TW201032999A - Flexible metal-clad laminate and a method of manufacturing the same - Google Patents

Flexible metal-clad laminate and a method of manufacturing the same Download PDF

Info

Publication number
TW201032999A
TW201032999A TW098136897A TW98136897A TW201032999A TW 201032999 A TW201032999 A TW 201032999A TW 098136897 A TW098136897 A TW 098136897A TW 98136897 A TW98136897 A TW 98136897A TW 201032999 A TW201032999 A TW 201032999A
Authority
TW
Taiwan
Prior art keywords
layer
clad laminate
polyimide layer
chemical formula
flexible metal
Prior art date
Application number
TW098136897A
Other languages
Chinese (zh)
Other versions
TWI494214B (en
Inventor
Weon-Jung Choi
Seung-Hoon Jung
Byoung-Wook Jo
Daen-Youn Kim
Original Assignee
Sk Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sk Energy Co Ltd filed Critical Sk Energy Co Ltd
Publication of TW201032999A publication Critical patent/TW201032999A/en
Application granted granted Critical
Publication of TWI494214B publication Critical patent/TWI494214B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a flexible metal-clad laminate. More specifically, disclosed is a flexible metal clad laminate including: a first polyimide layer that is positioned on one surface of a metal foil and has glass transition temperature of 300 to 500 DEG C; a second polyimide layer that is positioned on one surface of the first polyimide layer and has a linear thermal expansion coefficient of 1 to 20 ppm/K; and a thermoplastic polyimide layer that is positioned on one surface of the second polyimide layer, whereby the flexible metal-clad laminate has an excellent exterior after imidization, is not curled after and before etching, and has excellent adhesive strength with a metal foil and excellent dimensional stability after etching.

Description

201032999 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種可撓性覆金屬層合物及其製造方法,更特定 言之,係關於一種使用於製造印刷電路板之可撓性覆金屬層合物 及其製造方法。 【先前技術】 可_撓性覆金屬層合物係用於製造可撓性印刷電路板,其係導電 金屬箔及絕緣樹脂之層合物,可執行微電路處理,可彎曲於一窄 小空間内,使得其使用性提高,蓋電子元件朝著微型化及輕量化 的方向發展。 可撓性覆金屬層合物係可區分為兩層型(two-layer type)與三 層型(three-layer type )。使用黏合劑之三層型有财熱性及财火性 劣化之問題,且相較於二層型,三層型在熱處理期間有尺寸變化 的問題。因此,在製造可撓性印刷電路板時,比較於三層型者, 當前趨勢係通常使用二層型之可撓性覆金屬層合物。 因當前趨勢係朝向輕、薄、微型之電路板,提高了使用雙面之 覆金屬層合物,雙面之覆金屬層合物通常係經由將一熱塑性聚醯 亞胺層合於用作絕緣層之聚醯亞胺樹脂之最外層及金屬箔所製 造。於此情況中,因熱塑性聚醯亞胺樹脂之存在,可撓性覆銅層 合物於蝕刻後及前會產生彎曲之問題。 韓國公開專利第10-2004-0084028號及第2006-0129081號、或 第2003-0079991號揭露數種方法,其係多次地施用及乾燥聚醯亞 胺前驅物樹脂以改良與金屬箔之黏合強度且控制於蝕刻金屬層後 及前之彎曲。該等揭露方法係使用熱塑性聚醯亞胺(-TPI)作為 201032999 聚酿亞胺樹脂,其係直接塗佈於金屬箔上,以維持與所施用金屬 箔之黏合強度。然而,在韓國公開專利第10-2004-0084028號中易 發生外觀缺陷之問題,如聚醯亞胺表面之起泡及聚醯亞胺樹脂層 間或聚醯亞胺樹脂層與金屬箔間之脫層等,此乃因與金屬箔接觸 之熱塑性聚醯亞胺樹脂通常具約200至250°C之低的玻璃轉移溫 度(Tg)。韓國公開專利第2006-0129081號需薄的熱塑性聚醯亞 胺層以使其聚醯亞胺樹脂之線性熱膨脹係數與金屬之線性熱膨脹 係數得以匹配,以及韓國公開專利第2003-0079991號增加高價熱 © 塑性聚醯亞胺之使用。 【發明内容】 【技術問題】 為解決如上所述之諸多問題,本發明之一目的係提供一種可撓 性覆金屬層合物,其係在醯亞胺化反應後具有絕佳之外觀、於蝕 刻後及前不造成彎曲,且於蝕刻後聚醯亞胺樹脂層與金屬箔間具 有絕佳之黏合強度及尺寸穩定性。 此外,本發明之另一目的係提供一種可用作雙面之覆金屬層合 ❿ 物之覆金屬層合物,藉由層合一單面之覆金屬層合物與一金屬 箔,及其製造方法。 【實施方式】 【技術解決方式】 為達到上述目的,本發明提供一種可撓性覆金屬層合物,包含: 一第一聚醯亞胺層,位於一金屬箔之一表面上且具有300至500 °C之玻璃轉移溫度;一第二聚醯亞胺層,位於該第一聚醯亞胺層 201032999 之一表面上且具有1至20 ppm/K之線性熱膨脹係數;以及一熱塑 性聚醯亞胺層,位於該第二聚醯亞胺層之一表面上。 本發明提供一種製造一可撓性金屬層合物之方法,包含:(a) 施用及乾燥聚醯胺酸溶液,該聚醯胺酸溶液係位於一金屬羯之一 表面上且在醯亞胺化反應後具有300至500°C之玻璃轉移溫度,之 後形成一第一聚醯亞胺層;(b)施用及乾燥聚醯胺酸溶液,該聚 醯胺酸溶液係位於該所形成之第一聚醯亞胺層之一表面上,在醯 亞胺化反應後具有1至20 ppm/K之線性熱膨脹係數,之後形成一 第二聚醯亞胺層;(c)施用及乾燥聚醯胺酸溶液,該聚醯胺酸溶 液位於該所形成之第二聚醯亞胺層之一表面上且在醯亞胺化反應 後具有200°C S Tg S 300°C之玻璃轉移溫度及30至200 ppm/K 之線性熱膨脹係數,之後形成一熱塑性聚醯亞胺層;以及(d)在 0至500°C下進行熱處理以醯亞胺化該所製造之層合物。 在下文中,將詳細說明一本發明之示範性實施態樣,在本發明 之說明中,相關已知的功能或結構將被忽略以免混淆本發明之目 的。 在本說明書中,「大約」、「實質上」等表示為一種程度之詞彙係 為數值,或者當在製備過程及材料之固有容忍度内出現在上述意 義時接近該數值之意義,該等詞彙係用為防範有心侵權者不當使 用本文揭露(本文所提及之精確或絕對數值係為助於了解本發 明)。 本發明係關於一可撓性覆金屬層合物,其包含:⑦一聚醯亞胺 層(下文稱「第一聚醯亞胺層」),位於一金屬箔之一表面上且具 有300至500°C之玻璃轉移溫度(Tg);②一聚醯亞胺層(下文稱 201032999 「第二聚醯亞胺層」),位於上述之第一聚醢亞胺層之一表面上且 係具有1至20 ppm/K之線性熱膨脹係數係,③一熱塑性聚醯亞胺 樹脂層(下文稱「熱塑性聚醯亞胺層」)存在於第二聚酿亞胺層之 一表面上,以及經由層合上述之可撓性覆金屬層合物與另一金屬 箔所獲得的雙面之可撓性覆金屬層合物。 根據本發明之層合物在熱醯亞胺化反應後具有絕佳之外觀,於 蝕刻後及前不會彎曲,且於蝕刻後在聚醯亞胺層與金屬箔之間具 有絕佳之黏合強度與尺寸穩定性。此外,根據本發明所製造之層 © 合物係可經由層合另一金屬箔於熱塑性聚醯亞胺層之一表面上, 而製造雙面之覆金屬層合物。 位於金屬箔之一表面上之第一聚醯亞胺層具有5至40 ppm/K之 線性熱膨脹係數。較佳地,相較於第二聚醯亞胺層,第一聚醯亞 胺層具有5至25 ppm/K範圍内之較高的線性熱膨脹係數。在此情 ' 況下,與所施用之金屬箔的黏合強度可穩定維持在至少1.0公斤力 /公分,更佳1.0至3.0公斤力/公分,且由於第二聚醯亞胺層在線 性熱膨脹係數上之差異所形成之朝向屬箔彎曲之應力,可消除因 熱塑性聚醯亞胺層(具有高線性熱膨脹係數)所造成之層合物彎 曲。 作為與金屬箔接觸之第一聚醯亞胺層,使用一具有300°C或以 上,更佳係300至500°C,之玻璃轉移溫度的聚醯亞胺樹脂。通常 而言,使用該熱塑性聚醯亞胺樹脂作為第一聚醯亞胺層,於此情 況下,因低的玻璃轉移溫度而有造成外觀缺陷的問題,如聚醯亞 胺表面起泡、聚醯亞胺樹脂層之間或聚醯亞胺樹脂層與金屬箔之 間的脫層等。因此,為防止在聚醯亞胺化過程其間產生外觀缺陷, 201032999 應使用具有30(TC或更高之玻璃轉化溫度之低熱膨脹之聚醯亞胺 樹脂作為與金屬箔接觸的第一聚醯亞胺層。 位於第一聚醯亞胺層之一表面上第二聚醯亞胺層具有20 ppm/K 或更少之線性熱膨脹係數,更佳係1至20 ppm/K。為克服熱塑性 聚醯亞胺之高線性熱膨脹係數,應使用具有低線性熱膨脹係數之 聚醯亞胺樹脂作為第二聚醯亞胺層,此使得整體聚醯亞胺樹脂之 線性熱膨脹係數相似於金屬箔之線性熱膨脹係數《藉此,防止層 合物於蝕刻後及前之彎曲且於蝕刻後之尺寸變化可控制在-0.1% 至+0.1% ’ 更佳係-0.05%至+0.05%。 若第一聚醯亞胺層或第二聚醯亞胺層之組合物可展現普遍低的 熱膨脹,則可使用任何組合物。 作為如上所述之聚醯亞胺層之原料,通常可使用四羧酸二酐 (tetracarboxylic acid dianhydride)及二胺基(diamino)化合物, 但其原料並不以此為限。 作為展現低熱膨脹之四羧酸二酐,較佳係使用均苯四羧酸二酐 (pyromellitic dianhydride )、3,3,,4,4,-聯苯四羧酸二酐 (3,3’,4,4'_biphenyltetracarboxylic acid dianhydride)及 3,3’,4,4'·二 苯甲明四叛酸二針(3,3,,4,4'_benzophenonetetracarboxylic acid dianhydride )。 此外,作為二胺基化合物,較佳係使用4,4'-二胺基二苯醚 (4,4'-diaminophenyl ether)、對苯二胺(p-phenylenediamine)及 4,4’-二胺基二苯硫喊(4,4'-thiobisbenzenamine)等。 根據本發明之低熱膨脹之聚酿亞胺樹脂係包含以下化學式1之 聚醯亞胺樹脂。 201032999 [化學式1] >~〇 化學式1所有成份中,0.5 S m S 1.0且0 S η S 0.5,m+n=l。 化學式1中之X及Y係獨立為一選自以下結構之衍生自芳香族 二酐化合物之四價部分。 ❹201032999 VI. Description of the Invention: [Technical Field] The present invention relates to a flexible metal-clad laminate and a method of manufacturing the same, and more particularly to a flexible coating for use in the manufacture of printed circuit boards Metal laminate and method of producing the same. [Prior Art] A flexible metal clad laminate is used for manufacturing a flexible printed circuit board which is a laminate of a conductive metal foil and an insulating resin, which can be processed by a microcircuit and can be bent in a narrow space. Therefore, the usability is improved, and the cover electronic component is developed in the direction of miniaturization and weight reduction. The flexible metal clad laminate can be divided into a two-layer type and a three-layer type. The three-layer type using the adhesive has problems of deterioration in the heat and the flammability, and the three-layer type has a problem of dimensional change during the heat treatment as compared with the two-layer type. Therefore, in the manufacture of flexible printed circuit boards, compared to the three-layer type, the current trend is generally to use a two-layer type flexible metal-clad laminate. Since the current trend is toward light, thin, and miniature circuit boards, the use of double-sided metallized laminates is improved, and the double-sided metallized laminate is typically laminated by using a thermoplastic polyimide. The outermost layer of the polyimide layer of the layer and the metal foil are produced. In this case, the flexible copper-clad laminate may be bent after and after etching due to the presence of the thermoplastic polyimide resin. Korean Patent Publication No. 10-2004-0084028 and No. 2006-0129081, or No. 2003-0079991 disclose several methods of applying and drying a polyimide film precursor resin to improve adhesion to a metal foil. Strength and control of the bending after and after etching the metal layer. These methods of exposure employ thermoplastic polyimine (-TPI) as the 201032999 polyimine resin which is applied directly to the metal foil to maintain the bond strength to the applied metal foil. However, in the Korean Laid-Open Patent Publication No. 10-2004-0084028, there are problems in appearance defects such as foaming of the surface of the polyimide and the interlayer of the polyimide film or the layer of the polyimide resin and the metal foil. Layers, etc., because the thermoplastic polyimide resin in contact with the metal foil typically has a low glass transition temperature (Tg) of about 200 to 250 °C. Korean Patent Publication No. 2006-0129081 requires a thin thermoplastic polyimide layer to match the linear thermal expansion coefficient of the polyimide resin with the linear thermal expansion coefficient of the metal, and the Korean Patent Publication No. 2003-0079991 increases the high heat. © Use of plastic polyimine. SUMMARY OF THE INVENTION [Technical Problem] In order to solve the problems as described above, it is an object of the present invention to provide a flexible metal-clad laminate which has an excellent appearance after the ruthenium reaction. It does not cause bending after etching and before, and has excellent bonding strength and dimensional stability between the polyimide film and the metal foil after etching. Further, another object of the present invention is to provide a metallized laminate which can be used as a double-sided metal-clad laminate by laminating a single-sided metal-clad laminate and a metal foil, and Production method. [Technical Solution] In order to achieve the above object, the present invention provides a flexible metal-clad laminate comprising: a first polyimide layer on a surface of a metal foil and having 300 to a glass transition temperature of 500 ° C; a second polyimide layer on one surface of the first polyimine layer 201032999 and having a linear thermal expansion coefficient of 1 to 20 ppm/K; and a thermoplastic polysiloxane An amine layer is on the surface of one of the second polyimide layers. The present invention provides a method of making a flexible metal laminate comprising: (a) applying and drying a polyaminic acid solution on a surface of a metal crucible and in the quinone After the reaction, the glass transition temperature of 300 to 500 ° C is followed by formation of a first polyimine layer; (b) application and drying of a polyaminic acid solution, the polyamic acid solution is located in the formed a surface of one of the polyimine layers having a linear thermal expansion coefficient of 1 to 20 ppm/K after the oxime imidization reaction, followed by formation of a second polyimine layer; (c) application and drying of the polyamidamine An acid solution, the polyaminic acid solution is located on a surface of one of the formed second polyimide layers and has a glass transition temperature of 200° CS Tg S 300° C. and 30 to 200 after the oxime imidization reaction a linear thermal expansion coefficient of ppm/K, followed by formation of a thermoplastic polyimide layer; and (d) heat treatment at 0 to 500 ° C to imidize the resulting laminate. In the following, an exemplary embodiment of the invention will be described in detail, and in the description of the invention, related known functions or structures will be omitted to avoid obscuring the object of the invention. In the present specification, "about", "substantially", etc., are expressed as a degree of vocabulary as a numerical value, or a meaning that approximates the numerical value when the above-mentioned meaning occurs within the inherent tolerance of the preparation process and the material. It is used to prevent inappropriate use of the infringer. The precise or absolute values mentioned herein are intended to aid the understanding of the present invention. The present invention relates to a flexible metal-clad laminate comprising: a 7-polyimine layer (hereinafter referred to as "first polyimine layer") on a surface of a metal foil and having 300 to a glass transition temperature (Tg) at 500 ° C; a polyimine layer (hereinafter referred to as 201032999 "second polyimine layer") on the surface of one of the first polyimine layers described above and having a linear thermal expansion coefficient of 1 to 20 ppm/K, wherein a 3-thermopolyimine resin layer (hereinafter referred to as "thermoplastic polyimide layer") is present on one surface of the second polyimine layer, and via the layer A double-sided flexible metal clad laminate obtained by combining the above flexible metal-clad laminate with another metal foil. The laminate according to the present invention has an excellent appearance after the thermal imidization reaction, does not bend after and after etching, and has excellent adhesion between the polyimide layer and the metal foil after etching. Strength and dimensional stability. Further, the layer according to the present invention can be formed by laminating another metal foil on one surface of the thermoplastic polyimide layer to produce a double-sided metal clad laminate. The first polyimine layer on the surface of one of the metal foils has a linear thermal expansion coefficient of 5 to 40 ppm/K. Preferably, the first polyimide layer has a higher linear coefficient of thermal expansion in the range of 5 to 25 ppm/K as compared to the second polyimide layer. In this case, the bonding strength with the applied metal foil can be stably maintained at at least 1.0 kgf/cm, more preferably 1.0 to 3.0 kgf/cm, and because the second polyimine layer has a linear thermal expansion coefficient. The difference formed by the above is the bending stress of the foil, which can eliminate the bending of the laminate due to the thermoplastic polyimide layer (having a high linear thermal expansion coefficient). As the first polyimide layer in contact with the metal foil, a polyimide resin having a glass transition temperature of 300 ° C or more, more preferably 300 to 500 ° C, is used. In general, the thermoplastic polyimide resin is used as the first polyimide layer, and in this case, there is a problem of appearance defects due to a low glass transition temperature, such as foaming and aggregation of the polyimide surface. Debonding between the quinoneimine resin layers or between the polyimide layer and the metal foil. Therefore, in order to prevent appearance defects during the polyimidization process, 201032999 should use a low thermal expansion polyimine resin having a glass transition temperature of 30 (TC or higher) as the first polyimide in contact with the metal foil. A layer of the second polyimine layer on the surface of one of the first polyimide layers having a linear thermal expansion coefficient of 20 ppm/K or less, more preferably 1 to 20 ppm/K. The high linear thermal expansion coefficient of the imine should use a polyimine resin having a low linear thermal expansion coefficient as the second polyimine layer, which makes the linear thermal expansion coefficient of the overall polyimine resin similar to the linear thermal expansion coefficient of the metal foil. "In this way, the laminate is prevented from bending after etching and before and the dimensional change after etching can be controlled at -0.1% to +0.1%', preferably -0.05% to +0.05%. The composition of the amine layer or the second polyimide layer can exhibit a generally low thermal expansion, and any composition can be used. As a raw material of the polyimine layer as described above, tetracarboxylic dianhydride (tetracarboxylic acid) can usually be used. Acid dianhydride) a diamino compound, but the raw material is not limited thereto. As the tetracarboxylic dianhydride exhibiting low thermal expansion, pyromellitic dianhydride, 3, 3, 4 is preferably used. 4,-biphenyltetracarboxylic acid dianhydride (3,3',4,4'-biphenyltetracarboxylic acid dianhydride) and 3,3',4,4'·diphenylmethylamine tetrahydro acid (3,3,, 4,4'_benzophenonetetracarboxylic acid dianhydride. Further, as the diamine compound, 4,4'-diaminophenyl ether, p-phenylenediamine or p-phenylenediamine is preferably used. And 4,4'-thiobisbenzenamine, etc. The low thermal expansion of the polyamidene resin according to the present invention comprises the polyimine resin of the following Chemical Formula 1. 201032999 [ In the chemical formula 1], all of the components of the chemical formula 1 are 0.5 S m S 1.0 and 0 S η S 0.5, m + n = 1. The X and Y groups in Chemical Formula 1 are independently derived from a fragrance selected from the following structures. a tetravalent portion of a dianhydride compound.

同時,若熱塑性聚醯亞胺樹脂之組合物在至少玻璃轉移溫度下 具有充分之流動性,則可使用任何之組合物。此外,可使用經由 壓力而具流動性之組合物。再者,亦包含由最少兩種二針單體及 至少兩種二胺單體所製造之熱塑性聚醯亞胺樹脂,以及由單一種 二酐單體與單一種二胺單體所製造之熱塑性聚醯亞胺樹脂。 本發明之熱塑性聚醯亞胺層可具有200°C S Tg S 300°C之玻 璃轉移溫度及30至200 ppm/K之線性熱膨脹係數。更特定言之, 由本發明中由熱塑性聚醯亞胺樹脂所形成之熱塑性聚醯亞胺層較 佳係包含30至100%包含以下化學式2中W及Z之重複單元(下 文稱「熱塑性重複單元」)。當熱塑性重複單元之分率不及30%時, 熱塑性聚醯亞胺層之流動性係不充分,因此無法熱層合,或者在 製造雙面之覆金屬層合物後與所層合之金屬之黏合強度低。因 9 201032999 此’在考慮熱塑性聚醯亞胺層之玻璃轉移溫度,熱塑性重複單元 之分率應小心地控制。當考慮到製造雙面之覆金屬層合物之層合 過程時,熱塑性聚酿亞胺樹脂之坡璃轉移溫度較佳係約200至300 〇C。 [化學式2]Also, if the composition of the thermoplastic polyimide resin has sufficient fluidity at at least the glass transition temperature, any composition can be used. Further, a composition that is fluid through pressure can be used. Furthermore, it also comprises a thermoplastic polyimide resin made of a minimum of two two-needle monomers and at least two kinds of diamine monomers, and a thermoplastic made from a single dianhydride monomer and a single diamine monomer. Polyimine resin. The thermoplastic polyimide layer of the present invention may have a glass transition temperature of 200 ° C S Tg S 300 ° C and a linear thermal expansion coefficient of 30 to 200 ppm / K. More specifically, the thermoplastic polyimide layer formed from the thermoplastic polyimide resin of the present invention preferably contains 30 to 100% of repeating units including W and Z in the following Chemical Formula 2 (hereinafter referred to as "thermoplastic repeating unit" "). When the fraction of the thermoplastic repeating unit is less than 30%, the flowability of the thermoplastic polyimide layer is insufficient, so that it cannot be thermally laminated, or after the double-sided metallized laminate is produced and the laminated metal Low bonding strength. Because 9 201032999, the fraction of thermoplastic repeating units should be carefully controlled in consideration of the glass transition temperature of the thermoplastic polyimide layer. When considering the lamination process for producing a double-sided metal-clad laminate, the glass transition temperature of the thermoplastic polyimide resin is preferably about 200 to 300 〇C. [Chemical Formula 2]

在上述之化學式2中,m及n為實數且m+n=l,0.3 g m $ 1.0, 0 ^ η ^ 0.7。 上述之化學式2中之W係一選自如下之衍生自芳香族二胺基化 合物之二價部分,其係單獨或經彼此共聚合而使用:In the above Chemical Formula 2, m and n are real numbers and m + n = 1, 0.3 g m $ 1.0, 0 ^ η ^ 0.7. The W in the above Chemical Formula 2 is a divalent moiety derived from an aromatic diamine compound selected from the group consisting of, respectively, or copolymerized with each other:

Wi係選自:-(CH2)-、_(Cli2)p- (P係一選自2至1〇之整數)、 -CH2-C(CH2)2-CH2-;Wi is selected from the group consisting of: -(CH2)-, _(Cli2)p- (P is an integer selected from 2 to 1 )), -CH2-C(CH2)2-CH2-;

-(CH2)-; 10 201032999 w4 係選自:-0--CO-; W5 係選自:-Ο-、-CO-、-S-、-S02-、-C(CH3)2-、-CONH-、-C(CF3)2-、 W6 係選自-O-、-CO-、-S-、-S02-、-C(CH3)2-、-CONH-、-C(CF3)2_、 以及-(CH2)-。 更佳地,上述化學式2中之W係一選自以下之衍生自芳香族二 胺基化合物之二價部分,其係單獨或經彼此共聚合而使用:-(CH2)-; 10 201032999 w4 is selected from: -0--CO-; W5 is selected from: -Ο-, -CO-, -S-, -S02-, -C(CH3)2-,- CONH-, -C(CF3)2-, W6 are selected from -O-, -CO-, -S-, -S02-, -C(CH3)2-, -CONH-, -C(CF3)2_, And -(CH2)-. More preferably, W in the above Chemical Formula 2 is a divalent moiety derived from an aromatic diamine compound selected from the following, which is used alone or by copolymerization with each other:

w3、w5及 w6係選自:-o-、-co-、-s-、-so2-、-c(ch3)2-、-conh-、 -c(cf3)2-、-(ch2)_ 〇 上述化學式2中之Z係一選自以下之衍生自芳香族二酐之四價 部分,其係單獨或經彼此共聚合而使用:W3, w5 and w6 are selected from: -o-, -co-, -s-, -so2-, -c(ch3)2-, -conh-, -c(cf3)2-, -(ch2)_ The Z system in the above Chemical Formula 2 is a tetravalent moiety derived from an aromatic dianhydride selected from the following, which is used alone or by copolymerization with each other:

上述化學式2中之P係一選自以下之衍生自芳香族二胺基化合 物之二價部分,其係單獨或經彼此共聚合而使用:The P group in the above Chemical Formula 2 is a divalent moiety derived from an aromatic diamine compound selected from the following, which is used alone or by copolymerization with each other:

11 20103299911 201032999

Pi係一選自-Ο-、-CONH-之基團; p2係一選自-Η、-CH3、-CF3之基團; 上述化學式2中之Q係一選自以下之衍生自芳香族二酐之四價 部分,其係單獨或經彼此共聚合而使用:Pi is a group selected from -Ο-, -CONH-; p2 is a group selected from -Η, -CH3, -CF3; Q of the above Chemical Formula 2 is derived from the following derived from aromatic two The tetravalent portion of the anhydride, which is used alone or via copolymerization with each other:

本發明中所敘述之聚醯亞胺樹脂包含具有以下化學式3之醯亞❹ 胺環的所有樹脂,但不以此為限。聚醯亞胺樹脂之例子可包含聚 醯亞胺、聚醯胺醯亞胺及聚酯醯亞胺等。 [化學式3]The polyimine resin described in the present invention contains all the resins of the above-described sulfonium amine ring of the following Chemical Formula 3, but is not limited thereto. Examples of the polyimine resin may include polyimine, polyamidimide, polyesterimide, and the like. [Chemical Formula 3]

在化學式3中,Ar及Ah係(C6至C20)芳香基,其中—選自© 於1至1000,0000之實數。 然而,若能夠達成本發明所欲之特徵,則聚醯亞胺樹脂之組合 物無特別的限制且可由單獨之聚醯亞胺樹脂、其衍生物或至少聚 醯亞胺樹脂與其衍生物之混合物所組成。此外,可使用醯亞胺化 促進劑如吡啶及喹林等、黏合促進劑如矽烷偶合劑、鈦酸鹽偶合 劑及環氧化合物等、有助於施用過程之消泡劑、以及其他添加劑 如整平劑等。 12 201032999 本發明提供一種製造可撓性覆金屬層合物之方法,其包含: (a)施用及乾燥聚醯胺酸溶液,該聚醯胺酸溶液係位於一金屬箔 之一表面上且在醯亞胺化反應後具有300至500〇c之玻璃轉移溫 度’之後形成一第一聚醯亞胺層;(b)施用及乾燥聚醯胺酸溶 液’該聚醯胺酸溶液係位於該所形成之第一聚酿亞胺層之一表面 上且在醯亞胺化反應後具有i至20 ppm/K之線性熱膨脹係數,之 後形成一第二聚醯亞胺層;(c)施用及乾燥聚醯胺酸溶液,該聚 醯胺酸溶液位於該所形成之第二聚醯亞胺層之一表面上且在醯亞 〇 胺化反應後具有200°C s Tg S 300°c之玻璃轉移溫度及30至 200 ppm/Κ之線性熱膨脹係數,之後形成一熱塑性聚醯亞胺層;以 及(d)在〇至50(Tc下對所製造之層合物進行熱處理以醢亞胺化 該所製造之層合物。 在步驟(a)至步驟(c)中,對在施用作聚醯亞胺前驅物樹脂 之聚醯胺酸溶液後的乾燥溫度係無限制,但較佳係8〇至22(rc。 聚酿胺酸溶液(在經步驟(a)至步驟(c)後)變成一塗佈於一 q 銅泊上之具有自我可支揮性(self supportability )之固態凝膠薄 膜。當乾燥聚醯胺酸溶液之溫度低於肋^時,溶劑之揮發速率係 不顯著,因此難以實質地展現乾燥效果’另一方面,當聚醯胺酸 溶液之乾燥溫度係高於22(rc時,塗佈層將被過度硬化,因此有降 低其後物理性質或者無法展現穩定之物理性質之風險。 本發明提供一種可撓性覆金屬層合物,其由位於金屬箔之一表 面上的第一聚酿亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層所 組成’其中各層之形成係透過重覆地施用及乾燥聚醢亞胺前驅物 樹脂且其後經由紅外線熱處理轉化形成聚酿亞胺樹脂而形成。 13 201032999 各層所包含之聚醯亞胺樹脂可直接以完全醯亞胺化之狀態或部 分酿亞胺化之狀態施用在金屬镇上,但通常係經由施用聚醯亞胺 前驅物溶液且之後執行熱或化學轉化程序於其上。作為熱處理方 法’可施用任何方法,但通常進行以下之熱處理方法:施用及乾 燥部份醯亞胺化之聚酿亞胺樹脂或聚酿亞胺前驅物樹脂以形成凝 膠薄膜’且其後將該凝膠薄膜在乾燥爐中歷經一預設時間或連續 地將該凝膠薄骐輪送至乾燥爐中歷經 一預設時間以將其定型。熱 處理之溫度通常係3〇〇°C或更高’更佳地,執行300至500°c高溫 處理。 _ 可使用一能滿足本發明目的之已知加熱方式作為祕理方式。 通常係在氮氛圍下使用熱風加熱爐。然而,在此情況下,於酿 亞胺化反應之發展過程(hist〇ry)中在厚度方向上會發生差異性, 使得無法進行均句之熱處理,以及在厚膜之情況下係難以將存在-於膜内之溶劑移除而造成低劣的尺寸穩定性。因此,為執行本發 _In Chemical Formula 3, Ar and Ah are a (C6 to C20) aromatic group, wherein - is selected from a real number of from 1 to 1000, 0000. However, if the desired characteristics of the present invention can be attained, the composition of the polyimide resin is not particularly limited and may be a single polyimide resin, a derivative thereof or a mixture of at least a polyimide resin and a derivative thereof. Composed of. Further, an anthraquinone promoter such as pyridine and quinoline, a adhesion promoter such as a decane coupling agent, a titanate coupling agent, an epoxy compound, etc., an antifoaming agent which contributes to the application process, and other additives such as an anti-foaming agent such as pyridine and quinoline may be used. Leveling agent, etc. 12 201032999 The present invention provides a method of making a flexible metallized laminate comprising: (a) applying and drying a polyaminic acid solution on a surface of a metal foil and After the imidization reaction, the glass transition temperature of 300 to 500 〇c is followed by formation of a first polyimine layer; (b) application and drying of the polyaminic acid solution. The polyamic acid solution is located at the institute. Forming a surface of one of the first polyimine layers and having a linear thermal expansion coefficient of i to 20 ppm/K after the hydrazide reaction, followed by formation of a second polyimine layer; (c) application and drying a polyaminic acid solution which is located on the surface of one of the formed second polyimide layers and has a glass transition of 200 ° C s Tg S 300 ° C after the hydrazide reaction Temperature and a coefficient of linear thermal expansion of 30 to 200 ppm/Κ, followed by formation of a thermoplastic polyimide layer; and (d) heat treatment of the resulting laminate at T to 50 (Tc) a laminate produced. In steps (a) to (c), prior to application as a polyimine The drying temperature after the polyamic acid solution of the resin is not limited, but is preferably from 8 to 22 (rc. The poly-aracine solution (after step (a) to step (c)) becomes a coating. A solid gel film with self-supportability on a copper plate. When the temperature of the dry polyamid solution is lower than the rib, the volatilization rate of the solvent is not significant, so it is difficult to substantially Show drying effect. On the other hand, when the drying temperature of the polyaminic acid solution is higher than 22 (rc, the coating layer will be excessively hardened, so there is a risk of lowering the physical properties thereafter or failing to exhibit stable physical properties. The present invention provides a flexible metal-clad laminate composed of a first polyimine layer, a second polyimide layer and a thermoplastic polyimide layer on one surface of a metal foil. The formation is formed by repeatedly applying and drying the polyimide precursor resin and then converting it to form a polyolefin resin by infrared heat treatment. 13 201032999 The polyimine resin contained in each layer can be directly used in complete Amination The state of the partially imidized state is applied to the metal town, but usually by applying a solution of the polyimide precursor solution and then performing a thermal or chemical conversion procedure. As the heat treatment method, any method can be applied, but usually The following heat treatment method: applying and drying a portion of the yttrium iodized polyimide resin or the poly-imine precursor resin to form a gel film' and thereafter subjecting the gel film to a preset in a drying oven The gel is thinly or continuously fed to the drying oven for a predetermined period of time to shape it. The heat treatment temperature is usually 3 ° C or higher. More preferably, 300 to 500 ° C is performed. High temperature treatment. _ A known heating method which satisfies the object of the present invention can be used as a secret method. A hot air heating furnace is usually used under a nitrogen atmosphere. However, in this case, there is a difference in the thickness direction in the development process of the imidization reaction, which makes it impossible to carry out the heat treatment of the uniform sentence, and in the case of a thick film, it is difficult to exist. - Solvent removal in the film results in poor dimensional stability. Therefore, in order to perform this issue _

明層合物之熱處理,較佳係使用紅外線加熱器,藉此可在臈之厚 度方向上執行均勻之熱處理;藉此,可製造具有絕佳之尺寸穩定 性之可撓性覆金屬層合物,其於蝕刻後之尺寸變化係〇 I。〆 Q +0.1% ’ 較佳係-0.05% to +0.05%。 作為當施用於本發明各層中之適用的塗佈方法,可使用刮 佈法、滾轴塗佈法、模具塗佈法、及簾塗佈法、以 刀塗 久其組合之方 法等’然而,滿足本發明目的之方法並不限於此。 本發明中所敘述之雙面之覆金屬層合物可經由額外層人 但 金屬箔於熱塑性聚醯亞胺層而製造。層合溫度並未特,〇新的 必須加熱在熱塑性聚醯亞胺樹脂之坡璃轉移溫度承j限制’ 炅高之溫度 14 201032999 當熱塑性聚醯亞胺之加熱溫度不足夠時,無法保證與金屬箔壓合 (compression)所需之充分流動性,因此無法保證穩定之黏合強 度。較佳地,壓合時之熱處理溫度通常較熱塑性聚醯亞胺樹脂之 坡璃轉移溫度(Tg)高上30至100°C。此外,層合壓力較佳係50 至200公斤力/公分之線性壓力。當壓力升高時,可降低層合溫度, 因此盡可能地在高層合壓力下進行工作。 本發明提供一在第一聚醯亞胺層與金屬箔之介面具有1.0至 3.00公斤力/公分之剝離強度的可撓性覆金屬層合物。此外,本發 © 明提供一可撓性覆金屬層合物,在其熱塑性聚醯亞胺層與堆疊於 其上之金屬箔(經由執行進一步之層合)的介面具有1·〇至3.0公 斤力/公分之剝離強度,可穩定地維持黏合強度。 【優勢效果】 如上所述,根據本發明之可撓性覆金屬層合物於醯亞胺化反應 後具有絕佳之外觀,於蝕刻後及前不會彎曲,且與金屬箔具有絕 佳之黏合強度。 ^ 此外,根據本發明所製造之層合物係可經由層合過程製造為雙 面之覆金屬層合物。 本發明上述或者其他之目的、特徵及優點係照以下較佳實施態 樣配合所附圖式之敘述而更為清楚。 【最佳態樣】 在下文中,參照於以下實施例以更詳細地描述本發明,但本發 明之範疇並不限於此。 以下實施例所使用之縮寫如下: 15 201032999 -DMAc: N,N-二甲基乙酿胺(N,N-dimethylacetamide) -BPDA: 3,3’,4,4,-聯苯四羧酸二酐(3,3,,4,4,-biphenyl tetracarboxylic acid dianhydride) -PDA:對苯二胺(p_phenylenediamine) -ODA: 4,4’二胺基二苯謎(4,4'-diaminodiphenylether) -TPE-R: 1,3· 二 (4- 胺基苯氧基)苯 (1,3-bis(4-aminophenoxy)benzene ) -BAPB: 4,4’-二(4-胺基苯氧基)聯苯(4,4'-bis(4-aminophenoxy) biphenyl). 本發明所揭露之物理性質係經由如下之測量方法: 1. 線性熱膨脹係數(CTE)及玻璃轉移溫度(Tg)之測量 線性熱膨脹係數係經由每分鐘5°C之速率升溫至最高4〇〇eC,且 經由使用熱機械分析儀(thermomechanical analyzer, TMA )測量 在l〇〇°C至250°C之間的熱膨脹數值並取其平均而獲得。此外,透 過上述方法所測量之熱膨脹曲線的轉折點視為破璃轉移溫度 (Tg)。 2. 蝕刻後及前之彎曲 為測量層合物於餘刻後及前之彆曲’將各樣品裁切為長寬係3〇 公分之正方形且測量各角落之離地高度並取其平均,當該平均值 不超過1公分時,視為一平坦層合物。 3·聚醯亞胺樹脂與金屬箔之間的黏合強度 為測量聚醯亞胺樹脂與金屬箔之間的黏合強度,層合物之金屬 層係圖案化成寬度係1公董’之後利用一萬能材料測試機 (universal testing machine, UTM )測試 18〇。剝離強度。 201032999 4. 聚醯亞胺樹脂之外觀銳察 經由觀察各自被裁切為長寬係3G公分正方形之層合物的表面型 態,當無起泡、膨脹,且聚酿亞胺樹脂層之間或聚醯亞胺樹脂層 與金屬箔之間無脫層時,斷定該樹脂表面之外觀係良好的。 5. 餘刻後之尺寸變化 根據IPC-TM-650, 2.2,4之方法Β。在各正方形樣品(縱向(MD ) 及橫向(TD)係275 X 255公釐)的四個端點鑽鑿位置識別之孔 洞後,存放在23。(:及50%相對濕度(RH)之恆溫恆濕器中歷時 © 24小時,測量各個孔洞之間的距離三次並取其平均。之後,蝕刻 金屬箔後並存放於恆溫恆濕器中歷時24小時,再次測量孔洞間的 距離,計算所測量之橫向與縱向之變化值。 [製備實施例1] 將二胺(12,312公克之?〇八與2,533公克之〇1^)授拌並完全 溶解於211,378公克之DMAc溶液中,分批次加入二酐(總量達 38’0〇〇公克之BpDA)於其中。之後’持續進行歷時約24小時之 攪拌以製備聚醯胺酸溶液。 ❹ 以此製備之聚醯胺酸溶液係經塗佈以製備薄膜且升溫至最高達 35〇t歷時60分鐘,並維持於此溫度下歷經約30分鐘。經熟化後 之骐厚度係達20微米。所測量之玻璃轉移溫度及線性膨脹係數係 及 12.0 ppm/K。 [製備實施例2至8] 使用如表1所列之組合物及含量並以與製備實施例1相同之方 式製備聚醯胺酸溶液。 17 201032999 [表i] \ 二酐 二胺1 二胺2 DMAc 線性熱膨脹係數 (C.T.E, ppm/K) Tg (°C) 製備實施例 1 BPDA, 38,000公克 PDA, 12,312公克 ODA, 2,533公克 211,378 公克 12.0 342 製備實施例 2 BPDA, 12,000公克 PDA, 3,063公克 ODA, 2,431公克 117,072公克 24.1 323 製備實施例 3 BPDA, 7000公克 PDA, 2,380公克 ODA, 232公克 33,108公克 9.8 351 製備實施例 4 bpdaT^ 14,000公克 PDA, Ί 4,032公克 ODA, 1 1,866公克 82,063公克 13.3 321 製備實施例 5 BPDA, 3,300公克 PDA, 606公克 TPE-R, 1,639公克 38,227公克 40.7 234 製備實施例 6 BPDA, 757公克 BAPB 948公克 - 11,572公克 65.11 259 製備實施例 7 BPDA, 2,800公克 TPE-R 2782公克 - 38,475公克 50.8 232 製備實施例 8 BPDA, 1,500公克 ODA, 1021公克 - 22,688公克 47.3 281 實施例1 . 將製備實施例2所製備之聚醢胺酸溶液施用於一具12微米厚度 之電解沉積銅箔上(表面粗糙度’ Rz=2.〇微米)’之後於13〇°C下 乾燥以此形成第一聚醢亞胺前驅物層。 將製備實施例3所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 @ 驅物層之表面上,之後於150°C下乾燥’以形成第二聚醢亞胺前驅 物層。 之後,將製備實施例8所製備之聚醯胺酸溶液施用於第二聚醯 亞胺前驅物層之表面上,之後於丨50(:下乾燥,以形成熱塑性聚醯 亞胺前媒物層。 爾後,如上之層合物係在氮氛圍中,於l50°c至395。(:下進行谔 經9分鐘之熱處理,以使其元全酿亞胺化。在熟化之後,第—來 醯亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層之厚度係分別達5 18 201032999 微米、13微米及3.5微米。該等結果揭露於表2中。 實施例2 將製備實施例2所製備之聚醯胺酸溶液施用於一具12微米厚度 之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於160°C下 乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例3所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 驅物層之表面上,之後於150°C下乾燥,以形成第二聚醯亞胺前驅 物層。 〇 之後,將製備實施例7所製備之聚醯胺酸溶液施用於第二聚醯 亞胺前驅物層之表面上,之後於150°C下乾燥,以形成熱塑性聚醯 亞胺前驅物層。 爾後,如上之層合物係在氮氛圍中,於150°C至395°C下進行歷 經9分鐘之熱處理,以使其完全醯亞胺化。在熟化之後,第一聚 酿亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層之厚度係分別達5 微米、13微米及3微米。該等結果揭露於表2中。 實施例3 將製備實施例2所製備之聚醯胺酸溶液施用於一具12微米厚度 之之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於160°C 下乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例3所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 驅物層之表面上,之後於150°C下乾燥,以形成第二聚醯亞胺前驅 物層。 在此之後,將製備實施例6所製備之聚醯胺酸溶液施用於第二 聚醯亞胺前驅物層之表面上,之後於160°C下乾燥,以形成熱塑性 19 201032999 聚醯亞胺前驅物層。 爾後,如上之層合物係在氮氛圍中,於150°C至395°C下進行歷 經10分鐘之熱處理,以使其完全醯亞胺化。在熟化之後,第一聚 醯亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層之厚度係分別達5 微米、13微米及3微米。該等結果揭露於表2中。 實施例4 將製備實施例2所製備之聚醯胺酸溶液施用於一具18微米厚度 之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於160°C下 乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例1所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 驅物層之表面上,之後於150°C下乾燥,以形成第二聚醯亞胺前驅 物層。 之後,將製備實施例5所製備之聚醯胺酸溶液施用於第二聚醯 亞胺前驅物層之表面上,之後於150°C下乾燥,以形成熱塑性聚醯 亞胺前驅物層。 爾後,如上之層合物係在氮氛圍中,於150°C至395°C下進行歷 經10分鐘之熱處理,以使其完全醯亞胺化。在熟化之後,第一聚 醯亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層之厚度係分別達5 微米、18微米及3微米。該等結果揭露於表2中。 比較實施例1 將製備實施例2所製備之聚醯胺酸溶液施用於一具有12微米厚 度之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於130°C 下乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例3所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 20 201032999 驅物層之表面上,之後於150°C下乾燥,以形成第二聚醯亞胺前驅 物層。 爾後,如上之層合物係在氮氛圍中,於150°C至395°C下進行歷 經19分鐘之熱處理,以使其完全酿亞胺化。在熟化之後,第一聚 醯亞胺層及第二聚醯亞胺層之厚度係分別達5微米及13微米。該 等結果揭露於表3中。 比較實施例2 將製備實施例4所製備之聚醢胺酸溶液施用於一具有18微米厚 © 度之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於150°C 下乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例7所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 驅物層之表面,之後於150°C下乾燥,以形成第二聚醯亞胺前驅物 層。 爾後,如上之層合物係在氮氛圍中,於150°C至395°C下進行歷 經7分鐘之熱處理,以使其完全醯亞胺化。在熟化之後,第一聚 醯亞胺層及第二聚醯亞胺層之厚度係分別達18微米及3微米。該 V 等結果揭露於表3中。 比鮫實施例3 將製備實施例7所製備之聚醯胺酸溶液施用於一具有12微米厚 度之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於180°C 下乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例3所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 驅物層之表面,之後於150°C下乾燥,以形成第二聚醯亞胺前驅物 層。 21 201032999 在此之後,將製備實施例7所製備之聚醯胺酸溶液施用於第二 聚醯亞胺前驅物層之表面上,之後於150°C下乾燥,以形成熱塑性 聚醯亞胺前驅物層。 爾後,如上之層合物係在氮氛圍中,於150°C至395°C下進行歷 經9分鐘之熱處理,以此係完全醯亞胺化。在熟化之後,各第一 聚醯亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層之厚度係分別 達2微米、22微米及2微米。該等結果揭露於表3中。 比較實施例4 將製備實施例8所製備之聚醯胺酸溶液施用於一具有18微米厚 © 度之電解沉積銅箔上(表面粗糙度,Rz=2.0微米),之後於130°C 下乾燥,以形成第一聚醯亞胺前驅物層。 將製備實施例1所製備之聚醯胺酸溶液施用於第一聚醯亞胺前 驅物層之表面上,之後於150°C下乾燥,以形成第二聚醯亞胺前驅 物層。 在此之後,將製備實施例8所製備之聚醯胺酸溶液施用於第二 聚醯亞胺前驅物層之表面上,之後於180°C下乾燥,以形成熱塑性 聚醯亞胺前驅物層。 爾後,如上之層合物係在氮氛圍中,於230°C至385°C下進行歷 經24分鐘之熱處理,以使其完全醯亞胺化。在熟化之後,第一聚 醯亞胺層、第二聚醯亞胺層及熱塑性聚醯亞胺層之厚度係分別達 2.5微米、20微米及3微米。該等結果揭露於表3中。 22 201032999 [表2] 實施例1 實施例2 實施例3 實施例4 金屬箔及粗縫度 (Illumination, Rz ) 電解銅箔 厚度12微米 粗糙度2微半 電解銅箔 厚度12微米 粗糙度2微米 電解銅箔 厚度12微米 粗糙度2微米 電解銅箔 厚度18微米 粗糙度2微米 構造 (厚度,微米) 製備實施例2/ 製備實施例3/ 製備實施例8 (5/13/3.5) 製備實施例2/ 製備實施例3/ 製備實施例7 (5/13/3) 製備實施例2/ 製備實施例3/ 製備實施例6 (5/13/3) 製備實施例2/ 製備實施例1/ 製備實施例5 (5/18/3) 蝕刻前之彎曲 良好 良好 良好 良好 蝕刻後之彆曲 良好 良好 良好 良好 醯亞胺化反應後之外觀 良好 良好 良好 良好 與銅箔之黏著強度 (公斤力/公分) 1.0 1.1 1.0 1.0 蝕刻後之尺寸變化 (MD/TD,%) 0.04/0.03 0.00/0.01 -0.01/-0.01 -0.01/-0.01 [表3] 比較實施例1 比較實施例2 比較實施例3 比較實施例4 金屬箔及粗糙度 (Illumination,Rz ) 電解銅箔 厚度12微米 粗糙度2微米 電解銅箔 厚度18微米 粗糙度2微米 電解銅箔 厚度12微米 粗糖度2微米 電解銅箔 厚度18微米 粗糙度2微米 構造 (厚度,微米) 製備實施例2/ 製備實施例3/ (5/13) 製備實施例4/ 製備實施例7 (18/3) 製備實施例7/ 製備實施例3/ 製備實施例7 (2/22/2) 製備實施例8/ 製備實施例1/ 製備實施例8 (2.5/20/3) 蝕刻前之弩曲 銅箔係朝内弩曲 樹脂係朝内穹曲 - 蝕刻後之彎曲 銅箔係朝内彎曲 樹脂係朝内f曲 醯亞胺化反應後之 外觀 良好 良好 低劣 低劣 第1圖係根據本發明之實施例1中之金屬箔表面之外觀照片。 參照第1圖,根據本發明之金屬箔外觀係良好,因其無生成氣泡、 膨脹,且聚醯亞胺層間或聚醯亞胺層與金屬箔之間無脫層。另一 方面,第2圖係根據比較實施例3中之金屬箔之一表面之外觀照 片。參照第2圖,使用具有232°C (低於300°C )之玻璃轉移溫度 23 201032999 的樹脂作為第一聚醯亞胺層,其在金屬箔表面生成氣泡,因此可 視其外觀係不佳的。 上文係以特定實施態樣描述本發明,於此技術領域中具有通常知 識者將輕易了解,在不違背如後附申請專利範圍所定義之本發明 精神與範疇下可進行各種變化及調整。 【圖式簡單說明】 第1圖係根據本發明實施例1之金屬箔表面之外觀照片。 第2圖係根據比較實施例3金屬表面之外觀照片。 【主要元件符號說明】 (無)The heat treatment of the laminate is preferably carried out by using an infrared heater, whereby uniform heat treatment can be performed in the thickness direction of the crucible; thereby, a flexible metallized laminate having excellent dimensional stability can be produced. Its dimensional change after etching is 〇I. 〆 Q +0.1% ' is preferably -0.05% to +0.05%. As a suitable coating method to be applied to each layer of the present invention, a doctor blade method, a roller coating method, a die coating method, a curtain coating method, a knife coating method, and the like may be used. However, The method for satisfying the object of the present invention is not limited thereto. The double-sided metallized laminate described in the present invention can be produced via an additional layer of human but metal foil in a thermoplastic polyimide layer. The lamination temperature is not special, and the new one must be heated at the temperature of the transition temperature of the thermoplastic polyimide resin. The temperature is high. 14 201032999 When the heating temperature of the thermoplastic polyimide is not enough, it cannot be guaranteed. The sufficient fluidity required for the metal foil to be pressed, so that a stable bonding strength cannot be ensured. Preferably, the heat treatment temperature at the time of pressing is usually 30 to 100 ° C higher than the glass transition temperature (Tg) of the thermoplastic polyimide film. Further, the lamination pressure is preferably a linear pressure of 50 to 200 kgf/cm. When the pressure is raised, the lamination temperature can be lowered, so that work is performed as much as possible under high pressure. The present invention provides a flexible metal clad laminate having a peel strength of 1.0 to 3.00 kgf/cm in the interface between the first polyimide layer and the metal foil. In addition, the present invention provides a flexible metallized laminate having a thickness of from 1 〇 to 3.0 kg in the interface of the thermoplastic polyimide layer and the metal foil stacked thereon (via performing further lamination) The peel strength of force/cm can stably maintain the bonding strength. Advantageous Effects As described above, the flexible metal-clad laminate according to the present invention has an excellent appearance after the imidization reaction, does not bend after etching, and is excellent with metal foil. Bond strength. Further, the laminate produced according to the present invention can be produced as a double-sided metal-clad laminate via a lamination process. The above and other objects, features and advantages of the present invention will become apparent from [Bottom of the Invention] Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the invention is not limited thereto. The abbreviations used in the following examples are as follows: 15 201032999 -DMAc: N,N-dimethylacetamide -BPDA: 3,3',4,4,-biphenyltetracarboxylic acid II (3,3,4,4,4-biphenyl tetracarboxylic acid dianhydride) -PDA: p-phenylenediamine -ODA: 4,4'diaminodiphenylether -TPE -R: 1,3 · bis(4-aminophenoxy)benzene -BAPB: 4,4'-bis(4-aminophenoxy) Benzene (4,4'-bis(4-aminophenoxy) biphenyl). The physical properties disclosed in the present invention are as follows: 1. Measurement of linear thermal expansion coefficient (CTE) and glass transition temperature (Tg) The temperature is raised to a maximum of 4 〇〇eC at a rate of 5 ° C per minute, and the thermal expansion value between l ° ° C and 250 ° C is measured and averaged by using a thermomechanical analyzer (TMA). And get. Further, the turning point of the thermal expansion curve measured by the above method is regarded as the breaking transition temperature (Tg). 2. The curvature after etching and before is the measurement of the laminate after the moment and before the song 'cut each sample into a square of 3 cm length and width and measure the height of each corner from the ground and take the average. When the average value does not exceed 1 cm, it is regarded as a flat laminate. 3. The bonding strength between the polyimide resin and the metal foil is to measure the bonding strength between the polyimide resin and the metal foil, and the metal layer of the laminate is patterned into a width of 1 gong' after using one million energy The universal testing machine (UTM) was tested at 18 〇. Peel strength. 201032999 4. The appearance of the polyimide resin was observed by observing the surface morphology of each of the laminates which were cut into 3G cm squares, when there was no foaming, swelling, and between the layers of the polyimide resin layer. When the layer of the polyimide resin layer and the metal foil are not delaminated, it is judged that the appearance of the surface of the resin is good. 5. Dimensional change after the engraving According to the method of IPC-TM-650, 2.2, 4Β. After drilling the position-recognizing holes at the four end points of each square sample (longitudinal (MD) and transverse (TD) lines 275 X 255 mm), store at 23. (: and 50% relative humidity (RH) constant temperature and humidity device for 24 hours, measure the distance between each hole three times and take the average. After that, etch the metal foil and store it in the constant temperature and humidity device for 24 hours. In the hour, the distance between the holes was measured again, and the measured lateral and longitudinal changes were calculated. [Preparation Example 1] The diamine (12,312 g of 〇8 and 2,533 g of 〇1^) was mixed and completely dissolved in In a 211,378 g DMAc solution, dianhydride (a total of 38'0 g of BpDA) was added in batches. Thereafter, the stirring was continued for about 24 hours to prepare a polyaminic acid solution. The prepared polyaminic acid solution was coated to prepare a film and heated to a maximum of 35 〇t for 60 minutes and maintained at this temperature for about 30 minutes. The thickness of the mash after curing was 20 microns. The glass transition temperature and the coefficient of linear expansion were 12.0 ppm/K. [Preparation Examples 2 to 8] The polyamine solvent solution was prepared in the same manner as in Preparation Example 1, using the compositions and contents as listed in Table 1. 17 201032999 [Table i] \ dianhydride Diamine 1 Diamine 2 DMAc Linear Thermal Expansion Coefficient (CTE, ppm/K) Tg (°C) Preparation Example 1 BPDA, 38,000 g PDA, 12,312 g ODA, 2,533 g 211,378 g 12.0 342 Preparation Example 2 BPDA, 12,000 g PDA, 3,063 g ODA, 2,431 g 117,072 g 24.1 323 Preparation Example 3 BPDA, 7000 g PDA, 2,380 g ODA, 232 g 33,108 g 9.8 351 Preparation Example 4 bpdaT^ 14,000 g PDA, Ί 4,032 g ODA, 1 1, 866 g 82,063 g 13.3 321 Preparation Example 5 BPDA, 3,300 g PDA, 606 g TPE-R, 1,639 g 38,227 g 40.7 234 Preparation Example 6 BPDA, 757 g BAPB 948 g - 11,572 g 65.11 259 Preparation Example 7 BPDA, 2,800 g TPE-R 2782 g - 38,475 g 50.8 232 Preparation Example 8 BPDA, 1,500 g ODA, 1021 g - 22,688 g 47.3 281 Example 1. The polyglycine solution prepared in Preparation Example 2 was applied to A 12 μm thick electrodeposited copper foil (surface roughness 'Rz=2.〇micron)' is dried at 13 ° C to form a first polyimine precursor Floor. The polyamic acid solution prepared in Preparation Example 3 was applied to the surface of the first polyimine precursor layer, followed by drying at 150 ° C to form a second polyimideimide precursor layer. Thereafter, the polyamic acid solution prepared in Preparation Example 8 was applied to the surface of the second polyimideimide precursor layer, followed by drying at 丨50 (: to form a thermoplastic polyimide intermediate layer). Thereafter, the above laminate is in a nitrogen atmosphere at a temperature of from 150 ° C to 395. (: a heat treatment for 9 minutes is carried out to make the alkalization of the element. After the ripening, the first - 醯The thickness of the imine layer, the second polyimide layer, and the thermoplastic polyimide layer were 5 18 201032999 microns, 13 microns, and 3.5 microns, respectively. These results are disclosed in Table 2. Example 2 Preparation Examples 2 prepared polyaminic acid solution was applied to a 12 micron thick electrolytically deposited copper foil (surface roughness, Rz = 2.0 microns), and then dried at 160 ° C to form a first polyimine precursor The polyamic acid solution prepared in Preparation Example 3 was applied to the surface of the first polyimideimide precursor layer, followed by drying at 150 ° C to form a second polyimideimide precursor layer. After the hydrazine, the poly-proline solution prepared in Preparation Example 7 is applied to the second polymerization. The surface of the imine precursor layer is then dried at 150 ° C to form a thermoplastic polyimide precursor layer. Thereafter, the above laminate is in a nitrogen atmosphere at 150 ° C to 395 ° C. After 9 minutes of heat treatment, it is completely imidized. After the aging, the thickness of the first polyimine layer, the second polyimide layer and the thermoplastic polyimide layer are respectively 5 micrometers. 13 μm and 3 μm. The results are disclosed in Table 2. Example 3 The polyamic acid solution prepared in Preparation Example 2 was applied to an electrodeposited copper foil having a thickness of 12 μm (surface roughness, Rz = 2.0 μm), followed by drying at 160 ° C to form a first polyimine precursor layer. The polyphthalic acid solution prepared in Preparation Example 3 was applied to the first polyimideimide precursor layer. On the surface, it was then dried at 150 ° C to form a second polyimideimide precursor layer. Thereafter, the polyamic acid solution prepared in Preparation Example 6 was applied to the second polyimine precursor. On the surface of the layer, then dried at 160 ° C to form a thermoplastic 19 201032999 The yttrium imide precursor layer. Thereafter, the above laminate is subjected to a heat treatment at 150 ° C to 395 ° C for 10 minutes in a nitrogen atmosphere to completely imidize the yttrium. The thickness of the polyimine layer, the second polyimide layer, and the thermoplastic polyimide layer were 5 microns, 13 microns, and 3 microns, respectively. These results are disclosed in Table 2. Example 4 Preparation of the preparation The polylysine solution prepared in Example 2 was applied to an 18 μm thick electrodeposited copper foil (surface roughness, Rz = 2.0 μm), and then dried at 160 ° C to form a first polyimine. The precursor layer was applied to the surface of the first polyimideimide precursor layer, followed by drying at 150 ° C to form a second polyimide precursor. Floor. Thereafter, the polyamic acid solution prepared in Preparation Example 5 was applied onto the surface of the second polyimide precursor layer, followed by drying at 150 ° C to form a thermoplastic polyimide precursor layer. Thereafter, the above laminate was subjected to a heat treatment at 150 ° C to 395 ° C for 10 minutes in a nitrogen atmosphere to completely imidize it. After aging, the first polyimine layer, the second polyimide layer, and the thermoplastic polyimide layer have thicknesses of 5 microns, 18 microns, and 3 microns, respectively. These results are disclosed in Table 2. Comparative Example 1 The polyamic acid solution prepared in Preparation Example 2 was applied to an electrodeposited copper foil having a thickness of 12 μm (surface roughness, Rz = 2.0 μm), followed by drying at 130 ° C. A first polyimine precursor layer is formed. The polyaminic acid solution prepared in Preparation Example 3 was applied to the surface of the first polyiminamide front 20 201032999 drive layer, followed by drying at 150 ° C to form a second polyimine precursor layer. . Thereafter, the above laminate was subjected to heat treatment at 150 ° C to 395 ° C for 19 minutes in a nitrogen atmosphere to be completely imidized. After aging, the thickness of the first polyimine layer and the second polyimide layer are 5 microns and 13 microns, respectively. These results are disclosed in Table 3. Comparative Example 2 The polyamic acid solution prepared in Preparation Example 4 was applied to an electrolytically deposited copper foil having a thickness of 18 μm (surface roughness, Rz = 2.0 μm), followed by drying at 150 ° C. To form a first polyimine precursor layer. The polyamic acid solution prepared in Preparation Example 7 was applied to the surface of the first polyimideimide precursor layer, followed by drying at 150 °C to form a second polyimideimide precursor layer. Thereafter, the above laminate was subjected to a heat treatment at 150 ° C to 395 ° C for 7 minutes in a nitrogen atmosphere to completely imidize it. After aging, the first polyimine layer and the second polyimide layer have thicknesses of 18 microns and 3 microns, respectively. The results of V and so on are disclosed in Table 3. Comparative Example 3 The polyamic acid solution prepared in Preparation Example 7 was applied to an electrolytically deposited copper foil having a thickness of 12 μm (surface roughness, Rz = 2.0 μm), followed by drying at 180 ° C. To form a first polyimine precursor layer. The polyamic acid solution prepared in Preparation Example 3 was applied to the surface of the first polyimideimide precursor layer, followed by drying at 150 °C to form a second polyimideimide precursor layer. 21 201032999 After that, the polyglycine solution prepared in Preparation Example 7 was applied to the surface of the second polyimideimide precursor layer, followed by drying at 150 ° C to form a thermoplastic polyimide precursor. Layer of matter. Thereafter, the above laminate was subjected to a heat treatment at 150 ° C to 395 ° C for 9 minutes in a nitrogen atmosphere, thereby completely hydrazating. After aging, the thickness of each of the first polyimide layer, the second polyimide layer, and the thermoplastic polyimide layer is 2 μm, 22 μm, and 2 μm, respectively. These results are disclosed in Table 3. Comparative Example 4 The polyamic acid solution prepared in Preparation Example 8 was applied to an electrolytically deposited copper foil having a thickness of 18 μm (surface roughness, Rz = 2.0 μm), followed by drying at 130 ° C. To form a first polyimine precursor layer. The polyamic acid solution prepared in Preparation Example 1 was applied onto the surface of the first polyimideimide precursor layer, followed by drying at 150 °C to form a second polyimideimide precursor layer. Thereafter, the polyphthalic acid solution prepared in Preparation Example 8 was applied to the surface of the second polyimideimide precursor layer, followed by drying at 180 ° C to form a thermoplastic polyimide film precursor layer. . Thereafter, the above laminate was subjected to a heat treatment at 230 ° C to 385 ° C for 24 minutes in a nitrogen atmosphere to completely imidize it. After aging, the first polyimide layer, the second polyimide layer, and the thermoplastic polyimide layer have thicknesses of 2.5 micrometers, 20 micrometers, and 3 micrometers, respectively. These results are disclosed in Table 3. 22 201032999 [Table 2] Example 1 Example 2 Example 3 Example 4 Metal foil and roughness (Illumination, Rz) Electrolytic copper foil thickness 12 micron roughness 2 micro semi-electrolytic copper foil thickness 12 micron roughness 2 micron Electrolytic copper foil thickness 12 micron roughness 2 micron electrolytic copper foil thickness 18 micron roughness 2 micron structure (thickness, micron) Preparation Example 2 / Preparation Example 3 / Preparation Example 8 (5/13/3.5) Preparation Example 2/ Preparation Example 3/Preparation Example 7 (5/13/3) Preparation Example 2 / Preparation Example 3 / Preparation Example 6 (5/13/3) Preparation Example 2 / Preparation Example 1 / Preparation Example 5 (5/18/3) Good bending before etching Good, good, good distortion after etching, good, good, good, good appearance after imidization reaction, good, good adhesion strength with copper foil (kg/min 1.0 1.1 1.0 1.0 Dimensional change after etching (MD/TD, %) 0.04/0.03 0.00/0.01 -0.01/-0.01 -0.01/-0.01 [Table 3] Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparison Example 4 Metal foil and roughness (Illumination, Rz) Electrolytic copper foil thickness 12 micron roughness 2 micron electrolytic copper foil thickness 18 micron roughness 2 micron electrolytic copper foil thickness 12 micron coarse sugar 2 micron electrolytic copper foil thickness 18 micron roughness 2 micron structure (thickness, micron) Preparation Example 2 / Preparation Example 3/(5/13) Preparation Example 4 / Preparation Example 7 (18/3) Preparation Example 7 / Preparation Example 3 / Preparation Example 7 (2/22/2) Preparation Example 8 / Preparation Example 1/ Preparation Example 8 (2.5/20/3) The pre-etched copper foil is varnished inwardly to distort the resin. The etched copper foil is bent inwardly and the resin is inwardly curved. The appearance after the amination reaction is good, good, inferior and inferior. Fig. 1 is a photograph showing the appearance of the surface of the metal foil according to Example 1 of the present invention. Referring to Fig. 1, the appearance of the metal foil according to the present invention is good because it does not generate bubbles or swell, and there is no delamination between the polyimide layers or the polyimide layer and the metal foil. On the other hand, Fig. 2 is an appearance photograph of the surface of one of the metal foils according to Comparative Example 3. Referring to Fig. 2, a resin having a glass transition temperature of 23 201032999 of 232 ° C (less than 300 ° C) is used as the first polyimide layer, which generates bubbles on the surface of the metal foil, so that the appearance is not good. . The present invention has been described in terms of specific embodiments thereof, and those skilled in the art will readily appreciate that various changes and modifications can be made without departing from the spirit and scope of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a photograph showing the appearance of the surface of a metal foil according to Embodiment 1 of the present invention. Fig. 2 is a photograph showing the appearance of the metal surface according to Comparative Example 3. [Main component symbol description] (none)

24twenty four

Claims (1)

201032999 七、申請專利範圍: 1. 一種可撓性覆金屬層合物,包含: , 一第一聚醯亞胺層,位於一金屬箔之一表面上且具有300 至500°C之玻璃轉移溫度; 一第二聚醯亞胺層,位於該第一聚醯亞胺層之一表面上 且具有1至20 ppm/K之線性熱膨脹係數;以及 一熱塑性聚醯亞胺層,位於該第二聚醯亞胺層之一表面 上。 0 2. 如請求項1所述之可撓性覆金屬層合物,其中另一金屬箔係 進一步層合於該熱塑性聚醯亞胺層之一表面上。 3. 如請求項2所述之可撓性覆金屬層合物,其中該熱塑性聚醯 亞胺層與該金屬箔之介面的剝離強度係1.0至3.0公斤力/公 分。 ' 4. 如請求項1所述之可撓性覆金屬層合物,其中各該層係經以 下方式形成:重覆地施用及乾燥一聚醯亞胺先驅物樹脂,之 後藉由紅外線熱處理將其轉化為聚醯亞胺樹脂。 〇 5. 如請求項1所述之可撓性覆金屬層合物,其中該第一聚醯亞 胺層之線性熱膨脹係數係5至40 ppm/K。 6. 如請求項1所述之可撓性覆金屬層合物,其中該熱塑性聚醯 亞胺層之玻璃轉移溫度係200°C S Tg S 300°C且其線性熱膨 脹係數係30至200 ppm/K。 7. 如請求項1所述之可撓性覆金屬層合物,其中該第一聚醯亞 胺層與該金屬箔之介面的剝離強度係1.0至3.0公斤力/公分。 8. 如請求項1所述之可撓性覆金屬層合物,其中該可撓性覆金 25 201032999 屬層合物於蝕刻後之尺寸變化係-0.05 %至+0.05 %。 9. 如請求項5所述之可撓性覆金屬層合物,其中形成該第一聚 醯亞胺層或該第二聚醯亞胺層之樹脂係由以下化學式1所示: [化學式1]201032999 VII. Patent application scope: 1. A flexible metal-clad laminate comprising: a first polyimide layer on a surface of a metal foil and having a glass transition temperature of 300 to 500 ° C a second polyimide layer on the surface of one of the first polyimide layers and having a linear thermal expansion coefficient of 1 to 20 ppm/K; and a thermoplastic polyimide layer located in the second polymerization On one surface of the quinone imine layer. A flexible metal clad laminate according to claim 1, wherein another metal foil is further laminated on one surface of the thermoplastic polyimide layer. 3. The flexible metal clad laminate according to claim 2, wherein the peel strength of the interface between the thermoplastic polyimide layer and the metal foil is 1.0 to 3.0 kgf/cm. 4. The flexible metal-clad laminate according to claim 1, wherein each of the layers is formed by repeatedly applying and drying a polyamidene precursor resin, followed by infrared heat treatment. It is converted to a polyimide resin. 5. The flexible metal clad laminate of claim 1, wherein the first polyimide layer has a coefficient of linear thermal expansion of 5 to 40 ppm/K. 6. The flexible metallized laminate of claim 1, wherein the thermoplastic polyimide layer has a glass transition temperature of 200 ° C Tg S 300 ° C and a linear thermal expansion coefficient of 30 to 200 ppm / K. 7. The flexible metallized laminate of claim 1, wherein the peel strength of the interface between the first polyimide layer and the metal foil is 1.0 to 3.0 kgf/cm. 8. The flexible metallized laminate of claim 1, wherein the flexible gold-coated 25 201032999 sizing composition has a dimensional change after etching of -0.05% to +0.05%. 9. The flexible metal-clad laminate according to claim 5, wherein the resin forming the first polyimine layer or the second polyimide layer is represented by the following Chemical Formula 1: [Chemical Formula 1] ] 其中,0.5 S m $ 1.0 且 0 S n S 0.5,m+n=l ;以及 化學式1中之X及Y係獨立為一選自以下結構之衍生自芳香 族二酐化合物之四價部分,彼此係相同或不同:Wherein, 0.5 S m $ 1.0 and 0 S n S 0.5, m+n=l; and X and Y in the chemical formula 1 are independently a tetravalent moiety derived from an aromatic dianhydride compound selected from the following structures, and each other The same or different: 10.如請求項6所述之可撓性覆金屬層合物,其中該熱塑性聚醯 亞胺層係以下化學式2所表示之樹脂: Π匕學式2]10. The flexible metal-clad laminate according to claim 6, wherein the thermoplastic polyimide layer is a resin represented by the following Chemical Formula 2: Π匕学式2] 在上述化學式2中,m及η係實數且m+n=l,0.3 S m S 1·0, 0 ^ η ^ 0.7 ; 201032999 上述化學式2中之W係一選自以下之衍生自芳香族二胺基化 合物之二價部分,其係單獨或經彼此共聚合而使用:In the above Chemical Formula 2, m and η are real numbers and m+n=l, 0.3 S m S 1·0, 0 ^ η ^ 0.7; 201032999 The W system in the above Chemical Formula 2 is derived from the following aromatic derived from A divalent moiety of an amine compound which is used alone or in copolymerization with each other: Wi係選自-(CH2)-、-(CH2)P- (P係一選自2至10之整數)、 -CH2-C(CH2)2-CH2-; W2 係選自-Ο-、-CO-、-S-、-S〇2-、-C(CH3)2-、-CONH-、 -C(CF3)2-、-(CH2)-; W3 係選自-O-、-CO-、-S-、-S02-、-C(CH3)2-、-CONH-、 -C(CF3)2-、-(CH2)-; w4 係選自-〇-、-CO-; W5 係選自-O-、-CO-、-S-、-S02-、-C(CH3)2-、-CONH-、 -C(CF3)2-、-(CH2)-; W6 係選自-O-、-CO-、-S-、-S02-、-C(CH3)2-、-CONH-、 -C(CF3)2-、-(CH2)-, 上述化學式2中之Z係一選自以下之衍生自芳香族二酐化合 物之四價部分,其係單獨或經彼此共聚合而使用: 27 201032999Wi is selected from the group consisting of -(CH2)-, -(CH2)P- (P system is selected from an integer from 2 to 10), -CH2-C(CH2)2-CH2-; W2 is selected from -Ο-, - CO-, -S-, -S〇2-, -C(CH3)2-, -CONH-, -C(CF3)2-, -(CH2)-; W3 is selected from -O-, -CO- , -S-, -S02-, -C(CH3)2-, -CONH-, -C(CF3)2-, -(CH2)-; w4 is selected from -〇-, -CO-; W5 From -O-, -CO-, -S-, -S02-, -C(CH3)2-, -CONH-, -C(CF3)2-, -(CH2)-; W6 is selected from -O- , -CO-, -S-, -S02-, -C(CH3)2-, -CONH-, -C(CF3)2-, -(CH2)-, the Z system in the above Chemical Formula 2 is selected from the following It is derived from the tetravalent portion of the aromatic dianhydride compound, which is used alone or via copolymerization with each other: 27 201032999 其中上述化學式2中之P係一選自以下之衍生自芳香族二胺 基化合物之二價部分,其係單獨或經彼此共聚合而使用:Wherein P in the above Chemical Formula 2 is a divalent moiety derived from an aromatic diamine compound selected from the following, which is used alone or by copolymerization with each other: 其中Pi係一選自-0-、-CONH-之基團; 係一選自-H、_CH3、-CF3之基團; 上述化學式2中之Q係一選自以下之衍生自芳香族二軒之四 「 價部分,其係單獨或經彼此共聚合而使用: >Wherein Pi is a group selected from -0-, -CONH-; a group selected from -H, -CH3, -CF3; wherein Q of the above Chemical Formula 2 is selected from the following The fourth part of the price, which is used alone or in combination with each other: > 如請求項10所述之可撓性覆金屬層合物,其中上述化學式2 中之W係一選自以下之衍生自芳香族二胺基化合物之二價部 分,其係單獨或經彼此共聚合而使用: 28 201032999The flexible metal-clad laminate according to claim 10, wherein W in the above Chemical Formula 2 is a divalent moiety derived from an aromatic diamine compound selected from the group consisting of the following, or copolymerized with each other And use: 28 201032999 其中 W3、W5及 W6係各自選自-〇-、*^〇-、_8_、-8〇2-、<(0:113)2-、-CONH-、-C(CF3)2-、-(CH2)-。 12. —種製造一可撓性覆金屬層合物之方法,包含: Ο ❹ (a) 施用及乾燥聚醯胺酸溶液,該聚醯胺酸溶液係位於一 金屬箔之一表面上且在酿亞胺化反應後具有30〇至 500eC之玻璃轉移溫度’之後形成一第一聚醯亞胺層; (b) 施用及乾燥聚酿胺睃溶液,該聚醯胺酸溶液係位於該 所形成之第一聚醯亞胺層之一表面上且在酿亞胺化 反應後具有1至20 PPm/K之線性熱膨脹係數,之後形 成一第二聚酿亞胺層; (c) 施用及乾燥聚醯胺酸溶液,該聚醯胺酸溶液位於該所 形成之第二聚醢亞胺層之一表面上且在酿亞胺化反 應後具有2〇〇°C S Tg S 300 C之破璃轉移溫度及3〇 至200 PPm/K之線性熱膨脹係數,之後形成一熱塑性 聚醯亞胺層;以及 (d) 在〇炱5〇〇°C下進行熱處理以醯亞胺化該所製造之層 合物° 13如請求項12所述之製造一可撓性覆金屬層合物之方法,其中 ,步施用及乾燥聚醯胺酸溶液之乾燥溫度係80至20〇 〇C。 29 201032999 14. 如請求項12所述之製造一可撓性覆金屬層合物之方法,其中 各層之塗佈方法係使用選自以下群組之方法:刮刀塗佈法、 滾軸塗佈法、模具塗佈法、簾塗佈法、以及其組合之方法。 15. 如請求項12所述之製造一可撓性覆金屬層合物之方法,其中 於該所製造層合物之醯亞胺化的熱處理,係於氮氛圍圍下使 用一紅外線加熱器而進行。Wherein W3, W5 and W6 are each selected from the group consisting of -〇-, *^〇-, _8_, -8〇2-, <(0:113)2-, -CONH-, -C(CF3)2-,- (CH2)-. 12. A method of making a flexible metallized laminate comprising: Ο ❹ (a) applying and drying a polyaminic acid solution on a surface of a metal foil and After the imidization reaction, a glass transition temperature of 30 〇 to 500 eC is formed to form a first polyimine layer; (b) applying and drying a polyamin amide solution, the poly lysine solution is formed therein a surface of one of the first polyimine layers having a linear thermal expansion coefficient of 1 to 20 PPm/K after the imidization reaction, followed by formation of a second polyamidene layer; (c) application and drying of the poly a proline solution, which is located on the surface of one of the second polyimine layers formed and has a glass transition temperature of 2°°C Tg S 300 C after the amination reaction And a linear thermal expansion coefficient of from 3 200 to 200 PPm/K, followed by formation of a thermoplastic polyimide layer; and (d) heat treatment at 〇炱5 ° C to imidize the resulting laminate A method of producing a flexible metal clad laminate according to claim 12, wherein the step is applied and The drying temperature of the dried polyaminic acid solution is 80 to 20 〇C. The method of manufacturing a flexible metal-clad laminate according to claim 12, wherein the coating method of each layer is a method selected from the group consisting of: a knife coating method, a roller coating method , a mold coating method, a curtain coating method, and a combination thereof. 15. The method of producing a flexible metal-clad laminate according to claim 12, wherein the heat treatment of the imidization of the produced laminate is performed by using an infrared heater under a nitrogen atmosphere. get on. 3030
TW098136897A 2008-10-31 2009-10-30 Flexible metal-clad laminate and a method of manufacturing the same TWI494214B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080107653A KR20100048474A (en) 2008-10-31 2008-10-31 Flexible metal-clad laminate and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201032999A true TW201032999A (en) 2010-09-16
TWI494214B TWI494214B (en) 2015-08-01

Family

ID=42129471

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098136897A TWI494214B (en) 2008-10-31 2009-10-30 Flexible metal-clad laminate and a method of manufacturing the same

Country Status (3)

Country Link
KR (1) KR20100048474A (en)
TW (1) TWI494214B (en)
WO (1) WO2010050759A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066574A (en) * 2011-12-28 2014-09-24 Sk新技术株式会社 Flexible metal clad laminate and preparation method thereof
TWI614108B (en) * 2010-12-20 2018-02-11 Sk新技術股份有限公司 Method for manufacturing thick polyimide flexible metal-clad laminate
CN111559135A (en) * 2020-06-10 2020-08-21 浙江福斯特新材料研究院有限公司 Polyimide lamination, preparation method thereof and copper-clad plate comprising polyimide lamination

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615253B2 (en) 2010-12-20 2014-10-29 エスケー イノベーション シーオー., エルティーディー. Method for producing thick film polyimide flexible metal laminate
WO2013100627A1 (en) * 2011-12-28 2013-07-04 에스케이이노베이션 주식회사 Flexible metal clad laminate and preparation method thereof
KR101865725B1 (en) * 2016-02-24 2018-06-08 현대자동차 주식회사 Flexible copper clad laminate for vehicle led lamp, flexible printed circuit board comprisisng the same and manufacturing method of the same
KR101865723B1 (en) * 2016-02-24 2018-06-08 현대자동차 주식회사 Flexible copper clad laminate, flexible printed circuit board comprisisng the same and manufacturing method of the same
US10751977B2 (en) * 2016-06-03 2020-08-25 Arisawa Mfg. Co., Ltd. Method for manufacturing flexible metal-clad laminated plate
CN110925636A (en) * 2019-12-03 2020-03-27 深圳市腾鑫精密胶粘制品有限公司 Energy-saving lamp strip capable of being cut at will and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022288A (en) * 1998-06-29 2000-01-21 Sony Chem Corp Flexible printed board and its manufacture
US7491447B2 (en) * 2003-03-26 2009-02-17 Lg Chem, Ltd. Double-sided metallic laminate and method for manufacturing the same
CN100397959C (en) * 2003-05-06 2008-06-25 三菱瓦斯化学株式会社 Metal plated laminate
KR101183320B1 (en) * 2004-05-13 2012-09-14 가부시키가이샤 가네카 Adhesive film, flexible metal-clad laminate, and processes for producing these
JP4619860B2 (en) * 2004-07-13 2011-01-26 新日鐵化学株式会社 Flexible laminate and method for manufacturing the same
JP4757645B2 (en) * 2006-01-31 2011-08-24 新日鐵化学株式会社 Method for producing double-sided metal-clad laminate
JP4777206B2 (en) * 2006-09-29 2011-09-21 新日鐵化学株式会社 Method for producing flexible copper-clad laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614108B (en) * 2010-12-20 2018-02-11 Sk新技術股份有限公司 Method for manufacturing thick polyimide flexible metal-clad laminate
CN104066574A (en) * 2011-12-28 2014-09-24 Sk新技术株式会社 Flexible metal clad laminate and preparation method thereof
CN104066574B (en) * 2011-12-28 2016-08-24 Sk新技术株式会社 Flexible metal foil duplexer and manufacture method thereof
TWI563887B (en) * 2011-12-28 2016-12-21 Sk Innovation Co Ltd Flexible metal clad laminate and manufacturing method thereof
CN111559135A (en) * 2020-06-10 2020-08-21 浙江福斯特新材料研究院有限公司 Polyimide lamination, preparation method thereof and copper-clad plate comprising polyimide lamination

Also Published As

Publication number Publication date
WO2010050759A3 (en) 2010-07-08
KR20100048474A (en) 2010-05-11
TWI494214B (en) 2015-08-01
WO2010050759A2 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
TW201032999A (en) Flexible metal-clad laminate and a method of manufacturing the same
JP4755264B2 (en) Polyimide film and method for producing the same
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
JP4362917B2 (en) Metal foil laminate and its manufacturing method
TWI564145B (en) Metal-clad laminate and method of manufacturing the same
TW201347623A (en) Flexible metal clad laminate and manufacturing method thereof
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2012134478A (en) Method for manufacturing thick polyimide flexible metal-clad laminate
JP4373433B2 (en) Double-sided metal laminate and manufacturing method thereof
JP4571043B2 (en) Laminated body and method for producing the same
JP7489451B2 (en) Multilayer polyimide film and method for producing same
JP2016141015A (en) Double-sided metal-clad laminate and method of manufacturing the same
TWI332377B (en) Metal-clad laminate
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
KR20060129081A (en) Flexible printed wiring board and manufacturing method thereof
JP4510506B2 (en) Method for producing polyimide metal laminate
KR20040084028A (en) Double-Sided Metallic Laminate and Method for Preparing thereof
JP2006054474A (en) Laminate and process for producing the same
JP3076060B2 (en) Flexible printed circuit board and method of manufacturing the same
TWI388260B (en) Single - sided soft copper foil laminated board and its manufacturing method
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
EP1614535B1 (en) Multi-layer polyimide films and flexible circuit substrates therefrom
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP2005329641A (en) Substrate for flexible printed circuit board and its production method