201037861 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電子元件,且特別是有關於一種 發光二極體(Light Emitting Diode,LED)。 【先前技術】 傳統的照明燈具一般都採用金屬鹵化物燈、白熾燈、 水銀燈與高壓鈉燈等燈泡,但是這類燈泡的耗電量相當 〇 大,需要付出相當多的金錢來支付電費,而且也不符合現 今節能減碳的環保訴求。 為了解決傳統的照明燈具耗電量太大的問題,現今科 技已發展出一種耗電量很低的發光體:發光二極體。發光 二極體不僅具有低耗電量及省電的優點,同時還具有體積 小、驅動電壓低與不含汞等優點。因此,發光二極體已廣 泛地使用在現在社會中。 〇 【發明内容】 本發明的主要目的是提供一種發光二極體,其至少二 個導電接腳的材質互不相同。 本發明提出一種發光二極體,其包括一對電極、一晶 片、一封膠體以及一對第一導電接腳。晶片電性連接這些 電極,而封膠體包覆這些電極與晶片。這些第一導電接腳 分別電性連接這些電極,其中一個第一導電接腳的材質與 201037861 另一個苐一導電接腳的材質不同。 當這些第一導電接腳浸泡於電解液時,本發明的發光 -極體_發$ H g此,即使電池或市電等外部電源沒 有供給電能,本發明的發光二極體仍可以發光。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 〇 圖1是本發明第一實施例之發光二極體的刮面示意 圖。請參閱圖1 ’本實施例的發光二極體10〇包括一晶片 110、一對電極120a、120b以及一封膠體130,其中晶片 110電性連接這些電極120a、120b,而封膠體130則用來 包覆這些電極120a、120b與晶片110。 晶片110例如是由半導體材料所製成,其中此半導體 材料的成分可含有III-V族元素,例如砷、鎵或鍺。晶片110 Ο 在接收電能時會發出光線,如此發光二極體1〇〇得以發 光。可見,晶片110為發光二極體1〇〇的核心元件。此外, 電極120a可為一金屬座,而晶片no配置於金屬座(即電 極120a)上,並且電性連接電極120a。 承上述’晶片110可以透過打線連接(wire bonding) 的方式電性連接另一個電極12〇b。詳細而言,發光二極體 100可更包括一鍵合導線14〇,而鍵合導線140電性連接於 電極120a與電極120b之間。因此,透過鍵合導線14〇, 4 201037861 晶片110得以電性連接這些電極12〇£1、12〇1)。 發光二極體100更包括一對第一導電接腳15〇a、 150b,而這些第一導電接腳15〇a、15〇b分別電性連接這些 電極120a、120b。詳言之,第一導電接腳15〇a電性連接電 極120a,而第一導電接腳15〇b電性連接電極n〇b。此外, 第一導電接腳ISOa、l50b二者的化學電位( chemical potential)並不相等。 詳s之,第一導電接腳150a的材質與另一個第一導電 〇 接腳150b的材質不同,例如第一導電接腳15〇a的材質為 銅或碳,而另一個第一導電接腳150b的材質為鋅或鐵。此 外,這些第一導電接腳15〇a、15〇b也可以是由合金材料所 製成,不過第一導電接腳15〇a、150b二者所採用的合金材 料完全不同。舉例來說,第一導電接腳15〇a的材質為氫氧 化鎳合金,而另一個第一導電接腳150b的材質為鐵鎘合 金0 〇 當第一導電接腳150a、150b浸泡於一電解液10時, 由於第一導電接腳150a、150b二者的化學電位並不相同, 因此第一導電接腳150a、150b與電解液1〇三者能形成一 個伏打電池(Voltaic pile)。這樣第一導電接腳15〇a、15〇b 可以輸出電能至電極120a、120b,而晶片u〇透過電極 120a、l_20b此接收電能而發出光線。此外,第一導電接腳 150a、150b二者的化學電位可以相差在〇 4伏特至15伏 特之間’以供給晶片110較高電壓的電能。 201037861 電解液ίο可以是含有離子化合物的溶液,其例如是氣 化納(像是食鹽)水溶液、氯化鎂水溶液或硫酸溶液或驗 性溶液,所以電解液ίο也可以果汁、汽水等飲料。由此可 見,右將第一導電接腳150a、150b插入於柳丁、檸;樣咬韻 果等水果中,發光二極體100亦可以發出光線。 發光·一極體100所發出的光線之強弱會受電解液1Q中 的離子濃度而影響。因此,藉由發光二極體的亮度, 可大略得知電解液10中的離子濃度。舉例來說,這些第一 〇 導電接腳150a、150b可插入於水果中,讓發光二極體100 發光,而從發光二極體1〇〇的亮度,能大概得知水果的甜 度以及新鮮程度’即知道水果甜不甜,新不新鮮。 圖2是本發明第二實施例之發光二極體的剖面示意 圖。請參閱圖2,本實施例發光二極體2〇〇也包括晶片11〇、 對電極120a、120b、封膠體13〇以及一對第一導電接腳 15〇a、l50b,而上述發光二極體2〇〇的元件,其材質、功 〇 能、彼此之間的配置及連接關係皆於第一實施例相同,故 不再重複f述,且訂將偏重介紹發光二極體與發光 二極體100二者的差異。 發光一極體200更包括至少一導電接腳組21〇,而各 ,導電接聊組21G包括一對第二導電接腳212a、麗。在 :導電接腳經210中,這些第二導電接腳212a、212b彼 一。11連接。詳細而言,各個導電接腳組2⑺可以更包括 電1 生連接於這些第二導電接腳212a、2i2b之間的導電條 201037861 214。透過這些導電條214,第二導電接腳212a、212b得 以彼此電性連接。 第二導電接腳212a的材質與另一個第二導電接腳 212b的材質不同,例如第二導電接腳212a的材質為銅或 碳,而第二導電接腳212b的材質為鋅或鐵,因此第二導電 接腳212a、212b二者的化學電位並不相等。此外,第二導 電接腳212a的材質可為氫氧化鎳合金,而另一個第二導電 接腳212b的材質可為鐵鎘合金。由此可知,第二導電接腳 ❹ 212a的材質可與第一導電接腳150a的材質相同,而第二導 電接腳212b的材質可與第一導電接腳15〇b的材質相同。 發光二極體200可以更包括一配置於封膠體13〇内的 榮光材料220,而螢光材料220能改變晶片η0所發出的 光線之波長,即螢光材料220能改變光線的顏色。舉例來 說,晶片110例如能發出藍光’其中部分的藍光會穿透封 膠體130與螢光材料220,而另一部分的藍光則會被螢光 Ο 材料220吸收。螢光材料220能將所吸收的藍光轉換成黃 光,讓發光二極體200發出由藍光與黃光混合而成的白光。 另外,螢光材料220可以只分布在封膠體13〇的外表 面132處。如此,螢光材料22〇得以成為一罩蓋晶片11〇 的螢光罩。不過,在其他未繪示的實施例中,螢光材料22〇 可以是實質上均勻地分布在整個封膠體13〇中。因此,圖 2所示的螢光材料220僅為舉例說明,並非限定本發明。 發光一極體200需透過位於多個槽内的電解液2〇&、 7 201037861 20b及20c來發光’且這些槽内的電解液2〇a、20b及20c 彼此不流通。舉例而言,第一導電接腳HOa與其中一組導 電接腳組210的第二導電接腳212b同浸泡在一槽内的電解 液20c中,第一導電接腳i5〇b與另一組導電接腳組21〇的 第二導電接腳212a同浸泡在另一槽内的電解液2〇a中,而 剩下二根分屬於不同導電接腳組21〇的第二導電接腳212b 則同浸泡在一槽内的電解液2〇b中,其中電解液20a、20b 及20c三者彼此分開而不流通。 〇 由於在各組導電接腳組210中,第二導電接腳212a、 212b二者的化學電位並不相等,因此第一導電接腳15〇a、 150b、第二導電接腳212a、212b與電解液20a、20b、20c 月b形成二個串聯的伏打電池。如此,第一導電接腳i5〇a、 150b能輸出較大電壓的電能至電極12〇a、12〇b,讓晶片11〇 發出較免的光線,進而提高發光二極體2〇〇的亮度。 綜上所述,藉由多個導電接腳(如第一、第二導電接 ❹ 腳)浸泡於電解液,本發明能讓發光二極體發光。可見, 即使電池或市電等外部電源沒有供給電能,本發明的發光 二極體仍然可以透過這些浸泡在電解液中的導電接腳來發 光。因此,當發生停電時,本發明的發光二極體適合作為 緊急照明燈具或是警示用的指示燈具。 其-人,本發明的發光二極體所發出的光線,其亮度會 受電解液的離子濃度而影響。因此,本發明能從發光二極 體的亮度,大略得知電解液的離子濃度,例如本發明能夠 201037861 粗略地讓人們知道水果是不是很甜,有沒有报新鮮 雖然本發明以較佳實施例揭露如上,然其並非用以限 定本發明,任何熟習相像技藝者,在不脫離本發明之精 和範圍内’所作更動與潤飾之等效替換,仍為本發明之專 利保護範圍内。 【圖式簡單說明】 圖1是本發明第一實施例之發光二極體的剖面示意圖。 圖2是本發明第二實施例之發光二極體的剖面示意圖。 〇 【主要元件符號說明】201037861 VI. Description of the Invention: [Technical Field] The present invention relates to an electronic component, and more particularly to a Light Emitting Diode (LED). [Prior Art] Conventional lighting fixtures generally use metal halide lamps, incandescent lamps, mercury lamps and high-pressure sodium lamps, but these lamps consume a lot of power and require considerable money to pay for electricity. It does not meet the environmental protection requirements of today's energy saving and carbon reduction. In order to solve the problem that the traditional lighting fixtures consume too much power, today's technology has developed a low-power illuminant: a light-emitting diode. The light-emitting diode not only has the advantages of low power consumption and power saving, but also has the advantages of small size, low driving voltage and no mercury. Therefore, light-emitting diodes have been widely used in the present society. SUMMARY OF THE INVENTION A main object of the present invention is to provide a light emitting diode in which materials of at least two conductive pins are different from each other. The present invention provides a light emitting diode comprising a pair of electrodes, a wafer, a gel and a pair of first conductive pins. The wafer is electrically connected to the electrodes, and the encapsulant encapsulates the electrodes and the wafer. The first conductive pins are electrically connected to the electrodes, and the material of one of the first conductive pins is different from the material of the other one of the conductive pads of 201037861. When the first conductive pins are immersed in the electrolyte, the light-emitting body of the present invention emits light, and the light-emitting diode of the present invention can emit light even if the external power source such as a battery or a commercial power source does not supply electric energy. The above described features and advantages of the present invention will become more apparent from the following description. [Embodiment] FIG. 1 is a schematic view showing a shaving surface of a light-emitting diode according to a first embodiment of the present invention. Referring to FIG. 1 , the LED 10 of the present embodiment includes a wafer 110 , a pair of electrodes 120 a and 120 b , and a colloid 130 . The wafer 110 is electrically connected to the electrodes 120 a and 120 b , and the encapsulant 130 is used. These electrodes 120a, 120b and the wafer 110 are covered. Wafer 110 is, for example, made of a semiconductor material, wherein the composition of the semiconductor material may contain a group III-V element such as arsenic, gallium or germanium. The wafer 110 发出 emits light when receiving electric energy, so that the light-emitting diode 1 is illuminated. It can be seen that the wafer 110 is a core component of the light-emitting diode. Further, the electrode 120a may be a metal seat, and the wafer no is disposed on the metal seat (i.e., the electrode 120a) and electrically connected to the electrode 120a. The above wafer 110 can be electrically connected to the other electrode 12〇b by wire bonding. In detail, the LED 100 may further include a bonding wire 14A, and the bonding wire 140 is electrically connected between the electrode 120a and the electrode 120b. Therefore, the wafers 110 are electrically connected to the electrodes 12 1、1, 12 〇 1) through the bonding wires 14 〇, 4 201037861. The light emitting diode 100 further includes a pair of first conductive pins 15a, 150b, and the first conductive pins 15a, 15b are electrically connected to the electrodes 120a, 120b, respectively. In detail, the first conductive pin 15〇a is electrically connected to the electrode 120a, and the first conductive pin 15〇b is electrically connected to the electrode n〇b. Further, the chemical potentials of the first conductive pins ISOa, l50b are not equal. In detail, the material of the first conductive pin 150a is different from the material of the other first conductive pin 150b. For example, the first conductive pin 15a is made of copper or carbon, and the other first conductive pin is 150b is made of zinc or iron. Further, these first conductive pins 15a, 15b may also be made of an alloy material, but the alloy materials used for both the first conductive pins 15a, 150b are completely different. For example, the first conductive pin 15〇a is made of nickel hydroxide alloy, and the other first conductive pin 150b is made of iron-cadmium alloy 0. When the first conductive pins 150a and 150b are immersed in an electrolysis In the case of the liquid 10, since the chemical potentials of the first conductive pins 150a, 150b are not the same, the first conductive pins 150a, 150b and the electrolyte 1 can form a Voltaic pile. Thus, the first conductive pins 15a, 15b can output electrical energy to the electrodes 120a, 120b, and the wafers 〇 receive electrical energy through the electrodes 120a, l_20b to emit light. In addition, the chemical potentials of both of the first conductive pins 150a, 150b can differ between 〇 4 volts and 15 volts to supply a higher voltage of the wafer 110. 201037861 The electrolyte ίο may be a solution containing an ionic compound, such as a gasified sodium (such as salt) aqueous solution, a magnesium chloride aqueous solution or a sulfuric acid solution or an assay solution, so that the electrolyte ίο can also be a juice, a soda or the like. It can be seen that the first conductive pins 150a, 150b are inserted into the fruit such as Liuding and Ning; the fruit biting rhyme and the like, and the light emitting diode 100 can also emit light. The intensity of light emitted by the light-emitting body 100 is affected by the ion concentration in the electrolyte 1Q. Therefore, the ion concentration in the electrolytic solution 10 can be roughly known by the brightness of the light-emitting diode. For example, the first conductive pin 150a, 150b can be inserted into the fruit to make the light emitting diode 100 emit light, and the brightness of the light emitting diode can be roughly known as the sweetness and freshness of the fruit. The degree 'that knows that the fruit is sweet and not sweet, the new is not fresh. Fig. 2 is a schematic cross-sectional view showing a light-emitting diode according to a second embodiment of the present invention. Referring to FIG. 2, the LED 2 本 of the embodiment also includes a wafer 11 〇, a counter electrode 120a, 120b, a sealant 13 〇 and a pair of first conductive pins 15 〇 a, 150b, and the above-mentioned light emitting diode The components of the body 2, the material, the function, the arrangement and the connection relationship are the same in the first embodiment, so the description will not be repeated, and the introduction will focus on the light-emitting diode and the light-emitting diode. The difference between the two bodies 100. The light-emitting diode 200 further includes at least one conductive pin group 21〇, and each of the conductive communication groups 21G includes a pair of second conductive pins 212a and MN. In the conductive pin 210, the second conductive pins 212a, 212b are each. 11 connections. In detail, each of the conductive pin groups 2 (7) may further include a conductive strip 201037861 214 electrically connected between the second conductive pins 212a, 2i2b. Through the conductive strips 214, the second conductive pins 212a, 212b are electrically connected to each other. The material of the second conductive pin 212a is different from the material of the other second conductive pin 212b. For example, the second conductive pin 212a is made of copper or carbon, and the second conductive pin 212b is made of zinc or iron. The chemical potentials of both of the second conductive pins 212a, 212b are not equal. In addition, the material of the second conductive pin 212a may be a nickel hydroxide alloy, and the material of the other second conductive pin 212b may be an iron cadmium alloy. Therefore, the material of the second conductive pin 212a can be the same as that of the first conductive pin 150a, and the material of the second conductive pin 212b can be the same as the material of the first conductive pin 15b. The light-emitting diode 200 may further include a glare material 220 disposed in the sealant 13b, and the phosphor material 220 can change the wavelength of the light emitted by the wafer η0, that is, the phosphor material 220 can change the color of the light. For example, the wafer 110 can emit blue light, for example, in which part of the blue light penetrates the encapsulant 130 and the fluorescent material 220, and the other portion of the blue light is absorbed by the fluorescent material 220. The fluorescent material 220 converts the absorbed blue light into yellow light, and causes the light emitting diode 200 to emit white light mixed by blue light and yellow light. Alternatively, the phosphor material 220 may be distributed only at the outer surface 132 of the encapsulant 13''. Thus, the phosphor material 22 can be a fluorescent cover of the cover wafer 11A. However, in other embodiments not shown, the phosphor material 22〇 may be substantially uniformly distributed throughout the encapsulant 13〇. Therefore, the fluorescent material 220 shown in Fig. 2 is merely illustrative and not limiting. The light-emitting diode 200 is required to emit light through the electrolytes 2〇&, 7 201037861 20b and 20c located in the plurality of grooves, and the electrolytes 2〇a, 20b and 20c in the grooves do not flow with each other. For example, the first conductive pin HOa and the second conductive pin 212b of one of the conductive pin sets 210 are immersed in the electrolyte 20c in one slot, and the first conductive pin i5〇b and another group The second conductive pin 212a of the conductive pin group 21〇 is immersed in the electrolyte 2〇a in the other slot, and the remaining two second conductive pins 212b belonging to the different conductive pin group 21〇 are It is immersed in the electrolyte 2〇b in a tank in which the electrolytes 20a, 20b and 20c are separated from each other without flowing. The first conductive pins 15A, 150b and the second conductive pins 212a, 212b are The electrolytes 20a, 20b, 20c form two series of voltaic cells. In this way, the first conductive pins i5〇a, 150b can output a large voltage of electric energy to the electrodes 12〇a, 12〇b, so that the wafer 11 emits relatively unnecessary light, thereby improving the brightness of the light emitting diode 2〇〇. . In summary, the present invention enables the light-emitting diode to emit light by immersing the electrolyte in a plurality of conductive pins (e.g., first and second conductive pins). It can be seen that even if an external power source such as a battery or a commercial power source does not supply electric energy, the light-emitting diode of the present invention can emit light through the conductive pins immersed in the electrolyte. Therefore, when a power outage occurs, the light-emitting diode of the present invention is suitable as an emergency light fixture or an indicator light for warning. The light emitted by the light-emitting diode of the present invention is affected by the ion concentration of the electrolyte. Therefore, the present invention can roughly know the ion concentration of the electrolyte from the brightness of the light-emitting diode. For example, the present invention can 201037861 roughly let people know whether the fruit is very sweet or not, although there is no report of freshness. The above is not intended to limit the invention, and it is still within the scope of patent protection of the present invention to make equivalent substitutions of the modifications and refinements without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a light-emitting diode according to a first embodiment of the present invention. 2 is a schematic cross-sectional view showing a light emitting diode according to a second embodiment of the present invention. 〇 [Main component symbol description]
10、20a、20b、20c 電解液 100、200 發光二極體 110 晶片 120a、120b 電極 130 封膠體 132 外表面 140 鍵合導線 150a、150b 第一導電接腳 210 導電接腳紐 212a ' 212b 第二導電接腳 214 導電條 220 螢光材料10, 20a, 20b, 20c electrolyte 100, 200 light emitting diode 110 wafer 120a, 120b electrode 130 encapsulant 132 outer surface 140 bonding wire 150a, 150b first conductive pin 210 conductive pin 212a '212b second Conductive pin 214 Conductive strip 220 Fluorescent material