [例 33] 使用與例21同樣方式製作之透光性基板2,並令形成第 1吸收層之際的角度0R為表2所示角度,除此之外皆與例1 相同而製得線柵型偏光件。 [例 34] 在壓力:1.2x10—4Pa之條件下,以表2所示方向V、角度 0R以及蒸鍍量t蒸鍍鋁,而在與例21同樣方式製作之透光性 基板2的凸條上形成第1反射層,接著,以表2所示方向V、 角度以及蒸鍍量t蒸鍍鎳而形成第1吸收層,製得裏面貼 著有PET薄膜之線柵型偏光件。 [測定及評價] 就例1〜34之線柵型偏光件的各層之個別尺寸加以測 定。其結果示於表3、4。 又,就例1〜34之線栅型偏光件的透射率、反射率、偏 光度、亮度以及對比加以測定。其結果示於表5、6。 46 201100888 [表l]The s polarized light transmittance was measured using an ultraviolet-visible spectrophotometer (JASCO Corporation 'V-7200). The auxiliary polarizing member is disposed between the light source and the wire grid type polarizing member such that the direction of the absorption axis is perpendicular to the long axis of the metal thin wire of the wire grid type polarizing member, and the wire grid type polarizing member is opposed at an angle of 5 degrees. The surface or the inside is incident on the polarized light and measured in this manner. The measurement wavelength was 45 〇 nm, 550 nm, and 700 nm. The surface s polarized reflectance of 40% or more is S, 35% or more and less than 40% is A, 30% or more and less than 35 °/. For B. Further, the surface s polarized reflectance is less than 10% s, 1% or more and less than 20% is A, 20% or more is B, and less than 20% is X. (Polarization degree) The degree of polarization is calculated by the following formula. The degree of polarization saTp-TsVCTp+Ts))0·5 However, Tp is the surface p-polarized transmittance, and Ts is the surface s polarized transmittance. The degree of polarization of 99.5% or more is S ′ 99.2% or more and less than 99.5% is A, 99% or more and less than 99.2% is B, and less than 99% is X. (Brightness) Brightness was measured by the following method. On the 2-sided LED side-lit backlight, the wire grid type and the liquid crystal cell are sequentially overlapped. The wire shed type polarizer is arranged such that the morning side is the liquid crystal cell side. The liquid crystal cell is used only with a polarizing plate on the upper side. The backlight and the liquid crystal cell are activated in the dark room. The liquid crystal cell was displayed in a full white display, and the center luminance B31 after lighting for 10 minutes was measured with a color luminance meter (manufactured by TOPCON Co., Ltd., BM-5AS) at a viewing angle of 0.1 °. Then, the liquid crystal cell is fully displayed as a black display, and the brightness B32 at this time is measured. The same backlight is used, and the liquid crystal cell of the iodine-based polarizing plate is provided on both the upper side and the lower side. The backlight and the liquid crystal cell were activated in the dark room. Similarly, the center luminance B2 when the liquid crystal cell was completely displayed in white was measured. Using the values obtained by the above measurement, the luminance enhancement rate was obtained from the following equation. Brightness increase rate = (B3 2-B21) / B21X100 Let the brightness increase rate be 25% or more as S, 20% or more and less than 25% as A, 15% or more and less than 20°/. For B, less than 15% is X. (Comparative) Using the values obtained by the above measurement, a comparison was obtained from the following formula. Contrast = B31/B32 Let the comparison of 1000 or more be S, 500 or more and less than 1000 be A, 300 or more and less than 500 be B, and less than 300% be X. (Measurement of Absorbance of Light Absorbing Material) The absorptance of the light absorbing material was estimated by the following method. (Absorption rate of nickel) In a vacuum evaporation apparatus (SEC-16CM, manufactured by Showa Vacuum Co., Ltd.), a 5 忖 quartz wafer of 36 201100888 thickness: 0.55 mm is set horizontally with respect to the standard dryness at a pressure of 1.2 x 1 ( Under the condition of T4Pa, the thickness of the stone was increased to 60 nm on the stone drum. The ultraviolet crystal was used to obtain the quartz crystal K formed on the (four) film at a wavelength using an ultraviolet-visible spectrophotometer (v_72〇〇, manufactured by JASc Co., Ltd.). Transmittance and reflectance at 55 (nm). Quartz wafer was used as a blank control group (Sister &quot;. Absorption rate was calculated by the following equation. Absorption rate of light with a wavelength of 55 〇 nm (%)=1 〇〇-transmittance of light having a wavelength of 550 nm (%) - reflectance of light having a wavelength of 550 nm (0/〇) Transmittance: 1%, reflectance: 25%, absorptance: 74% (absorption rate of titanium) The absorption rate was estimated in the same manner as nickel. Transmittance·0.5% 'Reflectance: 18%, Absorption rate: Μ%%' (Chromium absorption rate) The absorption rate was estimated in the same manner as nickel. Q Transmittance: 2% 'reflectance: 15%' absorption rate: 87%. (absorption rate of aluminum) The absorption rate is estimated in the same manner as nickel. :〇% 'Reflectance: 95%, Absorption rate: 5%. (Modulation of photocurable composition) In a 4-neck flask of a women's mixer and cooling tube: Monomer 1 (New Nakamura Chemical Industry Co., Ltd., NK Ester a-DPH, dipentaerythritol hexaacrylate) 60g; 37 201100888 Monomer 2 (Nok Nakamura Chemical Industry Co., Ltd., NK Ester A-NPG, Xin 40-g of a neopentylglycol diacrylate, a photopolymerization initiator ("IRGACURE907" manufactured by Ciba Specialty Chemicals Co., Ltd.) 4.0 g; a fluorine-containing surfactant (manufactured by Asahi Glass Co., Ltd., fluoroacrylate (CH2=CHCOO (CH2)) 2(CF2)8F) co-polymerization with butyl acrylate, fluorine content: about 30% by mass, mass average molecular weight: about 3000) 0 lg; polymerization inhibitor (made by Wako Pure Chemical Industries, Q13〇l) 〇g; and 65.0 g of cyclohexanone. The inside of the flask was kept at room temperature and light-shielded, and homogenization was carried out while stirring for a while. Then, 100 g of colloidal cerium oxide was slowly added while stirring the inside of the flask (solid content: 3〇g), even in the state where the inside of the flask is at normal temperature and shading The mixture was stirred for 1 hour and homogenized. Then, 340 g of cyclohexanone was added, and when the inside of the flask was kept at room temperature and light-shielded, H was stirred to obtain a solution of the photocurable composition 1. [Example 1] In the thickness ΙΟΟμιη High-transmission polyethylene terephthalate (pET) film (Teijin Tetoron 03, 100 mm x 100 mm, manufactured by Teijin Dupont Co., Ltd.) Surface 'coated with photocurable composition 1 by spin coating to form a thickness of 5 μm A coating film of the photocurable composition 1. At 25 ° C and 0_5 MPa (measuring pressure), a quartz mold (area: l) having a plurality of mutually parallel grooves (parallel to each other across a flat portion formed between the grooves) is formed at a predetermined pitch ^OmmxlSOnmi, pattern area: lOOmmxlOOmm' trench pitch Pp: 140nm, trench upper width Dpb: 38 201100888 60nm, trench bottom width Dpt: 20nm, trench depth Hp: 200nm, trench length: 100mm, trench cross-sectional shape : a substantially trapezoidal shape is applied to the coating film contacting the photocurable composition 1 so that the groove is in contact with the coating film of the photocurable composition. While maintaining this state, the light from the PET film side was irradiated with a high-pressure mercury lamp (frequency: 1.5 kHz to 2.0 kHz 'main wavelength light, 255 nm, 315 nm, and 365 nm, irradiation energy at 365 nm: l〇〇〇mj) for 15 seconds. The photocurable composition 1 is cured to form a light-transmissive substrate 1 having a plurality of ridges corresponding to grooves of a quartz mold and a flat portion between the ridges (protrusion pitch Pp: 140 nm, ridge bottom) Width Dpb: 60 nm, ridge top width Dpt: 2 〇 nm, ridge height Hp: 200 nm, 0 1 and 0 2 ·· 84.). The quartz mold was slowly separated from the light-transmitting substrate 1. A vacuum vapor deposition apparatus (SEC-16CM, manufactured by Showa Vacuum Co., Ltd.) which can change the inclination of the light-transmissive substrate relative to the vapor deposition source was used, and the pressure was ι2 χ l〇_4 Pa, as shown in Table 1. Direction v, angle, and vapor deposition amount t, as the first vapor deposition, the first absorption layer is formed on the second side surface of the ridge of the light-transmissive substrate ', and then in the direction V shown in Table 1, The angle 0 R and the vapor deposition amount t are vapor-deposited aluminum as the second vapor deposition, and the first reflection layer is formed on the first absorption layer to obtain a wire grid type polarizer in which a PET film is adhered. Further, the vapor deposition amount t was measured by using a crystal oscillator as a thickness monitor of the film thickness sensor. [Examples 2 and 3] A wire grid type polarizer was produced in the same manner as in Example 1 except that the nickel forming the first absorption layer was changed to titanium or chromium. 39 201100888 [Example 4] A wire grid type polarizer was produced in the same manner as in Example 1 except that the angle 6 &gt; R when the first reflection layer was formed was the angle shown in Table 1. [Example 5] Under the conditions of pressure: 1.2×10 −4 Pa, aluminum was vapor-deposited in the direction V, the angle 0 R and the vapor deposition amount t shown in Table 1 as the first vapor deposition, and the same manner as in Example 1 was carried out. The base layer is formed on the first side surface of the ridge of the optical substrate 1, and then nickel is vapor-deposited as the second vapor deposition in the direction V, the angle θ R and the vapor deposition amount t shown in Table 1, and is formed on the base layer. In the first absorption layer, aluminum is vapor-deposited in the direction V, the angle 6 &gt;R and the vapor deposition amount t shown in Table 1 as the third vapor deposition, and the first reflection layer is formed on the surface of the first absorption layer. A wire grid type polarizer having a PET film attached thereto is obtained. [Examples 6 and 7] A wire grid type polarizer was produced in the same manner as in Example 5 except that the nickel forming the first absorption layer was changed to titanium or chromium. [Example 8] A wire-grid type polarizer was produced in the same manner as in Example 6 except that the angle 0R at the time of forming the first reflecting layer was the angle shown in Table 1. [Example 9] Under the conditions of a pressure of 1.2 x 10 ° C, nickel was vapor-deposited in the direction V, the angle 0 L, and the vapor deposition amount t shown in Table 1, as the first vapor deposition, and the same manner as in Example 1 was carried out. A second absorption layer is formed on the second side surface of the ridge of the optical substrate 1, and then nickel is vapor-deposited as the second vapor deposition in the direction V, the angle 0R, and the vapor deposition amount t shown in Table 1, and the ridge is The first absorption layer is formed on the side surface, and then the first reflection layer is formed by vapor deposition of aluminum as the third vaporization in the direction v, the angle 0R, and the vapor deposition amount t shown in Table 1, and the inner reflection layer is formed. Wire grid type polarizer for PET film. [Examples 10 and 11] A wire grid type polarizer was produced in the same manner as in Example 9 except that the nickel in which the first absorption layer and the second absorption layer were formed was changed to titanium or chromium. [Example 12] A wire-grid type polarizing member was produced in the same manner as in Example 10 except that the angle 0R at the time of forming the first reflecting layer was the angle shown in Table 1. [Example 13] Under the condition of pressure: l_2xl0_4pa, the direction v, the angle • ^ and the vapor deposition amount t are evaporated as the first steaming, and in the case of the w-like method. On the first side surface of the ridge of the substrate 1, the wire bottom layer is formed, and then, from the direction v, the angle Θ L shown in Table 1, and the steaming amount t, the nickel is distilled as the second steaming 'on the second side of the ridge A second absorption layer is formed on the surface, and then the orientation V, the angle, and the amount of steamed metal t are recorded as the third steaming, and the surface is formed on the surface of the base layer! The absorbing layer is then shown in Table i: steaming the v, the angle 0R, and the steaming amount t as the fourth steaming, and forming the first on the surface of the first absorbent layer! The reflective layer is made of a wire grid type polarizer with a PET crucible attached thereto. [Examples 14 and 15] The wire-type polarizers were produced in the same manner as in Example 13 except that the first absorption layer and the second absorption layer were changed to the same. [Example 16] 41 201100888 A wire grid type polarizer was produced in the same manner as in Example 14 except that the angle at which the first reflecting layer was formed was the same as the angle shown in Table 丨. ' [Example 17] Under the pressure: 1.2xl 〇 -4Pa, in the direction shown in the table 乂, angle and steaming amount t steamed nickel as the first! Secondary steaming, and the first absorbing layer is formed on the side of the ridge of the ridge of the light-transmissive substrate 1 which is made by the old method, and then the nickel is vaporized in the direction V, the degree of Xiao, and the amount of steam in the direction shown in Table 1. As the second vapor deposition, a second absorption layer is formed on the second side surface of the ridge, and then, in the direction V, the angle, and the ship 4t shown in Table 1, the surface of the first absorption layer is formed. The first reflective layer is formed, and then aluminum is vapor-deposited in a direction V, an angle of 0 L, and a vapor deposition amount t, and a second reflective layer is formed on the second absorption layer to obtain a PET film. Wire grid type polarizer. [Examples 18 and 19] A wire grid type polarizer was produced in the same manner as in Example 17 except that the nickel in which the first absorption layer and the second absorption layer were formed was changed to titanium or chromium. [Example 20] A wire-grid type polarizer was produced in the same manner as in Example 18 except that the angle 0L at the time of forming the second reflection layer was the angle shown in Table 。. [Example 21] The mold used a quartz mold having a plurality of mutually parallel plural grooves (parallel to each other across a flat portion formed between the grooves) at a predetermined pitch (area: 150 mm x 150 mm, pattern area: 100 mm x 100 mm, groove) Pp: 140 nm, groove width Dpb: 60 nm, groove depth Hp: 200 nm, groove length: 100 mm, groove cross-sectional shape: substantially isosceles triangle), 42 201100888 Other than the same as Example 1, A light-transmissive substrate 2 having a plurality of ridges corresponding to grooves of a quartz mold and a flat portion between the ridges was produced (rare pitch Pp: 140 nm, ridge width 〇 {) 1): 6〇11111, convex Strip height Ηρ:2〇〇ηηι, ' 0 1 and 0 2 : 87. ). A wire grid type polarizer was produced in the same manner as in the case of using the light-transmitting substrate 2'. [Example 22] The light-transmitting substrate 2 produced in the same manner as in Example 21 was used, and the angle 0R at the time of forming the first reflecting layer was the angle shown in Table 2, and the same was obtained in the same manner as the example. Wire grid type polarizer. [Example 23] A wire-type polarizing member was produced in the same manner as in Example 5 except that the light-transmitting substrate 2 produced in the same manner as in Example 21 was used. [Example 24] The light-transmitting substrate 2 produced in the same manner as in Example 21 was used, and the angle 61 R at the time of forming the 〇1 reflecting layer was the angle shown in Table 2, except that it was the same as Example 5. A wire grid type polarizer is produced. [Example 25] A wire-type polarizing member was produced in the same manner as in Example 9 except that the light-transmitting substrate 2 produced in the same manner as in Example 21 was used. [Example 26] A wire grid type polarized light was produced in the same manner as in Example 9 except that the angle at which the first reflecting layer was formed was the angle shown in Table 2 Pieces. 43 201100888 [Example 27] A wire-grid type polarizer was produced in the same manner as in Example 13 except that the light-transmitting substrate 2 produced in the same manner as in Example 21 was used. [Example 28] The light-transmitting substrate 2 produced in the same manner as in Example 21 was used, and the angle Μ at the time of forming the first reflecting layer was the angle shown in Table 2, except that the same procedure as in Example 13 was carried out to obtain a line. [Example 29] A wire-grid polarizer was produced in the same manner as in Example 17 except that the light-transmitting substrate 2 was produced in the same manner as in Example 21. [Example 30] The same procedure as in Example 21 was carried out. The light-transmitting substrate 2 was produced in the same manner as in Example 17 except that the angle θ% at which the first reflecting layer was formed and the angle 01 formed when the second reflecting layer was formed was the angle "not shown in Table 2". A wire-type polarizing member is obtained. [Example 31] A mold in which a plurality of mutually parallel plural grooves (parallel to each other across a flat portion formed between the grooves) are formed at a predetermined pitch (area: 150 mm x 150 mm) Pattern area: 1〇〇mmxl〇〇_, groove pitch Pp: 150mn, groove width Dpb: 6〇nm, groove depth Hp: 2〇〇nm, groove length: l〇〇mm, groove cross-sectional shape : Rectangular), except for the same as in Example 1, and a plurality of ridges having grooves corresponding to the mold made of quartz and the protrusions were produced. The light-transmissive substrate 3 in the flat portion (the ridge pitch Pp: 150 nm, the ridge width Dpb: 60 nm, the ridge height Hp: 2 〇〇 nm, 0 1 44 201100888 and 6 > 2 : 90°). The curable substrate 3 was subjected to a vacuum vapor deposition apparatus as in Example 1 at a pressure of 1.2 x 1 (in the case of T4 Pa, while introducing oxygen of 2.2 nm/sec) in the direction V, the angle 0R shown in Table 2, and The vapor deposition amount t is vapor-deposited and oxidized to form a first absorption layer (oxidation layer) on the first side surface of the ridge of the light-transmitting substrate 3 as the first vapor deposition. Then, the introduction of oxygen gas is stopped. Aluminum was vapor-deposited in the direction V, the angle 0R, and the vapor deposition amount t shown in Table 2, and a first reflection layer (aluminum layer) was formed on the surface of the first absorption layer to obtain a wire grid with a PET film attached thereto. The polarizing member has a chromium oxide layer and an outermost layer of aluminum formed only near the top of the ridge. The maximum width of the chromium oxide layer in the width direction of the ridge is 67 nm and the height is 45 nm. The aluminum layer is in the width direction of the ridge. The maximum width is 75 nm and the height is 117 nm. [Example 32] The light-transmitting substrate 3 prepared in Example 31 was used, and the same as in Example 1 was used. The vacuum evaporation apparatus is characterized in that: under the condition of pressure: 1.2×1 〇—4 Pa, aluminum is vapor-deposited as the i-th vapor deposition in the direction V, the angle 0R, and the vapor deposition amount t shown in Table 2, and the light-transmitting substrate 3 is used. A first reflective layer (aluminum layer) is formed on the first side surface of the ridge. Then, while introducing 0.2 nm/sec of oxygen, the chromium is vaporized in the direction V, the angle, and the vapor deposition amount t shown in Table 2, and Oxidation is performed to form a first absorption layer (chromium oxide layer) on the aforementioned second reflection layer, and a wire grid type polarizer having a PET film attached thereto is obtained. The aluminum layer and the outermost layer of chromium oxide are formed only near the top of the ridge. The maximum width of the layer in the width direction of the ridge is 7〇mn and the height is 45 201100888 116nm. The outermost layer of chromium oxide has a maximum width of 74 nm in the width direction of the ridges and a height of 20 nm. [Example 33] The light-transmitting substrate 2 produced in the same manner as in Example 21 was used, and the angle 0R at the time of forming the first absorption layer was the angle shown in Table 2, and otherwise the same as in Example 1 to obtain a line. Gate type polarizer. [Example 34] The convexity of the light-transmitting substrate 2 produced in the same manner as in Example 21 was carried out under the conditions of a pressure of 1.2 x 10 -4 Pa in the direction V, the angle 0R, and the vapor deposition amount t shown in Table 2. A first reflection layer was formed on the strip, and then nickel was vapor-deposited in the direction V, the angle, and the vapor deposition amount t shown in Table 2 to form a first absorption layer, and a wire grid type polarizer having a PET film attached thereto was obtained. [Measurement and Evaluation] The respective dimensions of the respective layers of the wire grid type polarizers of Examples 1 to 34 were measured. The results are shown in Tables 3 and 4. Further, the transmittance, reflectance, degree of polarization, brightness, and contrast of the wire grid type polarizers of Examples 1 to 34 were measured. The results are shown in Tables 5 and 6. 46 201100888 [Table l]

第4次蒸鍍 蒸鍍 量t (nm) 1 1 1 1 1 I 1 1 1 I i 1 〇 〇 iO CM ιο «Si to CM IQ cw 角度 β RCL) (。) 1 1 1 1 1 1 i I 1 1 I I s U1) &lt;0 g 〇 (A CO 方向 V I I 1 1 1 翁 1 I 1 1 1 1 &gt; ·»«&lt;· &gt; »*· &gt; &gt; &gt; &gt; &gt; &gt; 材料 1 1 1 1 1 1 I 1 1 1 I I &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; | 第3次蒸鍍 蒸鍍 it (nrr〇 I 1 ! 1 iO in tn to to 寸 40 寸 to r*» 卜 Γ&quot;·* in €M in ΙΟ CM in CS| 角度 β R(L&gt; (° &gt; 1 1 I 1 s s in % 宕 o Λ in CO U) CO to &lt;n C9 IO CO u&gt; 00 l〇 o to &lt;〇 u&gt; cn 方向 V 1 1 1 1 &gt; &gt; ** &gt; &gt; &gt; &gt; w 1«N* &gt; ψ··* &gt; &gt; &gt; &gt; &gt; 材料 t \ 1 1 &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; ώ &lt; &lt; &lt; &lt; 第2次蒸鍍 蒸鍍 量t (nm) in in in 臂 in in T&quot;· in in 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 卜 角度 (° ) g 〇 o C*5 IO CO U&gt; o m CO LO in &lt;〇 ir&gt; CO tf&gt; €*&gt; in eo CO l〇 03 i〇 m l〇 to i〇 CO in «Ο l〇 fO l〇 co 方向 V T— &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; CM &gt; «VI &gt; CSf &gt; M &gt; CM &gt; €SI &gt; CSI &gt; 材料 &lt; &lt; &lt; &lt; 芝 - ώ F 芝 w. ϋ H 〇 iz P 〇 K 第1次蒸鍍 蒸鍍 量t (nm) &lt;M T&quot;· CM Y-· &lt;N C*J &lt;N CM CSI CM CM CO 00 00 CO 卜 卜 卜 卜 角度 β R(L&gt; Γ ) U? ID CO to Λ in u&gt; Λ u&gt; CO 0¾ m CO u&gt; 0¾ in oa 40 W u&gt; u&gt; CO in co k〇 &lt;*&gt; i〇 CO in CO to o to o ΙΟ C*3 1方向 f V i &gt; &gt; &gt; &gt; Ϋ*· &gt; »— &gt; t— &gt; CM &gt; &lt;N &gt; $ &gt; &gt; r-· &gt; I·&quot;» &gt; &gt; &gt; T** &gt; T·* &gt; γ— &gt; 材料 z k. o &lt; &lt; &lt; &lt; 0 &lt; &lt; &lt; &lt; - o m cs 〇*&gt; 寸 &lt;〇 卜 0Q 〇&gt; 〇 »· T— CM CO ·*- 寸 in &lt;D c〇 〇» 〇 0*4 47 201100888 [表2] 1 第4次蒸鍍 I 蒸鍍 量t (nm) 1 1 1 1 1 1 〇 5 *n M fcO OJ 1 1 1 1 角度 (。&gt; 1 1 1 1 1 1 〇 CO i〇 S JO 1 1 i 1 方向 V 1 1 1 1 1 1 r- &gt; *r~ Csl &gt; Csi &gt; 1 1 1 1 材料 1 1 ! 1 i 1 &lt; &lt; &lt; &lt; 1 i 1 1 第3次蒸鍍 I i蒸鍍 量t (nm) 1 1 ΙΟ in LO in 卜 卜 iO &lt;v| in CM 1 1 1 1 角度 0即 C ) 1 1 ο C0 s Uf&gt; ur&gt; CO U&gt; CO IA CO ΙΛ 1 1 1 1 方向 V 1 I &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; 1 1 1 1 材料 1 1 &lt; &lt; &lt; &lt; Z &lt; &lt; l 1 1 1 | 第2次蒸鍍 j 蒸鍍 it (nm) ΙΛ ιη ψ&quot;» u&gt; 卜 卜 卜 卜 卜 卜 s o &lt;M LO 穿 角度 gwu (。) % ΙΟ 寸 40 CO in ¢0 in CO m CO w co L〇 CO in &lt;〇 ir&gt; o o s u&gt; 寸 方向 V &gt; &gt; &gt; &gt; &gt; &gt; &gt; C4 &gt; V·» &gt; &gt; &gt; 材料 &lt; &lt; &lt; 1 CrOx! &lt; 2: z Z 2; Z h- | 第1次蒸鐘 蒸鍍 量t (nm) C*l «Ρ* CSJ f— r- CM ▼—· ¢0 CO 卜 卜 S % in 角度 9mu (。) in ΙΑ &lt;0 if&gt; ο in Λ m in 00 m co u&gt; &lt;〇 to ¢0 in CO !? IO in in in in 方向 V &gt; &gt; &gt; &gt; CM &gt; &gt; &gt; &gt; &gt; &gt; &gt; V·» &gt; V&quot;· &gt; 材料 ϋ ζ &lt; &lt; Z &lt; &lt; 泛 CrpxJ &lt; z 04 CM CO CM in CM to CM 卜 04 GO 04 φ cs o c»&gt; Γ0 CM CO CO CO 节 o 48 201100888 表 - - o . .ο τ~ ΓΛ 味 ^ Ε 工&gt;5 1 1 1 1 1 1 ! g CM g (N § o CM o o CM o s o s o s 〇 o s o s o o CM «ΐ 1 1 1 1 1 1 1 1 tn m in in in in tn in in m m ID 竑 i 1 1 1 1 i 1 I Z H &lt;5 P 2 卜 〇 i= Z H O P (S 轶 工S 1 1 1 1 1 1 I i 1 1 i 1 ! I 1 o 00 g § ▼»· o U) y·» ΐ Ε 〇 S 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 l o &lt;M o eg o esi a 荽 1 1 1 1 1 1 I 1 I 1 1 1 1 1 1 1 &lt; &lt; 5 &lt; t$n 埃 ii 1 1 1 1 〇 % 〇 s o s O s 1 i 1 1 o s 〇 o 〇 s o S 1 1 i 1 i! 1 1 1 1 〇 o o 1 1 1 1 iO in in to 1 1 I 1 m 1 1 1 1 &lt; &lt; &lt; &lt; 1 1 1 1 &lt; &lt; &lt; 1 1 1 1 — 妹 -^ ^ S o 04 o s o s o g 〇 g o s o s o s o o CM o s o 8 〇 〇 est o s O s o s o o o CV| o s o s 〇 o CM a s o o o o o o o o o 2 o ® u&gt; LO l〇 in IO iO U) in 弈 u 泛 F 1_ o z 2: H k_ 〇 z w o K 2: O P ϋ P i. o q|d Ζ ΐ ^ s s ·*«» s *P&gt;· 1 S «·» O s o g o s o in o s 〇 8 o s o to o CO o CO V·· O CO S 〇 CO § o CD s τ 1e Q S o o o O o cr&gt; % % % σ 〇 o o tn r&gt; to CO tf&gt; to to 00 s s s 8 St &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; 革 τ— CM eo 寸 u&gt; CD Γ-» CO a&gt; o •mm T·» to IO CO ▼-»· c〇 Τ·&quot;· 〇&gt; * vs φ . ·5 二Iqa-mu ooglgH -i siido.Eu s:qdo-EC ondd: w 49 201100888 表 ±i CM CO &lt;S4 jo rs 映 Ha2 (nm) ! 1 1 1 〇 s 〇 o o 〇 &lt;N 〇 s 〇 o cst o s 1 1 i f Da2 (nm) 1 1 1 I l〇 IO to lf&gt; in 1 1 i 1 1 t 1 1 1 z z z z 2: 1 I 1 1 η 昧 Hr2 (nm) 1 1 1 1 1 1 \ 1 o 5 〇 s I i I 1 ΐί ε Q &gt;5 i 1 1 t 1 1 1 I u&gt; tn 1 1 1 1 典 1 1 1 1 1 1 i 1 &lt; &lt; 1 1 1 I q|b Hbl (nm) 1 1 o o o s I 1 o s o o C4 1 1 I 1 1 1 Dbl (nm) 1 o t·· o 1 1 un in I 1 1 I I f 诨 i i &lt; &lt; 1 1 &lt; &lt; 1 i 1 1 1 i c|ffi 躲 (UIU&gt; 〇 S o o CM o o CM o s o 〇 CSI o s 〇 s o s o s o s IO S o LO *&quot;« 〇 Oal (nm) 〇 o Ψ·» o o 〇 s tn ιο w&gt; S U&gt; in z 2: 3C z Z 2: 2: z X 〇 〇 X 〇 〇 乏 i q|b ZB ^ 3 〇 C&gt;l § 〇 s o C4 s •mm 〇 s g S •Ψ··» s 卜 &lt;〇 〇 i〇 τ Ί 〇 o % 〇 o IX&gt; &lt;·&gt; s s JO 〇 o s 奠 &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; 革 CM Csi CM 5 u&gt; &lt;〇 ¢0 e&gt;i cn O CSI &lt;·» CO o 寸 •OSCD*o6:lcb— -Eu 003O.H ‘i 09:10-io2aQ*i s laCL: e«_±l-^^ 。卜00&lt;Nq&gt;- ·£»1&lt;Χ&gt;-i oocslaH *—4jaa*euo9:qdo-i ?l:dd: 3 璀^趄采栖 50 201100888 [表5]4th vapor deposition amount t (nm) 1 1 1 1 1 I 1 1 1 I i 1 〇〇iO CM ιο «Si to CM IQ cw angle β RCL) (.) 1 1 1 1 1 1 i I 1 1 II s U1) &lt;0 g 〇 (A CO direction VII 1 1 1 Weng 1 I 1 1 1 1 &gt;·»«&lt;·&gt; »*· &gt;&gt;&gt;&gt;&gt;&gt; material 1 1 1 1 1 1 I 1 1 1 II &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; | 3rd vapor deposition evaporation it (nrr〇I 1 ! 1 iO in tn to to Inch 40 inch to r*» 卜Γ&quot;·* in €M in ΙΟ CM in CS| Angle β R(L&gt; (° &gt; 1 1 I 1 ss in % 宕o Λ in CO U) CO to &lt;n C9 IO CO u&gt; 00 l〇o to &lt;〇u&gt; cn direction V 1 1 1 1 &gt;&gt; ** &gt;&gt;&gt;&gt; w 1«N* &gt; ψ··* &gt;&gt;&gt;&gt;&gt; Material t \ 1 1 &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; 2nd vapor deposition evaporation amount t (nm) in In in arm in in T&quot;· in in 卜卜卜卜卜卜卜卜卜 angle (°) g 〇o C*5 IO CO U&gt; om CO LO in &lt;〇ir&gt; CO tf&gt; €* &gt; in eo CO l〇03 i〇ml〇to i〇CO i n «Ο l〇fO l〇co Direction VT_ &gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt; CM &gt; «VI &gt; CSf &gt; M &gt; CM &gt; €SI &gt; CSI &gt; Material &lt;&lt;&lt;&lt; 芝 - ώ F 芝w w. ϋ H 〇iz P 〇K The first evaporation evaporation t (nm) &lt;M T&quot; CM Y-· &lt;NC*J &lt;N CM CSI CM CM CO 00 00 CO Bubb angle β R(L&gt; Γ ) U? ID CO to Λ in u> Λ u&gt; CO 03⁄4 m CO u&gt; ⁄*· &gt; »— &gt; t— &gt; CM &gt;&lt;N&gt; $ &gt;&gt; r-· &gt;I·&quot;»&gt;&gt;&gt; T** &gt; T·* &gt; γ— &gt ; material z k. o &lt;&lt;&lt;&lt; 0 &lt;&lt;&lt; - om cs 〇*&gt; inch &lt;〇卜0Q 〇&gt; 〇»· T— CM CO ·*- inch In &lt;D c〇〇» 〇0*4 47 201100888 [Table 2] 1 4th evaporation I evaporation amount t (nm) 1 1 1 1 1 1 〇5 *n M fcO OJ 1 1 1 1 Angle (. &gt; 1 1 1 1 1 1 〇CO i〇S JO 1 1 i 1 direction V 1 1 1 1 1 1 r- &gt; *r~ Csl &gt; Csi &gt; 1 1 1 1 Material 1 1 ! 1 i 1 &lt;&lt;&lt;&lt;&lt; 1 i 1 1 3rd vapor deposition I i vapor deposition amount t (nm) 1 1 ΙΟ in LO in 卜i iO &lt;v| in CM 1 1 1 1 Angle 0 is C) 1 1 ο C0 s Uf&gt;ur&gt; CO U&gt; CO IA CO ΙΛ 1 1 1 1 Direction V 1 I &gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt; 1 1 1 1 Material 1 1 &lt;&lt;&lt;&lt; Z &lt;&lt; l 1 1 1 | 2nd vapor deposition j vapor deposition it (nm) ΙΛ ιη ψ&quot;» u&gt; 卜卜卜卜卜so &lt;M LO wear angle gwu (. % ΙΟ 40 CO in ¢0 in CO m CO w co L〇CO in &lt;〇ir&gt; oos u&gt; inch direction V &gt;&gt;&gt;&gt;&gt;&gt;&gt; C4 &gt; V·» &gt;&gt;&gt; Material &lt;&lt;&lt; 1 CrOx! &lt; 2: z Z 2; Z h- | 1st steam evaporation amount t (nm) C*l «Ρ* CSJ f- r - CM ▼—· ¢0 CO Bub S % in Angle 9mu (.) in ΙΑ &lt;0 if&gt; ο in Λ m in 00 m co u&gt;&lt;〇to ¢0 in CO !? IO in in in in Direction V &gt;&gt;&gt; & Gt &gt;&gt;&gt;&gt;&gt;&gt;&gt; V·» &gt;V&quot;·&gt; Material ζ &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&gt; To CM 卜 04 GO 04 φ cs oc»&gt; Γ0 CM CO CO CO Section o 48 201100888 Table - - o . .ο τ~ ΓΛ 味 ^ Ε工&gt;5 1 1 1 1 1 1 ! g CM g (N § o CM oo CM ososos 〇ososoo CM «ΐ 1 1 1 1 1 1 1 1 tn m in in in tn in in mm ID 竑i 1 1 1 1 i 1 IZH &lt;5 P 2 〇i==ZHOP ( S Completion S 1 1 1 1 1 1 I i 1 1 i 1 ! I 1 o 00 g § ▼»· o U) y·» ΐ Ε 〇S 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 lo &lt;M o eg o esi a 荽1 1 1 1 1 1 I 1 I 1 1 1 1 1 1 1 &lt; 5 &lt; 5 &lt; t$n 埃 ii 1 1 1 1 〇% 〇sos O s 1 i 1 1 os 〇o 〇so S 1 1 i 1 i! 1 1 1 1 〇oo 1 1 1 1 iO in in to 1 1 I 1 m 1 1 1 1 &lt;&lt;&lt;&lt; 1 1 1 1 &lt;&lt;&lt;&lt;&lt;&lt; 1 1 1 1 — sister-^ ^ S o 04 ososog 〇gosososoo CM oso 8 〇〇est os O sosooo CV| osos 〇o CM asooooooooo 2 o ® u&gt; LO l〇in IO iO U) In u Pan F 1_ oz 2: H k_ 〇zwo K 2: OP ϋ P i. oq|d Ζ ΐ ^ ss ·*«» s *P&gt;· 1 S «·» O sogoso in os 〇8 oso to o CO o CO V·· O CO S 〇CO § o CD s τ 1e QS ooo O o cr> % % % σ 〇oo tn r&gt; to CO tf&gt; to to 00 sss 8 St &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; ·»to IO CO ▼-»· c〇Τ·&quot;· 〇&gt; * vs φ . ·5 II Iqa-mu ooglgH -i siido.Eu s:qdo-EC ondd: w 49 201100888 Table ±i CM CO &lt;S4 jo rs 映Ha2 (nm) ! 1 1 1 〇s 〇oo 〇&lt;N 〇s 〇o cst os 1 1 if Da2 (nm) 1 1 1 I l〇IO to lf&gt; in 1 1 i 1 1 t 1 1 1 zzzz 2: 1 I 1 1 η 昧Hr2 (nm) 1 1 1 1 1 1 \ 1 o 5 〇s I i I 1 ΐί ε Q &gt;5 i 1 1 t 1 1 1 I u&gt; Tn 1 1 1 1 Code 1 1 1 1 1 1 i 1 &lt; 1 1 1 I q|b Hbl (nm) 1 1 ooos I 1 osoo C4 1 1 I 1 1 1 Dbl (nm) 1 ot·· o 1 1 un in I 1 1 II f 诨ii &lt;&lt; 1 1 &l t; &lt; 1 i 1 1 1 ic|ffi Hide (UIU&gt; 〇S oo CM oo CM oso 〇CSI os 〇sososos IO S o LO *&quot;« 〇Oal (nm) 〇o Ψ·» oo 〇s tn Ιο w&gt; S U&gt; in z 2: 3C z Z 2: 2: z X 〇〇X lack iq|b ZB ^ 3 〇C&gt;l § 〇so C4 s •mm 〇sg S •Ψ··» s 卜&lt;〇〇i〇τ Ί 〇o % 〇o IX&gt;&lt;·&gt; ss JO 〇os &&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; CM Csi CM 5 u&gt;&lt;〇¢0e&gt;i cn O CSI &lt;·» CO o inch•OSCD*o6:lcb— -Eu 003O.H 'i 09:10-io2aQ* Is laCL: e«_±l-^^. 00&lt;Nq&gt;- ·£»1&lt;Χ&gt;-i oocslaH *—4jaa*euo9:qdo-i ?l:dd: 3 璀^趄采栖 50 201100888 [Table 5]

ffl ffl CO &lt; &lt; &lt; &lt; CO &lt; &lt; &lt; Φ Φ CO w w w w &lt;n CO 亮度 提昇 m ω m &lt; &lt; &lt; &lt; ω &lt;0 to &lt;n &lt; %n w w to t/i w ¢0 CO 700nm 儀光度 (Λ &lt;0 CO co &lt;0 CO CO w CO CO (Λ &lt;/3 CO w &lt;/&gt; w w S«光 反射率 睡 m CO κη CO CO m &lt;y&gt; ω &lt;Λ CO CO w CO CO CO w K/i %n w w 陋 m CO 60 Φ &lt; Φ (/&gt; c/&gt; &lt; ω OD φ &lt; w W CO &lt; to CO &lt;Λ &lt; P偏光 透射率 @ m u&gt; (Λ m 05 (A w m to w W w ω CO ¢0 CO &lt;/&gt; &lt;0 w κ/i CO 睡 m CO €0 m 〇&gt; in tn co CO CO Φ tn ¢0 CO &lt;/} CO €0 CO &lt;〇 u% 550nm 僅光度 « W CO &lt; in CO 05 &lt; &lt;/3 07 φ &lt; CO w w &lt; CO tn &lt; 8傷光 反射率 « CO W CO co C/3 w CO CO w « φ w 的 &lt;〇 CO ¢0 &lt;0 tn CO m ¢0 CO i/i &lt; CO CO 00 &lt; (/) ϋ&gt; ω &lt; CO CO to &lt;〇 CO σ&gt; co w &amp;飧 » m to ω &lt;0 w « &lt;〇 w « CO ω CO tn w OT w CO CO CO &lt;/) » m CO €0 CO CO (/} iA &lt;/&gt; i〇 〇&gt; &lt;0 CO w 〇&gt; CO w CO &lt;n w CO 450nm 懼光度 CD ω CD CO &lt; &lt; &lt; ca &lt; &lt; &lt; ω u&gt; CO &lt;0 &lt; €0 &lt;/&gt; « &lt; 8偏光 反射車 m m ω ω ω &lt; &lt; &lt; &lt; CO &lt; &lt; &lt; tn w CO w 05 05 to 07 瞌 m w w CO €0 i/i Φ &lt;A ¢0 «0 05 〇&gt; co CO CO &lt;/&gt; CO w Φ w P偏光 透射率 睡 m &lt; &lt; &lt; &lt; &lt; &lt; &lt;〇 ω m ffl &lt; &lt; &lt; &lt; « CO &lt;/&gt; OT w Ά m &lt; &lt; &lt; CO &lt; &lt; &lt; 03 m ffl QQ &lt; &lt; &lt; &lt; w w V) &lt;〇 $ CM 寸 tn &lt;〇 卜 CO &lt;» 2 Ί&quot;· 1-· CM T·· in 卜 «0 2 o CM 51 201100888 [表6] 對比 W t/i 05 &lt; Φ w CO in ϋ&gt; W ω X X X 亮度 提昇 &lt;/&gt; CO tn &lt; &lt; &lt; &lt; &lt; ω W G0 ω (Ω ω 700nm 偏光度 W w « m w w ω &amp;0 X €0 0Q X S僱光 反射串 1_ 裹面 CQ &lt;r&gt; ¢0 &lt;n Φ 03 Φ ϋ&gt; &lt;Λ W X X ω X 表面 CO tn 00 φ CO CO in Φ ίΛ « φ ω &lt; &lt; P偏光 透射率 裏面 m W &lt;/&gt; xn « U) ω C0 C0 X ω &lt; CD 表面 U) %n Φ &lt;z&gt; V) &lt;/&gt; « W κη X ω &lt; CD 550nm 儷光度 φ tn CO &lt; w W m CO ω ω X CO X X S两光 反射串 丨裏面 κ/&gt; 的 CO CO « Φ ¢0 κη ω CO X X ω X ft面 CO tn CO &lt;Λ tn 的 φ ¢0 CO 0) 访 &lt; &lt; P偏光 透射率 裏面 CO tn CO CO OT m (A W CO C0 X X &lt; m % &lt;/&gt; Φ CO CO CO m CO W C0 υ&gt; X X &lt; m 450nm 僱光度 &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt;Λ W X ω X X 8偏光 反射率 S φ CO €0 ¢0 CO &lt;〇 « C0 m X ω X 表面 (Ο in CO &lt;0 〇&gt; tfi CO &lt;/&gt; φ CO &lt;Λ « &lt; &lt; P偏光 透射率 裏面 φ CO ¢0 &lt; &lt; &lt; &lt; ΚΛ C0 οα X &lt; Ώ 表面 W %n (Λ &lt; &lt; &lt; &lt; ί/&gt; « CQ X &lt; m 1波* 1 $ csi w ΙΛ €M &lt;〇 CM &lt;ΰ &lt;Μ 9&gt; «Μ ο CM ο ο &lt;〇 s 52 201100888 產業上之可利用性 本發明之線柵型偏光件作為液晶顯示裝置、背投式投 影電視及前投式投影機等影像顯示裝置之偏光件均甚有 用。 另外,在此援引已於2009年4月30日提出申請的日本專 利申請案第2009-111487號之說明書、申請專利範圍、圖式 及發明摘要的所有内容,並作為本發明的揭示内容予以納 入0 【圖式簡單說明3 第1圖為立體圖,顯示本發明之線柵型偏光件之一例。 第2圖為立體圖,顯示本發明之線柵型偏光件之他例。 第3圖為立體圖,顯示本發明之線柵型偏光件之他例。 第4圖為立體圖,顯示本發明之線柵型偏光件之他例。 第5圖為立體圖,顯示本發明之線柵型偏光件之他例。 第6圖為立體圖,顯示本發明之線柵型偏光件之他例。 第7圖為截面圖,顯示本發明之液晶顯示裝置之一例。 【主要元件符號說明】 10 線柵型偏光件 20 第1反射層 12 凸條 22 第1吸⑽ 13 平坦部 24 基底層 14 透光性基板 26 第2吸收層 16 第1側面 28 第2反射層 18 第2側面 30 液晶顯示裝置 19 頂部 31 53 201100888 32 35 背光單元 33 液晶層 36 吸收型偏光件 34 液晶面板 54Ffl ffl CO &lt;&lt;&lt;&lt;&lt; CO &lt;&lt;&lt;&lt; Φ Φ CO wwww &lt;n CO brightness enhancement m ω m &lt;&lt;&lt;&lt;&lt; ω &lt;0 to &lt;n &lt; % Nww to t/iw ¢0 CO 700nm luminosity (Λ &lt;0 CO co &lt;0 CO CO w CO CO (Λ &lt;/3 CO w &lt;/&gt; ww S« light reflectance sleep m CO κη CO CO m &lt;y&gt; ω &lt;Λ CO CO w CO CO CO w K/i %nww 陋m CO 60 Φ &lt; Φ (/&gt;c/&gt;&lt; ω OD φ &lt; w W CO &lt; To CO &lt;Λ &lt; P polarized light transmittance @ m u&gt; (Λ m 05 (A wm to w W w ω CO ¢0 CO &lt;/&gt;&lt;0 w κ/i CO sleep m CO €0 m 〇&gt; in tn co CO CO Φ tn ¢0 CO &lt;/} CO €0 CO &lt;〇u% 550nm luminosity only « W CO &lt; in CO 05 &lt;&lt;/3 07 φ &lt; CO ww &lt ; CO tn &lt; 8 damage reflectance « CO W CO co C/3 w CO CO w « φ w &lt;〇CO ¢0 &lt;0 tn CO m ¢0 CO i/i &lt; CO CO 00 &lt; (/) ϋ&gt; ω &lt; CO CO to &lt;〇CO σ&gt; co w &飧» m to ω &lt;0 w « &lt;〇w « CO ω CO tn w OT w CO CO CO &lt;/ ) » m CO €0 CO CO (/} iA &lt;/&gt;i〇〇&gt;&lt;0 CO w 〇&gt; CO w CO &lt;nw CO 450nm brilliance CD ω CD CO &lt;&lt;&lt; ca &lt;&lt;&lt; ω u&gt; CO &lt;0 &lt; €0 &lt;/&gt; « &lt; 8 polarized reflector car mm ω ω ω &lt;&lt;&lt;&lt; CO &lt;&lt;&lt; tn w CO w 05 05 to 07 瞌mww CO €0 i/i Φ &lt;A ¢0 «0 05 〇&gt ; CO CO CO &lt;/&gt; CO w Φ w P polarized transmittance sleep m &lt;&lt;&lt;&lt;&lt;&lt;&lt; 〇ω m ffl &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&gt; OT w Ά m &lt;&lt;&lt; CO &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;Ί&quot;· 1-· CM T·· in Bu «0 2 o CM 51 201100888 [Table 6] Contrast W t/i 05 &lt; Φ w CO in ϋ&gt; W ω XXX Brightness Enhancement &lt;/&gt; CO tn &lt ; &lt;&lt;&lt;&lt;&lt; ω W G0 ω (Ω ω 700nm Polarization W w « mww ω & 0 X €0 0Q XS hire light reflection string 1_ Wrap CQ &lt;r&gt; ¢0 &lt;n Φ 03 Φ ϋ&gt;&lt;Λ WXX ω X Surface CO tn 00 φ CO CO in Φ Λ Λ « φ ω &lt;&lt; P polarized transmittance inside m W &lt;/&gt; xn « U) ω C0 C0 X ω &lt; CD surface U) %n Φ &lt;z&gt; V) &lt;/&gt; « W κη X ω &lt; CD 550nm 俪 φ φ tn CO &lt; w W m CO ω ω X CO XXS two light reflection string CO κ/&gt; CO CO « Φ ¢0 κη ω CO XX ω X ft surface CO tn CO &lt;Λ tn φ ¢0 CO 0) Visit &lt;&lt; P polarized transmittance CO tn CO CO OT m (AW CO C0 XX &lt; m % &lt;/&gt; Φ CO CO CO m CO W C0 υ&gt; XX &lt; m 450nm Employer &lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt;&lt; Λ WX ω XX 8 polarized reflectance S φ CO €0 ¢0 CO &lt;〇« C0 m X ω X Surface (Ο in CO &lt;0 〇&gt; tfi CO &lt;/&gt; φ CO &lt;Λ « &lt ; &lt; P polarized light transmittance φ CO ¢ 0 &lt;&lt;&lt;&lt; ΚΛ C0 οα X &lt; Ώ Surface W %n (Λ &lt;&lt;&lt;&lt;ί/&gt; « CQ X &lt; m 1 wave* 1 $ csi w ΙΛ €M &lt;〇CM &lt;ΰ &lt;Μ 9&gt; «Μ ο CM ο ο &lt;〇s 52 201100888 Industrial Applicability The wire grid type polarizer of the present invention is used as Polarizers for image display devices such as liquid crystal display devices, rear projection projectors, and front projection projectors Very useful. In addition, Japanese Patent Application No. 2009-111487, filed on Apr. 30, 2009, which is hereby incorporated by reference in its entirety, the entire contents of 0 [Simple diagram of the drawing 3] Fig. 1 is a perspective view showing an example of the wire grid type polarizing member of the present invention. Fig. 2 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 3 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 4 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 5 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 6 is a perspective view showing another example of the wire grid type polarizing member of the present invention. Fig. 7 is a cross-sectional view showing an example of a liquid crystal display device of the present invention. [Main component symbol description] 10 wire grid type polarizer 20 first reflection layer 12 ridge 22 first suction (10) 13 flat portion 24 base layer 14 light transmissive substrate 26 second absorption layer 16 first side surface 28 second reflection layer 18 Second side 30 Liquid crystal display device 19 Top 31 53 201100888 32 35 Backlight unit 33 Liquid crystal layer 36 Absorptive polarizer 34 Liquid crystal panel 54

Claims (1)

201100888 七'申請專利範圍: L —種線柵型偏光件,其包含有: 透光性基板,係表面形成有複數凸條者,該等複數 凸條係隔著形成於該等凸條間的平坦部相互平行,且依 預定間距而形成,該等複數凸條之寬度由底部朝向頂部 漸漸變狹窄; Ο201100888 Seven's patent application scope: L-type wire grid type polarizing member, comprising: a light-transmitting substrate, wherein a plurality of convex strips are formed on the surface, and the plurality of convex strips are formed between the convex strips The flat portions are parallel to each other and are formed at a predetermined pitch, and the widths of the plurality of ridges are gradually narrowed from the bottom toward the top; 第1反射層,被覆前述凸條之第1側面,且由金屬材 料構成;及 第1吸收層,存在於前述凸條與前述第丨反射層之 間,並被覆刖述凸條之苐1側面整面,且由比前述金屬 材料更會吸收光之光吸收性材料構成。 2_如申請專利範圍第1項之線栅型偏光件,其中前述第i 吸收層之厚度為3〜20nm。 3.如申請專利範圍第1或2項之線栅型偏光件,其更具有基 底層,該基底層存在於前述凸條與前述第丨.吸收層之 間,並被覆前述凸條之第1側面整面,且由金屬材料構 成。 4_如申請專利範圍第1至3項中任一項之線栅型偏光件,其 更具有第2吸收層,該第2吸收層被覆前述凸條之第2側 面整面’且由前述光吸收性材料構成。 5. 如申請專利範圍第4項之線柵型偏光件,其更具有第2 反射層,該第2反射層被覆前述第2吸收層表面,且由金 屬材料構成。 6. 如申凊專利範圍第1至5項中任一項之線柵型偏光件,其 55 201100888 中則述凸條之直交於其長度方向之截面形狀為三角形 或梯形。 7·如申π專利範圍第1至6項中任一項之線柵型偏光件,其 中前述間隔ΡΡ為300nm以下。 8·如申印專利範圍第1至7項中任一項之線柵型偏光件,其 中前述第1反射層之厚度為3〜2〇mn。 9.如申請專利範圍第1至8項中任一項之線柵型偏光件,其 中前述凸條底部之寬度Dpb、與該Dpb和形成於凸條間 之平坦部之寬度的總和長度Pp之比(Dpb/Pp)為0.1〜0.7。 10_如申請專利範圍第1至9項中任一項之線柵型偏光件,其 中令前述凸條底部之寬度為Dpb,令該Dpb和形成於凸 條間之平坦部之寬度的總和長度為Pp,且令第1反射層 之凸條寬度方向之厚度的最大值為Drl時,Drl滿足下述 式: 〇.2x(Pp-Dpb)$DrlS〇.5x(Pp-Dpb)。 11. 如申請專利範圍第1至10項中任一項之線柵型偏光件, 其中形成於前述凸條第1側面之第1反射層的高度Hr 1與 前述凸條的高度Hp之比(Hrl/Hp)為0.5〜1.0。 12. —種線柵型偏光件的製造方法,係製造一包含有透光性 基板、第1反射層及第1吸收層之線栅型偏光件的方法, 該透光性基板係表面形成有複數凸條者,該等複數凸條 係隔著形成於該等凸條間的平坦部相互平行,且依預定 間距而形成,又,該等複數凸條之寬度由底部朝向頂部 漸漸變狹窄;該第1反射層被覆前述凸條之第1側面,且 56 201100888 由金屬材料構成;該第1吸收層存在於前述凸條與前述 第1反射層之間,並被覆前述凸條之第1側面整面,且由 比前述金屬材料更會吸收光之光吸收性材料構成, 該線柵型偏光件的製造方法包含下列步驟: 於蒸鑛量為3〜20nm之條件下,自一方向蒸鑛前述 光吸收材料而形成前述第1吸收層,該方向大致垂直相 交於前述凸條之長度方向,且相對於前述凸條之高度方 向在第1側面之側構成25〜40°之角度, 於蒸鍍量為15〜50nm之條件下,自另一方向蒸鍍前 述金屬材料而形成前述第1反射層,該另一方向大致垂 直相交於前述凸條之長度方向,且相對於前述凸條之高 度方向在第1側面之側構成25〜50°之角度。 13. 如申請專利範圍第12項之線柵型偏光件的製造方法,其 中前述凸條之直交於其長度方向之截面形狀為三角形 或梯形。 14. 如申請專利範圍第12或13項之線柵型偏光件的製造方 法,其中前述凸條係由光硬化樹脂或熱可塑性樹脂構 成,且利用壓印法形成。 15. —種液晶顯示裝置,包含有: 於一對基板間挾合固持有液晶層之液晶面板; 背光單元;及 如申請專利範圍第1至11項中任一項之線柵型偏光 件,係配置成使形成有凸條之側的面作為前述背光單元 側,且使沒有形成凸條之側的面作為液晶顯示裝置之目 57 201100888 視側。 16_如申請專利範圍第15項之液晶顯示裝置,其更具有吸收 型偏光件, 前述線柵型偏光件配置於前述液晶面板之一邊的 表面, 前述吸收型偏光件配置於前述液晶面板上相對於 配置有前述線栅型偏光件之側為相反側之表面。 17. 如申請專利範圍第16項之液晶顯示裝置,其中前述線柵 型偏光件配置於前述液晶面板上位於前述背光單元側 的表面, 前述吸收型偏光件配置於前述液晶面板上相對於 前述背光單元側為相反側之表面。 18. 如申請專利範圍第15項之液晶顯示裝置,其更具有吸收 型偏光件, 前述線栅型偏光件與前述液晶面板的前述一對基 板中之一基板一體化, 前述吸收型偏光件配置於前述液晶面板上相對於 前述線柵型偏光件一體化之側為相反側之基板表面。 19. 如申請專利範圍第18項之液晶顯示裝置,前述線柵型偏 光件與前述液晶面板上位於前述背光單元側的前述基 板一體化, 前述吸收型偏光件配置於前述液晶面板上相對於 前述背光單元側為相反側之表面。 20. 如申請專利範圍第15項之液晶顯示裝置,其更具有吸收 58 201100888 21. Ο 型偏光件, 前述線柵型偏光件配置於前述液晶面板的前述一 對基板中之一基板的液晶層側, 前述吸收型偏光件配置於前述液晶面板上相對於 配置有前述線栅型偏光件之側為相反側之基板表面。 如申請專利範圍第20項之液晶顯示裝置,其中前述線柵 型偏光件配置於前述液晶面板的前述一對基板中位於 前述背光單元側的基板之液晶層側, 前述吸收型偏光件配置於前述液晶面板上相對於 前述背光單元側為相反側之表面。 〇 59The first reflective layer covers the first side surface of the ridge and is made of a metal material; and the first absorbing layer exists between the ridge and the ninth reflective layer, and is covered with a side surface of the ridge 1 of the rib The entire surface is composed of a light absorbing material that absorbs light more than the aforementioned metal material. 2) The wire grid type polarizing member of claim 1, wherein the thickness of the ith absorbing layer is 3 to 20 nm. 3. The wire grid type polarizer of claim 1 or 2, further comprising a base layer present between the ridge and the first absorbing layer and covering the first rib The entire side is made of a metal material. The wire grid type polarizer according to any one of claims 1 to 3, further comprising a second absorption layer covering the second side surface of the ridges and having the light Made up of absorbent material. 5. The wire grid type polarizer of claim 4, further comprising a second reflective layer covering the surface of the second absorption layer and made of a metal material. 6. The wire grid type polarizer according to any one of claims 1 to 5, wherein the cross-sectional shape of the ribs orthogonal to the longitudinal direction thereof is triangular or trapezoidal. The wire grid type polarizer according to any one of claims 1 to 6, wherein the interval ΡΡ is 300 nm or less. The wire grid type polarizing member according to any one of claims 1 to 7, wherein the thickness of the first reflecting layer is 3 to 2 mn. The wire grid type polarizer according to any one of claims 1 to 8, wherein a width Dpb of the bottom of the ridge and a sum total length Pp of the width of the Dpb and the flat portion formed between the ridges are The ratio (Dpb/Pp) is 0.1 to 0.7. The wire grid type polarizer according to any one of claims 1 to 9, wherein the width of the bottom of the ridge is Dpb, and the total length of the width of the Dpb and the flat portion formed between the ridges is obtained. When Pp is the maximum value of the thickness of the first reflecting layer in the width direction of the ridges, Drl satisfies the following formula: 〇.2x(Pp-Dpb)$DrlS〇.5x(Pp-Dpb). The wire grid type polarizer according to any one of claims 1 to 10, wherein a ratio of a height Hr 1 of the first reflection layer formed on the first side surface of the ridge to a height Hp of the ridge ( Hrl/Hp) is 0.5 to 1.0. 12. A method of manufacturing a wire grid type polarizer, which is a method of manufacturing a wire grid type polarizer including a light-transmitting substrate, a first reflection layer, and a first absorption layer, wherein the light-transmissive substrate is formed with a surface a plurality of ridges, wherein the plurality of ridges are parallel to each other and formed at a predetermined interval, and the width of the plurality of ridges is gradually narrowed from the bottom toward the top; The first reflective layer covers the first side surface of the ridge, and 56 201100888 is made of a metal material; the first absorbing layer exists between the ridge and the first reflective layer, and covers the first side of the ridge The whole surface is composed of a light absorbing material that absorbs light more than the foregoing metal material. The method for manufacturing the wire grid type polarizing member comprises the following steps: steaming the same from one direction under the condition of a smelting amount of 3 to 20 nm The light absorbing material forms the first absorbing layer, and the direction intersects substantially perpendicularly in the longitudinal direction of the ridge, and forms an angle of 25 to 40° on the side of the first side surface with respect to the height direction of the ridge, and is vapor-deposited. The amount is 15 Under the condition of 50 nm, the metal material is vapor-deposited from the other direction to form the first reflective layer, and the other direction intersects substantially perpendicularly in the longitudinal direction of the ridge, and is in the first direction with respect to the height direction of the ridge The sides of the sides form an angle of 25 to 50 degrees. 13. The method of manufacturing a wire grid type polarizer according to claim 12, wherein the cross-sectional shape of the ridges orthogonal to the longitudinal direction thereof is triangular or trapezoidal. 14. The method of producing a wire grid type polarizing member according to claim 12, wherein the ridge is formed of a photocurable resin or a thermoplastic resin and formed by an imprint method. A liquid crystal display device comprising: a liquid crystal panel in which a liquid crystal layer is sandwiched between a pair of substrates; a backlight unit; and the wire grid type polarizer according to any one of claims 1 to 11. The surface on which the side of the ridge is formed is set as the side of the backlight unit, and the side on which the side of the ridge is not formed is used as the side of the liquid crystal display device. The liquid crystal display device of claim 15, further comprising an absorbing polarizer, wherein the wire grid polarizer is disposed on a surface of one side of the liquid crystal panel, and the absorbing polarizer is disposed on the liquid crystal panel The side on which the side of the wire grid type polarizer is disposed is the opposite side. 17. The liquid crystal display device of claim 16, wherein the wire grid type polarizer is disposed on a surface of the liquid crystal panel on the backlight unit side, and the absorption type polarizer is disposed on the liquid crystal panel with respect to the backlight The unit side is the surface on the opposite side. 18. The liquid crystal display device of claim 15, further comprising an absorbing polarizer, wherein the wire grid polarizer is integrated with one of the pair of substrates of the liquid crystal panel, and the absorbing polarizer is disposed. The side of the liquid crystal panel that is integrated with respect to the side of the wire grid type polarizer is the substrate surface on the opposite side. [19] The liquid crystal display device of claim 18, wherein the wire grid type polarizer is integrated with the substrate on the backlight unit side of the liquid crystal panel, and the absorption type polarizer is disposed on the liquid crystal panel with respect to the foregoing The backlight unit side is the surface on the opposite side. 20. The liquid crystal display device of claim 15, further comprising an absorption type 58 201100888 21. Ο type polarizer, wherein the wire grid type polarizer is disposed on a liquid crystal layer of one of the pair of substrates of the liquid crystal panel On the side, the absorptive polarizer is disposed on the surface of the substrate on the liquid crystal panel opposite to the side on which the wire grid polarizer is disposed. The liquid crystal display device of claim 20, wherein the wire grid polarizer is disposed on a liquid crystal layer side of the substrate on the backlight unit side of the pair of substrates of the liquid crystal panel, and the absorption type polarizer is disposed on the liquid crystal layer The surface of the liquid crystal panel opposite to the side of the backlight unit is the opposite side. 〇 59
TW099113662A 2009-04-30 2010-04-29 Wire-grid polarizer and method of fabricating same TW201100888A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111487 2009-04-30

Publications (1)

Publication Number Publication Date
TW201100888A true TW201100888A (en) 2011-01-01

Family

ID=43032254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113662A TW201100888A (en) 2009-04-30 2010-04-29 Wire-grid polarizer and method of fabricating same

Country Status (4)

Country Link
JP (1) JPWO2010126110A1 (en)
KR (1) KR20120018750A (en)
TW (1) TW201100888A (en)
WO (1) WO2010126110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580302A (en) * 2020-06-16 2020-08-25 京东方科技集团股份有限公司 Reflective liquid crystal display panel and display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155163A (en) * 2011-01-27 2012-08-16 Asahi Kasei E-Materials Corp Wire grid polarizing plate
KR101867192B1 (en) * 2011-10-14 2018-06-12 아사히 가세이 이-매터리얼즈 가부시키가이샤 Wire grid polarizing plate and projection-type image display device
JP5624014B2 (en) * 2011-12-08 2014-11-12 シャープ株式会社 Liquid crystal display
US9632224B2 (en) 2014-06-25 2017-04-25 Moxtek, Inc. Broadband, selectively-absorptive wire grid polarizer
CN104297835B (en) 2014-10-17 2017-03-08 京东方科技集团股份有限公司 A kind of preparation method of wire grid polarizer
CN104483733B (en) 2014-12-30 2017-11-21 京东方科技集团股份有限公司 A kind of wire grid polarizer and preparation method thereof, display device
CN104459865A (en) * 2014-12-30 2015-03-25 京东方科技集团股份有限公司 Wire grid polarizer, manufacturing method of wire grid polarizer and display device
WO2016114847A1 (en) * 2015-01-16 2016-07-21 Moxtek, Inc. Broadband, selectively-absorptive wire grid polarizer
JP6586404B2 (en) * 2016-09-27 2019-10-02 日東電工株式会社 OPTICAL LAMINATE AND LIQUID CRYSTAL DISPLAY DEVICE USING THE OPTICAL LAMINATE
KR102569311B1 (en) * 2017-01-04 2023-08-22 삼성전자주식회사 Photoluminescent polarizers and electronic devices including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003447A (en) * 2004-06-15 2006-01-05 Sony Corp Polarized light separating element and manufacturing method thereof
KR101228486B1 (en) * 2004-12-16 2013-01-31 도레이 카부시키가이샤 Polarizing plate, method of producing the polarizing plate, and liquid crystal display device using the polarizing plate
JP2006330616A (en) * 2005-05-30 2006-12-07 Nippon Zeon Co Ltd Polarizer and method for manufacturing same, and liquid crystal display apparatus
JP2008040416A (en) * 2006-08-10 2008-02-21 Seiko Epson Corp Method for manufacturing polarizing element, polarizing element, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111580302A (en) * 2020-06-16 2020-08-25 京东方科技集团股份有限公司 Reflective liquid crystal display panel and display device
CN111580302B (en) * 2020-06-16 2023-01-10 京东方科技集团股份有限公司 Reflective liquid crystal display panel and display device

Also Published As

Publication number Publication date
JPWO2010126110A1 (en) 2012-11-01
WO2010126110A1 (en) 2010-11-04
KR20120018750A (en) 2012-03-05

Similar Documents

Publication Publication Date Title
TW201100888A (en) Wire-grid polarizer and method of fabricating same
JP5365626B2 (en) Manufacturing method of wire grid type polarizer
TWI479206B (en) Wire grid type polarizing element and its manufacturing method
TWI467252B (en) Wire grid type polarizer and manufacturing method thereof
TW201202762A (en) Wire-grid polarizer manufacturing method and liquid-crystal display device
KR101250396B1 (en) A Wire Grid Polarazer and Liquid Crystal Display within the same
JP5590039B2 (en) Wire grid polarizer and method of manufacturing the same
WO2009123290A1 (en) Wire grid polarizer and method for manufacturing the same
TWI507779B (en) Liquid crystal display
KR101806559B1 (en) A wire grid polarizer, liquid crystal display including the same and method of manufacturing the wire grid polarizer
KR101279468B1 (en) A wire grid polarizer, liquid crystal display apparatus including the same and manufacturing method thereof
TWI420163B (en) Wire grid polarizer and liquid crystal display including the same
JP2007273275A (en) Organic el light emitting device
TWI461795B (en) Liquid crystal display
KR101211734B1 (en) Touch Panel With Associated A Wire Grid Polarazer and Liquid Crystal Display within the same
JP2012078651A (en) Wire grid type polarizer and liquid crystal display device
JP2012073484A (en) Wire grid type polarizer and liquid crystal display device
JP2022008903A (en) Polarization element, method for manufacturing polarization element, and head-up display device
JP2009139457A (en) Wire grid polarization film and liquid crystal display
KR20180036615A (en) Wire grid polarizer and display device empolying the same