TW201006938A - Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof - Google Patents

Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof Download PDF

Info

Publication number
TW201006938A
TW201006938A TW098114075A TW98114075A TW201006938A TW 201006938 A TW201006938 A TW 201006938A TW 098114075 A TW098114075 A TW 098114075A TW 98114075 A TW98114075 A TW 98114075A TW 201006938 A TW201006938 A TW 201006938A
Authority
TW
Taiwan
Prior art keywords
alloy
substrate
weight
film
target
Prior art date
Application number
TW098114075A
Other languages
Chinese (zh)
Inventor
Shuwei Sun
Prabhat Kumar
Olaf Schmidt-Park
Rong-Chein Richard Wu
Gary Rozak
Mark Gaydos
Original Assignee
Starck H C Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starck H C Inc filed Critical Starck H C Inc
Publication of TW201006938A publication Critical patent/TW201006938A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/27Mixtures of metals, alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Abstract

Alloys comprising: (a) molybdenum present in a majority portion; (b) niobium present in an alloying amount; and (c) a third metal selected from the group consisting of nickel, chromium, titanium, zirconium, hafnium, vanadium and mixtures thereof, wherein the third metal is present in a doping amount; along with sputtering targets prepared therewith, films sputtered using such targets and thin film devices containing such films.

Description

201006938 六、發明說明·· 【先前技術】 濺鍍為用以在用於半導體及光電工業中之各種製造製程 中產生金屬層之技術。濺鍍期間所形成之薄膜之性質與濺 鑛乾材自身之性質有關,諸如,各別晶粒之尺寸及具有分 布特徵之次相之形成。需要產生將提供薄膜均一性、濺鍍 期間之最小微粒產生以及所得薄膜中之所要電性質及物理 性質的濺鍍靶材。 • 使用各種濺鍍技術,以便實現薄膜在基板之表面上之沈 積。可藉由磁控濺鍍裝置或其他濺鍍技術而形成經沈積金 屬薄膜,諸如,平板顯示裝置上之金屬薄膜。磁控濺鍍裝 置誘發氣體之電漿離子轟擊靶材,從而導致靶材材料之表 面原子射出且沈積為基板之表面上之薄膜或層。習知地, 將以平面圓盤或矩形之形式之濺鍍源用作靶材,且經射出 原子沿著視線軌跡而行進以沈積於晶圓之頂部上,晶圓之 沈積面平行於靶材之侵蝕面。亦可使用管狀濺鍍靶材,諸 如,美國專利申請公開案第2007/0042728號中所描述,該 案之全部内容係以引用之方式併入本文中。 可能需要包含不能藉由諸如輥軋之習知方式而製造之材 料或材料之組合的濺鍍靶材。在該等情況下,藉由熱均衡 加壓(HIP)粉末而製造靶材。理想地,在單一步驟中製造 靶材。然而,HIP設備之粉末裝填密度及尺寸之物理限制 使有必要加入較小區段,以便產生大濺鍍靶材。對於單相 靶材,可使用諸如焊接之習知處理;對於多相材料或在出 139600.doc 201006938 於任何原因而將避免合金形成之情況下,固態邊緣至邊緣 黏結為較佳的。 半導體及TFT-LCD中之互連係自鋁且朝向銅演進,因 此’需要新型擴散障壁。鈦提供極佳黏著性質,而翻有助 於其密集障壁穩定性。積體電路(用於半導體及平板顯示 器)使用Mo — Ti作為用於鋁、銅及鋁合金之底層或覆蓋 層,以最小化小凸起形成、控制反射率且在光微影期間提 供保護以免於物理及化學侵姓。 【發明内容】 本發明大體上係關於鉬合金、其在製備濺鍍靶材時之用 途、使用該等濺鍍靶材而製備薄膜之方法及藉此而製備之 薄膜。更具體言之,本發明係關於鉬合金,其包含多數部 分之鉬、合金量之鈮及摻雜量之第三金屬’第三金屬係選 自由錄、絡、鈦、錯·、給及/或奴組成之群。 本發明之一實施例包括合金,其包含: 存在之鉬; :(a)以多數部分而201006938 VI. INSTRUCTIONS · · [Prior Art] Sputtering is a technique for producing a metal layer in various manufacturing processes used in the semiconductor and optoelectronic industries. The nature of the film formed during sputtering is related to the nature of the sputter dry material itself, such as the size of the individual grains and the formation of secondary phases with distribution characteristics. There is a need to create a sputtering target that will provide film uniformity, minimal particle generation during sputtering, and desired electrical and physical properties in the resulting film. • Use a variety of sputtering techniques to achieve film deposition on the surface of the substrate. A deposited metal film, such as a metal film on a flat panel display device, can be formed by a magnetron sputtering device or other sputtering technique. The magnetron sputtering device induces plasma ions of the gas to bombard the target, causing surface atoms of the target material to be ejected and deposited as a film or layer on the surface of the substrate. Conventionally, a sputtering source in the form of a flat disk or a rectangle is used as a target, and the exiting atoms travel along a line of sight trajectory for deposition on the top of the wafer, and the deposition surface of the wafer is parallel to the target. The erosion surface. A tubular sputter target can also be used, as described in U.S. Patent Application Publication No. 2007/0042, the entire disclosure of which is incorporated herein by reference. It may be desirable to include a sputter target that cannot be made of a material or combination of materials that is manufactured by conventional means such as rolling. In such cases, the target is produced by thermally equalizing pressurized (HIP) powder. Ideally, the target is fabricated in a single step. However, the physical limitations of the powder loading density and size of the HIP device necessitate the addition of smaller sections to create a large sputter target. For single-phase targets, conventional treatments such as welding can be used; solid-state edge-to-edge bonding is preferred for multi-phase materials or where alloy formation is avoided for any reason at 139600.doc 201006938. The interconnections in semiconductors and TFT-LCDs evolved from aluminum and toward copper, so new diffusion barriers were needed. Titanium provides excellent adhesion properties, while turning helps with dense barrier stability. Integral circuits (for semiconductors and flat panel displays) use Mo—Ti as the underlayer or overlay for aluminum, copper and aluminum alloys to minimize small bump formation, control reflectivity and provide protection during photolithography Invade the surname in physics and chemistry. SUMMARY OF THE INVENTION The present invention generally relates to molybdenum alloys, their use in the preparation of sputter targets, methods of making films using such sputter targets, and films prepared thereby. More specifically, the present invention relates to a molybdenum alloy comprising a majority of molybdenum, an amount of the alloy, and a doping amount of the third metal 'the third metal is selected from the group consisting of: recording, complex, titanium, error, giving, and/or Or a group of slaves. An embodiment of the invention includes an alloy comprising: molybdenum present; : (a) in a majority

為鍅時,摻雜量小於0.01重量%或大於1重量% 鉻、鈦、鉛 中第二金屬彳 .(a)以多數部分When it is 鍅, the doping amount is less than 0.01% by weight or more than 1% by weight. The second metal lanthanum in chromium, titanium and lead. (a) in most parts

其中第 本發明之另一實施例包括合金,其包含: 而存在之錮 鉻、鈦、給 三金屬係以摻雜量而存在。 濺鍍靶材包含密化 本發明之另一實施例包括濺鍍靶材, 139600.doc 201006938 合金’密化合金包含:⑷以多數部分而存在之鉬丨㈨以 合金量而存在之銳;及⑷選自由鎳、鉻、欽、錯、給、飢 2其混合物組成之群的第三金屬’其中第三金屬係以摻雜 量而存在。在各種較佳實施例中,本發明包括滅錄乾材, 濺鍍靶材包含密化合金,密化合金 七士 也化Q金包含.(a)以多數部分而 存在之銦;(b)以合金量而存在之銳;及(⑽自由鋅、 鉻、欽、錯、給、飢及其混合物組成之群的第三金屬,其 中第二金屬係以摻雜量而存在;限制條件為:當第三金屬 為锆時,摻雜量小於0.01重量%或大於丄重量%。- 本發明之又-實施例包括方法,其包含·提供以多數部 分而存在之崎末、以合金量而存在之銳粉末及選自由 鎳、路、鈦、鍅、給、銳及其混合物組成之群的第三金屬 粉末的摻合物,其中第;r金厲条 屬係以摻雜量而存在,限制條 …备第二金屬粉末為鉛時,摻雜量小於qgi重量%或 及00使換合物經受熱量及遲力以形成密化 濺鑛乾材。 本發明之再一實施例包括方法,其包含··⑷提供包含密 化合金之滅鑛乾材’密化合金包含:⑴以多數部分而存在 之銦,⑻以合金量而存在之銳;及㈣選自由錄、鉻、 鈦、錯、給、銳及其混合物組成之群的第三金屬,其中第 ,金屬係以摻雜量而存在;⑻提供基板;及⑷使拓材經 受減鍵條件以在基板上形成包含免材材料之塗層。 本發明之另-實施例包括薄膜裝置,其包含基板及安置 於基板上方之薄膜’薄膜係根據本發明之減鑛方法實施例 139600.doc 201006938 中之任一者而製備。 本發明之各種實施例可提供濺鍍靶材,濺鍍靶材可根據 本發明之其他方法實施例而加以使用以提供用於亦由本發 明體現之各種裝置中的薄膜,其中薄膜裝置之效能性質與 此項技術中已知之薄膜裝置至少相當,且在一些情況下優 於此項技術中已知之薄膜裝置,且其中薄膜展現對基板之 優良黏著性。根據本發明之薄媒及含有根據本發明之薄膜 之裝置亦可提供可改良製造生產率之有利光微影特徵。可 由根據本發明之薄膜提供之優點為均一、快速且可控制之 蚀刻速率,其與改良型黏著性(在基板與本發明之薄模之 間’而且在本發明之薄膜與稍後沈積之金屬薄膜(例如, 銅)之間)組合而可極大地改良光微影操作。 【實施方式】 當結合附加圖式而_時’可更好地理解前述概述以及 本發明之以下詳細描述。為了達成幫助解釋本發明之目 的,在圖式中展示被看作說明性之代表性實施例'然而, ,理解,本發Μ以任何方式限於所心之精確排列及+ 〇 如本文中所使用,除非語言及/或上 示,否則單數術語「一」及「”「另外清楚地指 」及該」與「一或多個」及「 同義且可互換地使用。因&amp;,舉例而 附加申請專利範圍中對「_金屬」之參考可 : 或-種以上金屬。㊉了在操作實例t或另外指示處以外屬 心代用於本說明書中之成份、反應條件等等之量的所有數 I39600.doc 6 - 201006938 目或表達應被理解為在所有情況下皆由術語「約」修飾。 本專利申請案中揭示各種數值範圍。因為此等範圍係連續 的,所以其包括介於最小值與最大值之間的每-值。另 外,本文中所揭示之所有範圍皆包括針對相同性質所揭示 • &lt;所有h範圍’且任何上限值或下限值皆可充當針對相 同性質所揭示之任何其他範圍的替代上限值或下限值。因 &amp; ’舉例而t ’針對相同性質而對為之範圍的參 ❹考亦包括針對彼性質為、4至1〇、】至6及6至之範圍。 根據本發明之各種實施例之合金包括一多數部分之鉬。 如本文中所使用,術語「多數部分」指代大於5〇%之重量 百分比含量。較佳地,多數部分為75%或更多,且甚至更 佳地,多數部分為94%至99%。在本發明之合金之甚至更 佳實施例中,鉬係以為95。/。至98%之多數部分而存在,且 最佳地為95%至97%。 根據本發明之各種實施例的合金包括一合金量之鈮。如 Φ 本文中所使用’術語「合金量」指代為約〇 5〇/〇至6〇/〇之重 量百分比含量。較佳地,合金量為1 %至5%,甚至更佳地 為2°/。至4%,且最佳地為3。/。至4%。 根據本發明之各種實施例之合金包括一摻雜量之第三金 屬。如本文中所使用,術語「摻雜量」指代通常小於合金 量之重量百分比含量。較佳地,摻雜量為至多約2%。在 各種實施例中,摻雜量可為至多約1 ^在各種實施例 中’摻雜量可為自100 ppm至1 %。在各種實施例中,摻雜 量可為至多1 〇〇 ppm。在各種實施例中,摻雜量可為大於 139600.doc 201006938 1 〇/〇之任何量直至小於合金量之量。 存在於根據本發明之各種實施例之合金中的第三金屬可 選自由鎳、鉻、鈦、鍅、铪、釩及其混合物組成之群。在 本發明之各種較佳實施例中,第三金屬包含锆。 根據本發明之一實施例包括合金,合金包含:(a)以多數 部分而存在之鉬;(b)以合金量而存在之鈮;及(e)以小於 100 ppm之量的锆。根據本發明之另一實施例包括合金’ 合金包含:⑷以多數部分而存在之鉬;(b)以合金量而存 在之鈮;及(C)大於1重量。/。之量的锆。 根據本發明之各種實施例之合金的特徵可在於:鈮及第 三金屬在置換型固溶體中主要與鉬結合,或作為無在晶體 結構中各種金屬之合金的混合物,或作為具有部分合金之 混合物。 可藉由任何適當熔融冶金製程而製備根據本發明之各種 實施例之合金。根據本發明之合金可經進一步碾磨及/或 研磨以產生用於形成根據本發明之濺鍍靶材的粉末。亦可 使用原子化製程(例如,旋轉電極製程)而製備粉末。用於 製備根據本發明之合金的適當熔融冶金製程係描述於美國 專利申請公開案第US2006/0172454號中,該案之全部内容 係以引用之方式併人本文中。或者,舉例而言可將適當 量之鉬粉末、鈮粉末及第三金屬粉末進行摻合、真空2 結、真空熱壓或熱均衡加壓(HIP)。隨後可接著藉由諸 如擠壓、鍛造及/或輥軋之熱變形製程來壓密該等小坯。 本發明亦包㈣㈣材,其包含根據本發明之各種合金 139600.doc 201006938 實施例中之任一者的密化合金。本發明之成品濺鍍靶材具 有大於約90%之理論密度、較佳地為至少95%之理論密 度、更佳地為至少98%之理論密度且最佳地為至少99.5% 之理論密度的密度。 可經由諸如熔融製程或粉末冶金製程之適當習知技術而 提供根據本發明之濺鍍靶材。各種鱗錠冶金方法在此項技 術中為已知的’包括(但不限於)諸如電子束熔融製程、電 孤炫融、電漿熔融及其類似者之方法。在適當電子束熔融 製程中’可在等於或低於4χ10·5托之極限真空條件下執行 熔融。在適當電漿熔融製程中,可在8χ1〇-4與4χ1〇-3托之 間的氣氛下進行熔融。 在各種適當粉末冶金製程中,以先前所描述之比例來摻 合組成粉末(亦即’鉬粉末、鈮粉末及第三金屬粉末或如 上文所描述之先前碟磨及研磨之合金粉末),且藉由此項 技術中已知之各種方式進行壓緊及燒結。此外,可代替元 素粉末而使用經由原子化方法或其類似者而以預定組份所 產生之粉末狀合金,或可使用該粉末狀合金以及該等元素 粉末。鉬粉末之平均粒度較佳地係在〇· 1_25微米之間,更 佳地小於5微米。對於鈮及第三金屬粉末,所要平均粒度 較佳地為5-50微米,更佳地為20-35微米。 可根據在此項技術中為熟知之粉末摻合技術來摻合粉 末。舉例而言’可藉由將鉬、鈮及第三金屬粉末置放於乾 燥容器中且將封閉容器圍繞其中心轴線進行旋轉而發生混 合。將混合繼續歷時足以導致完全摻合且均一分布之粉末 139600.doc 201006938 的時期。亦可使用球磨機或類似裝置以完成摻合步驟。本 發明不限於任何特定混合技術,且可選擇其他混合技術 (若其將充分地摻合組成起始粉末)。 視情況,接著在初步壓緊步驟中將粉末摻合物壓密至為 60/。-85°/◦之理論密度的密度。可藉由為熟習粉末冶金技術 者已知之任何方式來完成壓密’例如,冷均衡加壓、輥軋 或衝模壓緊。所使用之壓力之時間長度及量將視在此步驟 中待達成之所要壓密度而變化。對於一些類型之靶材(諸 如,管狀靶材)’此步驟可能不為必要的。 在初步壓密步驟之後,將經壓密粉末囊封(例如)於軟鋼 罐中。亦可藉由將提供無互連表面孔隙率之壓緊工件的任 何方法來完成囊封,諸如,藉由燒結、熱噴塗及其類似 者。如本文中所使用,術語「囊封」將指代用於提供無互 連表面孔隙率之壓緊件的為熟習此項技術者已知之任何方 法。較佳囊封方法係藉由使用鋼罐。 在囊封之後,在熱量及壓力下壓緊經囊封件。各種壓緊 方法在此項技術中為已知的,包括(但不限於)諸如惰性氣 體單軸熱壓、真空熱壓及熱均衡加壓以及快速全向壓緊 (Ceracon製程)之方法。較佳地,經囊封件經熱均衡加壓 為所要靶材形狀,因為彼方法在此項技術中為已知的,其 係在為75-300 MPa(更佳地為1〇〇_175 Mpa)之壓力下在為 l〇〇〇C-1500°C(更佳地為⑴代七⑽)之溫度下歷時 2 16小時(更佳地為4_8小時)。只要維持適當溫度麼力及 時1條件便了使用其他熱壓方法以產生本發明之M〇_Nb_ 139600.doc 201006938Another embodiment of the first invention includes an alloy comprising: and the presence of ruthenium chromium, titanium, and a trimetallic system present in a doping amount. Sputtering target comprising densification Another embodiment of the invention includes a sputter target, 139600.doc 201006938 alloy 'densified alloy comprising: (4) molybdenum niobium (n) present in a majority portion is sharp in the amount of alloy; (4) A third metal selected from the group consisting of a mixture of nickel, chromium, hexagram, dynamite, and hunger, wherein the third metal is present in a doping amount. In various preferred embodiments, the present invention includes a dry-dissolved material, the sputter target comprises a densified alloy, and the densified alloy is also composed of Q gold. (a) indium present in a majority portion; (b) a sharp metal present in the amount of alloy; and (10) a third metal of a group consisting of free zinc, chromium, chin, erroneous, giving, hunger, and mixtures thereof, wherein the second metal is present in a doping amount; the limiting condition is: When the third metal is zirconium, the doping amount is less than 0.01% by weight or more than 丄% by weight. - Further embodiments of the present invention include a method comprising: providing a crucible in a majority portion, presenting in an amount of alloy a sharp powder and a blend of a third metal powder selected from the group consisting of nickel, road, titanium, niobium, niobium, ruthenium, and mixtures thereof, wherein the ri is a doping amount, limiting When the second metal powder is lead, the doping amount is less than qgi wt% or 00, and the compound is subjected to heat and late force to form a densified splashing dry material. Still another embodiment of the present invention includes a method, Including (4) Providing a permafrost dry material containing a densified alloy (1) indium present in a majority portion, (8) sharp in the presence of an alloy amount; and (d) a third metal selected from the group consisting of chrome, chromium, titanium, erroneous, agglomerate, sharp, and mixtures thereof, wherein Providing a doping amount; (8) providing a substrate; and (4) subjecting the extrudate to a debonding condition to form a coating comprising a free material on the substrate. Another embodiment of the invention includes a thin film device comprising a substrate and disposed on The film 'film on top of the substrate is prepared according to any one of the methods of mineral reduction of the present invention, 139600. doc 201006938. Various embodiments of the present invention may provide a sputtering target, which may be in accordance with the present invention. Other method embodiments are used to provide films for use in various devices also embodied by the present invention, wherein the performance properties of the film device are at least comparable to, and in some cases superior to, the thin film devices known in the art. a thin film device known in the art, and wherein the film exhibits excellent adhesion to the substrate. The thin medium according to the present invention and the device containing the film according to the present invention can also be provided with an improved system. A favorable photolithographic feature of productivity. The advantage provided by the film according to the invention is a uniform, fast and controllable etch rate, which is improved adhesion (between the substrate and the thin mold of the invention) and The combination of the inventive film and a later deposited metal film (for example, copper) can greatly improve the photolithography operation. [Embodiment] The foregoing overview can be better understood when combined with additional patterns. The detailed description of the present invention is set forth in the accompanying drawings. As used herein, the singular terms "a" and "an" and "the" and "the" and "the" and "the" are used interchangeably and interchangeably. For the sake of &amp;, the reference to "_metal" in the scope of additional patent application may be: or more than one metal. All numbers I39600.doc 6 - 201006938 or the expressions of the components, reaction conditions, etc. used in this specification outside the operating example t or other indications should be understood as terms in all cases. "about" modification. Various numerical ranges are disclosed in this patent application. Because these ranges are continuous, they include every value between the minimum and maximum values. In addition, all ranges disclosed herein are intended to encompass the same <RTI ID=0.0> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; lower limit. References to &lt;RTI ID=0.0&gt;&gt;&quot;&quot;&quot;&quot;&quot;&quot; Alloys in accordance with various embodiments of the present invention include a majority portion of molybdenum. As used herein, the term "majority" refers to a weight percent content greater than 5%. Preferably, the majority is 75% or more, and even more preferably, the majority is 94% to 99%. In an even more preferred embodiment of the alloy of the present invention, the molybdenum is 95. /. It exists in most parts of 98%, and is optimally 95% to 97%. Alloys in accordance with various embodiments of the present invention include an amount of alloy. As used herein, the term "alloy amount" refers to a weight percent content of from about 〇5〇/〇 to 6〇/〇. Preferably, the amount of the alloy is from 1% to 5%, and even more preferably 2%/. Up to 4%, and optimally 3. /. Up to 4%. Alloys in accordance with various embodiments of the present invention include a doping amount of a third metal. As used herein, the term "doping amount" refers to a content by weight which is generally less than the amount of the alloy. Preferably, the amount of doping is at most about 2%. In various embodiments, the amount of doping can be up to about 1 ^. In various embodiments, the amount of doping can range from 100 ppm to 1%. In various embodiments, the amount of doping can be up to 1 〇〇 ppm. In various embodiments, the amount of doping can be any amount greater than 139600.doc 201006938 1 〇 / 直至 up to an amount less than the amount of alloy. The third metal present in the alloys according to various embodiments of the present invention may be selected from the group consisting of nickel, chromium, titanium, niobium, tantalum, vanadium, and mixtures thereof. In various preferred embodiments of the invention, the third metal comprises zirconium. An embodiment according to an embodiment of the invention comprises an alloy comprising: (a) molybdenum present in a majority; (b) niobium present in an amount of alloy; and (e) zirconium in an amount less than 100 ppm. Another embodiment according to the invention comprises an alloy&apos; alloy comprising: (4) molybdenum present in a majority; (b) bismuth in the amount of alloy; and (C) greater than 1 weight. /. The amount of zirconium. The alloy according to various embodiments of the present invention may be characterized in that the niobium and the third metal are mainly combined with molybdenum in the displacement type solid solution, or as a mixture of alloys of various metals in the crystal structure, or as a partial alloy. a mixture. Alloys in accordance with various embodiments of the present invention may be prepared by any suitable molten metallurgical process. The alloy according to the invention may be further milled and/or ground to produce a powder for forming a sputter target according to the invention. The powder can also be prepared using an atomization process (e.g., a rotating electrode process). A suitable molten metallurgy process for the preparation of the alloys according to the present invention is described in U.S. Patent Application Publication No. US2006/0172454, the entire disclosure of which is incorporated herein by reference. Alternatively, for example, a suitable amount of molybdenum powder, niobium powder, and third metal powder may be blended, vacuumed, vacuum hot pressed, or thermally evenly pressurized (HIP). The parisons can then be compacted by a thermal deformation process such as extrusion, forging and/or rolling. The invention also encompasses (4) (four) materials comprising a densified alloy of any of the various alloys of the invention 139600.doc 201006938. The finished sputter target of the present invention has a theoretical density greater than about 90%, preferably a theoretical density of at least 95%, more preferably a theoretical density of at least 98%, and most preferably a theoretical density of at least 99.5%. density. The sputter target according to the present invention can be provided via suitable conventional techniques such as a melt process or a powder metallurgy process. Various scale metallurgy processes are known in the art including, but not limited to, methods such as electron beam melting processes, electrospinning, plasma melting, and the like. Melting can be performed under extreme vacuum conditions equal to or lower than 4 χ 10·5 Torr in a suitable electron beam melting process. In a suitable plasma melting process, melting can be carried out in an atmosphere between 8 χ 1 〇 4 and 4 χ 1 〇 - 3 Torr. In a suitable powder metallurgy process, the constituent powders (i.e., 'molybdenum powder, tantalum powder and third metal powder or previously ground and ground alloy powder as described above) are blended in the proportions previously described, and Compaction and sintering are carried out by various means known in the art. Further, a powdery alloy produced by a predetermined component via an atomization method or the like may be used instead of the elemental powder, or the powdery alloy and the elemental powder may be used. The average particle size of the molybdenum powder is preferably between _ 1 - 25 μm, more preferably less than 5 μm. For the niobium and the third metal powder, the average particle size is preferably from 5 to 50 μm, more preferably from 20 to 35 μm. The powder can be blended according to well known powder blending techniques in the art. For example, mixing can occur by placing molybdenum, niobium, and third metal powder in a dry container and rotating the closed container about its central axis. The mixing will continue for a period of time sufficient to result in a fully blended and uniformly distributed powder 139600.doc 201006938. A ball mill or similar device can also be used to complete the blending step. The invention is not limited to any particular mixing technique, and other mixing techniques may be selected (if it will be sufficiently blended to form the starting powder). Optionally, the powder blend is then compacted to 60/ in the preliminary compacting step. Density of theoretical density of -85 ° / ◦. Compaction can be accomplished by any means known to those skilled in the art of powder metallurgy, for example, cold equalization pressurization, rolling, or die compaction. The length and amount of pressure used will vary depending on the desired pressure density to be achieved in this step. For some types of targets (e.g., tubular targets) this step may not be necessary. After the preliminary compacting step, the compacted powder is encapsulated, for example, in a mild steel can. Encapsulation can also be accomplished by any method that will provide a compacted workpiece with no interconnected surface porosity, such as by sintering, thermal spraying, and the like. As used herein, the term "encapsulated" will refer to any method known to those skilled in the art for providing a compression member having no interconnected surface porosity. A preferred method of encapsulation is by using a steel can. After encapsulation, the encapsulated member is compressed under heat and pressure. Various compression methods are known in the art including, but not limited to, methods such as inert gas uniaxial hot pressing, vacuum hot pressing and thermal equalizing press, and rapid omni compaction (Ceracon process). Preferably, the encapsulate is thermally isostatically pressurized to the desired target shape, as the method is known in the art and is 75-300 MPa (more preferably 1 〇〇 175). The pressure under Mpa) is 2 16 hours (more preferably 4-8 hours) at a temperature of 10 ° C - 1500 ° C (more preferably (1) generation seven (10)). As long as the proper temperature is maintained and then the other conditions are used to produce the M〇_Nb_ 139600.doc 201006938 of the present invention.

Zr濺鍍靶材。 可使用上文所描述之壓緊及燒結方法而將根據本發明之 各種實施例之濺鍍靶材製備為矩形板或其他適當形狀,或 製備為管狀濺鍍靶材。可藉由黏結多個板來製備較大靶 材’諸如’美國專利申請公開案第US2007/0089984號中所 描述,該案之全部内容係以引用之方式併入本文中。用於 • 官狀靶材之製備的適當方法係描述於美國專利申請公開案 ^ 第US2006/0172454號十,該案之全部内容係以引用之方式 併入本文中。製造管狀濺鍍靶材之方法(其亦可用以製備 根據本發明之靶材)係揭示於美國專利申請公開案第 US2006/0042728號中,該案之全部内容係以引用之方式併 入本文中。 本發明亦包括藉由濺鍍根據本文中所描述之本發明的靶 材之各種實施例之靶材而製備的薄膜。可藉由濺鍍包含 鉬、鈮及第三金屬之合金的根據本發明之靶材來製備根據 φ 本發明之薄膜。濺鍍本發明之靶材包括使靶材經受濺鍍條 件。可使用任何適當濺鍍方式磁控濺鍍為較佳的。 可根據本發明之方法而加以使用之適當濺鍍條件可包括 初步預燒程序,其可包含對靶材之功率施加,其中具有 (例如)〇至⑽w之瓦特上升,且維持衫功率歷時1〇分鐘、 在為50分鐘之時期内上升至_ w且接著維持在麵|下 之值定功率歷時2小時。在預燒程序及任何可選基板清洗 之後,可進行濺鑛。在沈積之前,可藉由在丙嗣及乙醇之 超音波浴中之連續沖洗而使基板經受化學清洗。可接著將 139600.doc 201006938 基板在氮氣中吹乾且裝載至沈積腔室中以用於濺鍍。 可在施加至把材之各種參數或功率及腔室中之氣體壓力 下進行濺鑛腔至中之沈積。施加至乾材之適當功率位準可 為500至2000 W,且較佳地為約1〇〇〇 w。使基板較佳地在 〇 V下接地’且將基板源間隔(sss)維持為約5吋。氣體壓 力通常為約1至10毫托’且更佳地為1至5毫托。 本發明亦包括併有根據以上所描述的濺鍍根據本發明之 乾材之方法而製造之薄膜的薄膜裝置。如本文中所使用, 「薄膜裝置」包括電子組件,諸如,半導體裝置、薄膜電 晶體、TFT-LCD裝置、增強平板顯示器之影像對比度的黑 色矩陣裝置、太陽電池、感測器,及用於具有可調諧功函 數之CMOS(互補金氧半導體)的閘極裝置。 根據本發明之方法藉由濺鍍根據本發明之靶材而製備之 薄膜可以任何適當方式而用於上述薄膜裝置中之任一者 中。因此,舉例而言,自本發明之靶材所製備之Μ〇χΝ、Μ、 薄膜(Μ3表示第三金屬且x+y+z較佳地等於1〇〇%)可充當障 壁層、在蝕刻之後的導電配線、閘電極、源電極及/或汲 電極’等等。根據本發明之各種實施例之薄膜較佳地用於 平板顯示器及太陽電池中。可使用用於蝕刻、光微影及其 他電子裝置架構製造之任何適當製程以自根據本發明而沈 積之薄膜形成適當配線、電極或電晶體元件。作為障壁 層’根據本發明之各種實施例之薄膜可充當擴散障壁層 (例如,在Si基板及安置於Si基板上方之金屬層之間),咬 充St置於裝置内之下伏層上方之保護層,或充當該擴散 139600.doc 12 201006938 障壁層及該保護層。鉬層作為障壁層之使用係描述於(例 如)美國專利第7,352,417號中,該專利之全部内容係以引 用之方式併入本文中。 可將本發明之薄膜沈積於可在上方濺鍍材料之任何適當 基板上。在本發明之各種較佳實施例中,在上方濺鍍根據 本發明之薄膜的基板包含玻璃、矽、鋼或聚合材料。另 外,可將根據本發明之薄膜沈積至其他薄膜矽/矽合金層 上。在各種較佳實施例中,基板可包含玻璃、矽及/或不 鏽鋼。在各種尤其較佳實施例中,基板可包含低鈉玻璃、其 他非驗性LCD基板玻璃(例如’ Corning® 1737),或其組合。 根據本發明而製備之M〇NbM3薄膜可有利地用於各種薄 膜袭置中’尤其較佳地在平板顯示器中用作配線。 MoNbM3薄膜展現最小微粒產生、良好基板黏著性及低電 阻率。如下文所論述,MoNbM3薄膜之均一性與已知M〇及 ΜοΤι薄膜相當,或甚至優於已知m〇及M〇Ti薄膜。 現將參看以下非限制性實例而更詳細地描述本發明。 實例Zr sputtering target. The sputter target according to various embodiments of the present invention can be prepared into a rectangular plate or other suitable shape using the compacting and sintering methods described above, or can be prepared as a tubular sputter target. Larger targets can be prepared by bonding a plurality of sheets, as described in U.S. Patent Application Publication No. US2007/0089984, the entire disclosure of which is incorporated herein by reference. Suitable methods for the preparation of the official target are described in U.S. Patent Application Publication No. US 2006/0172454, the entire disclosure of which is incorporated herein by reference. A method of making a tubular sputter target, which can also be used to prepare a target according to the present invention, is disclosed in U.S. Patent Application Publication No. US 2006/0042, the entire disclosure of which is incorporated herein by reference. . The invention also includes films prepared by sputtering targets of various embodiments of the targets of the invention as described herein. The film according to the invention can be prepared by sputtering a target according to the invention comprising an alloy of molybdenum, niobium and a third metal. Sputtering the target of the present invention involves subjecting the target to sputter conditions. Magnetron sputtering can be preferred using any suitable sputtering method. Suitable sputtering conditions that can be used in accordance with the methods of the present invention can include a preliminary burn-in procedure that can include power application to the target, with a watt rise of, for example, 〇 to (10) w, and maintaining the power of the shirt for 1 〇. Minutes, rise to _ w for a period of 50 minutes and then maintain the power at face | for 2 hours. Splashing can be performed after the burn-in procedure and any optional substrate cleaning. Prior to deposition, the substrate can be subjected to chemical cleaning by continuous rinsing in an ultrasonic bath of propylene and ethanol. The 139600.doc 201006938 substrate can then be blow dried in nitrogen and loaded into a deposition chamber for sputtering. The deposition of the splash to the center can be carried out under various parameters or power applied to the material and the gas pressure in the chamber. The appropriate power level applied to the dry material can range from 500 to 2000 W, and is preferably about 1 〇〇〇 w. The substrate is preferably grounded at 〇 V and the substrate source spacing (sss) is maintained at about 5 Å. The gas pressure is usually from about 1 to 10 mTorr' and more preferably from 1 to 5 mTorr. The present invention also encompasses a film device having a film produced by the method of sputtering a dry material according to the present invention as described above. As used herein, a "thin film device" includes electronic components such as a semiconductor device, a thin film transistor, a TFT-LCD device, a black matrix device that enhances image contrast of a flat panel display, a solar cell, a sensor, and A CMOS (Complementary Metal Oxide Semiconductor) gate device with a tunable work function. Films prepared by sputtering a target according to the present invention in accordance with the method of the present invention can be used in any of the above-described thin film devices in any suitable manner. Thus, for example, a tantalum, niobium, film prepared from the target of the present invention (Μ3 represents a third metal and x+y+z is preferably equal to 1% by weight) can serve as a barrier layer, in etching Subsequent conductive wiring, gate electrode, source electrode and/or germanium electrode 'etc. Films in accordance with various embodiments of the present invention are preferably used in flat panel displays and solar cells. Any suitable process for fabrication by etching, photolithography, and other electronic device architectures can be used to form suitable wiring, electrodes or transistor components from films deposited in accordance with the present invention. As a barrier layer, a film according to various embodiments of the present invention may serve as a diffusion barrier layer (for example, between a Si substrate and a metal layer disposed above the Si substrate), and the bite St is placed above the underlying layer in the device. The protective layer, or the barrier layer and the protective layer that act as the diffusion 139600.doc 12 201006938. The use of a molybdenum layer as a barrier layer is described, for example, in U.S. Patent No. 7,352,417, the disclosure of which is incorporated herein in its entirety. The film of the present invention can be deposited on any suitable substrate that can be sputtered over the material. In various preferred embodiments of the invention, the substrate on which the film according to the present invention is sputtered comprises glass, tantalum, steel or polymeric material. Alternatively, the film according to the present invention can be deposited onto other film tantalum/niobium alloy layers. In various preferred embodiments, the substrate can comprise glass, tantalum and/or stainless steel. In various particularly preferred embodiments, the substrate can comprise low sodium glass, other non-indicating LCD substrate glass (e.g., &apos; Corning® 1737), or a combination thereof. The M〇NbM3 film prepared according to the present invention can be advantageously used in various film placements', particularly preferably used as wiring in flat panel displays. The MoNbM3 film exhibits minimal particle generation, good substrate adhesion and low resistivity. As discussed below, the uniformity of the MoNbM3 film is comparable to known M〇 and ΜοΤι films, or even better than known m〇 and M〇Ti films. The invention will now be described in more detail with reference to the following non-limiting examples. Instance

基於已知高純度鉬合金而製備比較性濺鍍靶材丨、2、3A 及3B,其中鉬包含大體上整個靶材。亦製備基於已知鉬· 鈦合金之額外比較性靶材。最後,製備包含鉬、鈮及鉛之 靶材以用於根據本發明之一實施例之薄膜的製備。接著將 薄膑在各種條件下沈積於各種基板上且針對形態、微粒產 生、積聚速率、微結構、黏著性、㈣速率、電阻率 一性而進行評估。 139600.doc -13- 201006938 靶材製備: 之習知溶融、退火、 中之每一者。在保護 。所使用之靶材中之 藉由組合適當金屬且以電子束輻射 擠壓、退火、鍛造及退火來製備靶材 氣氛下或在真空中進行所有退火步驟 每一者為具有為〇·25吋之厚度的圓形。 基板及基板製備: 在基板上沈㈣膜之前’使⑦、不_(細3〇4)、驗 石灰玻璃及〜ning 1737玻璃基板中之每-者經受藉由丙 酮及乙醇之超音波浴中之連續沖洗的化學清I接著使用 氮氣來乾燥基板中之每-者且將其裝載至沈積腔室中。 接著將腔室排氣至低W,托之壓力,且隨後使用氬 氣而填充至為65尊;托之壓力,藉由施加為4〇〇 v之 負電壓、在100 kHz下脈衝歷時3〇分鐘且將氯離子加速至 基板而對基板進行濺鍍蝕刻。在對基板進行濺鍍清洗之 後,將氬氣流降低至2毫托且在500 W(DC)下對靶材進行濺 鍍清洗歷時5分鐘。在靶材之濺鍍清洗期間,將擋板定位 於乾材前方以防止沈積於基板上。 藉由施加至把材之固定功率且在變化之氣體壓力及時間 條件下執行在基板上之沈積。以下在表丨中展示條件。 表1·關於在0 V(接地)下之基板在1000 w下沈積之參數Comparative sputtering targets 丨, 2, 3A, and 3B are prepared based on known high purity molybdenum alloys, wherein the molybdenum comprises substantially the entire target. Additional comparative targets based on known molybdenum-titanium alloys were also prepared. Finally, a target comprising molybdenum, niobium and lead is prepared for the preparation of a film according to an embodiment of the invention. The crucible was then deposited on various substrates under various conditions and evaluated for morphology, particle generation, accumulation rate, microstructure, adhesion, (iv) rate, and resistivity. 139600.doc -13- 201006938 Target preparation: Known melting, annealing, each. In protection. In the target used, all of the annealing steps are carried out by combining appropriate metals and extruding, annealing, forging and annealing by electron beam irradiation or in vacuum, each having a 〇·25吋The thickness of the circle. Substrate and substrate preparation: Before the substrate is sunk (4), the film is subjected to ultrasonic bath with acetone and ethanol in each of the 7, not (fine 3〇4), limestone glass and ~ning 1737 glass substrates. The continuous rinse of the chemical clear I then uses nitrogen to dry each of the substrates and load them into the deposition chamber. The chamber is then vented to a low W, pressure, and then filled with argon to 65 ton; the pressure of the susceptor is applied by a negative voltage of 4 〇〇v and pulsed at 100 kHz for 3 〇. The substrate was sputter-etched by accelerating chloride ions to the substrate in minutes. After the substrate was sputter cleaned, the argon flow was reduced to 2 mTorr and the target was sputter cleaned at 500 W (DC) for 5 minutes. During the sputter cleaning of the target, the baffle is positioned in front of the dry material to prevent deposition on the substrate. Deposition on the substrate is performed by application to the fixed power of the material and under varying gas pressure and time conditions. The conditions are shown below in the table. Table 1. Parameters for deposition of the substrate at 0 V (ground) at 1000 W

時間 t k體壓力(毫: te) 1 2 3 4 5 1小時 X X X X X 〜2分鐘 X X X 將基板源間隔維持為5”。施加至靶材之功率為1 〇〇〇 W且 139600.doc 201006938 將基板維持為〇 V。所使用之沈積腔室為具有為ΐχΐ〇.6托之 基礎壓力的圓柱形容器,其係由ACSEL製造,由Advanced Energy製造之具有雙通道Dc 6 kw功率之電源供電。 薄膜評估: 使用所製備&lt;賤鍍數材中之每一I而向+同基板中之每 一者提供薄膜。接著如下評估所塗布基板。 把材之形態: 在比較性鉬··鈦薄膜之侵蝕軌道中觀測到一些微孔。基 於背向散射電子影像,似乎係,一些鉬晶粒與鈦晶粒偏析 且大部分微孔存在於較亮區域(由具有較大原子數目之鉬 晶粒組成)中。對比而言,未在自M〇NbZr濺鍍靶材所製備 之薄膜中觀測到微孔或鉬、鈮與鍅晶粒之偏析。此外, MoNbZr濺鍍靶材中之晶粒尺寸遠大於比較性靶材中之晶 粒尺寸。參看圖la、圖lb、圖2a及圖2b,可在MoTi靶材中 鑑別到微孔,尤其係在5000X放大率下,諸如圖2&amp;所示。 ^ 在50〇X放大率下MoTi靶材之背向散射電子成像展示大部 分微孔係在Mo晶粒之間。參看圖3a、圖3b、圖4a及圖4b, 未在MoNbZr靶材中鑑別到微孔。 微粒產生: 參看圖5a、圖5b、圖6a、圖6b及圖7,亦在使用比較性 MoTi靶材而產生之薄膜中觀測到巨集微粒。所遇到之微粒 的直徑具有在2與5 μιη之間的量測。巨集微粒密度之估計 為在50 μπιχ50 μπι面積中約4個巨集微粒。對比而言,未在 使用MoNbZr乾材而在碎基板上於5毫托、3毫托或1毫托下 139600.doc 15 201006938 所製備之薄膜中觀測到巨集微粒。 積聚速率: 使用掃描電子顯微法(SEM)來量測使用靶材中之每一者 而在矽基板及Corning 1737玻璃基板兩者上所製備之塗層 的積聚速率。以下在表2中呈現資料。 表2.在0 V(接地)下所沈積之薄膜的積聚速率(μιη/h) 氣猶 ί壓力(毫托) 1 2 3 4 5 平均值 標準差 把材 1 (μιη/h) 5.5 5.1 5 5 6 5.32 0.43 乾材2 (μιη/h) 5.8 6 6.6 6.5 6.5 6.28 0.36 Δ積聚速率(μιη/h) 0.3 0.9 1.6 1.5 0.5 0.96 關於丁1之%變化 5.45 17.65 32.00 30.00 8.33 18.69 乾材 3A(ftm/h) 5.7 6.0 5.4 6.4 6.9 6.08 0.59 關於T1之Δ積聚速率 (μιη/h) 0.2 0.9 0.4 1.4 0.9 0.76 關於丁1之%變化 3.64 17.65 8.00 28.00 15.00 14.46 乾材 3B (μπι/h) 6.16 6.4 6.1 6.25 5.8 6.14 0.22 關於Ή之Δ積聚速率 (μιη/h) 0.66 1.3 1.1 1.25 -0.2 0.82 關於丁1之%變化 12.00 25.49 22.00 25.00 -3.33 16.23 Coming 1737上之乾材 Mo-Ti (μπι/h) 5.85 6.04 6.43 6.28 6.55 6.23 0.255 關於T1之Δ積聚速率 (μπι/h) 0.35 0.94 1.43 1.28 0.55 0.91 關於丁1之%變化 6.36 18.4 28.6 25.6 9.17 17.6% Si 上之把材 Μο-Ή(μηι/1ι) 5.66 5.64 6.5 6.5 6.08 0.425 關於Τ1之Δ積聚速率 (μπι/h) 0.16 0.54 1.5 1.5 0.925 關於丁1之%變化 2.9 10.5 30 30 18.35 Coming 1737上之拓材 Mo-NbZr(pm/h) 5.47 6.52 6.7 6.23 0.54 關於T1之Δ積聚速率 (μιη/h) -0.03 1.52 0.7 0.73 關於11之%變化 -0.55 30 11.6 13.6 Si上之乾材 Mo-NbZr(|im/h) 6.19 6.67 6.39 6.33 6.74 6.46 0.208 關於T1之Δ積聚速率 (μιη/h) 0.69 1.57 1.9 1.33 0.67 1.23 關於丁1之%變化 12.5 30.8 38 26.6 11.2 23.8 139600.doc -16- 201006938 微結構: 亦使用SEM而觀測使用MoTi及MoNbZr濺鍍靶材而在# 基板及Corning 173 7玻璃基板上所製備之薄骐之微結構。 隨著沈積壓力減小,使用兩種把材而製備之塗層變得愈來 愈密集。1737玻璃基板上之塗層比石夕基板上之塗層密集。 • 參看圖8a至圖24b,展示薄膜之類似密度。 黏著性(帶測試): 使用帶測試來量測使用MoTi及MoNbZr濺鍍靶材而製備 馨 之塗層之黏著性。在Corning 1737玻璃上所製備之具有約 200 nm之厚度的塗層與在不鏽鋼及鹼石灰玻璃基板上所製 備之具有約5 μηι之厚度的塗層相比演示顯著更佳之黏著 性。以下在表3a及表3b中展示結果。 表3a.帶測試:Mo-Ti及Mo-NbZr塗層;在Corning 1737上〜2〇〇 nm 之厚度Time tk body pressure (millimeter: te) 1 2 3 4 5 1 hour XXXXX ~ 2 minutes XXX Maintain the substrate source spacing at 5". The power applied to the target is 1 〇〇〇W and 139600.doc 201006938 Maintain the substrate The deposition chamber used is a cylindrical vessel having a base pressure of ΐχΐ〇.6 Torr, which is manufactured by ACSEL and is powered by a dual-channel DC 6 kw power source manufactured by Advanced Energy. : Using each of the prepared &lt;贱 plated materials, a film is provided to each of the + substrates. The coated substrate is then evaluated as follows. Shape of the material: Erosion of comparative molybdenum titanium film Some micropores are observed in the orbit. Based on backscattered electron images, it seems that some molybdenum grains are segregated with titanium grains and most of the micropores are present in brighter regions (composed of molybdenum grains with a larger atomic number) In contrast, micropores or segregation of molybdenum, niobium and tantalum grains were not observed in films prepared from M〇NbZr sputtering targets. In addition, the grain size in MoNbZr sputtering targets is much larger than Grain in a comparative target Dimensions. Referring to Figures la, lb, 2a and 2b, micropores can be identified in MoTi targets, especially at 5000X magnification, such as shown in Figure 2 &amp; ^ MoTi at 50〇X magnification Backscattered electron imaging of the target shows that most of the micropores are between the Mo grains. Referring to Figures 3a, 3b, 4a and 4b, micropores are not identified in the MoNbZr target. 5a, 5b, 6a, 6b and 7, also in the film produced using the comparative MoTi target. The diameter of the particles encountered has an amount between 2 and 5 μηη. The macroparticle density is estimated to be about 4 macroparticles in an area of 50 μπιχ50 μπι. In contrast, the MoNbZr dry material is not used on a broken substrate at 5 mTorr, 3 mTorr or 1 mTorr. 139600.doc 15 201006938 Macroscopic particles were observed in the prepared film. Accumulation rate: Scanning electron microscopy (SEM) was used to measure each of the targets used in both the ruthenium substrate and the Corning 1737 glass substrate. The rate of accumulation of the coating prepared above. The following is presented in Table 2. Table 2. At 0 V Accumulation rate of film deposited under ground (μιη/h) gas pressure (mTorr) 1 2 3 4 5 mean standard deviation material 1 (μιη/h) 5.5 5.1 5 5 6 5.32 0.43 dry material 2 (μιη/h) 5.8 6 6.6 6.5 6.5 6.28 0.36 Δ accumulation rate (μιη/h) 0.3 0.9 1.6 1.5 0.5 0.96 About % change of Ding 1.5.4 17.65 32.00 30.00 8.33 18.69 Dry material 3A (ftm/h) 5.7 6.0 5.4 6.4 6.9 6.08 0.59 About Δ accumulation rate of T1 (μιη/h) 0.2 0.9 0.4 1.4 0.9 0.76 About D1 change of 3.64 17.65 8.00 28.00 15.00 14.46 Dry material 3B (μπι/h) 6.16 6.4 6.1 6.25 5.8 6.14 0.22 About Ή之Δ accumulation rate (μιη/h) 0.66 1.3 1.1 1.25 -0.2 0.82 About D1 change of 12.00 25.49 22.00 25.00 -3.33 16.23 Coming 1737 dry material Mo-Ti (μπι/h) 5.85 6.04 6.43 6.28 6.55 6.23 0.255 About Δ accumulation rate of T1 (μπι/h) 0.35 0.94 1.43 1.28 0.55 0.91 About % change of Ding 1.6.3 18.4 28.6 25.6 9.17 17.6% The material on Si Μο-Ή(μηι/1ι) 5.66 5.64 6.5 6.5 6.08 0.425 About Τ1 Δ accumulation rate (μπι/h) 0.16 0.54 1.5 1.5 0.925 About % change of Ding 1 2.9 10.5 30 30 18.35 Coming 1737 on Mo-NbZr(pm/h) 5.47 6.52 6.7 6.23 0.54 About Δ accumulation rate of T1 (μιη/h) -0.03 1.52 0.7 0.73 About 11 %Change -0.55 30 11.6 13.6 Dry material on Si Mo-NbZr(|im/h) 6.19 6.67 6.39 6.33 6.74 6.46 0.208 About Δ accumulation rate of T1 (μιη/h) 0.69 1.57 1.9 1.33 0.67 1.23 About Ding 1% Variation 12.5 30.8 38 26.6 11.2 23.8 139600.doc -16- 201006938 Microstructure: The microstructure of the thin crucible prepared on the # substrate and Corning 173 7 glass substrate using MoTi and MoNbZr sputtering targets was also observed using SEM. As the deposition pressure is reduced, the coatings prepared using the two materials become increasingly dense. The coating on the 1737 glass substrate is denser than the coating on the Shixi substrate. • Referring to Figures 8a to 24b, a similar density of films is shown. Adhesion (band test): The tape test was used to measure the adhesion of the scented coating using MoTi and MoNbZr sputter targets. A coating having a thickness of about 200 nm prepared on Corning 1737 glass demonstrated significantly better adhesion than a coating having a thickness of about 5 μηι on a stainless steel and soda lime glass substrate. The results are shown below in Tables 3a and 3b. Table 3a. Tape test: Mo-Ti and Mo-NbZr coating; thickness of ~2〇〇 nm on Corning 1737

1毫托 3毫托 5毫托 靶材Mo-Ti 5B 5B 5B 乾材 Mo-NbZr 5B 5B 5B 表3b.帶測試:Mo-Ti及Mo-NbZr塗層;〜5 μπι之厚度。1 mTorr 3 mTorr 5 mTorr Target Mo-Ti 5B 5B 5B Dry material Mo-NbZr 5B 5B 5B Table 3b. Tape test: Mo-Ti and Mo-NbZr coating; thickness of ~5 μπι.

1毫托 2毫托 3毫托 4毫托 5毫托 不鏽鋼上之靶材Mo-Ti 0B 0B 1B 0B 1B 鹼石灰玻璃上之靶材Mo-Ti 0B 0B 0B 0B 0B 不鏽鋼上之靶材Mo-NbZr 2B 5B 4B 5B 鹼石灰玻璃上之靶材Mo-NbZr 0B 0B 0B 0B 蝕刻速率: 藉由在25°C下將在矽基板上使用MoTi濺鍍靶材而製備之 塗層浸沒於鐵氰化物溶液中歷時30分鐘來量測塗層之蝕刻 139600.doc 201006938 速率。藉由在25°C下將在矽基板上使用MoNbZr靶材而製 備之塗層浸沒於鐵氰化物溶液中歷時5分鐘來量測塗層之 蝕刻速率。使用MoTi靶材而製備之塗層之蝕刻速率比使用 MoNbZr靶材而製備之塗層及自純鉬靶材所製備之塗層之 蝕刻速率低得多。以下在表4中展示結果。 表4.蝕刻速率;在1 kW下歷時1小時而產生之Mo塗層,在 25°C下鐵氰化物溶液中〇 V偏壓(接地)。 沈積壓力(毫托) 蝕刻速率靶材 轴刻速率靶材 Mo-Ti (μπι/min) Mo-NbZr (μιη/ηιΐη) 1 0.063 0.64 2 0.064 0.87 3 0.098 0.56 4 0.081 0.67 5 0.078 0.76 平均值 0.077 0.71 電阻率: 使用四點探針來量測選定鉬薄膜之薄層電阻。以下在表 5中呈現結果。如表5所示,使用MoTi靶材而製備之塗層之 電阻率比使用MoNbZr濺鍍靶材而製備之塗層之電阻率高 得多。 表5.薄層電阻&amp;電阻率 參數 量測 壓力 功率 時間 厚度 薄層電阻 電阻率 (毫托) (W) (S) (nm) (Ω/D) (μΩ.οπι) 靶材 1 1000 117 179 4.45 79.6 Mo-Ti 2 1000 109 182 4.50 81.9 5 1000 108 170 4.58 78 靶材 1 1000 127 191 0.745 14.2 Mo-NbZr 3 1000 133 247 0.642 15.8 5 1000 112 193 0.697 12.31 mTorr 2 mTorr 3 mTorr 4 mTorr 5 mTorr stainless steel target Mo-Ti 0B 0B 1B 0B 1B Alkali lime glass target Mo-Ti 0B 0B 0B 0B 0B Stainless steel target Mo- NbZr 2B 5B 4B 5B Target on soda lime glass Mo-NbZr 0B 0B 0B 0B Etching rate: Immersion of the coating prepared by sputtering the target on the tantalum substrate with MoTi at 25 ° C in the ferric cyanide The etch of the coating 139600.doc 201006938 was measured over 30 minutes in the solution. The etch rate of the coating was measured by immersing the coating prepared on the ruthenium substrate with a MoNbZr target at 25 ° C for 5 minutes in a ferricyanide solution. The etch rate of the coating prepared using the MoTi target is much lower than that of the coating prepared using the MoNbZr target and the coating prepared from the pure molybdenum target. The results are shown in Table 4 below. Table 4. Etch rate; Mo coating produced at 1 kW for 1 hour, 〇V bias (ground) in ferricyanide solution at 25 °C. Deposition pressure (mTorr) Etching rate Target axis engraving rate target Mo-Ti (μπι/min) Mo-NbZr (μιη/ηιΐη) 1 0.063 0.64 2 0.064 0.87 3 0.098 0.56 4 0.081 0.67 5 0.078 0.76 Average 0.077 0.71 Resistivity: A four-point probe is used to measure the sheet resistance of a selected molybdenum film. The results are presented in Table 5 below. As shown in Table 5, the resistivity of the coating prepared using the MoTi target was much higher than that of the coating prepared using the MoNbZr sputtering target. Table 5. Sheet Resistance &amp; Resistivity Parameter Measurement Pressure Power Time Thickness Sheet Resistance Resistivity (mTorr) (W) (S) (nm) (Ω/D) (μΩ.οπι) Target 1 1000 117 179 4.45 79.6 Mo-Ti 2 1000 109 182 4.50 81.9 5 1000 108 170 4.58 78 Target 1 1000 127 191 0.745 14.2 Mo-NbZr 3 1000 133 247 0.642 15.8 5 1000 112 193 0.697 12.3

139600.doc -18- 201006938 經由在自靶材5”位置處之4&quot;晶圓上所產生之塗層之37個 點之薄層電阻量測而判定薄膜之均一性。使用靶材中之每 一者而製備之塗層之均一性為可比較的。以下在表6中且 參看圖25、圖26a及圖26b以圖形展示均一性評估結果。 表6.所產生之所有塗層之均一性 所有點 所4 非除之6個外咅 1點 靶材 標準差 平均值 非均 標準差 平均值 非均 (Ω/sq.) (Ω/sq.) 一性 (Ω/sq.) (Ω/sq.) 一性 1 0.0301 0.0860 0.105 0.0193 0.2761 0.070 2 0.0255 0.2298 0.111 0.0171 0.2214 0.077 3A 0.0236 0.2354 0.100 0.0157 0.2277 0.069 3B 0.0278 0.2750 0.101 0.0155 0.2656 0.058 MoTi 0.37 4.37 0.082 0.219 4.34 0.050 MoNbZr 0.095 0.80 0.119 0.0577 0.769 0.075 熟習此項技術者應瞭解,可對上文所描述之實施例進行 變化而不偏離其廣泛發明性概念。因此,應理解,本發明 不限於所揭示之特定實施例,而意欲涵蓋在如由附加申請 專利範圍所界定之本發明之精神及範疇内的修改。 【圖式簡單說明】 圖la為在1000X放大率下比較性Mo-Ti靶材之二次電子影 像; 圖lb為在1000X放大率下圖la中之比較性Mo-Ti靶材之背 向散射電子影像; 圖2a為在1000X放大率下圖la中之比較性Mo-Ti靶材之二 次電子影像; 圖2b為在1000X放大率下圖la中之比較性Mo-Ti靶材之背 向散射電子影像; 圖3a為在200X放大率下根據本發明之一實施例之 139600.doc -19· 201006938139600.doc -18- 201006938 Determine the uniformity of the film by measuring the sheet resistance of 37 points of the coating produced on the 4&quot; wafer at the 5" position of the target. Using each of the targets The uniformity of the coatings prepared was comparable. The results of the uniformity evaluation are shown graphically in Table 6 and with reference to Figures 25, 26a and 26b. Table 6. Uniformity of all coatings produced. All points 4 are not divided by 6 external 咅 1 point target standard deviation mean non-uniform standard deviation mean non-uniformity (Ω/sq.) (Ω/sq.) bisexuality (Ω/sq.) (Ω/ Sq.) One nature 1 0.0301 0.0860 0.105 0.0193 0.2761 0.070 2 0.0255 0.2298 0.111 0.0171 0.2214 0.077 3A 0.0236 0.2354 0.100 0.0157 0.2277 0.069 3B 0.0278 0.2750 0.101 0.0155 0.2656 0.058 MoTi 0.37 4.37 0.082 0.219 4.34 0.050 MoNbZr 0.095 0.80 0.119 0.0577 0.769 0.075 It will be appreciated by those skilled in the art that the above-described embodiments may be varied without departing from the broad inventive concepts thereof. It is therefore to be understood that the invention is not limited Modifications within the spirit and scope of the invention as defined by the scope of the patent [Simplified illustration] Figure la is a secondary electron image of a comparative Mo-Ti target at 1000X magnification; Figure lb is at 1000X magnification Figure 2a shows the secondary electron image of the comparative Mo-Ti target in Figure la at 1000X magnification; Figure 2b shows the magnification at 1000X. Figure 2b shows the backscattered electron image of the comparative Mo-Ti target in Figure la; The backscattered electron image of the comparative Mo-Ti target in the following figure la; Figure 3a is 139600.doc -19· 201006938 according to an embodiment of the invention at 200X magnification

MoNbZr靶材之二次電子影像; 圖3b為在200X放大率下圖3a中之MoNbZr靶材之背向散 射電子影像; 圖4a為在1000X放大率下圖3a中之MoNbZr靶材之二次電 子影像; 圖4b為在1000X放大率下圖3a中之MoNbZr靶材之背向散 射電子影像; 圖5a為在1000X放大率下使用比較性Mo-Ti靶材而在Si基 板上所製備之薄膜之二次電子影像; 圖5b為在1000X放大率下圖5a中之薄膜之背向散射電子 影像; 圖6a為在20000X放大率下使用比較性Mo-Ti靶材而在Si 基板上所製備之另一薄膜之二次電子影像; 圖6b為在20000X放大率下圖6a中之薄膜之背向散射電子 影像; 圖7為在1000X放大率下圖7a中之薄膜之背向散射電子影 像; 圖8a為在10000X放大率下使用比較性Mo-Ti靶材而在 Corning 173 7玻璃基板上所製備之薄膜之二次電子影像; 圖8b為在5000X放大率下圖8a中之薄膜之二次電子影 像; 圖9a為在10000X放大率下使用比較性Mo-Ti靶材而在 Corning 1737玻璃基板上所製備之另一薄膜之二次電子影 像; 139600.doc -20· 201006938 圖9b為在5000X放大率下圖9a中之薄膜之二次電子影 像; 圖10a為在10000X放大率下使用比較性Mo-Ti靶材而在 Corning 1737玻璃基板上所製備之另一薄膜之二次電子影 像; • 圖l〇b為在5000X放大率下圖10a中之薄膜之二次電子影 像; 圖11a為在10000X放大率下使用比較性Mo-Ti靶材而在 ❹ Corning 1737玻璃基板上所製備之另一薄膜之二次電子影 像; 圖lib為在5000X放大率下圖11a中之薄膜之二次電子影 像; 圖12a為在10000X放大率下使用比較性Mo-Ti靶材而在 Corning 173 7玻璃基板上所製備之另一薄膜之二次電子影 像; 圖12b為在5000X放大率下圖12a中之薄膜之二次電子影 •像; 圖13a為在10000X放大率下使用比較性Mo-Ti靶材而在Si ' 基板上所製備之薄膜之二次電子影像; 圖13b為在5000X放大率下圖13a中之薄膜之二次電子影 像; 圖14a為在10000X放大率下使用比較性Mo-Ti靶材而在Si 基板上所製備之另一薄膜之二次電子影像; 圖14b為在5000X放大率下圖14a中之薄膜之二次電子影 139600.doc •21 · 201006938 像; 圖15a為在10000X放大率下使用比較性Mo-Ti靶材而在Si 基板上所製備之另一薄膜之二次電子影像; 圖15b為在5000X放大率下圖15a中之薄膜之二次電子影 像; 圖16a為在10000X放大率下使用比較性Mo-Ti靶材而在Si 基板上所製備之另一薄膜之二次電子影像; 圖16b為在5000X放大率下圖16a中之薄膜之二次電子影 像; 圖17a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr靶材而在Corning 1737玻璃基板上所製備之薄膜 的二次電子影像; 圖17b為在5000X放大率下圖17a中之薄膜之二次電子影 像; 圖18a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr把材而在Corning 1737玻璃基板上所製備之另一 薄膜的二次電子影像; 圖18b為在5000X放大率下圖18a中之薄膜之二次電子影 像; 圖19a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr靶材而在Corning 173 7玻璃基板上所製備之另一 薄膜的二次電子影像; 圖19b為在5000X放大率下圖19a中之薄膜之二次電子影 像; 139600.doc -22- 201006938 圖20a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr靶材而在Si基板上所製備之薄膜的二次電子影 像; 圖20b為在5000X放大率下圖20a中之薄膜之二次電子影 像; 圖21a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr靶材而在Si基板上所製備之另一薄膜的二次電 子影像; 參 圖2 lb為在5000X放大率下圖21a中之薄膜之二次電子影 像; 圖22a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr靶材而在Si基板上所製備之另一薄膜的二次電 子影像; 圖22b為在5000X放大率下圖22a中之薄膜之二次電子影 像; 圖23a為在10000X放大率下使用根據本發明之一實施例 胃 之MoNbZr靶材而在Si基板上所製備之另一薄膜的二次電 子影像; •圖23b為在5000X放大率下圖23a中之薄膜之二次電子影 像; 圖24a為在10000X放大率下使用根據本發明之一實施例 之MoNbZr靶材而在Si基板上所製備之另一薄膜的二次電 子影像; 圖24b為在5000X放大率下圖24a中之薄膜之二次電子影 139600.doc •23· 201006938 像; 圖25為晶圓上之薄層電阻量測點位置之示意性表示; 圖26a為在塗布有使用比較性MoTi靶材而製備之薄膜的 Si晶圓上圖25中所識別之位置處之薄層電阻量測之示意性 表示;且 圖26b為在塗布有使用根據本發明之一實施例之M〇NbZr 靶材而製備之薄膜的Si晶圓上圖25中所識別之位置處之薄 層電阻量測之示意性表示。 139600.doc 24·Secondary electron image of MoNbZr target; Figure 3b shows backscattered electron image of MoNbZr target in Figure 3a at 200X magnification; Figure 4a shows secondary electron of MoNbZr target in Figure 3a at 1000X magnification Figure 4b is a backscattered electron image of the MoNbZr target in Figure 3a at 1000X magnification; Figure 5a is a film prepared on a Si substrate using a comparative Mo-Ti target at 1000X magnification. Secondary electron image; Figure 5b is a backscattered electron image of the film of Figure 5a at 1000X magnification; Figure 6a is another sample prepared on a Si substrate using a comparative Mo-Ti target at 20,000X magnification A secondary electron image of a film; Figure 6b is a backscattered electron image of the film of Figure 6a at 20,000X magnification; Figure 7 is a backscattered electron image of the film of Figure 7a at 1000X magnification; Figure 8a Secondary electron image of a film prepared on a Corning 173 7 glass substrate using a comparative Mo-Ti target at 10000X magnification; Figure 8b is a secondary electron image of the film in Figure 8a at 5000X magnification Figure 9a shows the use of comparative Mo-Ti at 10000X magnification Secondary electron image of another film prepared on a Corning 1737 glass substrate; 139600.doc -20· 201006938 Figure 9b is a secondary electron image of the film of Figure 9a at 5000X magnification; Figure 10a is Secondary electron image of another film prepared on a Corning 1737 glass substrate using a comparative Mo-Ti target at 10000X magnification; • Figure l〇b is the film of Figure 10a at 5000X magnification Secondary electron image; Figure 11a is a secondary electron image of another film prepared on a ❹ Corning 1737 glass substrate using a comparative Mo-Ti target at 10000X magnification; Figure lib is at Figure 5000a at 5000X magnification Secondary electron image of the film in the film; Figure 12a is a secondary electron image of another film prepared on a Corning 173 7 glass substrate using a comparative Mo-Ti target at 10000X magnification; Figure 12b is at 5000X Secondary electron image of the film in Figure 12a at magnification; Figure 13a is a secondary electron image of the film prepared on the Si' substrate using a comparative Mo-Ti target at 10000X magnification; Figure 13b For Figure 5a at 5000X magnification Secondary electron image of the film; Figure 14a is a secondary electron image of another film prepared on a Si substrate using a comparative Mo-Ti target at 10000X magnification; Figure 14b is Figure 14a at 5000X magnification Secondary electron image of film in 139600.doc •21 · 201006938 Image; Figure 15a is a secondary electron image of another film prepared on a Si substrate using a comparative Mo-Ti target at 10000X magnification; Figure 15b is a secondary electron image of the film of Figure 15a at 5000X magnification; Figure 16a is a secondary electron of another film prepared on a Si substrate using a comparative Mo-Ti target at 10000X magnification. Figure 16b is a secondary electron image of the film of Figure 16a at 5000X magnification; Figure 17a is prepared on a Corning 1737 glass substrate using a MoNbZr target according to an embodiment of the present invention at 10000X magnification. Secondary electron image of the film; Figure 17b is a secondary electron image of the film of Figure 17a at 5000X magnification; Figure 18a is a use of a MoNbZr material according to an embodiment of the present invention at 10000X magnification in Corning 1737 glass substrate Secondary electron image of another film prepared; Fig. 18b is a secondary electron image of the film of Fig. 18a at 5000X magnification; Fig. 19a is a MoNbZr target according to an embodiment of the present invention at 10000X magnification a secondary electron image of another film prepared on a Corning 173 7 glass substrate; Figure 19b is a secondary electron image of the film of Figure 19a at 5000X magnification; 139600.doc -22-201006938 Figure 20a is at Secondary electron image of a film prepared on a Si substrate using a MoNbZr target according to an embodiment of the present invention at 10000X magnification; Figure 20b is a secondary electron image of the film of Figure 20a at 5000X magnification; Figure 21a is a secondary electron image of another film prepared on a Si substrate using a MoNbZr target according to an embodiment of the present invention at 10000X magnification; Figure 2b is at 5000X magnification in Figure 21a Secondary electron image of the film; Figure 22a is a secondary electron image of another film prepared on a Si substrate using a MoNbZr target according to an embodiment of the present invention at 10000X magnification; Figure 22b is at 5000X put Figure 2a shows a secondary electron image of another film prepared on a Si substrate using a MoNbZr target of the stomach according to an embodiment of the present invention at 10000X magnification. Figure 23b is a secondary electron image of the film of Figure 23a at 5000X magnification; Figure 24a is another sample prepared on a Si substrate using a MoNbZr target according to an embodiment of the present invention at 10000X magnification. Secondary electron image of a film; Figure 24b shows the secondary electron image of the film in Figure 24a at 5,000X magnification 139600.doc • 23· 201006938 image; Figure 25 shows the position of the sheet resistance measurement point on the wafer Schematic representation; Figure 26a is a schematic representation of sheet resistance measurement at the location identified in Figure 25 on a Si wafer coated with a film prepared using a comparative MoTi target; and Figure 26b is in coating A schematic representation of the sheet resistance measurement at the location identified in Figure 25 on a Si wafer having a film prepared using an M〇NbZr target in accordance with an embodiment of the present invention. 139600.doc 24·

Claims (1)

201006938 七、申請專利範圍: 二種合金’其包含:⑷以-多數部分而存在之鉬;〇&gt;)以 -合金量而存在之鈮;及⑷選自由鎳、鉻、鈦、锆、 铪、釩及其混合物組成之群的一第三金屬,其中該第三 金屬係以一摻雜量而存在;限制條件為:當該第三金屬 為锆時,其摻雜量小於0.01重量%或大於丨重量%。 2. φ 3. 4. 5. 6. 7. 如叫求項1之合金,其中該第三金屬係選自由鎳、鉻、 敛、給、釩及其混合物組成之群。 如請求項1之合金,其中該摻雜量小於〇 01重量%。 如請求項1之合金,其中該摻雜量大於1重量〇/〇。 如請求項2之合金,其中該摻雜量小於〇〇1重量%。 如β求項2之合金,其中該摻雜量大於丨重量%。 如Μ求項2之合金,其中該摻雜量為〇 〇1重量%至i重量 %。 8·如凊求項1之合金,其中該合金量為〇 5重量%至重量 %。 _ 9. *请求項2之合金,其中該合金量為〇5重量%至1〇重量 %。 10. —種濺鍍靶材,其包含如請求項丨之密化合金。 11. 一種濺鍍靶材,其包含如請求項2之密化合金。 12. —種方法,其包含:(a)提供下述之摻合物·以一多數部 刀而存在之一鉬粉末、以一合金量而存在之一鈮粉末及 選自由錄鉻、鈇、锆、給、飢及其混合物組成之群的 一第三金屬粉末,其中該第三金屬係以一摻雜量而存 139600.doc 201006938 在’限制條件為··當該第三金㈣末祕時,該接雜量 小於0.01重量%或大於1重量% ;及(b)使該#合物經受熱 量及壓力以形成一密化濺鍍靶材。 13.種方法,其包含.⑷提供包含密化合金之賤鍵把材, 該密化合金包含:⑴以一多數部分而存在之顧;⑻以一 合金量而存在之鈮;及㈣選自由鎳、鉻、鈦、錯、 銓、飢及其混合物組成之群的—第三金屬,其中該第三 金屬係以-摻雜量而存在;(b)提供_基板;及⑷使該乾201006938 VII. Patent application scope: Two kinds of alloys, which contain: (4) molybdenum in the presence of - majority; 〇 &gt;) bismuth in the amount of - alloy; and (4) selected from nickel, chromium, titanium, zirconium, hafnium a third metal of a group consisting of vanadium and a mixture thereof, wherein the third metal is present in a doping amount; the limiting condition is: when the third metal is zirconium, the doping amount is less than 0.01% by weight or More than 丨% by weight. 2. φ 3. 4. 5. 6. 7. The alloy of claim 1, wherein the third metal is selected from the group consisting of nickel, chromium, condensate, feed, vanadium, and mixtures thereof. The alloy of claim 1, wherein the doping amount is less than 〇 01% by weight. The alloy of claim 1, wherein the doping amount is greater than 1 weight 〇/〇. The alloy of claim 2, wherein the doping amount is less than 〇〇1% by weight. An alloy such as β, wherein the doping amount is greater than 丨% by weight. For example, the alloy of Item 2, wherein the doping amount is from 重量1% by weight to 重量%. 8. The alloy of claim 1, wherein the amount of the alloy is from 5% by weight to 5% by weight. _ 9. * The alloy of claim 2, wherein the amount of the alloy is from 5% by weight to 1% by weight. 10. A sputter target comprising a densified alloy as claimed. 11. A sputtering target comprising the densified alloy of claim 2. 12. A method comprising: (a) providing a blend comprising: a molybdenum powder present in a plurality of knives, a bismuth powder present in an alloy amount, and selected from the group consisting of chromium and rhenium a third metal powder of zirconium, zirconium, feed, hunger and a mixture thereof, wherein the third metal is stored as a doping amount 139600.doc 201006938 in the 'restricted condition is · · when the third gold (four) The secret amount is less than 0.01% by weight or more than 1% by weight; and (b) the composition is subjected to heat and pressure to form a densified sputtering target. 13. A method comprising: (4) providing a ruthenium bond material comprising a densified alloy, the densified alloy comprising: (1) being present in a majority; (8) being present in an alloy amount; and (iv) being selected a third metal of a group consisting of nickel, chromium, titanium, erbium, strontium, hunger and a mixture thereof, wherein the third metal is present in a doping amount; (b) providing a substrate; and (4) making the stem 材經受濺鑛條件以在該基板上形成由妹材材料構成之 一塗層。 14. =方法’其包含:⑷提供如請求項1〇之一濺鍍靶材; ⑻提供-基板;及⑷使該乾材經受⑽條件以在該基板 上形成由該靶材材料構成之一塗層。 15. -種薄膜裝置’其包含一基板及置於該基板上方之一薄 膜且係根據如請求項13之方法而製備。 16. -種薄膜裝置,纟包含__基板及置於該基板上方之一薄 膜且係根據如請求項M之方法而製備。 17. 18. 19.The material is subjected to splashing conditions to form a coating of the material of the sister material on the substrate. 14. a method comprising: (4) providing a sputtering target as claimed in claim 1; (8) providing a substrate; and (4) subjecting the dry material to (10) conditions to form one of the target materials formed on the substrate coating. A film device comprising a substrate and a film disposed above the substrate and prepared according to the method of claim 13. 16. A film device comprising: a substrate and a film disposed over the substrate and prepared according to the method of claim M. 17. 18. 19. 如請求項15之薄膜裝置,其中該基板為透明的。 如請求項17之薄膜裝置,其中該透明基板包含玻璃且 薄膜裝置為一平板顯示器。 如請求項15之薄㈣置,其中該基板包含選自由破璃 鋼、聚合物及其組合組成之群的一或多者且該薄膜 置為太陽電池。 20.如請求項16之薄膜裝置, 其中該基板為透明的 〇 139600.doc -2 - 201006938 21.如請求項20之薄膜裝置, 薄膜裝置為一平板顯示器 22·如請求項16之薄膜裝置’ 鋼、聚合物及其組合組成 置為太陽電池。 #中該透明基板包含玻璃且該 其中該基板包含選自由玻璃、 之群的一或多者’且該薄膜展 23. 如請求項15之薄膜裝置,其中該基板包含矽。 24. 如請求項16之薄膜裝置,其中該基板包含矽。 ❹The film device of claim 15, wherein the substrate is transparent. The film device of claim 17, wherein the transparent substrate comprises glass and the film device is a flat panel display. The thin (four) of claim 15 wherein the substrate comprises one or more selected from the group consisting of glass, polymer, and combinations thereof and the film is a solar cell. 20. The film device of claim 16, wherein the substrate is transparent 〇 600 600 600 600 600 600 600 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The steel, polymer and combinations thereof are placed in a solar cell. The transparent substrate comprises glass and the substrate comprises one or more selected from the group consisting of glass, and the film device of claim 15, wherein the substrate comprises ruthenium. 24. The film device of claim 16, wherein the substrate comprises ruthenium. ❹ 139600.doc139600.doc
TW098114075A 2008-04-28 2009-04-28 Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof TW201006938A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12575308P 2008-04-28 2008-04-28

Publications (1)

Publication Number Publication Date
TW201006938A true TW201006938A (en) 2010-02-16

Family

ID=41255378

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114075A TW201006938A (en) 2008-04-28 2009-04-28 Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof

Country Status (5)

Country Link
EP (1) EP2277191A1 (en)
JP (1) JP2011523978A (en)
KR (1) KR20100135957A (en)
TW (1) TW201006938A (en)
WO (1) WO2009134771A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173728A (en) * 2011-12-22 2013-06-26 日立金属株式会社 Manufacturing method of Mo alloy sputtering target materials and sputtering target materials
CN103990802A (en) * 2013-02-15 2014-08-20 日立金属株式会社 Manufacturing method of Mo alloy sputtering target material and Mo alloy sputtering target material
TWI498441B (en) * 2013-03-22 2015-09-01 Hitachi Metals Ltd Laminated wiring film for electronic component and sputtering target material for forming coating layer
TWI547575B (en) * 2013-02-20 2016-09-01 日立金屬股份有限公司 Metal thin film and sputtering target material of molybdenum alloy for forming metal thin film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837929B2 (en) 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
US8449817B2 (en) 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
US8449818B2 (en) 2010-06-30 2013-05-28 H. C. Starck, Inc. Molybdenum containing targets
JP5808066B2 (en) 2011-05-10 2015-11-10 エイチ.シー.スターク インク. Compound target
US9334565B2 (en) * 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
CN102922225B (en) * 2012-08-16 2015-05-06 宁夏东方钽业股份有限公司 Preparation method of molybdenum target
EP3135082B1 (en) * 2014-04-24 2021-02-24 Triumf Target assembly for irradiation of molybdenum with particle beams and method of making thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060042728A1 (en) * 2004-08-31 2006-03-02 Brad Lemon Molybdenum sputtering targets
AT8697U1 (en) * 2005-10-14 2006-11-15 Plansee Se TUBE TARGET
US7837929B2 (en) * 2005-10-20 2010-11-23 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173728A (en) * 2011-12-22 2013-06-26 日立金属株式会社 Manufacturing method of Mo alloy sputtering target materials and sputtering target materials
TWI447250B (en) * 2011-12-22 2014-08-01 Hitachi Metals Ltd Method for producing molybdenum alloy sputtering target material and molybdenum alloy sputtering target material
CN103173728B (en) * 2011-12-22 2015-11-04 日立金属株式会社 The manufacture method of Mo alloy sputtering target and Mo alloy sputtering target
CN103990802A (en) * 2013-02-15 2014-08-20 日立金属株式会社 Manufacturing method of Mo alloy sputtering target material and Mo alloy sputtering target material
TWI548765B (en) * 2013-02-15 2016-09-11 日立金屬股份有限公司 Manufacturing method of molybdenum alloy sputtering target materials and molybdenum alloy sputtering target materials
TWI547575B (en) * 2013-02-20 2016-09-01 日立金屬股份有限公司 Metal thin film and sputtering target material of molybdenum alloy for forming metal thin film
TWI498441B (en) * 2013-03-22 2015-09-01 Hitachi Metals Ltd Laminated wiring film for electronic component and sputtering target material for forming coating layer

Also Published As

Publication number Publication date
KR20100135957A (en) 2010-12-27
WO2009134771A1 (en) 2009-11-05
EP2277191A1 (en) 2011-01-26
JP2011523978A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
TW201006938A (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
EP1585844B1 (en) Powder metallurgy sputtering targets and methods of producing same
US9017762B2 (en) Method of making molybdenum-containing targets comprising three metal elements
US8449818B2 (en) Molybdenum containing targets
JP3445276B2 (en) Mo-W target for wiring formation, Mo-W wiring thin film, and liquid crystal display device using the same
WO2006115476A2 (en) Ruthenium-based materials and ruthenium alloys
US20090186230A1 (en) Refractory metal-doped sputtering targets, thin films prepared therewith and electronic device elements containing such films
CN101691656B (en) Al-ni-la-cu alloy sputtering target and manufacturing method thereof
JP2013535571A5 (en) Targets containing molybdenum
TWI452161B (en) Method for producing oxygen-containing copper alloy film
KR20140097687A (en) Method for corrosion resistance alloy thin film with amorphous phase
TWI513827B (en) Tantalum - based sintered body sputtering target and its manufacturing method
TW201816159A (en) Sputtering target
TW201725271A (en) Sputter target based on a silver alloy
JP5526072B2 (en) Sputtering target and Ti-Al-N film and electronic component manufacturing method using the same
JP5622914B2 (en) Sputtering target manufacturing method, Ti-Al-N film manufacturing method, and electronic component manufacturing method
JP4820507B2 (en) Sputtering target and manufacturing method thereof, and Ti-Al-N film and electronic component manufacturing method using the same
TW200902741A (en) Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
Hsieh et al. Boundary-free multi-element barrier films by reactive co-sputtering
JP2011184798A (en) SPUTTERING TARGET AND METHOD FOR MANUFACTURING Ti-Al-N FILM AND ELECTRONIC COMPONENT USING THE SAME
KR20110082338A (en) A method of texture control using differential speed rolling for ta sputtering target and sputtering target
Kumar et al. PM Non Ferrous: P/M Tantalum Sheet and Plate for Electronics Applications