TW201044480A - Method of characterizing a semiconductor device and semiconductor device - Google Patents

Method of characterizing a semiconductor device and semiconductor device Download PDF

Info

Publication number
TW201044480A
TW201044480A TW98118689A TW98118689A TW201044480A TW 201044480 A TW201044480 A TW 201044480A TW 98118689 A TW98118689 A TW 98118689A TW 98118689 A TW98118689 A TW 98118689A TW 201044480 A TW201044480 A TW 201044480A
Authority
TW
Taiwan
Prior art keywords
type
soi
component
region
substrate
Prior art date
Application number
TW98118689A
Other languages
Chinese (zh)
Other versions
TWI484573B (en
Inventor
Yue-Shiun Lee
Yuan-Chang Liu
Cheng-Hsiung Chen
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098118689A priority Critical patent/TWI484573B/en
Publication of TW201044480A publication Critical patent/TW201044480A/en
Application granted granted Critical
Publication of TWI484573B publication Critical patent/TWI484573B/en

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

A method of characterizing a semiconductor device includes providing a silicon-on-insulator (SOI) substrate with at least a body-tied (BT) SOI device and a BT dummy device for measurement, respectively measuring tunneling currents (Igb) and scattering parameters (S-parameters) of the BT SOI device and the BT dummy device, subtracting Igb of the BT dummy device from that of the BT SOI device to obtain Igb of a floating body (FB) SOI device, filtering characteristics of the BT dummy device out to extract S-parameters of the FB SOI device, and analyzing the S-parameters of the FB SOI device to obtain gate-related capacitances of the FB SOI device.

Description

201044480 身 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導體元件之特徵化方法以及半導體 元件’尤指一種浮體(floating body)石夕覆絕緣 (silicon-on-insulator,SOI)半導體元件之特徵化方法以及應 用於該特徵化方法之半導體元件。 【先前技術】 隨著對尚性能電路的要求,傳統塊晶(bulk)金屬氧化物半 導體場化電晶體(MOSFET)結構因無法克服超短通道效應, 以及因PN接面面積較多而產生的寄生電容與漏電流等不理 想的效應,使得矽覆絕緣(SOI)技術持續受到矚目。 ❹ 在S〇I技術中,MOSFET元件係形成於一矽薄膜上,矽 溥膜與基材之間則设置有一埋置氧化(burie(j oxjde,以下簡 稱為BOX)層,其提供了許多超越傳統塊晶M〇SFET元件的 優點,例如SOI MOSFET元件具有較小的寄生電容,因此在 電路操作中具有較佳的速度特性;s〇im〇sfet元件的抗輻 射能力強’因此可減少軟式錯誤(s〇fterr〇r);由於埋置氧化 層的存在’可防止栓鎖(latch_up)效應;s〇I m〇SFET元件更 因又短通道效應的影響較小,使得元件較易微縮(scaled 、d〇Wn)。由於具有上述提高性能、高封裝密度以及低功耗等 201044480 優點,在半導體製程領域中,SOI MOSFET元件更有成為元 件主流的預見。 根據BOX層上矽薄膜的厚度,SOI技術又可分為部分空 乏矽覆絕緣(partially depleted,PD SOI)或完全空乏砂覆絕緣 (fully depleted ’ FD SOI)。而由於高度生產性的優勢,目前 較常使用的SOI技術乃為PD SOI。請參閱第1圖,第i圖 ^ 係為一習知PD SOI元件之示意圖。PD SOI元件1〇〇係設置 於一 SOI基底110上,SOI基底110則包含有一基材112、 一矽薄膜116、與一設置於基材112與矽薄膜116之間的B0X 層114。PD SOI元件100更包含一閘極導電層120、一閘極 介電層122與一源極/汲極124。PD SOI元件100的石夕薄膜 116厚度比空乏區要厚,因此使得其基底110的一區域未遭 空乏且未接地,故一般將其描述為一浮動基體(floating body) 126。且由於PD SOI元件100的基體126並未接地,因此元 ® 件因衝擊離子化而產生的電荷載子無法排除,並使得PD SOI 元件100的基體電位可能隨著靜態、動態或暫態元件操作條 件的不同而浮動,從而導致PD SOI元件100的臨界電壓的 變化,即所謂的遲滯效應(hysteresis effect)或稱歷史效應 (history effect)。簡單地說,PD SOI元件100的基體電位與 元件特性深受開關狀態歷史之影響。 如前所述,由於PD SOI元件100的基體126並未接地; 5 201044480 且因PD SOI元件loo的特性受到歷史效應影響甚鉅,因此 目前仍無法將PD SOI元件1〇〇,尤其是基體未接地之浮體 (FB) SOI元件’真實的特性如閘極對基體(gate_t〇_b〇dy)電容 (Cgb )與閘極對基體穿隨電流(tunneiing current,Igb)等 特徵化。 此外’由於在射頻(radio frequency,RF)元件中,閘極阻 〇抗與閘極電容決定了 MOSFET元件的輸入阻抗,因此能夠 精確的量測閘極電容乃為RF電路模擬的關鍵。不僅如此, a亥領域中具通常知識者應知元件特性分析對於積體電路設 計而言極為重要:可靠的元件模型必需來自精確的量測技 術’且能從量測資料中萃取(extract)出待測元件的實際特 性,以提供元件的製程與元件設計者快速而詳實的元件特 性,作為進一步改良的依據。 〇 【發明内容】201044480 s. 6. Description of the Invention: The present invention relates to a method for characterizing a semiconductor device and a semiconductor device, particularly a floating body, a silicon-on-insulator (SOI). A method of characterizing a semiconductor element and a semiconductor element applied to the characterization method. [Prior Art] With the requirement of the performance circuit, the conventional bulk metal oxide semiconductor field-effect transistor (MOSFET) structure cannot be overcome due to the ultra-short channel effect and the area of the PN junction is large. Undesirable effects such as parasitic capacitance and leakage current have led to the continued attention of SOI technology. ❹ In the S〇I technology, the MOSFET component is formed on a thin film, and a buried oxide (buried) layer is provided between the tantalum film and the substrate, which provides many transcendences. The advantages of traditional bulk crystal M〇SFET components, such as SOI MOSFET components with small parasitic capacitance, therefore have better speed characteristics in circuit operation; s〇im〇sfet components have strong radiation resistance', thus reducing soft errors (s〇fterr〇r); due to the presence of buried oxide layer 'can prevent the latch_up effect; s〇I m〇SFET components are less affected by the short channel effect, making the component easier to scale (scaled , d〇Wn). Due to the advantages of 201044480 such as improved performance, high package density and low power consumption, in the field of semiconductor manufacturing, SOI MOSFET components are more predictive of the mainstream of components. According to the thickness of the germanium film on the BOX layer, SOI The technology can be further divided into partially depleted (PD SOI) or fully depleted ' FD SOI. Due to the high productivity advantages, the SOI technology is more commonly used. It is a PD SOI. Please refer to Fig. 1, which is a schematic diagram of a conventional PD SOI device. The PD SOI device 1 is disposed on an SOI substrate 110, and the SOI substrate 110 includes a substrate 112. a film 116, and a BOX layer 114 disposed between the substrate 112 and the germanium film 116. The PD SOI device 100 further includes a gate conductive layer 120, a gate dielectric layer 122, and a source/germanium The pole 124. The thickness of the PD SOI element 100 of the PD SOI element 100 is thicker than that of the depletion region, thus leaving a region of its substrate 110 undeted and ungrounded, so it is generally described as a floating body 126. Since the base 126 of the PD SOI component 100 is not grounded, the charge carriers generated by the impact ionization cannot be eliminated, and the substrate potential of the PD SOI component 100 may be related to static, dynamic or transient component operating conditions. The difference is floating, resulting in a change in the threshold voltage of the PD SOI element 100, a so-called hysteresis effect or a history effect. Briefly, the substrate potential and element characteristics of the PD SOI element 100 are deep. Switch state As mentioned above, since the base 126 of the PD SOI component 100 is not grounded; 5 201044480 and because the characteristics of the PD SOI component loo are greatly affected by the historical effect, it is still impossible to convert the PD SOI component. In particular, the floating body (FB) of the substrate is not grounded. The real characteristics of the SOI component are the gate-to-base (gate_t〇_b〇dy) capacitance (Cgb) and the gate-to-substrate through current (Igb). Chemical. In addition, since the gate resistance and the gate capacitance determine the input impedance of the MOSFET component in the radio frequency (RF) component, accurate measurement of the gate capacitance is the key to RF circuit simulation. Not only that, but the general knowledge in the a-Hai field should be aware that component characterization is extremely important for integrated circuit design: reliable component models must come from accurate measurement techniques' and can be extracted from measurement data. The actual characteristics of the component to be tested, in order to provide the component's process and the component designer's fast and detailed component characteristics, as a basis for further improvement. 〇 【Contents】

因此,本發明之一目的係在於提供一種可有效獲得FB SOI兀件特性的特徵化方法以及應用於該特徵化方法的半導 體元件。 根據本發明所提供之申請專利範圍,係提供一種半導體 元件特徵化方法,該方法首先提供一 SOI基底,該S0I基底 - 上"又置有至少一主體可外接(body-tied)矽覆絕緣(BT SOI)元 6 201044480 件與-主體可外接(BT)寄生元件,其中該阶寄生元件包含 有一第一型源極/汲極重摻雜區域與一寄生閘極,且該寄生= 極不設置於該第一型源極/汲極重摻雜區域之上,隨後分別則 量該BTS〇I元件與該ΒΤ寄生元件的穿随電流(Igb)與散射參 數( scattering parameters,s參數),並利用該BT寄生元二 之穿隧電流校正該BT SOI元件之穿隧電流,以獲得一浮體 石夕覆絕緣(FB SOI)元件之穿隨電流,再藉由一去鼓化技術從 〇 該BTS0I元件扣除該BT寄生元件之特性,以萃取出該fb SOI元件之S參數,最後計算分析該FB S0I元件之s參數 而得到真正屬於該FB SOI元件之閘極相關電容值(Cgb)。 根據本發明所提供之申請專利範圍,更提供一種半導體 元件,該半導體元件包含有一包含有一第二型井區之烏 底、一設置於該第二型井區内之第一型源極/汲極重摻雜區域 重換雜區域、一設置於該SOI基底内且藉由該第二型井區與 ❹ 該第一型源極/汲極重摻雜區域隔離之第一型重摻雜區域、一 設置於該第二型井區上且不跨越該源極/汲極重摻雜區域之 寄生閘極、以及一與一電路電性連接之基體。Accordingly, it is an object of the present invention to provide a characterization method that can effectively obtain FB SOI component characteristics and a semiconductor component applied to the characterization method. According to the scope of the invention provided by the present invention, a method for characterizing a semiconductor device is provided, which first provides an SOI substrate, and the SOI substrate is provided with at least one body-tied insulating material. (BT SOI) element 6 201044480 pieces and - body external (BT) parasitic element, wherein the parasitic element comprises a first type source/drain heavily doped region and a parasitic gate, and the parasitic = very And disposed on the first type source/drain heavily doped region, and then respectively measure the wear current (Igb) and scattering parameters (s parameters) of the BTS〇I element and the parasitic element, And correcting the tunneling current of the BT SOI component by using the tunneling current of the BT parasitic element 2 to obtain a pass-through current of a floating body IGBT (FB SOI) component, and then removing the current by a de-boiling technique The BTS0I component deducts the characteristics of the BT parasitic component to extract the S parameter of the fb SOI component, and finally calculates and analyzes the s parameter of the FB S0I component to obtain a gate-related capacitance value (Cgb) that truly belongs to the FB SOI component. According to the patent application scope provided by the present invention, there is further provided a semiconductor device comprising: a bottom portion including a second type well region; and a first type source/汲 disposed in the second type well region a heavily doped region heavily re-doped region, a first type heavily doped region disposed within the SOI substrate and isolated by the second type well region and the first type source/drain heavily doped region a parasitic gate disposed on the second well region and not crossing the source/drain heavily doped region, and a substrate electrically connected to a circuit.

根據本發明所提供之半導體元件特徵化方法,係首揭利 用去嵌化技術的觀念與寄生元件之設置去除BT SOI元件所 帶來的寄生效應,並藉由S參數計算分析出FD SOI元件正 確的Cgb。另外,藉由寄生元件所提供的Igb,係可校正bt SOI 201044480 元件所里得之Igb ’並真正獲得該FD SOI元件的Igb。 【實施方式] 、,本發明所提供之半導體元件測量方法與應用於該方法之 半導體元件適用於元件晶圓之切割道或於監控片㈣他沉 wafer)表面製作之複數個測試鍵結構,亦即在進行 晶粒上射頻元件之各項半導體製程的同時,便採用相同的步 〇驟於晶圓切割道或監控片表面製作測試所需的半導體元 件來模擬明粒上之相同製程。然後再利用探針(pr〇be)等測 试裝置接觸測試鍵’量測測試^件的各項參數,以獲得所需 的測里貝料,進而從測量資料中萃取出待測元件的實際特 性。 π參閱第2圖與第3囫’第2圖係—測試用主體可外接 (body-tied)石夕覆絕緣元件(以下簡稱為βτ則元件)之一第According to the semiconductor device characterization method provided by the present invention, the concept of de-embedding technology and the setting of parasitic components are used to remove the parasitic effects caused by the BT SOI component, and the FD SOI component is correctly analyzed by the S-parameter calculation. Cgb. In addition, the Igb provided by the bt SOI 201044480 component can be corrected by the Igb provided by the parasitic element and the Igb of the FD SOI component is actually obtained. [Embodiment] The semiconductor component measuring method provided by the present invention and the semiconductor component applied to the method are applicable to a plurality of test key structures formed on a surface of a component wafer or a surface of a monitor sheet (4). That is, while performing various semiconductor processes of the RF components on the die, the same steps are used to fabricate the semiconductor components required for the test on the wafer scribe or the surface of the monitor to simulate the same process on the etch. Then, using the test device such as a probe (pr〇be), the test button is touched to measure the parameters of the test component to obtain the desired measurement and the material, and the actual measurement of the component to be tested is extracted from the measurement data. characteristic. πRefer to Fig. 2 and Fig. 3' Fig. 2 - Test body can be externally connected to one of the body-tied elements (hereinafter referred to as "βτ")

一較佳實施例之示意圖;第3圖為第2圖巾BTS0I元件沿 切線A-A所獲得的一剖面示意圖。如前所述,BT s〇i元件 係於曰曰粒上RF元件之各項半導體製程的同時,即採用相同 的步驟於晶圓之切割道或於監控片表面所製作而得,因此該 等步驟係不再於此贅述。另外,本第一較佳實施例中之BT SOI元件係為一 N型M0SFET元件,但熟習該項技藝之人 士應知BT SOI元件亦不限為一 P型BT SOI元件。而當BT ★ SOI元件為P型時,熟習該項技藝之人士應知下述的n、P 201044480 型摻雜質之利用即相反,故於此亦不再贅述。 如第2圖與第3圖所示,本第一較佳實施例首先提供一 BT SOI兀件200,設置於一 s〇I基底21〇上。s〇I基底21〇 包含有一基材212、一埋置氧化(Β〇χ)層214與一 p型摻雜 矽層216。基於氧化矽(Si〇)材料優良的絕緣特性,以及易與 石夕晶圓製程的高整合性,BOX層214較佳為氧化石夕層,但不 〇限於此。P型摻雜碎層216内尚有-淺溝隔離(shallow trench isolation,STI) 220與一 P型井區23〇,且部分的p型井區 230係作為BTS0I元件200之基體。BTS〇I元件2〇〇具有 -由氧化石夕、氮化碎或其他高介電係數材料構成之閘極介電 層(示於第3圖),形成於基材210的表面上。而在閘極 介電層240上’ BT SOI元件2〇〇尚包含一 τ型的閘極結構 242’閘極結構242具有-第—部246與一垂直於第—部246 的第二部248,且第二部248係如第2圖所示,延伸並橫越 P型井區230。第一部248兩側之p型井區23〇 θ,係設置 - N型源極/祕4摻㈣域冰,值躲意的是,由於在佈 植用以形成Ν型源極/沒極重播雜區域2料的推雜質時,ρ 塑井區230上方的第二部248與部分的第一部246係作為一 Ν型摻雜質的佈植遮罩,因此完成佈植之後第二部248與此 部分的第-部246係具有Ν型摻雜質而形成一 Ν型區域 242a。另外,相對於Ν型區域处之另一側,即遠離μ .源㈣及極重摻雜區域244的部分第一部施則用以作為一 ρ 9 201044480A schematic view of a preferred embodiment; and Fig. 3 is a schematic cross-sectional view of the BTS0I element of the second towel taken along a tangential line A-A. As described above, the BT s〇i component is fabricated on the semiconductor process of the RF component on the enamel, that is, the same step is performed on the scribe line of the wafer or on the surface of the monitor sheet, so that The steps are not described here. In addition, the BT SOI component in the first preferred embodiment is an N-type MOSFET component, but those skilled in the art should be aware that the BT SOI component is not limited to a P-type BT SOI component. When the BT ★ SOI component is a P-type, those skilled in the art should know that the following n, P 201044480 type doping is reversed, and therefore will not be described here. As shown in Figures 2 and 3, the first preferred embodiment first provides a BT SOI device 200 disposed on a substrate 21A. The substrate 〇 21 includes a substrate 212, a buried oxide layer 214 and a p-type doped layer 216. The BOX layer 214 is preferably a oxidized stone layer based on the excellent insulating properties of the yttrium oxide (Si) material and the high integration with the Shihwa wafer process, but is not limited thereto. The P-type doped layer 216 also has a shallow trench isolation (STI) 220 and a P-type well region 23, and a portion of the p-type well region 230 serves as a substrate for the BTS0I element 200. The BTS(R) I element 2 has a gate dielectric layer (shown in Fig. 3) composed of an oxide oxide, a nitride or other high dielectric constant material, and is formed on the surface of the substrate 210. On the gate dielectric layer 240, the BT SOI device 2 includes a τ-type gate structure 242. The gate structure 242 has a - portion 246 and a second portion 248 that is perpendicular to the first portion 246. And the second portion 248 extends and traverses the P-type well region 230 as shown in FIG. The p-type well region 23 〇 θ on both sides of the first portion 248 is set to - N-type source / secret 4 doped (four) domain ice, the value of hiding is due to the formation of the Ν-type source / immersion When the impurity of the miscellaneous region 2 is replayed, the second portion 248 above the p-plastic zone 230 and the portion of the first portion 246 serve as a 掺杂-type doped implant mask, thus completing the second part after implantation. 248 and the portion 246 of this portion have a Ν-type doping to form a Ν-type region 242a. In addition, a portion of the first portion of the other side of the Ν-type region, that is, away from the source (four) and the heavily doped region 244 is used as a ρ 9 201044480

0 2⑻更具有接觸插塞250、252、2M (僅示於第2圖)。接觸 插塞250係與閘極結構242下方的基體電性連接,接觸插塞 252與閘極結構242電性連接,而接觸插塞254則與N型源 極/及極重摻雜區域244電性連接’是以測試用BT SOI元件 200之元件特性如Cgb以及Igb可輕易量測並萃取獲得。0 2 (8) has contact plugs 250, 252, 2M (shown only in Figure 2). The contact plug 250 is electrically connected to the base under the gate structure 242, the contact plug 252 is electrically connected to the gate structure 242, and the contact plug 254 is electrically connected to the N-type source and the heavily heavily doped region 244. The sexual connection 'is easily measured and extracted by the component characteristics of the test BT SOI element 200 such as Cgb and Igb.

然而,由於T型閘極結構242之第一部240同時具有N ❹型區域242a與p型區域242b,因此會扭曲(distort)實際上有 效用的第二部248的特性如Cgb與Igb的量測結果。換句話 說,雖然藉由BT SOI元件200的量測結果可萃取出所欲獲 得的元件特性’但實際上T型閘極結構242之第一部246因 同時具有N型區域242a與P型區域242b反而造成FB S0I 元件測量時之一影響甚鉅的寄生(parasite)效應,而無法反映 實際FB SOI元件之特性。 ' 接下來請參閱第4圖與第5圖’第4圖係第一較佳實施 201044480 例所提供之一測試用主體可外接(BT)寄生(dummy )元件3〇〇 之示意圖;第5圖則為第4圖中寄生元件沿切線,所獲得 的一剖面示意圖。如如所述,本第一較佳實施例所提供之 BT寄生元件300係與晶粒上RF元件以及前述BT s〇I元件 200形成時同步於晶圓之切割道或於監控片表面所製作而 得,故該等步驟亦於此省略。 〇 〇 如第4圖所示,與BT SOI元件200相同,bt寄生元件 300係設置於SOI基底210上。BT寄生元件300更具有一 寄生閘極342 ;與BT SOI元件2〇〇不同的是,BT寄生元件 300並不像BT SO[元件200具有跨越p型井區23〇的有效 的第一部248 ’亦即寄生閘極342與τ型閘極結構242具有 不同之佈局圖案。然而ΒΤ寄生元件3〇〇仍然維持與bts〇i 元件2相同條件的佈植圖案,且經歷形成N型源極/波極 重摻雜區域:44的佈植步驟,故摻雜質會進入原來的p型井 區230與虛设閘極342,而八扣丨犯丄 上…^他 而刀別形成如第5圖所示的N型源 極Λ及極重摻雜區域重摻雜區域 .,RT ^ 匕域* 244與Ν型區域342a。同樣 也’ BT寄生疋件300亦經歷p - p型區域342b,而同時㈣來\摻雜質佈植製程,而形成However, since the first portion 240 of the T-type gate structure 242 has both the N-type region 242a and the p-type region 242b, the characteristics of the second portion 248 that are actually effective, such as the amount of Cgb and Igb, are distorted. Test results. In other words, although the component characteristics to be obtained can be extracted by the measurement result of the BT SOI element 200, the first portion 246 of the T-type gate structure 242 has both the N-type region 242a and the P-type region 242b. On the contrary, it causes a parasite effect that is greatly affected by the measurement of the FB S0I component, and does not reflect the characteristics of the actual FB SOI component. 'Next, please refer to FIG. 4 and FIG. 5'. FIG. 4 is a schematic diagram of one of the test subject externally connectable (BT) dummy elements 3 提供 provided in the first preferred embodiment 201044480; FIG. Then, a cross-sectional view of the parasitic element in FIG. 4 is obtained along a tangential line. As described above, the BT parasitic element 300 provided in the first preferred embodiment is formed in synchronization with the scribe line of the wafer or the surface of the monitor sheet when the RF element on the die and the BT sII component 200 are formed. However, these steps are also omitted here. 〇 〇 As shown in FIG. 4, the bt parasitic element 300 is disposed on the SOI substrate 210, similarly to the BT SOI element 200. The BT parasitic element 300 further has a parasitic gate 342; unlike the BT SOI element 2, the BT parasitic element 300 is not like the BT SO [the element 200 has an active first portion 248 that spans the p-well 23 〇 That is, the parasitic gate 342 and the τ-type gate structure 242 have different layout patterns. However, the mistletoeium element 3〇〇 still maintains the implantation pattern of the same condition as the bts〇i element 2, and undergoes the implantation step of forming the N-type source/wave heavily doped region: 44, so the dopant will enter the original The p-type well region 230 and the dummy gate 342, and the eight-button 丨 丨 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 他 他 他 他 他 他 他 他 他 他 他 他 他 他 他 他 他 他 他 他, RT ^ 匕 field * 244 and Ν type area 342a. Similarly, the BT parasitic element 300 also undergoes the p-p-type region 342b, while at the same time (four) comes to the doping process, forming

成-P型重摻雜區域232,且原广::一 型井區別與N型源極/_重摻\重推雜區域232係藉由P 知BT寄生元件3 00之寄:=_區域_隔離。由此可 pa,. ^ ° 渴極 342 與 BT S0I 元件 200 之 閘極結構242的第一部2 相同’值BT寄生元件300之寄 11 201044480 生閘極342並不跨越N型源極/汲極重摻雜區域244。此外, BT寄生元件300具有接觸插塞350、352,接觸插塞350係 與基體電性連接;而接觸插塞352則與N型源極/汲極重摻 雜區域244電性連接,是以BT寄生元件300可提供寄生閘 極342對基體的相關特性。 请參閱第6圖,第6圖係本第一較佳實施例所提供之半 導體元件之測量方法之一流程示意圖。如第6圖所示,本半 導體元件之測量方法包含有以下步驟: 4〇〇:提供測試用的BT SOI元件200與主體可外接(BT)寄生 元件300 ; 402 :分別測量bt SOI元件與BT寄生元件的穿隧電流與散 射參數(scattering parameter,S 參數); 404 .藉由去嵌化(de_embedding)技術從BT SOI元件扣除BT 寄生元件之特性,以萃取出浮體矽覆絕緣(FB SOI)元件 之S參數; 406 :計算分析該fb SOI元件之S參數,而得到該FB SOI 元件之閘極相關電容值Cgb。 根據本發明所提供之測量方法,BT寄生元件300之寄生 閘極342係與BT SOI元件200中造成量測結果扭曲的T型 閘極結構242之第一部246相同,故BT寄生元件300所提 12 201044480 供的寄生閘極342對基體的相關特性可視為相當於第一部 246。因此本發明更利用去嵌化技術輔以適用的軟體去除待 測元件的寄生成分,即利用BT寄生元件3〇〇之設置去除BT SOI元件200中T型閘極結構242頭部,即同時具有N型區 域242a與P型區域242b之第一部246,實際上所產生的寄 生效應。由於本發明所提供之半導體元件之測量方法係可有 效地去除第一部246之寄生效應,輔以如熟習該領域之人士 Ο 所知’藉由S參數與導納參數(admittance parameter, Y-parameter ’ Y 參數)或阻抗參數(impe(jance parameter,z 參數)之轉換等方法,係可計算分析得到FB SOI元件之閘 極對基體正確的之電容值cgb。另外,藉由BT寄生元件300 所提供的Igb,係可校正BTSOI元件200所量得之Igb,並真 正獲得FB SOI元件的igb。 請參閱第7圖與第8圖,第7圖為N型BT SOI元件與經Form-P type heavily doped region 232, and the original wide:: one type well difference and N type source / _ heavy doping \ heavy push area 232 by P know BT parasitic element 3 00 send: = _ area _isolation. Thus, pa,. ^ ° thirst pole 342 is the same as the first portion 2 of the gate structure 242 of the BT S0I device 200. 'Value BT parasitic element 300 is sent 11 201044480 The gate 342 does not span the N-type source/汲Very heavily doped region 244. In addition, the BT parasitic element 300 has contact plugs 350 and 352, and the contact plug 350 is electrically connected to the base; and the contact plug 352 is electrically connected to the N-type source/drain heavily doped region 244. The BT parasitic element 300 can provide the relevant characteristics of the parasitic gate 342 to the substrate. Referring to Figure 6, Figure 6 is a flow chart showing a method of measuring a semiconductor element provided by the first preferred embodiment. As shown in FIG. 6, the measuring method of the semiconductor device comprises the following steps: 4: providing a BT SOI component 200 for testing and an external (BT) parasitic component 300; 402: measuring bt SOI component and BT, respectively The tunneling current and scattering parameter (S parameter) of the parasitic element; 404. Deducting the characteristics of the BT parasitic element from the BT SOI component by de-embedding technology to extract the floating body insulation (FB SOI) The S parameter of the component; 406: Calculating and analyzing the S parameter of the fb SOI component, and obtaining the gate related capacitance value Cgb of the FB SOI component. According to the measurement method provided by the present invention, the parasitic gate 342 of the BT parasitic element 300 is the same as the first portion 246 of the T-type gate structure 242 that causes the measurement result to be distorted in the BT SOI element 200, so the BT parasitic element 300 The correlation characteristic of the parasitic gate 342 to the substrate provided by 12 201044480 can be regarded as equivalent to the first portion 246. Therefore, the present invention further utilizes the de-embedding technique and the applicable software to remove the parasitic component of the device under test, that is, the BT parasitic element 3 is used to remove the head of the T-type gate structure 242 in the BT SOI element 200, that is, simultaneously The first portion 246 of the N-type region 242a and the P-type region 242b actually produces parasitic effects. Since the measurement method of the semiconductor device provided by the present invention can effectively remove the parasitic effect of the first portion 246, as is known to those skilled in the art, by the S parameter and the admittance parameter (Y- The parameter 'Y parameter) or the impedance parameter (impes (jance parameter) conversion method, etc., can calculate and calculate the correct capacitance value cgb of the gate of the FB SOI element to the base. In addition, by the BT parasitic element 300 The Igb is provided to correct the Igb measured by the BTSOI component 200, and to actually obtain the igb of the FB SOI component. Please refer to FIG. 7 and FIG. 8 , and FIG. 7 shows the N-type BT SOI component and the

Q 由本方法所獲得的N型FB SOI元件之Cgb比較圖;第8圖 則為P型BT SOI元件與經由本方法所獲得的p型FB SOI 元件之Cgb比較圖。如第7圖所示,與真正的N型FB SOI 元件相較,N型BT SOI元件所提供的Cgb常因T型閘極結 構之頭部(如第一較佳實施例之第一部246)的寄生效應導 致高估(over-estimated)的情形。而如第8圖所示,與真正的 P型FB SOI元件相較,p型BT SOI元件則因相同的原因導 • 致所提供的Cgb低估(under-estimated)。也就是說,根據本第 13 201044480 一較佳實施例所提供之方法,便可有效地去除待測元件的寄 生成分,而得到所欲取得的實際特性。 接下來請參閱第9圖至第12圖,第9圖為1^型BTS〇I 兀件的Igb與閘極電壓(Vgb)之曲線圖;第1〇圖則為經由本方 法所獲得的N型FB SOI元件之Igb與Vgb之曲線圖。而第n 圖為P型BT SOI元件所量測的Igb與Vgb之曲線圖;第12 〇 圖則為經由本方法所獲得的P型FB SOI元件之Igb與V之 曲線圖。根據上述曲線圖所示,可發現經由本發明所提供之 測量方法,可發現不論是N型或p型的BTSOI元件,其Igb 的確與實際FB SOI元件的lgb不同。也就是說,藉由寄生元 件300所提供的lgb,的確可校正BTS〇I元件2〇〇所量得之 Lb ’並獲得真正的FB SOI的lgb。 ❹ 請參閱第13圖與第14圖,第13圖係第二較佳實施例所 提供之一測試用BT SOI元件之一示意圖;第14圖則為第二 較佳實施例所提供之一測試用主體可外接(BT)寄生元件 6〇〇之不思圖。由於線性基體電阻(iinear body resistance,Rb) 係由元件寬度(W)與閘極長度(l)的函數決定,因此s〇I技術 中亦有形成Η型閘極以降低線性基體電阻,避免阻值過大造 成斷路的作法。且由於Η型閘極具有較低的電阻以及較佳的 跨導(transconductance),因此與Τ型閘極相比’ Η型閘極具 .有較大截止頻率(cutoff frequency)、較低最小雜訊指數 201044480 (minimum noise figure)、以及較佳的射頻性能(RF performance)。當晶圓内製作的FB SOI元件具有H型閘極 時,即於晶圓切割道或於監控片表面採用相同的步驟製作而 得到本第二較佳實施例所提供之一 BT SOI元件500,以模 擬晶粒上之相同製程及元件,故第13圖所示之BT SOI元件 5〇〇亦具有一 Η型閘極。此外第二較佳實施例中之BT SOI 元件500與BT寄生元件600亦為一 N型元件,但熟習該項 〇 技藝之人士應知該等元件亦不限為一 P型元件。而當該等元 件為P型時’熟習該項技藝之人士應知下述的N、p型摻雜 質之利用即相反,故於此亦不再贅述。另外,第二較佳實施 例中各元件之材料係同於第一較佳實施例,故亦可參閱前述 第一較佳實施例所揭露者。 如第13圖所示,BT SOI元件500係設置於一 S0I基底 ❹510上,其包含一 η型的閘極結構542 ; Η型閘極結構542 包έ 一對平行之第一部546以友一垂直於第一部546之第二 部548 ’且第二部548係延伸並橫越一 ρ型井區(圖未示)。 在第二部548兩側之Ρ型井區内形成有—Ν型源極/沒極重 穆雜區域544。BTS0I元件亦包含有一 ρ型重推雜區域(圖 未不)’其藉由P型井區與N型源極/汲極重摻雜區域544隔 離。而用以作為佈植遮罩的閘極結構542第二部548與部分 第-部546的閘極結構542係具有N型摻雜質而形成一 n ,型區域542a ;另外遠離N型源極/汲極重摻雜區域5料之部 201044480 刀第邛546則會形成一 p型區域542b。簡單地說,就結構 里I而。,閘極結構542具有一對互相平行的第一部546以 及一垂直於第一部546且橫跨P型井區的第二部548 ;就摻 雜型態而言,閘極結構542則具有一 N型區域542a與一 p 型區域542b。BT S0I元件50〇更具有接觸插塞55〇、552, 接觸插塞550係與基體電性連接;而接觸插塞552則與源極 /汲極重摻雜區域544電性連接,是以測試用BT s〇I元件5〇〇 ❹之元件特性如Cgb以及Igb可輕易量測並萃取獲得。 接下來請參閱第14圖。如前所述,由於第一部546的N 盤區域542a與P型區域542b的存在,會扭曲實際上有效用 的N型區域542a的特性如Cgb與Igb的量測。因此,第二較 佳實施例更提供之一 BT寄生元件600。與BT SOI元件500 相同,BT寄生元件600係設置於SOI基底510上。BT寄生 元件600更具有一寄生閘極642 ;與BT SOI元件500不同 〇Q Comparison of Cgb of N-type FB SOI elements obtained by the method; Figure 8 is a comparison of Cgb of P-type BT SOI elements and p-type FB SOI elements obtained by the method. As shown in FIG. 7, the Cgb provided by the N-type BT SOI element is often due to the head of the T-type gate structure as compared to a true N-type FB SOI element (as in the first portion of the first preferred embodiment 246). Parasitic effects lead to over-estimated situations. As shown in Figure 8, the p-type BT SOI component provides the under-estimated Cgb for the same reason as the true P-type FB SOI component. That is to say, according to the method provided in a preferred embodiment of the present invention, the transmission component of the device to be tested can be effectively removed, and the actual characteristics to be obtained can be obtained. Next, please refer to Fig. 9 to Fig. 12. Fig. 9 is a graph of Igb and gate voltage (Vgb) of the 1^ type BTS〇I element; Fig. 1 is the N obtained by the method. A plot of Igb and Vgb for a type FB SOI component. The nth figure is a graph of Igb and Vgb measured by the P-type BT SOI element; the 12th 〇 diagram is a plot of Igb and V of the P-type FB SOI element obtained by the method. From the above graph, it can be found that, via the measurement method provided by the present invention, it can be found that the Igb of either the N-type or p-type BTSOI element is different from the lgb of the actual FB SOI element. That is to say, by the lgb provided by the parasitic element 300, it is possible to correct the Lb' measured by the BTS 〇I element 2 and obtain the lgb of the true FB SOI. ❹ Please refer to FIG. 13 and FIG. 14 , FIG. 13 is a schematic diagram of one of the test BT SOI components provided by the second preferred embodiment; FIG. 14 is a test provided by the second preferred embodiment. The main body can be connected to a (BT) parasitic element. Since the linear body resistance (Rb) is determined by the function of the element width (W) and the gate length (l), a Η-type gate is also formed in the s〇I technique to reduce the linear matrix resistance and avoid resistance. The value is too large to cause an open circuit. And because the Η-type gate has lower resistance and better transconductance, it has a larger cutoff frequency and a lower minimum impurity than the Τ-type gate. Index 201044480 (minimum noise figure), and better RF performance. When the FB SOI element fabricated in the wafer has an H-type gate, the BT SOI element 500 provided by the second preferred embodiment is obtained by the same steps on the wafer dicing street or on the surface of the monitor sheet. In order to simulate the same process and components on the die, the BT SOI component 5〇〇 shown in Figure 13 also has a germanium gate. Furthermore, the BT SOI component 500 and the BT parasitic component 600 in the second preferred embodiment are also an N-type component, but those skilled in the art will recognize that such components are not limited to a P-type component. When the elements are of the P type, those skilled in the art should be aware that the use of the N and p type dopants described below is reversed and will not be further described herein. In addition, the materials of the components in the second preferred embodiment are the same as those in the first preferred embodiment. Therefore, reference may be made to the first preferred embodiment. As shown in FIG. 13, the BT SOI device 500 is disposed on an SOI substrate 510, which includes an n-type gate structure 542. The 闸-type gate structure 542 includes a pair of parallel first portions 546. The second portion 548' is perpendicular to the first portion 546 and the second portion 548 extends and traverses a p-type well region (not shown). A Ν-type source/no-heavy area 544 is formed in the 井-type well region on both sides of the second portion 548. The BTS0I device also includes a p-type re-doping region (not shown) which is isolated from the N-type source/drain heavily doped region 544 by the P-well region. The gate structure 542 of the gate structure 542 and the portion of the first portion 546 used as the implant mask have N-type doping to form an n-type region 542a; and further away from the N-type source / 汲 重 heavily doped area 5 material part 201044480 刀 邛 546 will form a p-type area 542b. Simply put, I am in the structure. The gate structure 542 has a pair of first portions 546 that are parallel to each other and a second portion 548 that is perpendicular to the first portion 546 and spans the P-type well region; in the doped form, the gate structure 542 has An N-type region 542a and a p-type region 542b. The BT S0I device 50 has a contact plug 55〇, 552, and the contact plug 550 is electrically connected to the base; and the contact plug 552 is electrically connected to the source/drain heavily doped region 544. The component characteristics such as Cgb and Igb of BT s〇I element 5 can be easily measured and extracted. Next, please refer to Figure 14. As previously mentioned, due to the presence of the N-disk region 542a and the P-type region 542b of the first portion 546, the characteristics of the substantially effective N-type region 542a such as the measurement of Cgb and Igb are distorted. Therefore, the second preferred embodiment further provides one of the BT parasitic elements 600. Like the BT SOI element 500, the BT parasitic element 600 is disposed on the SOI substrate 510. The BT parasitic element 600 has a parasitic gate 642; it is different from the BT SOI element 500.

的是,寄生閘極642係為一對平行的閘極結構;而不像BT SOI元件500具有跨越P型井區的有效的第二部548。然而 BT虛設元件600亦具有N逛源極/没極重摻雜區域544與P 型重摻雜區域,且P型重摻雜區域係藉由P型井區與N型源 極/汲極重摻雜區域544隔離。同理,作為佈植遮罩的虛設閘 極642在靠近N型源極/汲極重摻雜區域544形成一 N型區 域642a ;在靠近P型重摻雜區域的一側會形成一 P型區域 , 642b。由此可知BT虛設元件之虛設閘極642係與BT SOI 16 201044480 元件500之第一部546相同’但BT SOI元件600之虛設閘 極642並不跨越N型源極/沒極重換雜區域544。此外,BT 寄生元件600具有接觸插塞650、652,接觸插塞650係與基 體電性連接;而接觸插塞652則與N型源極/汲極重摻雜區 域544電性連接,是以BT寄生元件600可提供寄生閘極642 對基體的相關特性。 0 請重新參閱第6圖,由於第二較佳實施例所提供之半導 體元件之測量方法各步驟係與第一較佳實施例相同,因此該 等步驟係可參閱第6圖及上述說明。 此外值得注意的是,由於所欲獲得的Igb與Cgb非常微小, 因此本發明所提供之測量方法中,測試用BT SOI元件 200/500與BT虛設元件300/600較佳可以射頻測試鍵(radi〇 〇 freqUency,RF test keW結構建構,以增加Igb與Cgb的測量精 準度。睛參閱第17圖,其為本發明所提供之一 RF測試鍵之 不思圖。如第17圖所示’ rf測試鍵7〇〇係設置於基材21〇/51〇 上其中央位置係設置待測元件71〇如BTS〇I元件2〇〇/5〇〇 或BT虛设元件3〇〇/6〇〇,且待測元件具有一閘極連接端 712、一源極連接端714、一汲極連接端716與一基體連接端 718而5亥等連接端則依序分別電性連接至待測元件71〇之 閘極、源極、汲極與基體。RF測試鍵7〇〇包含有一底部金 '屬層,底部金屬層則具有一前區塊722、一右區塊724、一 17 201044480 後區塊726與一左區塊728環繞設置於待測元件71〇四周, 且依序與閘極連接端712、源極連接端714、没極連接端716 基體連接端718電性連接。另外,前區塊722與後區塊726 更分別具有一前訊號墊742與一後訊號墊746,用以與探針 連接。 RF測試鍵結構700更具有一位於底部金屬層上方之頂 ❹部金屬層,且頂部金屬層與底部金屬層之間則另設有一未示 於第Π圖中之介電層。頂部金屬層包含有右金屬片剔與 左金屬片,分別利用導電插塞(viaplug)穿過介電層以分 別電性連接至底部金屬層之右區塊724與左區塊728。右金 屬片764與左金屬片768各為一狹長之金屬片,且互相平 行。在右金屬片764之前端定義有一接地墊764a;後端則定 義有另一接地墊76仆。左金屬片768之前端定義有一接地墊 ❹ a ’後%亦疋義有另一接地墊768b。另外如第17圖所示, 接地墊768a、前訊號墊742與接地墊76如係排列成一前排 連接區域;而接地墊768b、後訊號墊746與接地墊76扑則 排列成-後排連接區域’即前後排連接區域由左至右依序為 接地塾區域、訊號墊區域、接地塾區域(G-S-G)。如此一來’ 探針卡之奴針就可分別接觸於射頻測試鍵7⑻之前排連接區 域與後排連接區域,進行待測元件710之測試。 4上所述,本發明係首揭利用去嵌化技術的觀念與虛設 18 201044480 元件之設置去除BT SOI元件所帶來的寄生效應,並藉由Y 參數、Ζ參數的轉換分析出浮體電晶體元件正確的Cgb。另 外,藉由BT寄生元件所提供的Igb,係可校正BTSOI元件 所量得之Igb,並真正獲得浮體電晶體的Igb。 以上所述僅為本發明之較佳實施例,凡依本發明申請專 利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 Ο 【圖式簡單說明】 第1圖為一習知PD SOI元件之示意圖。 第2圖為一測試用主體可外接(BT) SOI元件之一第一較 佳實施例之示意圖。 第3圖為第2圖中BT SOI元件沿切線A-A’所或的的一剖 面示意圖。 第4圖為第一較佳實施例中一測試用BT寄生元件。 ❹ 第5圖為第4圖中BT寄生元件沿切線B-B’所或的的一 剖面示意圖之佈局圖。 第6圖為本第一較佳實施例所提供之半導體元件之測量 方法之一流程示意圖。 第7圖為N型BT SOI元件與經由本方法所獲得的N型 FB SOI元件之Cgb比較圖。 第8圖為P型BT SOI元件與經由本方法所獲得的P型 FB SOI元件之Cgb比較圖。 19 201044480 第9圖為一 N型BT SOI元件的穿隧電流(Igb)與閘極電 壓(Vgb)之曲線圖。 第10圖為經由本方法所獲得的一 N型FB SOI元件之Igb 與Vgb之曲線圖。 第11圖為一 P型BT SOI元件所量測的Igb與Vgb之曲線 圖。 第12圖為經由本方法所獲得的一 P型FB SOI元件之Igb 0 與Vgb之曲線圖。 第13圖為一測試用BT SOI元件之一第二較佳實施例之 示意圖。 第14圖為第二較佳實施例所提供之一測試用BT寄生元 件之示意圖。 第15圖為本發明所提供之一 RF測試鍵之示意圖。 【主要元件符號說明】 100 部分空乏矽覆絕緣元件 110 112 基材 114 116 矽薄膜 120 122 閘極介電層 124 126 基體 SOI基底 埋置氧化層 閘極導電層 源極/汲極 200、500 主體可外接矽覆絕緣元件 210 SOI基底 20 201044480 212 214 216 220 230 232 240 q 242 > 542 242a、542a 242b > 542b 244 、 544 246 、 546 248 、 548 250 、 252 、 254 、 550 、 552 300 、 600 342 ' 642 342a、642a 342b 、 642b 350 、 352 、 650 、 652 400 提供測試用的 402 分別測量ΒΤί 基材 埋置氧化層 Ρ型摻雜矽層 淺溝隔離 Ρ型井區 Ρ型重摻雜區域 閘極介電層 閘極結構 Ν型區域 Ρ型區域 Ν型源極/汲極重摻雜區域 第一部 第二部 接觸插塞 主體可外接寄生元件 虛設閘極 Ν型區域 Ρ型區域 接觸插塞 BT SOI元件與ΒΤ寄生元件 01元件與BT寄生元件的穿隧電 21 201044480 流與s參數 404 藉由去嵌化技術從BT SOI元件扣除該BT寄生 元件之特性,以萃取出一浮體矽覆絕緣(FB SOI)元件之S參數 406 計算分析該FB SOI元件之S參數,而得到該 FB SOI元件之閘極對基體之電容值CgbThe parasitic gate 642 is a pair of parallel gate structures; unlike the BT SOI element 500, it has an active second portion 548 that spans the P-well region. However, the BT dummy element 600 also has a N-source/no-heavy doped region 544 and a P-type heavily doped region, and the P-type heavily doped region is heavily weighted by the P-type well region and the N-type source/drain The doped region 544 is isolated. Similarly, the dummy gate 642 as the implant mask forms an N-type region 642a near the N-type source/drain heavily doped region 544; a P-type is formed on the side close to the P-type heavily doped region. Area, 642b. It can be seen that the dummy gate 642 of the BT dummy device is the same as the first portion 546 of the BT SOI 16 201044480 component 500. However, the dummy gate 642 of the BT SOI component 600 does not span the N-type source/no-heavy replacement region. 544. In addition, the BT parasitic element 600 has contact plugs 650, 652, and the contact plug 650 is electrically connected to the base; and the contact plug 652 is electrically connected to the N-type source/drain heavily doped region 544. The BT parasitic element 600 can provide the relevant characteristics of the parasitic gate 642 to the substrate. Please refer back to Fig. 6. Since the steps of the measuring method of the semiconductor component provided by the second preferred embodiment are the same as those of the first preferred embodiment, the steps are as shown in Fig. 6 and the above description. In addition, it is worth noting that, since the Igb and Cgb to be obtained are very small, in the measurement method provided by the present invention, the test BT SOI component 200/500 and the BT dummy component 300/600 are preferably RF test keys (radi 〇〇freqUency, RF test keW structure construction to increase the measurement accuracy of Igb and Cgb. See Figure 17, which is one of the RF test keys provided by the present invention. As shown in Figure 17, rf The test button 7 is disposed on the substrate 21〇/51〇 at its central position to set the device to be tested 71 such as BTS〇I element 2〇〇/5〇〇 or BT dummy element 3〇〇/6〇〇 The device to be tested has a gate connection end 712, a source connection end 714, a drain connection end 716 and a base connection end 718, and the connection ends of the 5th and the other are sequentially electrically connected to the device under test 71. The gate, the source, the drain and the substrate of the crucible. The RF test key 7〇〇 includes a bottom gold layer, and the bottom metal layer has a front block 722, a right block 724, and a 17 201044480 rear block. 726 and a left block 728 are circumferentially disposed around the device under test 71, and sequentially connected to the gate terminal 712, The front connection block 714 and the rear end block 726 respectively have a front signal pad 742 and a rear signal pad 746 for connecting with the probe. The RF test key structure 700 further has a top metal layer above the bottom metal layer, and a dielectric layer not shown in the second layer between the top metal layer and the bottom metal layer. A right metal piece and a left metal piece are included, respectively, and a via plug is used to pass through the dielectric layer to electrically connect to the right block 724 and the left block 728 of the bottom metal layer, respectively. The right metal piece 764 and the left side The metal sheets 768 are each an elongated metal piece and are parallel to each other. A ground pad 764a is defined at the front end of the right metal piece 764, and another ground pad 76 is defined at the rear end. A ground pad is defined at the front end of the left metal piece 768. ❹ a 'After % also has another ground pad 768b. Also as shown in Figure 17, the ground pad 768a, the front signal pad 742 and the ground pad 76 are arranged in a front row connection area; and the ground pad 768b, rear The signal pad 746 and the ground pad 76 are arranged in a row - The row connection area', that is, the front and rear row connection areas are the grounding area, the signal pad area, and the grounding area (GSG) from left to right. Thus, the probe card's slave needle can be respectively contacted with the RF test key 7 (8). The front row connection area and the rear row connection area are tested by the device under test 710. 4 As described above, the present invention first discloses the concept of using de-embedding technology and the setting of the dummy 18 201044480 component to remove the BT SOI component. Parasitic effect, and the correct Cgb of the floating transistor component is analyzed by the conversion of the Y parameter and the Ζ parameter. In addition, the Igb provided by the BT parasitic element corrects the Igb measured by the BTSOI element and actually obtains the Igb of the floating body transistor. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the patent scope of the present invention are intended to be within the scope of the present invention. Ο [Simple description of the diagram] Figure 1 is a schematic diagram of a conventional PD SOI component. Figure 2 is a schematic illustration of a first preferred embodiment of a test body externally connectable (BT) SOI component. Fig. 3 is a schematic cross-sectional view of the BT SOI element taken along line A-A' in Fig. 2. Figure 4 is a BT parasitic element for testing in the first preferred embodiment. ❹ Fig. 5 is a layout view of a cross-sectional view of the BT parasitic element along the tangential line B-B' in Fig. 4. Fig. 6 is a flow chart showing a method of measuring a semiconductor device provided in the first preferred embodiment. Figure 7 is a Cgb comparison of the N-type BT SOI element and the N-type FB SOI element obtained by the method. Figure 8 is a comparison of Cgb of a P-type BT SOI element and a P-type FB SOI element obtained by the method. 19 201044480 Figure 9 is a plot of tunneling current (Igb) and gate voltage (Vgb) for an N-type BT SOI component. Figure 10 is a graph of Igb and Vgb of an N-type FB SOI element obtained by the method. Figure 11 is a plot of Igb and Vgb measured by a P-type BT SOI component. Figure 12 is a graph of Igb 0 and Vgb of a P-type FB SOI element obtained by the method. Figure 13 is a schematic view showing a second preferred embodiment of a test BT SOI element. Fig. 14 is a view showing a test BT parasitic element provided in the second preferred embodiment. Figure 15 is a schematic diagram of one of the RF test keys provided by the present invention. [Main component symbol description] 100 partially depleted insulating member 110 112 substrate 114 116 germanium film 120 122 gate dielectric layer 124 126 substrate SOI substrate buried oxide gate conductive layer source/drain 200, 500 body An externally-clad insulating member 210 can be used. SOI substrate 20 201044480 212 214 216 220 230 232 240 q 242 > 542 242a, 542a 242b > 542b 244, 544 246, 546 248, 548 250, 252, 254, 550, 552 300, 600 342 ' 642 342a, 642a 342b, 642b 350 , 352 , 650 , 652 400 for testing 402 separately measured 基材 基材 substrate buried oxide layer 矽 type doped 矽 layer shallow trench isolation Ρ type well area Ρ type heavy doping Area gate dielectric layer gate structure Ν type region Ρ type region Ν type source/drain heavily doped region first part second contact plug body can be connected with parasitic element dummy gate Ν type region Ρ type region contact Plug BT SOI component and tunneling electrical component of the ΒΤ parasitic component 01 component and BT parasitic component 21 201044480 Flow and s parameter 404 Deducting the characteristics of the BT parasitic component from the BT SOI component by de-embedding technology A silicon on insulator (FB SOI) S parameter calculation element 406 of the S-parameter analysis FB SOI element, the gate of the obtained extreme FB SOI element capacitance value of a floating body of the base body Cgb

700 射頻測試鍵 710 待測元件 712 閘極連接端 714 源極連接端 716 汲極連接端 718 基體連接端 722 前區塊 724 右區塊 726 後區塊 728 左區塊 742 前訊號墊 746 後訊號墊 764 右金屬片 764a、764b 接地墊 768 左金屬片 22 201044480 768a、768b接地墊700 RF test button 710 DUT 712 Gate connection 714 Source connection 716 Drawer connection 718 Base connection 722 Front block 724 Right block 726 Rear block 728 Left block 742 Front signal pad 746 Rear signal Pad 764 Right metal piece 764a, 764b Ground pad 768 Left metal piece 22 201044480 768a, 768b Ground pad

Claims (1)

201044480 七、申請專利範圍: 1. 一種半導體元件測量方法,包含有以下步驟: 知1 供一石夕覆絕緣(silicon-on-insulator,SOI)基底,該 SOI 基底上设置有至少一主體可外接(b〇£jy_tied)石夕覆絕緣(BT SOI)元件與一主體可外接(BT)寄生元件,其中該bt寄生元 件包含有一第一型源極/汲極重摻雜區域與一寄生閘極,且該 〇 寄生閘極不設置於該第一型源極/汲極重摻雜區域之上; 分別測量該BT SOI元件與該BT寄生元件的穿隧電流(Igb) 與散射參數(scattering parameter,S 參數); 利用該BT寄生元件之穿隧電流校正該BT SOI元件之穿 隧電流’以獲得一浮體矽覆絕緣(floating body,BT SOI)元件 之穿隧電流; 藉由去嵌化技術從該BT SOI元件扣除該BT寄生元件之 特性,以萃取出該FB SOI元件之S參數;以及 ◎ 計算分析該FB SOI元件之S參數而得到該fb SOI元件 之閘極相關電容值(Cgb )。 2. 如申請專利範圍第1項所述之測量方法,其中該bt SOI 元件與該BT寄生元件係利用相同的步驟同時形成於該SOI 基底上。 . 3.如申請專利範圍第1項所述之測量方法,其中該SOI基 24 201044480 .· 底包含有複數個第二型井區。 4.如申响專利範圍第3項所述之測量方法,其中該b丁 s〇i 元件包含有: 一問極結構,設置於該第二型井區上; 至少一第一型源極/汲極重摻雜區域,形成於該第二型井 區内; 〇 —第二型重摻雜區域’形成於該s〇I基底内,且藉由該 第^型井區與該第-型源極/沒極重推雜區域隔離;以/ —基體(body),且該基體係與一電路電性連接。 甲請專利範圍第4項所述之測 構星右资 一1 丨#〜w置歹凊’其中該閘極結 構,有-第—部與—垂直於該第—部之第二部, 係跨越該第二型井區。 μ第一邛 ❹ 6·如申請專利範圍第5項所述之 構之第一部具;^ g别r 万法其中該閘極結 域罪近該第-型源極/汲極重摻雜區域,而 區 该第二型重摻雜區域。 ° 一區域罪近 其中該閘極結 .如申請專鄉㈣6項所述之測量方法 構係為一 τ型閘極結構。 25 201044480 8·如申請專利範圍第7項所述之測量方法 元件更包含有: ΒΤ寄生 一第二型重摻雜區域;以及 一基體,且該基體係與一電路電性連接;其中 該寄生閘極係設置於該第二型井區上 區域與一第二型區域,該第一型區域 /、 一型 番换# ,罪近該第一型源極/汲極 Ο 雜區域’而該第二型區域靠近該第二型重摻雜區域。 料觀㈣狀㈣料,其中該閉極結 構係為一 Η型閘極結構,該Η型閘極結構之該第一 一對互相平行且設置於該第二部兩端之結構。 , 方法’其中該ΒΤ寄 10.如申請專利範圍第9項所述之測量 生元件更包含有: 一第二型重摻雜區域;以及 基體,且該基體係與一電路電性連接,·其中 該寄生閘極係為-對互相平行,且設置於該第二型井區 上之寄生閘極,且該寄生閘極具有―第—型區域與—第二區 域:該第-㈣域靠近該第—型源極/祕重摻雜區域,而該 第二型區域靠近該第二型重摻雜區域。 U.如申明專利範圍第1項所述之測量方法,其中該Βτ s〇i 元件與及BT寄生元件皆以射頻測試鍵如此 26 201044480 <w test key)結構建構。 12. 如申請專利範圍第1項所述之測量方法,其中該SOI基 底係為一元件晶圓或一監控片(monitor wafer)之基底。 13. —種半導體元件,包含有: 一矽覆絕緣(SOI)基底,該SOI基底包含有一第二型井區; ❹ 一第一型源極/汲極重摻雜區域,設置於該第二型井區内; 一第二型重摻雜區域,設置於該s〇I基底内,且藉由該 第二型井區與該第一型源極/汲極重摻雜區域隔離; 一寄生閘極,設置於該第一型井區上,且不跨越該第一 型源極/沒極重摻雜區域;以及 主體可外接(BT)基體,且該bt基體係與一電路電性連 接。 〇⑷如申請專利範圍第13項所述之半導體元件,其中該咖 基底依序包含有一基材、一埋置氧化層與一第-型摻_ 層。 15.如申請專利範 抓門朽且古,结㈣^平㈣元件,其中該虛 B又閘極具有一第一型區域與一第二區域,該第一型 :3=汲極重摻雜區域,而該第二型區域靠近該第二 27 201044480 16·如申請專利範圍第15項所述之半導體元件 設閘極係為一對互相平行之閘極結構。 17.如申請專利範圍第13項所述之半導體元件 導體元件係崎_試鍵結構建構。 ❹I8.如申請專利範圍第13項所述之半導體元件, 基底係為一元件晶圓之基底。 19.如申請專利範圍第18項所述之半導體元件 導體元件係設置於該元件晶圓之切割道内。 20·如申請專利範圍第13項所述之半導體元件, 基底係為或一監控片(monitor wafer)之基底。 ’其中該虛 ’其中該半 其中該SOI ’其中該半 其中該SOI ❹八、圖式: 28201044480 VII. Patent application scope: 1. A method for measuring a semiconductor component, comprising the following steps: knowing that a silicon-on-insulator (SOI) substrate is provided, and at least one body is externally connected on the SOI substrate ( B〇£jy_tied) a BT SOI component and a body externally connectable (BT) parasitic component, wherein the bt parasitic component comprises a first type source/drain heavily doped region and a parasitic gate, And the parasitic gate is not disposed on the first source/drain heavily doped region; and the tunneling current (Igb) and the scattering parameter (scattering parameter) of the BT SOI component and the BT parasitic component are respectively measured. S parameter); correcting the tunneling current of the BT SOI element by using the tunneling current of the BT parasitic element to obtain a tunneling current of a floating body (BT SOI) component; by de-embedding technology Deducting the characteristics of the BT parasitic element from the BT SOI component to extract the S parameter of the FB SOI component; and ◎ calculating and analyzing the S parameter of the FB SOI component to obtain the gate related capacitance value (Cgb) of the fb SOI component . 2. The measuring method according to claim 1, wherein the bt SOI element and the BT parasitic element are simultaneously formed on the SOI substrate by the same steps. 3. The measuring method according to claim 1, wherein the SOI base 24 201044480 . . . bottom comprises a plurality of second type well regions. 4. The measuring method according to claim 3, wherein the b s 〇 element comprises: a question mark structure disposed on the second type well region; at least one first type source/ a heavily doped region of the drain is formed in the second well region; a second heavily doped region is formed in the base of the s〇I, and the first well region and the first type The source/no-heavy area is isolated; the body is electrically connected to a circuit. A please refer to the measurement of the fourth paragraph of the scope of the patent scope of the right-wing 1 丨 # w 歹凊 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中Cross the second type of well area.邛❹第一邛❹6· The first part of the structure described in the fifth paragraph of the patent application; ^ g r 万 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 近 近 近 近 近 近 近 近 近 近 近 近 近 近 近The region, while the second type of heavily doped region. ° A regional crime is close to the gate. The measurement method described in the application for the hometown (4) is a τ-type gate structure. 25 201044480 8 The measuring method component of claim 7, further comprising: a mistletium-type second type heavily doped region; and a substrate, wherein the base system is electrically connected to a circuit; wherein the parasitic The gate system is disposed in the upper region of the second type well region and a second type region, the first type region/, the first type is replaced by #, the crime is close to the first type source/drainage impurity region and the first The type II region is adjacent to the second type heavily doped region. The material is a (four)-shaped (four) material, wherein the closed-pole structure is a Η-type gate structure, and the first pair of the Η-type gate structure is parallel to each other and disposed at both ends of the second portion. The method of claim 10, wherein the measuring element according to claim 9 further comprises: a second type heavily doped region; and a substrate, wherein the base system is electrically connected to a circuit, The parasitic gate is a parasitic gate that is parallel to each other and disposed on the second well region, and the parasitic gate has a “first-type region” and a second region: the first-(fourth) region is close to The first type source/secret heavily doped region, and the second type region is adjacent to the second type heavily doped region. U. The method of measuring according to claim 1, wherein the Βτ s〇i element and the BT parasitic element are constructed by using a radio frequency test key. 26 201044480 <w test key). 12. The method of measuring according to claim 1, wherein the SOI substrate is a substrate of a component wafer or a monitor wafer. 13. A semiconductor device comprising: a germanium-insulated insulating (SOI) substrate, the SOI substrate comprising a second type well region; ❹ a first type source/drain heavily doped region disposed in the second a second type heavily doped region disposed in the s〇I substrate and isolated from the first type source/drain heavily doped region by the second type well region; a gate electrode disposed on the first type well region and not crossing the first type source/difficult heavily doped region; and the body may be externally connected to the (BT) substrate, and the bt base system is electrically connected to a circuit . The semiconductor device according to claim 13, wherein the coffee substrate comprises a substrate, a buried oxide layer and a first-type doped layer in sequence. 15. If the patent application is smothered and ancient, the junction (four) and the flat (four) component, wherein the dummy B and the gate have a first type region and a second region, the first type: 3 = bungee heavily doped And the second type region is adjacent to the second 27 201044480. The semiconductor device according to claim 15 is a pair of mutually parallel gate structures. 17. The construction of a semiconductor component conductor component as described in claim 13 of the patent specification. ❹I8. The semiconductor component of claim 13, wherein the substrate is a substrate of a component wafer. 19. The semiconductor component conductor component of claim 18, wherein the conductor component is disposed in a scribe line of the component wafer. 20. The semiconductor component according to claim 13, wherein the substrate is a substrate of a monitor wafer. Where is the virtual 'the half of the SOI' where the half of the SOI ❹ eight, the pattern: 28
TW098118689A 2009-06-05 2009-06-05 Method of characterizing a semiconductor device and semiconductor device TWI484573B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098118689A TWI484573B (en) 2009-06-05 2009-06-05 Method of characterizing a semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098118689A TWI484573B (en) 2009-06-05 2009-06-05 Method of characterizing a semiconductor device and semiconductor device

Publications (2)

Publication Number Publication Date
TW201044480A true TW201044480A (en) 2010-12-16
TWI484573B TWI484573B (en) 2015-05-11

Family

ID=45001354

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118689A TWI484573B (en) 2009-06-05 2009-06-05 Method of characterizing a semiconductor device and semiconductor device

Country Status (1)

Country Link
TW (1) TWI484573B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484462B2 (en) * 1996-04-11 2004-01-06 株式会社ルネサステクノロジ Method for estimating lifetime of floating SOI-MOSFET
JP3504212B2 (en) * 2000-04-04 2004-03-08 シャープ株式会社 Semiconductor device with SOI structure
US6623995B1 (en) * 2002-10-30 2003-09-23 Taiwan Semiconductor Manufacturing Company Optimized monitor method for a metal patterning process
JP4361292B2 (en) * 2003-02-19 2009-11-11 Okiセミコンダクタ株式会社 TEG for semiconductor device evaluation
US7453121B2 (en) * 2003-12-22 2008-11-18 Taiwan Semiconductor Manufacturing Co., Ltd. Body contact formation in partially depleted silicon on insulator device
US7910993B2 (en) * 2005-07-11 2011-03-22 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink
JP4565512B2 (en) * 2006-09-27 2010-10-20 Okiセミコンダクタ株式会社 FET capacitance acquisition TEG and capacitance acquisition method

Also Published As

Publication number Publication date
TWI484573B (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US7656183B2 (en) Method to extract gate to source/drain and overlap capacitances and test key structure therefor
US10396000B2 (en) Test structure macro for monitoring dimensions of deep trench isolation regions and local trench isolation regions
US8293606B2 (en) Body tie test structure for accurate body effect measurement
CN103852702B (en) The method determining carrier concentration in semiconductor fin
US20110108892A1 (en) Detector of biological or chemical material and corresponding array of detectors
US20060022197A1 (en) Technique for evaluating local electrical characteristics in semiconductor devices
US8093916B2 (en) Method of characterizing a semiconductor device and semiconductor device
JP2008085024A (en) Teg for acquiring capacitance of fet and capacitance acquiring method
CN107290594A (en) Test structure and its method of testing
US7071044B1 (en) Method of making a test structure for gate-body current and direct extraction of physical gate length using conventional CMOS
CN109449098A (en) Semiconductor structure, test macro, the production method of test method and semiconductor structure
US9000785B2 (en) Transistor test structure
US7521946B1 (en) Electrical measurements on semiconductors using corona and microwave techniques
CN101022105B (en) Semiconductor device testing device and substrate for producing tester
CN209434179U (en) Semiconductor structure and test macro
TW201044480A (en) Method of characterizing a semiconductor device and semiconductor device
CN103915360B (en) The method of detection transistor overlap capacitance, the method for elimination transistor overlap capacitance
US20150102831A1 (en) Method of inspecting a semiconductor device and probing assembly for use therein
US20080286888A1 (en) Test structures and methodology for detecting hot defects
TW201320212A (en) Testkey structure and method for measuring step height by such testkey structure
US11367790B2 (en) Body-contacted field effect transistors configured for test and methods
KR102185647B1 (en) Method for evaluating soi substrate
CN104658938B (en) A kind of test structure for being used to measure silicide resistor
CN110416104A (en) A kind of grid of source and drain lifting FDSOI device enclose parasitic interconnection capacitance extracting method
Makovejev Characterisation of thermal and coupling effects in advanced silicon MOSFETs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees