TW201032680A - Multilayer fluorine resin film and printed wiring board - Google Patents

Multilayer fluorine resin film and printed wiring board Download PDF

Info

Publication number
TW201032680A
TW201032680A TW099101341A TW99101341A TW201032680A TW 201032680 A TW201032680 A TW 201032680A TW 099101341 A TW099101341 A TW 099101341A TW 99101341 A TW99101341 A TW 99101341A TW 201032680 A TW201032680 A TW 201032680A
Authority
TW
Taiwan
Prior art keywords
layer
fluororesin film
film
multilayer
copper
Prior art date
Application number
TW099101341A
Other languages
Chinese (zh)
Other versions
TWI461119B (en
Inventor
Jun Okamoto
Tetsuo Okuyama
Satoshi Maeda
Original Assignee
Toyoboseki Kabushikikaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoboseki Kabushikikaisha filed Critical Toyoboseki Kabushikikaisha
Publication of TW201032680A publication Critical patent/TW201032680A/en
Application granted granted Critical
Publication of TWI461119B publication Critical patent/TWI461119B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4635Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating flexible circuit boards using additional insulating adhesive materials between the boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

An object of the present invention is to provide a laminate with high thermal dimension stability which uses a polyimide film as substrate. Provided are a multilayer fluorine resin film formed by laminating fluorine resin layer/polyimide resin layer/fluorine resin layer in sequence; a multilayer fluorine resin film with a linear expansion coefficient of 10 ppm/DEG C to 30 ppm/DEG C; a copper-clad multilayer fluorine resin film which laminates a copper foil onto at least one surface of the multilayer fluorine resin film; and a printed wiring board formed by removing part of the copper foil from the copper-clad multilayer fluorine resin film.

Description

201032680 六、發明說明: 【發明所屬之技術領域】 本發明係關於擔負起電子機器、零件的小型化、輕量 化目的之可撓性印刷配線基板等所用之多層氟樹脂膜,將 金屬箔的銅箔積層於此之覆銅多層氟樹脂膜,將銅箔去除 一部分以形成電路圖案而組成之印刷配線板,以及積層此 等而組成之多層印刷配線板。 ^ 【先前技術】 一般而言,高頻區域的訊號傳送中,係要求傳送速度 的提升及雜訊的降低,可撓性印刷配線板中,亦從基板材 料、配線技術、電路形態等進行探討。 0往,由具有導電體層與電性絕緣體層之積層體所構 成之可撓性印刷配線板的電性絕緣體層,係使用耐熱性佳 之聚醯亞胺樹脂。由聚醯亞胺樹脂層與導電體層所構成之 積層體的製法,可運用下列3種方法。 © (1)透過接著劑層將聚醯亞胺膜與銅箔接著之方法, (2) 藉由蒸鍍及/或金屬電鍍等方法將金屬層形成於聚 醯亞胺樹脂膜上之方法, (3) 將聚醯亞胺樹脂前驅物塗布於金屬箔,接著藉由熱 處理等從該前驅物形成聚醯亞胺樹脂,以將聚醯亞胺樹脂 層形成於金屬箔上之方法(參照專利文獻1)。 然而,此般方法中,聚醯亞胺樹脂層與導電體層之接 著性並不足,有時會引起電路的動作不良。此外,由於在 201032680 構成爲印刷配線板時之傳輸損耗較大,所以並不適合作爲 高頻構件。 係有人揭示一種藉由在與電性絕緣體層接觸之一側的 導電體層表面上形成約3/im的凹凸,來提升導電體層與電 性絕緣體層之接著性者(參照專利文獻2)。然而,此般方法 中,由於高頻區域的表面效果,在具有該凹凸之表面與非 粗化面上,訊號到達時間產生偏差,所以必須盡可能將該 ^ 凹凸進行低分布化。 係有人揭示一種藉由使二氧化矽等的無機微粒子分散 於聚醯亞胺來降低介電常數之聚醯亞胺。然而,此般方法 中,由於難以在奈米等級下使無機微粒子微分散於聚醯亞 胺,所以有損及聚醯亞胺膜的表面平滑性或透明性之問 題。當表面平滑性受損時,在將聚醯亞胺膜用於印刷基板 的基材時,相對於構成金屬層之銅箔的密著性劣化,使印 刷基板的品質降低。 φ 係有人揭示一種藉由使用以連結基將在側鏈具有分極 率小的三級丁基之2個二苯基醚構造相互地連結之芳香族 二胺化合物,來降低介電常數之特定構造的聚醯亞胺(參照 專利文獻3)。然而,此般方法中,由於必須使用特定構造 的芳香族二胺化合物,所以欠缺可運用於具有種種構造之 聚醯亞胺之泛用性。 將芳香族二酸酐與芳香族二胺進行反應來製得溶液狀 態的聚醯胺酸後,急速加熱此聚醯胺酸使殘存溶劑及所產 201032680 生的縮合水揮發,藉此得到均一地發泡之聚醯亞胺發泡體 (參照專利文獻4)。然而,此般方法中,不僅難以將聚醯胺 酸成形爲膜狀,且由於是發泡體,會損及表面平滑性或透 明性,此外,由於具有氣泡,所以有機械強度降低之問題。 一般而言,爲人所知者是當將氟原子導入至聚醯亞胺 的分子內時,可降低介電常數。例如有人揭示一種具有形 成於氟化聚醯亞胺膜的表面之金屬層之聚醯亞胺-金屬複 合膜(參照專利文獻5)。此外,係有人揭示一種將氟化聚醯 亞胺膜使用在選自由基材、接著層及表面保護層所組成之 群組的至少1種之多層配線基板(參照專利文獻6) »然而, 此般方法中,隨著導入至聚醯亞胺的分子內之氟原子的含 有率提高,乃具有由此聚醯亞胺所構成之膜的拉伸彈性率 及拉伸破壞應變降低,且機械強度降低之問題。 係有人揭示一種將塑膠中具有最小的介電常數之氟樹 脂與金屬板予以層合之積層體(參照專利文獻7)。然而,此 般方法中,氟樹脂膜於高速穿孔時,會與刀刃磨擦而從金 屬板中剝離,結果導致良率降低之問題。此外,氟樹脂膜 的機械特性之拉伸強度、伸長率,在室溫下與聚烯烴爲同 等’且線膨脹係數爲60ppm/°C~160ppm/°C,例如當與線膨 脹係數爲16ppm/°C之銅箔積層時,彼此之線膨脹係數的偏 離較大,使用中有剝離之疑慮,或是有產生翹曲之疑慮。 [先前技術文獻] [專利文獻] 201032680 [專利文獻1]日本特開2004-001510號公報 [專利文獻2]日本特開平〇5_〇5 5746號公報 [專利文獻3]日本特開2001-323061號公報 [專利文獻4]日本特開2004-342541號公報 [專利文獻5]日本特許第2866155號公報 [專利文獻6]日本特開2001 -308542號公報 [專利文獻7]日本特開2002-1 25297號公報 【發明內容】 ❹ 發明所欲解決之課題 本發明之目的’係將適合作爲電子零件的基材之高溫 處理下該變形亦較少且耐熱性佳之聚醯亞胺樹脂用作爲芯 材’並在該表面配置氟樹脂,藉此提供一種可同時達成聚 醯亞胺樹脂的特長之低線膨脹係數(作爲多層氟樹脂膜,其 係具有與銅箔爲同等之線膨脹係數)、高力學特性,與氟樹 脂的特長之低介電常數、低吸水率(降低聚醯亞胺的高吸水 〇 率)之多層氟樹脂膜,覆銅多層氟樹脂膜,印刷配線板,以 及多層印刷配線板。 用以解決課題之手段 本發明者們係進行精心探討,結果發現,將氟樹脂層 積層於聚醯亞胺膜的雙面之多層氟樹脂膜,當用於覆銅積 層板及印刷配線板以及FPC、TAB捲帶、COF捲帶膜等時, 可製得在高溫高濕時不會產生剝離等,且電特性佳之製 品,因而完成本發明。 201032680 亦即,本申請案之第一發明係由下列構成所成。 1. —種多層氟樹脂膜,爲依序積層(A)氟樹脂層/(B)聚 醯亞胺樹脂層/(A)氟樹脂層所組成之多層氟樹脂膜,其中 該多層氟樹脂膜的線膨脹係數爲10ppm/°C〜30ppm/°C,(A) 層的厚度比{全體(A)層/多層氟樹脂膜}爲60%~90%,且該(A) 層是由四氟乙烯·全氟烷基乙烯醚共聚物(PFA)、四氟乙 烯·六氟丙烯共聚物(FEP)、四氟乙烯·六氟丙烯·全氟烷 基乙烯醚共聚物(EPE)中任一種所形成之熱可塑性氟樹脂 ❹ 層。 2. 如1.之多層氟樹脂膜,其中(A)層爲含官能基的熱可 塑性氟樹脂層。 3. 如1.或2.之多層氟樹脂膜,其中(B)層爲具有聚醯亞 胺苯并噚唑成分之聚醯亞胺層,且線膨脹係數爲-l〇PPm/°C ~10ppm"C。 4. 如1.至3.中任一項之多層氟樹脂膜’其中(A)層的厚 ❹ 度爲1.0/zm~50//m,且(B)層的厚度爲 5. 如1.至4.中任一項之多層氟樹脂膜,其中(A)層於室 溫下的儲存彈性模數:E’ (A)與(B)層於室溫下的儲存彈性 模數:E’ (B)之比{E,(A)/ E’ (B)}爲 2.0%~20% ° 6. —種覆銅多層氟樹脂膜,其係在如1.至5_中任一項 之多層氟樹脂膜的至少單面上積層有銅箔。 7. —種印刷配線板,其係將如6.之覆銅多層氟樹脂膜 t 的銅范去除一部分以形成電路圖案而構成。 201032680 8 . —種多層印刷配線板,其係將如1 .至7 .中任一項之 多層氟樹脂膜、覆銅多層氟樹脂膜、以及印刷配線板予以 積層而組成。 此外,本申請案之第二發明係由下列構成所成。 9. 一種多層氟樹脂膜,爲在不透過接著劑將(C)銅層 形成於(B)聚醯亞胺樹脂層之覆銅積層板(CCL)的(B)面,更 進一步積層有(A)氟樹脂層而成之多層氟樹脂膜,其中該多 層氟樹脂膜中之(A)層(B)層積層體的線膨脹係數爲l〇ppm/ ❹ °C~30ppm/°C,(A)層的厚度比{(A)層/(A)層(B)層積層體}爲 60 % ~90 %,且該(A)層是由四氟乙烯·全氟烷基乙烯醚共聚 物(PFA)、四氟乙烯·六氟丙烯共聚物(FEP)、四氟乙烯· 六氟丙烯·全氟烷基乙烯醚共聚物(EPE)中任一種所形成之 熱可塑性氟樹脂層。 10. 如9.項之多層氟樹脂膜,其中(A)層爲含官能基的 熱可塑性氟樹脂層。 φ 11.如9.或10.之多層氟樹脂膜,其中(B)層爲具有聚醯 亞胺苯并曙唑成分之聚醯亞胺層,且線膨脹係數爲-l〇PPm/ 。。~10ppm/〇c ° i 2.如9.至11.中任一項之多層氟樹脂膜,其中(A)層的 厚度爲1.0/zm~50ym,且(B)層的厚度爲l.〇Mm~38ym。 13.如9.至12.中任一項之多層氟樹脂膜,其中(A)層於 室溫下的儲存彈性模數:E’ (A)與(B)層於室溫下的儲存彈 性模數:E,(B)之比{E,(A)/ E’ (B)}爲 2.0% 〜20%。 201032680 14. 一種覆銅多層氟樹脂膜,其係在如9.至13.中任一 項之多層氟樹脂膜的(A)面上積層有銅箔。 15. —種印刷配線板,其係將如9.至14.中任一項之多 層氟樹脂膜、以及覆銅多層氟樹脂膜的銅層去除一部分以 形成電路圖案而構成。 1 6 . —種多層印刷配線板,其係將如9 .至1 5 .中任一項 之多層氟樹脂膜、覆銅多層氟樹脂膜、以及印刷配線板予 以積層而組成。 〇 發明之效果 本申請案之第一發明之依序積層(A)氟樹脂層/(B)聚醯 亞胺樹脂層/(A)氟樹脂層所組成之多層氟樹脂膜,爲可同 時達成聚醯亞胺樹脂的特長之低線膨脹係數(作爲多層氟 樹脂膜,其係具有與銅箔爲同等之線膨脹係數)、高力學特 性,與氟樹脂的特長之低介電常數、低吸水率(降低聚醢亞 胺的高吸水率)之多層膜。 ❹ 本申請案之第二發明之在不透過接著劑將(C)銅層形 成於(B)聚醯亞胺樹脂層之覆銅積層板(CCL)的(B)面,更進 一步積層有(A)氟樹脂層而成之多層氟樹脂膜,其中該多層 氟樹脂膜中之(A)層(B)層積層體的線膨脹係數爲10ppm/°C 〜3 0ppm/°C之多層氟樹脂膜,爲可同時達成聚醯亞胺樹脂的 特長之低線膨脹係數(作爲多層氟樹脂膜,其係具有與銅箔 爲同等之線膨脹係數)、高力學特性,與氟樹脂的特長之低 介電常數、低吸水率(降低聚醯亞胺的高吸水率)之多層膜。 201032680 本發明之多層氟樹脂膜,其與銅箔之接著性佳,與銅 箔的線膨脹係數之16 ppm/°C之偏離小,且吸水率低,即使 在高溫高濕等環境下,亦幾乎不會產生翹曲或扭曲,其結 果爲,所製得之印刷配線板等之品質、生產時的良率亦可 提升。 使用本發明之多層氟樹脂膜之覆銅多層氟樹脂膜,印 刷配線板,以及多層印刷配線板,即使用作爲暴露於高溫 赢 之電子零件等,亦可實現在製造時該基材不易產生翹曲或 扭曲,且不會產生多層氟樹脂膜與銅箔之剝離之高品質電 子零件的製造以及良率的提升,就產業上乃極具意義。 【實施方式】 實施發明之形態 以下詳細說明本發明。 本發明中所用之(A)氟樹脂層,爲藉由將氟樹脂熔融體 進行溶液鑄膜來形成薄膜之方法所製得之氟樹脂膜,或是 e 將前述氟樹脂熔融體塗布於聚醯亞胺樹脂層(膜)所形成之 層等,但就處理性及生產性等來看,較佳爲氟樹脂膜的形 態。 前述氟樹脂,可從一般成形中所用之以往所知的熱可 塑性氟樹脂中,適當地選擇使用。 熱可塑性氟樹脂的例子,有不飽和氟化烴、不飽和氟 氯化烴、含醚基之不飽和烴等之聚合物或共聚物’或是此 等不飽和氟化烴類與乙烯之共聚物等。具體例子有選自由 -10- 201032680 四氟乙烯、氯三氟乙烯、六氟丙烯、全氟烷基乙烯醚、偏 二氟乙烯及氟化乙烯之單體的聚合物或共聚物,或是此等 單體與乙烯之共聚物等。 熱可塑性氟樹脂的更具體例子,有四氟乙烯·全氟烷 基乙烯醚共聚物(PFA)、四氟乙烯.六氟丙烯共聚物(FEP)、 四氟乙烯·六氟丙烯·全氟烷基乙烯醚共聚物(EPE)、四氟 乙烯·乙烯共聚物(ETFE)、聚偏二氟乙烯(PVDF)、聚氯三 氟乙烯(PCTFE)、氯三氟乙烯·乙烯共聚物(ECTFE)等。 當中就耐熱性、難燃性、及電特性之觀點來看’較佳 爲全氟共聚物之四氟乙烯·全氟烷基乙烯醚共聚物(PFA)、 四氟乙烯·六氟丙烯共聚物(FEP)、四氟乙烯·六氟丙烯· 全氟烷基乙烯醚共聚物(EPE)。 前述氟樹脂,尤佳爲使用含官能基的熱可塑性氟樹 脂。當使用不含官能基的熱可塑性氟樹脂時,爲了獲得可 承受實用要求之接著性,必須將聚醯亞胺膜進行搪光處 ❹ 理、電暈處理、電漿處理、離子槍處理、蝕刻處理等表面 處理,有導致成本提高之疑慮。 含官能基的熱可塑性氟樹脂,例如爲含有選自由羧酸 基或其衍生基、羥基、腈基、氰酸基、胺甲醯氧基、膦醯 氧基、鹵膦醯氧基、磺酸基或其衍生基及磺醯鹵基之官能 基的熱可塑性氟樹脂(含官能基的氟樹脂)。此般含官能基 的氟樹脂,一般係使用在不大幅損及該性質之範圍內,於 一般前述成形中所用之熱可塑性氟樹脂內含有前述官能基 -11- 201032680 者。製得此含官能基的氟樹脂時,例如可預先合成一般成 形中所用之前述例子所示的熱可塑性氟樹脂,然後再藉由 加成或取代此等官能基予以導入,或是在前述例示之熱可 塑性氟樹脂的合成時,將具有此等官能基之單體進行共聚 合而製得。 前述官能基的具體例,有-COOH、-CH2COOH、 -COOCH3、 -CONH2、 -OH、 -CH20H、 -CN、 -CH20(C0)NH2、 赢 -CH20CN、-CH20P(0)(0H)2、-CH20P(0)C12、-S02F 等之基。 〇 此等官能基,較佳是在氟樹脂的製造時藉由將具有官能基 之含氟的單體進行共聚合而導入至氟樹脂中》 含有此等官能基之單體,較佳是以0.5~10重量%的量 共聚合於含官能基的氟樹脂,更佳爲1〜5重量%。含官能基 的單體在含官能基的氟樹脂中之分布,可爲均一或不均 一。當含官能基的氟樹脂中之含官能基的單體之含有比例 過低時,其作爲相溶化劑的效果較少,另一方面,當該含 〇 有比例過高時,由於含官能基的氟樹脂彼此較強的相互作 用,可能會引起與交聯反應類似之反應,使黏度急遽增加 而難以熔融成形。此外,含官能基的單體之含有比例過高 時,含官能基的氟樹脂之耐熱性有惡化之傾向。 前述含官能基的氟樹脂的黏度或分子量並無特別限 制,可在不超過調配此等含官能基的氟樹脂之一般成形用 的熱可塑性氟樹脂的黏度或分子量之範圍內,較佳爲同等 程度者。 -12- 201032680 前述氟樹脂,較佳亦含有〇.ι~2質量%之賦予防靜電性 之防靜電劑。防靜電劑較佳爲非離子性界面活性劑、陰離 子性界面活性劑、陽離子性界面活性劑、雙性離子界面活 性劑等之界面活性劑。 前述氟樹脂,較佳亦含有可降低介電常數或介電正切 之無機塡充材。無機塡充材例如有二氧化矽、黏土、滑石、 碳酸鈣、雲母、矽藻土、氧化鋁、氧化鋅、氧化鈦、氧化 ^ 鈣'氧化鎂、氧化鐵、氧化錫、氧化銻、氫氧化鈣、氫氧 ❹ 化鎂、氫氧化鋁、鹼性碳酸鎂、碳酸鎂、碳酸鋅、碳酸鋇、 碳鈉鋁石、水滑石、硫酸鈣、硫酸鋇、矽酸鈣、蒙特石、 皂土、活性白土、海泡石、絲狀鋁英石、絹雲母、玻璃纖 維、玻璃珠、二氧化矽球、碳黑、石墨、碳纖維、碳球、 木粉、硼酸鋅等。 前述無機塡充材可單獨使用1種或倂用2種以上。無 機塡充材的含量,相對於氟樹脂較佳爲1~100質量%。此 〇 外,當此等無機塡充材爲多孔質時更可降低介電常數或介 電正切,所以更佳。 前述氟樹脂的厚度較佳爲1.0#m~50/zm,尤佳爲1.0 #m~38/zm,更佳爲1.0#m~25/zm。膜厚較50/zm還厚者, 就電子零件的輕巧化之目的來看較不佳。另一方面,當膜 厚較1.0/zm還薄時,氟樹脂所帶來之電特性的提升、吸水 性的降低、接著性的提升等之表面改質的效果較小,所以 較不佳。 -13- 201032680 前述氟樹脂的儲存彈性模數:E’ (A)並無特別限定, 爲人所知者’若使用前述組成的氟樹脂,則一般可使用 0.3GPa~l .OGPa 之値。 此外,前述氟樹脂的線膨脹係數並無特別限定,爲人 所知者,若使用前述組成的氟樹脂,則一般可使用50ppm/ °C ~150ppm/°C 之値。 再者,就高頻對應之觀點來看,膜的介電常數、及介 電正切較小者爲佳。前述氟樹脂層的介電常數、及介電正 切並無特別限定,爲人所知者,若使用前述組成的氟樹脂, 則一般可使用較低之値。具體而言,1MHz的介電常數爲 2.0〜2.2,1MHz 的介電正切爲 3.0x10-4~5.0x10·4。 在前述氟樹脂的表面上,可因應必要施以依據偶合劑 (胺基矽烷、環氧基矽烷等)之處理、噴砂處理、搪光處理、 電暈處理、電漿處理、離子槍處理、蝕刻處理等。 本發明中所用之(B)聚醯亞胺樹脂層,例如有藉由將芳 φ 香族四羧酸類(將酸酐、酸及醯胺鍵結性衍生物總稱爲類, 以下相同)與芳香族二胺類(將胺及醯胺鍵結性衍生物總稱 爲類,以下相同)進行反應所製得之聚醯胺酸溶液,進行溶 液鑄膜、乾燥、熱處理(醯亞胺化)來成膜之方法所製得之 聚醯亞胺膜,或是將前述聚醯胺酸溶液塗布於氟樹脂層(膜) 並進行乾燥、熱處理(醯亞胺化)所形成之層等,就處理性 或生產性等來看,較佳爲聚醯亞胺膜的形態。 以下主要說明聚醯亞胺膜。 -14- 201032680 前述聚醯亞胺並無特別限定,較佳的例子有下列芳香 族二胺類與芳香族四羧酸(酐)類之組合。 A. 具有焦蜜石酸殘基之芳香族四羧酸類與具有苯并噚 唑構造之芳香族二胺類之組合。 B. 具有苯二胺骨架之芳香族二胺類與具有聯苯四羧酸 骨架之芳香族四羧酸類之組合。 C. 具有二苯基醚骨架之芳香族二胺類與具有焦蜜石酸 殘基之芳香族四羧酸類之組合。 當中特佳者爲A.具備具有苯并曙唑構造之芳香族二胺 殘基的聚醯亞胺膜。 前述具有苯并噚唑構造之芳香族二胺類的構造並無特 別限定,具體有下列所示者。此等二胺,較佳爲全部二胺 的70莫耳%以上,尤佳爲80莫耳%以上。 [化學式1]5-胺基-2-(對胺基苯基)苯并噚唑[Technical Field] The present invention relates to a multilayer fluororesin film used for a flexible printed wiring board or the like which is used for miniaturization and weight reduction of electronic equipment and parts, and copper of a metal foil. A copper-clad multilayer fluororesin film in which a foil is laminated, a printed wiring board in which a part of the copper foil is removed to form a circuit pattern, and a multilayer printed wiring board in which these layers are laminated. ^ [Prior Art] In general, in the high-frequency area signal transmission, the transmission speed is required to be improved and the noise is reduced. In the flexible printed wiring board, the substrate material, wiring technology, and circuit form are also discussed. . In the case of the electrically insulating layer of the flexible printed wiring board comprising the laminate of the conductor layer and the electrical insulator layer, a polyimide resin having excellent heat resistance is used. The following three methods can be applied to the production method of the laminate comprising the polyimide layer and the conductor layer. © (1) a method of forming a polyimide film with a copper foil through an adhesive layer, and (2) a method of forming a metal layer on a polyimide film by vapor deposition and/or metal plating, (3) A method in which a polyimide resin precursor is applied to a metal foil, and then a polyimide resin is formed from the precursor by heat treatment or the like to form a polyimide film on the metal foil (refer to a patent) Document 1). However, in such a method, the adhesion between the polyimide layer and the conductor layer is insufficient, and the malfunction of the circuit may be caused. In addition, since the transmission loss is large when the printed wiring board is formed in 201032680, it is not suitable as a high-frequency component. It has been disclosed that the adhesion between the conductor layer and the electrical insulator layer is improved by forming an unevenness of about 3/im on the surface of the conductor layer on the side contacting the electrical insulator layer (see Patent Document 2). However, in this method, due to the surface effect in the high-frequency region, the signal arrival time varies on the surface having the unevenness and the non-roughened surface, so it is necessary to reduce the unevenness as much as possible. A polyimine which lowers the dielectric constant by dispersing inorganic fine particles such as cerium oxide in polyimine is disclosed. However, in such a method, since it is difficult to microdisperse the inorganic fine particles to the polyimide at the nanometer level, the surface smoothness or transparency of the polyimide film is impaired. When the surface smoothness is impaired, when the polyimide film is used for the substrate of the printed substrate, the adhesion to the copper foil constituting the metal layer is deteriorated, and the quality of the printed substrate is lowered. φ has disclosed a specific structure for lowering the dielectric constant by using an aromatic diamine compound in which two diphenyl ether structures having a tertiary butyl group having a small partial polarization in a side chain are bonded to each other by a linking group. Polyimine (see Patent Document 3). However, in such a method, since it is necessary to use a specific structure of an aromatic diamine compound, there is a lack of versatility applicable to polyimine having various structures. After the aromatic dianhydride and the aromatic diamine are reacted to obtain a polylysine in a solution state, the polyamic acid is rapidly heated to volatilize the residual solvent and the condensed water produced in 201032680, thereby obtaining a uniform emission. A foamed polyimine foam (see Patent Document 4). However, in such a method, it is difficult to form the polyamic acid into a film shape, and it is a foam, which may impair the surface smoothness or transparency, and has a problem that the mechanical strength is lowered due to the presence of air bubbles. In general, it is known that when a fluorine atom is introduced into a molecule of a polyimide, the dielectric constant can be lowered. For example, a polyimine-metal composite film having a metal layer formed on the surface of a fluorinated polyimide film has been disclosed (see Patent Document 5). In addition, a multilayer wiring board in which at least one type selected from the group consisting of a substrate, an adhesive layer, and a surface protective layer is used is disclosed (refer to Patent Document 6). In the general method, as the content of fluorine atoms in the molecule introduced into the polyimine is increased, the tensile modulus and the tensile strain at break of the film composed of the polyimide are lowered, and the mechanical strength is lowered. Reduce the problem. A laminate in which a fluororesin having a minimum dielectric constant in a plastic is laminated with a metal plate has been disclosed (see Patent Document 7). However, in such a method, when the fluororesin film is perforated at a high speed, it is rubbed off from the metal plate with the blade edge, resulting in a problem of a decrease in yield. Further, the tensile strength and elongation of the mechanical properties of the fluororesin film are the same as those of the polyolefin at room temperature and the coefficient of linear expansion is 60 ppm/° C. to 160 ppm/° C. for example, when the coefficient of linear expansion is 16 ppm/ When the copper foil of °C is laminated, the deviation of the linear expansion coefficient of each other is large, there is a concern of peeling during use, or there is a concern that warpage may occur. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. [Patent Document 5] Japanese Patent Laid-Open No. Hei. No. JP-A-2002-342541 (Patent Document 5) Japanese Patent Laid-Open No. Hei. No. 2001-308542 (Patent Document 7) SUMMARY OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The object of the present invention is to use a polyimide resin which is suitable for use as a substrate for an electronic component and which has less deformation and heat resistance as a core material. 'And fluororesin is disposed on the surface, thereby providing a low linear expansion coefficient (as a multilayer fluororesin film having a linear expansion coefficient equivalent to that of the copper foil) which can simultaneously achieve the characteristics of the polyimide resin (higher) Mechanical properties, multi-layer fluororesin film with low dielectric constant, low water absorption (lower absorbing rate of polyimine), copper-clad multilayer fluororesin film, printed wiring board, and multi-layer printing Wire board. The present inventors have intensively studied and found that a fluororesin layer laminated on a double-sided fluororesin film of a polyimide film is used for a copper clad laminate and a printed wiring board. In the case of FPC, TAB tape, COF tape film, etc., it is possible to obtain a product which does not cause peeling or the like at high temperature and high humidity, and which has excellent electrical characteristics, and thus completed the present invention. 201032680 That is, the first invention of the present application is constituted by the following constitution. 1. A multilayer fluororesin film which is a multilayer fluororesin film composed of (A) fluororesin layer/(B) polyimine resin layer/(A) fluororesin layer, which is sequentially laminated, wherein the multilayer fluororesin film The linear expansion coefficient is 10 ppm/° C. to 30 ppm/° C., and the thickness ratio of the (A) layer is 60% to 90% of the entire (A) layer/multilayer fluororesin film, and the (A) layer is composed of four. Any of fluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene hexafluoropropylene copolymer (FEP), tetrafluoroethylene hexafluoropropylene·perfluoroalkyl vinyl ether copolymer (EPE) The resulting thermoplastic fluororesin layer. 2. A multilayer fluororesin film according to 1. wherein the (A) layer is a functional group-containing thermoplastic fluororesin layer. 3. A multilayer fluororesin film according to 1. or 2. wherein the layer (B) is a polyimine layer having a polybenzonitrile benzoxazole component, and the coefficient of linear expansion is -l〇PPm/°C. 10ppm"C. 4. The multilayer fluororesin film of any one of 1. to 3. wherein the (A) layer has a thickness of 1.0/zm to 50/m and the (B) layer has a thickness of 5. The multilayer fluororesin film according to any one of the above, wherein (A) layer has a storage elastic modulus at room temperature: E' (A) and (B) layer storage elastic modulus at room temperature: E' (B) ratio {E, (A) / E' (B)} is 2.0% to 20% ° 6. A copper-clad multilayer fluororesin film, which is in any one of 1. to 5_ A copper foil is laminated on at least one side of the multilayer fluororesin film. 7. A printed wiring board comprising a part of a copper-clad multilayer fluororesin film t of 6. removed to form a circuit pattern. A multilayer printed wiring board comprising a multilayer fluororesin film, a copper-clad multilayer fluororesin film, and a printed wiring board as disclosed in any one of 1 to 7. Further, the second invention of the present application is constituted by the following constitution. A multilayer fluororesin film which is formed by laminating a (C) copper layer on a (B) surface of a copper clad laminate (CCL) of a (B) polyimine resin layer without an adhesive. A) a fluororesin film formed of a fluororesin layer in which the linear expansion coefficient of the (A) layer (B) laminate in the multilayer fluororesin film is 10 〇 ppm / ❹ ° C to 30 ppm / ° C, ( A) The thickness ratio of the layer is 60% to 90% of {(A) layer / (A) layer (B) layered layer}, and the layer (A) is composed of tetrafluoroethylene perfluoroalkyl vinyl ether copolymer A thermoplastic fluororesin layer formed of (PFA), a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), or a tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPE). 10. The multilayer fluororesin film according to item 9, wherein the (A) layer is a functional group-containing thermoplastic fluororesin layer. Φ 11. A multilayer fluororesin film according to 9. or 10. wherein the (B) layer is a polyimine layer having a polyimine benzoxazole component and has a coefficient of linear expansion of -10 〇 PPm / . . The multilayer fluororesin film according to any one of the items 9 to 11. wherein the (A) layer has a thickness of 1.0/zm to 50 μm, and the (B) layer has a thickness of 1. Mm~38ym. 13. The multilayer fluororesin film according to any one of items 9 to 12, wherein (A) layer has a storage elastic modulus at room temperature: storage elasticity of E' (A) and (B) layers at room temperature Modulus: E, (B) ratio {E, (A) / E' (B)} is 2.0% ~ 20%. A copper-clad-layered fluororesin film which is laminated with a copper foil on the (A) side of the multilayer fluororesin film according to any one of items 9. to 13. A printed wiring board comprising a plurality of layers of a fluororesin film according to any one of 9. to 14. and a copper layer of a copper-clad multilayer fluororesin film removed to form a circuit pattern. A multilayer printed wiring board comprising a multilayer fluororesin film, a copper-clad multilayer fluororesin film, and a printed wiring board according to any one of ninth to fifteenth.效果 Effect of the Invention The multilayer fluororesin film composed of the sequential laminated layer (A) fluororesin layer/(B) polyimine resin layer/(A) fluororesin layer of the first invention of the present application can be simultaneously achieved. Polyetherimide resin has a low linear expansion coefficient (as a multilayer fluororesin film, which has the same linear expansion coefficient as copper foil), high mechanical properties, low dielectric constant and low water absorption with fluororesin Multilayer film with a rate (reducing the high water absorption of polyimine).第二 In the second invention of the present application, the (C) copper layer is formed on the (B) side of the copper clad laminate (CCL) of the (B) polyimine resin layer without an adhesive, and further laminated ( A) a fluororesin film formed of a fluororesin layer, wherein the (A) layer (B) layered layer of the multilayer fluororesin film has a linear expansion coefficient of 10 ppm/° C. to 30 ppm/° C. The film is a low linear expansion coefficient (as a multilayer fluororesin film which has the same linear expansion coefficient as that of the copper foil), high mechanical properties, and low characteristics of the fluororesin, which can simultaneously achieve the characteristics of the polyimide resin. A multilayer film having a dielectric constant and a low water absorption (reducing the high water absorption of polyimine). 201032680 The multilayer fluororesin film of the present invention has good adhesion to copper foil, has a small deviation from the linear expansion coefficient of copper foil of 16 ppm/°C, and has low water absorption rate, even in an environment of high temperature and high humidity. There is almost no warpage or distortion, and as a result, the quality of the printed wiring board and the like, and the yield at the time of production can be improved. The copper-clad multilayer fluororesin film, the printed wiring board, and the multilayer printed wiring board using the multilayer fluororesin film of the present invention can be used as an electronic component exposed to high temperature, and the substrate can be prevented from being warped at the time of manufacture. The manufacture of high-quality electronic parts that do not cause the peeling of the multilayer fluororesin film and the copper foil, and the improvement of the yield, are highly meaningful in the industry. [Embodiment] Mode for Carrying Out the Invention The present invention will be described in detail below. The (A) fluororesin layer used in the present invention is a fluororesin film obtained by a method of forming a film by solution casting a fluororesin melt, or e is applied to the fluororesin melt to a polyfluorene. The layer formed of the imide resin layer (film) is preferably in the form of a fluororesin film in view of handleability, productivity, and the like. The fluororesin can be appropriately selected from the conventionally known thermoplastic fluororesins used in general molding. Examples of the thermoplastic fluororesin include a polymer or copolymer of an unsaturated fluorinated hydrocarbon, an unsaturated fluorochlorinated hydrocarbon, an ether group-containing unsaturated hydrocarbon, or the like, or copolymerization of such an unsaturated fluorinated hydrocarbon with ethylene. Things and so on. Specific examples are polymers or copolymers selected from the group consisting of -10 201032680 tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride and vinyl fluoride, or A copolymer of a monomer and ethylene, and the like. More specific examples of the thermoplastic fluororesin include tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene, hexafluoropropylene copolymer (FEP), tetrafluoroethylene hexafluoropropylene perfluoroalkane. Ethylene vinyl ether copolymer (EPE), tetrafluoroethylene/ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene/ethylene copolymer (ECTFE), etc. . Among them, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), a tetrafluoroethylene/hexafluoropropylene copolymer, which is preferably a perfluoro copolymer, is preferred from the viewpoints of heat resistance, flame retardancy, and electrical properties. (FEP), tetrafluoroethylene·hexafluoropropylene·perfluoroalkyl vinyl ether copolymer (EPE). As the fluororesin, it is particularly preferred to use a functional group-containing thermoplastic fluororesin. When a thermoplastic fluororesin containing no functional group is used, in order to obtain an adhesive which can withstand practical requirements, the polyimide film must be subjected to calendering, corona treatment, plasma treatment, ion gun treatment, etching. Treatment and other surface treatments have doubts that lead to cost increases. The functional group-containing thermoplastic fluororesin, for example, contains a compound selected from the group consisting of a carboxylic acid group or a derivative thereof, a hydroxyl group, a nitrile group, a cyanate group, an amine methyl oxy group, a phosphinomethoxy group, a halogen phosphine oxy group, a sulfonic acid group. A thermoplastic fluororesin (functional group-containing fluororesin) having a functional group or a sulfonium halide group. The functional group-containing fluororesin is generally used in a range in which the above-mentioned functional group -11-201032680 is contained in the thermoplastic fluororesin which is generally used in the above-mentioned molding. When the functional group-containing fluororesin is obtained, for example, the thermoplastic fluororesin shown in the above examples used in general molding can be synthesized in advance, and then introduced by addition or substitution of these functional groups, or in the foregoing exemplification In the synthesis of the thermoplastic fluororesin, a monomer having such a functional group is copolymerized to obtain a monomer. Specific examples of the aforementioned functional groups are -COOH, -CH2COOH, -COOCH3, -CONH2, -OH, -CH20H, -CN, -CH20(C0)NH2, win-CH20CN, -CH20P(0)(0H)2. -CH20P(0)C12, -S02F, etc. The functional group is preferably introduced into the fluororesin by copolymerizing a fluorine-containing monomer having a functional group in the production of a fluororesin. The monomer having such a functional group is preferably The amount of 0.5 to 10% by weight is copolymerized to the functional group-containing fluororesin, more preferably 1 to 5% by weight. The distribution of the functional group-containing monomer in the functional group-containing fluororesin may be uniform or non-uniform. When the content ratio of the functional group-containing monomer in the functional group-containing fluororesin is too low, it is less effective as a compatibilizing agent, and on the other hand, when the proportion of the cerium is too high, due to the functional group The strong interaction of the fluororesins may cause a reaction similar to the crosslinking reaction, which causes an increase in viscosity and is difficult to melt-form. Further, when the content ratio of the functional group-containing monomer is too high, the heat resistance of the functional group-containing fluororesin tends to be deteriorated. The viscosity or molecular weight of the functional group-containing fluororesin is not particularly limited, and may be preferably within a range not exceeding the viscosity or molecular weight of the thermoplastic fluororesin for general molding of the functional group-containing fluororesin. Degree. -12- 201032680 The fluororesin preferably further contains an antistatic agent imparting antistatic properties of ι. 2 to 2% by mass. The antistatic agent is preferably a surfactant such as a nonionic surfactant, an anionic surfactant, a cationic surfactant, or a zwitterionic surfactant. The fluororesin preferably further contains an inorganic ruthenium material which lowers the dielectric constant or dielectric tangent. The inorganic cerium filling materials are, for example, cerium oxide, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, oxidized calcium, magnesium oxide, iron oxide, tin oxide, cerium oxide, hydrogen peroxide. Calcium, magnesium oxyhydroxide, aluminum hydroxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawsonite, hydrotalcite, calcium sulfate, barium sulfate, calcium citrate, Montestone, bentonite, Activated clay, sepiolite, filamentous aluminite, sericite, glass fiber, glass beads, cerium oxide ball, carbon black, graphite, carbon fiber, carbon sphere, wood powder, zinc borate, and the like. The inorganic ruthenium filler may be used alone or in combination of two or more. The content of the non-machined ruthenium is preferably from 1 to 100% by mass based on the fluororesin. Further, when the inorganic ruthenium is porous, the dielectric constant or dielectric tangent can be further lowered, so that it is more preferable. The thickness of the fluororesin is preferably 1.0 #m to 50/zm, more preferably 1.0 #m to 38/zm, still more preferably 1.0#m to 25/zm. If the film thickness is thicker than 50/zm, it is not good for the purpose of lightening the electronic parts. On the other hand, when the film thickness is thinner than 1.0/zm, the effect of surface modification such as improvement in electrical characteristics, decrease in water absorbability, and improvement in adhesion of the fluororesin is small, so that it is less preferable. -13- 201032680 The storage elastic modulus of the fluororesin: E' (A) is not particularly limited, and is known. When a fluororesin having the above composition is used, generally 0.3 GPa to 1.0 gPa can be used. Further, the linear expansion coefficient of the fluororesin is not particularly limited, and it is known that a fluororesin having the above composition can be used in an amount of from 50 ppm/°C to 150 ppm/°C. Further, from the viewpoint of high frequency correspondence, the dielectric constant of the film and the dielectric tangent are preferably small. The dielectric constant and dielectric tangent of the fluororesin layer are not particularly limited, and it is generally known that a fluororesin having the above composition can be used. Specifically, the dielectric constant of 1 MHz is 2.0 to 2.2, and the dielectric tangent of 1 MHz is 3.0x10-4 to 5.0x10·4. On the surface of the fluororesin, treatment according to a coupling agent (amino decane, epoxy decane, etc.), sand blasting, calendering, corona treatment, plasma treatment, ion gun treatment, etching may be applied as necessary. Processing and so on. The (B) polyimine resin layer used in the present invention is, for example, an aromatic φ scented tetracarboxylic acid (generally referred to as an acid anhydride, an acid and a guanamine-bonded derivative, the same hereinafter) and an aromatic A polyamine acid solution obtained by reacting a diamine (generally referred to as an amine and a guanamine-bonded derivative, the same applies hereinafter), and performing solution casting, drying, and heat treatment (醯imination) to form a film. The polyimine film obtained by the method, or the layer formed by applying the polyamic acid solution to the fluororesin layer (film), drying, heat treatment (醯imination), etc., is treated or In view of productivity, etc., it is preferably a form of a polyimide film. The following mainly describes the polyimide film. The above polyimine is not particularly limited, and a preferred example is a combination of the following aromatic diamines and aromatic tetracarboxylic acids (anhydrides). A. Combination of an aromatic tetracarboxylic acid having a pyrophoric acid residue and an aromatic diamine having a benzoxazole structure. B. A combination of an aromatic diamine having a phenylenediamine skeleton and an aromatic tetracarboxylic acid having a biphenyltetracarboxylic acid skeleton. C. Combination of an aromatic diamine having a diphenyl ether skeleton and an aromatic tetracarboxylic acid having a pyrophoric acid residue. Among them, a special polyimine film having an aromatic diamine residue having a benzoxazole structure is A. The structure of the above aromatic diamine having a benzoxazole structure is not particularly limited, and specifically, the following are shown. These diamines are preferably 70 mol% or more, and more preferably 80 mol% or more of all diamines. [Chemical Formula 1] 5-amino-2-(p-aminophenyl)benzoxazole

[化學式2]6-胺基-2-(對胺基苯基)苯并噚唑6-Amino-2-(p-aminophenyl)benzoxazole

[化學式3]5-胺基-2-(間胺基苯基)苯并噚唑[Chemical Formula 3] 5-amino-2-(m-aminophenyl)benzoxazole

-15- 201032680 [化學式4]6-胺基-2-(間胺基苯基)苯并噚唑-15- 201032680 [Chemical Formula 4] 6-Amino-2-(m-aminophenyl)benzoxazole

[化學式5]2,2’-對伸苯雙(5-胺基苯并噚唑)[Chemical Formula 5] 2,2'-p-benzoic bis(5-aminobenzoxazole)

[化學式6]2,2’-對伸苯雙(6-胺基苯并噚唑)[Chemical Formula 6] 2,2'-p-benzoic bis(6-aminobenzoxazole)

[化學式7]1-(5-胺基苯并噚唑)-4-(6-胺基苯 并曙唑)苯[Chemical Formula 7] 1-(5-Aminobenzoxazole)-4-(6-Aminobenzoxazole)benzene

:5,4-d,]雙 [化學式8]2,6-(4,4’-二胺基二苯基)苯[1,2-d:5,4-d,]bis [Chemical Formula 8] 2,6-(4,4'-Diaminodiphenyl)benzene [1,2-d

Df唑Dfazole

[化學式9]2,6-(4,4’-二胺基二苯基)苯[l,2-d 噚唑 :4,5-d’]雙 -16 - 2010326802,6-(4,4'-Diaminodiphenyl)benzene [l,2-d oxazole: 4,5-d'] bis -16 - 201032680

[化學式 10]2,6-(3,4’-二胺基二苯基)苯[1,2-d: 5,4-d’] 雙Pf唑 h2n2,6-(3,4'-Diaminodiphenyl)benzene [1,2-d: 5,4-d'] Bis-Pfazole h2n

Ο [化學式 1 1]2,6-(3,4’-二胺基二苯基)苯[l,2-d : 4,5-d’] 雙卩等唑Ο [Chemical Formula 1 1] 2,6-(3,4'-Diaminodiphenyl)benzene [l,2-d : 4,5-d']

[化學式 12]2,6-(3,3’-二胺基二苯基)苯[l,2-d: 5,4-d’] 雙η萼唑2,6-(3,3'-Diaminodiphenyl)benzene [l,2-d: 5,4-d'] double n-oxazole

[化學式 13]2,6-(3,3’-二胺基二苯基)苯[l,2-d: 4,5-d’] 雙if唑2,6-(3,3'-Diaminodiphenyl)benzene [l,2-d: 4,5-d'] Difexazole

當中就合成容易度之觀點來看,較佳爲胺基(胺基苯基) -17- 201032680 苯并噚唑的各異構物,尤佳爲5-胺基-2-(對胺基苯基)苯并 噚唑。其中,所謂「各異構物」,爲因應胺基(胺基苯基) 苯并噚唑所具有的2個胺基之配位位置而定之各異構物(例 如;上述「化學式1」〜「化學式4」所記載的各化合物)。 此等二胺可單獨使用1種或倂用2種以上。 再者,若爲全部二胺的30莫耳%以下,則亦可使用1 種或倂用2種以上之下列所例示的二胺類。此般二胺類, 例如有4,4’-雙(3-胺基苯氧基)聯苯、雙[4-(3-胺基苯氧基) 苯基]酮、雙[4-(3-胺基苯氧基)苯基]硫化物、雙[4-(3-胺基 苯氧基)苯基]磺酸、2,2-雙[4-(3_胺基苯氧基)苯基]丙烷、 2.2- 雙[4-(3-胺基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷、間苯 二胺、鄰苯二胺、對苯二胺、間胺基苯甲胺、對胺基苯甲 胺、3,3’-二胺基二苯基醚、3,4’-二胺基二苯基醚、4,4’-二 胺基二苯基醚、3,3’-二胺基二苯基硫化物、3,3’-二胺基二 苯基亞颯、3,4’-二胺基二苯基亞楓、4,4’-二胺基二苯基亞 φ 楓、3,3,-二胺基二苯基磺酸、3,4,-二胺基二苯基磺酸、4,4’-二胺基二苯基磺酸、3,3’-二胺基二苯基酮、3,4’-二胺基二 苯基酮、4,4’-二胺基二苯基酮、3,3’-二胺基二苯基甲烷、 3,4’-二胺基二苯基甲烷、4,4’-二胺基二苯基甲烷、雙[4-(4-胺基苯氧基)苯基]甲烷、1,1-雙[4-(4-胺基苯氧基)苯基]乙 烷、1,2-雙[4-(4-胺基苯氧基)苯基]乙烷、1,1-雙[4-(4-胺基 苯氧基)苯基]丙烷、1,2-雙[4-(4-胺基苯氧基)苯基]丙烷、 1.3- 雙[4-(4-胺基苯氧基)苯基]丙烷、2,2-雙[4-(4-胺基苯氧 -18- 201032680 基)苯基]丙烷、1,1-雙[4-(4-胺基苯氧基)苯基]丁烷、1,3-雙 [4-(4-胺基苯氧基)苯基]丁烷、M-雙[4-(4-胺基苯氧基)苯 基]丁烷、2,2-雙[4-(4-胺基苯氧基)苯基]丁烷、2,3-雙[4-(4-胺基苯氧基)苯基]丁烷、2-[4-(4-胺基苯氧基)苯基]-2-[4-(4-胺基苯氧基)-3-甲基苯基]丙烷、2,2-雙[4-(4-胺基苯氧 基)-3-甲基苯基]丙烷、2-[4-(4-胺基苯氧基)苯基]-2-[4-(4-胺基苯氧基)-3,5·二甲基苯基]丙烷、2,2-雙[4-(4-胺基苯氧 基)-3,5-二甲基苯基]丙烷、2,2-雙[4-(4-胺基苯氧基)苯基] ❹ -1,1,1,3,3,3-六氟丙烷、1,4-雙(3-胺基苯氧基)苯、1,3-雙(3-胺基苯氧基)苯、1,4-雙(4-胺基苯氧基)苯、4,4’-雙(4-胺基 苯氧基)聯苯、雙[4-(4-胺基苯氧基)苯基]酮、雙[4-(4-胺基 苯氧基)苯基]硫化物、雙[4-(4_胺基苯氧基)苯基]亞颯、雙 [4-(4-胺基苯氧基)苯基]磺酸、雙[4-(3-胺基苯氧基)苯基] 醚、雙[4-(4-胺基苯氧基)苯基]醚、1,3-雙[4-(4-胺基苯氧基) 苯甲醯基]苯、1,3-雙[4-(3-胺基苯氧基)苯甲醯基]苯、1,4-0 雙[4-(3-胺基苯氧基)苯甲醯基]苯、4,4’-雙[(3-胺基苯氧基) 苯甲醯基]苯、1,1-雙[4-(3-胺基苯氧基)苯基]丙烷、1,3-雙 [4-(3-胺基苯氧基)苯基]丙烷、3,4’-二胺基二苯基硫化物、 2,2-雙[3-(3-胺基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷、雙 [4-(3-胺基苯氧基)苯基]甲烷、1,1-雙[4-(3-胺基苯氧基)苯 基]乙烷、1,2-雙[4-(3-胺基苯氧基)苯基]乙烷、雙[4-(3-胺 基苯氧基)苯基]亞楓、4,4’-雙[3-(4-胺基苯氧基)苯甲醯基] 二苯基醚、4,4’-雙[3-(3-胺基苯氧基)苯甲醯基]二苯基醚、 -19- 201032680 4,4’-雙[4-(4-胺基,α -二甲基苯甲基)苯氧基]二苯基 酮、4,4’-雙[4-(4-胺基- ο:,α -二甲基苯甲基)苯氧基]二苯基 磺酸、雙[4-(4-(4-胺基苯氧基)苯氧基}苯基]磺酸、1,4-雙 [4-(4-胺基苯氧基)苯氧基-α,α-二甲基苯甲基]苯、1,3_雙 [4-(4-胺基苯氧基)苯氧基- α,α-二甲基苯甲基]苯、1,3-雙 [4-(4-胺基-6-三氟甲基苯氧基)-cx,q:-二甲基苯甲基]苯、 1,3-雙[4-(4-胺基-6-氟苯氧基)-α,α-二甲基苯甲基]苯、 1,3-雙[4-(4-胺基-6-甲基苯氧基)-α,α -二甲基苯甲基]苯、 〇 1,3-雙[4-(4-胺基-6-氰苯氧基)1,£^-二甲基苯甲基]苯、 3,3’-二胺基-4,4’-二苯氧基二苯基酮、4,4’-二胺基-5,5’-二 苯氧基二苯基酮、3,4’-二胺基-4,5’-二苯氧基二苯基酮、 3,3’-二胺基-4-苯氧基二苯基酮、4,4’-二胺基-5-苯氧基二苯 基酮、3,4’-二胺基-4-苯氧基二苯基酮、3,4’-二胺基-5’-苯 氧基二苯基酮、3,3’-二胺基-4,4’-二雙苯氧基二苯基酮、 4,4’-二胺基-5,5’-二雙苯氧基二苯基酮、3,4’-二胺基-4,5’-φ 二雙苯氧基二苯基酮、3,3’-二胺基-4-雙苯氧基二苯基酮、 4,4’-二胺基-5-雙苯氧基二苯基酮、3,4’-二胺基-4-雙苯氧基 . 二苯基酮、3,4’-二胺基-5’-雙苯氧基二苯基酮、1,3-雙(3-胺基-4-苯氧基苯甲醯基)苯、1,4-雙(3-胺基-4-苯氧基苯甲 醯基)苯、1,3-雙(4-胺基-5-苯氧基苯甲醯基)苯、1,4-雙(4-胺基-5-苯氧基苯甲醯基)苯、1,3-雙(3-胺基-4-雙苯氧基苯 甲醯基)苯、1,4-雙(3-胺基-4-雙苯氧基苯甲醯基)苯、1,3-雙(4-胺基-5-雙苯氧基苯甲醯基)苯、1,4-雙(4-胺基-5-雙苯 -20- 201032680 氧基苯甲醯基)苯、2,6-雙[4-(4-胺基-〇,〇:-二甲基苯甲基) 苯氧基].苯甲腈,以及上述芳香族二胺之芳香環上的一部分 或全部氫原子’經鹵素原子、碳數1~3的烷基或烷氧基、 氰基、或是烷基或烷氧基的一部分或全部氫原子經鹵素原 子所取代之碳數1〜3的鹵化烷基或烷氧基所取代之芳香族 二胺等。 前述芳香族四羧酸酐類的分子構造並無特別限定,具 ©體有下列所示者。此等酸酐,較佳爲全部酸酐的70莫耳% 以上,尤佳爲80莫耳%以上。 [化學式14]焦蜜石酸二酐Among them, from the viewpoint of ease of synthesis, it is preferred that each isomer of an amine group (aminophenyl)-17-201032680 benzoxazole, particularly preferably 5-amino-2-(p-aminobenzene) Benzobenzoxazole. Here, the "isomers" are the respective isomers depending on the coordination positions of the two amine groups of the amine group (aminophenyl) benzoxazole (for example, the above "Chemical Formula 1"~ Each compound described in "Chemical Formula 4"). These diamines may be used alone or in combination of two or more. In addition, if it is 30 mol% or less of all the diamines, one type or two or more types of diamines exemplified below may be used. Such diamines are, for example, 4,4'-bis(3-aminophenoxy)biphenyl, bis[4-(3-aminophenoxy)phenyl]one, bis[4-(3) -aminophenoxy)phenyl]sulfide, bis[4-(3-aminophenoxy)phenyl]sulfonic acid, 2,2-bis[4-(3-aminophenoxy)benzene Propane, 2.2-bis[4-(3-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, pair Phenylenediamine, m-aminobenzylamine, p-aminobenzylamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-di Aminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,3'-diaminodiphenylarylene, 3,4'-diaminodiphenyl arsenide, 4 , 4'-diaminodiphenyl argon, 3,3,-diaminodiphenyl sulfonic acid, 3,4,-diaminodiphenyl sulfonic acid, 4,4'-diamino Diphenylsulfonic acid, 3,3'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 3,3'- Diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, bis[4-(4-aminophenoxy)phenyl] Methane, 1,1 - bis[4-(4-aminophenoxy)phenyl]ethane, 1,2-bis[4-(4-aminophenoxy)phenyl]ethane, 1,1-bis[4 -(4-Aminophenoxy)phenyl]propane, 1,2-bis[4-(4-aminophenoxy)phenyl]propane, 1.3-bis[4-(4-aminophenoxyl) Phenyl]propane, 2,2-bis[4-(4-aminophenoxy-18-201032680)phenyl]propane, 1,1-bis[4-(4-aminophenoxy) Phenyl]butane, 1,3-bis[4-(4-aminophenoxy)phenyl]butane, M-bis[4-(4-aminophenoxy)phenyl]butane, 2,2-bis[4-(4-aminophenoxy)phenyl]butane, 2,3-bis[4-(4-aminophenoxy)phenyl]butane, 2-[4 -(4-Aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3-methylphenyl]propane, 2,2-bis[4-(4-amine Phenoxy)-3-methylphenyl]propane, 2-[4-(4-aminophenoxy)phenyl]-2-[4-(4-aminophenoxy)-3, 5· dimethylphenyl]propane, 2,2-bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]propane, 2,2-bis[4-(4 -aminophenoxy)phenyl] ❹ -1,1,1,3,3,3-hexafluoropropane, 1,4-bis(3-aminophenoxy)benzene, 1,3-double ( 3-aminophenoxy)benzene, 1,4-bis(4-amine Phenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]one, bis[4-(4-amine Phenyloxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]anthracene, bis[4-(4-aminophenoxy)phenyl]sulfonic acid, double [4-(3-Aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]ether, 1,3-bis[4-(4-aminophenoxy) Benzomethylene]benzene, 1,3-bis[4-(3-aminophenoxy)benzylidene]benzene, 1,4-0 bis[4-(3-aminophenoxy) Benzomethylene]benzene, 4,4'-bis[(3-aminophenoxy)benzylidene]benzene, 1,1-bis[4-(3-aminophenoxy)phenyl Propane, 1,3-bis[4-(3-aminophenoxy)phenyl]propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis[3-(3- Aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropane, bis[4-(3-aminophenoxy)phenyl]methane, 1,1-double [ 4-(3-Aminophenoxy)phenyl]ethane, 1,2-bis[4-(3-aminophenoxy)phenyl]ethane, bis[4-(3-aminobenzene) Oxyphenyl) benzylidene, 4,4'-bis[3-(4-aminophenoxy)benzylidene]diphenyl ether, 4,4'-bis[3-(3-amine base Oxy) benzhydryl diphenyl ether, -19- 201032680 4,4'-bis[4-(4-amino, α-dimethylbenzyl)phenoxy]diphenyl ketone, 4,4'-bis[4-(4-Amino- ο:,α-dimethylbenzyl)phenoxy]diphenyl sulfonic acid, bis[4-(4-(4-aminobenzene) Oxy)phenoxy}phenyl]sulfonic acid, 1,4-bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3 _bis[4-(4-aminophenoxy)phenoxy-α,α-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-trifluoromethyl) Phenyloxy)-cx,q:-dimethylbenzyl]benzene, 1,3-bis[4-(4-amino-6-fluorophenoxy)-α,α-dimethylbenzene Methyl]benzene, 1,3-bis[4-(4-amino-6-methylphenoxy)-α,α-dimethylbenzyl]benzene, 〇1,3-bis[4- (4-Amino-6-cyanophenoxy) 1, £^-dimethylbenzyl]benzene, 3,3'-diamino-4,4'-diphenoxydiphenyl ketone, 4,4'-Diamino-5,5'-diphenoxydiphenyl ketone, 3,4'-diamino-4,5'-diphenoxydiphenyl ketone, 3,3' -diamino-4-phenoxydiphenyl ketone, 4,4'-diamino-5-phenoxydiphenyl ketone, 3,4'-diamino-4-benzene Diphenyl ketone, 3,4'-diamino-5'-phenoxydiphenyl ketone, 3,3'-diamino-4,4'-dibisphenoxydiphenyl ketone, 4,4'-Diamino-5,5'-dibisphenoxydiphenyl ketone, 3,4'-diamino-4,5'-φ dibisphenoxydiphenyl ketone, 3 , 3'-Diamino-4-bisphenoxydiphenyl ketone, 4,4'-diamino-5-bisphenoxydiphenyl ketone, 3,4'-diamino-4- Diphenoxy. Diphenyl ketone, 3,4'-diamino-5'-bisphenoxydiphenyl ketone, 1,3-bis(3-amino-4-phenoxybenzidine) Benzene, 1,4-bis(3-amino-4-phenoxybenzylidene)benzene, 1,3-bis(4-amino-5-phenoxybenzylidene)benzene, 1,4-bis(4-amino-5-phenoxybenzylidene)benzene, 1,3-bis(3-amino-4-bisphenoxybenzhydryl)benzene, 1,4 - bis(3-amino-4-bisphenoxybenzhydryl)benzene, 1,3-bis(4-amino-5-bisphenoxybenzhydryl)benzene, 1,4-double (4-Amino-5-bisphenyl-20-201032680 oxybenzylidene)benzene, 2,6-bis[4-(4-amino-indole, fluorene:-dimethylbenzyl)benzene Oxybenzonitrile, and a part of the aromatic ring of the above aromatic diamine a carbon number of 1 or more of a hydrogen atom of a part or all of a hydrogen atom through a halogen atom, an alkyl group having 1 to 3 carbon atoms or an alkoxy group, a cyano group, or an alkyl group or an alkoxy group; An aromatic diamine or the like substituted with a halogenated alkyl group or an alkoxy group. The molecular structure of the aromatic tetracarboxylic anhydride is not particularly limited, and the carbonyl has the following ones. These acid anhydrides are preferably 70 mol% or more, and more preferably 80 mol% or more of all the acid anhydrides. [Chemical Formula 14] pyrethic acid dianhydride

[化學式15]3,3’,4,4’-聯苯四羧酸酐[Chemical Formula 15] 3,3',4,4'-biphenyltetracarboxylic anhydride

[化學式16]4,4’-氧基二鄰苯二甲酸酐[Chemical Formula 16] 4,4'-oxydiphthalic anhydride

-21- 201032680 [化學式17]3,3’,4,4’-二苯基酮四羧酸酐-21- 201032680 [Chemical Formula 17] 3,3',4,4'-diphenyl ketone tetracarboxylic anhydride

[化學式18]3,3’,4,4’-二苯基磺酸四羧酸酐[Chemical Formula 18] 3,3',4,4'-diphenylsulfonic acid tetracarboxylic anhydride

[化學式19]2,2-雙[4-(3,4-二羧基苯氧基)苯基]丙酸酐[Chemical Formula 19] 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propionic anhydride

此等四羧酸二酐可單獨使用,亦可倂用2種以上。 再者,若爲全部四羧酸二酐的30莫耳%以下,則亦可 使用1種或倂用2種以上之下列所例示的非芳香族四羧酸 二酐類。此般四羧酸酐,例如有丁烷-1,2,3,4-四羧酸二酐、 戊烷-1,2,4,5 -四羧酸二酐、環丁烷四羧酸二酐、環戊烷 -1,2,3,4-四羧酸二酐、環己烷-1,2,4,5-四羧酸二酐、環己-1-烯-2,3,5,6-四羧酸二酐、3-乙基環己-1-烯-3-(1,2),5,6-四羧 酸二酐、1-甲基-3-乙基環己烷-3-(1,2),5,6-四羧酸二酐、1- -22- 201032680 甲基-3-乙基環己-1-烯- 3- (1,2),5,6 -四羧酸二酐、1-乙基環己 烷-1-(1,2),3,4-四羧酸二酐、1-丙基環己烷-1-(2,3),3,4-四羧 酸二酐、1,3-二丙基環己烷-1-(2,3),3-(2,3)-四羧酸二酐、二 環己基-3,4,3’,4’-四羧酸二酐、二環[2.2.1]庚烷-2,3,5,6-四 羧酸二酐、1-丙基環己烷-^(2,3),3,4-四羧酸二酐、ΐ.,3·二 丙基環己烷-1-(2,3),3-(2,3)-四羧酸二酐、二環己基 -3,4,3’,4’-四羧酸二酐、二環[2.2.2]辛烷-2,3,5,6-四羧酸二 酐、二環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐等。 ◎ 將前述芳香族四羧酸類與芳香族二胺類進行反應(聚 合)來製得聚醯胺酸時所用之溶劑,只要是可溶解原料的單 體及生成的聚醯胺酸的任一種者,則無特別限定,較佳爲 極性有機溶劑,例如有Ν -甲基-2 -吡咯烷酮、Ν -乙醯基-2 -吡咯烷酮、Ν,Ν-二甲基甲醯胺、Ν,Ν-二乙基甲醯胺、Ν,Ν-二甲基乙醯胺、二甲基亞颯、六甲基磷醯胺、乙基溶纖劑 乙酸酯、二乙二醇二甲醚、環丁颯、鹵化酚類等。此等溶 φ 劑可單獨或混合使用。溶劑的用量,只要可充分溶解原料 的單體之量即可,具體的用量,一般是單體占溶解單體之 溶液的重量爲5〜40重量%,較佳爲1〇~30重量%。 用以製得聚醯胺酸之聚合反應(以下亦僅稱爲「聚合反 應」)的條件,可運用以往所知的條件,具體例子爲在有機 溶劑中’在〇~ 80 °C的溫度範圍內連續攪拌及/或混合1〇分 鐘〜3 0小時。亦可因應必要來分割聚合反應或增減溫度。 此時,兩單體的添加順序並無特別限制,但較佳爲將芳香 -23- 201032680 族四羧酸類添加於芳香族二胺類的溶液中。藉由聚合反應 所製得之聚醯胺酸溶液的黏度,以依據Brookfield黏度計 所進行之測定(2 5 °C ),就液體傳送的安定性之觀點來看, 較佳爲 10~2000Pa. s,尤佳爲 100~1000Pa. s。 聚合反應中進行真空脫泡者,對製造出良質的聚醯胺 酸溶液者爲有效。此外,亦可在聚合反應前將少量的末端 封閉劑添加至芳香族二胺類來控制聚合。末端封閉劑,例 Ο 如有順丁烯二酸酐等之具有碳-碳雙鍵之化合物。使用順丁 ' 烯二酸酐時之用量,以芳香族二胺類每1莫耳計,較佳爲 0.001~1.0 莫耳。 爲了從藉由聚合反應所製得之聚醯胺酸溶液來形成聚 醯亞胺膜,例如有藉由將聚醯胺酸溶液塗布於支撐體上並 進行乾燥而獲得胚片(green film)(自支撐性的前驅體膜), 接著將胚片進行熱處理以進行醯亞胺化反應之方法。聚醯 胺酸溶液對支撐體之塗布,係含有從附有狹縫之噴出口之 ® 溶液鑄膜、依據擠壓機所進行之擠壓等,但並不限定於此, 可適當地使用以往所知之溶液的塗布手段。 將塗布於支撐體上之聚醯胺酸進行乾燥來獲得胚片 (green sheet)之條件並無特別限定,溫度例如爲70〜1501, 乾燥時間例如爲5〜180分鐘。達成此般條件之乾燥裝置, 亦可運用以往所知者,例如有熱風、熱氮氣、遠紅外線、 高頻感應加熱等。接著,爲了從所製得之胚片來獲得目的 的聚醯亞胺膜,係進行醯亞胺化反應,該具體方法,可運 -24- 201032680 用以往所知的醯亞胺化反應。例如有使用不含閉環觸媒及 脫水劑之聚醯胺酸溶液,在因應必要施以拉伸處理後,進 行加熱處理而藉此進行醯亞胺化反應之方法(所謂的熱閉 環法)。此時的加熱溫度例如爲100-5 001:,就膜物性之觀 點來看,尤佳是在150~250°C下進行3~20分鐘的處理後, 再於350~500°C下進行3~20分鐘的處理之2階段熱處理。 其他醯亞胺化反應之例子,例如亦有預先使閉環觸媒 φ 及脫水劑含有於聚醯胺酸溶液,並藉由上述閉環觸媒及脫 水劑的作用來進行醯亞胺化反應之化學閉環法。此方法 中,可在將聚醯胺酸溶液塗布於支撐體後,進行一部分醯 亞胺化反應來形成具有自支撐性之膜後,在藉由加熱來完 全進行醯亞胺化。此時,進行一部分醯亞胺化反應之條件, 較佳是在100~200°C下進行3~20分鐘的熱處理,完全進行 醯亞胺化反應之條件,較佳是在200~400°C下進行3〜20分 鐘的熱處理。 〇 形成前述聚醯亞胺樹脂層之聚醯亞胺膜的厚度,較佳 爲 1.0/zm~38/zm,尤佳爲 l.Oym〜25;t/m,更佳爲 1.0仁 m~12.5em。當膜厚較38;am還厚時,就電子零件的輕巧化 之目的來看較不佳。此外,聚醯亞胺相對於積層體全體之 比例變高,會對吸水率或電特性之物性產生不良影響,因 而較不佳。另一方面,當膜厚較l.〇//m還薄時,於搬運中 容易破損,且容易形成皴摺,因而難以製膜。 形成前述聚醯亞胺樹脂層之聚醯亞胺膜的儲存彈性模 -25- 201032680 數:E’ (B)並無特別限定,較佳爲6.OGPa以上,尤佳爲 7.0GPa以上,更佳爲8.0GPa以上。當拉伸斷裂強度較6.0GPa 還小時,可能有聚醯亞胺膜不具補強氟樹脂層之效果的疑 慮。 此外,形成前述聚醯亞胺樹脂層之聚醯亞胺膜的線膨 脹係數,較佳爲-10ppm/°C〜10ppm/°C,尤佳爲-7.5ppm/°C ~7.5ppm/°C,更佳爲-5ppm/°C~5ppm/°C。當線膨脹係數超過 此範圍時,在焊錫接合等之高溫暴露下,有產生應變或皺 ❹ 摺之疑慮。 形成前述聚醯亞胺樹脂層之聚醯亞胺膜中,可因應必 要來進行偶合劑(胺矽烷、環氧矽烷等)處理、噴砂處理、 搪光處理、電暈處理、電漿處理、離子槍處理、蝕刻處理 等。 本申請案之第二發明之不透過接著劑將(C)銅層形成 於(B)聚醢亞胺樹脂層之覆銅積層板(CCL)的製造方法,並 φ 無特別限定,例如有下列手段。 使用蒸鍍、濺鍍、離子蒸鏟法等之真空塗布技術, 將銅層形成於聚醯亞胺膜之手段。 •藉由無電解鍍敷、電鍍等之濕式鍍敷法,將銅層形 成於聚醯亞胺膜之手段。 •將聚醯胺酸溶液塗布於銅箔上,並進行乾燥、熱處 理(醢亞胺化)而形成之手段。 藉由單獨使用或組合使用此等手段,可不透過接著劑 -26- 201032680 將(C)銅層形成於(B)聚醯亞胺樹脂層。 本發明之多層氟樹脂膜的線膨脹係數,較佳爲lOppm/ °C~30ppm/°C,尤佳爲 10ppm/°C~28ppm/°C,更佳爲 lOppm/ °C ~25ppmrc。當線膨脹係數超過此範圍時,在與線膨脹係 數爲16 ppm/°C之銅箔積層時,兩者彼此之線膨脹係數的偏 離增大,使用中有容易產生剝離或翹曲之疑慮。 爲了將多層氟樹脂膜的線膨脹係數設爲 lOppm/°C ~30ppm/°C的範圍內,多層氟樹脂膜之(A)層的厚度比{(A) 層/多層氟樹脂膜}爲60%〜90%,且(A)層於室溫下的儲存彈 性模數:E’(A)與(B)層於室溫下的儲存彈性模數:E’(B)之 比{E’(A)/E’(B)}較佳爲2.0 % ~20 %,尤佳爲厚度比65 %〜90 % 且儲存彈性模數比爲2.5%〜15%,更佳爲厚度比65%-85%且 儲存彈性模數比爲3.0%〜10%。 當厚度比或儲存彈性模數比超過此範圍時,無法製得 目標的線膨脹係數之多層氟樹脂膜。 _ 本發明中所用之銅箔的厚度,較佳爲1.0//m~25/zm, 尤佳爲 1.0/zm~12.5/zm,更佳爲 1.0/zm〜10//m。 本發明中所用之覆銅多層氟樹脂膜的銅箔積層方法並 無特別限定,例如有下列手段。 •將多層氟樹脂膜與銅箔貼合後,藉由熱模壓使其熔 接之手段。 •使用蒸鍍、濺鍍、離子蒸鍍法等之真空塗布技術, 將銅層形成於多層氟樹脂膜之手段。 -27- 201032680 •藉由無電解電鍍、電解電鍍等之濕式電鍍法,將銅 層形成於多層氟樹脂膜之手段。 藉由單獨使用或組合使用此等手段,可將銅箔積層於 多層氟樹脂膜的至少單面上(本申請案之第二發明中爲多 層氟樹脂膜的(A)面)。 本發明之多層氟樹脂膜或覆銅多層氟樹脂膜,可藉由 一般方法,將光阻塗布於例如導電性的銅箔層或是因應必 要塗布於其上所形成之後鍍的厚膜金屬層側並進行乾燥 ❹ 後,藉由曝光、顯影、蝕刻、光阻剝離之步驟,形成配線 電路圖案,然後更可因應必要而進行焊錫光阻塗布、可塑 及無電解錫電鍍,而製得可撓性印刷配線板、將此等予以 多層化之多層印刷配線板、或直接將半導體晶片直接安裝 於其上之印刷配線板。此等電路的製作、多層化、半導體 晶片的安裝之方法並無特別限定,可從一般所知的方式 中,適當地選擇實施。 Q 在本發明中所用之銅箔層或是因應必要形成於其上之 後鍍的厚膜金屬層側的表面上,可形成金屬單體或金屬氧 化物等之無機物的塗膜。此外,亦可對銅箔層或是因應必 要形成於其上之後鑪的厚膜金屬層側的表面,施以偶合劑 (胺矽烷、環氧矽烷等)處理、噴砂處理、搪光處理、電暈 處理、電漿處理、離子槍處理、蝕刻處理等。 實施例 以下係顯示實施例及比較例來更具體地說明本發明, -28- 201032680 但本發明並不限定於下列實施例。下列實施例中之物性的 評估方法如下所述。 1. 還原黏度(77 sp/C) 藉由烏伯羅德式黏度管’在3〇°C下對以使聚合物濃度 成爲0.2g/dl之方式溶解於N-甲基-2-咯烷酮(或N,N-二甲基 乙醯胺)之溶液進行測定。 2. 厚度 使用測微器(Feinpruf公司製’ Millitron 1245D)對測定 ❹ 對象的膜進行測定。 3. 儲存彈性模數 在下列條件下對測定對象的膜進行黏彈性測定 (DMA) ’求取25。。之儲存彈性模數:E’之値。 裝置名稱:UBM公司製 Rheogel-E4000 鑄具:拉伸鑄具 試料長度:14mm © 試料寬度:5mm 頻率:10Hz 升溫開始溫度:0°C 升溫速度:5°C /min 環境氣體:氮氣 4·線膨脹係數(CTE) 在下列條件下對測定對象的膜測定MD方向及TD方向 的伸縮率,以90〜100。(:、100~11(TC般之每1(TC的間隔測 -29- 201032680 定伸縮率/溫度,進行此測定至400°C爲止,並計算從100 °C至3 50°C之全測定値的平均値作爲CTE(平均値)。These tetracarboxylic dianhydrides may be used singly or in combination of two or more. In addition, if it is 30 mol% or less of all tetracarboxylic dianhydrides, one type or two or more types of non-aromatic tetracarboxylic dianhydrides exemplified below may be used. Such tetracarboxylic anhydrides, for example, butane-1,2,3,4-tetracarboxylic dianhydride, pentane-1,2,4,5-tetracarboxylic dianhydride, cyclobutane tetracarboxylic dianhydride , cyclopentane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, cyclohex-1-ene-2,3,5, 6-tetracarboxylic dianhydride, 3-ethylcyclohex-1-en-3-(1,2), 5,6-tetracarboxylic dianhydride, 1-methyl-3-ethylcyclohexane- 3-(1,2),5,6-tetracarboxylic dianhydride, 1--22- 201032680 methyl-3-ethylcyclohex-1-ene-3-(1,2),5,6 - Tetracarboxylic dianhydride, 1-ethylcyclohexane-1-(1,2), 3,4-tetracarboxylic dianhydride, 1-propylcyclohexane-1-(2,3),3, 4-tetracarboxylic dianhydride, 1,3-dipropylcyclohexane-1-(2,3), 3-(2,3)-tetracarboxylic dianhydride, dicyclohexyl-3,4,3 ',4'-tetracarboxylic dianhydride, bicyclo[2.2.1]heptane-2,3,5,6-tetracarboxylic dianhydride, 1-propylcyclohexane-^(2,3), 3,4-tetracarboxylic dianhydride, hydrazine, 3·dipropylcyclohexane-1-(2,3), 3-(2,3)-tetracarboxylic dianhydride, dicyclohexyl-3, 4,3',4'-tetracarboxylic dianhydride, bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2.2]oct-7-ene -2,3,5,6-tetracarboxylic dianhydride or the like. ◎ A solvent used in the reaction (polymerization) of the aromatic tetracarboxylic acid and the aromatic diamine to obtain a polyamic acid, as long as it is a monomer capable of dissolving a raw material and a produced polyamine Further, it is not particularly limited, and is preferably a polar organic solvent such as fluorene-methyl-2-pyrrolidone, fluorenyl-acetamido-2-pyrrolidone, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-II. Ethylformamide, hydrazine, hydrazine-dimethylacetamide, dimethyl hydrazine, hexamethylphosphoniumamine, ethyl cellosolve acetate, diethylene glycol dimethyl ether, cyclobutyl hydrazine , halogenated phenols, etc. These solubilizing agents can be used singly or in combination. The amount of the solvent used may be such that the amount of the monomer of the raw material can be sufficiently dissolved. The specific amount is usually from 5 to 40% by weight, preferably from 1 to 30% by weight, based on the weight of the solution of the monomer to be dissolved. For the conditions for the polymerization of polylysine (hereinafter also referred to simply as "polymerization"), conventionally known conditions can be used, and specific examples are in the organic solvent at a temperature range of 〇~80 °C. Stir continuously and/or mix for 1 〜 to 30 hours. It is also possible to divide the polymerization reaction or increase or decrease the temperature as necessary. In this case, the order of addition of the two monomers is not particularly limited, but it is preferred to add the aromatic -23-201032680 tetracarboxylic acid to the solution of the aromatic diamine. The viscosity of the polyaminic acid solution prepared by the polymerization reaction is preferably 10 to 2000 Pa from the viewpoint of stability of liquid transport from the viewpoint of the Brookfield viscometer (25 ° C). s, especially good for 100~1000Pa. s. Those who perform vacuum defoaming in the polymerization reaction are effective for producing a good polyamic acid solution. Further, a small amount of a terminal blocking agent may be added to the aromatic diamine to control the polymerization before the polymerization. The terminal blocking agent, for example, a compound having a carbon-carbon double bond such as maleic anhydride. The amount of the dianic anhydride used is preferably from 0.001 to 1.0 mol per 1 mol of the aromatic diamine. In order to form a polyimide film from a polyamic acid solution prepared by a polymerization reaction, for example, a green film is obtained by applying a polyaminic acid solution onto a support and drying it ( A self-supporting precursor film), followed by heat treatment of the green sheets to carry out a hydrazine imidization reaction. The application of the polyaminic acid solution to the support includes a casting solution of a solution from a slit having a slit, and extrusion by an extruder, but is not limited thereto, and may be appropriately used. The coating means of the known solution. The conditions for obtaining the green sheet by drying the polylysine coated on the support are not particularly limited, and the temperature is, for example, 70 to 1501, and the drying time is, for example, 5 to 180 minutes. A drying device that achieves such conditions can also be used in the past, such as hot air, hot nitrogen, far infrared rays, high frequency induction heating, and the like. Next, in order to obtain a polyimine film of interest from the obtained green sheet, a ruthenium imidization reaction is carried out, and the specific method can be carried out by using a conventionally known ruthenium iodide reaction -24-201032680. For example, there is a method in which a polyamido acid solution containing no ring-closing catalyst and a dehydrating agent is used, and if necessary, a stretching treatment is carried out, followed by heat treatment to carry out a hydrazine imidization reaction (so-called heat-closed ring method). The heating temperature at this time is, for example, 100 to 5 001: from the viewpoint of film physical properties, it is preferably carried out at 150 to 250 ° C for 3 to 20 minutes, and then at 350 to 500 ° C. 2-stage heat treatment of ~20 minutes of treatment. Examples of other oxime imidization reactions include, for example, a chemical in which a ring-closing catalyst φ and a dehydrating agent are contained in a polyaminic acid solution, and the ruthenium imidization reaction is carried out by the action of the above-mentioned ring-closing catalyst and a dehydrating agent. Closed loop method. In this method, after the polyproline solution is applied to the support, a part of the ruthenium imidization reaction is carried out to form a self-supporting film, and the ruthenium imidization is completely carried out by heating. In this case, a part of the conditions of the ruthenium imidization reaction is preferably carried out at 100 to 200 ° C for 3 to 20 minutes, and the conditions of the ruthenium imidization reaction are completely carried out, preferably at 200 to 400 ° C. Heat treatment is carried out for 3 to 20 minutes. The thickness of the polyimine film forming the polyimine resin layer is preferably 1.0/zm to 38/zm, more preferably 1.00 to 25; t/m, more preferably 1.0 to 12.5. Em. When the film thickness is thicker than 38; am, it is less preferable for the purpose of lightening the electronic parts. Further, the ratio of the polyimine to the entire laminate is high, which adversely affects the water absorption or the physical properties of the electrical properties, and is therefore inferior. On the other hand, when the film thickness is thinner than l.〇//m, it is easily broken during transportation, and it is easy to form a fold, which makes it difficult to form a film. The storage elastic modulus of the polyimine film forming the polyimine resin layer is -25, and the number of E' (B) is not particularly limited, and is preferably 6. OGPa or more, and particularly preferably 7.0 GPa or more. Good for 8.0GPa or above. When the tensile breaking strength is smaller than 6.0 GPa, there may be a concern that the polyimide film does not have the effect of reinforcing the fluororesin layer. Further, the linear expansion coefficient of the polyimine film forming the polyimine resin layer is preferably -10 ppm / ° C to 10 ppm / ° C, particularly preferably - 7.5 ppm / ° C ~ 7.5 ppm / ° C More preferably -5 ppm / ° C ~ 5 ppm / ° C. When the coefficient of linear expansion exceeds this range, there is a concern that strain or wrinkles may occur under high temperature exposure such as solder bonding. In the polyimine film forming the polyimine resin layer, a coupling agent (amine decane, epoxy decane, etc.), sandblasting, calendering, corona treatment, plasma treatment, ionization may be performed as necessary. Gun processing, etching treatment, etc. The second invention of the present application is a method for producing a copper-clad laminate (CCL) in which the (C) copper layer is formed on the (B) polyimine resin layer without the adhesive, and φ is not particularly limited, and for example, the following means. A copper layer is formed on the polyimide film by a vacuum coating technique such as vapor deposition, sputtering, or ion shovel. • A method of forming a copper layer into a polyimide film by wet plating such as electroless plating or electroplating. • A method in which a polyaminic acid solution is applied to a copper foil and dried and heat treated (醢iminated). By using these means singly or in combination, the (C) copper layer can be formed on the (B) polyimine resin layer without the adhesive -26-201032680. The linear expansion coefficient of the multilayer fluororesin film of the present invention is preferably from 10 ppm/°C to 30 ppm/°C, more preferably from 10 ppm/°C to 28 ppm/°C, still more preferably from 10 ppm/°C to 25 ppmrc. When the coefficient of linear expansion exceeds this range, when the layer is laminated with a copper foil having a linear expansion coefficient of 16 ppm/°C, the linear expansion coefficients of the two are increased, and there is a fear that peeling or warpage is likely to occur during use. In order to set the linear expansion coefficient of the multilayer fluororesin film to be in the range of 10 ppm/° C. to 30 ppm/° C., the thickness ratio of the (A) layer of the multilayer fluororesin film is 60 for the {(A) layer/multilayer fluororesin film}. %~90%, and storage elastic modulus of layer (A) at room temperature: storage elastic modulus of E'(A) and (B) layers at room temperature: ratio of E'(B){E' (A)/E'(B)} is preferably 2.0% to 20%, particularly preferably a thickness ratio of 65% to 90% and a storage elastic modulus ratio of 2.5% to 15%, more preferably a thickness ratio of 65%- 85% and the storage elastic modulus ratio is 3.0% to 10%. When the thickness ratio or the storage elastic modulus ratio exceeds this range, the multilayer fluororesin film of the target linear expansion coefficient cannot be obtained. The thickness of the copper foil used in the present invention is preferably 1.0//m to 25/zm, more preferably 1.0/zm to 12.5/zm, still more preferably 1.0/zm to 10/m. The copper foil lamination method of the copper-clad multilayer fluororesin film used in the present invention is not particularly limited, and for example, the following means are available. • A method in which a multilayer fluororesin film is bonded to a copper foil and then welded by hot molding. • A method of forming a copper layer on a multilayer fluororesin film using a vacuum coating technique such as vapor deposition, sputtering, or ion deposition. -27- 201032680 • A method of forming a copper layer on a multilayer fluororesin film by wet plating such as electroless plating or electrolytic plating. The copper foil can be laminated on at least one side of the multilayer fluororesin film by the use of these means alone or in combination (the (A) side of the multi-layer fluororesin film in the second invention of the present application). The multilayer fluororesin film or the copper-clad multilayer fluororesin film of the present invention can be applied to, for example, a conductive copper foil layer by a general method or a thick film metal layer which is plated after being formed thereon as necessary. After the side is dried and dried, the wiring circuit pattern is formed by the steps of exposure, development, etching, and photoresist stripping, and then solder resist coating, plasticizing, and electroless tin plating are performed as necessary to obtain a flexible A printed wiring board, a multilayer printed wiring board in which these layers are multilayered, or a printed wiring board on which a semiconductor wafer is directly mounted. The method of manufacturing, multilayering, and mounting the semiconductor wafer of these circuits is not particularly limited, and can be appropriately selected and implemented in a generally known manner. Q The copper foil layer used in the present invention may be a coating film of an inorganic substance such as a metal monomer or a metal oxide on the surface of the thick film metal layer which is formed after being formed thereon. In addition, the copper foil layer or the surface of the thick film metal layer on the furnace after it is necessary to be formed thereon may be treated with a coupling agent (amine decane, epoxy decane, etc.), sandblasted, calendered, and electrically. Halo treatment, plasma treatment, ion gun treatment, etching treatment, and the like. EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples and comparative examples, -28-201032680, but the present invention is not limited to the following examples. The evaluation methods of the physical properties in the following examples are as follows. 1. Reduced viscosity (77 sp/C) dissolved in N-methyl-2-rrolane by means of an Ubbel-type viscometer 'at a concentration of 0.2 g/dl at 3 °C A solution of the ketone (or N,N-dimethylacetamide) was measured. 2. Thickness The film of the measurement target was measured using a micrometer (manufactured by Feinpruf, Inc., Millitron 1245D). 3. Storage elastic modulus The viscoelasticity measurement (DMA) of the film to be measured was determined by the following conditions. . Storage elastic modulus: E'. Device name: Rheogel-E4000 manufactured by UBM Co., Ltd. Casting: Tensile castings Sample length: 14mm © Sample width: 5mm Frequency: 10Hz Temperature rise temperature: 0°C Temperature increase rate: 5°C /min Ambient gas: Nitrogen 4·Line Expansion coefficient (CTE) The film of the measurement target was measured for the expansion ratio in the MD direction and the TD direction under the following conditions, and was 90 to 100. (:, 100~11 (TC-like every 1 (TC interval -29- 201032680 fixed expansion rate / temperature, carry out this measurement to 400 ° C, and calculate the total measurement from 100 ° C to 3 50 ° C The average 値 of 値 is taken as CTE (average 値).

裝置名稱:MAC Science公司製 TMA4000S 樣本長度:10mm 樣本寬度.2mm 初荷重:34.5g/mm2 升溫開始溫度:25tDevice name: TMA4000S manufactured by MAC Science Co., Ltd. Sample length: 10 mm Sample width. 2 mm Initial load: 34.5 g/mm2 Temperature rise temperature: 25t

升溫結束溫度:400°C ❹ 升溫速度:5°C /min 環境氣體:Μ氣 5. 熔點 在下列條件下對測定對象的膜進行示差掃描熱析測定 (DSC),依據 JIS Κ 7121 求取熔點(Tin)。 裝置名稱:MAC Science公司製DSC3100S 加熱鍋:鋁鍋(非氣密型) φ 試料質量:4mg 升溫開始溫度:30°C 升溫結束溫度:400°C 升溫速度:20°C /min 環境氣體:氬氣 6. 介電常數、介電正切 將測定對象的氟樹脂膜裁切爲3mm(厚度)x 200mmx 120mm的大小以製作出試驗膜。將導電膏塗布於試驗膜的 -30- 201032680 雙面來進行配線,並測定1MHz之介電常數及介電正切。 7.剝離強度 多層氟樹脂膜/銅箔間的剝離強度,可藉由在下列條件 下進行90°剝離試驗來求取。 裝置名稱:島津製作所公司製 Autograph AG-IS 樣本長度:100mm 樣本寬度:l〇mm 測定溫度:25°C 剝離速度:50mm/min 環境氣體:大氣 《基板的評估》耐濕熱性 對於多層氟樹脂膜、各覆銅多層氟樹脂膜’在JEDEC LEVEL1 條件下(85。。/85%RH-168hr + 245 t: /3secx3 次)進行處 理,並評估試驗後的剝離強度。此外’藉由試驗後的外觀 檢查,將完全未觀察到剝離、膨脹、變色者設爲〇’僅觀 Q 察到些許剝離、膨脹、變色者爲△,觀察到剝離、膨脹、 變色者爲X。 《基板的評估》耐熱性 對於多層氟樹脂膜、各覆銅多層氟樹脂膜’將其放入 至不銹鋼網目性的籠子中,在大氣中、250°C -24hr下進行 加熱處理,並評估試驗後的剝離強度。此外’藉由試驗後 的外觀檢查,將完全未觀察到剝離、膨脹、變色者設爲〇’ 僅觀察到些許剝離、膨脹、變色者爲△,觀察到剝離、膨 -31- 201032680 脹、變色者爲X。 [製造例1] (聚醯亞胺膜A的製作) 將具備氮氣導入管、溫度計、攪拌棒之反應容器內進 行氮氣取代後,加入5-胺基-2-(對胺基苯基)苯并嗶唑223 質量份、Ν,Ν·二甲基乙醯胺4416質量份並完全溶解後,加 入將膠體二氧化矽分散於二甲基乙醯胺而成之 Snow-Tex(DMAC-ST30、日產化學工業公司製)40.5質量份 (含二氧化矽8.1質量份)、焦蜜石酸二酐217質量份,在 25 t的反應溫度下攪拌24小時,製得褐色且黏稠之聚醯胺 酸溶液A。其還原濃度爲3.9dl/g。 使用刮刀式塗布機,將此聚醯胺酸溶液A塗布於聚對 苯二甲酸乙二酯製的膜A-4100(東洋紡績公司製)的無潤滑 劑面上,在110 °C下乾燥5分鐘後,以不從支撐體中剝離之 方式將聚醯胺酸膜捲取。使聚醯胺酸膜通過具有3段熱處 Q 理區之針梳拉幅機,進行第1段150 °Cx2分鐘、第2段220 °C x2分鐘、第3段475°C x4分鐘之熱處理,在通過拉幅機 後20分鐘間,通過6根輥來進行雙面光滑程序,最後切割 爲500mm寬而製得聚醯亞胺膜A1~A4。 表1係顯示所製得之聚醯亞胺膜A 1 ~A4的物性値。 [製造例2] (聚醯亞胺膜B的製作) 將具備氮氣導入管、溫度計、攪拌棒之反應容器內進 -32- 201032680 行氮氣取代後,加入二胺基二苯基醚200質量份、N_甲基 -2 -吡咯烷酮4170質量份並完全溶解後,加入將膠體二氧化 矽分散於二甲基乙醯胺而成之Snow-Tex(DMAC-ST30、日產 化學工業公司製)40.5質量份(含二氧化矽8.1質量份)、焦 蜜石酸二酐217質量份,在25 °C的反應溫度下攪拌5小時, 製得褐色且黏稠之聚醯胺酸溶液 B。其還原濃度爲 3.6 dl/g。使用刮刀式塗布機,將此聚醯胺酸溶液B塗布於 聚對苯二甲酸乙二酯製的膜A-4100(東洋紡績公司製)的無 潤滑劑面上,在1 1 0°C下乾燥5分鐘後,以不從支撐體中剝 離之方式將聚醯胺酸膜捲取。使聚醯胺酸膜通過具有3段 熱處理區之針梳拉幅機,進行第1段150°Cx2分鐘、第2 段220°C x2分鐘、第3段400°C x4分鐘之熱處理,在通過 拉幅機後20分鐘間,通過6根輥來進行雙面光滑程序,最 後切割爲500mm寬而製得聚酿亞胺膜B。 表1係顯示所製得之聚醯亞胺膜B的物性値。 〇 [製造例3] (聚醯亞胺膜C的製作) 將具備氮氣導入管、溫度計、攪拌棒之反應容器內進 行氮氣取代後,加入苯二胺108質量份、N-甲基-2-吡咯烷 酮4010質量份並完全溶解後,加入將膠體二氧化矽分散於 二甲基乙醯胺而成之Snow-Tex(DMAC-ST30、日產化學工業 公司製)40.5質量份(含二氧化矽8.1質量份)、二苯基四羧 酸二酐292.5質量份,在25t的反應溫度下攪拌12小時’ -33- 201032680 製得褐色且黏稠之聚醯胺酸溶液C。其還原濃度爲4.3dl/g° 使用刮刀式塗布機,將此聚醯胺酸溶液C塗布於聚對 苯二甲酸乙二酯製的膜A-4100(東洋紡績公司製)的無潤滑 劑面上,在1 i(rc下乾燥5分鐘後,以不從支撐體中剝離之 方式將聚醯胺酸膜捲取。使聚醯胺酸膜通過具有3段熱處 理區之針梳拉幅機,進行第1段150°cx2分鐘、第2段220 。(:x2分鐘、第3段46CTC x4分鐘之熱處理’在通過拉幅機 後20分鐘間,通過6根輥來進行雙面光滑程序’最後切割 〇 爲5 00mm寬而製得厚度25/zm的聚醯亞胺膜C。 表1係顯示所製得之聚醯亞胺膜C的物性値。 項目 單位 製造例1 製造例1 製造例1 製造例1 製造例2 製造例3 聚醯亞胺膜 _ A1 A2 A3 Α4 B C 厚度 μπι 3.0 5.0 10 25 5.0 5.0 線膨脹係數 ppm/°C 0.50 1.1 1.5 1.8 20 20 儲存彈性模數 GPa 9.0 9.0 9.0 9.0 5.0 8.5 熔點 °C 挑 i〇L 挑 4rrt. Μ /frrt. 撕 無 /fnr Μ [製造例4] (氟樹脂膜的製作) 使用市售的氟樹脂,藉由一般所知的手法製作出氣樹 脂膜。 表2、表3係顯示所製得之氟樹脂膜的種類及其物性。 圖中,PAF爲四氣乙嫌.全氟院基乙嫌醚共聚物’ FEP 爲四氟乙烯.六氟丙烯共聚物’ EPE爲四氟乙烯.六氟丙 烯.全氟烷基乙烯醚共聚物,ETFE爲四氟乙嫌.乙嫌共聚 物。 -34- 201032680 表2 項目 單位 製造例4 製造例4 製造例4 製造例4 製造例4 製造例4 聚醯亞胺膜 — D1 D2 D3 D4 E F 組成 — PFA PFA PFA PFA PFA PFA 介電常數 — 2.1 2.1 2.1 2.1 2.1 2.1 介電正切 xlO·4 3.0 3.0 3.0 3.0 3.0 3.0 厚度 βχη 10 12.5 25 50 12.5 12.5 官能基 一 有 有 有 有 Μ Μ 線膨脹係數 ppm/°C 180 180 180 180 150 150 儲存彈性模數 GPa 0.55 0.55 0.55 0.55 0.50 0.50 熔點 °C 300 300 300 300 300 300 表3 項目 單位 製造例4 製造例4 製造例4 製造例4 製造例4 製造例4 聚醯亞胺膜 G Η I J κ L 組成 FEP EPE ETFE ETFE ETFE ETFE 介電常數 2.1 2.1 2.7 2.7 2.7 2.7 介電正切 xlO^ 5.0 5.0 50 50 50 50 厚度 βχη 12.5 12.5 12.5 12.5 12.5 12.5 官能基 無 yfrrr 挑 有 有 yfrrr 挪 線膨脹係數 ppm/°C 80 90 130 130 100 100 儲存彈性模數 GPa 0.45 0.40 0.75 0.85 0.80 0.85 熔點 °c 260 290 240 200 250 250Temperature rise end temperature: 400 ° C 升温 Temperature increase rate: 5 ° C / min Ambient gas: Helium gas 5. Melting point The film to be measured is subjected to differential scanning calorimetry (DSC) under the following conditions, and the melting point is determined according to JIS Κ 7121. (Tin). Device name: DSC3100S heating pot made by MAC Science: Aluminum pan (non-hermetic type) φ Sample quality: 4mg Temperature rise temperature: 30°C Temperature rise temperature: 400°C Temperature increase rate: 20°C /min Ambient gas: Argon Gas 6. Dielectric constant, dielectric tangent The fluororesin film of the measurement object was cut into a size of 3 mm (thickness) x 200 mm x 120 mm to prepare a test film. The conductive paste was applied to both sides of the test film -30-201032680 for wiring, and the dielectric constant and dielectric tangent of 1 MHz were measured. 7. Peel strength The peel strength between the multilayer fluororesin film/copper foil can be determined by performing a 90 peel test under the following conditions. Device name: Autograph AG-IS manufactured by Shimadzu Corporation. Sample length: 100mm Sample width: l〇mm Measurement temperature: 25°C Peeling speed: 50mm/min Ambient gas: Atmosphere "Evaluation of substrate" Moisture resistance for multilayer fluororesin film Each of the copper-clad multilayer fluororesin films was treated under JEDEC LEVEL1 conditions (85. / 85% RH-168hr + 245 t: /3secx 3 times), and the peel strength after the test was evaluated. In addition, by the visual inspection after the test, it was found that no peeling, swelling, or discoloration was observed at all. Only Q was observed, and some peeling, swelling, and discoloration were observed as Δ, and peeling, swelling, and discoloration were observed as X. . "Evaluation of Substrate" Heat resistance for a multilayer fluororesin film and each copper-clad multilayer fluororesin film' is placed in a stainless steel mesh cage, heat-treated in the atmosphere at 250 ° C - 24 hr, and the evaluation test Peel strength after. In addition, 'by the visual inspection after the test, no peeling, swelling, or discoloration was observed at all." Only a few peeling, swelling, and discoloration were observed as △, and peeling, swelling, and swelling were observed. Is X. [Production Example 1] (Production of Polyimine Film A) After a nitrogen gas substitution in a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, and a stir bar, 5-amino-2-(p-aminophenyl)benzene was added. And 223 parts by mass of carbazole, 4416 parts by mass of hydrazine, hydrazine dimethyl acetamide, and completely dissolved, and then added Snow-Tex (DMAC-ST30, which is obtained by dispersing colloidal cerium oxide in dimethyl acetamide. 40.5 parts by mass (containing 8.1 parts by mass of cerium oxide) and 217 parts by mass of pyromellitic dianhydride were stirred at a reaction temperature of 25 t for 24 hours to obtain a brown and viscous polylysine. Solution A. Its reducing concentration was 3.9 dl/g. The polyamidic acid solution A was applied to a lubricant-free surface of a film A-4100 (manufactured by Toyobo Co., Ltd.) made of polyethylene terephthalate, and dried at 110 ° C using a doctor blade coater. After a minute, the polylysine film was taken up without being peeled off from the support. The poly-proline membrane was passed through a needle carding machine with a 3-stage hot zone, and the first section was heat treated at 150 °C for 2 minutes, the second stage at 220 °C for 2 minutes, and the third for 475 °C for 4 minutes. In the 20 minutes after passing the tenter, a double-sided smoothing process was carried out through 6 rolls, and finally cut into a width of 500 mm to obtain a polyimide film A1 to A4. Table 1 shows the physical properties of the obtained polyimine film A 1 to A4. [Production Example 2] (Preparation of Polyimine Film B) 200 parts by mass of diaminodiphenyl ether was added to a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, and a stir bar in a nitrogen-substituted period of -32 to 201032680. 4,170 parts by mass of N-methyl-2-pyrrolidone and completely dissolved, and then added to the Snow-Tex (DMAC-ST30, manufactured by Nissan Chemical Industries Co., Ltd.) which has colloidal cerium oxide dispersed in dimethylacetamide. Parts (containing 8.1 parts by mass of cerium oxide) and 217 parts by mass of pyromellitic dianhydride were stirred at a reaction temperature of 25 ° C for 5 hours to obtain a brown and viscous polyamic acid solution B. It has a reducing concentration of 3.6 dl/g. The polyamic acid solution B was applied to a lubricant-free surface of a film A-4100 (manufactured by Toyobo Co., Ltd.) made of polyethylene terephthalate using a knife coater at 110 ° C. After drying for 5 minutes, the polylysine film was taken up without being peeled off from the support. The polyproline membrane is passed through a needle comber having a three-stage heat treatment zone, and heat treatment is performed in the first stage of 150 ° C for 2 minutes, the second stage of 220 ° C for 2 minutes, and the third stage of 400 ° C for 4 minutes. 20 minutes after the tenter, a double-sided smoothing process was carried out by 6 rolls, and finally cut into a width of 500 mm to prepare a polyimide film B. Table 1 shows the physical properties of the obtained polyimide film B.制造 [Production Example 3] (Production of Polyimine Film C) After a nitrogen gas substitution in a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, and a stir bar, 108 parts by mass of phenylenediamine and N-methyl-2- are added. After 4010 parts by mass of pyrrolidone and completely dissolved, 40.5 parts by mass of Snow-Tex (DMAC-ST30, manufactured by Nissan Chemical Industries Co., Ltd.) obtained by dispersing colloidal cerium oxide in dimethylacetamide (containing cerium oxide 8.1 mass) Part by weight, 292.5 parts by mass of diphenyltetracarboxylic dianhydride, stirred at a reaction temperature of 25 t for 12 hours '-33- 201032680 to obtain a brown and viscous polyamine solution C. The reduction concentration was 4.3 dl/g. The polyamine acid solution C was applied to a lubricant-free surface of a film A-4100 (manufactured by Toyobo Co., Ltd.) made of polyethylene terephthalate using a doctor blade coater. On the other hand, after drying for 1 minute at 1 i (rc), the polyamic acid film was taken up without peeling from the support. The polyamic acid film was passed through a needle carding machine having a 3-stage heat treatment zone. Perform the first paragraph 150 °c x 2 minutes, the second paragraph 220. (: x 2 minutes, the third stage 46CTC x 4 minutes heat treatment '20 minutes after passing the tenter, through two rollers for double-sided smoothing process 'final The cut ruthenium was 500 mm wide to obtain a polyimide film C having a thickness of 25/zm. Table 1 shows the physical properties of the obtained polyimide film C. Project unit manufacturing example 1 Manufacturing Example 1 Manufacturing Example 1 Production Example 1 Production Example 2 Production Example 3 Polyimine film _ A1 A2 A3 Α4 BC Thickness μπι 3.0 5.0 10 25 5.0 5.0 Linear expansion coefficient ppm/°C 0.50 1.1 1.5 1.8 20 20 Storage elastic modulus GPa 9.0 9.0 9.0 9.0 5.0 8.5 Melting point °C Pick i〇L Pick 4rrt. Μ /frrt. Tear no /fnr Μ [Production Example 4] (Production of fluororesin film) Use A commercially available fluororesin is produced by a generally known method. Table 2 and Table 3 show the types and physical properties of the obtained fluororesin film. In the figure, the PAF is tetragas and benzene. Efficient ether copolymer 'FEP is tetrafluoroethylene. Hexafluoropropylene copolymer' EPE is tetrafluoroethylene. Hexafluoropropylene. Perfluoroalkyl vinyl ether copolymer, ETFE is tetrafluoroethylene. -34- 201032680 Table 2 Project unit Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Production example 4 Polyimine film - D1 D2 D3 D4 EF Composition - PFA PFA PFA PFA PFA PFA Dielectric constant - 2.1 2.1 2.1 2.1 2.1 2.1 Dielectric tangent xlO·4 3.0 3.0 3.0 3.0 3.0 3.0 Thickness βχη 10 12.5 25 50 12.5 12.5 Functional groups are available in Μ 线 Linear expansion coefficient ppm/°C 180 180 180 180 150 150 Storage flexibility Modulus GPa 0.55 0.55 0.55 0.55 0.50 0.50 Melting point °C 300 300 300 300 300 300 Table 3 Project unit Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Manufacturing example 4 Polyimine film G Η IJ κ L Composition of FEP EPE ETFE ETFE ETFE ETFE dielectric constant 2.1 2.1 2.7 2.7 2.7 2.7 Dielectric tangent xlO^ 5.0 5.0 50 50 50 50 Thickness βχη 12.5 12.5 12.5 12.5 12.5 12.5 No yfrrr functional group yfrrr No linear expansion coefficient ppm/°C 80 90 130 130 100 100 Storage elastic mold Number GPa 0.45 0.40 0.75 0.85 0.80 0.85 Melting point °c 260 290 240 200 250 250

[製造例5] (聚醯亞胺膜a的製作) -35- 201032680 將具備氮氣導入管、溫度計、攪拌棒之反應容器內進 行氮氣取代後,加入5-胺基-2-(對胺基苯基)苯并噚唑223 質量份、N,N-二甲基乙醯胺4416質量份並完全溶解後,加 入將膠體二氧化矽分散於二甲基乙醯胺而成之 311(^-16\(〇]^八(:-3丁30、日產化學工業公司製)40.5質量份 (含二氧化矽8.1質量份)、焦蜜石酸二酐217質量份,在 25 °C的反應溫度下攪拌24小時,製得褐色且黏稠之聚醯胺 ^ 酸溶液A。其還原濃度爲3.9dl/g。 ❹ 使用刮刀式塗布機,將此聚醯胺酸溶液A塗布於聚對 苯二甲酸乙二酯製的膜A-4100(東洋紡績公司製)的無潤滑 劑面上,在11 (TC下乾燥5分鐘後,以不從支撐體中剝離之 方式將聚醯胺酸膜捲取。使聚醯胺酸膜通過具有3段熱處 理區之針梳拉幅機,進行第1段150°C x2分鐘、第2段220 °C x2分鐘、第3段475 °C x4分鐘之熱處理,在通過拉幅機 後20分鐘間,通過6根輥來進行雙面光滑程序,最後切割 Q 爲500mm寬而製得聚醯亞胺膜al〜a4。 表1 1係顯示所製得之聚醯亞胺膜al〜a4的物性値。 接著進行濺鍍、電鍍。 將聚醯亞胺膜al~a4裁切爲A4尺寸,夾持於具有開口 部之不鏽鋼製的框並加以固定。將此框固定在濺鍍裝置內 的基板夾持具。係以使基板夾持具與聚醯亞胺膜密著之方 式來固定。因此,藉由使冷媒於基板夾持具內流通’可設 定聚醯亞胺膜的溫度。接著進行聚醯亞胺膜表面的電漿處 -36- 201032680 理。電漿處理條件,爲在氬氣中、頻率13.5 6MHz、輸出 200W、氣壓lxl(T3Torr的條件,處理時的溫度爲2°C ’處 理時間爲2分鐘。然後在頻率13.56MHz、輸出450W、氣 壓3xlO_3T〇rr的條件下,使用鎳-鉻(鉻爲1〇質量%)合金靶 材,在氬氣環境中藉由DC磁控濺鍍法,以lnm/秒的速率 形成厚度7nm的鎳-鉻合金覆膜(底層),然後以將基板的溫 度設爲2°C之方式,使溫度控制在2°C的冷媒於基板之濺鍍 面的內面中流通。接著在與基板夾持具的SUS板接觸之狀[Production Example 5] (Production of Polyimine Film a) -35- 201032680 After nitrogen substitution in a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, and a stir bar, 5-amino-2-(p-amino group) was added. 223 parts by mass of phenyl)benzoxazole, 4416 parts by mass of N,N-dimethylacetamide and completely dissolved, and then added 311 (^- by dispersing colloidal cerium oxide in dimethylacetamide) 16\(〇]^八(:-3丁30, manufactured by Nissan Chemical Industries Co., Ltd.) 40.5 parts by mass (containing 8.1 parts by mass of cerium oxide) and 217 parts by mass of pyromellitic dianhydride at a reaction temperature of 25 °C After stirring for 24 hours, a brown and viscous polyamine liquid acid solution A was obtained, which had a reducing concentration of 3.9 dl/g. 涂布 The polyphthalic acid solution A was coated on polyterephthalic acid using a knife coater. On the lubricant-free surface of the film A-4100 (manufactured by Toyobo Co., Ltd.) made of ethylenediester, the polyamic acid film was taken up without being peeled off from the support after drying at 11 (TC for 5 minutes). The polyproline membrane was passed through a needle comber having a three-stage heat treatment zone, and the first stage was 150 ° C x 2 minutes, the second stage was 220 ° C x 2 minutes, and the third stage was 475 ° C x 4 minutes. In the heat treatment of the clock, the double-side smoothing process was carried out through 6 rolls after passing the tenter, and finally the cutting Q was 500 mm wide to obtain a polyimide film a1 to a4. Table 1 1 shows the system The physical properties of the polyimine film a1 to a4 are obtained. Next, sputtering and electroplating are performed. The polyimine film a1 to a4 is cut into an A4 size, and is placed in a stainless steel frame having an opening and fixed. The frame holder is fixed to the substrate holder in the sputtering apparatus so as to fix the substrate holder to the polyimide film. Therefore, the refrigerant is circulated in the substrate holder. The temperature of the polyimide film can be set. Then the plasma of the surface of the polyimide film is treated at -36-201032680. The plasma treatment conditions are in argon, frequency 13.56 MHz, output 200W, pressure lxl (T3Torr). The condition, the temperature at the time of treatment is 2 ° C. The treatment time is 2 minutes. Then, under the conditions of a frequency of 13.56 MHz, an output of 450 W, and a pressure of 3 x 10 _ 3 T rr, a nickel-chromium (chromium is 1 〇 mass %) alloy target is used. Thickness 7 at a rate of 1 nm/sec by DC magnetron sputtering in an argon atmosphere a nickel-chromium alloy film (bottom layer) of nm, and then a refrigerant whose temperature is controlled at 2 ° C flows through the inner surface of the sputtering surface of the substrate so that the temperature of the substrate is 2 ° C. SUS plate contact of the substrate holder

G 態下進行濺鍍,形成厚度0.25 /zm的銅薄膜’而製得單面 形成有底層金屬薄膜之聚醯亞胺膜al~a4。其中’銅及NiCr 層的厚度可藉由螢光X射線法來確認。將所製得之單面形 成有底層金屬薄膜之聚醯亞胺膜al~a4固定在塑膠製的 框,並使用硫酸銅電鍍浴來形成厚度9/zm的銅層。電鍍條 件,係浸漬在電鍍液(硫酸銅80g/l、硫酸210g/l、HC1、少 量光澤劑),並使1.5Adm2的電流通。接著在120°C進行10 φ 分鐘的熱處理乾燥,而製得單面形成有銅層之聚醯亞胺膜 之覆銅積層板(CCL) al~a4。 [製造例6] (聚醯亞胺膜b的製作) 將具備氮氣導入管、溫度計、攪拌棒之反應容器內進 行氮氣取代後,加入二胺基二苯基醚200質量份、N-甲基 -2-吡咯烷酮4 170質量份並完全溶解後,加入將膠體二氧化 矽分散於二甲基乙醯胺而成之Snow-Tex(DMAC-ST30、曰產 -37- 201032680 化學工業公司製)40.5質量份(含二氧化矽8.1質量份)、焦 蜜石酸二酐217質量份,在25 °C的反應溫度下攪拌5小時, 製得褐色且黏稠之聚醯胺酸溶液 B。其還原濃度爲 3.6 dl/g。使用刮刀式塗布機,將此聚醯胺酸溶液B塗布於 聚對苯二甲酸乙二酯製的膜A-4100(東洋紡績公司製)的無 潤滑劑面上,在1 1 0°C下乾燥5分鐘後,以不從支撐體中剝 離之方式將聚醯胺酸膜捲取。使聚醯胺酸膜通過具有3段 _ 熱處理區之針梳拉幅機,進行第1段150 °Cx2分鐘、第2 段220°C x2分鐘、第3段400°C X4分鐘之熱處理,在通過 拉幅機後20分鐘間,通過6根輥來進行雙面光滑程序,最 後切割爲500mm寬而製得聚醯亞胺膜b。 表11係顯示所製得之聚醯亞胺膜b的物性値。 接著以與製造例5相同之方法進行濺鍍、電鍍,而製 得覆銅積層板(CCL)b。 [製造例7] 〇 (聚醯亞胺膜C的製作) 將具備氮氣導入管、溫度計、攪拌棒之反應容器內進 行氮氣取代後,加入苯二胺108質量份、N-甲基-2-吡咯烷 酮4010質量份並完全溶解後,加入將膠體二氧化矽分散於 二甲基乙醯胺而成之Snow-Tex(DMAC-ST30、日產化學工業 公司製)40.5質量份(含二氧化矽8.1質量份)、二苯基四羧 酸二酐292·5質量份,在25°C的反應溫度下攪拌12小時, 製得褐色且黏稠之聚醯胺酸溶液C。其還原濃度爲4.3dl/g。 -38- 201032680 使用刮刀式塗布機,將此聚醯胺酸溶液c塗布於聚胃 苯二甲酸乙二酯製的膜A-4100(東洋紡績公司製)的無潤滑 劑面上,在1 i(rc下乾燥5分鐘後,以不從支撐體中剝離之 方式將聚醯胺酸膜捲取。使聚醯胺酸膜通過具有3段熱處 理區之針梳拉幅機,進行第1段150°c X2分鐘、第2段220 tx2分鐘、第3段460°Cx4分鐘之熱處理,在通過拉幅機 後20分鐘間,通過6根輥來進行雙面光滑程序,最後切割 I 爲5 00mm寬而製得厚度25#m的聚醯亞胺膜c。表11係顯 ❾ 示所製得之聚醯亞胺膜c的物性値。 接著以與製造例5相同之方法進行濺鍍、電鍍,而製 得覆銅積層板(CCL)c。 [製造例8] (氟樹脂膜的製作) 使用市售的氟樹脂,藉由一般所知的手法製作出氟樹 脂膜。表12、表13係顯示所製得之氟樹脂膜的種類及其物 ❹ 性。 [實施例1] 將含官能基的氟樹脂膜Dl(Fluon PFA接著等級、旭硝 子公司製)配置在裁切爲150mmxl50mm的尺寸之聚醯亞胺 膜A1的雙面上,在氟樹脂膜熔點以上之3 3 0°C、5MPa下 進行30分鐘的加熱加壓成形,而製得多層氟樹脂膜。 另一方面,依序將含官能基的氟樹脂膜D1、厚度9// m的銅箱(UWZ、FurukawaCircuitFoil公司製)配置在裁切 -39- 201032680 爲150mmxl50mm的尺寸之聚醯亞胺膜目上, 樹脂膜熔點以上之330°C、5MPa下進行3〇分鐘的加熱加壓 成形,而製得雙面覆銅多層氟樹脂膜。 表4係顯不所製得之多層氟樹脂膜、雙面覆銅多層氣 樹脂膜的評估結果。以下’厚度比、儲存彈性模數比、及 線膨脹係數爲多層氟樹脂膜的評估結果, 爲雙面覆銅多層氟樹脂膜的評估結果。 ^ [實施例2、3] 除了使用聚酸亞胺膜A2、A3來取代聚醯亞胺膜A1之 外’其他以與實施例1相同之方法來製作積層體並進行評 估。 表4係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 【表4】 項目 單位 實施例1 實施例2 實施例3 聚醯亞胺膜 一 A1 A2 A3 氟樹脂膜 一 D1 D1 D1 厚度比 % 87 80 67 儲存彈性模數比 % 6.1 6.1 6.1 線膨脹係數 ppm/。。 28 25 15 初期 剝離強度 N/cm 13 1 13 13 膜質 一 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 10 10 10 膜質 一 〇 〇 〇 耐熱試驗 剝離強度 N/cm 5 8 10 膜質 — △ 〇 〇 -40- 201032680 [實施例4] 除了使用含官能基的氟樹脂膜D2(FiuonPFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜D1之外, 其他以與實施例1相同之方法來製作積層體並進行評估。 表5係顯不所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 [實施例5、6] φ 除了使用聚醯亞胺膜A2、A3來取代聚醯亞胺膜A1之 外’其他以與實施例4相同之方法來製作積層體並進行評 估。 表5係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 [實施例7] 除了使用含官能基的氟樹脂膜D3(Fluon PFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜D2之外, 〇 其他以與實施例6相同之方法來製作積層體並進行評估。 表5谭顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 -41 - 201032680 【表5】 項目 單位 實施例4 實施例5 實施例6 實施例7 聚醯亞胺膜 一 A1 Α2 A3 A3 氟樹脂膜 — D2 D2 D2 D3 厚度比 % 89 83 71 83 儲存彈性模數比 % 6.1 6.1 6.1 6.1 線膨驅數 ppm/°C 30 25 20 25 初期 剝離強度 N/cm 15 15 15 18 膜質 — 〇 〇 〇 〇 耐濕熱試 剝離強度 N/cm 13 13 13 15 驗 膜質 一 〇 〇 〇 〇 耐熱試驗 剝離強度 N/cm 8 10 13 13 膜質 — Δ 〇 〇 〇In the G state, sputtering was carried out to form a copper film having a thickness of 0.25 /zm, and a polyimide film a~a4 having a single-layer metal film formed on one side was obtained. The thickness of the 'copper and NiCr layer' can be confirmed by the fluorescent X-ray method. The obtained polyimine film a~a4 having the underlying metal film formed on one side was fixed in a plastic frame, and a copper sulfate plating bath was used to form a copper layer having a thickness of 9/zm. The electroplating conditions were immersed in a plating solution (copper sulfate 80 g/l, sulfuric acid 210 g/l, HC1, a small amount of a gloss agent), and a current of 1.5 Adm2 was passed. Subsequently, heat treatment was carried out at 120 ° C for 10 φ minutes to obtain a copper clad laminate (CCL) al~a4 having a copper layer-formed polyimine film formed on one side. [Production Example 6] (Production of Polyimine Film b) After a nitrogen gas substitution in a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, and a stir bar, 200 parts by mass of diaminodiphenyl ether and N-methyl group were added. After 2-170 parts by mass of -2-pyrrolidone and completely dissolved, Snow-Tex (DMAC-ST30, manufactured by Chemical Industry Co., Ltd.), which is obtained by dispersing colloidal cerium oxide in dimethylacetamide, is added. Parts by mass (8.1 parts by mass of cerium oxide) and 217 parts by mass of pyromellitic dianhydride were stirred at a reaction temperature of 25 ° C for 5 hours to obtain a brown and viscous polyamic acid solution B. It has a reducing concentration of 3.6 dl/g. The polyamic acid solution B was applied to a lubricant-free surface of a film A-4100 (manufactured by Toyobo Co., Ltd.) made of polyethylene terephthalate using a knife coater at 110 ° C. After drying for 5 minutes, the polylysine film was taken up without being peeled off from the support. The polyproline membrane is passed through a needle comber having a 3-stage heat treatment zone, and heat treatment is performed in the first stage at 150 ° C for 2 minutes, the second stage at 220 ° C for 2 minutes, and the third stage at 400 ° C for 4 minutes. A two-side smoothing process was carried out by passing six rollers after 20 minutes through a tenter, and finally cut into a width of 500 mm to prepare a polyimide film b. Table 11 shows the physical properties of the obtained polyimide film b. Then, sputtering and plating were carried out in the same manner as in Production Example 5 to obtain a copper clad laminate (CCL) b. [Production Example 7] 〇 (Production of Polyimine Film C) After the nitrogen gas was substituted in a reaction vessel equipped with a nitrogen gas introduction tube, a thermometer, and a stir bar, 108 parts by mass of phenylenediamine and N-methyl-2- were added. After 4010 parts by mass of pyrrolidone and completely dissolved, 40.5 parts by mass of Snow-Tex (DMAC-ST30, manufactured by Nissan Chemical Industries Co., Ltd.) obtained by dispersing colloidal cerium oxide in dimethylacetamide (containing cerium oxide 8.1 mass) And 25.2 parts by mass of diphenyltetracarboxylic dianhydride were stirred at a reaction temperature of 25 ° C for 12 hours to obtain a brown and viscous polyamine solution C. Its reducing concentration is 4.3 dl/g. -38- 201032680 The polyamic acid solution c was applied to the lubricant-free surface of film A-4100 (manufactured by Toyobo Co., Ltd.) made of polyethylene terephthalate using a doctor blade coater at 1 i. After drying for 5 minutes at rc, the poly-proline film was taken up without being peeled off from the support. The poly-proline film was passed through a needle carding machine having a 3-stage heat treatment zone to carry out the first stage 150. °c X2 minutes, 2nd stage 220 tx2 minutes, 3rd stage 460°Cx4 minutes heat treatment, 20 minutes after passing the tenter, through 6 rollers for double-sided smoothing process, finally cutting I is 5000 mm wide Further, a polyimide film c having a thickness of 25 #m was obtained. Table 11 shows the physical properties of the obtained polyimide film c. Then, sputtering and plating were carried out in the same manner as in Production Example 5. A copper-clad laminate (CCL) c was obtained. [Production Example 8] (Production of a fluororesin film) A fluororesin film was produced by a generally known method using a commercially available fluororesin. Table 12 and Table 13 are used. The type of the fluororesin film produced and the properties thereof were shown. [Example 1] A functional group-containing fluororesin film D1 (Fluon PFA followed by grade, Asahi Glass) (manufactured by the company), placed on both sides of a polyimide film A1 cut to a size of 150 mm x 150 mm, and subjected to heat and pressure molding at 30 ° C and 5 MPa of the melting point of the fluororesin film for 30 minutes. On the other hand, a functional group-containing fluororesin film D1 and a copper box (UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 9/m were sequentially placed in a size of 150 mm x 150 mm for cutting -39-201032680. On the polyimine film, a double-sided copper-clad multilayer fluororesin film was obtained by heat-press molding at 330 ° C and 5 MPa above the melting point of the resin film to obtain a double-sided copper-clad multilayer fluororesin film. The evaluation results of the multilayer fluororesin film and the double-sided copper-clad multilayer gas-resin film. The following 'thickness ratio, storage elastic modulus ratio, and linear expansion coefficient are the evaluation results of the multilayer fluororesin film, which is a double-sided copper-clad multilayer fluororesin film. [Equation 2, 3] A laminate was produced and evaluated in the same manner as in Example 1 except that the polyimide film A2 and A3 were used instead of the polyimide film A1. Table 4 shows the obtained multilayer fluororesin film, double-sided coating Evaluation results of copper multilayer fluororesin film [Table 4] Project unit Example 1 Example 2 Example 3 Polyimine film A1 A2 A3 Fluoro resin film-D1 D1 D1 Thickness ratio % 87 80 67 Storage elastic modulus Specific ratio 6.1 6.1 6.1 Linear expansion coefficient ppm/. 28 25 15 Initial peel strength N/cm 13 1 13 13 Membrane quality 〇〇〇 Wet heat test Peeling strength N/cm 10 10 10 Film quality 〇〇〇 heat resistance test peel strength N/cm 5 8 10 Membrane - Δ 〇〇 -40 - 201032680 [Example 4] In place of the functional group-containing fluororesin film D1 (Fiuon PFA, grade, manufactured by Asahi Glass Co., Ltd.) was used instead of the functional group-containing fluororesin film D1. In the same manner as in Example 1, a laminate was produced and evaluated. Table 5 shows the evaluation results of the multilayer fluororesin film and the double-sided copper-clad multilayer fluororesin film which were produced. [Examples 5 and 6] φ A laminate was produced and evaluated in the same manner as in Example 4 except that the polyimide film A2 and A3 were used instead of the polyimide film A1. Table 5 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. [Example 7] A fluororesin film D3 (Fluon PFA, grade, manufactured by Asahi Glass Co., Ltd.) containing a functional group was used instead of the functional group-containing fluororesin film D2, and the same procedure as in Example 6 was carried out. The laminate is evaluated and evaluated. Table 5 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. -41 - 201032680 [Table 5] Project unit Example 4 Example 5 Example 6 Example 7 Polyimine film-A1 Α2 A3 A3 Fluororesin film - D2 D2 D2 D3 Thickness ratio % 89 83 71 83 Storage elastic mold Number ratio % 6.1 6.1 6.1 6.1 Line expansion drive number ppm/°C 30 25 20 25 Initial peel strength N/cm 15 15 15 18 Membrane - 〇〇〇〇Damp heat resistance test peel strength N/cm 13 13 13 15 Test film quality 〇〇〇〇 heat resistance test peel strength N/cm 8 10 13 13 membranous - Δ 〇〇〇

[實施例8〜1 1J[Example 8 to 1 1J

將裁切爲I50mmxl50mm的尺寸之聚醯亞胺膜A2設置 在曰放電子公司製的電漿處理機,進行真空排氣後,導入 氧氣並激發放電來進行電漿處理。處理條件爲真空度3x l〇Pa、氣體流量1.5SLM、放電電力12KW。 將不含官能基的氟樹脂膜E(Fluon PFA、旭硝子公司 製)、F(Neoflon PFA、Daikin 工業公司製)、G(NeoflonFEP、The polyimine film A2 cut into a size of I50 mm x 150 mm was placed in a plasma processor manufactured by Hi-Tech Co., Ltd., and after vacuum evacuation, oxygen gas was introduced and the discharge was excited to perform plasma treatment. The treatment conditions were a vacuum of 3 x l 〇 Pa, a gas flow rate of 1.5 SLM, and a discharge power of 12 kW. A functional group-free fluororesin film E (Fluon PFA, manufactured by Asahi Glass Co., Ltd.), F (Neoflon PFA, manufactured by Daikin Industries Co., Ltd.), and G (Neoflon FEP,

Daikin工業公司製)、H(EPE、Daikin工業公司製)分別配 置在所製得之經電漿處理的聚醯亞胺膜A2的雙面上,在氟 樹脂膜熔點以上之3 30°C、5MPa下進行30分鐘的加熱加壓 成形,而製得多層氟樹脂膜。 另一方面,依序將不含官能基的氟樹脂膜E~H、厚度9 -42- 201032680 私m的銅箔配置在經電漿處理的聚醯亞胺膜A2的雙面上, 在氟樹脂膜熔點以上之3 30 °C、5MPa下進行30分鐘的加熱 加壓成形,而製得雙面覆銅多層氟樹脂膜。 表6係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 【表6】 項目 單位 實施例8 實施例9 實施例10 實施例11 聚醒胺膜 — A2 A2 A2 A2 _脂膜 — E F G Η 厚度比 % 83 83 83 83 儲存彈性模數比 % 5.6 5.6 5.0 4.4 線膨脹係數 ppm/°C 23 23 10 10 剝離強度 N/cm 10 10 10 13 初期 膜質 — 〇 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 8 8 8 10 膜質 一 〇 〇 〇 〇 耐熱試驗 剝離強度 N/cm 8 8 8 8 膜質 — 〇 〇 〇 〇 [比較例1] 除了使用聚醯亞胺膜B來取代聚醯亞胺膜A1之外,其 他以與實施例2相同之方法來製作積層體並進行評估。 表7係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 •43- 201032680 當聚醯亞胺膜的線膨脹係數過大時,所製得之多層氟 樹脂膜的線膨脹係數亦較大,與銅箔之線膨脹係數的偏離 增大’所以可靠度試驗後的接著性及膜質降低。 [比較例2、3]Manufactured by Daikin Industries Co., Ltd., H (EPE, manufactured by Daikin Industries Co., Ltd.) on both sides of the obtained plasma-treated polyimide film A2, at a temperature of 30 ° C above the melting point of the fluororesin film, A heat-press molding was carried out at 5 MPa for 30 minutes to prepare a multi-layer fluororesin film. On the other hand, the fluororesin film E~H containing no functional group and the copper foil having a thickness of 9 -42 to 201032680 are disposed on both sides of the plasma-treated polyimide film A2 in the form of fluorine. The resin film was subjected to heat and pressure molding at 30 ° C and 5 MPa above the melting point of the resin film for 30 minutes to obtain a double-sided copper-clad multilayer fluororesin film. Table 6 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. [Table 6] Project unit Example 8 Example 9 Example 10 Example 11 Polyamide film - A2 A2 A2 A2 _lip film - EFG Η Thickness ratio % 83 83 83 83 Storage elastic modulus ratio % 5.6 5.6 5.0 4.4 Linear expansion coefficient ppm/°C 23 23 10 10 Peel strength N/cm 10 10 10 13 Initial film quality — 〇〇〇〇Damp heat resistance test Peel strength N/cm 8 8 8 10 Film quality 〇〇〇〇 heat resistance test Peel strength N /cm 8 8 8 8 Membrane - 〇〇〇〇 [Comparative Example 1] A laminate was produced in the same manner as in Example 2 except that the polyimine film B was used instead of the polyimide film A1. to evaluate. Table 7 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. •43- 201032680 When the linear expansion coefficient of the polyimide film is too large, the linear expansion coefficient of the obtained multilayer fluororesin film is also large, and the deviation from the linear expansion coefficient of the copper foil is increased', so after the reliability test The adhesion and membranous quality are reduced. [Comparative Examples 2, 3]

除了使用含官能基的氟樹脂膜 I(Fluon LM-ETFE AH2000 ' 旭硝子公司製)、J(Neoflon EFEP RP5000、Daikin 工業公司製)來取代含官能基的氟樹脂膜D1之外,其他以 I 與實施例2相同之方法來製作積層體並進行評估。 ❹ 表7係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 由於ETFE與PFA、FEP、EPE等之全氟系樹脂相比, 耐熱性、耐濕熱性及電特性較差,所以可靠度試驗後的接 著性及膜質降低。 [比較例4、5] 除了使用不含官能基的氟樹脂膜K(Fluon ETFE、旭硝 φ 子公司製)、L(Neoflon ETFE、Daikin工業公司製)來取代 不含官能基的氟樹脂膜E之外,其他以與實施例8相同之 方法來製作積層體並進行評估。 表7係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 由於ETFE與PFA、FEP、EPE等之全氟系樹脂相比, 耐熱性、耐濕熱性及電特性較差’所以可靠度試驗後的接 著性及膜質降低。 -44- 201032680 【表7】In addition to the functional group-containing fluororesin film I (Fluon LM-ETFE AH2000 'made by Asahi Glass Co., Ltd.), J (Neoflon EFEP RP5000, manufactured by Daikin Industries Co., Ltd.), and the functional group-containing fluororesin film D1, The laminate was produced in the same manner as in Example 2 and evaluated. ❹ Table 7 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. Since ETFE is inferior in heat resistance, moist heat resistance, and electrical properties as compared with a perfluoro resin such as PFA, FEP, or EPE, the adhesion after the reliability test and the film quality are lowered. [Comparative Examples 4 and 5] In place of the functional group-free fluororesin film K (Fluon ETFE, manufactured by Asahi Glass Co., Ltd.) and L (Neoflon ETFE, manufactured by Daikin Industries Co., Ltd.), a fluororesin film containing no functional group was used. A laminate was produced and evaluated in the same manner as in Example 8 except for E. Table 7 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. Since ETFE is inferior in heat resistance, moist heat resistance, and electrical properties as compared with a perfluoro resin such as PFA, FEP, or EPE, the adhesion after the reliability test and the film quality are lowered. -44- 201032680 [Table 7]

項目 單位 比較例1 比較例2 比較例3 比較例4 比較例5 聚醯亞胺膜 _ B A2 A2 A2 Α2 氟樹脂膜 _ D2 I J K L 厚度比 % 83 83 83 83 83 儲存彈性模數比 % 11 8.3 9.4 8.9 9.4 線膨醒數 ppm/°C 70 25 25 23 23 初期 剝離強度 N/cm 15 13 13 10 10 膜質 _ 〇 〇 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 10 0 0 0 0 膜質 _ 〇 X X X X 耐熱試驗 剝離強度 N/cm 3 5 5 3 3 膜質 — X X X X XProject unit Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Polyimine film _ B A2 A2 A2 Α2 Fluororesin film _ D2 IJKL Thickness ratio % 83 83 83 83 83 Storage elastic modulus ratio % 11 8.3 9.4 8.9 9.4 Line expansion number ppm/°C 70 25 25 23 23 Initial peel strength N/cm 15 13 13 10 10 Membrane _ 〇〇〇〇〇 Moisture resistance test Peel strength N/cm 10 0 0 0 0 Membrane _ 〇 XXXX Heat test peel strength N/cm 3 5 5 3 3 Membrane — XXXXX

[比較例6] 除了使用聚醯亞胺膜A4來取代聚醯亞胺膜Ai之外, © 其他以與實施例1相同之方法來製作積層體並進行評估。 表8係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 當氟樹脂的厚度比過小時,雖然所製得之多層氟樹脂 膜的線膨脹係數較小,但由於氟樹脂的特長之低吸濕率的 貢獻亦較小,所以可靠度試驗後的接著性及膜質降低。 [比較例7] 除了使用含官能基的氟樹脂膜D2(Fluon PFA接著等 -45- 201032680 、 級、旭硝子公司製)來取代含官能基的氟樹脂膜D1之外, 其他以與比較例6相同之方法來製作積層體並進行評估。 表8係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 當氟樹脂的厚度比過小時,雖然所製得之多層氟樹脂 膜的線膨脹係數較小,但由於氟樹脂的特長之低吸濕率的 貢獻亦較小,所以可靠度試驗後的接著性及膜質降低。 [比較例8~10] 〇 除了使用含官能基的氟樹脂膜D4(FluonPFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜D2之外’ 其他以與實施例4~6相同之方法來製作積層體並進行評 估。 表8係顯示所製得之多層氟樹脂膜、雙面覆銅多層氟 樹脂膜的評估結果。 當氟樹脂的厚度比過大時,所製得之多層氟樹脂膜的 Q 線膨脹係數亦較大,與銅箔之線膨脹係數的偏離增大,所 以可靠度試驗後的接著性及膜質降低° -46 - 201032680 【表8】[Comparative Example 6] A laminate was produced and evaluated in the same manner as in Example 1 except that the polyimide film A4 was used instead of the polyimide film Ai. Table 8 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. When the thickness ratio of the fluororesin is too small, although the linear expansion coefficient of the obtained multilayer fluororesin film is small, since the contribution of the low moisture absorption rate of the fluororesin is small, the adhesion after the reliability test is small. And the membrane quality is reduced. [Comparative Example 7] In addition to the functional group-containing fluororesin film D2 (Fluon PFA followed by -45-201032680, grade, manufactured by Asahi Glass Co., Ltd.), the functional group-containing fluororesin film D1 was used instead of Comparative Example 6. The same method is used to make a laminate and evaluate it. Table 8 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. When the thickness ratio of the fluororesin is too small, although the linear expansion coefficient of the obtained multilayer fluororesin film is small, since the contribution of the low moisture absorption rate of the fluororesin is small, the adhesion after the reliability test is small. And the membrane quality is reduced. [Comparative Examples 8 to 10] In addition to the functional group-containing fluororesin film D4 (Fluon PFA, grade, manufactured by Asahi Glass Co., Ltd.), the functional group-containing fluororesin film D2 was replaced, and the others were the same as in Examples 4 to 6. The method is to make a laminate and evaluate it. Table 8 shows the evaluation results of the obtained multilayer fluororesin film and double-sided copper-clad multilayer fluororesin film. When the thickness ratio of the fluororesin is too large, the Q-ray expansion coefficient of the obtained fluororesin film is also large, and the deviation from the linear expansion coefficient of the copper foil is increased, so the adhesion after the reliability test and the film quality are lowered. -46 - 201032680 [Table 8]

項目 單位 比較例6 比較例7 比較例8 比較例9 比較例10 聚醯亞胺膜 A4 A4 A1 A2 A3 讎旨膜 _ D1 D2 D4 D4 D4 厚度比 % 44 50 97 95 91 儲存彈性模數比 % 6.1 6.1 6.1 6.1 6.1 線膨臟數 ppm/°C 5.0 5.0 100 80 60 初期 剝離強度 N/cm 13 15 18 18 18 膜質 〇 〇 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 5 5 13 13 13 膜質 X X 〇 〇 〇 耐熱試驗 剝離強度 N/cm 8 10 5 5 5 膜質 _ 〇 〇 X X XProject unit Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Polyimine film A4 A4 A1 A2 A3 雠 Film _ D1 D2 D4 D4 D4 Thickness ratio % 44 50 97 95 91 Storage elastic modulus ratio % 6.1 6.1 6.1 6.1 6.1 Thread expansion number ppm/°C 5.0 5.0 100 80 60 Initial peel strength N/cm 13 15 18 18 18 Membrane enthalpy heat and humidity test Peel strength N/cm 5 5 13 13 13 Membrane XX 〇〇〇 heat resistance test peel strength N/cm 8 10 5 5 5 membranous _ 〇〇 XXX

[實施例12~13、比較例1 1~12] (覆銅多層氟樹脂膜的翹曲評估) © 將含官能基的氟樹脂膜D3配置在裁切爲150mmx 15 0mm的尺寸之聚醯亞胺膜A1~A4的雙面上,在氟樹脂膜 熔點以上之330 °C、5 MPa下進行30分鐘的加熱加壓成形, 而製得多層氟樹脂膜。 此外,依序將含官能基的氟樹脂膜D3、厚度9gm的 銅箔(UWZ、Furukawa Circuit Foil公司製)配置在裁切爲 150mmxl50mm的尺寸之聚酸亞胺膜A1~A4的雙面上,在氟 樹脂膜熔點以上之3 30°C、5MPa下進行30分鐘的加熱加壓 -47- 201032680 成形,而製得雙面覆銅多層氟樹脂膜。 然後,將含官能基的氟樹脂膜D3配置在裁切爲150mm xl50mm的尺寸之聚醯亞胺膜A1~A4的單面上,並依序將 含官能基的氟樹脂膜D3、厚度9#m的銅箔(UWZ、Furukawa Circuit Foil公司製)配置在另一方的面,在氟樹脂膜熔點 以上之3 30 °C、5MP a下進行30分鐘的加熱加壓成形,而製 得單面覆銅多層氟樹脂膜。 ^ 藉由對所製得之單面及雙面覆銅多層氟樹脂膜進行外 ❾ 觀檢査,將無翹曲者評估爲〇,有翹曲者爲△,捲曲成輥 狀者爲X。評估結果如表9所示。 當多層氟樹脂膜的線膨脹係數較銅箔的線膨脹係數還 大時,在如單面覆銅多層氟樹脂膜的非對稱構成中,會使 多層氟樹脂膜往內側產生翹曲。 【表9】 項目 單位 比較例11 比較例12 實施例12 實施例13 聚醯亞胺膜 _ A1 A2 A3 A4 氟樹脂膜 一 D3 D3 D3 D3 厚度比 % 94 91 83 67 齡彈性模數比 % 6.1 6.1 6.1 6.1 線膨驅數 ppm/°C 80 60 25 15 翹曲(雙面 一 〇 〇 〇 〇 翹曲(單面覆銅) — X X 〇 〇 -48- 201032680 [實施例14〜15、比較例13] (覆銅多層氟樹脂膜的翹曲評估) 將含官能基的氟樹脂膜 D2配置在裁切爲 150mmx 15 0mm的尺寸之聚醯亞胺膜A2〜A4的雙面上,在氟樹脂膜 熔點以上之3 30°C、5MPa下進行30分鐘的加熱加壓成形, 而製得多層氟樹脂膜。 此外,依序將含官能基的氟樹脂膜D2、厚度9#m的 銅箔(UWZ、Furukawa Circuit Foil公司製)配置在裁切爲 〇 150mmxl50mm的尺寸之聚醯亞胺膜A2~A4的雙面上,在氟 樹脂膜熔點以上之330°C、5MPa下進行30分鐘的加熱加壓 成形,而製得雙面覆銅多層氟樹脂膜。 然後,將含官能基的氟樹脂膜D2配置在裁切爲150mm xl50mm的尺寸之聚酿亞胺膜A2~A4的單面上,並依序將 含官能基的氟樹脂膜D3、厚度9/zm的銅箔(UWZ、Furukawa Circuit Foil公司製)配置在另一面,在氟樹脂膜熔點以上 〇 之330『C、5MPa下進行30分鐘的加熱加壓成形,而製得單 面覆銅多層氟樹脂膜。 表10係顯示所製得之單面及雙面覆銅多層氟樹脂膜 的評估結果。 當多層氟樹脂膜的線膨脹係數較銅箔的線膨脹係數還 小時,在如單面覆銅多層氟樹脂膜的非對稱構成中,會使 銅箱往內側產生翹曲。 -49- 201032680 【表10】 項目 單位 實施例14 實施例15 比較例13 聚醯亞胺膜 一 A2 A3 A4 氟樹脂膜 _ D2 D2 D2 厚度比 % 83 71 50 儲存彈性模數比 % 6.1 6.1 6.1 線膨脹係數 ppm/°C 25 20 5 翹曲(雙面覆銅) _ 〇 〇 〇 翹曲(單面覆銅) — 〇 〇 Δ[Examples 12 to 13 and Comparative Examples 1 to 12] (Evaluation of warpage of copper-clad multilayer fluororesin film) © The functional group-containing fluororesin film D3 was placed in a size of 150 mm x 150 mm. On both sides of the amine films A1 to A4, heat-press molding was carried out at 330 ° C and 5 MPa which is equal to or higher than the melting point of the fluororesin film to form a multi-layer fluororesin film. Further, the functional group-containing fluororesin film D3 and the copper foil (UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 9 gm were placed on both sides of the polyimide film A1 to A4 cut to a size of 150 mm x 150 mm. The film was heat-pressed at - 30 ° C and 5 MPa above the melting point of the fluororesin film for 30 minutes to form a double-sided copper-clad multilayer fluororesin film. Then, the functional group-containing fluororesin film D3 is disposed on one side of the polyimide film A1 to A4 cut to a size of 150 mm x 150 mm, and the functional group-containing fluororesin film D3, thickness 9# is sequentially applied. The copper foil of m (UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) was placed on the other surface, and heat-pressed and formed at 30 ° C and 5 MP a above the melting point of the fluororesin film to obtain a single-sided coating. Copper multilayer fluororesin film. ^ By subjecting the obtained single-sided and double-sided copper-clad multilayer fluororesin film to external inspection, the warp-free person is evaluated as 〇, the warp is △, and the curled into a roll is X. The evaluation results are shown in Table 9. When the linear expansion coefficient of the multilayer fluororesin film is larger than the linear expansion coefficient of the copper foil, in the asymmetric configuration of the single-sided copper-clad multilayer fluororesin film, the multilayer fluororesin film is warped to the inside. [Table 9] Project unit Comparative Example 11 Comparative Example 12 Example 12 Example 13 Polyimine film _ A1 A2 A3 A4 Fluororesin film-D3 D3 D3 D3 Thickness ratio % 94 91 83 67 Age elastic modulus ratio % 6.1 6.1 6.1 6.1 Line Expansion Number ppm/°C 80 60 25 15 Warpage (double-sided warp (single-sided copper) — XX 〇〇-48- 201032680 [Examples 14 to 15, Comparative Example 13] (Evaluation of warpage of copper-clad multilayer fluororesin film) The functional group-containing fluororesin film D2 was placed on both sides of a polyimide film A2 to A4 cut to a size of 150 mm x 150 mm, in a fluororesin The film was subjected to heat and pressure molding at 30 ° C and 5 MPa above the film melting point for 30 minutes to prepare a multi-layer fluororesin film. Further, a functional group-containing fluororesin film D2 and a copper foil having a thickness of 9 #m were sequentially ( UWZ and Furukawa Circuit Foil Co., Ltd. are placed on both sides of a polyimide film A2 to A4 cut to a size of 150 mm x 150 mm, and heated at 330 ° C and 5 MPa above the melting point of the fluororesin film for 30 minutes. Press-forming to produce a double-sided copper-clad multilayer fluororesin film. Then, the functional group-containing fluororesin film D2 is disposed. The fluororesin film D3 containing a functional group and the copper foil of a thickness of 9/zm (UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) were sequentially cut into a single surface of a polyacrylamide film A2 to A4 having a size of 150 mm x 150 mm. On the other side, a single-sided copper-clad multilayer fluororesin film was obtained by heat-press molding for 30 minutes at 330 ° C and 5 MPa above the melting point of the fluororesin film. Table 10 shows the obtained single-sided fluororesin film. And the evaluation result of the double-sided copper-clad multi-layer fluororesin film. When the linear expansion coefficient of the multi-layer fluororesin film is smaller than the linear expansion coefficient of the copper foil, in an asymmetric configuration such as a single-sided copper-clad multi-layer fluororesin film, The copper box is warped to the inside. -49- 201032680 [Table 10] Project unit Example 14 Example 15 Comparative Example 13 Polyimine film-A2 A3 A4 fluororesin film _ D2 D2 D2 Thickness ratio % 83 71 50 Storage Elastic modulus ratio % 6.1 6.1 6.1 Linear expansion coefficient ppm/°C 25 20 5 Warpage (double-sided copper) _ 〇〇〇 warp (single-sided copper) — 〇〇Δ

[應用例1] 將含官能基的氟樹脂膜D1配置在裁切爲150mmx 15 0mm的尺寸之聚醯亞胺膜A2的單面上,並依序將含官能 基的氟樹脂膜D1、厚度9;um的銅箔配置在另一面,在氟 樹脂膜熔點以上之330°C、5MPa下進行30分鐘的加熱加壓 成形,而製得單面覆銅多層氟樹脂膜。 © 另一方面,使用實施例2中所製得之雙面覆銅聚醯亞 胺積層體,將光阻(FR-200、Shipley公司製)塗布於單面並 進行乾燥後,以玻璃光罩進行密著曝光,然後以1.2質量 % KOH水溶液進行顯影。接著以含有HC1與過氧化氫之氯 化銅蝕刻機,在40。(3、2kgf/cm2的噴射壓進行蝕刻’形成 測試圖案後,進行洗淨並在125。(:下進行1小時的退火處 理,而製得單面附圖案之單面覆銅多層氟樹脂膜(印刷配線 板)。 -50- 201032680 使單面附圖案之單面覆銅多層氟樹脂膜(印刷配線板) 的圖案形成面’與單面覆銅多層氟樹脂膜的氟樹脂面互爲 相向,在氟樹脂膜熔點以上之3 30°C、5MPa下進行30分鐘 的加熱加壓成形,而製得第1圖所示之多層印刷配線板。 所製得之多層印刷配線板,由於銅配線是以介電常數低的 氟樹脂所覆蓋,因此極有用於作爲高頻用構件。 【表11】 項目 單位 織例5 製造例5 製造例5 製造例5 製造例ό 製造例7 聚酿亞脓膜 al a2 a3 a4 b c 厚度 μτα 3.0 5.0 10 25 5.0 5.0 線膨脹係數 ppm/。。 0.5 1.1 1.5 1.8 20 20 儲存彈性模數 GPa 9.0 9.0 9.0 9.0 5.0 8.5 熔點 °c 無 無 fnrr m Jnr. 無 【表12】 項目 單位 製造例8 製造例8 織例8 製造例8 製造例8 製造例8 聚膜 dl d2 d3 d4 e f 組成 PFA PFA PFA PFA PFA PFA 介電常數 2.1 2.1 2.1 11 2.1 2.1 介電正切 xlOJ 3.0 3.0 3.0 3.0 3.0 3.0 厚度 βΐη 20 25 50 100 25 25 官能基 有 有 有 有 無 無 線膨_數 ppm/°C 180 180 180 180 150 150 儲存彈性觀 GPa 0.55 0.55 0.55 0.55 0.50 0.50 熔點 °c 300 300 300 300 300 300 -51- 201032680 【表13】 項目 單位 製造例8 製造例8 製造例8 製造例8 製造例8 製造例8 聚酸亞胺膜 一 g h i j k 1 組成 _ FEP EPE ETFE ETFE ETFE ETFE 介電常數 _ 2.1 2.1 2.7 2.7 2.7 2.7 介電正切 ΧΙΟ*4 5.0 5.0 50 50 50 50 厚度 βχα 25 25 25 25 25 25 官能基 __ 無 無 有 有 無 線膨麟數 ppm/°C 80 90 130 130 100 100 儲存彈性模數 GPa 0.45 0.40 0.75 0.85 0.80 0.85 熔點 °c 260 290 240 200 250 250 [實施例16] 將含官能基的氟樹脂膜dl(FluonPFA接著等級、旭硝 子公司製)配置在裁切爲150mmxl50mm的尺寸之聚醯亞胺 膜al的單面上,在氟樹脂膜熔點以上之330°C、5MPa下進 G 行30分鐘的加熱加壓成形,而製得(A)層(B)層積層體。 表14係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果。 另一方面,依序將含官能基的氟樹脂膜dl、厚度9em 的銅箔(UWZ、Furukawa Circuit Foil公司製)配置在裁切爲 150mmxl50mm的尺寸之覆銅積層板(CCL) al的聚醯亞胺膜 al面,在氟樹脂膜熔點以上之3 30°C、5MPa下進行30分 鐘的加熱加壓成形,而製得覆銅多層氟樹脂膜。 -52- 201032680 表14係顯示所製得之覆銅多層氟樹脂膜之耐濕熱試 驗、耐熱試驗的評估結果。 [實施例17、18] 除了使用聚醯亞胺膜a2、a3來取代聚醯亞胺膜al,使 用覆銅積層板(CCL) a2、a3來取代覆銅積層板(CCL) &1之 外,其他以與實施例16相同之方法來製作積層體並進行評 估。 表14係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 【表14】 項目 單位 實施例16 實施例17 實施例18 聚膜 _ al a2 a3 氟樹脂膜 _ dl dl dl 厚度比 % 87 80 67 儲存彈性模數比 % 6.1 6.1 6.1 線膨脹係數 ppm/°C 28 25 15 初期 剝離強度 N/cm 13 13 13 膜質 ....... 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 10 10 10 膜質 __ 〇 〇 〇 耐熱試驗 剝離強度 N/cm 5 8 10 膜質 一 Δ 〇 〇 -53- 201032680 [實施例19] 除了使用含官能基的氟樹脂膜d2(Fluon PFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜dl之外, 其他以與實施例16相同之方法來製作積層體並進行評估。 表15係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 [實施例20、21] ❹ 除了使用聚醯亞胺膜a2、a3來取代聚醯亞胺膜al,使 用覆銅積層板(CCL) a2、a3來取代覆銅積層板(CCL) al之 外,其他以與實施例19相同之方法來製作積層體並進行評 估。 表15係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 〇 [實施例22] 除了使用含官能基的氟樹脂膜d3(Flu〇n PFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜d2之外, 其他以與實施例21相同之方法來製作積層體並進行評估。 表15係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 -54- 201032680 【表15】 項目 單位 實施例19 實施例20 實施例21 實施例22 聚醯亞胺膜 al a2 a3 a3 氟樹脂膜 _ d2 d2 d2 d3 厚度比 % 89 83 71 83 儲存彈性模數比 % 6.1 6.1 6.1 6.1 線膨脹係數 ppm/°C 30 25 20 25 初期 剝離強度 N/cm 15 15 15 18 膜質 _ 〇 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 13 13 13 15 膜質 _ 〇 〇 〇 〇 耐熱試驗 剝離強度 N/cm 8 10 13 13 膜質 _ Δ 〇 〇 〇 [實施例2 3〜2 6 ] 將裁切爲150mmxl50mm的尺寸之聚醯亞胺膜a2設置 ® 在曰放電子公司製的電漿處理機,進行真空排氣後,導入 氧氣並激發放電來進行電漿處理。處理條件爲真空度3x 10Pa、氣體流量i.5SLM、放電電力12KW。 將不含官能基的氟樹脂膜e(Fluon PFA、旭硝子公司 製)、f(Neofl〇n PFA、Daikin 工業公司製)、g(Neoflon FEP、 Daikin工業公司製)、h(EPE、Daikin工業公司製)分別配 置在所製得之經電漿處理的聚醯亞胺膜a2的單面上,在氟 樹3旨@溶點以上之33(TC、5MPa下進行30分鐘的加熱加壓 -55- 201032680 成形,而製得(A)層(B)層積層體。. 表16係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果。 另一方面,將覆銅積層板(CCL)a2設置在日放電子公司 製的電漿處理機,進行真空排氣後,導入氧氣並激發放電 來進行電漿處理。處理條件爲真空度3xlOPa、氣體流量 1.5SLM、放電電力12KW。 依序將不含官能基的氟樹脂膜e~h、厚度9//m的銅箔 ❹ 配置在所製得之經電漿處理的覆銅積層板(CCL)a2的聚醯 亞胺膜a2面上,在氟樹脂膜熔點以上之3 30°C、5MPa下進 行30分鐘的加熱加壓成形,而製得覆銅多層氟樹脂膜。 表16係顯示所製得之耐濕熱試驗、耐熱試驗的評估結 果。 【表16】 項目 單位 實施例23 實施例24 實施例25 實施例26 聚醯酿膜 — a2 a2 a2 a2 mmmm — e f g h 厚度比 % 83 83 83 83 儲存彈性模數比 % 5.6 5.6 5.0 4.4 線膨脹係數 ppm/°C 23 23 10 10 初期 剝離強度 N/cm 10 10 10 13 膜質 — 〇 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 8 8 8 10 膜質 — 〇 〇 〇 〇 耐熱試驗 剝離強度 N/cm 8 8 8 8 膜質 — 〇 〇 〇 〇 -56- 201032680 [比較例1 4 ] 除了使用聚醯亞胺膜b來取代聚醯亞胺膜al,使用覆 銅積層板(CCL) b來取代覆銅積層板(Ccl) al之外,其他以 與實施例17相同之方法來製作積層體並進行評估。 表Π係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 ^ 當聚醯亞胺膜的線膨脹係數過大時,所製得之多層氟 樹脂膜的線膨脹係數亦較大,與銅箔之線膨脹係數的偏離 增大,所以可靠度試驗後的接著性及膜質降低》 [比較例15、16] 除了使用含官能基的氟樹脂膜i(Fluon LM-ETFE AH2000、旭硝子公司製)、j(Neoflon EFEP RP5000、Daikin 工業公司製)來取代含官能基的氟樹脂膜dl之外,其他以 與實施例1 7相同之方法來製作積層體並進行評估。 〇 表17係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 由於ETFE與PFA、FEP、EPE等之全氟系樹脂相比, 耐熱性、耐濕熱性及電特性較差,所以可靠度試驗後的接 著性及膜質降低。 [比較例17、18] 除了使用不含官能基的氟樹脂膜k(Fluon ETFE、旭硝 -57- 201032680 子公司製)、UNeoflon ETFE、Daikin工業公司製)來取代 不含官能基的氟樹脂膜e之外,其他以與實施例23相同之 方法來製作積層體並進行評估。 表17係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 由於ETFE與PFA、FEP、EPE等之全氟系樹脂相比, 耐熱性、耐濕熱性及電特性較差,所以可靠度試驗後的接 ❹ 著性及膜質降低。 【表17】 項目 _ 單位 比較例14 比較例15 比較例16 比較例17 比較例18 聚醯亞胺膜 _ b a2 a2 a2 a2 氟樹脂膜 _ _ d2 i j k 1 厚度比 % 83 83 83 83 83 儲存彈性模數比 % 11 8.3 9.4 8.9 9.4 線膨廳數 ppm/°C 70 25 25 23 23 初期 剝離強度 N/cm 15 13 13 10 10 膜質 一 〇 〇 〇 〇 〇 耐濕熱試驗 剝離酿 N/cm 10 0 0 0 0 膜質 _ 〇 X X X X 耐熱試驗 剝離強度 N/cm 3 5 5 3 3 膜質一 — X X X X x - -58- 201032680 [比較例19] 除了使用聚醯亞胺膜a4來取代聚醯亞胺膜al,使用覆 銅積層板(CCL) a4來取代覆銅積層板(CCL) al之外,其他 以與實施例16相同之方法來製作積層體並進行評估。 表18係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 當氟樹脂的厚度比過小時,雖然所製得之多層氟樹脂 膜的線膨脹係數較小,但由於氟樹脂的特長之低吸濕率的 貢獻亦較小,所以可靠度試驗後的接著性及膜質降低。 [比較例2 0 ] 除了使用含官能基的氟樹脂膜d2(Fluon PFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜dl之外’ 其他以與比較例19相同之方法來製作積層體並進行評估。 表18係顯示所製得之(A)層(B)層積層體的厚度比、儲 〇 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 當氟樹脂的厚度比過小時,雖然所製得之多層氟樹脂 膜的線膨脹係數較小,但由於氟樹脂的特長之低吸濕率的 貢獻亦較小,所以可靠度試驗後的接著性及膜質降低。 [比較例21~23] 除了使用含官能基的氟樹脂膜d4(Fluon PFA接著等 級、旭硝子公司製)來取代含官能基的氟樹脂膜d2之外’ -59- 201032680 其他以與實施例19~21相同之方法來製作積層體並進行評 估。 表18係顯示所製得之(A)層(B)層積層體的厚度比、儲 存彈性模數比、及線膨脹係數的評估結果,以及覆銅多層 氟樹脂膜之耐濕熱試驗、耐熱試驗的評估結果。 當氟樹脂的厚度比過大時,所製得之多層氟樹脂膜的 線膨脹係數亦較大,與銅箔之線膨脹係數的偏離增大,所 以可靠度試驗後的接著性及膜質降低。 【表18】[Application Example 1] The functional group-containing fluororesin film D1 was placed on one side of a polyimide film A2 cut to a size of 150 mm x 150 mm, and the functional group-containing fluororesin film D1 was sequentially applied. 9; um copper foil was placed on the other side, and subjected to heat and pressure molding at 330 ° C and 5 MPa above the melting point of the fluororesin film to obtain a single-sided copper-clad multilayer fluororesin film. On the other hand, using the double-sided copper-clad polyimide laminate obtained in Example 2, a photoresist (FR-200, manufactured by Shipley Co., Ltd.) was applied to one side and dried, and then a glass mask was used. The adhesion exposure was carried out, followed by development with a 1.2 mass% aqueous KOH solution. Next, a copper chloride etching machine containing HCl and hydrogen peroxide is used at 40. (3, 2kgf/cm2 of the ejection pressure is etched to form a test pattern, and then washed and subjected to an annealing treatment at 125° for 1 hour to obtain a single-sided copper-clad multilayer fluororesin film having a single-sided pattern. (Printed wiring board) -50- 201032680 The pattern forming surface of the single-sided copper-clad multilayer fluororesin film (printed wiring board) with one side of the pattern and the fluororesin surface of the single-sided copper-clad multilayer fluororesin film face each other The multilayer printed wiring board shown in Fig. 1 was obtained by heat-press molding at 30 ° C and 5 MPa above the melting point of the fluororesin film to obtain a multilayer printed wiring board as shown in Fig. 1. Since it is covered with a fluororesin having a low dielectric constant, it is extremely useful as a member for high frequency. [Table 11] Project unit weave example 5 Manufacturing example 5 Manufacturing example 5 Manufacturing example 5 Manufacturing example ό Manufacturing example 7 Membrane a a2 a3 a4 bc Thickness μτα 3.0 5.0 10 25 5.0 5.0 Linear expansion coefficient ppm/. 0.5 1.1 1.5 1.8 20 20 Storage elastic modulus GPa 9.0 9.0 9.0 9.0 5.0 8.5 Melting point °c No fnrr m Jnr. No [Table 12] Project unit manufacturing example 8 Manufacturing 8 Weaving Example 8 Manufacturing Example 8 Manufacturing Example 8 Manufacturing Example 8 Poly film d2 d3 d4 ef Composition PFA PFA PFA PFA PFA PFA Dielectric constant 2.1 2.1 2.1 11 2.1 2.1 Dielectric tangent xlOJ 3.0 3.0 3.0 3.0 3.0 3.0 Thickness βΐη 20 25 50 100 25 25 Functional group with or without wireless expansion _ppmppm/°C 180 180 180 180 150 150 Storage elasticity view GPa 0.55 0.55 0.55 0.55 0.50 0.50 Melting point °c 300 300 300 300 300 300 -51- 201032680 [Table 13 】 Project unit manufacturing example 8 Manufacturing example 8 Manufacturing example 8 Manufacturing example 8 Manufacturing example 8 Manufacturing example 8 Polyimine film-ghijk 1 Composition_ FEP EPE ETFE ETFE ETFE ETFE Dielectric constant _ 2.1 2.1 2.7 2.7 2.7 2.7 Dielectric tangent ΧΙΟ*4 5.0 5.0 50 50 50 50 Thickness βχα 25 25 25 25 25 25 Functional group __ Nothing to have wireless expansion frequency ppm/°C 80 90 130 130 100 100 Storage elastic modulus GPa 0.45 0.40 0.75 0.85 0.80 0.85 Melting point °c 260 290 240 200 250 250 [Example 16] A functional group-containing fluororesin film dl (Fluon PFA, grade, manufactured by Asahi Glass Co., Ltd.) was placed in a polyimide film having a size of 150 mm x 150 mm. On one side, above the melting point of the fluororesin film is 330 ° C, 5MPa at 30 minutes into the heated pressure molding line G, yielding (A) laminate layer (B) layer. Table 14 shows the results of evaluation of the thickness ratio, the storage elastic modulus ratio, and the linear expansion coefficient of the layered layer (A) layer (B). On the other hand, a functional group-containing fluororesin film dl and a copper foil having a thickness of 9 cm (manufactured by UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) were placed on a copper-clad laminate (CCL) al of a size of 150 mm x 150 mm. The aminated surface of the imide film was subjected to heat and pressure molding at 30 ° C and 5 MPa of the fluororesin film at a temperature of 30 MPa or more to obtain a copper-clad multilayer fluororesin film. -52- 201032680 Table 14 shows the evaluation results of the moisture resistance test and the heat resistance test of the obtained copper-clad multilayer fluororesin film. [Examples 17, 18] In place of the polyimine film a1 instead of the polyimine film a1, a copper clad laminate (CCL) a2, a3 was used instead of the copper clad laminate (CCL) & In the same manner as in Example 16, a laminate was produced and evaluated. Table 14 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results. [Table 14] Project unit Example 16 Example 17 Example 18 Poly film _ al a2 a3 Fluororesin film _ dl dl dl Thickness ratio % 87 80 67 Storage elastic modulus ratio % 6.1 6.1 6.1 Linear expansion coefficient ppm/°C 28 25 15 Initial peel strength N/cm 13 13 13 Membrane....... 〇〇〇Damp heat resistance peel strength N/cm 10 10 10 Membrane __ 〇〇〇 Heat resistance test Peel strength N/cm 5 8 10 Membrane-Δ 〇〇-53- 201032680 [Example 19] In addition to the functional group-containing fluororesin film d2 (Fluon PFA followed by grade, manufactured by Asahi Glass Co., Ltd.), the functional group-containing fluororesin film dl was replaced with The laminate was produced in the same manner as in Example 16 and evaluated. Table 15 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results. [Examples 20, 21] ❹ In addition to the polyimine film a2, a3 instead of the polyimide film a1, a copper clad laminate (CCL) a2, a3 was used instead of the copper clad laminate (CCL) al Further, a laminate was produced and evaluated in the same manner as in Example 19. Table 15 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results.实施 [Example 22] The same procedure as in Example 21 was carried out except that the functional group-containing fluororesin film d3 (Flu〇n PFA followed by grade, manufactured by Asahi Glass Co., Ltd.) was used instead of the functional group-containing fluororesin film d2. To make a laminate and evaluate it. Table 15 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results. -54- 201032680 [Table 15] Project unit Example 19 Example 20 Example 21 Example 22 Polyimine film a a2 a3 a3 Fluororesin film _ d2 d2 d2 d3 Thickness ratio % 89 83 71 83 Storage elastic modulus Specific ratio 6.1 6.1 6.1 6.1 Linear expansion coefficient ppm/°C 30 25 20 25 Initial peel strength N/cm 15 15 15 18 Membrane _ 〇〇〇〇 Moisture resistance test Peel strength N/cm 13 13 13 15 Membrane _ 〇〇〇 〇Heat resistance test Peeling strength N/cm 8 10 13 13 Membrane _ Δ 〇〇〇 [Example 2 3 to 2 6 ] The polyimine film a2 set to a size of 150 mm x 150 mm was set at ® Electronics Co., Ltd. The plasma processor is subjected to vacuum evacuation, and then oxygen is introduced and the discharge is excited to perform plasma treatment. The treatment conditions were a vacuum of 3 x 10 Pa, a gas flow rate of i.5 SLM, and a discharge power of 12 kW. A fluororesin film e (Fluon PFA, manufactured by Asahi Glass Co., Ltd.), f (Neofl〇n PFA, manufactured by Daikin Industries Co., Ltd.), g (Neoflon FEP, manufactured by Daikin Industries, Ltd.), and h (EPE, Daikin Industries, Inc.) The system is disposed on one side of the obtained plasma-treated polyimine film a2, and is heated and pressurized for 30 minutes at 33 (TC, 5 MPa) above the fluorine tree 3 - 201032680 Forming, and (A) layer (B) layered body is produced. Table 16 shows the thickness ratio, storage elastic modulus ratio, and linear expansion of the (A) layer (B) laminated body obtained. On the other hand, the copper clad laminate (CCL) a2 is placed in a plasma processor manufactured by Nissho Electronics Co., Ltd., and after vacuum evacuation, oxygen is introduced and the discharge is excited to perform plasma treatment. The vacuum degree is 3xlOPa, the gas flow rate is 1.5 SLM, and the discharge power is 12 kW. The fluororesin film e~h containing no functional group and the copper foil 厚度 having a thickness of 9/m are sequentially disposed in the prepared plasma-treated coating. The surface of the polyimine film a2 of the copper laminate (CCL) a2 is carried out at 3 30 ° C and 5 MPa above the melting point of the fluororesin film. The copper-clad multilayer fluororesin film was obtained by heating and press molding for 0 minutes. Table 16 shows the evaluation results of the obtained moist heat resistance test and heat resistance test. [Table 16] Item Unit Example 23 Example 24 Example 25 Example 26 Poly Brewing Film — a2 a2 a2 a2 mmmm — efgh Thickness ratio % 83 83 83 83 Storage elastic modulus ratio % 5.6 5.6 5.0 4.4 Linear expansion coefficient ppm/°C 23 23 10 10 Initial peel strength N/cm 10 10 10 13 Membrane - 〇〇〇〇Damp heat resistance peel strength N/cm 8 8 8 10 Membrane - 〇〇〇〇 heat resistance test Peel strength N/cm 8 8 8 8 Membrane - 〇〇〇〇-56- 201032680 [ Comparative Example 1 4] In addition to using the polyimine film b to replace the polyimide film a1, a copper clad laminate (CCL) b was used instead of the copper clad laminate (Ccl) al, and the other example 17 The same method was used to make a laminate and evaluated. The surface enthalpy shows the thickness ratio of the layer (A) layer (B), the storage elastic modulus ratio, and the coefficient of linear expansion, and copper coating. Multi-layer fluororesin film resistance to heat and humidity test, heat resistance The evaluation result of the test. ^ When the linear expansion coefficient of the polyimide film is too large, the linear expansion coefficient of the obtained multilayer fluororesin film is also large, and the deviation from the linear expansion coefficient of the copper foil is increased, so reliability Continuation and film quality reduction after the test [Comparative Examples 15 and 16] In addition to the functional group-containing fluororesin film i (Fluon LM-ETFE AH2000, manufactured by Asahi Glass Co., Ltd.), j (Neoflon EFEP RP5000, manufactured by Daikin Industries Co., Ltd.) A laminate was produced and evaluated in the same manner as in Example 17 except that the functional group-containing fluororesin film dl was replaced. 17 Table 17 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the (A) layer (B) laminated body, and the moisture resistance test and heat resistance of the copper-clad multilayer fluororesin film. The evaluation results of the test. Since ETFE is inferior in heat resistance, moist heat resistance, and electrical properties as compared with a perfluoro resin such as PFA, FEP, or EPE, the adhesion after the reliability test and the film quality are lowered. [Comparative Examples 17 and 18] In place of the functional group-free fluororesin, a functional group-free fluororesin film k (Fluon ETFE, manufactured by Asahi Nippon-57-201032680, manufactured by UNeoflon ETFE, Daikin Industries Co., Ltd.) was used. A laminate was produced and evaluated in the same manner as in Example 23 except for the film e. Table 17 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and coefficient of linear expansion of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results. Since ETFE is inferior in heat resistance, moist heat resistance, and electrical properties as compared with a perfluoro resin such as PFA, FEP, or EPE, the susceptibility and film quality after the reliability test are lowered. [Table 17] Item_Unit Comparative Example 14 Comparative Example 15 Comparative Example 16 Comparative Example 17 Comparative Example 18 Polyimine film _ b a2 a2 a2 a2 Fluororesin film _ _ d2 ijk 1 Thickness ratio % 83 83 83 83 83 Storage Elastic modulus ratio % 11 8.3 9.4 8.9 9.4 Line expansion hall number ppm/°C 70 25 25 23 23 Initial peel strength N/cm 15 13 13 10 10 Membrane quality 〇〇〇〇〇 Wet heat test Stripping Stuffed N/cm 10 0 0 0 0 Membrane _ 〇XXXX Heat resistance test Peel strength N/cm 3 5 5 3 3 Membrane-XXXX x - -58- 201032680 [Comparative Example 19] In addition to the use of polyimine film a4 instead of polyimine film Al, a laminate was produced and evaluated in the same manner as in Example 16 except that a copper clad laminate (CCL) a4 was used instead of the copper clad laminate (CCL) al. Table 18 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and coefficient of linear expansion of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results. When the thickness ratio of the fluororesin is too small, although the linear expansion coefficient of the obtained multilayer fluororesin film is small, since the contribution of the low moisture absorption rate of the fluororesin is small, the adhesion after the reliability test is small. And the membrane quality is reduced. [Comparative Example 20] The same procedure as in Comparative Example 19 was carried out except that the functional group-containing fluororesin film d2 (Fluon PFA grade, manufactured by Asahi Glass Co., Ltd.) was used instead of the functional group-containing fluororesin film d1. The laminate is evaluated and evaluated. Table 18 shows the results of evaluation of the thickness ratio of the (A) layer (B) layered body, the storage modulus of the storage modulus, and the coefficient of linear expansion, and the moisture resistance test of the copper-clad multilayer fluororesin film. Evaluation results of the heat resistance test. When the thickness ratio of the fluororesin is too small, although the linear expansion coefficient of the obtained multilayer fluororesin film is small, since the contribution of the low moisture absorption rate of the fluororesin is small, the adhesion after the reliability test is small. And the membrane quality is reduced. [Comparative Examples 21 to 23] In addition to the functional group-containing fluororesin film d4 (Fluon PFA, grade, manufactured by Asahi Glass Co., Ltd.), the functional group-containing fluororesin film d2 was used instead of -59-201032680. The same method as ~21 is used to make a laminate and evaluate it. Table 18 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and coefficient of linear expansion of the layered layer (A) layer (B), and the moisture resistance test and heat resistance test of the copper-clad multilayer fluororesin film. Evaluation results. When the thickness ratio of the fluororesin is too large, the linear fluororesin of the obtained fluororesin film is also large, and the deviation from the linear expansion coefficient of the copper foil is increased, so that the adhesion after the reliability test and the film quality are lowered. [Table 18]

項目 單位 比 KM 19 比較例20 比較例21 比較例22 比較例23 聚醯碰膜 _ a4 a4 al a2 a3 氟樹脂膜 dl d2 d4 d4 d4 厚度比 % 44 50 97 95 91 儲存彈性模數比 % 6.1 6.1 6.1 6.1 6.1 線膨臟數 ppm/°C 5.0 5.0 100 80 60 初期 剝離強度 N/cm 13 15 18 18 18 膜質 〇 〇 〇 〇 〇 耐濕熱試驗 剝離強度 N/cm 5 5 13 13 13 膜質 X X 〇 〇 〇 耐熱試驗 剝離酿 N/cm 8 10 5 5 5 膜質 _ 〇 〇 X X XProject unit ratio KM 19 Comparative Example 20 Comparative Example 21 Comparative Example 22 Comparative Example 23 Polyfluorene film _ a4 a4 al a2 a3 Fluororesin film d2 d4 d4 d4 Thickness ratio % 44 50 97 95 91 Storage elastic modulus ratio % 6.1 6.1 6.1 6.1 6.1 Thread expansion number ppm/°C 5.0 5.0 100 80 60 Initial peel strength N/cm 13 15 18 18 18 Membrane enthalpy heat and humidity test Peel strength N/cm 5 5 13 13 13 Membrane XX 〇 〇〇 heat resistance test stripping brewing N/cm 8 10 5 5 5 membranous _ 〇〇 XXX

[實施例27〜28、比較例24~25] (覆銅多層氟樹脂膜的翹曲評估) -60- 201032680 將含官能基的氟樹脂膜 d3配置在裁切爲150mmx 150mm的尺寸之聚醯亞胺膜al~a4的單面上,在氟樹脂膜 熔點以上之3 3 0°C、5MPa下進行30分鐘的加熱加壓成形, -而製得(A)層(B)層積層體。表19係顯示所製得之(A)層(B) 層積層體的厚度比、儲存彈性模數比、及線膨脹係數的評 估結果。此外,依序將含官能基的氟樹脂膜d3、厚度9/zm 的銅箔(UWZ、Furukawa Circuit Foil公司製)配置在裁切爲 150mmxl50mm的尺寸之覆銅積層板(CCL) al〜a4的聚醯亞 胺膜al~a4面上,在氟樹脂膜熔點以上之3 3 0°C、5MPa下 進行30分鐘的加熱加壓成形,而製得雙面覆銅多層氟樹脂 膜。 藉由對所製得之覆銅多層氟樹脂膜進行外觀檢查,將 無翹曲者評估爲〇,有翹曲者爲X。評估結果如表19所示。 【表19】 項目 單位 比較例24 比較例25 實施例27 實施例28 聚麵胺膜 __ al a2 a3 a4 氟樹脂膜 _ d3 d3 d3 d3 厚度比 % 94 91 83 67 儲存彈性模數比 % 6.1 6.1 6.1 6.1 線膨脹係數 ppm/°C 80 60 n% r· ZD 15 翹曲 _ X X 〇 〇[Examples 27 to 28, Comparative Examples 24 to 25] (Evaluation of warpage of copper-clad multilayer fluororesin film) -60-201032680 The functional group-containing fluororesin film d3 was placed in a size of 150 mm x 150 mm. One side of the imine film a~a4 was subjected to heat and pressure molding at 30 ° C and 5 MPa of the melting point of the fluororesin film for 30 minutes to obtain a layered layer of the layer (A). Table 19 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the layer (A) layered body obtained. Further, the functional group-containing fluororesin film d3 and the copper foil (UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 9/zm were placed in a copper-clad laminate (CCL) al~a4 cut to a size of 150 mm x 150 mm. On the surface of the polyimine film a1 to 4, heat-and-pressure molding was carried out for 30 minutes at a temperature of 30 ° C and 5 MPa above the melting point of the fluororesin film to obtain a double-sided copper-clad multilayer fluororesin film. By visually inspecting the obtained copper-clad multilayer fluororesin film, the warp-free person was evaluated as 〇, and the warped person was evaluated as X. The evaluation results are shown in Table 19. [Table 19] Project unit Comparative Example 24 Comparative Example 25 Example 27 Example 28 Polyamine film __ al a2 a3 a4 Fluororesin film _ d3 d3 d3 d3 Thickness ratio % 94 91 83 67 Storage elastic modulus ratio % 6.1 6.1 6.1 6.1 Linear expansion coefficient ppm/°C 80 60 n% r· ZD 15 Warping _ XX 〇〇

[實施例29〜30、比較例26] (覆銅多層氟樹脂膜的翹曲評估) -61 - 201032680 將含官能基的氟樹脂膜 d2配置在裁切爲150mmx 15 0mm的尺寸之聚醯亞胺膜a2〜a4的單面上,在氟樹脂膜 熔點以上之330°C、5MPa下進行30分鐘的加熱加壓成形, 而製得(A)層(B)層積層體。表20係顯示所製得之(A)層(B) 層積層體的厚度比、儲存彈性模數比、及線膨脹係數的評 估結果。 此外,依序將含官能基的氟樹脂膜d2、厚度9em的 銅箔(UWZ、Furukawa Circuit Foil公司製)配置在裁切爲 150mmxl50mm的尺寸之覆銅積層板(CCL) a2~a4的聚醯亞 胺膜a2~a4面上,在氟樹脂膜熔點以上之3 3 0 t、5MPa下 進行30分鐘的加熱加壓成形,而製得雙面覆銅多層氟樹脂 膜。所製得之覆銅多層氟樹脂膜的評估結果如表20所示。 【表2 0】[Examples 29 to 30, Comparative Example 26] (Evaluation of warpage of copper-clad multilayer fluororesin film) -61 - 201032680 The functional group-containing fluororesin film d2 was placed in a size of 150 mm x 150 mm. On one surface of the amine films a2 to a4, heat-pressure-molding was carried out at 330 ° C and 5 MPa which is equal to or higher than the melting point of the fluororesin film to obtain a (A) layer (B) layered body. Table 20 shows the results of evaluation of the thickness ratio, storage elastic modulus ratio, and linear expansion coefficient of the layer (A) layered body obtained. Further, a functional group-containing fluororesin film d2 and a copper foil having a thickness of 9 cm (manufactured by UWZ, manufactured by Furukawa Circuit Foil Co., Ltd.) were placed in a polylayer of a copper-clad laminate (CCL) a2 to a4 cut to a size of 150 mm x 150 mm. The surface of the imine film a2 to a4 was subjected to heat and pressure molding at 30,000 t and 5 MPa which are equal to or higher than the melting point of the fluororesin film to obtain a double-sided copper-clad multilayer fluororesin film. The evaluation results of the obtained copper-clad multilayer fluororesin film are shown in Table 20. [Table 2 0]

項目 單位 實施伤J 29 實施例30 比較例26 聚醯亞胺膜 — a2 a3 a4 麵脂膜 一 d2 d2 d2 厚度比 % 83 71 50 儲存彈性模數比 % 6.1 6.1 6.1 線膨脹係數 ppm/。。 25 20 5 翹曲 — 〇 〇 XProject unit Injury J 29 Example 30 Comparative Example 26 Polyimine film — a2 a3 a4 facial grease film d2 d2 d2 Thickness ratio % 83 71 50 Storage elastic modulus ratio % 6.1 6.1 6.1 Linear expansion coefficient ppm/. . 25 20 5 Warping — 〇 〇 X

[應用例2] 將含官能基的氟樹脂膜dl配置在裁切爲150mmx 150mm的尺寸之覆銅積層板(CCL) a2的聚醯亞胺膜a2面 -62- 201032680 上’在氟樹脂膜熔點以上之330°C、5MPa下進行30分鐘的 加熱加壓成形,而製得多層氟樹脂膜。 另一方面,使用實施例17中所製得之覆銅聚醯亞胺積 層體,將光阻(FR-200、Shipley公司製)塗布於銅箔面並進[Application Example 2] The functional group-containing fluororesin film dl was placed on a polyimide film A2 surface of a copper clad laminate (CCL) a2 cut to a size of 150 mm x 150 mm - 62 - 201032680 on the fluororesin film The laminate was subjected to heat and pressure molding at 330 ° C and 5 MPa above the melting point for 30 minutes to prepare a multi-layer fluororesin film. On the other hand, using the copper-clad polyimide laminate obtained in Example 17, a photoresist (FR-200, manufactured by Shipley Co., Ltd.) was applied to the surface of the copper foil.

行乾燥後,以玻璃光罩進行密著曝光,然後以1.2質量%KOH 水溶液進行顯影。接著以含有HC1與過氧化氫之氯化銅蝕 刻機,在40°C、2kgf/cm2的噴射壓進行蝕刻,形成測試圖 A 案後,進行洗淨並在125 °C下進行1小時的退火處理,而製 ❹ 得附圖案之覆銅多層氟樹脂膜(印刷配線板)。 使附圖案之覆銅多層氟樹脂膜(印刷配線板)的圖案形 成面,與多層氟樹脂膜的氟樹脂面互爲相向,在氟樹脂膜 溶點以上之3 3 0°C、5MPa下進行30分鐘的加熱加壓成形, 而製得第2圖所示之多層印刷配線板。所製得之多層印刷 配線板,由於銅配線是以介電常數低的氟樹脂所覆蓋,因 此極有用於作爲高頻用構件。 Q [產業上之可利用性] 本申請案之第一發明之依序積層(A)氟樹脂層/(B)聚醯 亞胺樹脂層/(A)氟樹脂層所組成之多層氟樹脂膜,其中該 多層氟樹脂膜的線膨脹係數爲10ppm/°C ~30ppm/°C之多層 氟樹脂膜,以及在此多層氟樹脂膜的至少單面上積層有銅 箔之覆銅多層氟樹脂膜及將該銅箔去除一部分以形成電路 圖案而組成之印刷配線板,和本申請案之第二發明之在不 透過接著劑將(C)銅層形成於(B)聚醯亞胺樹脂層之覆銅積 -63- 201032680 層板(CCL)的(B)面,更進一步積層有(A)氟樹脂層而成之多 層氟樹脂膜,其中該多層氟樹脂膜中之(A)層(B)層積層體 的線膨脹係數爲10ppm/°C ~30ppm/°C之多層氟樹脂膜’以及 在此多層氟樹脂膜的(A)面上積層有銅箔之覆銅多層氟樹 脂膜及將該銅箔去除一部分以形成電路圖案而組成之印刷 配線板,即使在高溫高濕處理中,亦可承受多層氟樹脂膜 與銅箔之接著,所製得之印刷配線板等之品質、生產時的 良率亦可提升,而能夠實現高品質電子零件的製造,因此 就產業上乃極具意義。 【圖式簡單說明】 第1圖係顯示本申請案第一發明之多層印刷配線的一 例之槪略圖。 第2圖係顯示本申請案第二發明之多層印刷配線的一 例之槪略圖。 【主要元件符號說明】 (第 1圖) 1 銅箔 2 氟樹脂膜 3 聚醯亞胺膜 (第 2圖) 1 銅層 2 氟樹脂膜 3 聚醯亞胺膜 -64-After drying, the film was subjected to a close exposure with a glass mask, and then developed with a 1.2 mass% KOH aqueous solution. Subsequently, etching was carried out at a spray pressure of 2 kgf/cm 2 at 40 ° C and a copper chloride etching machine containing hydrogen fluoride and hydrogen peroxide to form a test pattern A, followed by washing and annealing at 125 ° C for 1 hour. The copper-clad multilayer fluororesin film (printed wiring board) with a pattern is prepared. The pattern forming surface of the copper-clad multilayer fluororesin film (printed wiring board) with the pattern is opposed to the fluororesin surface of the multilayer fluororesin film, and is carried out at 30,000 ° C and 5 MPa above the melting point of the fluororesin film. The multilayer printed wiring board shown in Fig. 2 was obtained by heat and pressure molding for 30 minutes. In the multilayer printed wiring board produced, since the copper wiring is covered with a fluororesin having a low dielectric constant, it is extremely useful as a member for high frequency. Q [Industrial Applicability] The multilayer fluororesin film composed of the sequential laminated layer (A) fluororesin layer/(B) polyimine resin layer/(A) fluororesin layer of the first invention of the present application a multilayer fluororesin film having a linear expansion coefficient of 10 ppm/° C. to 30 ppm/° C. of the multilayer fluororesin film, and a copper-clad multilayer fluororesin film having a copper foil laminated on at least one side of the multilayer fluororesin film And a printed wiring board in which the copper foil is partially removed to form a circuit pattern, and the second invention of the present application forms a (C) copper layer on the (B) polyimine resin layer without an adhesive. Copper-clad-63- 201032680 (B) side of the laminate (CCL), further laminated with a multilayer fluororesin film of (A) fluororesin layer, wherein (A) layer (B) of the multilayer fluororesin film a multilayer fluororesin film having a linear expansion coefficient of 10 ppm/° C. to 30 ppm/° C. and a copper-clad multilayer fluororesin film having a copper foil laminated on the (A) surface of the multilayer fluororesin film and The copper foil is partially printed to form a circuit pattern to form a printed wiring board, and can withstand high temperature and high humidity processing. In addition to the fluororesin film and the copper foil, the quality of the printed wiring board, etc., and the yield at the time of production can be improved, and the manufacture of high-quality electronic components can be realized. Therefore, it is highly meaningful in the industry. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an example of a multilayer printed wiring of the first invention of the present application. Fig. 2 is a schematic view showing an example of the multilayer printed wiring of the second invention of the present application. [Main component symbol description] (Fig. 1) 1 Copper foil 2 Fluororesin film 3 Polyimide film (Fig. 2) 1 Copper layer 2 Fluororesin film 3 Polyimide film -64-

Claims (1)

201032680 七、申請專利範圍: 1. 一種多層氟樹脂膜,其係依序積層(A)氟樹脂層/(B)聚醯 亞胺樹脂層/(A)氟樹脂層所組成之多層氟樹脂膜,其中該 多層氟樹脂膜的線膨脹係數爲l〇PPm/°C〜30ppm/°C ’(A) 層的厚度比{全體(A)層/多層氟樹脂膜}爲60 %〜90%’且該 (A)層是由四氟乙烯·全氟烷基乙烯醚共聚物(PFA)、四氟 乙烯·六氟丙烯共聚物(FEP)、四氟乙烯·六氟丙烯·全 義 氟烷基乙烯醚共聚物(EPE)中任一種所形成之熱可塑性氟 〇 樹脂層。 2. 如申請專利範圍第1項之多層氟樹脂膜,其中(A)層爲含 官能基的熱可塑性氟樹脂層。 3. 如申請專利範圍第1或2項之多層氟樹脂膜,其中(B)層 爲具有聚醯亞胺苯并噚唑成分之聚醯亞胺層,且線膨脹 係數爲-10??111/°〇~10?卩111/°(3。 4. 如申請專利範圍第1至3項中任一項之多層氟樹脂膜, G 其中(A)層的厚度爲l.Oym〜50"111,且(B)層的厚度爲1.0 μ m~ 3 8 μ m。 5. 如申請專利範圍第1至4項中任一項之多層氟樹脂膜, 其中(A)層於室溫下的儲存彈性模數:E’ (A)與(B)層於室 溫下的儲存彈性模數:E’ (B)之比{E’ (A)/ E’ (B)}爲 2.0 % 〜2 0 %。 6. —種覆銅多層氟樹脂膜,其係在如申請專利範圍第1至5 項中任一項之多層氟樹脂膜的至少單面上積層有銅箔。 -65- 201032680 7. —種印刷配線板,其係將如申請專利範圍第6項之覆銅 多層氟樹脂膜的銅箔去除一部分以形成電路圖案而構 成。 8 .—種多層印刷配線板,其係將如申請專利範圍第1至7 項中任一項之多層氟樹脂膜、覆銅多層氟樹脂膜、以及 印刷配線板予以積層而組成。 9.一種多層氟樹脂膜,其係在不透過接著劑將(C)銅層形成 I 於(Β)聚醯亞胺樹脂層之覆銅積層板(CCL)的(Β)面,更進 —步積層有(Α)氟樹脂層而成之多層氟樹脂膜,其中該多 層氟樹脂膜中之(Α)層(Β)層積層體的線膨脹係數爲 10ppm/°C 〜30ppm/°C,(Α)層的厚度比_ {(A)層 /(A)層(Β)層積 層體}爲60 % ~90 %,且該(A)層是由四氟乙烯·全氟烷基乙 烯醚共聚物(PFA)、四氟乙烯·六氟丙烯共聚物(FEP)、四 氟乙烯·六氟丙烯·全氟烷基乙烯醚共聚物(EPE)中任一 種所形成之熱可塑性氟樹脂層。 Q 10.如申請專利範圍第9項之多層氟樹脂膜’其中(A)層爲含 官能基的熱可塑性氟樹脂層。 11. 如申請專利範圍第9或10項之多層氟樹脂膜’其中(B) 層爲具有聚醯亞胺苯并噚唑成分之聚醯亞胺層’且線膨 脹係數爲-1〇?口瓜/°(:~1(^?111/°(:。 12. 如申請專利範圍第9至11項中任一項之多層氟樹脂 膜,其中(A)層的厚度爲l.〇Mm~5〇Mm,且(B)層的厚度 -66 - .201032680 13. 如申請專利範圍第9至12項中任一項之多層氟樹脂 膜,其中(A)層於室溫下的儲存彈性模數:E,(A)與(B) 層於室溫下的儲存彈性模數:E’ (B)之比(A)/ E’(B)}爲 2.0%〜20%。 14. 一種覆銅多層氟樹脂膜,其係在如申請專利範圍第9至 13項中任一項之多層氟樹脂膜的(A)面上積層有銅箔。 1 5 .—種印刷配線板,其係將如申請專利範圍第9至1 4項 0 中任一項之多層氟樹脂膜、以及覆銅多層氟樹脂膜的銅 層去除一部分以形成電路圖案而構成。 1 6 ·—種多層印刷配線板,其係將如申請專利範圍第9至1 5 項中任一項之多層氟樹脂膜、覆銅多層氟樹脂膜、以及 印刷配線板予以積層而組成。201032680 VII. Patent application scope: 1. A multi-layer fluororesin film which is a multi-layer fluororesin film composed of (A) fluororesin layer/(B) polyimine resin layer/(A) fluororesin layer. Wherein the multilayer fluororesin film has a coefficient of linear expansion of from 10 〇 PPm / ° C to 30 ppm / ° C ' (A) thickness ratio of the layer {total (A) layer / multilayer fluororesin film} is 60% to 90%' And the (A) layer is composed of tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene·hexafluoropropylene copolymer (FEP), tetrafluoroethylene·hexafluoropropylene·perfluoroalkyl A thermoplastic fluoroquinone resin layer formed by any one of vinyl ether copolymers (EPE). 2. The multilayer fluororesin film according to claim 1, wherein the (A) layer is a functional group-containing thermoplastic fluororesin layer. 3. The multilayer fluororesin film according to claim 1 or 2, wherein the layer (B) is a polyimine layer having a polybenzonitrile benzoxazole component, and the coefficient of linear expansion is -10??111 /°〇~10?卩111/° (3. 4. The multilayer fluororesin film according to any one of claims 1 to 3, wherein the thickness of the (A) layer is 1.Oym~50"111 The (B) layer has a thickness of 1.0 μm to 38 μm. 5. The multilayer fluororesin film according to any one of claims 1 to 4, wherein (A) layer is stored at room temperature Elastic modulus: E' (A) and (B) layer storage elastic modulus at room temperature: E' (B) ratio {E' (A) / E' (B)} is 2.0 % ~ 2 0 6. A copper-clad multilayer fluororesin film which is laminated with at least one side of a multilayer fluororesin film according to any one of claims 1 to 5. -65- 201032680 7. a printed wiring board which is formed by removing a part of a copper foil of a copper-clad multilayer fluororesin film of claim 6 to form a circuit pattern. 8. A multilayer printed wiring board which is patented as claimed In items 1 to 7 of the scope A multilayer fluororesin film, a copper-clad multilayer fluororesin film, and a printed wiring board are laminated to form a multilayer fluororesin film which is formed by forming a (C) copper layer without an adhesive. Β) a (poly) surface of a copper-clad laminate (CCL) of a polyimide film, a multilayer fluororesin film formed by laminating a fluororesin layer, wherein the multilayer fluororesin film The (Α) layer (Β) layered layer has a linear expansion coefficient of 10 ppm/°C to 30 ppm/°C, and the thickness ratio of the (Α) layer is _ {(A) layer/(A) layer (Β) layered layer body} 60% ~ 90%, and the (A) layer is composed of tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene hexafluoropropylene copolymer (FEP), tetrafluoroethylene hexafluoro A thermoplastic fluororesin layer formed by any one of a propylene-perfluoroalkyl vinyl ether copolymer (EPE). Q 10. A multilayer fluororesin film according to claim 9 wherein the (A) layer contains a functional group. A thermoplastic fluororesin layer. 11. A multilayer fluororesin film according to claim 9 or 10 wherein the (B) layer is a polyimine having a polybenzonitrile benzoxazole component. 'And the coefficient of linear expansion is -1 〇?? melon / ° (: ~ 1 (^? 111 / ° (: 12. 12. The multi-layer fluororesin film of any one of claims 9 to 11, wherein A) The thickness of the layer is 1. 〇Mm~5〇Mm, and the thickness of the (B) layer is -66 - .201032680. The multilayer fluororesin film according to any one of claims 9 to 12, wherein A) Storage elastic modulus at room temperature: E, (A) and (B) Storage elastic modulus at room temperature: E' (B) ratio (A) / E' (B)} It is 2.0%~20%. A copper-clad multilayer fluororesin film which is laminated with a copper foil on the (A) side of the multilayer fluororesin film according to any one of claims 9 to 13. A printed wiring board which removes a part of a copper layer of a multilayer fluororesin film and a copper-clad multilayer fluororesin film according to any one of claims 9 to 14 to form a circuit pattern. Composition. A multilayer printed wiring board comprising a multilayer fluororesin film, a copper-clad multilayer fluororesin film, and a printed wiring board as disclosed in any one of claims 9 to 15. -67--67-
TW099101341A 2009-01-20 2010-01-19 Multilayer fluorine resin film and printed wiring board TWI461119B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009009626 2009-01-20
JP2009017985 2009-01-29
JP2009110402 2009-04-30
JP2009110401 2009-04-30

Publications (2)

Publication Number Publication Date
TW201032680A true TW201032680A (en) 2010-09-01
TWI461119B TWI461119B (en) 2014-11-11

Family

ID=42355919

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099101341A TWI461119B (en) 2009-01-20 2010-01-19 Multilayer fluorine resin film and printed wiring board

Country Status (3)

Country Link
JP (1) JP5625906B2 (en)
TW (1) TWI461119B (en)
WO (1) WO2010084867A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503228B (en) * 2013-12-05 2015-10-11 Taimide Technology Inc Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
TWI713610B (en) * 2015-10-22 2020-12-21 日商Agc股份有限公司 Manufacturing method of wiring board, wiring board and antenna
TWI735477B (en) * 2015-10-22 2021-08-11 日商Agc股份有限公司 Manufacturing method of wiring board, wiring board and antenna
US11376826B2 (en) 2018-03-30 2022-07-05 Arisawa Mfg. Co., Ltd. Multi-layer film and metal laminate
US20230125635A1 (en) * 2021-10-26 2023-04-27 Toray Advanced Materials Korea Inc. Copper clad laminate film and electronic device including same
US20230199947A1 (en) * 2021-12-20 2023-06-22 Toray Advanced Materials Korea Inc. Copper clad laminate film and electronic device including same
TWI841684B (en) * 2019-02-21 2024-05-11 日商Agc股份有限公司 Laminated body and method for manufacturing the laminated body

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461119B (en) * 2009-01-20 2014-11-11 Toyoboseki Kabushikikaisha Multilayer fluorine resin film and printed wiring board
JP5981089B2 (en) * 2010-08-23 2016-08-31 トヨタ自動車株式会社 Insulating resin sheet for fixing coil, stator for motor using insulating resin sheet for fixing coil, and method for manufacturing stator for motor
US9480148B2 (en) 2011-02-21 2016-10-25 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminate and printed wiring board
WO2014171554A1 (en) * 2013-04-19 2014-10-23 ダイキン工業株式会社 Metal-clad laminate body and printed circuit board
JP2014223798A (en) * 2013-04-19 2014-12-04 ダイキン工業株式会社 Metal-clad laminate
JP6350524B2 (en) * 2013-05-31 2018-07-04 住友電気工業株式会社 Metal resin composite and method for producing metal resin composite
JP6355322B2 (en) * 2013-12-03 2018-07-11 国立大学法人山形大学 Method for manufacturing flexible device
JP6204887B2 (en) * 2014-08-19 2017-09-27 富士フイルム株式会社 LAMINATE, TRANSFER FILM, LAMINATE MANUFACTURING METHOD, CONDUCTIVE FILM LAMINATE, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE
WO2016181936A1 (en) * 2015-05-11 2016-11-17 旭硝子株式会社 Material for printed circuit board, metal laminate, method for manufacturing same, and method for manufacturing printed circuit board
JP6825368B2 (en) * 2016-01-05 2021-02-03 荒川化学工業株式会社 Copper-clad laminate and printed wiring board
WO2017154926A1 (en) * 2016-03-08 2017-09-14 旭硝子株式会社 Method for producing laminate and method for manufacturing printed board
JP7234944B2 (en) * 2018-01-18 2023-03-08 Agc株式会社 LONG LAMINATED BOARD, METHOD FOR MANUFACTURING THE SAME, AND PRINTED WIRING BOARD
JP7338619B2 (en) * 2018-04-20 2023-09-05 Agc株式会社 Roll film, method for producing roll film, method for producing copper-clad laminate, and method for producing printed circuit board
CN216531943U (en) * 2018-10-04 2022-05-13 株式会社村田制作所 Laminated body
JP7349301B2 (en) * 2019-09-17 2023-09-22 日本メクトロン株式会社 Method for manufacturing a flexible printed wiring board substrate, and flexible printed wiring board substrate
CN110744890A (en) * 2019-10-30 2020-02-04 深圳市弘海电子材料技术有限公司 Fluorine polyimide high-frequency adhesive-free flexible copper clad laminate and manufacturing method thereof
CN110744839A (en) * 2019-11-01 2020-02-04 中国电子科技集团公司第四十六研究所 Process for preparing composite dielectric plate based on low dielectric constant turning film
WO2021166930A1 (en) 2020-02-20 2021-08-26 Agc株式会社 Multilayer film and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4129627B2 (en) * 2002-12-18 2008-08-06 旭硝子株式会社 Laminated film for build-up wiring board and build-up wiring board
US7022402B2 (en) * 2003-07-14 2006-04-04 E. I. Du Pont De Nemours And Company Dielectric substrates comprising a polymide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
JP4917745B2 (en) * 2004-08-17 2012-04-18 ユニチカ株式会社 High frequency substrate and manufacturing method thereof
DE602005027743D1 (en) * 2004-12-20 2011-06-09 Asahi Glass Co Ltd LAMINATE FOR FLEXIBLE PCB
JP2007098905A (en) * 2005-10-07 2007-04-19 Toyobo Co Ltd Multilayered polyimide film
TWI461119B (en) * 2009-01-20 2014-11-11 Toyoboseki Kabushikikaisha Multilayer fluorine resin film and printed wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI503228B (en) * 2013-12-05 2015-10-11 Taimide Technology Inc Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
US9850401B2 (en) 2013-12-05 2017-12-26 Taimide Technology Incorporation Multilayered polyimide film having a low dielectric constant, laminate structure including the same and manufacture thereof
TWI713610B (en) * 2015-10-22 2020-12-21 日商Agc股份有限公司 Manufacturing method of wiring board, wiring board and antenna
TWI735477B (en) * 2015-10-22 2021-08-11 日商Agc股份有限公司 Manufacturing method of wiring board, wiring board and antenna
US11376826B2 (en) 2018-03-30 2022-07-05 Arisawa Mfg. Co., Ltd. Multi-layer film and metal laminate
TWI841684B (en) * 2019-02-21 2024-05-11 日商Agc股份有限公司 Laminated body and method for manufacturing the laminated body
US20230125635A1 (en) * 2021-10-26 2023-04-27 Toray Advanced Materials Korea Inc. Copper clad laminate film and electronic device including same
US20230199947A1 (en) * 2021-12-20 2023-06-22 Toray Advanced Materials Korea Inc. Copper clad laminate film and electronic device including same

Also Published As

Publication number Publication date
TWI461119B (en) 2014-11-11
JPWO2010084867A1 (en) 2012-07-19
JP5625906B2 (en) 2014-11-19
WO2010084867A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
TW201032680A (en) Multilayer fluorine resin film and printed wiring board
TWI437937B (en) Copper wiring polyimine film manufacturing method and copper wiring polyimide film
JP2011051203A (en) Multilayer polyimide film and printed wiring board
US9393720B2 (en) Polyimide film and process for producing polyimide film
JP2001072781A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP2008265069A (en) Insulating adhesion sheet, laminate, and printed wiring board
JP5609891B2 (en) Method for producing polyimide film and polyimide film
JP5476821B2 (en) Multilayer fluoropolymer substrate
JP2006269615A (en) Printed wiring board
JP5556416B2 (en) Polyimide board, metal laminated polyimide board, and printed wiring board
JP5391905B2 (en) Polyimide film and method for producing polyimide film
JP2017177604A (en) Polyimide laminate film
JP2011011456A (en) Multilayered fluoroplastic film, and multilayered fluoroplastic substrate
JP2002144476A (en) Polyimide film good in laser processability, substrate and processing method
JP2009269372A (en) Polyimide laminated board pasted with metal and printed wiring board
JP6774285B2 (en) Metal-clad laminate
JP2024066870A (en) Polyimide Laminate
JP2009012366A (en) Laminate and printed wiring board
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
TW202208513A (en) Multilayer Polyimide Film
JP4876396B2 (en) Printed wiring board
JP2006116738A (en) Adhesive laminated film
JP2007254530A (en) Laminated adhesive sheet, metal layer-adhered laminated adhesive sheet and circuit substrate
JP5499555B2 (en) Polyimide film and method for producing polyimide film
WO2024085047A1 (en) Multilayer polyimide film