TW201035351A - Manufacture process of oxygen-containing Cu alloy film - Google Patents

Manufacture process of oxygen-containing Cu alloy film Download PDF

Info

Publication number
TW201035351A
TW201035351A TW99108924A TW99108924A TW201035351A TW 201035351 A TW201035351 A TW 201035351A TW 99108924 A TW99108924 A TW 99108924A TW 99108924 A TW99108924 A TW 99108924A TW 201035351 A TW201035351 A TW 201035351A
Authority
TW
Taiwan
Prior art keywords
oxygen
film
copper alloy
sample
copper
Prior art date
Application number
TW99108924A
Other languages
Chinese (zh)
Other versions
TWI452161B (en
Inventor
Hideo Murata
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of TW201035351A publication Critical patent/TW201035351A/en
Application granted granted Critical
Publication of TWI452161B publication Critical patent/TWI452161B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A manufacture process of an oxygen-containing copper (Cu) alloy film is provided. The oxygen-containing Cu alloy film can reduce the resistance of a wiring film of a flat panel display device and so on in a process temperature region and it is excellent in the adhesion to a glass substrate, a silicon (Si) layer, and a silicon nitride (SiNX) protection layer. The manufacture process of an oxygen-containing Cu alloy film is characterized by performing a sputtering in an atmosphere in which Ar and oxygen gas are introduced with a Cu alloy target. The Cu alloy target contains 0.1 to 1.0 atom% of B and further contains 0.1 to 2.0 atom% of at least one or more elements which can make a compound with B, as additional elements, the balance Cu and inevitable impurities.

Description

201035351 33944pif 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種含氧之銅合金膜的製造方法,該 含氧之銅合金膜被用作在基板上形成薄膜而製造的平面顯 示裝置(Flat Panel Display,以下稱作FPD)等的配線膜。 【先前技術】 作為在玻璃基板或矽(Si)晶圓上積層薄膜而製造的 FPD ’例如正在積極地研究開發的液晶顯示器(LiqUid Crystal Display,以下稱作LCD )、電漿顯示面板(Plasma Display Pane卜以下稱作PDP )、場發射顯示器(Field201035351 33944pif VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing an oxygen-containing copper alloy film which is used as a flat display manufactured by forming a film on a substrate A wiring film such as a device (Flat Panel Display, hereinafter referred to as FPD). [Prior Art] FPD manufactured by laminating a thin film on a glass substrate or a germanium (Si) wafer, for example, a liquid crystal display (hereinafter referred to as LCD) and a plasma display panel (Plasma Display) Pane hereinafter referred to as PDP), field emission display (Field

Emission Display,以下稱作FED )、電致發光顯示器 (Electro Luminescence Display,以下稱作 ELD)、電子紙 (electronic paper )等各種新穎產品。 隨著顯示器大型化,需要進行高速驅動以顯示動態圖 像,因此這些FPD中所使用的薄膜電晶體(Thin Film Transistor,TFT)等的配線膜採用低電阻配線膜的鋁(A1) 及鋁合金的鋁系膜。近年來,隨著顯示器尺寸進一步大型 化及兩解析度化,電阻更低的配線的銅系配線受到關注。 因銅的電阻比鋁更低,故有希望成為FpD領域中的下 一代配線材料。但是,銅存在著與玻璃基板或矽系基底層 的密著性差的問題、以及容易擴散至矽層的問題。 因此,為了提高銅系配線與玻璃基板的密著性以及抑 制銅⑽層擴散,有下述方法被提Λ (例如,參照專利文 獻1及非專利絲1):使用由添加有微量陳㈣氧化的 201035351 * 錄(Zr)或钥(Mo)的鋼合金所形成的無材,並藉由氯氣 (Ar)與氧氣進行反應性機鍵(『咖加sputteri 成銅系配線。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2008-112989號公報。 [非專利文獻] D [非專利文獻1]「用於應對量產線的面向TFT液晶的 銅配線製程技術」’ NIKKEI MICRODEVICES,2008年3 月號,日經BP公司,2008年3月1日,第1〇〇頁〜第1〇1 頁。 【發明内容】 專利文獻1或非專利文獻丨中提出的使用銅_锆 (Cu-Zr)合金或銅-翻(Cii-Mo)合金,並藉由氬氣與氧 氣進行濺鍍所形成的薄膜,是與玻璃基板的密著性優異且 可抑制向矽層擴散的有用的鋼系配線膜。但是,根據本發 ❹ 明人的研究發現,將所提出的銅系配線膜形成於玻璃基板 上時,即便進行製造過程中的加熱處理,也不能充分降低 銅系配線膜的電阻值。 於最普通的FPD、即驅動元件使用非晶矽TFT的液晶 顯示器(LCD)中’是在透明的玻璃基板上形成元件 (device),該製造步驟中的加熱溫度為25〇。〇〜35〇。(:左 右。因此’期望開發出一種最適合FPD的銅系配線膜之可 藉由250°C〜350。(:左右的製造過程溫度區域的加熱處理 5 201035351 33944pif 來降低電阻,。 鑒於上述課題,本發明之目的在於提供-種可於FPD 等的配線膜的製程溫度區域中降低電阻,並且對玻璃基 板、石夕層、SiNxmf_㈣祕優異的 的製造方法。 ' 本發明人為了解決上述問題而進行積極研究結果發 現’藉由使用-種在銅中添加適量的B以及適量的能糾 勿的元素而成的銅合金靶’於導入有氬氣及氧 亂的㈣切行雜,可獲得㈣性提高 之銅合金膜,從而達成本發明。 ^ 亦P本發明疋一種含氧之銅合金膜的製造方法,其 金乾於導人有氬氣及氧氣的環境中進行濺鑛 仵3虱之銅合金膜,其中銅合金靶包含〇1对% (原子 〜L0 _的B'甚至包含ai at%〜2 〇戲的能與 ^製^化合物的至少-種或—種以上元素作為添加元 常剩餘部分包含銅及不可避免的雜質。 另外,上述銅合金靶較好的是以選自鎂(Mg)、鋁 A1、矽(Si)、鈦(Ti)、猛(Μη)、錄(Ni)、錘(Zr)、 一二)、銀(Ag)、釤(Sm)的至少一種或一種以上的 兀素來作為能與B製作出化合物的元素。 巧 99 亦可於含氧之銅合金膜上,使用純度大於等於 外的鋼靶,於氬氣環境中進行濺鍍而積層銅膜。、 [發明的效果] 根據本發明,可實現一種能夠藉由製造FpD時的製程 ❹ ❹ 201035351 t的低溫加熱處勤降低電阻,且與_ 保護膜層㈣著性優料錢之鋼合金膜,因此HlNx 極為有效地將其用作需要低f㈣a =可 ㈤―,TV)或電子紙等的FPD用配線膜。日日電視 為讓本發明之上述特徵和優點能更明顯易懂 舉實施例,並配合所附圖式作詳細說明如下。 文特 【實施方式】 為了麟FPD用的轉_要求的低纽且 基板、㈣、啊保制層的密雜優制含氧之鋼^ f ’本㈣的重要特徵在於發現於導人有氬氣及氧氣二環 k中進行賤It所使用的銅合金㉒的最合適的合金構成,、β 使用Β以及能與β製作出化合物的元素複合添加在鋼中疋 百先,在銅中添加Β的效果在於:滅鍵形成鋼合金 後’即便以例如350ΐ左右的溫度進行加熱處理,亦可 電阻值與成膜時相比顯著降低。獲得此效果的理由雖秋並 不明確,但本領域技術人貝認為在於:由於幾乎^存 在Β與Cu的固溶區域,且6為輕元素〇ight dement), 故而即便於較低之加熱溫度下,亦會將B自峨質(matrix) 中噴出至晶界(grain boundary)或膜表面。 而且,當添加大於等於〇.1城%的B時,上述效果變 得明媒,若添加超過丨〇站%的B,則加熱後電阻值不能充 分降低’因此將B的添加量設為〇.1 at%〜1.〇 at〇/0。 另外,藉由於銅中添加〇·1 at〇/0〜2_〇 at〇/0的能與b製 作出化合物的元素’可於維持先前的銅合金所具有的效果 201035351 33944pif 的情況下,降低加熱後的電阻值。其理由雖然並不明確, 但本領域技術人員認為原因在於:藉由加熱處理,B及能 與B製作出化合物的元素結合,從而自銅基質中噴出。而 且,添加量自0.1 at%起開始顯現出上述效果,但若添加量 超過2.0 at%,則電阻值增加且加熱後亦難以獲得低電阻 值’因此將添加量設為0.1 at%〜2.0 at%。 另外’為了獲仔低電阻的含氧之銅合金膜,較好的是 使B為0.1 at%〜0.5 at%、能與B製作出化合物的元素為 0.1 at%〜1.0 at%。 另外,與B形成化合物的元素有:第2族的鎂(Mg)、 #5(Ca)’ 第 3 族的航(Sc)、紀(Y)、爛(La)、鈽(Ce)、 镨(Pr)、鈥(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、铽(Tb)、 鏑(Dy),第4族的鈦(Ti)、鍅(Zr)、铪(Hf),第5族 的釩(V)、鈮(Nb)、组(Ta)’第6族的鉻(Cr)、鉬(Mo)、 鎢(W),第7族的猛(Μη),第8族的鐵(Fe)、钻(c〇)、 鎳(Νι)、舒(Ru)’第9族的銀(Ag),第11族的鋁(A1), 第12族的石夕(Si)等各種元素。該些元素中,就容易取得 方面而言’特別理想的是Mg、Al、Si、Ti、Mn、Ni、Zr、 Mo、Ag、Sm。 在本發明中,在導入有氬氣及氧氣的環境中對上述組 成的銅合金靶進行濺鍍就能獲得含氧之銅合金膜。濺鍍 時,環境中的氧在無表面與銅或添加元素結合,進而使部 分氧以氧化物的形態再次被濺鍍到基板上。因此,所形成 的銅合金膜於銅基質中含有氧與銅或添加元素形成的氧化 201035351 物。因為此氧化物密著於玻璃基板等的界面,因而具有固 定(anchor)作用,所以具有改善銅合金膜的密著性的效 果。 另外,控制導入氬氣及氧氣時環境中的氧濃度,能有 效提高所獲得的含氧之銅合金膜的密著性以及達到低電阻 之目的。導入有氬氣及氧氣的環境較理想的是,使環境中 的整體氣體壓力為0.1 pa〜10 Pa,使氧濃度(氧氣壓力/ 〇 (氬氣壓力+氧氣壓力)X100)小於等於20%。其原因在 於:雖然根據作為配線膜的期望值的不同,合適的氧濃度 有所不同,但若氧濃度過高,則難以獲得低電阻特性。更 理想的氧濃度為小於等於15%。另外,為了獲得充分的密 著性’氧濃度更好的是大於等於5%。 另外,濺鍍時的供應電力(powersupply)會影響到成 速度及含氧之銅合金膜中的含氧量、以及靶表面的氧化物 的生成。若濺鍍時的供應電力低,則生產性下降並且在靶 表面生成氧化物,容易產生微粒(particle)等異物。另外, 〇 若過度提高供應電力,則容易發生異常放電等。因此,為 了抑制濺鑛時產生微粒或發生異常放電,形成含氧量控^ 為合適量的含氧之銅合金膜,供應電力較好的是以靶二濺 鍍面的單位面積換算,控制電力密度為2 w/cm2〜1〇 W/cm2左右。 另外,為了使含氧之銅合金膜與玻璃基板、矽層、SiNx 保護膜層的密著性良好,Cu2〇的主結晶面(lu)面的χ 射線繞射峰值強度Cu2〇 (in)、與銅的主結晶面(^) 9 201035351 33944pif 面的x射線繞射峰值^ ^ ^ /Cu(lll)^,__^ "(111)^^^tb Cu2〇(lll) 低電阻,上述I:?於等於〇·01 ’為了於加熱後獲得 =於,CU2°⑽一")較理想的是 膜與】:基=:=造=所:得的含氧之銅合金 於QQQO/gi 優異。因此,亦可使用純度大於等 、_。的銅乾,於氬氣環境中進行濺鑛而於 氧之銅合麵上積層得到作為主配線膜的純銅膜。 另外、本發明中所使用的銅合金輕材的製造方法有各 種方^,通常只要能夠達成乾材所要求的高純度、組織均 勻、高密度等即可。例如可藉由如下方式來製造:利用真 空熔解法於金屬製鑄模⑽_整為規定組成的炫融液 ,,然後藉由鍛造、壓延等塑性加工將其加工成板狀,並 藉由機械加工而精密加工成規定形狀的靶。另外,為了獲 得更加均勻的組織,亦可使用利用粉末燒結法、或喷霧成 型法(液滴沈積法)等驟冷凝固所得的鑄錠(ing〇t)。 [實例1] 以下’對本發明的具體實例進行說明。 首先’利用以下所述的方法來製造銅合金靶材。 以與在銅中加入各種添加元素所得的銅合金膜的目 標組成實質上相同的方式調配原料,並利用真空溶解爐加 以熔解後進行鑄造,藉此製作銅合金鑄錠。繼而,藉由機 械加工,將銅合金鑄錠製成直徑為100 mm、厚度為5mm 的濺鍍靶材。 201035351 …接著」制上述製作出的各種組成的树,於導入有 鼠氣及氧氣的環境中進行猶,於尺寸為刚職·腿 的平滑的玻璃基板上形成膜厚為細⑽的含氧之銅合金 膜。而且μ崎條件設為如下:濺騎境中的氣體壓力: 〇.5Pa ’氧浪度:10%,電力密度:9.5 W/cm2。 利用四探針法(f0Ur pr〇be meth〇d)來測定各試樣的 電阻率,將結果示於表i。Various new products such as Emission Display (hereinafter referred to as FED), electroluminescence display (hereinafter referred to as ELD), and electronic paper. As the display is enlarged, high-speed driving is required to display a moving image. Therefore, a wiring film such as a thin film transistor (TFT) used in these FPDs is made of aluminum (A1) and an aluminum alloy having a low-resistance wiring film. Aluminum film. In recent years, as the size of the display has been further increased and the resolution has been doubled, copper wiring of wiring having lower resistance has been attracting attention. Since copper has a lower resistance than aluminum, it is expected to become the next generation wiring material in the FpD field. However, copper has a problem of poor adhesion to a glass substrate or a ruthenium-based underlayer, and a problem that it is easily diffused to the ruthenium layer. Therefore, in order to improve the adhesion between the copper-based wiring and the glass substrate and to suppress the diffusion of the copper (10) layer, the following method has been proposed (for example, refer to Patent Document 1 and Non-Patent Silk 1): the use of a small amount of aging (four) oxidation is added. 201035351 * Recorded (Zr) or key (Mo) steel alloy without material, and by chlorine (Ar) and oxygen reactive card ("Caga sputteri copper wiring. [Prior Art] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2008-112989. [Non-Patent Document] D [Non-Patent Document 1] "Technical Process for Copper Wiring for TFT Liquid Crystals for Mass Production Lines" NIKKEI MICRODEVICES, March 2008 issue, Nikkei BP Corporation, March 1, 2008, page 1 to page 1. [Summary of the Invention] The use of copper as proposed in Patent Document 1 or Non-Patent Document _ A thin film formed of a zirconium (Cu-Zr) alloy or a copper-turned (Cii-Mo) alloy and sputtered by argon gas and oxygen gas is excellent in adhesion to a glass substrate and can suppress diffusion into the ruthenium layer. A useful steel-based wiring film. However, according to the findings of the present inventors, When the proposed copper-based wiring film is formed on a glass substrate, the resistance value of the copper-based wiring film cannot be sufficiently reduced even when the heat treatment in the manufacturing process is performed. The liquid crystal of the amorphous 矽 TFT is used for the most common FPD, that is, the driving element. In the display (LCD), a device is formed on a transparent glass substrate, and the heating temperature in the manufacturing step is 25 〇. 〇 〜 35 〇. (: around. Therefore, it is desired to develop a copper which is most suitable for FPD. The wiring film can be reduced in resistance by heating treatment 5 201035351 33944pif in the temperature range of the manufacturing process from 250 ° C to 350. In view of the above problems, an object of the present invention is to provide a wiring which can be used for FPD or the like. In the process temperature region of the film, the electric resistance is lowered, and the glass substrate, the sap layer, and the SiNxmf_(4) are excellent in the production method. The present inventors have conducted active research to solve the above problem and found that 'by adding A proper amount of B and a proper amount of copper alloy target that can be corrected can be obtained by introducing (four) cutting impurities into argon gas and oxygen. Membrane, thereby achieving the present invention. ^ Also, the invention relates to a method for producing an oxygen-containing copper alloy film, wherein the gold is dried in a copper alloy film which is sputtered with argon and oxygen, wherein The copper alloy target contains 对1 to % (B' of atom ~L0 _ even contains ai at%~2 至少 的 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少In addition, the above copper alloy target is preferably selected from the group consisting of magnesium (Mg), aluminum A1, bismuth (Si), titanium (Ti), 猛 (Μη), 录 (Ni), and hammer (Zr). At least one or more than one of silver (Ag) and strontium (Sm) is used as an element capable of producing a compound with B. In the oxygen-containing copper alloy film, a steel film having a purity of not less than or equal to is used, and a copper film is deposited by sputtering in an argon atmosphere. [Effects of the Invention] According to the present invention, it is possible to realize a steel alloy film which can reduce the electric resistance by the low temperature heating process of the process ❹ ❹ 201035351 t when manufacturing FpD, and which is superior to the _ protective film layer (4). Therefore, HlNx is extremely effectively used as a wiring film for FPD requiring low f (four) a = (5) -, TV) or electronic paper. The above-described features and advantages of the present invention will be more apparent from the following description of the embodiments of the invention. Venter [Embodiment] The important feature of the oxygen-containing steel for the FPD used for the conversion of the FPD, the substrate, the (4), and the protective layer, is an important feature found in the introduction of argon. The most suitable alloy composition of the copper alloy 22 used in the 贱It is carried out in the gas and oxygen bicyclic k, and β is used as a compound which can be compounded with β to be added to the steel, and is added to the steel, and yttrium is added to the copper. The effect is that after the steel alloy is formed by the bond, the heat resistance is significantly lower than that at the time of film formation even if the heat treatment is performed at a temperature of, for example, about 350 。. Although the reason for obtaining this effect is not clear in the autumn, the person skilled in the art believes that since there is almost a solid solution region of bismuth and Cu, and 6 is a light element 〇ight dement), even at a lower heating temperature. B will also be ejected from the matrix to the grain boundary or film surface. Further, when B of 大于.1%% or more is added, the above effect becomes a clear medium, and if B exceeding % of the station is added, the resistance value after heating cannot be sufficiently lowered', so the amount of addition of B is set to 〇 .1 at%~1.〇at〇/0. In addition, by adding 〇·1 at〇/0~2_〇at〇/0 to the copper, the ability to form a compound with b can be reduced by maintaining the effect of the previous copper alloy 201035351 33944pif. The resistance value after heating. Although the reason is not clear, those skilled in the art believe that the reason is that B can be ejected from the copper matrix by heat treatment, B, and an element capable of producing a compound with B. Further, the addition amount starts to exhibit the above effect from 0.1 at%, but if the addition amount exceeds 2.0 at%, the resistance value increases and it is difficult to obtain a low resistance value after heating. Therefore, the addition amount is set to 0.1 at% to 2.0 at %. Further, in order to obtain a low-resistance oxygen-containing copper alloy film, it is preferred that B is 0.1 at% to 0.5 at%, and an element capable of producing a compound with B is 0.1 at% to 1.0 at%. Further, the elements forming a compound with B are: magnesium (Mg) of the second group, and (Cc), (Y), rotten (La), cesium (Ce), and cesium of the third group. (Pr), 鈥 (Nd), 钐 (Sm), 铕 (Eu), 釓 (Gd), 铽 (Tb), 镝 (Dy), Group 4 titanium (Ti), 鍅 (Zr), 铪 ( Hf), group 5 vanadium (V), niobium (Nb), group (Ta) 'group 6 chromium (Cr), molybdenum (Mo), tungsten (W), group 7 fierce (Μη), Group 8 iron (Fe), drill (c〇), nickel (Νι), Shu (Ru) 'Group 9 silver (Ag), Group 11 aluminum (A1), Group 12 of Shi Xi ( Various elements such as Si). Among these elements, it is particularly preferable that Mg, Al, Si, Ti, Mn, Ni, Zr, Mo, Ag, and Sm are particularly preferable. In the present invention, an oxygen-containing copper alloy film can be obtained by sputtering the above-described copper alloy target in an atmosphere in which argon gas and oxygen gas are introduced. At the time of sputtering, oxygen in the environment is combined with copper or an additive element in the absence of a surface, so that part of the oxygen is again sputtered onto the substrate in the form of an oxide. Therefore, the formed copper alloy film contains oxidized 201035351 formed of oxygen and copper or an additive element in the copper matrix. Since this oxide adheres to the interface of the glass substrate or the like and thus has an anchoring action, it has an effect of improving the adhesion of the copper alloy film. Further, by controlling the concentration of oxygen in the environment when argon gas and oxygen gas are introduced, it is possible to effectively improve the adhesion of the obtained oxygen-containing copper alloy film and achieve the purpose of low resistance. The environment in which argon gas and oxygen are introduced is preferably such that the overall gas pressure in the environment is 0.1 pa to 10 Pa, and the oxygen concentration (oxygen pressure / 〇 (argon pressure + oxygen pressure) X100) is 20% or less. The reason for this is that although the appropriate oxygen concentration differs depending on the desired value as the wiring film, if the oxygen concentration is too high, it is difficult to obtain low resistance characteristics. A more desirable oxygen concentration is 15% or less. Further, in order to obtain sufficient adhesion, the oxygen concentration is more preferably 5% or more. In addition, the power supply during sputtering affects the rate of formation and the oxygen content in the oxygen-containing copper alloy film and the formation of oxides on the target surface. When the power supply during sputtering is low, productivity is lowered and oxides are formed on the surface of the target, and foreign matter such as particles is likely to be generated. In addition, if the power supply is excessively increased, abnormal discharge or the like is likely to occur. Therefore, in order to suppress the generation of particles or abnormal discharge during the splashing, an oxygen-containing copper alloy film having an appropriate amount of oxygen is formed, and the power supply is preferably converted in terms of the unit area of the target sputtering surface. The density is about 2 w/cm 2 to 1 〇 W/cm 2 . Further, in order to improve the adhesion between the oxygen-containing copper alloy film and the glass substrate, the ruthenium layer, and the SiNx protective film layer, the peak intensity of the χ ray diffraction of the main crystal plane (lu) surface of Cu 2 Cu is Cu2 〇 (in), Main crystal plane with copper (^) 9 201035351 33944pif surface x-ray diffraction peak ^ ^ ^ /Cu(lll)^, __^ "(111)^^^tb Cu2〇(lll) Low resistance, above I :? is equal to 〇·01 'In order to obtain after heating = CU2 ° (10) a ") is more ideal is the film and]: base =: = = =: the oxygen-containing copper alloy obtained in QQQO / gi Excellent. Therefore, it is also possible to use a purity greater than or equal to _. The copper was dried and sputtered in an argon atmosphere to form a pure copper film as a main wiring film by laminating on the copper surface of oxygen. Further, the method for producing a copper alloy lightweight material used in the present invention may be various, and generally, it is sufficient to achieve high purity, uniform structure, high density, and the like required for dry materials. For example, it can be manufactured by vacuum melting a metal mold (10) into a predetermined composition, and then processed into a plate shape by plastic working such as forging, calendering, etc., and machined. It is precisely machined into a target of a defined shape. Further, in order to obtain a more uniform structure, an ingot obtained by rapid solidification such as a powder sintering method or a spray molding method (droplet deposition method) may be used. [Example 1] Hereinafter, a specific example of the present invention will be described. First, a copper alloy target was produced by the method described below. The raw material was prepared in substantially the same manner as the target composition of the copper alloy film obtained by adding various additive elements to copper, and was melted by a vacuum melting furnace and then cast to prepare a copper alloy ingot. Then, by mechanical machining, the copper alloy ingot was made into a sputtering target having a diameter of 100 mm and a thickness of 5 mm. 201035351 ... Then, the tree of various compositions prepared above was produced in an environment in which a rat gas and oxygen gas were introduced, and an oxygen-containing film having a thin film thickness (10) was formed on a smooth glass substrate having a size of a leg and a leg. Copper alloy film. Moreover, the μs condition is set as follows: gas pressure in the splashing environment: 〇.5Pa ′ oxygen wave degree: 10%, power density: 9.5 W/cm 2 . The resistivity of each sample was measured by a four-probe method (f0Ur pr〇be meth〇d), and the results are shown in Table i.

另外,將上述+所形成的含氧之銅合金膜切斷成25 mmx50 mm大小,於減壓至1χ1(Γΐ 或以上的 真空環境中,將加熱溫度設為15〇t、25(rc、3贼,分 別實施1小時的加熱處理後,測定電阻率。將其結果綜合 表示於表1。 、另外二進行如下試驗作為密著性試驗:對各試樣的濺 鍍成膜所得的含氧之銅合金膜進行25叱的加熱處理,然 後以2 mm的間隔切割出棋盤格狀的切口後於膜表面^占 合膠帶,计异出剝離時基板上殘留的格子的面積率而進行 評價。將以上結果示於表1。 11 201035351 表1 銅合金乾組成 (at% ) 成唭時的 電阻率 (U Qcm ) 加熱處理後 密著性 (%) 備註 150°C 25〇t 35〇t 試樣1 Cu-0_5Zr 5.74 5.51 4.95 4.05 ~~〜· 一 100 比較例 試樣2 Cu-0.5M〇 4.46 4.39 4.35 3.90 90 l-l· jhid 試樣3 Cu-0.3Mg-0.5B 7.44 6.74 3.65 3.23 100 -ΐΧ. Try 試樣4 Cu-0.3Ti-0.3B 6.75 5.90 3.52 3.29 100 試樣5 Cu-0.3M〇-0.4B 3.70 3.57 3.19 2.54 100 个赞n月例 試樣6 Cu-0.5A1-0.3B 6.81 6.39 3.77 3.51 100 不赞明例 士议 nn /cj 試樣7 Cu-0.3Si-0.5B 8.77 7.92 3.88 3.47 --*- 100 令贫奶1列 本發明例 試樣8 Cu-0.3Ni-0.2B 6.53 5.27 3.23 2.99 inn 試樣9 Cu-0.3Ag-0.5B 6.06 4.73 2.92 2.70 100 不赞明例 本發明例 試樣10 Cu-0.2Sm-0.3B 7.51 4.03 3.72 3.37 inn 試樣11 試樣12 Cu-0.3Sm-0.4B Cu-0.8Ag-0.lB 6.77 6.53 6.25 5.27 3.93 3.68 3.63 2.66 — 100 100 不贫明例 本發明例 本發明例 試樣13 Cu-2.5Si-0.5B 16.58 13.90 11.22 7.58 ~-—_ 100 比較例 可知’試樣1及試樣2的不包含B的含氧之銅合金膜 具有90%〜100%的良好的密著性’但於25叱的加熱溫度 〇 下’電阻值不會大幅下降。相對於此’可知本發明的試樣 3〜試樣12所示的包含B以及能與B製作出化合物的元素 的含氧之銅合金膜具有100%的良好的密著性,並且於25〇 °C的製程溫度下,電阻值大幅下降,因此將這些含氧之銅 合金膜作為配線膜時’容易獲得低電阻。另外可知,包含 超過2.0 at%能與Β製作出化合物的元素的含氧之銅合金 膜的試樣13具有100%的良好的密著性,但即便進行250 12 201035351 °C的製程溫度的加熱後,電阻值亦超過u心咖,無法 獲得低電阻值。 [實例2] 一使用Cu-0.3Ni-0.2B (at%)的銅合金乾材,於導入有 氬氣及氧氣的環境中進行濺鑛,於尺寸為1〇〇 mmxl〇〇 mm 的平滑的玻璃基板上形成膜厚為2〇〇 nm的含氧之銅合金 膜。另外,濺鍍條件設為如下··濺鍍環境中的氣體壓力: ❹ 0.5 Pa,氧濃度:20%,電力密度·· 9 5 w/cm2。 以與實例1相同的方式,對上述中所形成的含氧之銅 合金膜進行密著性試驗,結果密著性為1〇〇%。 另外’使用理學(Rigaku)股份有限公司製造的X射線 繞射裝置RINT2500 ’來對上述含氧之銅合金膜進行X射 線繞射強度測定。將X射線繞射結果示於圖丨。根據圖j, 除了銅的繞射線以外,還出現Cu2〇的繞射線,可確認氧 與部分銅反應形成Cu2〇而存在於膜中。此時的強度比 Cu2〇 (111) /Cu (111) ^0.06〇 〇 [實例3] 使用Cu-0.3Ni-0.2B (at%)的銅合金乾材,於電力密 度為9.5 W/cm2、濺鍍環境中的氣體壓力為〇 5 Pa且氧濃 度有變化的導入有氬氣及氧氣的環境中進行濺鍍,於尺寸 為100 mmxlOO mm的平滑的玻璃基板上形成膜厚為2〇〇 nm的含氧之銅合金膜。 利用四探針法’測定上述中所形成的含氧之銅合金膜 的各試樣的電阻率。另外,以與實例i相同的方式,對各 13 201035351 J3y44plt 將以 後的電阻率測定以及密著性試驗 表2 試樣21 試樣22 試樣23 試樣24 銅合金乾組成 (at% )Further, the oxygen-containing copper alloy film formed by the above + is cut into a size of 25 mm x 50 mm, and the heating temperature is set to 15 〇t, 25 (rc, 3 in a vacuum atmosphere of χ1 or more). The thief was subjected to heat treatment for 1 hour, and the electrical resistivity was measured. The results are shown in Table 1. The other test was carried out as the adhesion test: oxygenation of the film formed by sputtering of each sample. The copper alloy film was subjected to a heat treatment of 25 Torr, and then a checker-shaped slit was cut at intervals of 2 mm, and the tape was occupied on the film surface, and the area ratio of the lattice remaining on the substrate at the time of peeling off was evaluated. The above results are shown in Table 1. 11 201035351 Table 1 Dry composition of copper alloy (at%) Resistivity when forming bismuth (U Qcm ) Adhesion after heat treatment (%) Remarks 150 ° C 25〇t 35〇t Sample 1 Cu-0_5Zr 5.74 5.51 4.95 4.05 ~~~· A 100 Comparative Example Sample 2 Cu-0.5M〇4.46 4.39 4.35 3.90 90 ll· jhid Sample 3 Cu-0.3Mg-0.5B 7.44 6.74 3.65 3.23 100 -ΐΧ. Try Sample 4 Cu-0.3Ti-0.3B 6.75 5.90 3.52 3.29 100 Sample 5 Cu-0.3M〇-0.4B 3.70 3.57 3. 19 2.54 100 Likes for the month Sample 6 Cu-0.5A1-0.3B 6.81 6.39 3.77 3.51 100 Unspecified case nn /cj Sample 7 Cu-0.3Si-0.5B 8.77 7.92 3.88 3.47 --*- 100 Let the poor milk 1 list of the sample of the invention 8 Cu-0.3Ni-0.2B 6.53 5.27 3.23 2.99 inn sample 9 Cu-0.3Ag-0.5B 6.06 4.73 2.92 2.70 100 Unspecified example of the present invention sample 10 Cu- 0.2Sm-0.3B 7.51 4.03 3.72 3.37 inn Sample 11 Sample 12 Cu-0.3Sm-0.4B Cu-0.8Ag-0.lB 6.77 6.53 6.25 5.27 3.93 3.68 3.63 2.66 — 100 100 Unobtrusive example of the present invention Inventive Example Sample 13 Cu-2.5Si-0.5B 16.58 13.90 11.22 7.58 ~--_ 100 Comparative Example It is understood that the oxygen-containing copper alloy film containing no B of Sample 1 and Sample 2 has 90% to 100%. Good adhesion - but at a heating temperature of 25 〇, the resistance value does not drop significantly. In contrast, it is understood that the oxygen-containing copper alloy film containing B and an element capable of producing a compound with B shown in Samples 3 to 12 of the present invention has a good adhesion of 100%, and is 25 〇. At the process temperature of °C, the resistance value is greatly lowered. Therefore, when these oxygen-containing copper alloy films are used as the wiring film, it is easy to obtain low resistance. In addition, it was found that the sample 13 containing an oxygen-containing copper alloy film having an element capable of producing a compound in an amount of more than 2.0 at% had a good adhesion of 100%, but was heated even at a process temperature of 250 12 201035351 °C. After that, the resistance value also exceeds the u heart, and the low resistance value cannot be obtained. [Example 2] A copper alloy dry material using Cu-0.3Ni-0.2B (at%) was sputtered in an environment in which argon gas and oxygen were introduced, and was smooth at a size of 1 〇〇 mm x l 〇〇 mm. An oxygen-containing copper alloy film having a film thickness of 2 〇〇 nm was formed on the glass substrate. Further, the sputtering conditions were as follows: • Gas pressure in a sputtering environment: ❹ 0.5 Pa, oxygen concentration: 20%, power density·· 9 5 w/cm 2 . In the same manner as in Example 1, the adhesion test of the oxygen-containing copper alloy film formed as described above was carried out, and as a result, the adhesion was 1% by weight. Further, X-ray diffraction intensity measurement was performed on the oxygen-containing copper alloy film using an X-ray diffraction device RINT 2500' manufactured by Rigaku Co., Ltd. The X-ray diffraction results are shown in the figure 丨. According to Fig. j, in addition to the ray of copper, a ray of Cu2〇 was observed, and it was confirmed that oxygen reacted with part of copper to form Cu2 〇 and existed in the film. The strength ratio at this time is Cu2〇(111) /Cu (111) ^0.06〇〇 [Example 3] Cu-0.3Ni-0.2B (at%) copper alloy dry material is used, and the power density is 9.5 W/cm2. Sputtering in an environment where the gas pressure in the sputtering environment is 〇5 Pa and the oxygen concentration is changed, and argon gas and oxygen are introduced, and the film thickness is 2 〇〇nm on a smooth glass substrate having a size of 100 mm×100 mm. An oxygen-containing copper alloy film. The resistivity of each sample of the oxygen-containing copper alloy film formed as described above was measured by the four-probe method. In addition, in the same manner as in Example i, each of 13 201035351 J3y44plt will be measured by subsequent resistivity and adhesion test. Table 2 Sample 21 Sample 22 Sample 23 Sample 24 Copper alloy dry composition (at%)

Cu-0.3Ni-0.2BCu-0.3Ni-0.2B

Cu-0.3Ni-0.2BCu-0.3Ni-0.2B

Cu-0.3Ni-0.2BCu-0.3Ni-0.2B

Cu-0.3Ni-0.2B 成膜 時的 氧濃 度 (%) 成膜時 的 電阻率 (β Ωοιη) 3.75 6.53 電阻率("Qcm )Oxygen concentration (%) of Cu-0.3Ni-0.2B film formation resistivity (β Ωοιη) 3.75 6.53 Resistivity ("Qcm )

15〇°C 3.24 3.2715〇°C 3.24 3.27

250〇C 2.99 3.23250〇C 2.99 3.23

350〇C 2.86 2.99 密著 性 (%) 備註 50 100 比較例 15 20 本發明例350〇C 2.86 2.99 Adhesion (%) Remarks 50 100 Comparative Example 15 20 Example of the present invention

7.99 9.08 5.95 3.82 3.26 100 本發明例 6.94 4.23 3.56 本發明例 、β根據表2可知,若氧濃度小於等於20%,則藉由製程 又區域的25GC〜35GC的加熱,可獲得足夠低的電阻另外,亦可知若氧濃度大於等於10%,則可獲得100% 的密著性。 [實例4]7.99 9.08 5.95 3.82 3.26 100 Inventive Example 6.94 4.23 3.56 Inventive Example, β According to Table 2, if the oxygen concentration is 20% or less, a sufficiently low resistance can be obtained by heating in a process area of 25GC to 35GC. It is also known that if the oxygen concentration is 10% or more, 100% adhesion can be obtained. [Example 4]

使用CU.〇.3Ni-〇.2B (at%)的銅合金姆,使雜時 境中力密度變化而於導入有氬氣及氧氣的環 X於尺寸為100 mmxl00 mm的平滑的玻璃 j上形成膜厚為細nm的含氧之銅合金膜。另外,錢 =丨八件。又為如下:濺鍍環境中的氣體壓力:0.5 Pa,氧濃 度:10%。 乳,辰 測疋上述中形成含氧之銅合金膜時的成膜速度、異常 放電次數。將咐結果示於表3。另外,使用光 以400倍來觀察形成於玻璃基板上的各膜的表面有無微 14 201035351 夕十tpif 粒。 表3 銅合金靶組成 (at%) 電力密度 (W/cm2) 成膜速度 (nm/min ) 異常放電 備註 試樣31 Cu-0.3Ni-0.2B 3.2 23.8 無 本發明例 試樣32 Cu-0.3Ni-0.2B 6.4 47.6 無 本發明例 試樣33 Cu-0.3Ni-0.2B 9.50 71.4 無 本發明例 试樣34 Cu-0.3Ni-0.2B 12.70 95.2 2次/分 明例 根據表3可知’隨著電力密度上升,成膜速度提高。 但是,電力密度超過10 W/cm2的試樣34發生了雖為少數 次的異常放電。另外,確認形成於玻璃基板上的各膜的微Use CU.〇.3Ni-〇.2B (at%) copper alloy to change the force density in the time domain and introduce the ring X with argon and oxygen into the smooth glass j with a size of 100 mm×100 mm. An oxygen-containing copper alloy film having a film thickness of fine nm is formed. In addition, money = eight pieces. It is also as follows: gas pressure in a sputtering environment: 0.5 Pa, oxygen concentration: 10%. Milk, Chen measured the film formation rate and the number of abnormal discharges when the oxygen-containing copper alloy film was formed. The results are shown in Table 3. Further, the surface of each film formed on the glass substrate was observed by using light at 400 times for the presence or absence of micro-tapif particles. Table 3 Copper alloy target composition (at%) Power density (W/cm2) Film formation rate (nm/min) Abnormal discharge Remarks Sample 31 Cu-0.3Ni-0.2B 3.2 23.8 No sample of the invention 32 Cu-0.3 Ni-0.2B 6.4 47.6 Sample No. 33 of the present invention Cu-0.3Ni-0.2B 9.50 71.4 No sample of the present invention 34 Cu-0.3Ni-0.2B 12.70 95.2 2 times/min. According to Table 3, The power density increases and the film formation speed increases. However, the sample 34 having a power density exceeding 10 W/cm 2 was subjected to a few abnormal discharges. In addition, it was confirmed that the respective films formed on the glass substrate were micro

粒的結果為,試樣31、試樣32、試樣33中均未確認到使 用光學顯微鏡於400倍下可見的大於等於1〇只111的微粒。 ,一方面,試樣34中,於每6〇〇 μηιχ5〇〇 μιη的視野中確 V·*至i 3個大於等於1〇 的微粒。可明白如上所述般藉 由將電力挽度控制為2 w/cm2〜l〇w/cm2的範圍,不會發 電’可於基板上穩定地製造出抑制微粒產生的含 乳之銅合金膜。 [實例5] 力密ί:二:=不的各銅合金靶材,於各種氧濃度、電 刀在度的條件下進行濺鍍, 平滑的玻璃基板上,寸為觸醜测顏的 作為基細。趣,=厚為3Gnm的含氧之銅合金膜 99观的_材形成表43^之鋼合金膜上,使用純度為 攻表4所揭示的各膜厚的銅膜。另外, 15 201035351 33944pif 二金膜時,使用罐力為Ο.5 的氬氣與 氣氣的此咳體;形成銅膜時,使用氣體壓力為0^的 氩氣環产t/t為參考例,使用純度為".99%的銅乾材,於 的單層ili行賤鑛,在玻璃基板上形成膜厚為胍 单層的純铜膜(試樣41)。 樣’湘四探針法測定由單層膜及積層膜的總 〇 電阻率。另外,利賴實例1相同的方法測 在耆性。將以上結果示於表4。As a result of the granules, no particles of 1 〇 111 or more which were visible at 400 times by an optical microscope were observed in the sample 31, the sample 32, and the sample 33. On the one hand, in the sample 34, in the field of view of 6 〇〇 μηιχ 5 〇〇 μηη, V·* to i 3 particles of 1 大于 or more were confirmed. It is understood that by controlling the electric power to a range of 2 w/cm 2 to 10 〇 w/cm 2 as described above, it is possible to stably produce a copper-containing copper alloy film which suppresses generation of fine particles on the substrate. [Example 5] Forced ί: Two: = not all copper alloy targets, sputtered under various conditions of oxygen concentration and electrocautery, on a smooth glass substrate, the inch is the basis for touching the ugly face. fine. Interestingly, an oxygen-containing copper alloy film having a thickness of 3 Gnm is used. On the steel alloy film of Table 143, a copper film having a purity of each film disclosed in Table 4 is used. In addition, 15 201035351 33944pif two gold film, the argon gas and gas gas of the potting force of Ο.5 is used; when the copper film is formed, the argon gas ring gas with a gas pressure of 0^ is used as a reference example. A pure copper film having a thickness of a single layer of iridium ore was used to form a pure copper film having a thickness of a single layer on the glass substrate (sample 41). The total 〇 resistivity of the single layer film and the laminated film was measured by the sample method. In addition, the same method as in Reli Example 1 was used to measure the ambiguity. The above results are shown in Table 4.

-----1-----L ---- | 上⑼ 根據表4可知,於使用氬氣與氧氣的混合氣體所形成 的含氧之銅合金基底膜上形成純銅膜的試樣42〜試樣46 中,可獲得與試樣41的純銅的單層膜接近的低電阻值的 祺,且可實現高密著性。另外,比較試樣44〜試樣46可 > ^ σ,藉由使含氧之銅合金膜上所形成的純銅膜的膜厚較 16 201035351 厚’電阻值進一步降低。 [實例6] 準備於尺寸為100 mmxl00 mm的平滑的玻璃基板上 =成有200 nm的矽膜及300 nm的氮化矽膜的基板。接 著,使用 Cu-0.3Ag-0.5B (at%)、Cu-0.3Ni-0.2B (at%)的 各靶材,於導入有氬氣及氧氣的環境中進行濺鍍,於上述 所準備的各個基板上形成膜厚為3〇〇 nm的含氧之銅合金 ❹ 膜。另外,濺鍍條件設為如下:濺鍍環境中的氣體壓力: 〇·5 Pa,氧濃度:1〇%,電力密度:9 5 w/cm2。 另外,作為參考例,亦準備使用純度為99 99%的鋼靶 材,於氬氣環境中進行濺鍍所形成的純銅膜(試樣5丨 樣 61)。 ^ 以與實例1相同的方式,測定各試樣成膜時的電阻率 及密著性。另外,亦測定於減壓至lxl0-i Pa或lxl(rl h 以上的真空環境中,於加熱溫度25〇°CT對各試樣實施1 小時加熱處理後的電阻率。將於矽膜上成膜的試樣的蜊定 〇 結果示於表5,於氮化矽膜上成膜的試樣的測定结果= 表6。 ° '、於 表5 —1 1 銅合金靶組成 (at%) 成膜時的 氧濃度 (%) 成膜時的 電阻率 (β Hem ) 加熱後的 電阻率 (μ. Qcin ) 密著性 (%) 傷註 試樣51 Cu 0 2.39 5.25 30 參考命k 試樣52 Cu-0.3Ag-0.5B 10 6.11 2.81 100 試樣53 Cu-0.3Ni-0.2B 10 6.61 3.17 1〇〇 is. 未杯RR /r r 千^贫听例 17 201035351 33944ριί 表6 銅合金粗組成 (at%) 成臈時的 氧濃度 (%) 試樣61 Cu —°— 試樣62 Cu-0.3Ag-0.5B 10 試樣63 Cu-0.3Ni-0.2B| 10-----1-----L ---- | Upper (9) According to Table 4, a sample of pure copper film is formed on the oxygen-containing copper alloy base film formed by using a mixed gas of argon and oxygen. In 42 to 46, a low resistance value 接近 which is close to the single layer film of pure copper of the sample 41 was obtained, and high adhesion was achieved. Further, in Comparative Samples 44 to 46, > ^ σ, the film thickness of the pure copper film formed on the oxygen-containing copper alloy film was made thicker than 16 201035351, and the resistance value was further lowered. [Example 6] Prepared on a smooth glass substrate having a size of 100 mm x 100 mm = a substrate having a 200 nm tantalum film and a 300 nm tantalum nitride film. Next, each target of Cu-0.3Ag-0.5B (at%) and Cu-0.3Ni-0.2B (at%) was used for sputtering in an environment in which argon gas and oxygen gas were introduced, and prepared as described above. An oxygen-containing copper alloy tantalum film having a film thickness of 3 〇〇 nm was formed on each of the substrates. Further, the sputtering conditions were set as follows: gas pressure in a sputtering environment: 〇·5 Pa, oxygen concentration: 1%, power density: 9 5 w/cm 2 . Further, as a reference example, a pure copper film formed by sputtering in an argon atmosphere was also prepared using a steel target having a purity of 99 99% (sample 5 61 sample 61). ^ In the same manner as in Example 1, the resistivity and adhesion at the time of film formation of each sample were measured. In addition, the resistivity after heat treatment of each sample for 1 hour at a heating temperature of 25 〇 ° CT in a vacuum atmosphere of lxl0-i Pa or lxl (rl h or more) was measured. The results of the measurement of the film sample are shown in Table 5. The measurement results of the sample formed on the tantalum nitride film = Table 6. ° ', Table 5 - 1 1 Copper alloy target composition (at%) Oxygen concentration at film (%) Resistivity at film formation (β Hem ) Resistivity after heating (μ. Qcin) Adhesion (%) Injury sample 51 Cu 0 2.39 5.25 30 Reference life sample 52 Cu-0.3Ag-0.5B 10 6.11 2.81 100 Sample 53 Cu-0.3Ni-0.2B 10 6.61 3.17 1〇〇is. Non-cup RR /rr 1000^ Poor Example 17 201035351 33944ριί Table 6 Copper alloy coarse composition (at %) Oxygen concentration at the time of formation (%) Sample 61 Cu - ° - Sample 62 Cu-0.3Ag-0.5B 10 Sample 63 Cu-0.3Ni-0.2B| 10

——-r- 的製造方法所獲得的試樣52、試樣53、試樣62、試揭、 的含氧之銅合金膜,於频切及氮化賴上亦,^ 的高密著性’並且於2贼的製程溫度下純時 ^。 阻值。另外可知,形成树膜上的試樣51 2 試樣%、試樣53於加熱處理後電阻值下降3明的 擴散至含氧之銅合金。 $ _亦不會 本二然f發明已以實施例揭露如上,然其並非用以限定 本毛明,任何所屬技術領域中 ^Sample 52, sample 53, sample 62, and oxygen-containing copper alloy film obtained by the method of -r-, on the frequency cutting and nitriding, the high density of ^ And at the process temperature of 2 thieves pure time ^. Resistance value. Further, it was found that the sample 51 2 sample % formed on the tree film and the sample 53 were diffused to a copper alloy containing oxygen after the heat treatment. $ _ 不 不 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本

CJ 發明之伴作些許之更動與潤都,故本 【圈式視後附之申請專利範圍所界定者為準 【主===氣之銅合金膜的χ射線繞射圖案。 益 18The CJ invention is accompanied by a few changes and moisturizing, so this [the circle type is defined by the scope of the patent application attached to the patent [main === gas copper alloy film χ ray diffraction pattern. Benefit 18

Claims (1)

201035351 jjy^pxi 七、申請專利範圍: ^用一種銅合金朗製造方法,其特徵在於: 雜而擔〜二、t ’於導人有氬氣及氧氣的環境中進行 h〇挪的B和0·1娜〜的至少一種或^種以二 與Β製作纽合物的元素作為添加元素 括銅及不可避免_#。 ‘包 Ο * 2.如申請專利範圍第丨項所述之含氧之銅合金膜 製造方法’其中所述銅合金靶使用選自Mg、H Μη、Νι、Zr、Mo、Ag、Sm 的至少-種或一種 為能與B製作出化合物的元素。 上7°素作 3· -種含氧之銅合金膜的製造方法,其特徵在於. 於藉由如申請專利範圍第i項或第2項所述之含 鋼合金膜的製造方法所獲得的含氧之銅合金上, 大於等於99.9%的銅把,於氬氣環境中進行賤链而積Z201035351 jjy^pxi VII. Patent application scope: ^Using a copper alloy Lang manufacturing method, which is characterized by: Miscellaneous and ~2, t' in the environment where the argon and oxygen are introduced, B and 0 are moved. · At least one of 1 Na~ or an element of the composition of the two with yttrium as an additive element including copper and inevitable _#. The invention relates to the method for producing an oxygen-containing copper alloy film according to the invention of claim 2, wherein the copper alloy target uses at least Mg, H Μη, Νι, Zr, Mo, Ag, Sm. An element or an element which is capable of producing a compound with B. And a method for producing a copper alloy film containing oxygen, which is obtained by the method for producing a steel-containing alloy film as described in claim i or item 2 of the patent application. On the oxygen-containing copper alloy, the copper handle is 99.9% or more, and the 贱 chain is accumulated in an argon atmosphere.
TW099108924A 2009-03-26 2010-03-25 Method for producing oxygen-containing copper alloy film TWI452161B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077032 2009-03-26

Publications (2)

Publication Number Publication Date
TW201035351A true TW201035351A (en) 2010-10-01
TWI452161B TWI452161B (en) 2014-09-11

Family

ID=43129798

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099108924A TWI452161B (en) 2009-03-26 2010-03-25 Method for producing oxygen-containing copper alloy film

Country Status (3)

Country Link
JP (1) JP2010248619A (en)
KR (1) KR20100108236A (en)
TW (1) TWI452161B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698447B1 (en) 2011-09-14 2016-04-06 JX Nippon Mining & Metals Corp. High-purity copper-manganese-alloy sputtering target
SG10201607223SA (en) 2011-09-14 2016-10-28 Jx Nippon Mining & Metals Corp High-purity copper-manganese-alloy sputtering target
WO2013111609A1 (en) 2012-01-23 2013-08-01 Jx日鉱日石金属株式会社 High-purity copper-manganese alloy sputtering target
TWI653349B (en) 2013-08-13 2019-03-11 日商大同特殊鋼股份有限公司 Cu alloy target material, Cu alloy target, Cu alloy film and touch panel
JP6448947B2 (en) * 2014-08-12 2019-01-09 デクセリアルズ株式会社 Multilayer thin film
CN107075667B (en) * 2014-11-07 2019-08-20 住友金属矿山株式会社 Copper alloy target
CN111183508A (en) * 2017-11-09 2020-05-19 三井金属矿业株式会社 Wiring structure and target material
JP7280036B2 (en) * 2018-12-17 2023-05-23 日東電工株式会社 METHOD FOR MANUFACTURING CONDUCTIVE FILM
CN115386847B (en) * 2022-07-28 2023-10-27 河南科技大学 Preparation method of blue copper alloy film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496518B2 (en) * 2002-08-19 2010-07-07 日立金属株式会社 Thin film wiring
EP2051287A4 (en) * 2006-08-10 2014-05-21 Ulvac Inc Method for forming conductive film, thin film transistor, panel with thin film transistor, and method for manufacturing thin film transistor
EP2014787B1 (en) * 2006-10-03 2017-09-06 JX Nippon Mining & Metals Corporation Cu-Mn ALLOY SPUTTERING TARGET

Also Published As

Publication number Publication date
TWI452161B (en) 2014-09-11
JP2010248619A (en) 2010-11-04
KR20100108236A (en) 2010-10-06

Similar Documents

Publication Publication Date Title
TW201035351A (en) Manufacture process of oxygen-containing Cu alloy film
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
US8449818B2 (en) Molybdenum containing targets
WO1995016797A1 (en) Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film
JP2008506040A (en) Materials for conductive wires made from copper alloys
JP2010502841A (en) Copper sputtering target having very small crystal grain size and high electromigration resistance and method for producing the same
TW201006938A (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
JP5339830B2 (en) Thin film transistor wiring film having excellent adhesion and sputtering target for forming this wiring film
JPWO2013038962A1 (en) High purity copper manganese alloy sputtering target
JP6681019B2 (en) Sputtering target material for forming laminated wiring film and coating layer for electronic parts
JP4415303B2 (en) Sputtering target for thin film formation
JP6113692B2 (en) Tantalum-based sintered sputtering target
JP2004506814A5 (en)
JP2008255440A (en) MoTi ALLOY SPUTTERING TARGET MATERIAL
JP5622079B2 (en) Sputtering target
TWI506142B (en) NiCu alloy target and laminated film for Cu electrode protective film
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
JP2008280545A (en) Oxygen-containing copper target
JP2008263191A (en) Metal thin-film wiring
WO2017212879A1 (en) Al alloy sputtering target
JP2004061844A (en) Ag ALLOY FILM FOR DISPLAY DEVICE, Ag ALLOY REFLECTING FILM FOR DISPLAY DEVICE, FLAT PANEL DISPLAY DEVICE AND SPUTTERING TARGET MATERIAL FOR Ag ALLOY FILM DEPOSITION
KR20080101071A (en) Ag alloy target, ag alloy sputtering target and ag alloy thin film for the electromagnetic interference shielding
JP4062599B2 (en) Ag alloy film for display device, flat display device, and sputtering target material for forming Ag alloy film
Mayrhofer et al. Superior oxidation resistance of the chemically complex but structurally simple Ti-Al-Ta-Ce-Si-La-B-nitride
JP2006196521A (en) Multilayer wiring film