TW201034212A - Thin-film solar cell structure - Google Patents

Thin-film solar cell structure Download PDF

Info

Publication number
TW201034212A
TW201034212A TW098108113A TW98108113A TW201034212A TW 201034212 A TW201034212 A TW 201034212A TW 098108113 A TW098108113 A TW 098108113A TW 98108113 A TW98108113 A TW 98108113A TW 201034212 A TW201034212 A TW 201034212A
Authority
TW
Taiwan
Prior art keywords
solar cell
light
layer
film solar
thin film
Prior art date
Application number
TW098108113A
Other languages
English (en)
Inventor
guo-hong Shen
Original Assignee
guo-hong Shen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by guo-hong Shen filed Critical guo-hong Shen
Priority to TW098108113A priority Critical patent/TW201034212A/zh
Priority to EP09841702.5A priority patent/EP2410569A4/en
Priority to PCT/CN2009/070853 priority patent/WO2010105418A1/zh
Priority to CN200980158173.3A priority patent/CN102356468A/zh
Priority to US12/722,942 priority patent/US20100229939A1/en
Publication of TW201034212A publication Critical patent/TW201034212A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Description

201034212 六、發明說明: 【發明所屬之技術領域】 本發明隸屬-種提高太陽能電池光電轉㈣率的技 術,具體而言係指一種能以封存光線來增加光導效應之 薄膜太陽能電池結構’藉由增加受光面積來提高太陽能 的發電效率。 【先前技術】 鲁 按,近年來環境污染的問題已引起全世界的關注, 尤其以排放二氧化碳之溫室效應引發全球暖化的問題最 為嚴重,再者因科技的發展,人們對能源的需求不斷的 増加,但石油又將消耗殆盡,開發無公害之新能源產品 疋當務之急。而利用自然能量的太陽能電池則受到相當 的嘱目’太陽能電池結構的原理是當太陽光照射至半導 體時’由於能階間電子的遷移造成導電帶或價電子帶上 敎發之電子或電洞以自由載體運動,造成導電率之增加 • ’此現象稱為光導效應(Photo Conductive Effect) 。太陽能系統主要利用光導效應來發電。 而太陽能電池的種類繁多,若依無機半導體材料的 - 種類來區分有化合物半導體和矽晶系兩大類。以其中的 薄膜太陽能電池為例,其構成係如第一圖所示,其主要 係於一基板(11)表面鍍設有一層反射膜U2),該反 射膜(12)内埋設有至少一相互串聯之裡層電極(13) ’又反射膜(12)表面鍍設有一中間反應層〇5),該 中間反應層(15)包含有至少一 P+型半導體層、至少 〜p型半導體層及至少一 N+型半導體層,再者中間反 201034212 應層(15)表面具有一導光用之透明導電層(16),且 透明導電層(16)上形成有至少一相互串聯之表層電極 (17); 圖中以矽半導體為例,N+型半導體層表示在矽中掺 雜VA族元素,讓矽產生一多餘的電子,而導電度與摻 ' 雜VA族元素的量成正比。P+型半導體層即在矽中摻雜 • mA族元素,目的讓矽產生一額外的電洞。當P+型半導 體層與N+型半導體層接合時,會有一誘導電極出現, ©加上光的激發,電子電洞就會開始遷移產生電流。第一 圖顯示在界面上有許多容許光透過之薄膜N+型半導體 層及P型半導體層。由光照射所生之電子、電洞對,因 P-N接合界面電場之作用,使電子往上部之表層電極( 17)方向、而電洞往下部之裡層電極(13)方向移動。 光起電力之大小決定於兩電極間之内部電場大小。此外 ,從外部可取得電流之大小與照射之光子束密度成正比 關係。 ©為了提高光導效應,可就接合構造來著手,圖中 N+型半導體層為N型不純物【如硼(B)】大量添加。P . 型中之電子少數載體之擴散距離比N型中之少數載體之 電洞要長,故為了加大光電流,一般使用P型耐放射線 _ 佳之P+型半導體層也是一大原因。為了使生成的電子 電洞對能夠容易到達表面,所以一般使用淺接合方式, 並使N+型半導體層變薄。因電子電洞到達表面的時候 ,容易發生再結合的情況,故發展出BSF(Back Surface Field)的接合方式,即N+型半導體層、P型半 導體層與P+型半導體層三層結構接合,P+型半導體層 4 201034212 2的能障使得向内部移動的電子電職推回 體層基板,而讓P型半導體層内的電子電洞數目增力 Γ 且進一步可由電極構造來改善,其係為了使光 ,低’電極所佔_必需愈小愈好,再者,亦可利用封
:光的到,其係如第二圖單晶石夕太陽能電池例 所不,該太陽能電池結構主要係於 J 魯 ❹ γ中間反應層(25) ’該中間反應層( 少;::+型半導體層、至少- P型半導體層及至少一 N+ 導:層,再者中間反應層(25)表 且透明導電層(26)上形= 為經表面異向性^電術=存光的方法可 或逆金字塔狀之角錐表面(2?), 。於前述具角錐表面利用角錐表面⑼的以 具角錐表面(27)之太陽能電池雖可較 之電效率,但仍然會有太陽 二導:應:升=光線的限制,故該太陽能電池結構 又在非矽半導體材料 導體為例,氮化銦二=士二三五族化合物半 〇·…具有高的年來發現其能隙為
好τττ V儿 戟子/示移率約1000〜2000 CII12/VS 合物InxGal~xN能隙可從3.4 eV〜0 7 運用上可以有效的解決吸收問題以 1效果’進而達成高效能的太陽能電池 5 201034212 。若以多層複合層InGaP/(In)GaAs/Ge與化合物 InxGal-xN能隙與太陽光光譜比較。當以InxGal-xN化 合來代取代多層接面太陽能電池中的吸收層,在Ga與 I η含量適當的條件下可調變能隙以達到最佳的吸收效 率’在報告中指出其光電轉換效率可高達50%所示,此 類多層接面之太陽能電池之蠢晶技術有相當高的技術門 檻,且III-V化合物在磊晶的基板上是選擇不導電的藍 寶石基板,對於製作太陽能電池之電極需經製程上的處 理’若改用具有導電性之矽基板,不僅可降低成本也可 以提升產能,但其中技術需有待克服。 至於多層接面技術而言,現階段大多數發展高效能 太陽能電池皆以多層接面方式來當作吸收層。例如: InGaP/(In)GaAs/Ge多接面太陽能電池結構,其能隙分 別為1. 86 eV、1. 43 eV、0· 65 eV,此結構可有效改善 單一接面的吸收效率且其光電轉換效率為30%以上,在 Masafumi Yamaguchi等人利用此多層接合結構,製作 出高效率太陽能電池且光電轉換效率為30%〜40%,但在 此複雜的結構上,其磊晶技術較為困難與材料的成本過 高。 除了前述多接合層的太陽能電池之外,近年來發展 出一種超高效率的太陽能電池結構為量子點太陽能電池 【quantum dots solar cells】,是在P-型半導體與 N-型半導體中加入數層的量子點結構來當作吸收層,其 量子點的特性具有類似(5函數的狀態密度,以及較高 的載子侷限效果,可有效改善吸收太能光之效率,而提 尚太陽能電池的效率。V· Aroutiounian等人利用碎化 201034212 :/石:化鎵【InAs/GaAs】方式製作量子點太陽能電池結 構,其量子點為inAs,覆蓋層為GaAs,在各層量子點 之間會有搞合現象會形成微小的能帶【㈣band】, 此能帶提供-個通道使載子可藉由此通道更容易的到達 f型與n_型的區域而提高太陽能電池的轉換效率,因 ^As/GaAs其中量子點内吸收為u_l 4eV僅止於少部 % 收太陽光’使其量子點的結構之轉換效率為娜與 無置子點結構之效率相對比較下提升了⑽。在近年來 = : = :能電池研究中,存在-關鍵技術就是如何 ”隙適合的材料來作為全光•的吸收,以達超高效 率的量子點太陽能電池。 綜上所述,如要提高薄膜太陽能電池結構的效率, =要考量因素有:⑴減少反射損失:因半導體表面 反而使太陽光無法全部進入所產生的損失。⑵減 古能量比禁制帶寬小的光子不被半導體吸收 n 轉換,造成光電能轉換之損失結果。 不完全彻敎:被半導朗吸㈣光子 == 禁:帶寬時,能量被半導體之結晶格子吸收 =二量μ發散。故如能克服前述_,則可提昇受 先面積,進一步並可提升太陽能效率。 有鑑於此,本發明人乃針對前述 封存性不佳,而無法提升光導 =可極ί求解決之道:經不斷努力的研究,提 w ,封存太陽光線之薄膜太陽能U結構,藉 二克服現有者光線封存效果不佳’且受光面積不足籌二 201034212 【發明内容】 +因此,本發明係在提供一種能提高光線封存效果之 薄膜太陽能電池結構,使太陽光躲進人薄 池後,光線會销地反射與穿透,產生電子、、 ,直到能量消耗完畢為止。 - 又,本發明另在提供一種可增加受光面積之薄膜太 陽能電池結構,除可縮小薄膜太陽能電池的應用體積外 ,並可提高其太陽能的發電效率。 再者,本發明並可提供一種具可撓性之薄膜太陽能 電池結構,藉以增進薄膜太陽能電池於空間應用的靈活 度。 ^據此,本發明主要係透過下列之技術手段來具體實 現别述的目的與功效:其包含有: “ 一導光基柱,其係呈柱狀體,該導光基柱係由高透 光之材料所製成; 鲁 〜透明導電層,其係均勻鍍設於導光基柱軸向延伸 的周緣表面’該透明導電層内至少埋設有一裡層電極; 至少一中間反應層,其係依序鍍設於透明導電層表 ’各中間反應層具有吸光激發電子電洞遷移產生電流 之特性; 〜反射層,其係鍍設於最外層之中間反應層外表面 ’讓光線不會穿透,且反射層上埋設有至少一沿軸向延 # Λ且對應前述裡層電極之表層電極。 經由上述的說明,本發明透過前述技術手段的展現 8 201034212 ,可讓本發明具有光封鎖之功能,如此當太陽光於進入 前述的導光基柱後不致向外穿透,使太陽光有效封存在 薄膜太陽能電池内’且經不斷的反射與穿透,直到能量 完全消耗完畢,如此可加大單位體積之太陽能電池的受 光面積,進而提高太陽能發電效率,以增加產品的競爭 • 力與經濟效益。 以下並舉一較佳實施例,同時配合不同圖式及圖號 ,對本發明做進一步之說明,讓熟悉本技術領域者能對 ❹ 本發明有更詳細的瞭解。 【實施方式】 本發明係一種光線封存效果佳、且可增加受光面積 之/專膜太陽能電池結構,隨附圖例示之本發明薄膜太陽 旎電池結構的具體實施例及其構件中,所有關於前與後 、左與右、頂部與底部、上部與下部、以及水平與垂直 的參考,僅用於方便進行描述,並非限制本發明,亦非 將其構件限制於任何位置或空間方向。圖式與說明書中 ❿ 所指定的尺寸,當可在不離開本發明之申請專利範圍内 ,根據本發明之具體實施例的設計與需求而進行變化。 而本發明薄膜太陽能電池結構的詳細構成, 考所附之圖式,其中第三圖之立體外觀示意籌成第 局部立體剖面示意及第五圖之徑向斷面示意,其係由一 =大之導絲柱(51)所構成,該導光基柱(⑴可為 實心柱材或巾空柱材,本發明以實处材為主要實施例 ’該導S基柱(51)係由高透光性之透明材料所製成, 其可為有機或無機之材料,例如可撓性之光纖或玻璃枝 9 201034212 或=璃^或石英或水晶或具光導特性之高分子材料等等 ,當太陽光進入導光基柱(50之後,藉由導光基枉( 51)所構成之全反射環境能夠完全封存光線使光線具 有不再向外穿透之特性,而將光線完全封存於 (51)中’再者導光基柱(51)軸向延伸之外表面^ 均勻鍍設有—透明導電層(52),又透明導電層(52) 上以j刻或雷射等技術形成有一或多數軸向延伸之溝槽 ,又前述各溝槽内分別埋設有一裡層電極(53),裡層 電極(53)的厚度與透明導電層(52)相當,其底面並 於導光基柱(51)表面周緣接觸; 再者導光基柱(51)之透明導電層(52)外周緣鍍 上有至少一中間反應層(55)【其亦可為多層接面技術 或量子點技術所構成】,中間反應層(55)係選自典型 的薄膜太陽能電池的中間反應層,每一層中間反應層( Η)均能獨立吸光、且產生電子、電洞移動之發電作用 、’以提升其發電效率,本發明之中間反應層(55)係於 透明導電層(52)表面依序鍍設有至少一 ρ+半導體層 (551)、至少一 ρ半導體層(552 )及至少一 Ν+半導 體層( 553)所構成,其中Ρ+半導體層(551)為ρ型 矽摻雜ΙΠΑ族元素【如硼(Β)】不純物層,目的係讓 電子、電洞產生能階障礙,使電子、電洞不會輕易結合 而消失。而Ρ半導體層(552 )之厚度為最厚的一層: 負責提供電洞。再者Ν+半導體層( 553)為η型矽摻雜 VA族元素【如磷(ρ)、砷(As)】不純物層,目的 係與P+半導體層(551)相同; 又最後一層中間反應層(55)之周面鍍設有一反射 201034212 層(56) ’本發明之反射層(56)可選自A1或Au等金 屬膜’讓光線不會穿出薄膜太陽能電池之表面,使入射 的光線在產生反射的途中,也可以激發電子。再者反射 層(56)上以蝕刻或雷射技術形成有一或多數軸向延伸 之溝槽’前述各溝槽内分別埋設有一表層電極(57), 使反射層(56)之表層電極(57)與透明導電層(52) 之裡層電極(53)導通、且導出電能; 藉此’當光線射入導光基柱(51)時,會完全封存 φ 於中間反應層(55)内產生電子、電洞對,其中電子會 往表面移動到達表層電極(57),而在表層電極(57) 形成電子流,且電洞會往内部移動並到達裡層電極(53 )’而在裡層電極(53)形成電流,電子流與電流相連 即可成為發電系統’而組構成一光導效應佳、且可加大 受光面積之薄膜太陽能電池結構者。 透過前述之設計,本發明於實際運用時,則係如第 六圖所揭示者,因本發明之薄膜太陽能電池之結構係由 ❹ 以往的平面式太陽能電力系統改變成立體式的柱狀型態
,其主要係當光纖或玻璃柱或玻璃管或石英或水晶的導 光基柱(51)能讓太陽光線進入之後,由於導光基柱( 51)的軸向周緣表面鍍設有具裡層電極(53)之透明導 電層(52),能將光線導入鍍設於透明導電層(52)周 面的中間反應層(55),且由於該中間反應層(55)包 含具不純物P+半導體層(551)、P半導體層( 552)與 N+半導體層( 553 )之,其中P+半導體層(551)為P 型碎摻雜ΠΙΑ族元素【如棚】不純物層,而半導體層 (553)為Ν型碎捧雜va族元素【如鱗、神】不純物 11 201034212 層,讓電子、電洞產生能階障礙,使電子、電洞不會輕 易結合而消失;同時利用最外層之反射層(56),讓光 會穿出’且在產生反射的途中,也可以激發電子。 當光穿過基材時’會在P+產生電子、電洞對,電子會 ^表面移動’到達表層電極(57),在電極層形成電子 • 流;電洞會往内部移動,到達裡層電極(53),並在電 極層形成電流’電子流與電流相連即可成為發電系統。 承前所述’由於光線受反射層(56)的反射作用而 ❹ 不再穿透射出’能將光線完全封存在柱狀之薄膜太陽能 電池中’光線會在薄膜太陽能電池内部不斷地反射,直 到能量消耗完畢為止,使光線的使用達到極限,如此可 大幅增加光線封存效果,並提高該薄膜太陽能電池的受 光面積’故進一步能提高太陽能的發電效率。 又’本發明另有一實施例,其係如第七圖所揭示者 ’本發明薄膜太陽能電池的裡層電極(53)與表層電極 (57)亦可呈規則幾何重覆性的設計,如螺旋延伸狀, 0 如此可增加電子或電洞傳導的效率。 進一步以一個單位面積之薄膜太陽能電池而言,如 第八圖所示,假設傳統之薄膜太陽能電池係呈圓板狀之 平面結構,其直徑為a,而面積為A0 ;又本發明之薄膜 太陽能電池係呈圓杈狀之立體結構,其直徑為a,又高 度為h,而面積為A1,則兩者的有效面積比A0/A1為: A0=7tR2= (a/2) 2^=(a2/4)^
Al = (27rR)h= (2a/2) 7rh = a7rh A0/Al = ((a2/4) π )/(a ττ h) = a/4h 12 201034212 亦即,如a = 4h h=a/4 定義該高度h為,, 因此,當 //1 rvt 陽能薄臈電池相較二例立體式圓柱結構之太 的受光效率將^傳統平板式結構之太陽能薄媒電池
面豬t可以推算平面受光面積與本發明立體面積受光 装差距。故本發明之薄臈太陽能電池結構的直徑愈 ::雷2 =愈大’因此如將傳統之平板式薄膜太陽 肥電變成本發明之立體式薄膜太陽能電池結構則<大 幅增加其受光面積;且當本發明薄膜太陽能電池之導光 基柱(51)高度大於U可計算臨界高唐Γ‘圓牡體姑嫌 為四分之一的直徑】時’該薄膜太陽能電池的受光效率 可大於1。 進一步以柱徑長度變化說明本發明之創見,假設實 施例一之圓柱狀結構薄膜太陽能電池直徑為a之柱狀 面積,可由η個直徑為b之等效柱狀截面積結構薄膜 陽能電池所構成’其有效面積為A2,立體太陽能電、 高度同為直徑a柱體之幾何計算臨界高磨^;則^者池 有效面積比A1/A2為: 的
Al = (27rR)h= (2a/2) 7rh = a^h A2 = η(2 7Γ R)h= η ( 2b/2 ) 7Γ h= nb 7Γ h 又 n ( b/2 ) 2 7Γ = ( a/2) 2 7Γ,asb/"!! A2/A1= nb7rh /a7rh=nb/a= nb/(bv^n)= ^/~n 13 201034212 因η必為正整數所以A2/A1>1 疋故,當本發明之立體太陽能電池的柱徑縮小時, 在等效截面積的條件下,受光的有效面積將再度提升 同理可證,在相同的發電效率下,亦可縮小本發明 薄膜太陽能電池的補設面積,如此可解決傳統者因舖設 面積過大,所形成的舖設空間不易尋找及應用不便等問 題。 丹耆 个%听义溥膜太陽能電池亦可為斷面呈對稱 或非對稱之多角狀桎體,如三角柱體、四邊形柱體、六 角柱體等等’首先如第九圖所示,該薄膜太陽能電池( 60)之導光基柱(51)係呈對稱之三角柱體,以供形成 可規模性排列之陣列組合【如第十圖所示】,而三角柱 導光基柱(51)的各外侧表面依序鍍設有透明導電 B曰道、中間反應層(55)及反射層(56),其中透 電極!Π2)與反射層(56)並分別具有至少-裡層 電極(53)及至少一表層電極(57)。 柱(5另=顯示,該薄膜太陽能電池之導光基 列之陣列組合:共:成可規模性排 柱;侧表面亦 52)及反=風(55)及反射層(56),且透明導電層( 及至+矣通(56)並分別杲有至少一裡層電極(53) 及至夕一表層電極(57)。 且如第+、I_ 構成陣敎合,者,,膜太陽能電池能 田涛膜太陽此電池完整佈滿,不致產生 14 201034212 不受光之間隙,再者本發明於實際使用時,各薄膜太陽 能電池可於至少一外侧表面緊設有一相同形狀之散熱管 柱(60),讓薄臈太陽能電池於作用中所產生的熱量能 利用散熱管柱(60 )迅速導出,以減少薄膜太陽能電池 因高溫所產生的熱阻現象,可進一步提升本發明薄膜太 陽能電池的發電效率。 綜上所述,本發明具有上述眾多的實用價值,因此 ❹
^發明確實為—新穎進步的創作,在相同的技術領域中 t見相同或近似的產品公開使用,故本發明已符合發明 =的要件,驗法提出巾請,祈請早日馨本案發明 寻利。 【圖式簡單說明】 圖.係習式第一種薄膜太陽能電池之局部立體暨剖 面示意圖。 第二圖:係習式第二種單Μ太陽能電池之立體局部立 體暨剖面示意圖。 ^三圖:係本發明薄膜太陽能電池之外觀總成示意圖 圖:係本發明薄膜太陽能電池之立體·示意圖, 用以說明其各層之相對關係。 丄囷.係本發明薄膜太陽能電池之徑向斷面示意圖。 圖係本發明薄膜太陽能電池之軸向斷面示意圖, 第+圍.進一步說明其實際使用時封存光線之狀態。 .係本發明立體式薄膜太陽能電池與傳統平板式 .薄膜太陽能電池之發光效率比較示意圖。 圖係本發明薄膜太陽能電池另一實施例之立體外 觀示意圖。 15 201034212 第九圖1本發明薄膜太陽能電池呈三妹狀之斷面示 忍圖。 圖係本發明二角柱狀薄膜太陽能電池實施例於實 際使用之佈設示意圖。 第十一圖:係本發明薄膜太陽能電池呈六角柱狀之斷面 示意圖。 第十二圖:係本發明六角柱狀薄膜太陽能電池實施例於 實際使用之佈設示意圖。
【主要元件符號說明】 (11) 基板 (12) 反射膜 (13) 裡層電極 (15) 中間反應層 (16) 透明導電層 (17) 表層電極 (21) 基板 (22) 裡層電極 (25) 中間反應層 (26) 透明導電層 (27) 角錐表面 (28) 表層電極 (51) 導光基柱 (52) 透明導電層 (53) 裡層電極 (55) 中間反應層 (551) P+型半導體層 ( 552) p型半導體層 ( 553) N+型半導體層 (56) 反射層 (57) 表層電極 (60) 散熱管柱 16

Claims (1)

  1. 201034212 七、申請專利範圍: 1、一種薄膜太陽能電池結構,其包括: 一導光基柱,其係呈柱狀體,該導光基柱係由高透 光之透明材料所製成; 一透明導電層,其係均勻鍍設於導光基柱軸向延伸 • 的周緣表面,該透明導電層内至少埋設有一裡層電 極; ❿ 至少一中間反應層,其係依序鍍設於透明導電層表 反應層具有吸絲發電子電洞遷移產生 係鍍設於最外層中間反應層的表面, 讓t會穿透,且反射層上埋設有至少-沿軸向 延伸、且對應前述裡層電極之表層電極。 2、 依據申睛專利範圍第1項所 構,其中該導光基柱可為項實斤^太=#電池結 3、 構依據:心二=陽_結 物半導體、有機半導體等=料選自料導體、化合 4、 依據申請專利範圚坌η τΕ Λ 構,其中該導光基检係選自ίί或薄=材能料電池結 5 薄膜太陽能電池結 或玻璃管或石英或曰、,自可撓性之光纖或玻璃柱 等等。 —aa或具光導特性之高分子材料 17 201034212 6、 依據申請專利範圍第1或2或3或4或5項所述之 薄膜太陽能電池結構,其中該導光基柱的高度大於 、等於該枉體之幾何計算臨界高度。 7、 依據申請專利範圍第1項所述之薄膜太陽能電池結 構’其中該導光基柱係選自斷面呈對稱或非對稱多 ' 角狀之柱體。 9、依據申請專利範圍第1或7項所述之薄膜太陽能電 池結構,其中該導光基柱係選自斷面呈對稱三角型 參 之柱體。 1 0、依據申請專利範圍第丄或了項所述之薄膜太陽能 電池結構,其中該導光基柱係選自斷面呈對稱四邊 型之柱體。 1 1、依據申請專利範圍第1或7項所述之薄膜太陽能 電池、、°構,其中該導光基柱係選自斷面呈對稱六角 型之柱體。 • 12 =據申請專利範圍第1項所述之薄臈太陽能電池 ,其中該導光基柱係選自斷面呈圓型或橢圓形 之柱體。 3 2據申晴專利範圍第1項所述之薄膜太陽能電池 其中該反射層係選自Al、Au等金屬膜。
TW098108113A 2009-03-13 2009-03-13 Thin-film solar cell structure TW201034212A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW098108113A TW201034212A (en) 2009-03-13 2009-03-13 Thin-film solar cell structure
EP09841702.5A EP2410569A4 (en) 2009-03-13 2009-03-17 THIN FILM SOLAR CELL STRUCTURE
PCT/CN2009/070853 WO2010105418A1 (zh) 2009-03-13 2009-03-17 薄膜太阳能电池结构
CN200980158173.3A CN102356468A (zh) 2009-03-13 2009-03-17 薄膜太阳能电池结构
US12/722,942 US20100229939A1 (en) 2009-03-13 2010-03-12 Thin-film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW098108113A TW201034212A (en) 2009-03-13 2009-03-13 Thin-film solar cell structure
PCT/CN2009/070853 WO2010105418A1 (zh) 2009-03-13 2009-03-17 薄膜太阳能电池结构

Publications (1)

Publication Number Publication Date
TW201034212A true TW201034212A (en) 2010-09-16

Family

ID=48793653

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108113A TW201034212A (en) 2009-03-13 2009-03-13 Thin-film solar cell structure

Country Status (5)

Country Link
US (1) US20100229939A1 (zh)
EP (1) EP2410569A4 (zh)
CN (1) CN102356468A (zh)
TW (1) TW201034212A (zh)
WO (1) WO2010105418A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US9299866B2 (en) * 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
WO2012054477A2 (en) * 2010-10-18 2012-04-26 Wake Forest University Optoelectronic devices and applications thereof
CN105042483A (zh) * 2015-06-24 2015-11-11 北京汉能光伏投资有限公司 一种太阳能柔性充电灯
EP3449507A4 (en) * 2016-04-29 2019-12-25 Solar Earth Technologies Ltd. DEVICE FOR PRODUCING PHOTOVOLTAIC ENERGY
US11038073B2 (en) * 2018-07-02 2021-06-15 Suk Man BAE Solar power generation unit and system
KR20200003705A (ko) * 2018-07-02 2020-01-10 배석만 태양 발전 유닛 및 시스템
CN110808300A (zh) * 2018-08-02 2020-02-18 北京铂阳顶荣光伏科技有限公司 一种柱状光伏芯片及包含其的光伏组件
US11239790B1 (en) * 2020-08-01 2022-02-01 Mihai Cantemir Solar tower system
KR102505408B1 (ko) * 2021-03-03 2023-03-06 한국광기술원 광섬유를 이용한 집광형 태양광 발전 시스템

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999283A (en) * 1975-06-11 1976-12-28 Rca Corporation Method of fabricating a photovoltaic device
US5233679A (en) * 1990-04-10 1993-08-03 Nobuo Oyama Striated light diffuser and method of forming the same
JP2004165394A (ja) * 2002-11-13 2004-06-10 Canon Inc 積層型光起電力素子
KR100657949B1 (ko) * 2005-02-05 2006-12-14 삼성전자주식회사 원통형 연질 태양전지 및 그의 제조방법
US20070215197A1 (en) * 2006-03-18 2007-09-20 Benyamin Buller Elongated photovoltaic cells in casings
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
US20070227579A1 (en) * 2006-03-30 2007-10-04 Benyamin Buller Assemblies of cylindrical solar units with internal spacing
AU2006343396B2 (en) * 2006-05-01 2011-12-01 Wake Forest University Organic optoelectronic devices and applications thereof
ES2369583T3 (es) * 2006-05-01 2011-12-02 Wake Forest University Dispositivos fotovoltaicos fibrosos y aplicaciones de los mismos.
GB2440366B (en) * 2006-07-22 2008-11-26 Spencer William Jansen Solar cells
US8106292B2 (en) * 2007-04-30 2012-01-31 Solyndra Llc Volume compensation within a photovoltaic device
US8383929B2 (en) * 2008-07-18 2013-02-26 Solyndra Llc Elongated photovoltaic devices, methods of making same, and systems for making same

Also Published As

Publication number Publication date
US20100229939A1 (en) 2010-09-16
CN102356468A (zh) 2012-02-15
EP2410569A4 (en) 2013-10-30
WO2010105418A1 (zh) 2010-09-23
EP2410569A1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
TW201034212A (en) Thin-film solar cell structure
US11817524B1 (en) Concentrator photovoltaic subassembly and method of constructing the same
US8895350B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
AU2014307879B2 (en) Radial p-n junction nanowire solar cells
JP2008053731A (ja) 薄膜シリコン太陽電池中のナノワイヤ
JP2009218595A (ja) 太陽電池
CN101803035A (zh) 基于纳米线的太阳能电池结构
US20130112236A1 (en) Photovoltaic microstructure and photovoltaic device implementing same
US20160172514A1 (en) Photovoltaic Microstructure and Photovoltaic Device Employing Nanowires with Single-Side Conductive Strips
US20130092210A1 (en) Light and carrier collection management photovoltaic structures
CN204315587U (zh) 基于GaN纳米线阵列的太阳能电池
CN111430493B (zh) 一种多结太阳能电池及供电设备
US20130112243A1 (en) Photovoltaic microstructure and photovoltaic device implementing same
JP5669228B2 (ja) 多接合太陽電池およびその製造方法
JP3236533U (ja) 風力発電併用のタンデム型ダイヤモンド薄膜太陽電池装置。
US20120167975A1 (en) Solar Cell And Method For Manufacturing The Same
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
TW201121060A (en) Solar cells and apparatus comprising the same
US10483297B2 (en) Energy harvesting devices and method of fabrication thereof
CN209029400U (zh) 一种具有抗辐射能力的抗辐照增强型空间电池外延片
TWI459568B (zh) 太陽能電池
CN112466979B (zh) 光伏器件
TW201347212A (zh) 光波轉換層及具有光波轉換層之太陽能電池
JP2013140967A (ja) 太陽電池
CN209150135U (zh) 一种可提高电池光电转化的复合背面场空间电池外延片