JP5888482B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5888482B2
JP5888482B2 JP2011054513A JP2011054513A JP5888482B2 JP 5888482 B2 JP5888482 B2 JP 5888482B2 JP 2011054513 A JP2011054513 A JP 2011054513A JP 2011054513 A JP2011054513 A JP 2011054513A JP 5888482 B2 JP5888482 B2 JP 5888482B2
Authority
JP
Japan
Prior art keywords
charging layer
sintering
gaseous fuel
high temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011054513A
Other languages
Japanese (ja)
Other versions
JP2012188714A (en
Inventor
友司 岩見
友司 岩見
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011054513A priority Critical patent/JP5888482B2/en
Publication of JP2012188714A publication Critical patent/JP2012188714A/en
Application granted granted Critical
Publication of JP5888482B2 publication Critical patent/JP5888482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、下方吸引式のドワイトロイド焼結機を用いて、高強度で被還元性に優れる高品質の高炉原料用焼結鉱を製造する方法に関するものである。   The present invention relates to a method for producing a high-quality sintered ore for a blast furnace raw material having a high strength and excellent reducibility using a downward suction type dweroid sinter.

高炉製銑法の主原料である焼結鉱は、一般に、図1に示すような工程を経て製造される。焼結鉱の原料は、鉄鉱石粉や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などであり、これらの原料は、ホッパー1・・・の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2および3等によって適量の水が加えられ、混合、造粒されて、平均径が3〜6mmの擬似粒子である焼結原料とされる。この焼結原料は、その後、焼結機上に配設されているサージホッパー4、5からドラムフィーダー6と切り出しシュート7を介して、無端移動式の焼結機パレット8上に400〜800mmの厚さで装入され、焼結ベッドともいわれる装入層9を形成する。その後、装入層9の上方に設置された点火炉10で装入層表層の炭材に点火するとともに、パレット8の直下に配設されたウインドボックス11を介して装入層上方の空気を下方に吸引することにより、装入層内の炭材を順次燃焼させ、このときに発生する燃焼熱で前記焼結原料を溶融して焼結ケーキを得る。このようにして得た焼結ケーキは、その後、破砕、整粒され、約5mm以上の塊成物が、成品焼結鉱として回収され、高炉に供給される。   Sinter ore, which is the main raw material of the blast furnace ironmaking method, is generally manufactured through a process as shown in FIG. The raw materials for sintered ore are iron ore powder, sintered ore sieving powder, recovered powder generated in steelworks, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, coke powder and anthracite Yes, these raw materials are cut out from each of the hoppers 1. The cut out raw material is added with an appropriate amount of water by the drum mixers 2 and 3 and the like, mixed and granulated to obtain a sintered raw material which is pseudo particles having an average diameter of 3 to 6 mm. This sintered raw material is then transferred to 400 to 800 mm on an endless moving type sintering machine pallet 8 from the surge hoppers 4 and 5 arranged on the sintering machine through the drum feeder 6 and the cutting chute 7. The charge layer 9 is charged with a thickness and is also referred to as a sintered bed. Thereafter, the carbon material on the surface of the charging layer is ignited by an ignition furnace 10 installed above the charging layer 9, and the air above the charging layer is passed through a wind box 11 disposed immediately below the pallet 8. By sucking downward, the carbonaceous material in the charging layer is sequentially burned, and the sintered raw material is melted by the combustion heat generated at this time to obtain a sintered cake. The sintered cake thus obtained is then crushed and sized, and an agglomerate of about 5 mm or more is recovered as a product sintered ore and supplied to a blast furnace.

上記製造プロセスにおいて、点火炉10によって点火された装入層内の炭材は、その後、装入層内を上層から下層に向かって吸引される空気によって燃焼を続け、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。この燃焼帯の溶融部分は、上記吸引される空気の流れを阻害するため、焼結時間が延長して生産性が低下する要因となる。また、この燃焼帯は、パレット8が下流側に移動するのに伴って次第に装入層の上層から下層に移行し、燃焼帯が通過した後には、焼結反応が完了した焼結ケーキ層(以降、単に「焼結層」ともいう。)が生成される。また、燃焼帯が上層から下層に移行するのにともない、焼結原料中に含まれる水分は、炭材の燃焼熱で気化して、まだ温度が上昇していない下層の焼結原料中に濃縮し、湿潤帯を形成する。この水分濃度がある程度以上になると、吸引ガスの流路となる焼結原料の粒子間の空隙が水分で埋まり、溶融帯と同様、通気抵抗を増大させる要因となる。   In the above manufacturing process, the carbonaceous material in the charging layer ignited by the ignition furnace 10 is continuously burned by the air sucked from the upper layer toward the lower layer in the charging layer, and has a width in the thickness direction. A combustion / melting zone (hereinafter also simply referred to as “combustion zone”) is formed. The melted portion of the combustion zone obstructs the flow of the air that is sucked in, so that the sintering time is extended and productivity is lowered. The combustion zone gradually moves from the upper layer to the lower layer as the pallet 8 moves downstream, and after the combustion zone has passed, the sintered cake layer ( Hereinafter, simply referred to as “sintered layer”) is generated. In addition, as the combustion zone moves from the upper layer to the lower layer, the moisture contained in the sintering material is evaporated by the combustion heat of the carbon material and concentrated in the lower sintering material that has not yet risen in temperature. To form a wet zone. If this moisture concentration exceeds a certain level, the voids between the sintered raw material particles that become the flow path of the suction gas are filled with moisture, which becomes a factor that increases the airflow resistance as in the melting zone.

ところで、焼結機の生産量(t/hr)は、一般に、生産率(t/hr・m)×焼結機面積(m)により決定される。即ち、焼結機の生産量は、焼結機の機幅や機長、原料装入層の厚さ、焼結原料の嵩密度、焼結(燃焼)時間、歩留りなどにより変化する。したがって、焼結鉱の生産量を増加するには、装入層の通気性(圧損)を改善して焼結時間を短縮する、あるいは、破砕前の焼結ケーキの冷間強度を高めて歩留りを向上することなどが有効であると考えられている。 By the way, the production amount (t / hr) of the sintering machine is generally determined by the production rate (t / hr · m 2 ) × sintering machine area (m 2 ). That is, the production amount of the sintering machine varies depending on the width and length of the sintering machine, the thickness of the raw material charging layer, the bulk density of the sintering raw material, the sintering (combustion) time, the yield, and the like. Therefore, to increase the production of sintered ore, the permeability (pressure loss) of the charge layer is improved to shorten the sintering time, or the yield is increased by increasing the cold strength of the sintered cake before crushing. It is considered effective to improve the above.

図2は、焼結鉱の生産性が高い時と低い時、即ち、焼結機のパレット移動速度が速い時と遅い時の装入層内のある点における温度と時間の推移を示したものである。焼結原料の粒子が溶融し始める1200℃以上の温度に保持される時間は、生産性が低い場合はT、生産性が高い場合はTで表されている。生産性が高い時はパレットの移動速度が速いため、高温域保持時間Tが、生産性が低い時のTと比べて短くなる。しかし、1200℃以上の高温での保持時間が短くなると焼成不足となり、焼結鉱の冷間強度が低下し、歩留りが低下してしまう。したがって、高強度の焼結鉱を、短時間でかつ高歩留りで、生産性よく製造するためには、何らかの手段を講じて、1200℃以上の高温で保持される時間を延長し、焼結鉱の冷間強度を高めてやる必要がある。なお、焼結鉱の冷間強度を表す指標としては、一般に、SI(シャッターインデックス)、TI(タンブラーインデックス)が用いられている。 Fig. 2 shows the change in temperature and time at a certain point in the charging layer when the sinter productivity is high and low, that is, when the pallet moving speed of the sintering machine is fast and slow. It is. The time for which the sintering raw material particles start to melt is maintained at a temperature of 1200 ° C. or higher is represented by T 1 when the productivity is low and T 2 when the productivity is high. Because at high productivity faster moving speed of the pallet, the high temperature zone holding time T 2, is shorter than the T 1 of the at low productivity. However, if the holding time at a high temperature of 1200 ° C. or more is shortened, the firing becomes insufficient, the cold strength of the sintered ore is lowered, and the yield is lowered. Therefore, in order to produce a high-strength sintered ore in a short time with a high yield and high productivity, some measures are taken to extend the time for which the high-temperature sintered ore is held at a high temperature of 1200 ° C. or higher. It is necessary to increase the cold strength. In general, SI (shutter index) and TI (tumbler index) are used as indices representing the cold strength of sintered ore.

図3は、点火炉で点火された装入層表層の炭材が、吸引される空気によって燃焼を続けて燃焼帯を形成し、これが装入層の上層から下層に順次移動し、焼結ケーキが形成されていく過程を模式的に示した図である。また、図4(a)は、上記燃焼帯が、図3に示した太枠内に示した装入層の上層部、中層部および下層部の各層内に存在しているときの温度分布を模式的に示したものである。焼結鉱の強度は、1200℃以上の温度に保持される温度と時間の積に影響され、その値が大きいほど焼結鉱の強度は高くなる。そのため、装入層内の中層部および下層部は、装入層上層部の炭材の燃焼熱が吸引される空気によって運ばれて予熱されるため、高温度に長時間にわたって保持されるのに対して、装入層上層部は、予熱されない分、燃焼熱が不足し、焼結に必要な燃焼溶融反応(焼結反応)が不十分となりやすい。その結果、装入層の幅方向断面内における焼結鉱の歩留り分布は、図4(b)に示したように、装入層上層部ほど歩留りが低くなる。また、パレット両幅端部も、パレット側壁からの放熱や、通過する空気量が多いことによる過冷却によって、焼結に必要な高温域での保持時間が十分に確保できず、やはり歩留りが低くなる。   FIG. 3 shows that the charcoal material in the surface of the charging layer ignited in the ignition furnace continues to burn by the sucked air to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charging layer. It is the figure which showed typically the process in which is formed. FIG. 4A shows the temperature distribution when the combustion zone exists in each of the upper layer portion, middle layer portion and lower layer portion of the charging layer shown in the thick frame shown in FIG. It is shown schematically. The strength of the sintered ore is influenced by the product of the temperature and time maintained at a temperature of 1200 ° C. or higher, and the greater the value, the higher the strength of the sintered ore. Therefore, the middle layer and lower layer in the charging layer are preheated by being transported by the air sucked by the combustion heat of the carbon material in the upper charging layer, so that it can be held at a high temperature for a long time. On the other hand, the upper portion of the charge layer is not preheated, and therefore the combustion heat is insufficient, and the combustion melting reaction (sintering reaction) necessary for sintering tends to be insufficient. As a result, the yield distribution of the sintered ore in the cross section in the width direction of the charging layer becomes lower in the upper layer portion of the charging layer as shown in FIG. In addition, the pallet width ends also have a low yield due to heat dissipation from the pallet side walls and supercooling due to the large amount of air passing through, so that sufficient holding time in the high temperature range necessary for sintering cannot be secured. Become.

これらの問題に対して、従来は、焼結原料中に添加している炭材(粉コークス)量を増量することが行われてきた。しかし、コークスの添加量を増やすことによって、図5に示したように、焼結層内の温度を高め、1200℃以上に保持される時間を延長することができるものの、それと同時に、焼結時の最高到達温度が1400℃を超えるようになり、以下に説明する理由によって、焼結鉱の被還元性や冷間強度の低下を招くことになる。   In order to cope with these problems, conventionally, the amount of carbonaceous material (powder coke) added to the sintered raw material has been increased. However, by increasing the amount of coke added, as shown in FIG. 5, the temperature in the sintered layer can be increased and the time maintained at 1200 ° C. or higher can be extended. The maximum reached temperature exceeds 1400 ° C., and for the reasons explained below, the reducibility of the sintered ore and the cold strength are reduced.

非特許文献1には、焼結過程で焼結鉱中に生成する各種鉱物の引張強度(冷間強度)と被還元性について、表1のように示されている。そして、焼結過程では、図6に示したように、1200℃で融液が生成し始め、焼結鉱の構成鉱物の中で最も高強度で、被還元性も比較的高いカルシウムフェライトが生成する。これが、焼結温度として1200℃以上を必要とする理由である。しかし、さらに昇温が進んで1400℃を超え、正確には1380℃を超えるようになると、カルシウムフェライトは、冷間強度と被還元性が最も低い非晶質珪酸塩(カルシウムシリケート)と、還元粉化しやすい骸晶状二次ヘマタイトとに分解し始める。また、焼結鉱の還元粉化の起点となる二次ヘマタイトは、鉱物合成試験の結果から、図7の状態図に示したように、Mag.ss+Liq.域まで昇温し、冷却したときに析出するので、状態図上に示した(1)の経路でなく、(2)の経路を介して焼結鉱を製造することが、還元粉化を抑制する上で重要であるとしている。   Non-Patent Document 1 shows the tensile strength (cold strength) and reducibility of various minerals produced in the sintered ore during the sintering process, as shown in Table 1. In the sintering process, as shown in FIG. 6, a melt starts to be generated at 1200 ° C., and calcium ferrite having the highest strength among the constituent minerals of sintered ore and relatively high reducibility is generated. To do. This is the reason why a sintering temperature of 1200 ° C. or higher is required. However, when the temperature rises further and exceeds 1400 ° C., more precisely, 1380 ° C., calcium ferrite is reduced to amorphous silicate (calcium silicate) having the lowest cold strength and reducibility, and reduced. It begins to decompose into skeletal secondary hematite that is easy to powder. Further, secondary hematite, which is the starting point for reducing powderization of sintered ore, was obtained from Mag. As shown in the phase diagram of FIG. ss + Liq. Since it precipitates when it is heated up to the zone and cooled, it is possible to suppress the reduction powdering by producing sintered ore through the path (2) instead of the path (1) shown on the phase diagram. It is important to do.

Figure 0005888482
Figure 0005888482

すなわち、非特許文献1には、焼結鉱の品質を確保する上で、燃焼時の最高到達温度や高温域保持時間などの制御が非常に重要な管理項目であり、これらの制御如何によって焼結鉱の品質がほぼ決定されることが開示されている。したがって、還元粉化性(RDI)に優れかつ高強度で被還元性に優れる焼結鉱を得るためには、1200℃以上の温度で生成したカルシウムフェライトを、カルシウムシリケートと二次ヘマタイトとに分解させないことが重要であり、そのためには、焼結時における装入層内の最高到達温度を1400℃超え、好ましくは1380℃超えとすることなく、装入層内の温度を1200℃(カルシウムフェライトの固相線温度)以上に長時間保持することが必要となる。以降、本発明では、上記1200℃以上1400℃以下の温度域に保持される時間を、「高温域保持時間」と称することとする。   That is, in Non-Patent Document 1, in order to ensure the quality of sintered ore, the control of the maximum temperature reached during combustion and the holding time in the high temperature range are very important management items. It is disclosed that the quality of the ore is almost determined. Therefore, in order to obtain a sintered ore that is excellent in reduced powder (RDI), high strength, and excellent reducibility, the calcium ferrite produced at a temperature of 1200 ° C. or higher is decomposed into calcium silicate and secondary hematite. Therefore, it is important that the temperature in the charging layer is 1200 ° C. (calcium ferrite) without exceeding the maximum reached temperature in the charging layer during sintering of over 1400 ° C., preferably over 1380 ° C. It is necessary to keep the temperature above (solidus temperature) for a long time. Hereinafter, in the present invention, the time maintained in the temperature range of 1200 ° C. to 1400 ° C. will be referred to as “high temperature range retention time”.

なお、従来から、装入層上層部を長時間にわたって高温に保持することを目的とした技術が幾つか提案されている。例えば、特許文献1には、装入層に点火後、装入層上に気体燃料を噴射する技術が、特許文献2には、装入層に点火後、装入層に吸引される空気中に可燃性ガスを添加する技術が、また、特許文献3には、焼結原料の装入層内を高温にするため、装入層の上にフードを配設し、そのフードから空気やコークス炉ガスとの混合ガスを点火炉直後の位置で吹き込む技術が、さらに、特許文献4には、低融点溶剤と炭材や可燃性ガスを同時に点火炉直後の位置で吹き込む技術が提案されている。   Conventionally, several techniques have been proposed for the purpose of maintaining the upper portion of the charging layer at a high temperature for a long time. For example, Patent Document 1 discloses a technique for injecting gaseous fuel onto a charging layer after the charging layer is ignited. Patent Document 2 discloses a technique in which air is sucked into the charging layer after the charging layer is ignited. In addition, in Patent Document 3, a hood is disposed on the charging layer so that the inside of the charging layer of the sintering raw material is heated, and air or coke is discharged from the hood. A technique for blowing a mixed gas with a furnace gas at a position immediately after the ignition furnace, and Patent Document 4 propose a technique for simultaneously blowing a low-melting-point solvent and a carbonaceous material or a combustible gas at a position immediately after the ignition furnace. .

しかし、これらの技術は、高濃度の気体燃料を使用し、しかも燃料ガスの吹き込みに際して炭材量を削減していないため、装入層内の焼結時の最高到達温度が操業管理上の上限温度である1400℃を超える高温となり、焼結過程で生成したカルシウムフェライトが分解して、被還元性や冷間強度の低い焼結鉱が生成して歩留改善効果が得られなかったり、気体燃料の燃焼による温度上昇と熱膨張によって通気性が悪化し、生産性が低下したりし、さらには、気体燃料の使用によって焼結ベッド(装入層)上部空間で火災を起こす危険性があったりするため、いずれも実用化には至っていない。   However, since these technologies use high-concentration gaseous fuel and do not reduce the amount of carbonaceous material when fuel gas is injected, the maximum temperature reached during sintering in the charged layer is the upper limit for operation management. When the temperature exceeds 1400 ° C, the calcium ferrite produced during the sintering process decomposes, producing a sintered ore with low reducibility and low cold strength, and the yield improvement effect cannot be obtained. Increased temperature and thermal expansion due to fuel combustion may deteriorate air permeability, reduce productivity, and use of gaseous fuel may cause a fire in the upper space of the sintering bed (charging layer). Therefore, none of them has been put into practical use.

そこで、発明者らは、上記問題点を解決する技術として、焼結原料中の炭材添加量を削減した上で、焼結機の点火炉の下流において、燃焼下限濃度以下に希釈した各種気体燃料を、パレット上方から装入層内に導入し、装入層内で燃焼させることにより、装入層内の最高到達温度および高温域保持時間の両方を適正範囲に制御する技術を特許文献5〜7等に提案している。   Therefore, as a technique for solving the above problems, the inventors reduced various amounts of gas diluted in the sintering furnace downstream of the ignition furnace after reducing the amount of carbonaceous material added in the sintering raw material. Patent Document 5 discloses a technique for controlling both the maximum temperature reached in the charging layer and the high temperature region holding time to an appropriate range by introducing fuel into the charging layer from above the pallet and combusting in the charging layer. It is proposed to ~ 7.

特開昭48−018102号公報Japanese Patent Laid-Open No. 48-018102 特公昭46−027126号公報Japanese Examined Patent Publication No. 46-027126 特開昭55−018585号公報Japanese Patent Application Laid-Open No. 55-018585 特開平05−311257号公報JP 05-311257 A WO2007−052776号公報WO2007-052776 特開2010−047801号公報JP 2010-047801 A 特開2008−291354号公報JP 2008-291354 A

「鉱物工学」;今井秀喜、武内寿久禰,藤木良規編、(1976)、p.175、朝倉書店“Mineral Engineering”; Hideki Imai, Toshihisa Takeuchi, Yoshiki Fujiki, (1976), p. 175, Asakura Shoten

下方吸引式焼結機を用いた焼結鉱の製造方法に、上記特許文献5〜7の技術を適用し、焼結原料中への炭材添加量を削減した上で、燃焼下限濃度以下に希釈した気体燃料を装入層内に導入し、気体燃料を装入層内で燃焼させた場合には、図8に示したように、上記気体燃料は、炭材が燃焼した後の装入層内(焼結層内)で燃焼するので、燃焼・溶融帯の最高到達温度を1400℃超えとすることなく、燃焼・溶融帯の幅を厚さ方向に拡大させることができ、効果的に高温域保持時間の延長を図ることができる。
しかしながら、上記特許文献5〜7の従来技術においては、高強度かつ被還元性に優れる、高品質の焼結鉱を得るためには、1200℃以上1400℃以下の高温域にどの程度の時間保持する必要があるのか、また、そのためには希釈した気体燃料をどの領域に供給すればよいのかが十分に明らかにされてはいなかった。
Applying the techniques of Patent Documents 5 to 7 to a method for producing sintered ore using a downward suction type sintering machine, reducing the amount of carbonaceous material added to the sintered raw material, and lowering the concentration below the lower limit of combustion When the diluted gaseous fuel is introduced into the charging layer and the gaseous fuel is burned in the charging layer, as shown in FIG. 8, the gaseous fuel is charged after the charcoal is burned. Because it burns in the layer (in the sintered layer), the width of the combustion / melting zone can be expanded in the thickness direction without making the maximum temperature of the combustion / melting zone exceed 1400 ° C, effectively It is possible to extend the high temperature range holding time.
However, in the prior arts of the above Patent Documents 5 to 7, in order to obtain a high-quality sintered ore having high strength and excellent reducibility, how long it is held in a high temperature range of 1200 ° C. or higher and 1400 ° C. or lower. It has not been fully clarified whether it is necessary to do this, and to which area the diluted gaseous fuel should be supplied.

そこで、本発明の目的は、高強度かつ被還元性に優れる、高品質の焼結鉱を得るために、1200℃以上1400℃以下の高温域に保持すべき保持時間(高温域保持時間)を決定するとともに、その高温域保持時間を装入層内の全ての位置において実現することができる焼結鉱の製造方法を提案することにある。   Accordingly, an object of the present invention is to provide a holding time (high temperature holding time) to be held in a high temperature range of 1200 ° C. or higher and 1400 ° C. or lower in order to obtain a high-quality sintered ore having high strength and excellent reducibility. The purpose of the present invention is to propose a method for producing a sintered ore that can determine the high temperature region holding time at all positions in the charging layer.

発明者らは、上記課題を解決するべく鋭意検討を重ねた。その結果、高強度かつ被還元性に優れる、高品質の焼結鉱を得るためには、焼結時の装入層内の最高到達温度を1200℃以上1400℃以下の温度域に150秒以上保持する、即ち、高温域保持時間を150秒とする必要があること、また、そのためには、装入層内各位置の焼結時の温度変化を実測し、炭材の燃焼熱のみでは高温域保持時間が150秒未満となる領域に、希釈気体燃料を供給してやることが有効であることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, in order to obtain high-quality sintered ore with high strength and excellent reducibility, the maximum temperature reached in the charging layer during sintering is set to a temperature range of 1200 ° C. or higher and 1400 ° C. or lower for 150 seconds or longer. That is, it is necessary to set the high temperature region holding time to 150 seconds, and for that purpose, the temperature change during sintering at each position in the charging layer is measured, and only the combustion heat of the carbon material is high. The inventors have found that it is effective to supply diluted gas fuel to a region where the region holding time is less than 150 seconds, and have developed the present invention.

すなわち、本発明は、循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火すると共に、燃焼下限濃度以下に希釈した気体燃料を含む装入層上方の空気をパレット下に配設されたウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する方法において、点火炉出側〜排鉱部までの間のパレットを進行方向および幅方向に複数に区分し、上記パレット進行方向および幅方向の区分単位で気体燃料の供給をON/OFFすることによって、炭材のみの燃焼熱で焼結するときに1200℃以上1400℃以下に保持される高温域保持時間が150秒未満となる区分における上記高温域保持時間を150秒以上300秒以下とすることを特徴とする焼結鉱の製造方法である。
That is, the present invention is to charge a sintered raw material containing fine ore and carbonaceous material on a circulating pallet to form a charging layer, ignite the carbonaceous material on the surface of the charging layer, and lower combustion lower concentration The air above the charging layer containing the diluted gaseous fuel is sucked in the wind box arranged under the pallet and introduced into the charging layer, and the gaseous fuel and the carbonaceous material are burned in the charging layer. In the method of manufacturing sintered ore, the pallet from the ignition furnace exit side to the ore discharge part is divided into a plurality of sections in the traveling direction and the width direction, and the gaseous fuel is supplied in the unit of the pallet traveling direction and the width direction. ON / OFF of the high temperature region holding time in the section in which the high temperature region holding time maintained at 1200 ° C. or higher and 1400 ° C. or lower when sintering with the combustion heat of only the carbonaceous material is less than 150 seconds is 150 seconds. and 300 seconds or less or more A method for producing sintered ore according to claim and.

また、本発明の焼結鉱の製造方法における上記希釈した気体燃料を含む空気は、予め燃焼下限濃度以下に希釈した気体燃料を装入層上方の空気中に混合したもの、あるいは、気体燃料を装入層上の空気中に高速で噴射して混合し、燃焼下限濃度以下に希釈したもの、のいずれかであることを特徴とする。   The air containing the diluted gaseous fuel in the method for producing sintered ore according to the present invention is a mixture of gaseous fuel previously diluted below the lower combustion limit concentration in the air above the charging layer, or gaseous fuel. It is characterized in that it is either one injected at high speed into the air on the charging layer, mixed and diluted to a concentration below the lower limit of combustion.

本発明によれば、装入層内の全ての領域において、焼結時における最高到達温度を1200℃以上1400℃以下の高温域に150秒以上保持することが可能となるので、高強度かつ被還元性に優れる、高品質の焼結鉱を生産性よく製造することが可能となる。また、本発明によれば、焼結原料中に添加する炭材量を削減することができるので、二酸化炭素の排出量の削減にも寄与することができる。   According to the present invention, in all regions in the charging layer, it is possible to maintain the maximum temperature during sintering in a high temperature range of 1200 ° C. or higher and 1400 ° C. or lower for 150 seconds or more. It becomes possible to produce a high-quality sintered ore with excellent productivity and high productivity. In addition, according to the present invention, the amount of carbonaceous material added to the sintered raw material can be reduced, which can contribute to the reduction of carbon dioxide emission.

焼結プロセスを説明する概要図である。It is a schematic diagram explaining a sintering process. 高生産時と低生産時の装入層内の温度分布を説明するグラフである。It is a graph explaining the temperature distribution in the charging layer at the time of high production and low production. 焼結の進行に伴う装入層内の変化を説明する模式図である。It is a schematic diagram explaining the change in the charging layer accompanying progress of sintering. 燃焼帯が装入層の上層部、中層部および下層部の各位置に存在しているときの温度分布と、装入層の幅方向断面内における焼結鉱の歩留り分布を説明する図である。It is a figure explaining the temperature distribution when a combustion zone exists in each position of the upper layer part of the charging layer, the middle layer part, and the lower layer part, and the yield distribution of the sintered ore in the width direction cross section of the charging layer. . 炭材量の変化(増量)による装入層内の温度変化を説明する図である。It is a figure explaining the temperature change in the charging layer by the change (increase) of the amount of carbon materials. 焼結反応について説明する図であるIt is a figure explaining a sintering reaction. 骸晶状二次ヘマタイトが生成する過程を説明する状態図である。It is a state figure explaining the process in which skeletal secondary hematite is produced. 希釈気体燃料供給が高温域保持時間に及ぼす影響を説明する模式図である。It is a schematic diagram explaining the influence which dilution gas fuel supply has on high temperature range holding time. 実験に用いた横型電気炉を説明する模式図である。It is a schematic diagram explaining the horizontal electric furnace used for experiment. 高温域保持時間がカルシウムフェライトの生成量および冷間強度に及ぼす影響を示すグラフである。It is a graph which shows the influence which high temperature range holding time has on the production amount and cold strength of calcium ferrite. 装入層内の高温域保持時間を測定する方法を説明する図である。It is a figure explaining the method to measure the high temperature range holding time in a charging layer. 実機焼結機の装入層厚さ方向における高温域保持時間の分布の測定例を示すグラフである。It is a graph which shows the example of a measurement of distribution of the high temperature range retention time in the charge layer thickness direction of a real machine sintering machine.

発明者らは、まず、高強度かつ被還元性に優れる、高品質の焼結鉱を生産性よく製造するために必要な、1200℃以上1400℃以下の温度に保持すべき時間(高温域保持時間)を確認するため、電気炉を用いた焼結実験を行った。
この実験では、ペレタイザーを用いて、粒径が0.5mm以上の鉄鉱石を核粒子とし、粒径0.5mm未満の鉄鉱石および副原料である炭酸カルシウム、二酸化ケイ素を原料として添加しながら造粒し、約2〜5mmφの焼結原料とした。次いで、上記焼結原料を、アルミナ製のボートに乗せ、図9に示した横型電気炉の均熱帯中央付近に装入し、1200〜1400℃の温度範囲に保持時間を0〜350秒の範囲で変化させて焼結した。なお、上記実験では、焼結実験中、実機焼結機の排ガスと同組成の雰囲気ガスを流して、実焼結条件を模擬した。上記のようにして得た焼結鉱は、その後、急冷して回収し、冷間強度と生成したカルシウムフェライト量を測定した。焼結鉱の強度は、上記工程で得た焼結鉱を整粒して所定の粒度とした焼結鉱を、圧潰強度試験機を用いて圧潰処理し、焼結鉱が圧潰するときの圧潰荷重を求めた。また、カルシウムフェライト量は、粉末X線回折法を用いて測定した。
The inventors first have to maintain a high temperature range at a temperature of 1200 ° C. or higher and 1400 ° C. or lower, which is necessary for producing a high-quality sintered ore having high strength and excellent reducibility with high productivity. Time), a sintering experiment using an electric furnace was performed.
In this experiment, using a pelletizer, iron ore with a particle size of 0.5 mm or more was used as the core particle, and iron ore with a particle size of less than 0.5 mm and auxiliary materials such as calcium carbonate and silicon dioxide were added as raw materials. Granulated and used as a sintering raw material of about 2 to 5 mmφ. Next, the sintered raw material is placed on an alumina boat and charged in the vicinity of the soaking zone in the horizontal electric furnace shown in FIG. 9, and the holding time is in the temperature range of 1200 to 1400 ° C. in the range of 0 to 350 seconds. Sintering was carried out by changing. In the above experiment, the actual sintering conditions were simulated by flowing an atmospheric gas having the same composition as the exhaust gas of the actual sintering machine during the sintering experiment. The sintered ore obtained as described above was then rapidly cooled and recovered, and the cold strength and the amount of calcium ferrite produced were measured. The strength of the sintered ore is determined by crushing the sintered ore obtained in the above process to a predetermined particle size by using a crushing strength tester and crushing the sintered ore. The load was determined. The amount of calcium ferrite was measured using a powder X-ray diffraction method.

図10は、上記実験の結果を示したものであり、この図から、1200℃以上1400℃以下の温度に保持する時間(高温域保持時間)が長くなればなるほど、焼結鉱中に生成するカルシウムフェライト量が多くなり、それに伴って焼結鉱の強度も上昇すること、そして、高温域保持時間を150秒以上確保すると、カルシウムフェライトの生成量も大きく増加し、同時に圧潰強度試験での圧潰強度も大きく上昇して、本例では焼結鉱の圧潰強度が4.60kN以上となり、高炉用原料として十分な強度が得られるようになること、しかし、高温域保持時間が300秒を超えると、焼結鉱中のカルシウムフェライト量が理論値(45.7mass%)に近づいて飽和するため、それ以上高温域保持時間を延長しても、焼結鉱の冷間強度の向上は望めなくなり、むしろ、燃料コストの面からは好ましくないことがわかった。   FIG. 10 shows the results of the above-described experiment. From this figure, the longer the time of holding at a temperature of 1200 ° C. or higher and 1400 ° C. or lower (high temperature region holding time) is, the more it is produced in the sintered ore. If the amount of calcium ferrite increases, the strength of the sintered ore increases accordingly, and if the high temperature range holding time is secured for 150 seconds or more, the amount of calcium ferrite produced also increases greatly, and at the same time the crushing strength in the crushing strength test The strength also greatly increases, and in this example, the crushing strength of the sintered ore becomes 4.60 kN or more, and sufficient strength can be obtained as a raw material for a blast furnace. However, when the high temperature region holding time exceeds 300 seconds. Since the amount of calcium ferrite in the sintered ore approaches the theoretical value (45.7 mass%) and saturates, the cold strength of the sintered ore is improved even if the holding time of the high temperature region is further extended. Expected no longer, but rather, it was found that undesirable from the viewpoint of fuel cost.

上記のように、高品質の焼結鉱を得るためには、1200℃以上1400℃以下に保持する高温域保持時間を150秒以上とする必要があること、したがって、下方吸引式焼結機を用いた焼結鉱の製造方法においては、希釈気体燃料を、炭材の燃焼熱のみでは高温域保持時間を150秒以上確保することができない装入層内の領域に供給する必要があることが明らかとなった。ただし、高温域保持時間は、300秒を超えても、気体燃料の添加効果は飽和し、むしろコスト的に不利となるので、上限は300秒程度とするのが好ましい。   As described above, in order to obtain a high-quality sintered ore, it is necessary to set the high temperature region holding time at 1200 ° C. or higher and 1400 ° C. or lower to 150 seconds or longer. In the manufacturing method of the sintered ore used, it is necessary to supply the diluted gas fuel to the region in the charging layer where the high temperature region holding time cannot be secured for 150 seconds or more only with the combustion heat of the carbonaceous material. It became clear. However, even if the high temperature region holding time exceeds 300 seconds, the effect of adding gaseous fuel is saturated and rather disadvantageous in terms of cost. Therefore, the upper limit is preferably about 300 seconds.

なお、炭材の燃焼熱のみでは高温域保持時間を150秒以上確保することができない装入層の領域は、実機焼結機の装入層内に熱電対を挿入してその位置における焼結中の温度の経時変化を実測し、それぞれの位置における1200℃以上1400℃以下に保持される高温域保持時間を求めることで特定することができる。
例えば、図4(b)に示したパレット幅方向中央上層部の高温域保持時間が150秒未満となる装入層の厚さ方向の領域は、パレット幅方向中央部において、装入層表層から内部に熱電対を挿入して焼結時における温度変化を実測し、装入層厚さ方向各位置における高温域保持時間の分布を求め、その分布から求めることができる。
It should be noted that the region of the charging layer in which the holding time of the high temperature region cannot be secured for 150 seconds or more with only the combustion heat of the carbonaceous material is sintered at the position by inserting a thermocouple into the charging layer of the actual sintering machine. It can be specified by actually measuring a change with time in the temperature and obtaining a high temperature region holding time at which the temperature is maintained at 1200 ° C. or higher and 1400 ° C. or lower at each position.
For example, the region in the thickness direction of the charging layer in which the high temperature region holding time of the central upper layer portion in the pallet width direction shown in FIG. 4B is less than 150 seconds is from the charging layer surface layer in the central portion in the pallet width direction. A thermocouple is inserted into the inside, and a temperature change during sintering is measured, and a distribution of the high temperature region holding time at each position in the thickness direction of the charging layer is obtained and can be obtained from the distribution.

そして、その高温域保持時間が150秒未満である領域の高温域保持時間の延長を図るためには、その部分の焼結反応が進行している段階において希釈気体燃料を供給してやる必要がある。例えば、装入層の厚さ方向の上層部20%の領域で、高温域保持時間が150秒未満である場合には、その部分の焼結反応が進行している点火炉出側〜排鉱部までの間(以降、「有効機長」ともいう。)の上流側20%の範囲で希釈気体燃料を供給してやることが必要である。   In order to extend the high temperature region holding time in the region where the high temperature region holding time is less than 150 seconds, it is necessary to supply the diluted gas fuel at the stage where the sintering reaction is proceeding. For example, in the region of the upper layer portion 20% in the thickness direction of the charging layer, when the high temperature region holding time is less than 150 seconds, the ignition furnace exit side to the ore discharge where the sintering reaction of that portion is proceeding It is necessary to supply the diluted gas fuel within the range of 20% upstream of the part (hereinafter also referred to as “effective captain”).

なお、実機焼結機において、希釈気体燃料の供給範囲を、パレット進行方法で、%単位で変化させることは、設備的に現実的ではない。そこで、上記点火炉出側〜排鉱部までの焼結機の有効機長部分を、進行方向に複数に区分し、その区分単位で希釈気体燃料の供給ができるようにし、有効機長の全ての範囲で高温域保持時間が150秒以上となるよう、区分単位で希釈気体燃料の供給ON/OFFを行えるようにするのが好ましい。ただし、点火炉を出た直後の装入層表層部はまだ高温であり、気体燃料への着火が懸念されることから、点火炉出側から3m程度の間は、気体燃料の供給は避けるのが好ましい。   In the actual machine sintering machine, it is not realistic in terms of equipment to change the supply range of the diluted gas fuel by the pallet progression method in units of%. Therefore, the effective machine length part of the sintering machine from the ignition furnace exit side to the exhausting part is divided into a plurality of sections in the traveling direction so that the diluted gas fuel can be supplied in the divided units, and the entire range of the effective machine length Therefore, it is preferable that the diluted gas fuel supply can be turned on and off in units of sections so that the high temperature region holding time is 150 seconds or longer. However, since the surface layer of the charging layer immediately after leaving the ignition furnace is still hot and there is a concern about ignition of the gaseous fuel, supply of gaseous fuel should be avoided for about 3 m from the ignition furnace exit side. Is preferred.

また、図4(b)に示したパレット幅方向端部の歩留りの改善を図るには、上記と同様にして、パレット幅方向の各位置における装入層厚さ方向の高温域保持時間を求め、高温域保持時間が150秒未満となる装入層の厚さ方向の領域の幅方向分布を特定し、その部分の焼結反応が進行中している段階において気体燃料を供給してやればよい。
例えば、高温域保持時間が150秒未満となる領域が、パレット幅方向中央では、装入層の厚さ方向の上層部20%の領域であるのに対して、上層部幅方向両端部では、装入層の厚さ方向の上層部40%の領域である場合には、幅方向両端部の区分に、点火炉〜排鉱部までの有効機長の上流側40%の範囲で気体燃料を供給してやればよい。
Further, in order to improve the yield at the end portion in the pallet width direction shown in FIG. 4B, in the same manner as described above, the high temperature region holding time in the charging layer thickness direction at each position in the pallet width direction is obtained. The distribution in the width direction of the region in the thickness direction of the charging layer where the high temperature region holding time is less than 150 seconds is specified, and gaseous fuel may be supplied at the stage where the sintering reaction is in progress.
For example, the region where the high temperature region holding time is less than 150 seconds is the region of the upper layer portion 20% in the thickness direction of the charging layer in the center of the pallet width direction, while the upper layer portion width direction both ends, When the area is 40% of the upper layer part in the thickness direction of the charging layer, gas fuel is supplied to the section at both ends in the width direction in the range of 40% upstream of the effective machine length from the ignition furnace to the ore removal part. Just do it.

なお、実機焼結機において、希釈気体燃料の供給範囲をパレット幅方向で、%単位で変化させることは、やはり設備的に現実的ではない。そこで、上記点火炉出側〜排鉱部までの焼結機の有効機長を、進行方向に複数に区分した上で、さらにその区分を幅方向に区分し、その幅方向の区分単位で希釈気体燃料の供給ができるようにし、有効機長の全ての範囲で高温域保持時間が150秒以上となるよう、幅方向区分単位で希釈気体燃料の供給ON/OFFを行えるようにするのが好ましい。   In an actual sintering machine, it is still impractical for the facility to change the supply range of the diluted gas fuel in the pallet width direction in units of%. Therefore, after dividing the effective machine length of the sintering machine from the ignition furnace exit side to the exhausting section into a plurality of sections in the traveling direction, the sections are further divided in the width direction, and the diluted gas is divided into sections in the width direction. It is preferable to be able to supply the fuel, and to enable ON / OFF of the diluted gas fuel in the width direction division unit so that the high temperature region holding time is 150 seconds or more in the entire range of the effective length.

なお、上記希釈気体燃料は、その気体燃料の燃焼下限濃度以下の濃度であることが好ましい。希釈気体燃料の濃度が燃焼下限濃度以上であると、装入層上方で燃焼してしまい、気体燃料を供給する効果が失われてしまったり、爆発を起こしたりするおそれがある。また、希釈気体燃料が高濃度であると、低温度域で燃焼してしまうため、高温域保持時間の延長に有効に寄与し得ないおそれがあるからである。したがって、希釈気体燃料の濃度は、好ましくは大気中の常温における燃焼下限濃度の3/4(75%)以下、より好ましくは燃焼下限濃度の1/5(20%)以下、さらに好ましくは燃焼下限濃度の1/10(10%)以下である。ただし、希釈気体燃料の濃度が、燃焼下限濃度の1/100(1%)未満では、燃焼による発熱量が不足し、焼結鉱の強度向上と歩留りの改善効果が得られないため、下限は燃焼下限濃度の1%とする。これを、天然ガス(LNG)についてみると、LNGの室温における燃焼下限濃度は4.8vol%であるから、希釈気体燃料の濃度は0.05〜3.6vol%の範囲が好ましいことになる。   In addition, it is preferable that the said dilution gaseous fuel is the density | concentration below the combustion minimum density | concentration of the gaseous fuel. If the concentration of the diluted gas fuel is equal to or higher than the lower combustion limit concentration, combustion may occur above the charging layer, and the effect of supplying the gaseous fuel may be lost, or an explosion may occur. In addition, if the diluted gas fuel has a high concentration, it is burned in a low temperature range, so that it may not be able to effectively contribute to the extension of the high temperature range holding time. Accordingly, the concentration of the diluted gas fuel is preferably 3/4 (75%) or less of the lower limit of combustion at normal temperature in the atmosphere, more preferably 1/5 (20%) or less of the lower limit of combustion, and more preferably the lower limit of combustion. It is 1/10 (10%) or less of the concentration. However, if the concentration of the diluted gas fuel is less than 1/100 (1%) of the lower combustion limit concentration, the calorific value due to combustion is insufficient, and the effect of improving the strength and yield of sintered ore cannot be obtained. Set to 1% of the lower combustion limit concentration. Looking at this for natural gas (LNG), the lower limit concentration of LNG at room temperature is 4.8 vol%, so the concentration of diluted gas fuel is preferably in the range of 0.05 to 3.6 vol%.

なお、上記燃焼下限濃度以下に希釈した気体燃料を含む空気は、予め燃焼下限濃度以下に希釈した気体燃料を装入層上方の空気中に混合したもの、あるいは、高濃度のままの気体燃料を装入層上の空気中に高速で噴射して空気と混合させることによって、瞬時に燃焼下限濃度以下に希釈したものであってもよい。   Note that the air containing gaseous fuel diluted below the lower combustion limit concentration is a mixture of gaseous fuel previously diluted below the lower combustion limit concentration in the air above the charging layer, or high-concentration gaseous fuel. It may be one that is instantaneously diluted below the lower combustion limit concentration by being injected into the air on the charging layer at a high speed and mixed with air.

また、焼結原料中に添加する炭材量は、空気中に添加した気体燃料の発熱量に相当する量以上の炭材を削減することが好ましい。というのは、炭材量をそのままにして気体燃料を添加した場合には、トータルの発熱量が過大となって最高到達温度が適正温度範囲の上限値(1400℃)を超え、カルシウムフェライトの生成割合が減少し、カルシウムシリケートが増加する結果、低強度で還元性に劣る焼結鉱となってしまうからである。したがって、本発明においては、焼結原料中の炭材量は、空気中に添加する気体燃料の量(燃焼熱量)に応じて、焼結時の最高到達温度を1200〜1400℃の温度範囲、望ましくは1200〜1380℃の温度範囲となるよう調整する必要がある。   Further, it is preferable that the amount of carbon material added to the sintering raw material is reduced by an amount equal to or more than the amount corresponding to the calorific value of the gaseous fuel added to the air. The reason is that when gaseous fuel is added with the amount of carbon material as it is, the total calorific value becomes excessive, the maximum temperature reached exceeds the upper limit (1400 ° C) of the appropriate temperature range, and calcium ferrite is generated. This is because the ratio decreases and the calcium silicate increases, resulting in a sintered ore having low strength and poor reducibility. Therefore, in the present invention, the amount of carbonaceous material in the sintering raw material is a temperature range of 1200 to 1400 ° C., which is the highest temperature during sintering, depending on the amount of gaseous fuel added to the air (combustion heat). Desirably, it is necessary to adjust so that it may become a temperature range of 1200-1380 degreeC.

パレット幅が5mで、有効機長(点火炉出側〜排鉱部のパレット長さ)が82mの実機焼結機に、炭材として粉コークスを添加した焼結原料を層厚730mmで装入して装入層を形成し、図11に示したように、パレット幅方向中央部の装入層表層から50mm、210mm、370mm、530mmおよび700mmの深さの位置にアルミナ保護管に入れた熱電対を挿入し、焼結時の厚さ方向各位置における温度の経時変化を測定し、各位置における高温域保持時間を求めた。なお、上記焼結時における最高到達温度は、全ての位置において1400℃以下の温度に保持されていた。   The raw material sintering machine with a pallet width of 5m and an effective machine length (ignition furnace exit side to pallet length from the ore discharge section) of 82m was charged with a sintering material with powdered coke added as a charcoal at a layer thickness of 730mm. As shown in FIG. 11, the thermocouple was placed in an alumina protective tube at a depth of 50 mm, 210 mm, 370 mm, 530 mm, and 700 mm from the surface of the charging layer at the center in the pallet width direction. Was inserted, and the time-dependent change in temperature at each position in the thickness direction during sintering was measured to determine the high temperature region holding time at each position. The maximum temperature reached during the sintering was maintained at a temperature of 1400 ° C. or lower at all positions.

上記高温域保持時間の測定結果を図12に示した。この図から、実機焼結機のパレット幅方向中央部における最高到達温度が150秒未満となる領域は、上層部の185mmの部分であることがわかった。この領域は、装入層の全厚(730mm)の約25.3%に相当し、有効機長(82m)の上流側20.8mにおいて高温域保持時間が不足していることを示している。   The measurement result of the high temperature region holding time is shown in FIG. From this figure, it was found that the region where the maximum temperature reached in the central part in the pallet width direction of the actual sintering machine was less than 150 seconds was the 185 mm portion of the upper layer part. This region corresponds to about 25.3% of the total thickness of the charging layer (730 mm), and indicates that the high temperature region holding time is insufficient at 20.8 m upstream of the effective machine length (82 m).

そこで、上記調査結果に基づき、高温域保持時間の不足領域に対して希釈気体燃料を供給するため、点火炉出側の後方3.2m以降に、幅:5m×長さ:7.5mのフードを4基設置し、この間において、LNGを0.4vol%(燃焼下限濃度の1/12)に希釈した気体燃料の供給長さを、表2に示したように変化させて焼結実験を行った。ここで、T1は、炭材の燃焼熱のみで焼結を行う従来の焼結条件(比較例)であり、T2は上記4基のうちの最上流の1基のフードで、T3は上記4基のうちの最上流側の2基のフードで、T4は上記4基のうちの上流側3基のフードで、また、T5は上記4基の全てのフードで気体燃料を供給した例である。なお、従来の焼結条件(比較例)では、焼結原料中への炭材量は5.3mass%とし、希釈気体燃料を供給する場合は、最高到達温度が1400℃超えとなるのを防止するため、上記炭材量を5.0mass%に削減した。   Therefore, based on the above investigation results, in order to supply the diluted gas fuel to the shortage region of the high temperature region holding time, a hood of width: 5 m × length: 7.5 m is provided after 3.2 m behind the ignition furnace. 4 were installed, and during this time, the supply length of gaseous fuel diluted with LNG to 0.4 vol% (1/12 of the lower combustion limit concentration) was changed as shown in Table 2 to conduct a sintering experiment. It was. Here, T1 is a conventional sintering condition (comparative example) in which sintering is performed only with the combustion heat of the carbonaceous material, T2 is one of the most upstream hoods among the above four units, and T3 is the above four Two hoods on the most upstream side of the group, T4 is an example of three hoods on the upstream side of the four groups, and T5 is an example in which gaseous fuel is supplied to all four hoods. . In the conventional sintering conditions (comparative example), the amount of carbonaceous material in the sintering raw material is 5.3 mass%, and when the diluted gas fuel is supplied, the maximum temperature reached is prevented from exceeding 1400 ° C. Therefore, the amount of the carbon material was reduced to 5.0 mass%.

Figure 0005888482
Figure 0005888482

なお、上記希釈気体燃料を供給した焼結実験においても、前述した方法と同じ方法で、パレット幅中央部の厚さ方向各位置における高温域保持時間を実測し、高温域保持時間が150秒未満となる装入層上層部の層厚を求めた。また、上記焼結実験で得られた焼結鉱について、シャッター強度SI、歩留りおよび返鉱の発生率を調査し、それらの結果を表2中に併記した。   In the sintering experiment in which the diluted gas fuel was supplied, the high temperature region holding time at each position in the thickness direction of the pallet width central portion was measured by the same method as described above, and the high temperature region holding time was less than 150 seconds. The layer thickness of the upper part of the charge layer was determined. Further, for the sintered ore obtained in the above-described sintering experiment, the shutter strength SI, the yield, and the rate of occurrence of return ore were investigated, and the results are also shown in Table 2.

表2の結果から、上流側3基のフードで高温域保持時間が150秒未満となる領域のみに希釈気体燃料を供給したT4の例では、装入層全厚において高温域保持時間を150秒以上となっており、従来条件のT1と比較して、成品焼結鉱のシャッター強度SI、歩留りとも大幅に向上している。これに対して、上流側の2基以下のフードでしか気体燃料を供給しなかったT2およびT3の例では、まだ気体燃料の供給量が不足し、装入層全厚において高温域保持時間を150秒以上とするまでには至っていないため、成品焼結鉱の強度、歩留りとも十分な改善効果が得られていない。一方、4基のフードで、高温域保持時間が150秒未満となる領域を超えて希釈気体燃料を供給したT5の例では、装入層全厚において高温域保持時間を150秒以上となっているものの、成品焼結鉱の強度、歩留りはT4の例とほとんど差がないことがわかる。   From the result of Table 2, in the example of T4 in which the diluted gas fuel is supplied only to the region where the high temperature region retention time is less than 150 seconds with the three upstream hoods, the high temperature region retention time is 150 seconds in the entire charging layer thickness. As described above, both the shutter strength SI and the yield of the product sintered ore are significantly improved as compared with the conventional condition T1. On the other hand, in the examples of T2 and T3 in which the gaseous fuel is supplied only with two or less hoods on the upstream side, the supply amount of the gaseous fuel is still insufficient, and the high temperature region holding time is reduced in the entire charging layer thickness. Since it has not reached 150 seconds or more, the strength and yield of the product sintered ore are not sufficiently improved. On the other hand, in the example of T5 in which the diluted gas fuel is supplied beyond the region where the high temperature region retention time is less than 150 seconds with four hoods, the high temperature region retention time is 150 seconds or more in the total thickness of the charging layer. However, it can be seen that the strength and yield of the sintered product ore are almost the same as the T4 example.

本発明の焼結技術は、製鉄用、特に高炉用原料として使用される焼結鉱の製造技術として有用であるばかりでなく、その他の鉱石塊成化技術としても利用することができる。   The sintering technique of the present invention is not only useful as a technique for producing sintered ore used as a raw material for iron making, particularly as a blast furnace, but can also be used as another ore agglomeration technique.

1:原料ホッパー
2、3:ドラムミキサー
4:床敷鉱ホッパー
5:サージホッパー
6:ドラムフィーダー
7:切り出しシュート
8:パレット
9:装入層
10:点火炉
11:ウインドボックス(風箱)
12:カットオフプレート
1: Raw material hopper 2, 3: Drum mixer 4: Floor bedding hopper 5: Surge hopper 6: Drum feeder 7: Cutting chute 8: Pallet 9: Charging layer 10: Ignition furnace 11: Wind box (wind box)
12: Cut-off plate

Claims (2)

循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火すると共に、燃焼下限濃度以下に希釈した気体燃料を含む装入層上方の空気をパレット下に配設されたウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する方法において、点火炉出側〜排鉱部までの間のパレットを進行方向および幅方向に複数に区分し、上記パレット進行方向および幅方向の区分単位で気体燃料の供給をON/OFFすることによって、炭材のみの燃焼熱で焼結するときに1200℃以上1400℃以下に保持される高温域保持時間が150秒未満となる区分における上記高温域保持時間を150秒以上300秒以下とすることを特徴とする焼結鉱の製造方法。 A gaseous fuel diluted with a sintered raw material containing fine ore and charcoal on a circulating moving pallet to form a charging layer, igniting the charcoal on the surface of the charging layer and diluting below the lower combustion limit concentration Suction ore is produced by sucking the air above the charging layer, including the slag, into the charging layer by sucking it with a wind box placed under the pallet, and burning the gaseous fuel and carbonaceous material in the charging layer. In this method, the pallet from the ignition furnace exit side to the discharge section is divided into a plurality of sections in the traveling direction and the width direction, and the supply of gaseous fuel is turned ON / OFF in units of the pallet traveling direction and the width direction. By the above, the high temperature region holding time in the section in which the high temperature region holding time maintained at 1200 ° C. or higher and 1400 ° C. or lower when sintering with the combustion heat of only the carbonaceous material is less than 150 seconds is 150 seconds or longer and 300 seconds or shorter. Sintering characterized by The method of production. 上記希釈した気体燃料を含む空気は、予め燃焼下限濃度以下に希釈した気体燃料を装入層上方の空気中に混合したもの、あるいは、気体燃料を装入層上の空気中に高速で噴射して混合し、燃焼下限濃度以下に希釈したもの、のいずれかであることを特徴とする請求項に記載の焼結鉱の製造方法。
The air containing the diluted gaseous fuel is a mixture of gaseous fuel that has been diluted below the lower combustion limit concentration in the air above the charging layer, or the gaseous fuel is injected into the air above the charging layer at high speed. 2. The method for producing a sintered ore according to claim 1 , wherein the sinter is mixed and diluted to a concentration lower than the lower limit of combustion.
JP2011054513A 2011-03-11 2011-03-11 Method for producing sintered ore Active JP5888482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054513A JP5888482B2 (en) 2011-03-11 2011-03-11 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054513A JP5888482B2 (en) 2011-03-11 2011-03-11 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2012188714A JP2012188714A (en) 2012-10-04
JP5888482B2 true JP5888482B2 (en) 2016-03-22

Family

ID=47082195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054513A Active JP5888482B2 (en) 2011-03-11 2011-03-11 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5888482B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183623B2 (en) * 2014-03-28 2017-08-23 Jfeスチール株式会社 Method for producing sintered ore using iron-based oil-containing sludge as raw material and method for treating iron-based oil-containing sludge
KR101751527B1 (en) * 2015-12-21 2017-06-27 주식회사 포스코 Appratus for heat insulation of sintering bed surface layer and this method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195091A (en) * 1992-01-22 1993-08-03 Sumitomo Metal Ind Ltd Manufacture of sintered ore
JP2010106341A (en) * 2008-10-31 2010-05-13 Jfe Steel Corp Method for manufacturing sintered ore
JP5544784B2 (en) * 2009-08-17 2014-07-09 Jfeスチール株式会社 Sintering machine

Also Published As

Publication number Publication date
JP2012188714A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5585503B2 (en) Method for producing sintered ore
TWI460278B (en) Sintering method
JP5359012B2 (en) Sintering machine and operation method thereof
JP5561443B2 (en) Method for producing sintered ore
JP5888482B2 (en) Method for producing sintered ore
JP5428195B2 (en) Sintering machine
JP5930213B2 (en) Oxygen-gas fuel supply device for sintering machine
JP2008291355A (en) Production method of sintered ore and sintering machine
JP6037145B2 (en) Method for producing sintered ore
JP5428196B2 (en) Method for producing sintered ore and sintering machine
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5831694B2 (en) Sintering machine
JP5428194B2 (en) Sintering machine
JP5825478B2 (en) Sintering machine
JP2010106341A (en) Method for manufacturing sintered ore
JP6160839B2 (en) Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace
JP2013076105A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5888482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250