201032243 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種薄膜式共模雜訊濾波器之結 構與製&方法’特別是指在—絕緣基材上製作薄膜線 圈,使薄膜線圈能夠在較低成本下製作,而且能達到 濾除高頻共模雜訊特性之目的。 【先前技術】201032243 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a structure and system of a thin film common mode noise filter, which in particular means forming a film coil on an insulating substrate to make a film coil It can be fabricated at a lower cost and can achieve the purpose of filtering out high frequency common mode noise characteristics. [Prior Art]
美國專利第 7,145,427B2 號「COIL COMPONENT _ AND METHOD OF MANUFACTURING THE SAMEj 專利案,主要揭露一種共模雜訊遽波元件,係將線圈 釔構製作在一磁性基材上端,再以蝕刻技術在部分非 線圈結構的元件上挖洞,再於該洞内填入混有磁性粉 末的膠體,輔以平坦化製程技術將表面平坦化後,再 經由膠合技術與另一磁性基材黏合,以達成該元件之 製作。 β 另一美國第 6,356,181 Β1 號和第 6,618,929 Β2 .號專利案,主要揭露一種層狀共模濾波器,該兩案亦 ,疋在一磁性基材上端製作線圈結構再以磁性材料製 成的上蓋蓋覆’而該兩案較特別的地方在於提到線圈 的佈線方式’以求降低差動訊號的阻抗。 然而’上述習知技術,其製程均過於繁複、耗時, 而且耗費成本,尤其使用磁性材料作為基材,共模雜 訊的據除特性僅能達到-20dB左右,共模雜訊濾波元 3 201032243 件的製造成本也會居高不下。 因此,本發明人提出一種結構簡單,共模雜訊濾 波特性可大於-30dB以上,並能減少製作成本之結構 與製造方法。 σ 【發明内容】 因此,本發明旨在提供一種薄膜式共模雜訊濾波 * 器之結構與製造方法,係使用絕緣基材作為基板,再 於該基板上方利用旋塗技術、黃光顯影製程、電漿輔 助氣相沉積、電鍍製程和薄膜蝕刻技術,依序沉積製 作薄膜線圈結構和絕緣層,最上層再利用膠合技術、 旋塗技術或網印製程,製備一磁性材料層,進而完成 該共模雜訊濾、波元件之製作。 依本發明之薄膜式共模雜訊濾波器之結構與製 造方法,係使用氧化鋁(Abo3)、氮化鋁(Α1Ν)、玻璃 (Glass)、或石英(Quartz)等材料作為絕緣基材,藉由 ❹使用絕緣基材作為低損耗而高絕緣之基材,可使製程 簡化,製造成本降低,而且能達到更佳之共模雜訊濾 波特性’為本發明之次一目的。 為便貴審查委員能對本發明之目的、形狀、構 造裝置特徵及其功效,做$進一步之認識與瞭解,茲 舉實施例配合圖式,詳細說明如下: 【實施方式】 本發明之薄膜式共模雜訊濾波器之結構,如第上 圖所不,由下往上依序包括:一絕緣基材丨、一第一 201032243 . 電氣絕緣層2、一第一線圈導線引出層3、一第二電 氣絕緣層4、一第一線圈主體層5、一第三電氣絕緣 層6、一第二線圈主體層7、一第四電氣絕緣層8、 一第一線圈導線引出層9、一絕緣/膠合層1 〇 ;以及 一磁性材料層11。 上述本發明之薄膜式共模雜訊濾波器,係經由以 . 下步驟製得: P 1.選用氧化鋁(Al2〇3)、氮化鋁(A1N)、玻璃(Glass) 參 或石英(Quartz)等基材,製備一絕緣基材1,再於 該絕緣基材1的上端表面旋塗一第一電氣絕緣層 2’第一電氣絕緣層2的材料可選自聚醯亞胺 (polyimide)、環氧樹脂(ep0Xy resin)、苯並環丁烯 树脂(BCB)或其它高分子聚合物(p〇iymer),其旋 塗厚度可用以調整阻抗值(impedance value),如 第2A圖所示; φ 2·在第一電氣絕緣層2的上端表面,利用薄膜金屬 沉積製程、黃光顯影製程和電鍍製程,製作一第 一線圈引出層3,第一線圈引出層3的材料可選 自銀(Ag)、鈀(Pd)、鋁(A1)、鉻(Cr)、鎳(Ni)、鈦 (Ti)、金(Au)、銅(Cu)、鉑(Pt)或其合金之一,第 一線圈引出層3包括有第一電極31和第二電極 32 ’第一電極31和第二電極32之間以導線33 連接’如第2B圖所示; 3.利用黃光顯影製程或蝕刻技術,在第一線圈引出 201032243 層3的上方旋塗一第二電氣絕緣層4,並利用黃 光顯影技術或蝕刻技術製作一導線連接孔41,^ 線連接孔41的位置對至第一線圈引出層3的第 一電極31 ’该第二電氣絕緣層4的材料同樣可選 自聚醯亞胺(polyimide)、環氧樹脂(ep〇xy resin)、 苯並環丁烯樹脂(BCB)或其它高分子聚合物 (polymer) ’如第2C圖所示; 4. 在第二電氣絕緣層4的上方,利用薄膜金屬沉積 製程、黃光顯影技術和電鍍製程,製作第一線圈 主體層5,線圈引出層5的材料同樣可選自銀 (Ag)、把(Pd)、紹(A1)、鉻(cr)、鎳(Ni)、鈦⑺)、 金(Au)、銅(Cu)、鉑(Pt)或其合金之一,該第一線 圈主體層5包括第一電極51、第二電極52,以 及連接第一電極51和第二電極52之螺旋線圈 53,其中,第一電極51可經第二電氣絕緣層4 Φ 之導線連接孔41和第一線圏引出層3之第一電 極31相連接,如第2D圖所示; 5. 在第一線圈主體層5的上方,利用旋塗製程旋塗 一第二電氣絕緣層6,第二電氣絕緣層6的材料 同樣可選自聚醯亞胺(P〇lyimi(}e)、環氧樹脂 (epoxy resin)、苯並環丁烯樹脂(BCB)或其它高分 子聚合物(polymer) ’如第2E圖所示; 6. 再利用薄膜金屬沉積製程、黃光顯影技術和電鍍 製程,製作一第一線圈主體層7,該第二線圈主 6 201032243 體層7形成於第二電氣絕緣層6的上方,該第二 線圈主體層7的材料同樣可選自銀(Ag)、把(pd)、 铭(A!)、鉻(Cr)、鎳(Ni)、鈦(Ti)、金(Au)、銅(Cu)、 鉑(Pt)或其合金之一,第二線圈主體層7包括第 一電極71、第二電極72,以及連接第-電極71 和第二電極72之螺旋線圈73,如第2F圖所示; . 7.再於第二線圈主體層7的上端旋塗一第四電氣絕 緣層8,並利用黃光顯影技術或蝕刻技術製作一 導線連接孔81,如第2G圖所示; 8·然後利用薄膜金屬沉積製程、黃光顯影技術和電 鍍製程,於第四電氣絕緣層8的上方製作一第二 線圈引出層9,第二線圈引出層9的材㈣樣 選自銀(Ag)、把(pd)、铭(A〗)、鉻(cr)、鎳(Ni)、 鈦(Ti)、金(Au)、銅(Cu)、鉑(pt)或其合金之一, 第二線㈣出冑9包括有第-電極91和第二電 ❹ 極92第電極91和第二電極92之間以導線 93連接,第一電極91通過第四電氣絕緣層8之 導線連接孔81和第二線圈主體層7之第一電極 71連接’如第2H圖所示; 9·再於第二線圈引出層9的上端,旋塗一絕緣/膠合 層W,如第21圖所示; V 口 ι〇.取後,利用膠合製程技術、網印製程或旋塗技 術,製作磁性材料層u做為上蓋,磁性材料層 11可為磁性基材或混有磁性粉末膠體,而磁性粉 201032243 ,f f係可為磁性粉末與聚醯亞胺(P〇lyimide)、 脂(epoxy resin)、苯並環丁烯樹脂(bcb) ,"匕回分子聚合物(p〇lymer)之一所調配而 成’如第2J圖所示。 上述蝕刻製程,可採用乾蝕刻或溼蝕刻製程, =刻可為RIE製程,濕㈣可採用化學溶液餘刻製 參 A材Ί上/驟可知’本發明利用在一低損耗高絕緣 基材上依序製作絕緣層與線圈之結構 術在最上層表面製作一磁性材料層,或者’亦可= =製程或旋塗製程’在其上印製一混有磁性粉末之 膠體’該㈣可為㈣亞胺⑽yim (啊蝴其它高分子聚合物(pGlymer:t 組成。 藉由上述製程步驟,可以在較低成本 式共模雜訊遽波器,而且整體的製備步驟簡=膜 *如S 6圖所示,依本發明之製造方法製 薄膜式共扠雜訊濾波器,經過網路分析儀量測結 可達成較高之共模雜訊㈣效果,纟巾 ^ 可達-30dB以下。 CC21 本發明之薄膜式共模雜訊濾波器之結構, 3圖所示,在整體元件 材料層301、彻· ★ 石及下万各被覆一層磁性 _ ▲層 ,亦可如第4圖所示,同時在整體 疋件的上方、下方、左方及右方各被覆—層磁 8 201032243 層 401、402、403、404。 哭之5 Γ係本發明之薄膜式共模雜訊濾波 :之構的另一實施例圖’如圖所示,本發明之薄膜 式共模雜訊濾波器,可因應電〇 、 主體層均形成對偶雙數設置,即 . —絕緣基材5G1、—第—電氣絕緣層5G2、一第 ❹二對偶線圈導線引出層503、一第二電氣絕緣層 層5、。6~ :對偶線圈主體層5。5、—第三電氣絕緣 =、第二對偶線圈主體層5〇7、一第四電氣絕 緣層508、-第二對偶線圈導線引出層辦、一絕緣/ 膠合層600 ;以及一磁性材料詹^。 之:IT上所述,本發明之薄膜式共模雜訊滤波器 構與t造方法,確實具有前所未有之創新構造, 广未見於任何刊物’且市面上亦未見有任何類似的 ❿產品,是以,其具有新穎性應無疑慮、。另夕卜,本發明 所具有之獨特特徵以及功能遠非習用所可比擬,所以 其確實比習用更具有其進步性’而符合我國專利法有 關發明專利之巾請要件之規定,乃依法提起專 請0 以上所述,僅為本發明較佳具體實施<列,惟本發 明之構造特徵並不侷限於此,任何熟悉該項技藝者^ 本發明領域内,可輕易思及之變化或修飾,皆可 在以下本案之專利範圍。 9 201032243 【圖式簡單說明】 第1圖係本發明之薄 體分解示意圖。 第2A〜2J圖係本發明 的製造流程示圖。 犋式共模雜訊濾波器的立 之薄膜式共模雜訊遽波器 第3圖係本發明之第二實施例圖。 第4圖係本發明之第三實施例圖。US Patent No. 7,145,427 B2, "COIL COMPONENT _ AND METHOD OF MANUFACTURING THE SAMEj Patent, mainly discloses a common mode noise chopping component, which is formed by winding a coil structure on a magnetic substrate and then etching. Part of the non-coil structure is burrowed, and then the hole is filled with a colloid mixed with magnetic powder, and the surface is flattened by a flattening process technique, and then bonded to another magnetic substrate through a gluing technique to achieve The manufacture of the element. β Another U.S. Patent Nos. 6,356,181, and No. 6,618,929, the disclosure of which is incorporated herein by reference in its entirety, the entire disclosure of the entire disclosure of the entire disclosure of the entire disclosure of The upper cover is made of a magnetic material, and the special case of the two cases is that the coil is wired to reduce the impedance of the differential signal. However, the above-mentioned conventional techniques are complicated and time consuming. And costly, especially using magnetic materials as the substrate, the subtraction characteristic of common mode noise can only reach about -20dB, the common mode noise filter element 3 201032243 system Therefore, the present inventors have proposed a structure and a manufacturing method which are simple in structure, common mode noise filtering characteristics can be more than -30 dB, and can reduce the manufacturing cost. σ [Summary] Therefore, the present invention The invention aims to provide a structure and a manufacturing method of a thin film common mode noise filter, which uses an insulating substrate as a substrate, and then uses a spin coating technique, a yellow light developing process, a plasma assisted vapor deposition, and electroplating on the substrate. The process and the film etching technology are sequentially deposited to form a thin film coil structure and an insulating layer, and the uppermost layer is further fabricated by a gluing technique, a spin coating technique or a screen printing process to prepare a magnetic material layer, thereby completing the common mode noise filtering and wave component. According to the structure and manufacturing method of the thin film common mode noise filter of the present invention, materials such as alumina (Abo3), aluminum nitride (Glass), glass (Glass), or quartz (Quartz) are used as the insulating base. By using an insulating substrate as a substrate with low loss and high insulation, the process can be simplified, the manufacturing cost can be reduced, and a better common mode noise filter can be achieved. The wave characteristic 'is the second purpose of the present invention. For the purpose of the review, the reviewer can make a further understanding and understanding of the object, shape, structure and function of the present invention, and the embodiment will be described in detail with reference to the figure. The following is a schematic diagram of the structure of the thin film common mode noise filter of the present invention, as shown in the above figure, including: an insulating substrate 丨, a first 201032243. The electrical insulating layer 2 a first coil wire lead-out layer 3, a second electrical insulating layer 4, a first coil body layer 5, a third electrical insulating layer 6, a second coil body layer 7, a fourth electrical insulating layer 8, A first coil wire lead-out layer 9, an insulating/glue layer 1; and a magnetic material layer 11. The above-mentioned thin film common mode noise filter of the present invention is obtained by the following steps: P 1. Selection of alumina (Al2〇3), aluminum nitride (A1N), glass (Glass) or quartz (Quartz) And a substrate, an insulating substrate 1 is prepared, and a first electrical insulating layer 2 is spin-coated on the upper end surface of the insulating substrate 1. The material of the first electrical insulating layer 2 may be selected from polyimide. , epoxy resin (ep0Xy resin), benzocyclobutene resin (BCB) or other high molecular polymer (p〇iymer), the spin coating thickness can be used to adjust the impedance value, as shown in Figure 2A φ 2· on the upper end surface of the first electrical insulating layer 2, a first coil take-up layer 3 is formed by a thin film metal deposition process, a yellow light developing process, and an electroplating process, and the material of the first coil take-up layer 3 may be selected from silver (Ag), palladium (Pd), aluminum (A1), chromium (Cr), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), platinum (Pt) or one of its alloys, A coil take-up layer 3 includes a first electrode 31 and a second electrode 32. The first electrode 31 and the second electrode 32 are connected by a wire 33 as shown in FIG. 2B. 3. Using a yellow light developing process or etching technique, spin-coating a second electrical insulating layer 4 over the first coil lead 201032243 layer 3, and using a yellow light developing technique or etching technique to make a wire connecting hole 41, ^ line The position of the connection hole 41 is opposite to the first electrode 31 ′ of the first coil extraction layer 3 . The material of the second electrical insulation layer 4 may also be selected from the group consisting of polyimide, ep〇xy resin, Benzene cyclobutene resin (BCB) or other high molecular polymer (polymer) as shown in Figure 2C; 4. Above the second electrically insulating layer 4, using a thin film metal deposition process, yellow light development technology and electroplating The first coil main body layer 5 is formed by a process, and the material of the coil take-up layer 5 can also be selected from the group consisting of silver (Ag), palladium (A1), chromium (cr), nickel (Ni), titanium (7), and gold. One of (Au), copper (Cu), platinum (Pt) or an alloy thereof, the first coil body layer 5 includes a first electrode 51, a second electrode 52, and a spiral connecting the first electrode 51 and the second electrode 52 a coil 53, wherein the first electrode 51 can pass through the wire connection hole 41 of the second electrical insulation layer 4 Φ and the first The first electrode 31 of the wire lead-out layer 3 is connected as shown in FIG. 2D; 5. Above the first coil body layer 5, a second electrical insulating layer 6 is spin-coated by a spin coating process, and the second electrical insulation is performed. The material of layer 6 may also be selected from the group consisting of polyfluorene (P〇lyimi (}e), epoxy resin, benzocyclobutene resin (BCB) or other high molecular polymer (polymer) 2E is shown; 6. A first coil body layer 7 is formed by a thin film metal deposition process, a yellow light developing process, and an electroplating process, and the second coil main body 6 201032243 body layer 7 is formed above the second electrical insulating layer 6. The material of the second coil body layer 7 may also be selected from the group consisting of silver (Ag), pd (Ad), chromium (Cr), nickel (Ni), titanium (Ti), gold (Au), One of copper (Cu), platinum (Pt) or an alloy thereof, the second coil body layer 7 includes a first electrode 71, a second electrode 72, and a spiral coil 73 connecting the first electrode 71 and the second electrode 72, as described 2F is shown in Fig. 7. Further, a fourth electrical insulating layer 8 is spin-coated on the upper end of the second coil body layer 7, and a yellow light developing technique or etching technique is used to fabricate a fourth electrical insulating layer 8 a wire connection hole 81, as shown in FIG. 2G; 8. Then, a second coil extraction layer 9 is formed on the fourth electrical insulation layer 8 by a thin film metal deposition process, a yellow light development process, and an electroplating process, and the second coil is formed. The material (4) of the extraction layer 9 is selected from the group consisting of silver (Ag), pp (pd), im (A), chromium (cr), nickel (Ni), titanium (Ti), gold (Au), copper (Cu), One of platinum (pt) or an alloy thereof, the second line (four) exit pupil 9 includes a first electrode 91 and a second electrode 91. The first electrode 91 and the second electrode 92 are connected by a wire 93, and the first electrode 91 passes. The wire connection hole 81 of the fourth electrical insulating layer 8 and the first electrode 71 of the second coil body layer 7 are connected as shown in FIG. 2H; 9. Further, the upper end of the second coil extraction layer 9 is spin-coated with an insulation/ The glue layer W is as shown in Fig. 21; after the V port is removed, the magnetic material layer u is made as the upper cover by the glue process technology, the screen printing process or the spin coating technique, and the magnetic material layer 11 can be the magnetic substrate. Or mixed with magnetic powder colloid, and magnetic powder 201032243, ff can be magnetic powder with P〇lyimide, epoxy resin, benzo One of the cyclobutene resin (bcb) and the "p匕lymer" is blended as shown in Fig. 2J. The etching process may be performed by a dry etching or a wet etching process, and the etching process may be an RIE process. The wet (four) may be prepared by using a chemical solution to form a material. The invention is utilized on a low-loss high-insulation substrate. The structure of the insulating layer and the coil is sequentially formed to make a magnetic material layer on the uppermost surface, or 'also == process or spin coating process' on which a colloid mixed with magnetic powder is printed' (4) can be (4) Imine (10) yim (ah butterfly other polymer (pGlymer: t composition. With the above process steps, it can be used in the lower cost common mode noise chopper, and the overall preparation steps are simple = film * as S 6 figure As shown, the thin-film co-fork noise filter manufactured by the manufacturing method of the present invention can achieve a higher common mode noise (4) effect through the network analyzer measurement, and the wiper can reach -30 dB or less. The structure of the thin film common mode noise filter of the invention is as shown in Fig. 3, and the magnetic layer _ ▲ layer is coated on the whole device material layer 301, the ruthenium stone and the tens of thousands, as shown in Fig. 4, Above, below, left and right of the overall components层层磁8 201032243 Layers 401, 402, 403, 404. Crying 5 Γ is a thin film common mode noise filter of the present invention: another embodiment of the structure is shown in the figure, the film type of the present invention The common mode noise filter can form a dual double number according to the electric raft and the main layer, that is, the insulating substrate 5G1, the first electrical insulating layer 5G2, the second second dual coil wire lead-out layer 503, and the second Electrical insulating layer 5, .6~: dual coil body layer 5. 5, - third electrical insulation =, second dual coil body layer 5 〇 7, a fourth electrical insulating layer 508, - second dual coil wire lead Layer, an insulating/gluing layer 600; and a magnetic material: according to the IT, the thin film common mode noise filter structure and the t manufacturing method of the present invention have an unprecedented innovative structure, Seen in any publication' and there is no similar enamel product on the market, so that its novelty should be undoubted. In addition, the unique features and functions of the present invention are far from comparable, so It is indeed more progressive than its use' The requirements of the requirements for the invention of the invention patents in accordance with the Patent Law of the People's Republic of China are generally stated in accordance with the law, and are merely preferred embodiments of the present invention. However, the structural features of the present invention are not limited thereto. Those skilled in the art can easily change or modify the scope of the present invention in the field of the invention. 9 201032243 [Simplified description of the drawings] Fig. 1 is a schematic diagram of the thin body decomposition of the present invention. 2A to 2J are diagrams of the manufacturing process of the present invention. Fig. 3 shows a second embodiment of the present invention, which is a thin film common mode noise chopper of the common mode noise filter. A diagram of a third embodiment of the present invention.
第5圖係本發明之第四實施例圖。 第6圖本發明之薄膜式共模雜訊濾波器之電氣 特性量測圖。 【主要元件符號說明】 1 : 絕緣基材 2 : 第一電氣絕緣層 3 : 第一線圈導線引 出層 4 ·· 第二電氣絕緣層 5 : 第一線圈主體層 6 : 第三電氣絕緣層 7 : 第二線圈主體層 8 : 第四電氣絕緣層 9 : 第二線圈導線引 出層 10 :絕緣/膠合層 11 磁性材料層 31 :第一電極 32 第二電極 33 :導線 41 導線連接孔 51 :第一電極 52 第二電極 53 :螺旋線圈 71 第一電極 72 •第二電極 73 螺旋線圈 81 •導線連接孔 91 第一電極 92 •第二電極 93 導線 201032243 401、402、403、404 :磁性材料層 501 絕 緣 基材 502 : 第 一電氣絕 緣層 503 第 一 對偶線 圈 導線引出層 504 第 二 電氣絕 緣 層 505 : 第 一對偶線 圈主體 層 506 第 三 電氣絕 緣 層 507 : 第 二對偶線 圈主體 層 508 第 四 電氣絕 緣 層 509 第 二 對偶線 圈 導線引出層 600 絕 緣 /膠合層 601 : 磁性材料層Fig. 5 is a view showing a fourth embodiment of the present invention. Fig. 6 is a graph showing the electrical characteristics of the thin film common mode noise filter of the present invention. [Main component symbol description] 1 : Insulating substrate 2 : First electrical insulating layer 3 : First coil wire lead-out layer 4 · Second electrical insulating layer 5 : First coil body layer 6 : Third electrical insulating layer 7 : Second coil body layer 8: Fourth electrical insulation layer 9: Second coil wire lead-out layer 10: Insulation/glue layer 11 Magnetic material layer 31: First electrode 32 Second electrode 33: Wire 41 Wire connection hole 51: First Electrode 52 Second electrode 53: Spiral coil 71 First electrode 72 • Second electrode 73 Spiral coil 81 • Wire connection hole 91 First electrode 92 • Second electrode 93 Conductor 201032243 401, 402, 403, 404: Magnetic material layer 501 Insulating substrate 502: first electrical insulating layer 503 first dual coil wire lead-out layer 504 second electrical insulating layer 505: first dual coil body layer 506 third electrical insulating layer 507: second dual coil body layer 508 fourth electrical Insulation layer 509 second dual coil wire lead-out layer 600 insulation/gluing layer 601 : magnetic material Floor
1111