TW201033373A - Process for producing sintered ore - Google Patents

Process for producing sintered ore Download PDF

Info

Publication number
TW201033373A
TW201033373A TW098140952A TW98140952A TW201033373A TW 201033373 A TW201033373 A TW 201033373A TW 098140952 A TW098140952 A TW 098140952A TW 98140952 A TW98140952 A TW 98140952A TW 201033373 A TW201033373 A TW 201033373A
Authority
TW
Taiwan
Prior art keywords
layer
gas
sintering
combustion
gaseous fuel
Prior art date
Application number
TW098140952A
Other languages
Chinese (zh)
Other versions
TWI460278B (en
Inventor
Nobuyuki Ohyama
Original Assignee
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corp filed Critical Jfe Steel Corp
Publication of TW201033373A publication Critical patent/TW201033373A/en
Application granted granted Critical
Publication of TWI460278B publication Critical patent/TWI460278B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

This invention provides a process for producing a sintered ore by feeding various gas fuels from the upper part of a charge layer of a sintering material deposited on a pallet in a sintering machine. In the process for producing a sintered ore, a gas fuel diluted to a lean flammability limit concentration or less is used as the gas fuel fed from the upper part of the charge layer on the pallet, and, in feeding the gas fuel for sintering, at least one of the feed position, charge layer highest attainable temperature, or holding time in a high temperature range is regulated to produce a sintered ore. There is also provided a sintering machine characterized by comprising a gas fuel feed apparatus.

Description

201033373 六、發明說明: 【發明所屬之技術領域】 本發明係關於可依高良率且廉價地製造高強度高品質燒 結礦,且可削減二氧化碳(c〇2)排放量’利用經考慮環保的 下吸風帶式燒結機所施行燒結礦之製造方法。 - 【先前技術】 , 高爐製鐵法主原料的燒結礦’一般係經由如圖1所示步驟 進行製造。燒結礦的原料係有如:鐵粉礦、燒結礦篩下粉、❿ 煉鐵所内所發生的回收粉、石灰石及白雲石等含CaO系副 原料;或生石灰等造粒助劑;或者焦炭粉或無煙炭等。該等 原料係分別從料斗1…各自在輸送帶上依既定比例切取。經 切取的原料便利用轉筒混合機2及3等添加適量水,經混 合、造粒’便形成平均粒徑3〜6mm之屬於準粒子的燒結原 料。然後,該燒結原料便從在燒結機上所配置的接料桶4、 5 ’經由筒式進料器6與切取斜槽7 ’裝入於環狀移動式燒❹ 結機托板8上,而形成亦稱燒結床的裝入層9。裝入層厚度 (高度)通常係400〜800mm左右。然後,利用在震入層9上 方所設置的點火爐10,將該裝入層表層中的炭材進行點 火,且經由在托板8下方所配設的風箱u,將空氣往下方 抽吸,使該裝入層中的炭材依序燃燒,利用此時所生成的燃 燒熱,將上述燒結原料進行熔融’便獲得燒結餅。依此所獲 得燒結餅,之後經破碎、篩粒,而形成約5mm以上的結塊 098140952 4 201033373 物,並依成品燒結礦形式回收。 上述製造製程中,經利用點火爐10施行點火的裝入層中 之炭材,之後將利用由風箱從裝入層上層朝下層進行抽吸的 空氣而大幅地持續燃燒,而形成具寬度的燃燒·熔融帶(以 .下簡稱「燃燒帶」)。該燃燒帶係隨托板8朝下游侧移動, . 而迅速地從裝入層的上層移往下層,經通過燃燒帶之後,便 生成燒結餅層(以下簡稱「燒結層」)。此外,隨燃燒帶從上 ®層移往下層’燒結原料中所含的水分將利用由炭材的燃燒而 氣化,並在溫度未上升的下層燒結原料中進行濃縮,而形成 濕潤帶。若其水分濃度達某程度以上,屬於抽吸氣體流路的 繞結原料粒子間之空隙會埋有水分,導致通氣阻力增大。另 外,燒結反應中,在燃燒帶中必然發生的熔融部分亦會成為 通氣阻力提高的肇因。 圖2所示係在厚度600mm的裝入層中進行移動之燃燒帶 〇 如線’位於該裝入層的托板約400mm上(距裝入層表面下方 200mm)位置時,裝入層内的壓力損耗與溫度分佈。此時的 壓力損耗分佈係在濕潤帶將為約6〇%,在燃燒帶則約4〇%。 . 再者,燒結機的生產量(t/hr)—般係依燒結生產率(t/hr · 111 )x燒結機面積(m2)決定。即,燒結機的生產量係依照諸 如:燒結機的機寬或機長、原料堆積層的厚度(裝入層厚 度)、燒結原料的總體密度、燒結(燃燒)時間、及良率等而產 生變化。所以,為能增加燒結礦的生產量,諸如改善裝入層 098140952 5 201033373 ’ 的通氣性(壓力損耗)而縮短燒結時間、或提高破碎前的燒結 餅冷軋強度俾提升良率等均被認為屬有效。 圖3所示係燒結礦生產性高時與生產性低時(即燒結機的 托板移動速度快時與慢時),裝入層内某點的溫度與時間之 推移。保持於燒結原料粒子開始炼融的i2〇(rc以上溫度中. 之時間(以下稱「高溫域保持時間」),生產性低的情況時依· 表示,生產性較高的情況則依t2表示。生產性較高時,因 為托板的移動速度較快速,因而高溫域保持時間^較短於0 生產I"生較低時的q。右局溫域保持時間縮短便容易變燒成 不足’導致燒結礦的冷軋強度降低,而造成良率降低。所以, 為能依短時間、高良率,且生產性佳地製造高強度燒結礦, 不論講究任何手段’都必須延長「高溫域保持時間」,而提 局燒結餅減(即餘财錢度)。料,表錢結礦冷軋 強度的“ ’般係使用SI(碎裂指數)、η(轉鼓指數)。 圖4所示係利用點火爐進行著火的裝入層表層之炭材,將❹ 利用所抽吸的空氣持續燃燒並形成燃燒帶,此將從裝入層的 上層依序朝下層移動,而形成燒結餅的過程示意圖。此外, 圖5⑷所示係上述燃燒帶存在於圖4中依粗線框内所示之裝 入層的上層#層部及下層料各相時,溫度分佈的示 意圖。燒結礦的強度係受在達12〇〇。〇以上溫度中的保持時 門(正確而5係1200 C以上溫度中的保持溫度與時間乘積) "響〃值越大’則燒結礦強度越高。裝人層的中層部與下 098140952 201033373 層㈣依裝人層上層部的炭㈣燒而生成的燃燒熱,將與被 抽吸空氣-起被搬運而並預熱。所以,裝入層的中層部或下 層部將長㈣㈣在高溫度中,相對於此,裝人層上層部將 容易成為職熱^足,燒結所必要__融反應(燒結化 反應)嫌不足情況。結果,裝人層⑽燒結機寬度方向截面 •内,燒結礦的良率分佈便如圖W所示,越靠裝入層上層 部’良率將越低。但是,此時必須注意事項係若裝入層内的 ⑩溫度超過138(TC ’燒結礦的組織便將玻璃化,反會有導致 強度降低的情形。所以,較佳係最高到達溫度不要超過 1380〇C。 針對此問題,就能將裝人層上層部可長時間保持於高溫中 設為目的之技術’已有數個提案。例如專利文獻1有提案: 對裝入層施行點火後,再對裝入層上喷射出氣體燃料的技 術’專利文獻2有提案:對褒入廣施行點火後,再於被抽吸 ©入裝人層的空氣中’添加可燃性氣體的技術;專利文獻3 有提案.為將燒結原料的裝入層内形成高溫,便在裝入層上 方配設罩體’麵鮮體將諸如线與焦炭舰體的混合氣 體,在緊鄰點火爐後之位置處進行吹入的技術;此外,專利 文獻4有提案:將低熔點溶劑、與炭材或可燃性氣體,同時 在緊鄰點火爐後之位置處進行吹入的技術。 但是,因為該等技術係使用高濃度氣體燃料,且當施行燃 料氣體吹入時,並未削減炭材量,因而裝入層内進行燒結時 098140952 7 201033373 的最高到達溫度便會成為超過測。c的高溫,反將生成冷 軋強度較低的燒結礦,導致無法獲得良率改善效果,或因氣 體燃料_麟致溫度场與⑽脹,㈣成通氣性惡化, 致使生產性降低,更相氣魏制㈣’導致會有在燒結 床上部空間引發火災危險性的可能性,因而均尚未達實用 化。 所以,本案申請人就解決上述問題的技術,在專利文獻5 中有提案.於燒結機的點火爐下游處,將經稀釋錢燒下限 濃度以下的各種氣體燃料,從托板上的燒結原料層(裝入層) 上方進行供應並導人裝人層内,藉由使其燃燒,俾就裝入層 内的最南到達溫度或高溫域保持時間中任一者或二者進行 調整的方法。 [專利文獻1]曰本專利特開昭48-18102號公報 [專利文獻2]曰本專利特公昭46-27126號公報 [專利文獻3]日本專利特開昭55_18585號公報 [專利文獻4]日本專利特開平5-311257號公報 [專利文獻5]W02007-052776號公報 【發明内容】 (發明所欲解決之問題) 根據上述專利文獻5的技術’因為在下吸風帶式燒、结機的 裝入層内’導入經稀釋至既定濃度的氣體燃料,並可在裝入 層内的目標位置處進行燃燒’因而藉由適當控制燒結原料燃 098140952 8 201033373 燒時的最高到達溫度與高溫域保持時間,便可提高因熱量不 足導致燒結礦冷軋強度容紐低的裝入層上層部之燒結礦 強度,或更加提高裝入層的中•下層部之燒結礦強度。 ㈣,包括上述專散獻5仙的f知技術,相關就燒結 /原财所含炭材量,與上述經稀釋為既定衫並供應的氣體 ‘燃制之關係,到底應為何種調配量之事,截至目前尚未被 充分地檢討。 β 、緣是’本發明目的在於提案:對在下吸風帶式燒結機的點 火爐下游側進行氣體燃料供應,而製造燒結礦的方法中,就 與上述氣體燃料間之關係,將燒結原料中所含炭材量最佳 化,藉由使氟體燃料供應效果發揮最大極限,便可依高良 率,廉價地製造高強度、高品質的燒結礦,且可削減由燒結 步驟所生成二氧化碳排放量的燒結礦之製造方法。 (解決問題之手段) ❹ 發明者等係就在下吸風帶式燒結機的點火爐下游侧施行 稀釋氣體燃料供應,而進行燒結礦製造的方法,針對可依高 良率且廉價地製造高強度、高品質的燒結礦,且符合近年特 別對製鐵業所要求的二氧化碳排放量削減,並將稀釋氣體燃 •料的供應量、與燒結原料中所含炭材量間之關係最佳化,進 -行深入鑽研檢討。結果,發現最好配合稀釋氣體燃料的供應 量,便可削減燒結原料中所含的炭材量,且即便削減相當於 所供應氣體燃料之燃燒熱的量以上炭材’仍可改善燒結礦的 098140952 9 201033373 品質特性,並充分提升生產性,合併可大幅削減二氧化破排 放量,遂完成本發明。 即,本發明的燒結礦之製造方法’係包括有:裝入步驟、 點火步驟、氣體燃料供應步驟、及燒結步驟的燒結礦之製造 方法,而,該裝入步驟係在循環移動的托板上,裝入含有粉 礦與炭材的燒結原料,而形成裝入層;該點火步驟係對該裝 入層表面的炭材使用點火爐施行點火;該氣體燃料供應步驟 係對裝入層上方的大氣中供應氣體燃料,而作為燃燒下限濃 度以下的稀釋氣體燃料,並進行供應;該燒結步驟係利用在 托板下所配置風箱’將上述稀釋氣體燃料與空氣抽吸於裝入 層内,使裝入層内的炭材進行燃燒,並使上述稀釋氣體燃料 在經炭材燃燒後的裝入層内進行燃燒而施行燒結;其中,上 述燒結原料中的炭材量係較未供應氣體燃料時更加削減。 本發明燒結礦之製造方法,其中,上述炭材的削減量係依 下式: 取代率=b/a 其中,A ·所供應氣體燃料的燃燒熱、b :相當於所削減 炭材量的燃燒熱 所定義取代率,設定在1〜15範圍内。 再者,本發明燒結礦之製造方法,係將上述取代率設為 1·5〜10 ’或更進一步設為2〜6範圍内。 (發明效果) 098140952 201033373 根據本發明,藉由配合在燒結機的點火爐下游側所供應稀 釋氣體燃狀鶴f,肖_】魏結純巾所含的紐量,便可 就賴步驟+賴燒·_帶溫度,不會使最㈣達溫度超 過1380°C,可長時間保持於12〇〇〜138〇ΐ範圍内,因而可依 高良率且確保高生產性地安定製造高強度燒結礦。且,根據 .本發明’因為可減少相當於所供應氣_料之職熱的量以 上炭材’因而可降低炭材成本,且可大幅誠在燒結步驟中 〇 所生成的二氧化複排放量。 【實施方式】 依如上述,本發明燒結礦之製造方法,係由:裝入步驟、 點火步驟、氣舰料供應步驟、及燒結步料各步驟構成。 其中,上述裝入步驟係在循環移動的托板上裝入含有粉礦與 炭材的燒結原料,而形成裝人層的步驟;點火步驟係利用點 火爐對裝人層表層的炭材施行點火之步驟。此外,上述氣體 ❹燃料供應步驟係在點火爐的托板進行方向下游侧,從氣體燃 料供應裝置將高濃度氣體燃料,依高速吐出於裝入層上方的 大氣中’經瞬間與空氣混合,㈣成燃燒下限濃度以下的既 定濃度稀釋氣體燃料’再將該稀釋氣體燃料與空氣一起利用 •在托板下所配置風箱進行抽吸’而導人於裝人相的步驟; -燒結步驟係利用被抽吸於裝入層内的上述空氣,使裝入層内 的錄進行賴’再所生成的峨熱,使餘原料進行 熔融•燒結,且使稀釋氣體燃料在通過燃燒帶的裝入層内既 098140952 tl 201033373 定位置處進行燃燒,而更進一步促進熔融•燒結,俾生成燒 結餅的步驟。 本發明燒結礦之製造方法中,將被導入裝入層中的高濃度 氣體燃料,在裝入層上方依高速吐出於大氣中,並與周遭空 氣在短時間内進行混合’藉此稀釋至該氣體燃料所具有的燃 燒下限濃度以下之濃度’然後,再將該稀釋氣體燃料導入裝 ·201033373 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to high-strength and low-cost production of high-strength and high-quality sintered ore, and can reduce carbon dioxide (c〇2) emissions. A method for producing a sintered ore by a suction belt sintering machine. - [Prior Art] The sintered ore of the main raw material of the blast furnace iron making process is generally manufactured through the steps shown in Fig. 1. The raw materials of the sinter are, for example, iron powder ore, sintered ore sieve powder, recycled powder produced in the iron-making iron, lime-containing stone and dolomite-containing auxiliary materials such as lime; or granulation aids such as quicklime; or coke powder or Smokeless charcoal, etc. The raw materials are respectively cut from the hopper 1 ... on a conveyor belt in a predetermined ratio. The cut raw material is conveniently added with an appropriate amount of water by the tumbler mixers 2 and 3, and mixed and granulated to form a sintered raw material belonging to the quasiparticles having an average particle diameter of 3 to 6 mm. Then, the sintering raw material is loaded from the receiving drum 4, 5' disposed on the sintering machine via the cartridge feeder 6 and the cutting chute 7' onto the annular movable burning knotting pallet 8 The charge layer 9, also known as the sintered bed, is formed. The thickness of the loading layer (height) is usually about 400 to 800 mm. Then, the carbon material in the surface layer of the layer is ignited by the ignition furnace 10 provided above the seismic layer 9, and the air is sucked downward via the bellows u disposed under the pallet 8. The carbon material in the charged layer is sequentially burned, and the sintered raw material is melted by the heat of combustion generated at this time to obtain a sintered cake. According to this, the sintered cake is obtained, and then crushed and sieved to form agglomerates of about 098140952 4 201033373, which are recovered in the form of sintered ore. In the above manufacturing process, the carbon material in the charging layer that is ignited by the ignition furnace 10 is then continuously burned by the air sucked from the upper layer of the loading layer toward the lower layer by the bellows to form a width. Combustion and melting zone (hereinafter referred to as "burning zone"). The burning belt moves toward the downstream side with the pallet 8, and rapidly moves from the upper layer of the charging layer to the lower layer, and passes through the burning belt to form a sintered cake layer (hereinafter referred to as "sintered layer"). Further, the moisture contained in the sintered raw material is transferred from the upper layer to the lower layer as the combustion zone is vaporized by combustion of the carbon material, and concentrated in the lower sintering raw material whose temperature has not risen to form a wet belt. If the water concentration is more than a certain level, moisture is buried in the gap between the raw material particles of the pumping gas flow path, and the ventilation resistance is increased. In addition, in the sintering reaction, the molten portion which inevitably occurs in the combustion zone also becomes a cause of an increase in the ventilation resistance. Figure 2 shows a combustion belt that is moved in a loading layer having a thickness of 600 mm, such as a line 'located in a position of about 400 mm of the pallet of the loading layer (200 mm below the surface of the loading layer). Pressure loss and temperature distribution. The pressure loss distribution at this time will be about 6% in the wet zone and about 4% in the combustion zone. Further, the production amount (t/hr) of the sintering machine is generally determined by the sintering productivity (t/hr · 111 ) x the sintering machine area (m2). That is, the throughput of the sintering machine varies depending on, for example, the machine width or length of the sintering machine, the thickness of the raw material accumulation layer (loading layer thickness), the overall density of the sintered raw material, the sintering (burning) time, and the yield, and the like. . Therefore, in order to increase the production of sinter, such as improving the venting property (pressure loss) of the loaded layer 098140952 5 201033373 ', shortening the sintering time, or improving the cold rolling strength of the sintered cake before the crushing, the yield is improved, etc. It is valid. Fig. 3 shows the temperature and time at which a certain point in the layer is loaded when the sinter is high in productivity and low in productivity (i.e., when the plate moving speed of the sintering machine is fast and slow). When i2〇 (the temperature in rc or higher temperature (hereinafter referred to as "high temperature range holding time") at which the sintering raw material particles start to be fused, when the productivity is low, the expression is high, and when the productivity is high, it is expressed by t2. When the productivity is high, because the moving speed of the pallet is relatively fast, the holding time of the high temperature domain is shorter than 0. Production I" q when the temperature is low. When the holding time of the right local temperature domain is shortened, it is easy to become insufficient. As a result, the cold rolling strength of the sinter is reduced, resulting in a decrease in yield. Therefore, in order to produce high-strength sinter in a short time, high yield, and productivity, regardless of any means, it is necessary to extend the "high temperature holding time". ", and the reduction of the sintering cake (that is, the amount of money). In the case of the cold-rolling strength of the surface of the ore, "the use of SI (fragmentation index), η (drum index). The carbon material charged into the surface layer by the ignition furnace is used to continuously burn the air sucked by the igniting furnace and form a combustion belt, which will move from the upper layer of the loading layer to the lower layer sequentially, thereby forming a process of sintering the cake. In addition, Figure 5 (4) The above-mentioned combustion zone is shown in the schematic diagram of the temperature distribution of the upper layer layer and the lower layer of the layer which are shown in the thick line frame in Fig. 4. The strength of the sintered ore is up to 12 〇〇.保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持Layer (4) The heat of combustion generated by the charcoal (four) burning in the upper layer of the manned layer is transported and preheated with the air to be sucked. Therefore, the middle layer or the lower layer of the loading layer will be long (four) (four) at a high temperature. In contrast, the upper layer of the manned layer is likely to become a hot part of the job, and the sintering reaction (sintering reaction) is insufficient. The result is that the filling layer (10) is in the width direction of the sintering machine. The yield distribution of the ore is shown in Figure W. The lower the yield of the upper layer of the loading layer, the lower the yield will be. However, it must be noted that if the temperature in the layer 10 is more than 138 (TC 'sinter The tissue will be vitrified, which will lead to a decrease in strength. In this case, it is preferable that the maximum temperature of the upper layer is not more than 1380 〇C. There are several proposals for the technique of maintaining the upper layer of the loading layer for a long time at a high temperature. For example, Patent Document 1 has a proposal. : After the ignition of the loading layer, the technique of injecting gaseous fuel onto the loading layer is proposed in Patent Document 2: after the ignition is performed, the air is sucked into the air of the user's layer. A technique for adding a flammable gas; Patent Document 3 has a proposal. In order to form a high temperature in a charging layer of a sintering raw material, a cover body is disposed above the loading layer, and a mixed gas such as a wire and a charcoal hull is disposed. A technique of blowing in at a position immediately after the ignition furnace; in addition, Patent Document 4 proposes a technique of blowing a low-melting solvent, a carbonaceous material, or a combustible gas at a position immediately after the ignition furnace. However, since these techniques use a high-concentration gaseous fuel, and when the fuel gas is blown in, the amount of the carbon material is not reduced, and the maximum temperature of the 098140952 7 201033373 is exceeded when the sintering is performed in the layer. The high temperature of c will produce a sinter with low cold rolling strength, resulting in failure to obtain yield improvement effect, or due to gas fuel _ lining temperature field and (10) expansion, (four) venting deterioration, resulting in reduced productivity, more phase The gas system (4)' has the possibility of causing fire hazard in the space of the sintering bed, and thus has not yet reached practical use. Therefore, the applicant of the present invention has proposed a technique for solving the above problems in Patent Document 5. At the downstream of the ignition furnace of the sintering machine, various gaseous fuels below the lower limit concentration of the diluted money are burned from the sintered raw material layer on the pallet. (Loading layer) A method of adjusting the uppermost reaching temperature or the high temperature holding time in the layer by supplying it and guiding it into the layer, by burning it. [Patent Document 1] Japanese Patent Laid-Open Publication No. SHO No. Sho. No. Sho. [Patent Document 5] WO2007-052776, SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) According to the technique of Patent Document 5 described above, it is installed in the lower suction belt type and the knot machine. Into the layer, 'introducing the gaseous fuel diluted to a given concentration, and burning at the target position in the loading layer'. Therefore, by appropriately controlling the sintering material, the highest reaching temperature and the high temperature holding time when burning 098140952 8 201033373 The sinter strength of the upper portion of the loading layer which is low in the strength of the sinter cold-rolling strength due to insufficient heat is increased, or the sinter strength of the middle and lower portions of the charging layer is further improved. (4) Including the above-mentioned special knowledge of 5 cents, the amount of carbon contained in the sintering/original wealth, and the relationship between the above-mentioned dilution and the supply of the gas supplied to the established shirt, what kind of blending should be used? The matter has not been fully reviewed so far. β, the edge is 'the purpose of the present invention is to propose a gas fuel supply to the downstream side of the ignition furnace of the lower suction belt sintering machine, and in the method for producing the sintered ore, the relationship between the gas fuel and the above-mentioned gaseous fuel will be in the sintering raw material. By optimizing the amount of carbonaceous material, by maximizing the supply of the fluorofuel, it is possible to manufacture high-strength, high-quality sinter at high yield and at low cost, and to reduce the carbon dioxide emissions generated by the sintering step. A method of manufacturing a sintered ore. (Means for Solving the Problem) 发明 The inventor of the present invention performs a method of producing a sintered ore on the downstream side of the ignition furnace of the lower suction belt sintering machine, and manufactures a high-strength, low-cost and low-cost production method. High-quality sinter, which is in line with the reduction of carbon dioxide emissions required by the iron and steel industry in recent years, and optimizes the relationship between the supply of dilute gas fuel and the amount of carbon contained in the sintering raw materials. - Conduct in-depth research review. As a result, it has been found that it is preferable to reduce the amount of the carbon material contained in the sintered raw material in accordance with the supply amount of the diluted gaseous fuel, and even if the amount of the carbon material corresponding to the heat of combustion of the supplied gaseous fuel is reduced, the sintered ore can be improved. 098140952 9 201033373 Quality characteristics, and fully improve the productivity, the merger can significantly reduce the amount of dioxide emissions, and completed the present invention. That is, the method for producing a sintered ore of the present invention includes a method of producing a sintered ore having a charging step, an ignition step, a gas fuel supply step, and a sintering step, and the charging step is performed on a circulating moving pallet. And sinter the raw material containing the fine ore and the carbon material to form a charging layer; the igniting step is to ignite the carbon material on the surface of the charging layer by using an ignition furnace; the gas fuel supply step is above the loading layer a gaseous fuel is supplied to the atmosphere as a diluent gas fuel below the lower concentration of combustion; and the sintering step is performed by pumping the diluted gaseous fuel and air into the charging layer by using a bellows disposed under the pallet And burning the carbon material in the charging layer, and burning the diluted gaseous fuel in the charging layer after burning the carbon material to perform sintering; wherein the amount of the carbon material in the sintering raw material is less than the gas supplied The fuel is even more cut. In the method for producing a sintered ore according to the present invention, the amount of the carbon material to be reduced is as follows: Substitution rate = b/a wherein A · the combustion heat of the supplied gaseous fuel, b: the combustion equivalent to the amount of the carbon material to be reduced The replacement rate defined by heat is set in the range of 1 to 15. Further, in the method for producing a sintered ore according to the present invention, the substitution ratio is set to be 1·5 to 10' or more preferably in the range of 2 to 6. (Effect of the Invention) 098140952 201033373 According to the present invention, by mixing the dilute gas igniting crane f supplied to the downstream side of the ignition furnace of the sintering machine, the amount of the diarrhea contained in the Xiao jie pure towel can be determined by the step + Lai burning. _With temperature, it will not make the maximum (four) temperature exceed 1380 °C, and it can be kept in the range of 12〇〇~138〇ΐ for a long time, so that high-strength sintered ore can be stably produced according to high yield and high productivity. Moreover, according to the present invention, 'the carbon material corresponding to the amount of the heat of the supplied gas is reduced, so that the cost of the carbon material can be reduced, and the amount of double-oxide emission generated by the sintering process can be greatly increased. . [Embodiment] As described above, the method for producing a sintered ore according to the present invention comprises the steps of: a charging step, an ignition step, a gas ship material supply step, and a sintering step. Wherein, the loading step is a step of charging a sintered raw material containing powder ore and carbon material on a circulating moving pallet to form a charging layer; and an ignition step is to ignite the carbon material of the surface layer of the human layer by using an ignition furnace. The steps. Further, the gas ❹ fuel supply step is performed on the downstream side of the tray of the ignition furnace, and the high-concentration gaseous fuel is discharged from the gas fuel supply device at a high speed into the atmosphere above the charging layer, and is instantaneously mixed with the air, (4) a predetermined concentration of the dilute gas fuel below the lower concentration of combustion, and then the diluent gas fuel is used together with air. • The bellows disposed under the pallet is pumped to introduce a human phase; - the sintering step is utilized The above-mentioned air sucked into the charging layer is subjected to the heat generated in the layer, and the remaining raw material is melted and sintered, and the diluted gaseous fuel is introduced into the charging layer through the burning belt. The inside is 098140952 tl 201033373 The combustion is carried out at a fixed position, and the step of further melting, sintering, and sintering to form a sintered cake is further promoted. In the method for producing a sintered ore according to the present invention, the high-concentration gaseous fuel introduced into the packed bed is discharged into the atmosphere at a high speed above the packed bed, and mixed with the surrounding air in a short time, thereby diluting to the The concentration below the lower limit of combustion of the gaseous fuel', and then introducing the diluted gaseous fuel into the device

入層中。依此,在導入裝入層内之前便施行稀釋的理由,係 如下述。 Q 製作在内徑3OOmm0x高度400mm的燒結鍋中填充入燒 結餅,並於燒結餅下方可通過燒結餅進行空氣抽吸的實驗裝 置。接著,如圖6(a)所示,從燒結餅中央部的上方,將喷嘴埋 藏入深度90mm位置處’並吹入相對於所抽吸的空氣,能成為 lvol%量的100%濃度曱烧氣體,測定燒結餅内的圓周方向與深 度方向之甲炫氣體濃度分佈,結果如表1所示。此外,如圖6(b) 所示,使用相同的喷嘴,從燒結餅上方的350mm位置處,將與 ❹ 上述同量的曱烷氣體供應給大氣中並進行稀釋,如同上述,測 定燒結餅内的甲烧氣體濃度分佈,結果如表2所示。由該等結 果得知,當直接將甲垸氣體導入於燒結餅中的情況,曱燒氣體 朝橫向的擴散嫌不足,相對於此,當甲烷氣體係在燒結餅上方 進行供應的情況,燒結餅内的甲烷氣體濃度大致呈均勻化。由 此結果得知’氣體燃料較佳係在燒結餅上方供應給大氣中,並 在導入裝入層内之前,便均勻稀釋。 098140952 12 201033373 [表i]Into the layer. Accordingly, the reason for performing dilution before introduction into the packed bed is as follows. Q An experimental apparatus in which a sintered cake was filled in a sintering pot having an inner diameter of 300 mm and a height of 400 mm and was subjected to air suction through a sintered cake under the sintered cake was prepared. Next, as shown in Fig. 6 (a), the nozzle is buried at a position of a depth of 90 mm from the upper portion of the center portion of the sintered cake, and blown into the air with respect to the suctioned air, and can be made into a 100% concentration of lvol%. The gas was measured for the concentration distribution of the toxic gas in the circumferential direction and the depth direction in the sintered cake, and the results are shown in Table 1. Further, as shown in Fig. 6(b), the same amount of the above-mentioned decane gas was supplied to the atmosphere and diluted from the position of 350 mm above the sintered cake using the same nozzle, and the sintered cake was measured as described above. The concentration of the gas to be burned was as shown in Table 2. From these results, it is known that when the formazan gas is directly introduced into the sintered cake, the diffusion of the xenon gas into the lateral direction is insufficient, whereas the methane gas system is supplied over the sintered cake, and the sintered cake is obtained. The concentration of methane gas inside is substantially uniform. From this result, it is known that the gaseous fuel is preferably supplied to the atmosphere above the sintered cake and uniformly diluted before being introduced into the packed bed. 098140952 12 201033373 [Table i]

距中心的距離(mm) 0 40 80 122.5 吹入喷嘴 直管 直管 直管 直管 吹入方法 埋藏於餅中 埋藏於餅中 埋藏於餅中 埋藏於餅中 風量(m3/min) 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 風速(m/s) 0.35 0.47 0.35 0.47 0.35 0.47 0.35 0.47 吹入高度(mm) -90 -90 -90 -90 -90 -90 -90 -90 曱烷氣體 濃度(%) 距表面 100mm位置 測量探針熔斷 0.05 0.05 0.00 0.00 0.00 0.00 距表面 150mm位置 > 10.23 > 10.23 1.12 1.24 0.00 0.00 0.00 0.00 距表面 200mm位置 6.83 7.15 1.12 1.13 0.01 0.01 0.00 0.00 距表面 250mm位置 3.24 3.28 0.83 0.88 0.13 0.13 0.04 0.02 距表面 300mm位置 3.09 3.21 2.69 2.81 0.94 0.91 0.08 0.07 距表面 3 50mm位置 2.93 3.02 1.68 1.74 1.31 1.31 0.23 0.25 風箱内 0.85 0.83 0.88 0.85 0.86 0.84 0.82 0.83 曱烷氣體濃度:10.23%以上係無法測定 [表2] 距中心的距離(mm) 0 40 80 122.5 吹入喷嘴 直管 直管 直管 直管 吹入方法 從餅上吹入 從餅上吹入 從餅上吹入 從餅上吹入 風量(m3/min) 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 風速(m/s) 0.35 0.47 0.35 0.47 0.35 0.47 0.35 0.47 吹入高度(mm) 350 350 350 350 350 350 350 350 距表面 100mm位置 測量探針熔斷 1.73 1.76 1.66 1.66 1.50 1.67 距表面 15 0mm位置 1.66 1.83 1.90 1.96 1.49 1.42 1.38 1.31 曱烷氣體 濃度(%) 距表面 200mm位置 1.63 1.66 1.55 1.54 1.40 1.29 1.36 1.20 距表面 2 50mm位置 1.57 1.58 1.28 1.29 1.45 1.41 1.26 1.34 距表面 3 00mm位置 1.32 1.33 1.31 1.37 1.45 1.41 1.39 1.43 距表面 3 5 0mm位置 1.20 1.23 1.21 1.27 1.33 1.29 1.48 1.39 風箱内 0.84 0.85 0.86 0.85 0.83 0.82 0.83 0.84 甲烷氣體濃度:10.23%以上係無法測定 098140952 13 201033373 另外,將上述濃度的稀釋氣體燃料供應至裝入層中的方 法,係有如:將諸如都市瓦斯、LNG、C氣體等氣體燃料, 直接依高濃度狀態吐出於大氣中,而與周遭空氣相混合,經 被稀釋為既定濃度之後,才導入裝入層中的正上方吹入方 式;或預先將大氣與氣體燃料進行混合,而稀釋至既定濃 度,再從裝入層上方進行供應的預混合吹入方式(所謂「預 混形式」)。表3所示係上述二方式的得失評估。正上方吹 入方式係若依亂流燃燒速度以上的速度吐出氣體燃料,便可 輕易地防止逆火,但當將氣體燃料與周遭大氣相混合而進行 稀釋之際,將容易發生濃度不均情形,引發異常燃燒的可能 性將較高於預混合吹入方式。但是,當包括設備成本在内的 綜合性評估時,都市瓦斯(LNG)的正上方吹入方式將屬最 [表3] 氣體滯留時的問題 設備成本 吹入方式 氣體種類 逆火 異常燃燒 中毒 缺氧 配管口徑 附帶設備 綜合評估 從正上方 都市瓦斯 〇 Δ 〇 X 小 少 叹八 C氣艎 〇 Δ X X 中 少 %2i^ 預混合吹 都市瓦斯 X 〇 0 X 大 多 入 C氣體 X 〇 X X 大 多 第4名 •供應氣體燃料的裝置係例如圖7所示,沿托板寬度方向配 設複數氣體燃料供應管,並在該管中設置吐出氣體燃料的狹 缝或開口、或設置已安裝喷嘴的氣體燃料供應手段,或如圖 8所示’沿托板進行方向配設複數氣體燃料供應管,並在該 098140952 14 201033373 管中設置吐出氣體燃料的狹縫或開口、或設置已安裝噴嘴的 氣體燃料供應手段。 其次,針對本發明燒結礦之製造方法中,對裝入層中所供 應稀釋氣體燃料的種類進行說明。 ' 表4所示係製鐵業所使用氣體燃料[都市瓦斯、焦炭爐氣 • 體(C氣體)、高爐氣體(B氣體)]的燃燒下限濃度、供應濃度 等。供應至燒結原料中時的氣體燃料濃度,就從防止爆炸、 φ 火災(著火)的觀點,燃燒下限濃度係越低越安全。就此點而 言,都市瓦斯係使用以甲烷為主成分的天然瓦斯(LNG),雖 燃燒下限濃度近似於C氣體,但因為熱量高於C氣體,因 而可降低供應濃度。所以,就確保安全性而言,可降低供應 濃度的都市瓦斯優於C氣體。 [表4] 氣體種類 CO (vol%) h2 (vol%) 甲烷 (vol%) 乙烧 (vol%) 丙烧 (vol%) 熱量 (Mcal/Nm3) 燃燒下限濃度 (vol%) 都市瓦斯 0 0 89 5 6 9.5 4.8 C氣體 7 59 34 — 一 4.8 5.0 B氣體 24 4 —— —— — 0.8 40.0 表5所示係氣體燃料中所含的燃燒成分(氫、CO、甲烷)、 與該等成分的燃燒下限•上限濃度、層流、亂流時的燃燒速 度等。為防止燒結中從氣體燃料供應裝置所供應氣體燃料發 生著火情形,必須達防止逆火情況。所以,可認為若能將氣 體燃料至少在層流燃燒速度以上、較佳為亂流燃燒速度以上 的高速進行吐出便可。例如以甲烷為主成分的都市瓦斯之情 098140952 15 201033373 況’若依超過3.7m/s的速度吐出,便不會有逆火的威脅。 另一方面,因為氫氣的亂流燃燒速度快於CO與甲烧,因而 為防止逆火,此部分便必須依高速吐出《就此點而言,未含 氫的都市瓦斯(LNG),相較於含有氫達59vol%的C氣體, 將可減慢吐出速度。且’因為都市瓦斯並未含有C〇,因此 不會有引發瓦斯中毒的威脅。所以,都市瓦斯(LNG)就本發 明所使用的氣體燃料,可謂具有較佳特性。 [表5] 燃燒 成分 分子量 (M) 燃燒熱 (kcal/g) 理論混合比 (燃料vol%) 可燃界限濃度 (vol%) 發火 溫度 CC) 層流燃燒速度 亂流燃 燒速度 最大值 (m/s) 最大值 (cm/s) 當量比 (Φ) 下限 上限 氫 2.0 28.62 29.5 4.0 75 571 291 1.70 29.1 CO 28.0 2.406 29.5 12.5 74 609 43 1.70 4.3 甲烷 16.0 11.93 9.47 5.0 15.0 632 37 1.06 本發明中’可供應至裝入層中的氣體燃料,係除上述都市 瓦斯(LNG)之外,尚可使用例如:B氣體、C氣體、c〇氣 體、乙烷氣體、丙烷氣體、丁烷氣體、或該等的混合氣體中 任一者。但,當使用B氣體或C氣體的情況,必須另外講 求提高氣體吐出速度及CO對策。 其次’針對本發明燒結礦之製造方法所供應稀釋氣體燃料 的濃度進行說明。 本發明製造方法中’導入裝入層中的稀釋氣體燃料,較佳 係將其中所含可燃性氣體(燃燒成分)的濃度,稀釋為大氣中 098140952 16 201033373 常溫下的燃燒下限濃度之3/4(75%)以下。理由係對裝入層上 部供應高濃度可燃性氣體時,會有遭致爆炸性燃燒的可能 性,因而必須採取下述事項:設為至少常溫下,即便有火種 仍不會燃燒的狀態;在裝人層中完全不會燃燒,且即便依未 ’燃燒狀態到達位於風箱下游的電集塵器等,仍不會因電集塵 .器的放電而有發生燃燒的威脅;以及稀釋至不會有因稀釋氣 體燃料的燃燒而消耗氧,導致燒結原料用中所含的總燃料 ❹(炭材+氣體燃料)燃燒必要的氧不足,而發生燃燒不足之程 度。 另一方面,稀釋氣體燃料的下限濃度較佳係燃燒下限濃度 的1%以上。理由係若未滿燃燒下限濃度的1%,因燃燒所 造成的發熱量嫌不足’且無法獲得燒結礦的強度提升與良率 改善效果。 由以上現象得知’本發明對裝入層所供應稀釋氣體燃料的 ®濃度,較佳係設為燃燒下限濃度的1〜75¾範圍内。此現象, 若就天然瓦斯(LNG)而言,因為LNG的燃燒下限濃度係 4.8vol%(參照表4),因而稀釋氣體燃料的濃度較佳係 0.05〜3·6νο1%範圍内。 其次,針對本發明燒結礦之製造方法中,將裝入層内的最 高到達溫度設為不超過1380。〇而是控制於12〇〇〜138(rc溫 度範園内的必要性進行說明。 根據「礦物工學」(今井秀喜、武内壽久橘、藤木良規編、 098140952 17 201033373 1976、Π5、朝倉書店),燒結反應係整理如圖9的示意圖。 此外’表6所示錢結過輯生成各_物的㈣強度(冷 札強度)與被還原性之值。由圖9令得知,在燒結過程中,7 於·。C下便開始生成融液’並生成燒結礦的構成蹲物令 屬最高強度且㈣祕較高__。若更進行升溫而超過 約(:,便分解為冷乾強度與被還原性最低 酸鹽(石夕朗)、與容易還原粉化的次生赤鐵礦。所以,輕 文定地獲得燒結礦的冷軋強度盥 Ο 結破,在燒結過財,使依120〇2^㈣均優異的燒Distance from the center (mm) 0 40 80 122.5 Injecting nozzle straight pipe straight pipe straight pipe straight pipe blowing method buried in the cake buried in the cake buried in the cake buried in the cake air volume (m3 / min) 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 Wind speed (m/s) 0.35 0.47 0.35 0.47 0.35 0.47 0.35 0.47 Blowing height (mm) -90 -90 -90 -90 -90 -90 -90 -90 曱 gas concentration (%) from the surface 100mm position measuring probe is blown 0.05 0.05 0.00 0.00 0.00 0.00 from the surface 150mm position > 10.23 > 10.23 1.12 1.24 0.00 0.00 0.00 0.00 From the surface 200mm position 6.83 7.15 1.12 1.13 0.01 0.01 0.00 0.00 from the surface 250mm position 3.24 3.28 0.83 0.88 0.13 0.13 0.04 0.02 300mm from the surface 3.09 3.21 2.69 2.81 0.94 0.91 0.08 0.07 from the surface 3 50mm position 2.93 3.02 1.68 1.74 1.31 1.31 0.23 0.25 0.85 0.83 0.88 0.88 0.85 0.86 0.84 0.84 0.82 0.83 decane gas concentration: 10.23% or more cannot be measured [ Table 2] Distance from the center (mm) 0 40 80 122.5 Blowing nozzle straight pipe Straight pipe Straight pipe straight pipe blowing method is blown from the cake and blown from the cake into the cake and blown from the cake. Air volume (m3/min) 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 Wind speed (m/s) 0.35 0.47 0.35 0.47 0.35 0.47 0.35 0.47 Insulation height (mm) 350 350 350 350 350 350 350 350 100mm position measurement probe from the surface 1.73 1.76 1.66 1.66 1.50 1.67 From the surface 15 0mm position 1.66 1.83 1.90 1.96 1.49 1.42 1.38 1.31 decane gas concentration (%) 200mm from the surface 1.63 1.66 1.55 1.54 1.40 1.29 1.36 1.20 from the surface 2 50mm position 1.57 1.58 1.28 1.29 1.45 1.41 1.26 1.34 from the surface 3 00mm position 1.32 1.33 1.31 1.37 1.45 1.41 1.39 1.43 from the surface 3 5 0mm position 1.20 1.23 1.21 1.27 1.33 1.29 1.48 1.39 0.84 0.85 0.86 0.86 0.85 0.83 0.82 0.82 0.83 0.84 methane gas concentration: 10.233% or more can not be measured 098140952 13 201033373 In addition, the method of supplying the above-mentioned concentration of the diluted gaseous fuel to the charging layer is, for example, discharging gaseous fuel such as urban gas, LNG, and C gas directly into the atmosphere in a high concentration state, and surrounding air After mixing, after being diluted to a predetermined concentration, it is blown directly into the loading layer. Of formula; or previously mixing air with the gas fuel, and diluted to a predetermined concentration, and then supplied premixed gas blowing method (so-called "pre-mixed form") from above the sintering bed. Table 3 shows the evaluation of the gains and losses of the above two methods. If the gas is blown out at a speed higher than the turbulent burning rate, the backfire can be easily prevented. However, when the gaseous fuel is mixed with the surrounding atmosphere to be diluted, the concentration unevenness is likely to occur. The possibility of causing abnormal combustion will be higher than that of premixed blowing. However, when comprehensive evaluation including equipment cost, the gas blow-in method of the city gas (LNG) will be the most [Table 3]. The problem of gas retention when the gas is trapped. The type of gas is reversed. Oxygen piping caliber with equipment comprehensive evaluation from the top of the city gas 〇 Δ 〇 X small less sigh eight C gas 艎〇 Δ XX less %2i ^ premixed blowing urban gas X 〇 0 X mostly into C gas X 〇 XX most 4th The apparatus for supplying gaseous fuel is, for example, as shown in Fig. 7, in which a plurality of gas fuel supply pipes are disposed along the width direction of the pallet, and slits or openings for discharging gaseous fuel or gas fuels to which nozzles are installed are disposed in the tubes. Supply means, or as shown in Fig. 8 'configure a plurality of gas fuel supply pipes along the direction of the pallet, and set a slit or opening for discharging gaseous fuel in the pipe of 098140952 14 201033373, or provide a gas fuel supply with installed nozzles means. Next, in the method for producing a sintered ore according to the present invention, the type of the diluted gaseous fuel to be supplied to the packed bed will be described. ' Table 4 shows the lower limit of combustion concentration and supply concentration of gaseous fuels used in the iron industry [urban gas, coke oven gas (body C gas), blast furnace gas (B gas)]. The concentration of the gaseous fuel supplied to the sintered raw material is safer from the viewpoint of preventing explosion and φ fire (ignition). In this regard, the urban gas system uses natural gas (LNG) mainly composed of methane, and although the lower limit of combustion is similar to that of C gas, since the amount of heat is higher than that of C gas, the supply concentration can be lowered. Therefore, in terms of ensuring safety, the urban gas which can reduce the supply concentration is superior to the C gas. [Table 4] Gas type CO (vol%) h2 (vol%) Methane (vol%) Ethylene (vol%) Propylene (vol%) Heat (Mcal/Nm3) Lower limit of combustion (vol%) Urban gas 0 0 89 5 6 9.5 4.8 C gas 7 59 34 — a 4.8 5.0 B gas 24 4 —— —— — 0.8 40.0 The combustion components (hydrogen, CO, methane) contained in the gaseous fuel shown in Table 5, and these components Lower limit of combustion • Upper limit concentration, laminar flow, burning speed during turbulent flow, etc. In order to prevent a fire in the gas fuel supplied from the gas fuel supply device during sintering, it is necessary to prevent backfire. Therefore, it is considered that the gas fuel can be discharged at a high speed at least above the laminar burning rate, preferably at a turbulent burning rate. For example, the city gas with methane as the main component 098140952 15 201033373 Condition If you spit out at a speed of more than 3.7m / s, there will be no threat of backfire. On the other hand, because the turbulent flow of hydrogen is faster than that of CO and smoldering, in order to prevent backfire, this part must be spit out at high speed. "In this regard, urban gas (LNG) without hydrogen, compared to A gas containing 59 vol% of hydrogen will slow down the discharge rate. And because urban gas does not contain C〇, there is no threat of gas poisoning. Therefore, urban gas (LNG) has better characteristics for the gaseous fuel used in the present invention. [Table 5] Combustion component molecular weight (M) Combustion heat (kcal / g) Theoretical mixing ratio (fuel vol%) Combustible limit concentration (vol%) Ignition temperature CC) Laminar combustion velocity turbulent burning velocity maximum (m / s Maximum value (cm/s) Equivalent ratio (Φ) Lower limit upper limit hydrogen 2.0 28.62 29.5 4.0 75 571 291 1.70 29.1 CO 28.0 2.406 29.5 12.5 74 609 43 1.70 4.3 Methane 16.0 11.93 9.47 5.0 15.0 632 37 1.06 In the present invention The gaseous fuel to be charged into the layer may be, for example, B gas, C gas, c gas, ethane gas, propane gas, butane gas, or the like in addition to the above-mentioned urban gas (LNG). Any of the mixed gases. However, when B gas or C gas is used, it is necessary to additionally increase the gas discharge rate and CO countermeasures. Next, the concentration of the diluted gaseous fuel supplied to the method for producing a sintered ore according to the present invention will be described. In the manufacturing method of the present invention, the dilution gas fuel introduced into the charging layer is preferably diluted to a concentration of flammable gas (combustion component) contained therein to 098140952 16 201033373 at a lower temperature concentration of 3/4 of the lower limit of combustion at normal temperature. (75%) or less. The reason is that when a high-concentration combustible gas is supplied to the upper portion of the packed bed, there is a possibility of explosive combustion. Therefore, it is necessary to take the following matters: at least at normal temperature, even if there is a fire, it will not burn; The human layer will not burn at all, and even if it reaches the electric dust collector located downstream of the bellows, it will not be threatened by the discharge of the electric dust collector; and it will not be diluted. Oxygen is consumed by the combustion of the diluted gaseous fuel, and the oxygen required for the combustion of the total fuel enthalpy (carbon material + gaseous fuel) contained in the sintering raw material is insufficient, and the degree of combustion is insufficient. On the other hand, the lower limit concentration of the diluted gaseous fuel is preferably 1% or more of the lower limit of the combustion limit. The reason is that if the concentration of the lower limit of combustion is less than 1%, the calorific value due to combustion is insufficient, and the strength improvement and yield improvement effect of the sintered ore cannot be obtained. From the above phenomenon, it is understood that the concentration of the diluted gaseous fuel supplied to the packed bed of the present invention is preferably in the range of 1 to 753⁄4 in the lower limit of the combustion concentration. In the case of natural gas (LNG), since the lower limit of combustion of LNG is 4.8 vol% (refer to Table 4), the concentration of the diluted gaseous fuel is preferably in the range of 0.05 to 3·6 νο1%. Next, in the method for producing a sintered ore according to the present invention, the maximum reaching temperature in the packed bed is set to not more than 1,380. 〇 控制 控制 控制 rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc The sintering reaction is organized as shown in Fig. 9. In addition, the value of the (four) intensity (cold strength) and the degree of reducibility of each of the materials shown in Table 6 is shown in Figure 9. In the middle, 7 C. begins to form a melt and produces a sinter ore. The composition of the sinter is the highest strength and (4) is higher __. If it is heated more than about (:, it is decomposed into cold dry strength With the reduced minimum acid salt (Shi Xilang), and the secondary hematite which is easy to be reduced and pulverized. Therefore, the cold rolling strength of the sintered ore is smashed and the sinter is broken. 120〇2^(4) are excellent burns

Cm上的溫度所獲得鈣鐵 =要物酸•欠生赤鐵確之事,便成為重要關鍵。 礦物種類 (MPa) —被 ^ (%) 赤鐵礦 49 ~^-- 50 磁鐵礦 58 鈣鐵礦 102 ~~ 矽酸鈣 19 Τ'^ 再者,根據上述出版物「礦物 八王亦鐵碾析出杆 果,利用圖1G所示狀關進^從礦物合成試驗的結 還原粉化起點的骇晶狀次生° %。根據此項說明,成為 域再經冷卻後析出,因此在狀自礦,係升溫至Mag.ss+Liq. 是經由(2)的路徑進行燒結二^上’並非⑴的路徑,而 化》 义’藉此便可抑制還原粉 098140952 201033373 所以,為能獲得還原粉化性(1101)優異、且高強度、被還 原性優異的燒結礦,必須將燒結時的裝入層内最高到達溫度 設為不超過1380¾,將裝入層内的溫度控制於12〇〇t (鈣鐵 礦的固相線溫度)〜1380°C(轉移溫度)範圍内。 • 再者,鈣鐵礦的生成係如前述,依存於在120(TC以上溫 ' 度中所保持的時間,正確而言,係在1200〜1380。(:範圍内的 保持溫度與時間之乘積。所以,為能獲得高強度且被還原性 φ佳、低RDI的燒結礦,如何實現將燒結時的裝入層内溫度 形成長時間保持於1200〜1380。(:範圍内的加熱型態,便屬課 題。在此,本發明為能確保燒結所必要的熱源,並延長燒結 時装入層内溫度保持於1200〜138(TC溫度範圍内的時間,除 炭材之外,更進一步採取將稀釋氣體燃料供應給裝入層内的 燒結方法。 圖11(b)所示係在使用透明石英製試驗鍋的燒結試驗中, ® 稀釋氣體燃料在有供應情況與無供應情況時’裝入層中就圖 11(a)中依•所示位置的溫度與時間間之關係比較。圖中的虛 線係在燒結原料中調配入炭材的焦炭5mass%,但未施行氣 體燃料供應時的例子’得知燃燒•熔融帶在通過上述點之時 的裝入層内溫度’係在對燒結屬有效的12〇〇°C以上溫度中 -保持2分鐘左右。另一方面,圖中的實線所示係依熱量換算 計,將形成焦炭相當於〇.4mass%量的LNG供應至裝入層 中,而此部分將減少燒結原料中的炭材(焦炭)量而形成 098140952 19 201033373 4.6maSS% ’當將總熱量設為—定時的例子。此情況下對 裝入層中所供應的稀釋氣體燃料係在較焦炭的燃燒位置(燃 燒帶)更靠上層側,即已通過燃燒帶而溫度開始降低的區域 進行燃燒,此區域經再加熱的結果,便可大幅延長在對燒結 屬有效的12〇〇1以上溫度中保持的時間。且,該延長係儘 s隨氣體燃料的供應而減少焦炭量,氣體燃燒·熔融帶通過 時的裝入層内最高到達溫度,仍可實現不會導致焦炭強度降 低、或上升至超過1380°c的溫度。 再者’圖12所示係圖η所示燒結實驗中,就裝入層中的 焦炭量、所供應氣體燃料(LNG)的濃度、及供應位置,改變 4種水準並施行燒結實驗的結果,圖12(a)所示係裝入層内 的焦炭及氣體燃料進行燃燒的時間位置,圖12〇3)所示係上 述燃燒的結果’圖12(a)中依*記號所示裝入層内位置的溫度 時間推移。此外,圖12(b)所示水準A的曲線(細實線)係燒 結原料中含有炭材的焦炭5mass%,且完全未施行氣體燃料 供應例的溫度變化。且,水準B的曲線(細虛線)係供應經稀 釋為O.lvol%的LNG,並將焦炭降低至4 6mass%的例子。 此例中,LNG的稀釋濃度低至〇.lv〇1%,因為發熱量較少, 因而無法充分彌補因焦炭減少所造成的熱量不足情形,導致 氣體燃料供應效果不足。此外,水準D的曲線(粗虛線)係供 應稀釋為4.0vol%的LNG ’並將焦炭降低至4.6mass%的例 子’稀釋氣體燃料的燃燒溫度係依存於溫度,濃度越高,則 098140952 20 201033373 燃燒溫度越低。所以,4.0vol%的LNG將在大幅乖離焦炭燃 燒位置,於元成燒結且溫度已降低的裝入層上層部進行燃 燒,因而裝入層内溫度雖出現有2個尖峰,但並無關聯於對 燒結屬有效的1200 C以上溫度之延長。相對於此,水準匚 . 的曲線(粗實線)係供應經稀釋為〇.4vol%的LNG ’將焦炭減 • 少為4.6maSS%的情況。此情況下,稀釋氣體燃料的燃燒溫 度將移往高溫侧,因而焦炭燃燒與LNG燃燒等二者效果將 ❹重疊,導致1200<3(:以上溫度中的保持時間,相較於水準A、 B及C之情況’呈現大幅延長。 由該等結果可期待利用稀釋氣體燃料的供應,更進一步促 進燒結而提高燒結礦強度,錢升良率與生產性,‘同時亦將 提高燒結礦的被還原性,但為能達成此情況,必須配合氣體 燃料的供應量’削減所添加的炭材量,將裝人層内的最高到 達溫度控制於12GG〜⑶代範圍内。料,根據發明者等的 β調查,為紐得充分燒結強度與被還雜,以及低還原粉化 性的燒結礦,必須在l200〜138(rc溫度範圍内至少保持2分 鐘、較佳3分鐘以上、更佳5分鐘以上。 但是,供應氣體燃料時應注意事項係f知僅將焦炭使用為 炭材㈣況,雖利賴制織熱㈣保上述燒結溫度但 若含有與習知同量的炭材並對裝入層内施行稀釋氣體燃料 供應,卿氣體燃料的燃燒熱,便會使燒科的最高到達溫 度上升’導致無法將裝人層⑽溫度維持於上述適當溫度範 098140952 201033373 圍(1200〜1380°C)内,而會生成燒結強度較低的鈣鐵礦,導 致良率與被還原性降低。所以,認為最好配合所供應的氣體 燃料,減少燒結原料中所調配入的炭材量。此外,若能削減 炭材量,則不僅可降低炭材成本,亦可削減燒結步驟中所生 成的二氧化碳量。 在此’就與對裝入層内所供應之稀釋氣體燃料間之關係, 為確認在燒結原料中所含炭材調配量的適當範圍,便使用 3OO0x4OOmmH透明石英製試驗鍋,在含有炭材的粉焦炭之 燒結原料中,氣體燃料係使用將LNG稀釋為06v〇1%的稀 釋氣體燃料,並施行該氣體燃料供應4分鐘的燒結實驗。另 外,燒結原料中所含炭材量係如表7所示,當氣體燃料無吹 入的情況係為5.0mass%,而當氣體燃料有吹入的情況便在 4.8〜4.0mass%間進行變化,調查所供應氣體燃料的燃燒熱、 與相當於所削減炭材量的燃燒熱、以及燒結礦品質與生產性 間之關係。 098140952 22 201033373Calcium iron obtained at the temperature of Cm = essential acid • The problem of owing red iron is a key issue. Mineral type (MPa) - is ^ (%) Hematite 49 ~ ^ - 50 magnetite 58 calcium iron ore 102 ~ ~ calcium citrate 19 Τ '^ Furthermore, according to the above publication "mineral eight kings also iron milled out The fruit of the fruit, which is closed by the shape shown in Fig. 1G, is the secondary phase of the nucleation reduction from the mineral synthesis test. According to this description, the domain is precipitated after cooling, so it is in the form of self-mine. The temperature is raised to Mag.ss+Liq. The path of sintering is carried out via the path of (2), which is not the path of (1), and the "reduction" is used to suppress the reducing powder 098140952 201033373. Therefore, in order to obtain reduction pulverizability (1101) Sinter, which is excellent in high strength and excellent in reductibility, must have a maximum temperature of not more than 13,803⁄4 in the packed layer during sintering, and a temperature of 12 〇〇t (calcium) in the layer. The solidus temperature of the iron ore is within the range of ~1380 °C (transfer temperature). • Furthermore, the formation of the perovskite is as described above, depending on the time maintained at 120 (TC above temperature). The words are in the range of 1200~1380. (: The product of the temperature and time is kept within the range. Therefore, in order to obtain How to obtain a sintered ore with high strength and good reduction φ and low RDI, how to maintain the temperature inside the packed layer during sintering for 1200 to 1380 for a long time. (: The heating type in the range is a problem. Therefore, the present invention is a heat source necessary for ensuring sintering, and prolongs the temperature in the layer to be maintained at 1200 to 138 (the temperature in the TC temperature range), and further supplies the diluted gas fuel to the carbon material in addition to the carbon material. The sintering method is carried out in the layer. Figure 11(b) shows the sintering test using a transparent quartz test pot. ® Diluted gas fuel is loaded into the layer when there is supply and no supply. Figure 11 ( a) The relationship between the temperature and the time at the position indicated by the middle. The dotted line in the figure is 5 mass% of coke blended into the carbon material in the sintering raw material, but the example of the gas fuel supply is not applied. The temperature in the charged layer at the time of passing through the above point is maintained at a temperature of 12 ° C or higher which is effective for sintering, and is maintained for about 2 minutes. On the other hand, the solid line in the figure is expressed in terms of heat. Calculate, will form coke equivalent 4.4mass% of LNG is supplied to the loading layer, and this part will reduce the amount of charcoal (coke) in the sintered raw material to form 098140952 19 201033373 4.6maSS% 'When the total heat is set to - timing example. In this case, the dilution gas fuel supplied to the charging layer is burned on the upper side of the combustion position (combustion zone) of the coke, that is, the region where the temperature has begun to decrease through the combustion zone, and the region is reheated. It is possible to greatly extend the time maintained in the temperature above 12 〇〇 1 which is effective for the sintering. Moreover, the extension is to reduce the amount of coke with the supply of gaseous fuel, and the maximum temperature reached in the charging layer when the gas combustion/melting zone passes can still achieve no decrease in coke strength or rise to over 1380 ° C. temperature. Furthermore, in the sintering experiment shown in Fig. 12, the amount of coke charged in the layer, the concentration of the supplied gaseous fuel (LNG), and the supply position were changed, and the results of the sintering test were performed by changing the four levels. Fig. 12(a) shows the time position at which the coke and the gaseous fuel charged in the layer are burned, and Fig. 12〇3) shows the result of the above combustion, and the layer is filled as shown by the * mark in Fig. 12(a). The temperature of the inner position is timed. Further, the curve of the level A shown in Fig. 12(b) (thin solid line) is a mass% of coke containing carbonaceous material in the sintered raw material, and the temperature change of the gas fuel supply example is not performed at all. Further, the curve of the level B (thin dotted line) is an example in which LNG diluted to 0.1% by volume is supplied, and coke is lowered to 4 6 mass%. In this case, the dilution concentration of LNG is as low as 〇.lv〇1%, because the calorific value is small, so that the insufficient heat caused by the reduction of coke cannot be fully compensated, resulting in insufficient gas fuel supply effect. In addition, the curve of the level D (thick broken line) is an example of supplying LNG' diluted to 4.0 vol% and reducing coke to 4.6 mass%. The combustion temperature of the diluted gaseous fuel depends on the temperature, and the higher the concentration, 098140952 20 201033373 The lower the combustion temperature. Therefore, 4.0 vol% of LNG will be burned away from the coke burning position, and the upper layer of the charging layer where the element is sintered and the temperature has been lowered is burned. Therefore, although there are two peaks in the temperature of the charged layer, it is not related to An extension of the temperature above 1200 C that is effective for sintering. On the other hand, the curve of the level 粗 (thick solid line) is a case where the amount of coke diluted to 〇.4 vol% is reduced to 4.6 maSS%. In this case, the combustion temperature of the diluted gaseous fuel will shift to the high temperature side, so that the effects of coke combustion and LNG combustion will overlap, resulting in 1200<3 (: holding time in the above temperature, compared to the level A, B) The situation of C and C has been greatly extended. From these results, it is expected that the supply of dilute gas fuel will be used to further promote sintering and increase the strength of the sintered ore, and the yield and productivity of the product will increase the reduction of the sintered ore. In order to achieve this, it is necessary to reduce the amount of carbon to be added in accordance with the supply amount of gaseous fuel, and to control the maximum temperature in the loading layer to be within the range of 12 GG to (3). According to the inventors, etc. The β survey is a sintered ore with sufficient sintering strength and recombination, and low reduction powdering, which must be maintained at l200~138 (rc temperature range for at least 2 minutes, preferably 3 minutes or more, more preferably 5 minutes or more). However, when supplying gaseous fuel, it should be noted that only the coke is used as the carbon material (IV), although the heat of the weaving heat is used to protect the sintering temperature, but if it contains the same amount of carbon as the conventional one, The dilution gas fuel supply is applied to the inlet layer, and the combustion heat of the gas fuel will increase the maximum temperature of the burning section. This will prevent the temperature of the loading layer (10) from being maintained at the above-mentioned appropriate temperature range 098140952 201033373 (1200~1380°C) In the case, calcium ore having a low sintering strength is generated, resulting in a decrease in yield and reduction property. Therefore, it is considered that it is preferable to mix the supplied gaseous fuel to reduce the amount of carbon to be blended in the sintering raw material. If the amount of carbon material can be reduced, the cost of the carbon material can be reduced, and the amount of carbon dioxide generated in the sintering step can be reduced. Here, the relationship between the carbon dioxide and the diluted gaseous fuel supplied to the packed bed is confirmed. For the appropriate range of the amount of carbonaceous material contained in the sintered raw material, a test pot of 30000 x 400 mmH transparent quartz is used. In the sintering raw material of powdered coke containing carbon material, the gaseous fuel is diluted with gaseous fuel which is diluted with LNG to 06 v〇1%. And the sintering experiment of the gas fuel supply for 4 minutes is performed. In addition, the amount of carbon contained in the sintering raw material is as shown in Table 7, when the gaseous fuel is not blown. It is 5.0 mass%, and when the gas fuel is blown in, it changes between 4.8 and 4.0 mass%, and investigates the heat of combustion of the supplied gaseous fuel, the heat of combustion corresponding to the amount of the carbon material to be reduced, and the quality of the sintered ore. Relationship with productivity. 098140952 22 201033373

【卜1 (tliS2) 1.15 οο 1 < 1.21 1.23 1.21 00 i-Η 燒結礦的品質特性 60.4 63.6 i 65.9 67.8 73.8 77.5 成品良率 Λ%) 70.9 74_5 75.8 74.8 71.4 70.0 ㈣ t 89.6 92.0 92.0 93.5 92.0 91.5 燒結時間 (min) 16.4 16.8 16.7 16.3 15.9 16.0 1 1.42 ΟΟ fNl 'Ο CN 00 VO Ο 1-Η LNG燃燒熱 Ο 〇\ <Ν m α\ CS m 〇\ CN m 〇\ CN m Ό\ (Ν m I 县 ο 1159 1159 1159 1159 1159 s® p ο 寸 寸 寸 寸 寸 LNG吹入條< mH"l ο 0.0084 0.0084 0.0084 0.0084 0.0084 ο ο >〇 VO VO Ό Ο 粉焦炭削減量 (kcal) ο -467 -934 -1401 -1868 -2336 粉焦炭燃燒熱 1 11676 11209 10742 10275 9808 9340 ί 10027 9397 9059 8878 8688 8222 粉鯰比 ΟΟ 寸· (N — 〇· CN 寸 U0 -S60H°°60 201033373 上述鍋試驗的結果合併記於表7中。此外,將所供應氣體 燃料的燃燒熱設為A,將相當於所削減炭材量的燃燒熱設為 B時,並將B對A的比(B/A)定義為取代率時,該取代率 B/A、與燒結礦品質(碎裂強度、被還原性)、成品良率及生 產率間之關係,如圖13所示。另外,碎裂強度係根據JIS M8711進行測定,且被還原性係根據JIS M8713進行測定。 由圖13中得知,至少當供應氣體燃料而進行燒結礦製造 的情況’即便燒結原料中的炭材量削減至少於未供應氣體燃 料時,燒結礦的品質特性(強度、被還原性)與生產性均不會 有任何不良影響,反將提升燒結礦品質特性與生產性,特別 係即使將取代率B/A設為1以上,即削減相當於氣體燃料 供應步驟中所供應稀釋氣體燃料之燃燒熱的量以上之炭 材,仍會提升燒結礦品質特性(強度、被還原性)與生產性。 且,由圖13中得知,炭材削減量係即便將取代率b/a設為 5左右,而大幅削減炭材量,仍可充分顯現出氣體燃料供應 的效果。即’確認到為將裝入層内的溫度維持於 1200〜1380°C區域’俾不致生成非晶質矽酸鈣,便必須削減 相當於氣體燃料供應步驟所供應氣體燃料之燃燒熱的量以 上之炭材。 如上述,即便削減相當於所供應稀釋氣體燃料的燃燒熱之 量以上的炭材’因而減少氣體燃料與炭材的合計燃燒熱,但 仍可提升燒結礦品質特性與生產性的理由,係如前述圖u 098140952 24 201033373 與圖12巾所得知,對裝入層中所供應的稀#氣體燃料將在 較焦炭燃燒位置(燃燒帶)更靠上層側,即已通過燃燒帶而溫 度開始降低的區域進行燃燒,該區域經再加熱的結果,當通 過氣體燃燒•熔融帶時,裝入層内的溫度便會導致焦炭強度 •降低’不會上升至超過138G°C的溫度,可大幅延長保持於 對燒結屬有效的1200。(:以上溫度中之保持時間。 但,若過度削減炭材量,即取代_ B/A過大,氣體燃料 ❹與炭材的合龍賴便會聽降低,導賴結礦的品質特性 與生產性降低。另外’氣體燃料的供應效果係即便取代率 B/A達1G以上仍可發現,其上限係如後述實施例所說明, e又為15左右。所以,燒結原料中的炭材量較佳係配合所供 應的氣體燃料,依取代率B/A成為卜15範圍的方式進行削 減、更佳為1.5〜1〇、特佳為2〜6範圍内。 依如上述’根據本發明,因為可削減相當於所供應氣體燃 ®料的燃燒熱之1以上的炭材,因而除可廉價地實現燒結礦品 質改善與生產性提升之外,尚可大關減因炭材燃燒所生成 的-氧化〇所以’本發明可謂對地球環境屬優異的環境 調和型技術。 [實施例] 使用λ有如圓14所不之氣體燃料供應設備的實機燒結 機’依表8所示條件’施行表中所示氣龍料吹人,同時削 減燒、原料中之炭材量的燒結實驗,而確認對燒結礦品質 098140952 25 201033373 (轉鼓強度、被還原性)的影響。 另外’轉鼓強度係最廣泛使用為表示依實機燒結機所獲得 燒結礦強度的指標’在與碎裂強度間具強烈關聯關係。該轉 鼓強度ΊΊ係根據HS M8712,使試料在旋轉轉筒内進行旋 轉,並利用6.3mm的篩進行篩分,並從提供試驗的試料質 量、與經試驗後的+6.3mm試料質量之比求出。此外,被還 原性係根據JIS M8713,將經篩分為19.〇〜22 4mm的5〇〇: 燒結礦試料,於90(TC下,利用含有co: 30vol%、N2: 7〇v〇1%❽ 的還原氣體施行180分鐘還原後,再依還原氧量對還原前的 被還原氧量之比例求出。 上述實機試驗的結果合併記於表8中,且當將所供應稀釋 :體燃料的燃燒熱設為A,將相當於所削減炭材量的燃燒熱 設為B時,取代率B/A與燒結礦品質(轉鼓強度Ή、被還原 ! 生RI)間之關係,如圖15所示。由該等結果得知,鍋試驗 中,藉由將氣體燃料的燃燒熱A、與相當於削減炭材量的燃❹ 燒…、B之比(取代率B/A)設為1〜15範圍内,便可獲得經提 南強度與被還原性的燒結礦。 098140952 26 201033373 【8礤1 備註 比較例 發明例 發明例 比較例 生產率2 (t/hr · m2) 1. 1.73 1.79 1 1.79 丨 1.81 00 ▼-H 1.82 1.82 00 1.80 1.79 1.75 燒結礦的品質特性 |g 60.4 64.0 64.5 64.5 64.0 65.3 67.0 65.0 66.4 67.4 63.0 成品良率 (%) 75.0 78.0 77.5 78.4 78.4 78.7 78.9 78.4 78.0 77.8 76.0 轉胬度 64.9 67.3 67.5 68.0 . 67.8 68.2 68.5 68.0 67.9 67.8 65.0 g 卜 卜 δ 〇〇 00 1-H 00 <N oo 1*^ (N 00 00 〇〇 〇\ 00 卜 燒結 a#間 (min) B/A 〇 2.73 3.28 4.10 5.47 6.56 8.20 8.22 10.93 13.13 19.70 LNG 燃燒熱 (Meal) A 〇 〇 00 〇\ 1633 1960 1633 g as (N m S <N 奉 〇 吹入時間 (min) 〇 〇 〇 〇 〇 Ο ο ο 〇 〇 〇 ttHS' ri 〇 〇 1000 1200 τ· ^ 1000 ο ο (N in CN 3 r 〇 0.40 0.60 0.80 0.48 0.60 0.40 0.64 0.48 0.40 0.40 粉焦炭削減量 〇S4cal) B 〇 -2679 -5357 -8036 -1339 -10714 -8036 -2679 -2679 -2679 -4018 粉焦炭燃燒熱 (Meal) 112498 109819 107141 104462 111159 101784 104462 109819 109819 109819 108480 粉焦炭比 (%) 4.20 4.10 4.00 3.90 4.15 3.80 3.90 4.10 4.10 4.10 4.05 粉焦炭量 (t/min) 0.546 0.533 0.520 0.507 0.540 0.494 0.507 0.533 0.533 0.533 0.527 !Z 1—ί CN m 寸 卜 00 〇\ Ο LI 3560-860 201033373 【圖式簡單說明】 圖1為燒結礦的製造步驟說明圖。 圖2為燒結時,裝入層内的壓力損耗與溫度分佈說明圖。 圖3為燒結礦的生產性高與低時,裝入層内溫度的時間推 移比較圖。 圖4為襞入層的燒結進行過程之示意說明圖。 圖5為裝入層上層部、中層部及下層部中,燒結時的溫度 分佈、與裴入層寬度方向截面内的燒結礦良率分佈說明圖。 圖6為稀釋氣體燃料的供應方法比較時,所使用之試驗裝❹ 置的說明圖。 圖7為本發明的氣體燃料供應裝置一例說明圖。 圖8為本發明的氣體燃料供應裝置另一例說明圖。 圖9為燒結反應的說明圖。 圖1〇為生成骸晶狀次生赤鐵礦的過程說明狀態圖。[1 1 (tliS2) 1.15 οο 1 < 1.21 1.23 1.21 00 i-Η Quality characteristics of sintered ore 60.4 63.6 i 65.9 67.8 73.8 77.5 Finished product yield Λ%) 70.9 74_5 75.8 74.8 71.4 70.0 (4) t 89.6 92.0 92.0 93.5 92.0 91.5 Sintering time (min) 16.4 16.8 16.7 16.3 15.9 16.0 1 1.42 ΟΟ fNl 'Ο CN 00 VO Ο 1-Η LNG combustion Ο 〇\ <Ν m α\ CS m 〇\ CN m 〇\ CN m Ό\ (Ν m I County ο 1159 1159 1159 1159 1159 s® p ο inch inch inch LNG blowing strip <mH"l ο 0.0084 0.0084 0.0084 0.0084 0.0084 ο ο >〇VO VO Ό Ο powder coke reduction (kcal) ο -467 -934 -1401 -1868 -2336 Powder coke combustion heat 1 11676 11209 10742 10275 9808 9340 ί 10027 9397 9059 8878 8688 8222 鲶 鲶 · · (N — 〇· CN 寸 U0 -S60H°°60 201033373 The results are summarized in Table 7. Further, the combustion heat of the supplied gaseous fuel is A, and the combustion heat corresponding to the amount of the carbon material to be reduced is B, and the ratio of B to A (B/A) is obtained. When defined as the substitution rate, the substitution rate B/A, and the quality of the sintered ore (crushing strength) The relationship between the reduction property, the yield of the finished product, and the productivity is shown in Fig. 13. The fracture strength is measured in accordance with JIS M8711, and the reduction property is measured in accordance with JIS M8713. In the case where sinter production is carried out at least when gaseous fuel is supplied, even if the amount of carbon in the sintered raw material is reduced at least when the gaseous fuel is not supplied, there is no quality property (strength, reducibility) and productivity of the sintered ore. The adverse effects will increase the quality characteristics and productivity of the sinter, especially if the substitution rate B/A is set to 1 or more, that is, the carbon equivalent to the amount of combustion heat of the diluted gaseous fuel supplied in the gas fuel supply step is reduced. In addition, the quality characteristics (strength, reduction) and productivity of the sinter will be improved. Moreover, as shown in Fig. 13, the carbon reduction amount is such that the substitution ratio b/a is set to about 5, and the carbon is greatly reduced. The amount of material can still fully demonstrate the effect of gas fuel supply. That is, it is confirmed that the temperature in the charged layer is maintained in the region of 1200 to 1380 ° C. If amorphous calcium citrate is not formed, it is necessary to reduce the amount of combustion heat corresponding to the gaseous fuel supplied in the gas fuel supply step. Carbon material. As described above, even if the carbon material corresponding to the amount of combustion heat of the supplied diluted gas fuel is reduced, thereby reducing the total combustion heat of the gaseous fuel and the carbon material, the reason for improving the quality characteristics and productivity of the sintered ore is as follows. As shown in the above figure u 098140952 24 201033373 and FIG. 12, it is known that the lean gas fuel supplied in the charging layer will be on the upper side of the coke burning position (combustion zone), that is, the temperature has begun to decrease through the combustion zone. The area is burned and the area is reheated. When passing through the gas combustion/melting zone, the temperature in the layer will cause the coke strength to decrease. 'It will not rise to more than 138G °C, which can greatly extend the retention. It is 1200 effective for sintering. (: The holding time in the above temperature. However, if the amount of carbon material is excessively reduced, that is, if _ B/A is too large, the gas fuel ❹ and the carbon material will be reduced, and the quality characteristics and production of the mineralization will be guided. Further, the effect of the supply of gaseous fuel is found even if the substitution ratio B/A is 1 G or more, and the upper limit is as described in the examples below, and e is about 15. Therefore, the amount of carbon in the sintered raw material is higher. The gas fuel supplied by the best system is reduced in a manner that the substitution ratio B/A is in the range of 15 and 15, more preferably 1.5 to 1 Torr, and particularly preferably in the range of 2 to 6. As described above, according to the present invention, It is possible to reduce the amount of charcoal material equivalent to 1 or more of the combustion heat of the supplied gas fuel, so that in addition to the low-quality sinter quality improvement and productivity improvement, it is possible to reduce the amount of carbon-burning 〇 〇 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本The gas dragon is shown to blow people, while The sintering experiment of reducing the amount of charcoal in the raw material, and confirming the influence on the quality of the sintered ore 098140952 25 201033373 (drum strength, reduction). In addition, the most widely used drum strength is the actual sintering machine. The index of the obtained sinter strength is strongly correlated with the fracture strength. The drum strength is based on HS M8712, and the sample is rotated in a rotating drum and sieved with a 6.3 mm sieve. It is determined from the ratio of the mass of the sample to be tested and the mass of the sample after the test of +6.3 mm. In addition, the reducing property is sieved into 5〇〇 according to JIS M8713: 19.〇~22 4mm: Sinter The sample was subjected to reduction at 90 (TC) for 180 minutes using a reducing gas containing co: 30 vol% and N2: 7 〇 v 〇 1% ,, and then the ratio of the amount of reduced oxygen to the amount of reduced oxygen before reduction was determined. The results of the actual machine test described above are combined in Table 8, and when the heat of combustion of the supplied diluted body fuel is A, and the heat of combustion corresponding to the amount of carbon material reduced is B, the substitution rate B/ A and sinter quality (drum strength 被, reduced! raw RI) The relationship between the two is shown in Fig. 15. From the results, it is known that in the pot test, the ratio of the combustion heat A of the gaseous fuel to the ratio of the burning amount of the carbon material to the ratio of B (the substitution rate) B/A) is set to be in the range of 1 to 15, and the sinter of the strength and the reducing property of the south can be obtained. 098140952 26 201033373 [8礤1 Remarks Comparative Example Invention Example Comparative Example Productivity 2 (t/hr · M2) 1. 1.73 1.79 1 1.79 丨1.81 00 ▼-H 1.82 1.82 00 1.80 1.79 1.75 Quality characteristics of sinter |g 60.4 64.0 64.5 64.5 64.0 65.3 67.0 65.0 66.4 67.4 63.0 Finished product yield (%) 75.0 78.0 77.5 78.4 78.4 78.7 78.9 78.4 78.0 77.8 76.0 Transfer degree 64.9 67.3 67.5 68.0 . 67.8 68.2 68.5 68.0 67.9 67.8 65.0 g Bub δ 〇〇00 1-H 00 <N oo 1*^ (N 00 00 〇〇〇\ 00 卜 a# (min) B/A 〇 2.73 3.28 4.10 5.47 6.56 8.20 8.22 10.93 13.13 19.70 LNG Heat of combustion (Meal) A 〇〇00 〇\ 1633 1960 1633 g as (N m S <N 〇 〇 blowing time (min) 〇〇〇〇〇Ο ο ο 〇〇〇ttHS' ri 〇〇1000 1200 τ· ^ 1000 ο ο (N in CN 3 r 〇0.40 0.60 0.80 0.48 0.60 0.40 0.64 0.48 0.40 0.40 powder coke reduction 〇S4cal) B 〇-2679 -5357 -8036 -1339 -10714 -8036 -2679 -2679 -2679 -4018 Powder coke combustion heat (Meal) 112498 109819 107141 104462 111159 101784 104462 109819 109819 109819 108480 Powder coke ratio (%) 4.20 4.10 4.00 3.90 4.15 3.80 3.90 4.10 4.10 4.10 4.05 Powder coke (t/min) 0.546 0.533 0.520 0.507 0.540 0.494 0.507 0.533 0.533 0.533 0.527 !Z 1—ί CN m 寸 00 〇 Ο 3 LI 3560-860 201033373 [Simple description of the drawing] Fig. 1 is an explanatory diagram of the manufacturing steps of sinter. Fig. 2 is a graph showing the pressure loss and temperature distribution in the packed layer during sintering. Fig. 3 is a graph showing the time shift of the temperature charged in the layer when the productivity of the sintered ore is high and low. Fig. 4 is a schematic explanatory view showing the progress of sintering of the intrusion layer. Fig. 5 is an explanatory view showing a temperature distribution at the time of sintering and a distribution of sinter yield in a cross section in the width direction of the entangled layer in the upper layer portion, the middle layer portion, and the lower layer portion of the layer. Fig. 6 is an explanatory view of a test device used when comparing the supply methods of the diluted gaseous fuel. Fig. 7 is an explanatory diagram showing an example of a gas fuel supply device of the present invention. Fig. 8 is an explanatory view showing another example of the gas fuel supply device of the present invention. Fig. 9 is an explanatory view of a sintering reaction. Figure 1 is a state diagram showing the process of producing twin-shaped secondary hematite.

圖11為對裝入層内的溫度分佈造成影響之氣體燃料供應 效果之說明圖。、Q 圖12為稀釋氣體燃料的供應條件濃度、供應位置,對裴 入層内的溫度分佈所造成影響的說明圖。 圖13為鍋試驗中,表示氣體燃料的燃燒熱a、與相當於 削減炭材4的錢熱B之比(取代率B/A),在與燒結礦品質 間之關係圖。 圖14為實施例的燒結實驗所使用的燒結機構造之說明 098140952 28 201033373 圖。 圖15為實機燒結機中,表示氣體燃料燃燒熱A與相當於 削減炭材量的燃燒熱B之比(取代率B/A),在與燒結礦品質 間之關係圖。 【主要元件符號說明】 1 原料料斗 2 ' 3 轉筒混合機 ❹4 5 床敷礦料斗 接料桶 6 筒式進料器 7 切取斜槽 8 托板 9 裝入層 10 點火爐 Φ 11 風箱 098140952 29Fig. 11 is an explanatory view showing the effect of gas fuel supply which affects the temperature distribution in the layer. Q Figure 12 is an explanatory diagram of the influence of the supply condition concentration and supply position of the diluted gaseous fuel on the temperature distribution in the intrusion layer. Fig. 13 is a graph showing the relationship between the combustion heat a of the gaseous fuel and the ratio of the heat B corresponding to the carbon material 4 (substitution rate B/A) in the pot test, and the quality of the sintered ore. Figure 14 is an illustration of the construction of a sintering machine used in the sintering experiment of the examples 098140952 28 201033373. Fig. 15 is a graph showing the relationship between the combustion heat A of the gaseous fuel and the combustion heat B corresponding to the amount of the carbon material (substitution rate B/A) in the actual sintering machine, and the quality of the sintered ore. [Main component symbol description] 1 Raw material hopper 2 ' 3 Rotary mixer ❹ 4 5 Bedding hopper bucket 6 barrel feeder 7 Cutting chute 8 pallet 9 Loading layer 10 Ignition furnace Φ 11 Bellows 098140952 29

Claims (1)

201033373 七、申請專利範圍: 1.一種燒結礦之製造方法,係包括有·· 裝入步驟,其乃在循環移動的托板上,裝入含有粉礦與炭 材的燒結原料’而形成裝入層; 點火步驟’其乃對該裝入層表面的炭材使用點火爐施行點 火; 氣體燃料供應步驟’其乃對袭入層上方的大氣中供應氣體 燃料,而作為燃燒下限濃度以下的稀釋氣體燃料,並進行供 應;以及 燒結步驟,其乃利用在托板下所配置風箱,將上述稀釋氣 體燃料與空氣抽吸於裝入層内’使裝入層内的炭材進行燃 燒’並使上述稀釋氣體燃料在經炭材燃燒後的裝入層内進行 燃燒而施行燒結;且,其特徵在於· 上述燒結原射的騎量係較未供應㈣㈣.時更加削 減。 2·如申請專利範圍第1項之燒結礦之製造方法,其中,上 述炭材的職量係依下%定義之取 設定在卜15範 圍内, 取代率=B/A 其中,A:所供應氣趙機料的燃燒熱、B:相當於所削減 炭材量的燃燒熱。 3·如申請專利範圍第2燒結礦之製造方法’其中,上 098140952 201033373 述取代率係設為1.5〜10範圍内。 4.如申請專利範圍第2項之燒結礦之製造方法,其中,上 述取代率係設為2〜6範圍内。 ❹201033373 VII. Patent application scope: 1. A method for manufacturing sinter ore, which comprises the steps of loading, which is carried out on a pallet which is circulated and moved, and is filled with a sintered raw material containing powder ore and carbon material to form a package. The ignition step 'is the ignition of the carbon material on the surface of the layer to be ignited using an ignition furnace; the gas fuel supply step' is to supply gaseous fuel to the atmosphere above the attack layer, and to dilute below the lower limit of combustion concentration a gaseous fuel, and a supply step; and a sintering step of pumping the diluted gaseous fuel and air into the charging layer by using a bellows disposed under the pallet to "burn the carbon material charged in the layer" The diluted gaseous fuel is burned by being burned in a charging layer after combustion by the carbon material, and is characterized in that the amount of riding of the sintering original is more reduced than when the (four) (four) is not supplied. 2. The method for manufacturing a sintered ore according to claim 1, wherein the capacity of the carbon material is set in the range of 5% according to the definition of %, and the substitution rate is B/A, wherein A: The heat of combustion of the gas material, B: corresponds to the heat of combustion of the amount of carbon material reduced. 3. The manufacturing method of the second sinter of the patent application s. wherein the substitution ratio is set to be in the range of 1.5 to 10 in the above-mentioned 098140952 201033373. 4. The method for producing a sintered ore according to the second aspect of the invention, wherein the above substitution ratio is in the range of 2 to 6. ❹ 098140952 31098140952 31
TW098140952A 2008-12-01 2009-12-01 Sintering method TWI460278B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305842A JP4911163B2 (en) 2008-12-01 2008-12-01 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
TW201033373A true TW201033373A (en) 2010-09-16
TWI460278B TWI460278B (en) 2014-11-11

Family

ID=42233363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098140952A TWI460278B (en) 2008-12-01 2009-12-01 Sintering method

Country Status (9)

Country Link
EP (1) EP2365101B1 (en)
JP (1) JP4911163B2 (en)
KR (1) KR101353113B1 (en)
CN (1) CN102232120B (en)
AU (1) AU2009323269B2 (en)
BR (1) BRPI0923299B1 (en)
TR (1) TR201816067T4 (en)
TW (1) TWI460278B (en)
WO (1) WO2010064717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470086B (en) * 2012-07-18 2015-01-21 Jfe Steel Corp Method of producing sintered ore

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439981B2 (en) * 2008-12-03 2014-03-12 Jfeスチール株式会社 Method for producing sintered ore
WO2013186950A1 (en) 2012-06-13 2013-12-19 Jfeスチール株式会社 Method for manufacturing sintered ore
CN103512351B (en) * 2012-06-20 2015-10-07 鞍钢股份有限公司 Sintering device for metallized sinter and production method thereof
AU2013291376B2 (en) 2012-07-18 2016-02-25 Jfe Steel Corporation Gaseous fuel supply apparatus for sintering machine
EP2924132B1 (en) * 2012-11-20 2020-05-06 JFE Steel Corporation Oxygen-gaseous fuel supply apparatus for sintering machine
CN104342550A (en) * 2013-07-26 2015-02-11 上海梅山钢铁股份有限公司 Coke oven coal gas assisted sintering method
JP6213734B2 (en) * 2014-02-24 2017-10-18 Jfeスチール株式会社 Method for producing sintered ore
JP6295791B2 (en) * 2014-04-04 2018-03-20 新日鐵住金株式会社 Sinter ore production method and evaluation method of coal char or anthracite or semi-anthracite
CN110319694A (en) * 2018-03-31 2019-10-11 高彦 Sintering equipment and control method
CN114058840A (en) * 2021-10-20 2022-02-18 包头钢铁(集团)有限责任公司 Method for improving quality of sinter by using combustible gas
CN115218670B (en) * 2021-11-22 2024-06-07 中冶长天国际工程有限责任公司 Method for assisting sintering by gas and steam intermittent injection
CN115218669B (en) * 2021-11-22 2024-06-11 中冶长天国际工程有限责任公司 Device and method for assisting sintering by intermittent gas suction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627126B1 (en) * 1967-05-17 1971-08-06
JPS4818102B1 (en) 1968-11-12 1973-06-04
JPS5518585A (en) 1978-07-27 1980-02-08 Sumitomo Metal Ind Ltd Manufacture of sintered ore
JPH05311257A (en) 1992-05-11 1993-11-22 Nippon Steel Corp Production of sintered ore
KR100515042B1 (en) * 2000-08-19 2005-09-15 주식회사 포스코 Waste gas recirculation type iron ore sintering apparatus and the method by using LNG
KR101074893B1 (en) * 2005-10-31 2011-10-19 제이에프이 스틸 가부시키가이샤 Process for producing sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI470086B (en) * 2012-07-18 2015-01-21 Jfe Steel Corp Method of producing sintered ore

Also Published As

Publication number Publication date
WO2010064717A1 (en) 2010-06-10
JP4911163B2 (en) 2012-04-04
AU2009323269A1 (en) 2011-07-07
BRPI0923299A8 (en) 2016-09-13
KR101353113B1 (en) 2014-01-17
EP2365101B1 (en) 2018-10-03
BRPI0923299B1 (en) 2017-10-31
TWI460278B (en) 2014-11-11
AU2009323269B2 (en) 2013-10-31
BRPI0923299A2 (en) 2016-01-05
EP2365101A1 (en) 2011-09-14
KR20110084321A (en) 2011-07-21
CN102232120A (en) 2011-11-02
TR201816067T4 (en) 2018-11-21
EP2365101A4 (en) 2016-04-06
JP2010126802A (en) 2010-06-10
CN102232120B (en) 2013-08-07

Similar Documents

Publication Publication Date Title
TW201033373A (en) Process for producing sintered ore
TWI409339B (en) Sintering method and sintering machine
TWI449795B (en) Method for producing sintered ore
JP2008095170A (en) Method for producing sintered ore and sintering machine therefor
JP2010132946A (en) Sintering machine
JP2018003153A (en) Production method of sinter
JP2015157980A (en) Production method of sintered ore
JP5561443B2 (en) Method for producing sintered ore
JP2008291358A (en) Method for producing sintered ore and sintering machine therefor
JP5682099B2 (en) Method for producing sintered ore
JP6213734B2 (en) Method for producing sintered ore
JP5888482B2 (en) Method for producing sintered ore
JP5428196B2 (en) Method for producing sintered ore and sintering machine
JP2010106341A (en) Method for manufacturing sintered ore
JP6037145B2 (en) Method for producing sintered ore
JP2020139173A (en) Method for producing sintered ore
JP5439982B2 (en) Method for producing sintered ore
JP7227053B2 (en) Method for producing sintered ore
JP5428194B2 (en) Sintering machine
JP2009209408A (en) Method for producing sintered ore