TW201027724A - Depletion-mode charge-trapping flash device - Google Patents

Depletion-mode charge-trapping flash device Download PDF

Info

Publication number
TW201027724A
TW201027724A TW098144279A TW98144279A TW201027724A TW 201027724 A TW201027724 A TW 201027724A TW 098144279 A TW098144279 A TW 098144279A TW 98144279 A TW98144279 A TW 98144279A TW 201027724 A TW201027724 A TW 201027724A
Authority
TW
Taiwan
Prior art keywords
channel region
memory cell
layer
region
fin
Prior art date
Application number
TW098144279A
Other languages
Chinese (zh)
Other versions
TWI415249B (en
Inventor
Hang-Ting Lue
Yi-Hsuan Hsiao
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW201027724A publication Critical patent/TW201027724A/en
Application granted granted Critical
Publication of TWI415249B publication Critical patent/TWI415249B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A memory device includes a plurality of semiconductor lines, such as body-tied fins, on a substrate. The lines including buried-channel regions doped for depletion mode operation. A storage structure lies on the plurality of lines, including tunnel insulating layer on the channel regions of the fins, a charge storage layer on the tunnel insulating layer, and a blocking insulating later on the charge storage layer. A plurality of word lines overlie the storage structure and cross over the channel regions of the semiconductor lines, whereby memory cells lie at cross-points of the word lines and the semiconductor lines.

Description

201027724 ๅ…ญใ€็™ผๆ˜Ž่ชชๆ˜Ž๏ผš ใ€็™ผๆ˜Žๆ‰€ๅฑฌไน‹ๆŠ€่ก“้ ˜ๅŸŸใ€‘ ๆœฌ็™ผๆ˜Žไฟ‚้—œๆ–ผ้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ฃ็ฝฎ๏ผŒๅŒ…ๅซไฝฟ็”จๆ–ผไธ€ ฮฮ‘ฮฯ‹ๅฟซ ้–ƒ็ต„ๆ…‹็š„้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ฃ็ฝฎใ€‚ ใ€ ใ€ๅ…ˆๅ‰ๆŠ€่ก“ใ€‘ ๅฟซ้–ƒ่จ˜ๆ†ถ้ซ”็‚บไธ€็จฎ้žๆฎ็™ผ็ฉ้ซ”้›ป่ทฏ่จ˜ๆ†ถ้ซ” ๆ†ถ้ซ”ไฟ‚ๆŽก็”จๆตฎๅ‹•้–˜ๆฅต่จ˜ๆ†ถ่ƒžใ€‚้šจ่‘—่จ˜ๆ†ถ่ฃ็ฝฎไน‹ =้–˜ๆฅต่จ˜ๆ†ถ่ƒžไน‹_ๅŠ ้ ่ฟ‘๏ผŒๅ„ฒๅญ˜ๅœจ็›ธ_ๅ‹•้–˜ๆฅตไธญ็š„ ๅณ้€ ๆˆๅ•้กŒ๏ผŒๅ› ๆญคๅฝขๆˆ้™ๅˆถ๏ผŒไฝฟๅพ—ๆŽก็”จๆตฎๅ‹• ้–‹ๆฅตไน‹ๅฟซ้–ƒ่จ˜่ณดๅฏ†ๅบฆ็„กๆณ•ๆๅ‡ใ€‚ๅฆโ€” ==่ƒž;;้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ƒž๏ผŒๅ…ถๆŽก็”จ้›ป2= ใ€ใ€ๅญšๅ‹•pU:ไบ†ๆ•ๆ‰5ๅทฑๆ†ถ่ƒžไฟ‚ๅˆฉ็”จ้›ป่ทๆ•ๆ‰ๆๆ–™โ€™ไธๆœƒๅฆ‚ ่ƒžไน‹้–“็š„็›ธไบ’ๅฝฑ้Ÿฟโ€™ไธฆไธ”ๅฏไปฅๆ‡‰็”จ โน ๅ…ถไธญๅ…ธ้›ปๆ™ถ้ซ”(FET)็ตๆง‹โ€™ ๅ †ๆšด่€Œ* = ็ตฒ่ˆ‡้Œ„โ€™ไปฅๅŠ่—‰&ไป‹้›ปๆๆ–™ M ้›ข็š„้–˜ๆฅตใ€‚ๅ…ถไธญ่ฉฒไป‹้›ปๆๆ–™ๅŒ…ๅซ็ฉฟ้šงไป‹้›ป gๅฑคๅ‰‡ใ€ๆฒ’ๆฅต่ˆ‡้€š้“ๅฝขๆˆๆ–ผๅฝป(s)ไธŠ๏ผŒ็ฉฟ้šจ (N)๏ผŒ้˜ป้šœไป‹้›ป:ไบŒ)ไบŒไธŠJ่ทๅ„ฒๅญ˜ๅฑค็”ฑๆฐฎๅŒ–็Ÿฝๅฝขๆˆ ็Ÿณๅค•โ‘ปใ€‚ๆญค็จฎ=8ๆฐง:=)ๅฝขๆˆโ€™่€Œ้–‰ๆฅตๅ‰‡็‚บๅคšๆ™ถ ไพ†้€ฒ้€ฒไปƒ็จ‹ๅผๅŒ–๏ผŒๆˆ–่€…้›ป่ดข้šงใ€้›ปๅญ้‡‹ๆ”พ 3 201027724 ้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ƒž็š„็ ”็ฉถๆ–นๅ‘ไน‹ไธ€็‚บNANDๅž‹็š„็ตๆง‹ใ€‚่ˆ‰ ไพ‹่€Œ่จ€๏ผŒ็›ธ้—œ็ ”็ฉถๆœ‰ Shin e. al.๏ผŒโ€œA Highly Reliable SONOS-type NAND Flash Memory Cell with A1203 or Top201027724 VI. Description of the Invention: [Technical Field] The present invention relates to a charge trap memory device including a charge trap memory device for use in a flash configuration. [Prior Art] Flash memory is a non-volatile integrated circuit memory. The memory system uses floating gate memory cells. As the memory device = the gate of the memory cell is close to the source, the problem is stored in the phase-moving gate, thus forming a limitation, so that the fast flash density of the floating open is not improved. Another - == cell;; charge trapping memory cell, which uses electricity 2 = ,, and mobilization pU: captures 5 cell memory cells using charge trapping material 'will not interact as a cell' and can be applied The typical transistor (FET) structure 'surge and * = wire and record' and borrow & dielectric material M away from the gate. Wherein the dielectric material comprises a tunneling dielectric g layer, the immersion and the channel are formed on the (s), the (N), the barrier dielectric: 2) the upper J storage layer is formed of tantalum nitride Shi Xi (8). This type of =8 oxygen: =) forms 'and the closed-pole is polycrystalline to enter the ไปƒ program, or the electric tunnel, electron release 3 201027724 One of the research directions of charge trapping memory cells is the NAND type structure. For example, the related research is Shin e. al., "A Highly Reliable SONOS-type NAND Flash Memory Cell with A1203 or Top

Oxideโ€ IEDM๏ผŒ2003 (MANOS)ไปฅๅŠ Shin et alโ€ โ€œA Novel NAND-type MONOS Memory using 63nm ProcessOxide" IEDM, 2003 (MANOS) and Shin et al" "A Novel NAND-type MONOS Memory using 63nm Process

Technology for a Multi-Gigabit Flash EEPROMs๏ผŒ๏ผŒ๏ผŒIEEE 2005ยทใ€‚ ๅœจNANDๅž‹็ตๆง‹ไธญโ€™่จ˜ๆ†ถ่ƒžๆŽ’ๆˆๅบๅˆ—๏ผŒๆ‰€ไปฅ่ฎ€ๅ–่ณ‡ๆ–™ไน‹ ้›ปๆตๅฏๆต็ถ“ไธ€็ณปๅˆ—ไน‹่จ˜ๆ†ถ่ƒžใ€‚ๆญค็ฉฟ่ถŠ่จ˜ๆ†ถ่ƒžไน‹่ทฏๅพ‘้™ๅˆถ้›ป - ๆตไน‹ๅคงๅฐ่ˆ‡้€Ÿๅบฆ๏ผŒไนŸๅŒๆ™‚ๅฝฑ้ŸฟๅฎŒๆˆ่ฎ€ๅ–ๆ“ไฝœไน‹ๆ•ˆ็Ž‡ใ€‚ โ‘ฉ ๆœฌๆกˆไน‹็™ผๆ˜Žไบบๆ›พๅƒ่ˆ‡้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ้ซ”ไน‹็ ”็ฉถ๏ผŒๅ…ถไฟ‚ไฝฟ็”จ ่ƒฝๅธถๅŠ ๅทฅ๏ผˆbandgap engineered )้›ป่ทๆ•ๆ‰ๆŠ€่ก“๏ผŒ็จฑ็‚บ BE-SONOSใ€‚BE-SONOS่จ˜ๆ†ถ่ƒžไน‹ๅคš็จฎๅฏฆๆ–ฝไพ‹ๅฏๅƒ่ฆ‹็พŽๅœ‹ ๅฐˆๅˆฉ7,426,440B2( Lue )ไปฅๅŠ็พŽๅœ‹ๅฐˆๅˆฉๅ…ฌ้–‹่™Ÿ2007/0029625 (Lueetal.^BE-SONOSไน‹็‰น่‰ฒ็‚บๅฏไปฅๅœจ็›ธๅฐไฝŽ้›ปๅ ดไน‹ๆƒ… ๆณไธ‹้˜ปๆญข้›ป่ท็ฉฟ้šง๏ผŒ่€Œๅฏไปฅๅœจไธญ้ซ˜้›ปๅ ดๆƒ…ๆณไธ‹่‡ด่ƒฝ้žๅธธๆœ‰ ๆ•ˆ็Ž‡็š„็ฉฟ้šงใ€‚BE-SONOSๅ…ทๆœ‰่€็”จ่ˆ‡็ฉฉๅฎšไน‹็‰นๆ€งใ€‚ๅŒๆ™‚๏ผŒ ไปฅไธ‹ๅ…ฉ็ฏ‡ๆ–‡็ปไบฆๆ›พๅปบ่ญฐๅœจ้ฐญๅผๅ ดๆ•ˆ้›ปๆ™ถ้ซ”๏ผˆFinFET)้žๆฎ ็™ผ่จ˜ๆ†ถ้ซ”ไธญไฝฟ็”จBE-SONOSๆŠ€่ก“๏ผš็พŽๅœ‹ๅฐˆๅˆฉๅ…ฌ้–‹่™Ÿ 2008/0087946 ( Hsu et al.)่ˆ‡็พŽๅœ‹ๅฐˆๅˆฉๅ…ฌ้–‹่™Ÿ 2008/0087942 (Hsu et al.) ้›ป่ทๆ•ๆ‰่ฃ็ฝฎ็š„ๅธธ่ฆ‹ๅ•้กŒไน‹ไธ€๏ผŒๅณๆ˜ฏ็›ธ่ผƒๆ–ผๆตฎๅ‹•้–˜ๆฅต NANDๅฟซ้–ƒ่€Œ่จ€โ€™่จ˜ๆ†ถๅ€้–“้€šๅธธๅ‘ไธŠๆœๅ‘ๆญฃ็š„Vtๅ็งป๏ผŒ ไธฆๅ› ็‚บๆญค็จฎ่จญ่จˆ้œ€่ฆ่ผƒ้ซ˜็š„้€š้Ž้–˜ๆฅต้›ปๅฃ“๏ผŒ้€ ๆˆ้›ป่ทฏ่จญ่จˆ ไน‹ๅ›ฐ้›ฃใ€‚ๅทฒๆœ‰ๆŽก็”จๅฆ‚้ซ˜ๅŠŸๅ‡ฝๆ•ธ้–˜ๆฅต่ˆ‡ๅ…ถไป–ๆŠ€่ก“ไพ†ไฝฟๅพ—ๆŠน้™ค ็‹€ๆ‚ฒ็š„ยงๅทฑๆ†ถๅ€้–“็‚บ่ฒ ๅ€ผ๏ผŒ็„ถ่€Œ๏ผŒๆญคๅœจ่ผƒ้ซ˜่‡จ็•Œ้šŽ็ดšๆ“ไฝœไน‹ 4 201027724 ๅ‚พๅ‘ไป็„ถๆœƒ้€ ๆˆๅ•้กŒใ€‚ โ–ฒ โ–ฒๅ› ๆญค็”ข็”Ÿ้œ€ๆฑ‚๏ผŒๅธŒๆœ›ๆไพ›ไธ€็จฎๅฏไปฅๆๅ‡NAND็ตๆง‹ไน‹ ๆ•ˆ่ƒฝ๏ผŒไธฆไธ”ๅฎนๆ˜“่ฃฝไฝœ็š„ไป‹้›ป้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ƒžใ€‚ ใ€็™ผๆ˜Žๅ†…ๅฎนใ€‘ ๆœฌ็™ผๆ˜Žๆญ้œฒไธ€็จฎ็ฉ้ซ”้›ป่ทฏ่จ˜ๆ†ถ่ฃ็ฝฎ๏ผŒๅŒ…ๅซ้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ ๏ผŒ๏ผŒๅ…ถ่จญ็ฝฎ้กžไผผๆ–ผfinFET็ต„ๆ…‹๏ผŒไธฆๅ…ทๆœ‰ไธ€ๆ‘ป้›œไน‹ๅŸ‹่—้€š้“ ๅ€ๅŸŸ๏ผŒๅฏไพ›็ฉบไนๆจกๅผๆ“ไฝœใ€‚ๅ› ๆญค๏ผŒๅฐn้€š้“่จ˜ๆ†ถ่ƒž่€Œ่จ€๏ผŒTechnology for a Multi-Gigabit Flash EEPROMs,,, IEEE 2005. In the NAND type structure, the memory cells are arranged in a sequence, so the current of reading data can flow through a series of memory cells. This path through the memory cell limits the size and speed of the current-flow and also affects the efficiency of the read operation. 10 The inventor of this case has been involved in the study of charge trapping memory, which uses bandgap engineered charge trapping technology called BE-SONOS. Various embodiments of BE-SONOS memory cells can be found in U.S. Patent No. 7,426,440 B2 (Lue) and U.S. Patent Publication No. 2007/0029625 (Lueetal.^BE-SONOS is characterized by the ability to prevent charge tunneling in the case of relatively low electric fields. Very efficient tunneling can be achieved in the case of medium to high electric fields. BE-SONOS has the characteristics of durability and stability. At the same time, the following two documents have also suggested the use of BE in FinFET non-volatile memory. -SONOS technology: U.S. Patent Publication No. 2008/0087946 (Hsu et al.) and U.S. Patent Publication No. 2008/0087942 (Hsu et al.) One of the common problems with charge trapping devices is that they are faster than floating gate NAND. In terms of flash, the 'memory interval is usually upwards toward a positive Vt offset, and because this design requires a higher pass gate voltage, the circuit design is difficult. It has been used such as high work function gates and other techniques to make the wipe In addition to the sorrowful ยง recall interval is negative, however, this tendency in the higher critical class operation 4 201027724 will still cause problems. โ–ฒ โ–ฒ therefore generate demand, hoping to provide a way to improve NAN The structure of the D structure is easy to fabricate the dielectric charge to capture the memory cell. SUMMARY OF THE INVENTION The present invention discloses an integrated circuit memory device including a charge trap memory, which is similar to the finFET configuration and has a doping The buried channel area can be operated in a depleted mode. Therefore, for n-channel memory cells,

๏ผŒๅŸ‹่—้€š้“ๅ…ทๆœ‰ฮทๅž‹ไน‹ๆ‘ป้›œ็‰ฉ๏ผŒไปฅ็‚บ่จ˜ๆ†ถ่ƒžๅปบ็ซ‹ไธ€้€šๅธธ็‚บ ใ€Œ้–‹ๅ•Ÿใ€ไน‹็‹€ๆ…‹ใ€‚ไฝๆ–ผ่ฉฒๅŸ‹่—้€š้“ไน‹ไธŠ็š„้›ป่ทๆ•ๆ‰็ตๆง‹ๅฏ ๅ„ฒๅญ˜้›ป่ท๏ผŒไปฅ่ช˜็™ผไธ€ๅ€‹ๆˆ–ๅคšๅ€‹้ซ˜่‡จ็•Œ้›ปๅฃ“็‹€ๆ…‹๏ผŒๅ…ถๅ…ทๆœ‰ๆญฃ ่‡จ็•Œ้›ปๅฃ“vT๏ผŒๅ…ทๆœ‰่ฒ ่‡จ็•Œ้›ปๅฃ“Vt (ไพ‹ๅฆ‚้€šๅธธ็‚บ้–‹ๅ•Ÿ๏ผ‰ไน‹ ไฝŽ่‡จ็•Œ็‹€ๆ…‹ใ€‚่ฉฒ็ตๆง‹ๅฏๅˆฉ็”จใ€Œ็„กๆŽฅ้ขใ€็ต„ๆ…‹ๅฎŒๆˆๅ…ถไธญ่ฉฒ ๅŸ‹่—้€š้“ๅ€ๅŸŸๅปถไผธไฝœ็‚บ่ทจ่ถŠ่ค‡ๆ•ธ่จ˜ๆ†ถ่ƒžไน‹้€ฃ็บŒๅ€ๅŸŸ๏ผŒใ€่€Œ^ ๆœƒๅนฒๆ“พๅ…ทๆœ‰่ผƒ้ซ˜ๆ‘ป้›œๆฟƒๅบฆ็š„ๆบๆฅต/ๆฑฒๆฅตๅ€ๅŸŸใ€‚ๆ›ฟไปฃๅœฐ๏ผŒๅฏๆŽก ็”จๆบๆฅต/ๆฑฒๆฅตๅ€ๅŸŸๅ€ๅŸŸใ€‚็”ฑๆ–ผๅŸ‹่—้€š้“ไน‹่จญ่จˆ๏ผŒๅœจๅ‚ณ็ตฑไป‹ ้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ƒžไธญ๏ผŒ่‡จ็•Œ้›ปๅฃ“Vtๅ‘ไธŠๅ็งปไน‹็‹€ๆ…‹ๆœƒ่ขซ่ฃœ ๅ„Ÿใ€‚ๅ› ๆญค๏ผŒๆญค่™•ๆ‰€ๆญ้œฒไน‹่จ˜ๆ†ถ่ƒžๅฏ้ฉ็”จๆ–ผNAND็คพ ้–ƒ่จ˜ๆ†ถ้ซ”ใ€‚ ^ ๆญค่™•ๆญ้œฒไน‹ๅŸบๆœฌ่จ˜ๆ†ถ่ฃ็ฝฎๅŒ…ๅซ็‚บๆ–ผๅŸบๆไธŠ็š„่ค‡ๆ•ธ ้ซ”็ทš๏ผŒ่ฉฒไบ›ๅŠๅฐŽ้ซ”็ทšๅŒ…ๅซๆ‘ป้›œไน‹ๅŸ‹่—้€š้“ๅ€ๅŸŸ๏ผŒๅ…ถๅฏไพ›ๅค„ ไนๆจกๅผ้‹ไฝœใ€‚ไธ€ๅ„ฒๅญ˜็ตๆง‹ไฝๆ–ผ่ฉฒไบ›ๅŠๅฐŽ้ซ”็ทšไน‹ไธŠ๏ผŒๅŒ…^ไบŒ ๆ–ผ่ฉฒ้ฐญ็‹€็‰ฉไน‹้€š้“ๅ€ๅŸŸไธŠ็š„็ฉฟ้šง็ต•็ทฃๅฑคใ€ไฝๆ–ผ่ฉฒ็ฉฟ้šง^ไฝ ๅฑคไธŠ็š„้›ป่ทๅ„ฒๅญ˜ๅฑคใ€ไปฅๅŠไฝๆ–ผ่ฉฒ้›ป่ทๅ„ฒๅญ˜ๅฑคไธŠ็š„้˜ป้šœ็ต•$ ๅฑคใ€‚่ค‡ๆ•ธๅญ—ๅ…ƒ็ทšไฝๆ–ผ่ฉฒๅ„ฒๅญ˜็ตๆง‹ไน‹ไธŠ๏ผŒไธฆ่ทจ่ถŠๅŠๅฐŽ้ซ”็ทšไน‹ 5 201027724 ไบŒๅ…ถไธญ่ค‡ๆ•ธๅ€‹่จ˜ๆ†ถ่ƒžไฝๆ–ผ่ฉฒๅญ—ๅ…ƒ็ทš่ˆ‡่ฉฒๅŠๅฐŽ้ซ”็ทš ^ ^้ปžไธŠใ€‚ๅœจ้ ่ฟ‘ไน‹ๅŸบๆไธญ๏ผŒๅณ้กžไผผfinFETไน‹ๅฏฆ ็ทšไบŒๅฐŽ้ซ”ไธป้ซ”ไปฅๅŠ่ค‡ๆ•ธๅŠๅฐŽ้ซ”็ทšโ€™่ฉฒไบ›ๅŠThe buried channel has an n-type dopant to establish a normally "on" state for the memory cell. A charge trapping structure over the buried channel can store charge to induce one or more high threshold voltage states having a positive threshold voltage vT with a low critical state of a negative threshold voltage Vt (e.g., typically on). The structure can be completed using a "no-junction" configuration in which the buried channel region extends as a continuous region across a plurality of memory cells, and interferes with a source/drain region having a higher doping concentration. Alternatively, a source/drain region region can be used. Due to the design of the buried channel, in the conventional dielectric charge trapping memory cell, the state in which the threshold voltage Vt is shifted upward is compensated. Therefore, the memory cells disclosed herein can be applied to NAND flash memory. ^ The basic memory device disclosed herein comprises a plurality of body lines on a substrate, the semiconductor lines comprising doped buried channel regions that are operable in a depleted mode. a storage structure is disposed over the plurality of semiconductor lines, a tunneling insulating layer on the channel region of the fin, a charge storage layer on the tunneling layer, and a charge storage layer on the charge storage layer The barrier is over $layer. The complex digital element line is located above the storage structure and spans the semiconductor line 5 201027724 2 wherein a plurality of memory cells are located at the word line and the semiconductor line ^ ^ point. In the substrate close to it, that is, the solid conductor two conductor body like the finFET and the plurality of semiconductor wires

่ฉฒๅŸ‹่—้€š้“ๅ€ๅŸŸๅฐŽ้›ปๆ€ง่ณช็›ธๅไน‹=่ฉฒ ^็‹€^ไน‹้š†่ตท่ˆ‡ๅŸบๆ้š”็ต•H ็ทšๅฏ่—‰็”ฑ็ต•็ทฃ็ตๆง‹ๆˆ–ๅ…ถไป–ๆ–น่ฎ€่ฉฒๅŸบๆH ไธฐ ๆ–™Hๆญ้œฒฮ›่จ˜ๆ†ถ่ƒžๅŒ…ๅซNAND่จ˜ๆ†ถ่ƒžโ€™ๅ…ถๅŒ…ๅซไธ€ๅŠๅฐŽ ฯ† ๆๅปถไผธ๏ผŒไธฆๅ…ทๆœ‰-ๆœซ็ซฏ้š†่ตท๏ผŒๅ…ถไธญ่ฉฒ้ฐญ็‹€ ้›™็ซฏ้š†่ตท(ไฝๆ–ผๅ…ถไธŠๅ’Œ/ๆˆ–ๆ–ผ่ฉฒ้š†่ตทไน‹-ๅดๆˆ– ๅฏไพ›ไป‹ไนๆ–™=้“ๅ€ๅŸŸใ€‚่ฉฒๅ–Š้€š้“ๆ‘ป้›œฮทๅž‹ๆŽบ้›œ็‰ฉ๏ผŒ ้‹ไฝœใ€‚่ค‡ๆ•ธ่จ˜ๆ†ถ่ƒž้–˜ๆฅต๏ผˆไพ‹ๅฆ‚ๅญ—ๅ…ƒ็ทšไน‹ไธ€้ƒจ ้ฐญ็‹€็‰ฉๆœซ็ซฏ้š†่ตทไน‹ๅŸ‹่—้€š้“ๅ€ๅŸŸไธŠ๏ผŒ่ฉฒ ้›ป่ทไบŒไบŒr โ€”่จ˜ๆ†ถ่ƒž้–˜ๆฅตไปฅๅŠๆœ€ๅพŒ่จ˜ๆ†ถ่ƒž้–˜ๆฅตใ€‚ไป‹้›ป ้–˜ๆฅตไน‹ไธ‹^ไฝๆ–ผ่ถ…้Žไธ€ๅ€‹๏ผˆไพ‹ๅฆ‚16่ˆ‡32)็š„่จ˜ๆ†ถ่ƒž ็ฝฒ๏ผšไฝ•ๆ•ๆ‰ไฝ็ฝฎๅŒ…ๅซๅคšๅฑค็ฉฟ้š็ต•็ทฃ็ตๆง‹๏ผŒ-้›ป่ท ็ฝฎๆ–ผไปŠฮๆœฝๅ„ฒ^้š็ต•็ทฃ็ตๆง‹ไน‹ไธŠโ€™ไปฅๅŠโ€”้˜ป้šœ็ต•็ทฃๅฑค่จญ ฯ† ไธฆ่ˆ‡่ฉฒ็ฌฌไธ€่จ˜ๆ†ถ่ƒž้–“ๆฅตๅ…ทๆœ‰้–“้š”๏ผŒไบฆๅœจ่ฉฒ ่ฝ‰็‹€ไน‹ๆœซใ€้š†่ตทไน‹ไธŠๆœ‰โ€”pๅž‹้€š้“ๅ€ๅŸŸใ€‚ ไน‹้›ปๅฐ„็‚บ่ƒฝๅธถๅŠ ๅซไน‹็ต•่ณด๏ผŒ็งไพ›ๆŠน้™คๆจกๅผ ๆ–™!็ป„ไบบ่ƒฝๅธถๅŠ ๅซไน‹็ต•็ทฃ้ซ”ไน‹็‰นๆ€ง็‚บๅŒ…ๅซ่ค‡ๆ•ธๆ โ€˜ ็ตฒๆญง็ซ‹ๅง†ไฝŽ็š„ๅƒนๅธถ ่™•ไธ”ๅณๆ/ ่ฉฒ่กจ้ขไธๅˆฐ2nmไน‹ไธ€็ฌฌไธ€่ท้›ข ==ไน‹ๅƒนๅธถ่ƒฝ้šŽ๏ผŒไปฅๅŠๅœจ่ฉฒ้€š้“ๅ€ๅŸŸไน‹่ฉฒ่กจ้ขๅคง ' ไน‹็ฌฌไธ€่ท้›ข่™•ๅ…ทๆœ‰ไธ€้™ไฝŽไน‹ๅƒนๅธถ่ƒฝ้šŽใ€‚ไพ 6 201027724 ๆ“šไธ€็จฎ่ƒฝๅธถๅŠ ๅทฅ็ต•็ทฃ้ซ”ไน‹ๅฏฆๆ–ฝไพ‹๏ผŒๆๆ–™ไน‹็ต„ๅˆๅŒ…ๅซไธ€ๅŽšๅบฆ ๅฐๆ–ผ2nmไน‹ๆฐงๅŒ–็Ÿฝๅบ•ๅฑคใ€ๅŽšๅบฆๅฐๆ–ผ2.5nmไน‹ๆฐฎๅŒ–็Ÿฝไธญๅฑคใ€ ไปฅๅŠๅŽšๅบฆๅฐๆ–ผ2,5nmไน‹ๆฐงๅŒ–็Ÿณๅค•้ ‚ๅฑคใ€‚ ๆœฌ็™ผๆ˜Žไน‹ๅ…ถไป–็›ฎ็š„่ˆ‡ๅ„ช้ปžๅฐ‡่ฉณ่ฟฐๆ–ผไธ‹ๅˆ—ๅœ–ๅผใ€ๅฏฆๆ–ฝๆ–นๅผ ่ˆ‡็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœใ€‚ ใ€ๅฏฆๆ–ฝๆ–นๅผใ€‘The buried channel region has the opposite conductivity. The H-line of the buried channel can be isolated from the substrate. The H-line can be read by the insulating structure or other squares. H is exposed. The memory cell contains NAND memory cells. The ฯ† material extends and has a -end ridge, wherein the fin-shaped double-end ridge is located thereon and/or on the side of the ridge or is available for the vacant = track region. The shout channel is doped with an n-type dopant , operation, complex memory cell gate (for example, on the buried channel region where one of the fin lines is raised at the end of the word line, the charge is two-r--memory cell gate and the last memory cell gate. Under the dielectric gate ^ More than one (for example, 16 and 32) memory cells: what capture position contains multiple layers of wear-insulating structures, - the charge is placed on the current storage structure with the insulation structure and - the barrier insulation layer is set to ฯ† and The first memory cell has a space between the poles, and there is a p-channel region at the end of the turn and the ridge. The electric radiation is the only way to strengthen the band, and the private supply is used to erase the mode material! The reinforced insulator is characterized by a valence band containing a plurality of materials. And the right drawing / the surface is less than 2 nm, the first distance == the valence band energy level, and the first distance of the surface of the channel region has a reduced valence band energy level. According to 6 201027724 An embodiment capable of processing an insulator, the combination of materials comprising a ruthenium oxide underlayer having a thickness of less than 2 nm, a tantalum nitride intermediate layer having a thickness of less than 2.5 nm, and an oxidized oxidized top layer having a thickness of less than 2,5 nm. Advantages will be described in detail in the following figures, embodiments and patent claims.

ไปฅไธ‹ๅƒ็…งๅœ–ๅผ็ฌฌ1ๅœ–่‡ณ็ฌฌ7ๅœ–่ชชๆ˜Žๆœฌ็™ผๆ˜Žไน‹่ฉณ็ดฐๅฏฆๆ–ฝๆ–น ๅผใ€‚ ็ฌฌ1ๅœ–็‚บๆฒฟ่‘—ๅŠๅฐŽ้ซ”ไธป้ซ”ไน‹้ฐญ็‹€็‰ฉๆ‰€็นช็คบ็š„ๅ‰–้ข็คบๆ„ ๅœ–๏ผŒๅ…ถไธญ่ฉฒๅŠๅฐŽ้ซ”ไธป้ซ”ๅ…ทๆœ‰ๅ››ๅ€‹ไธฒๅˆ—็š„่จ˜ๆ†ถ่ƒž๏ผŒๅ…ถไฝๆ–ผ้ต ๅญ—ฮ›็ทš15ใ€16ใ€17ใ€18ไน‹ไบคๅˆ้ปžใ€‚่ฉฒ้ฐญ็‹€็‰ฉ่ˆ‡ๅŸบ^ ้‚Š็ทฃ่ผ•ๅˆโ€™ๅœจๆญคๅฏฆๆ–ฝไพ‹ไธญๅŸบๆ็‚บฯๅž‹ใ€‚้ฐญ็‹€็‰ฉ็š„ ็ฆพ็Ÿฅ้š†่ตทๅ…ทๆœ‰ๅŸ‹่—้€š้“๏ผˆburied_channel)ๅ€ๅŸŸuใ€‚ ็ฉบไนๆจกๅผๆ“ไฝœใ€‚ๅ› ๆญค๏ผŒnๅž‹้€š้“่จ˜ๆ†ถ่ƒžไธญ๏ผŒๅŸ‹่—้€š ไบŒt ;ใ€‡?ไน‹f้›œใ€‚ๅ…ธๅž‹ไน‹nๅž‹้€š้“ๆ‘ป้›œๅคง็ด„็‚บ + ่‡ณ1x10 cm๏ผŒ่€Œnๅž‹้€š้“ไน‹ๆทฑๅบฆๅคง ฮฏฮ้€š้“U่—‰็”ฑๆ–ผ้ฐญ็‹€็‰ฉ้ ธ้ƒจไน‹ๆ›ด้ซ˜ๆŽบ้›œ็š„้š”็ต•ๅ€ ๏ผŒใ€ฮกๅž‹ๅŸบๆ10้š”็ต•ใ€‚่ค‡ๆ•ธๆขๅญ—ๅ…ƒ็ทš15ใ€16 fๅฑค้–“ไป‹้›ป็‰ฉ20ๆ‰€่ฆ†่“‹ใ€‚ๅญ—ๅ…ƒ็ทš15ใ€16ใ€17ใ€18ๅฆ’๏ผšไฟ‚ ็”ฑP+ๅž‹ๅคšๆ™ถ็Ÿฝๅฝขๆˆ๏ผŒๆˆ–่€…็›† 18่ผƒไฝณๅœฐ :็ทšใ€—5๏ผŒใ€17ใ€18่ˆ‡ๅŸ‹่—้€š้“ๅ€ๅŸŸ 9::ๆˆๆ–ผๅญ— โ€˜ๅŸ‹่—้€š้“ๅ€ๅŸŸ่กจ้ข ่ƒžๅฏๅฝขๆˆๆ–ผไบคๅˆ้ปžไธŠใ€‚ๅœจๆญคๅฏฆๆ–ฝ:๏ผŒ๏ผŒๆญค่จ˜ๆ†ถ _Nใ€‡็ตๆง‹๏ผŒๅ…ถไธญๅŒ…ๅซไฝๅญ˜็ตๆง‹็‚บ 7 201027724 ้šง็ต•็ทฃๅฑค๏ผˆฮŸฮฮŸ)๏ผŒๆฐฎๅŒ–็Ÿฝ้›ป่ทๆ•ๆ‰ๅฑคใ€ไปฅๅŠๆฐงๅŒ–็Ÿฝ้˜ป้šœ ๅฑคใ€‚้›ปๅฐ„ๅ„ฒๅญ˜็ตๆง‹่ผƒไฝณๅฏฆๆ–ฝไพ‹ไน‹ๆ›ดๅคš็ดฐ็ฏ€ๅฏๅƒ็…ง็ฌฌ6ๅœ–ๅŠ ็จๅพŒไน‹่ชชๆ˜Žใ€‚็ฌฌไธ€ๅœ–ไธญ๏ผŒ้–˜ๆฅตไน‹้•ทๅบฆๆจ™็คบ็‚บL๏ผŒๅ…ถๅฏๅฐๆ‡‰ ๆ–ผๅญ—ๅ…ƒ็ทšไน‹ๅฏฌๅบฆ๏ผŒๅœจ่ผƒไฝณๅฏฆๆ–ฝไพ‹ไธญ็‚บๆฅตๅฐไน‹ๅฐบๅฏธ๏ผ›ไปฃ่กจๆ€ง ็š„้–˜ๆฅต้•ทๅบฆ็‚บ30mn่‡ณlใ€‡ใ€‡nmไน‹้–“ใ€‚้›–็„ถๅ„ฒๅญ˜็ตๆง‹๏ผˆไพ‹ๅฆ‚ 19)ๅœจๅœ–ไธญ็นช็คบ็‚บๅˆ†ๅˆฅ็š„ๅ †็–Š๏ผŒไฝ†ๅœจๅ…ถไป–ๅฏฆๆ–ฝ ็ตๆง‹ไบฆๅฏ็‚บ้€ฃ็บŒ็š„่ฆ†่“‹ๅฑคใ€‚ ๅ‚จๅญ˜ ็ฌฌ2ๅœ–็‚บ่ค‡ๆ•ธๅŠๅฐŽ้ซ”ไธป้ซ”ไน‹้ฐญ็‹€็‰ฉ็š„ๅ‰–้ข็คบๆ„ๅœ–๏ผŒๅ…ถๅœจ. ๆœฌๅฏฆๆ–ฝไพ‹ไธญๅŒ…ๅซๅ››ๅ€‹้ฐญ็‹€็‰ฉ1(Mใ€1ใ€‡_2ใ€1ใ€‡_3่ˆ‡1ใ€‡_/ใ€‚ใ€ๅœจ-ๆ‰€็คบ็ฏ„ไพ‹ไธญ๏ผŒ้ฐญ็‹€็‰ฉไบฆ็จฑ็‚บไธป้ซ”ๆŽฅ่งธ๏ผˆbๅป๏ผ‰๏ผŒ ้‚Š็ทฃไฟ‚่ˆ‡ไธ‹ๆ–นๅŸบๆ10|ๅˆใ€‚้ฐญ็‹€็‰ฉ็š„้ ธ้ƒจๅ€ๅŸŸ12ไธ”ๆœ‰โ‘ฌ =ไน‹ๆ‘ป้›œโ€™่—‰ๆญคๆŠ‘ๅˆถๅฏ„็”Ÿ่ฃ็ฝฎๅฝขๆˆๆ–ผๅŸบๆ1ใ€‡ไธŠ็š„็บŒ็‹€็‰ฉไน‹ ้–“ใ€‚ๅฆ‚ๅœ–ๆ‰€็คบ๏ผŒๅญ—่ฎ€15ไฝๆ–ผ้›ป่ทๅ„ฒๅญ˜็ตๆง‹19ไน‹ไธŠ ็ทฃๆบๆงฝ21ใ€22ใ€23ๅˆ†้š”ๅ€‹ๅˆฅ้ฐญ็‹€็‰ฉ1(ฮœใ€1ใ€‡_2ใ€1ใ€‡ 3่ก€ ไบŒๅœ–ไธญโ€™ _็‰ฉๅฏฌๅบฆๆจ™็คบ็‚บwโ€™ๅœจ่ผƒไฝณๅฏฆๆ–ฝไพ‹/ไธญ ๅŽ˜in๏ผŒๅคง็ด„ๅœจ3ใ€‡nm่‡ณ5ใ€‡nmไน‹้–“ใ€‚ๅŸ‹่—้€š้“ๅ€ๅŸŸไน‹ f:็ด„็‚บ3ใ€‡nmใ€‚็ต•็ทฃๆบๆงฝไน‹ๅŽšๅบฆๆจ™็คบ็‚บ =ใ€‡nm=็บง๏ผŒๅ…ถๅปถไผธ่‡ณ็ต•็ทฃๆบๆงฝ่กจ้ขไปฅๅค–โ€œ ^ 30็ดฐ๏ผŒ่€Œๅ…ถไฝๆ–ผ็ต•็ทฃๆบๆงฝ่กจ้ขไปฅไธ‹ไน‹ ๅˆ3็‚บ_ ็”จฮทๅž‹ๆ‘ป้›œ็‰ฉ็š„ๅŸ‹่—้€š้“ๅ€ๅŸŸไธญ ใ€ŽๆŽก 10%3่‡ณ10%ฮท3,่€Œ็ต•็ทฃ่กจๆ€ง็š„ๆ‘ป้›œๆฟƒๅบฆ็‚บ 2x10i8cm3ใ€‚ ่€Œใ€้‚‘็ทฃยฃๅŸŸ็š„ไปฃ่กจๆ€งๆ‘ป้›œๆฟƒๅบฆๅ‰‡็ด„็‚บ ๅœจๅฆไธ€ๆ›ฟไปฃๅฏฆๆ–ฝไพ‹ไธญ๏ผŒๅฏไปฅๅˆฉ็”จโ€” ๆ้š”็ต•๏ผŒไปฅๅฝขๆˆ่ˆ‡ๅŸบๆ1Gๅˆ†้š”็š„ๅŠ^็ทšๅฑคๅฐ‡_็‰ฉ่ˆ‡ๅŸบ ็ฌฌ3ๅœ–ๆไพ›NAND็ตๆง‹ไน‹ๅฟซ้–ƒ่จ˜ๆ†ถ้™ฃๅˆ—็š„้›ป่ทฏไฝˆๅฑ€ๆžถ 8 201027724 ๆง‹ๅœ–โ€™ๅ…ถไธญๅŒ…ๅซๅ‰่ฟฐไน‹ๅŸ‹่—้€š้“่ฃ็ฝฎใ€‚ๅœจๆญค้›ป่ทฏไฝˆๅฑ€ไธญ๏ผŒ ๅž‚็›ดๆŽ’ๅˆ—ๆ–ผ็ฌฌ1ๅœ–ไธญ็š„ๅŠๅฐŽ้ซ”็ทš10-1ใ€10-2ใ€10-3่ˆ‡HM ็‚บ็ฌฌ3ๅœ–ไธญ็ทšๆฎตla่‡ณๆฏ”็š„ๅ‰–้ขๅœ–ใ€‚็ฌฌ2ๅœ–ๅ‰‡็‚บ็ฌฌ3ๅœ–ไธญ ็ทšๅฐ2a่‡ณ2b็š„ๅ‰–้ขๅœ–ใ€‚DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a detailed embodiment of the present invention will be described with reference to Figs. 1 to 7 of the drawings. Figure 1 is a schematic cross-sectional view taken along the fin of a semiconductor body having four strings of memory cells located at the intersection of the key lines 15, 16, 17, 18. The fin is lightly bonded to the base edge' in this embodiment the substrate is p-type. The Hei ridge of the fin has a buried channel region u. Depletion mode operation. Therefore, in the n-channel memory cells, the burial is passed through two t; A typical n-type channel doping is about + to 1 x 10 cm, while the depth of the n-type channel is large. The channel U is isolated by the higher doped isolation region of the fin neck. A plurality of word lines 15, 16 f are covered by an interlayer dielectric 20. The word lines 15, 16, 17, 18: are formed of P+ type polysilicon, or the basin 18 is preferably: line 5, 17, 18 and buried channel area 9:: in the word 'buried channel area surface cell Can be formed at the intersection and point. Herein, the memory _Nใ€‡ structure includes a memory structure of 7 201027724 tunneling insulating layer (ฮŸฮฮŸ), a tantalum nitride charge trapping layer, and a yttria barrier layer. Further details of the preferred embodiment of the electrospray storage structure can be found in Figure 6 and later. In the first figure, the length of the gate is denoted L, which may correspond to the width of the word line, which in the preferred embodiment is a very small size; the representative gate length is between 30 nm and 10 nm. Although the storage structures (e.g., 19) are illustrated as separate stacks in the figures, other embodiments may be continuous overlays. FIG. 2 is a schematic cross-sectional view of a fin of a plurality of semiconductor bodies, which in this embodiment includes four fins 1 (M, 1ใ€‡_2, 1ใ€‡_3, and 1ใ€‡_/. - In the example shown, the fin is also referred to as the body contact (b kiss), and the edge is joined to the underlying substrate 10|. The neck region 12 of the fin has 13 = doping' thereby suppressing the parasitic device Formed between the continuations on the substrate 1 ใ€‚. As shown, the word read 15 is located on the upper edge of the charge storage structure 19, and the trenches 21, 22, 23 separate the individual fins 1 (ฮœ, 1ใ€‡_2 In the case of 1ใ€‡3 blood, the 'width of the object is denoted by w' in the preferred embodiment/in centimeter, between about 3 ใ€‡ nm and 5 ใ€‡ nm. The f of the buried channel region is about 3 ใ€‡ nm. The thickness of the insulating trench is indicated as = ใ€‡ nm = grade, which extends beyond the surface of the insulating trench "^ 30 thin, and its 3 is below the surface of the insulating trench _ in the buried channel region with the n-type dopant "10% 3 to 10% ฮท3, and the insulating doping concentration is 2x10i8cm3. However, the representative doping concentration of the ้‚‘ margin domain is about another alternative embodiment, which can be isolated by Shape A half-line layer separated from the substrate 1G will provide a circuit layout frame for the flash memory array of the NAND structure. FIG. 3 is a schematic diagram of the above-mentioned buried channel device. In this circuit layout, vertically arranged The semiconductor lines 10-1, 10-2, and 10-3 in Fig. 1 and HM are cross-sectional views of the line segment la in the third figure. Fig. 2 is a cross section of the line pair 2a to 2b in Fig. 3. Figure.

่ค‡ๆ•ธๅญ—ๅ…ƒ็ทšWL1่‡ณWL32้‡็–Šๆ–ผ่ค‡ๆ•ธ้ฐญ็‹€็‰ฉไน‹ไธŠ๏ผŒๅ…ถ ไธญๅญ—ๅ…ƒ็ทš1W32ใ€W31่ˆ‡W30ไฟ‚็ทจ่™Ÿ็‚บ15ใ€16ใ€17๏ผŒๅ…ถๅฐ ๆ‡‰ๆ–ผ้กžไผผ็ฌฌ1ๅœ–่ˆ‡็ฌฌ2ๅœ–ไน‹็ตๆง‹ใ€‚่จ˜ๆ†ถ่ƒž60ๅฝขๆˆๆ–ผๅญ—ๅ…ƒ็ทš W32่ˆ‡ๅŠๅฐŽ้ซ”็ทš1ใ€‡_2็š„ไบคๅ‰้ปžใ€‚็ฌฌ3ๅœ–็นช็คบไธ€ไธฒๅˆ—้ธๆ“‡็ทš SSL25่ˆ‡ไฝๆ–ผ่ค‡ๆ•ธๅญ—ๅ…ƒ็ทšWL1่‡ณWL32็›ธๅฐๅด็š„ๅœฐ็ทš้ธๆ“‡ ็ทšGSL26ใ€‚ๅœจ่ผƒไฝณๅฏฆๆ–ฝไพ‹ไธญโ€™ไฝๆ–ผSSL25ไปฅๅŠGSL26ไน‹ ไธ‹็š„้€š้“ๅ€ๅŸŸ็‚บpๅž‹๏ผŒๅ› ๆญคๅœจ้ฐญ็‹€็‰ฉ่ˆ‡SSL25ใ€GSL26ไน‹ ไบคๅ‰้ปž๏ผˆไพ‹ๅฆ‚ๅœ–็คบๅ…ƒไปถ61ใ€62)็š„้›ปๆ™ถ้ซ”ไฟ‚ไปฅๅขžๅผทๆจกๅผ้‹ ไฝœ๏ผŒๅ…ถๅ…ทๆœ‰ๆญฃ็š„่‡จ็•Œ้›ปๅฃ“Vtใ€‚ๅŠๅฐŽ้ซ”็ทš่—‰็”ฑไป‹ๅฑคๅญ”๏ผˆๆœช้กฏ ็คบ๏ผ‰่ˆ‡ไธŠๆ–น๏ผˆๆˆ–ไธ‹ๆ–น๏ผ‰็š„ไฝๅ…ƒ็ทš่ˆ‡ๅœฐ็ทšๅˆ†ๅˆฅ่€ฆๅˆๆ–ผSSL25 ่ˆ‡GSL26็›ธๅฐๅดใ€‚ ๅœจ่ฃฝไฝœ้Ž็จ‹ไธญ๏ผŒ้กๅค–็š„้ฎ็ฝฉ๏ผˆๅŒ…ๆ‹ฌๅ€ๅŸŸ3ใ€‡ใ€31)ๅฏ ๆ–ผๅˆ†้š”SSLยท่ˆ‡GSL็ทšไน‹ไธ‹็š„้€š้“ๅ€ๅŸŸ่ˆ‡่จ˜ๆ†ถ่ƒžไธญๅปบ็ซ‹ ้€š้“ๅ€ๅŸŸ็š„ฮทๅž‹ๆ‘ป้›œ๏ผŒๅŒๆ™‚ๅฏๅ…่จฑ้–˜ๆฅตๆฐงๅŒ–็‰ฉไน‹ๅฝข ่ท 0ๅœจ ็ถญๆŒ ็ตๆง‹๏ผˆ็•ฐๆ–ผ่ณ‡ๆ–™ๅ„ฒๅญ˜็ตๆง‹19)๏ผŒไพ‹ๅฆ‚ๅฏ็‚บๅ–ฎๅฑคๆฐงๅŒ–ๆˆ–$ ไป–้–˜ๆฅต็ต•็ทฃ็‰ฉใ€‚ไบฆๅฏ่ƒฝๅœจSSL่ˆ‡GSL้›ปๆ™ถ้ซ”ไธญไผธ ๆˆ‘ๅ…ถ ๅŒ–็‰ฉโ€™ๅ…ถ็ตๆง‹่ˆ‡ไป–็จฎๅฏฆๆ–ฝไพ‹ไธญ็š„่ณ‡ๆ–™ๅ„ฒๅญ˜้พ„ ใˆคๆฅตๆฐฃ SSL/GSL้›ปๆ™ถ้ซ”ไธญไฝฟ็”จpๅž‹ๆ‘ป้›œๅฏ็‚บไธฒๅˆ—้ธ^ไบŒ: ็›ธๅฐ้ซ˜็š„่‡จ็•Œ้›ปๅฃ“ฮฝฯ„ใ€‚ ๆฒกๆฅตๆŽบ้›œ๏ผŒๅœจ้–˜ๆฅต40 ๆˆๆŽฅ้ข44 ็ฌฌ4ๅœ–็‚บๅฆไธ€ๅฏฆๆ–ฝไพ‹ไน‹ๅŠๅฐŽ้ซ”็ทšๅ‰–้ขๅœ–๏ผŒ Lๅœจ้–˜ๆฅต40ใ€4ๅœ42ไน‹้–“็š„ๅŸ‹่—้€š้“ๅ€ๅŸŸ 45โ€™ไปฅๅŠ ๅผทๅŠๅฐŽ้ซ”็ทš็š„ๅฐŽ้›ปๆ€งใ€‚ๅฆ‚็ฌฌ๏ผๅœ–ๆ‰€^ 9 201027724 ๅฏฆๆ–ฝไพ‹๏ผŒๅ…ทๆœ‰ๆœฌ้ซ”ๆŽฅ่งธ็š„้ฐญ็‹€็‰ฉๅŒ…ๅซ้ ธ้ƒจๅ€ๅŸŸ36๏ผŒ่ฉฒ้ ธ้ƒจ ๅ€ๅŸŸ36ๅ…ทๆœ‰P+ๅž‹ๆ‘ป้›œไปฅๅˆ†้š”่ฉฒๅŸ‹่—้€š้“ๅ€ๅŸŸ37่ˆ‡ไธ‹ๆ–น็š„ ๅŸบๆ35ใ€‚็„ถ่€Œโ€™ๅฆ‚็ฌฌ1ๅœ–ๆ‰€่ฟฐไน‹็„กๆŽฅ้ข็ตๆง‹๏ผŒๆŸไบ›ๅฏฆๆ–ฝไพ‹ ไธญ็„ก้ ˆไฝฟ็”จ่ฉฒๆคๅ…ฅ๏ผŒๅ› ็‚บ่ฉฒๅŸ‹่—้€š้“ๅ€ๅŸŸไน‹ๅฐŽ้›ปๆ€งๅทฒ็ถ“่ถณ ไพ›NAND่จ˜ๆ†ถ่ƒžไน‹้ซ˜ๆ•ˆ่ƒฝๆ“ไฝœใ€‚ ๅ…ทๆœ‰ๆœฌ้ซ”ๆŽฅ่งธ็š„้ฐญ็‹€็‰ฉๅ ดๆ•ˆ้›ปๆ™ถ้ซ”(bใ€‡dy-tied finFET) ็ตๆง‹โ€™ๅฏไพๆ“š็พŽๅœ‹ๅฐˆๅˆฉๅ…ฌ้–‹่™Ÿ2008/0087942ไพ†่ฃฝไฝœ๏ผŒๅ…ถๅ ็จฑ็‚บใ€ŒVertical Channel Memory and Manufacturing Method Thereof and Operating Method Using the Sameใ€๏ผŒๆœฌๆ–‡ๆไพ› โ—Ž ็‚บๅƒ่€ƒ2ไพๆ“šไธ€็จฎ่ฃฝ็จ‹ๅฏฆๆ–ฝไพ‹๏ผŒๅฏๅ…ˆๆไพ›ไธ€ๅŸบๆ๏ผŒ็„ถๅพŒๅฐ‡ ไธ€็ฌฌไธ€ๆฐฎๅŒ–็Ÿณๅค•ๅฑคๅฝขๆˆๆ–ผๆฐฎๅŒ–็Ÿฝไน‹ไธŠใ€‚่ฉฒๅŸบๆไน‹่จญ็ฝฎ๏ผŒไฟ‚็‚บ Pๅž‹ๅŸบๆ้…ๅˆฮทๅž‹้€š้“่ฃ็ฝฎ๏ผŒ่€Œnๅž‹ๅŸบๆ้…ๅˆpๅž‹้€š้“่ฃ ็ฝฎใ€‚ๅœจๅฆไธ€ๅฏฆๆ–ฝไพ‹ไธญ๏ผŒๅฏๅœจๅŸบๆ่ˆ‡็ฌฌไธ€ๆฐฎๅŒ–็Ÿฝๅฑคไน‹้–“ๅฝข^ -ๆฐงๅŒ–โ™ฆๅขŠๅฑคใ€‚ยทๅพฎๅฝฑ่ฃฝ็จ‹ๅฝขๆˆๅœ–ๆกˆๆ–ผ็ฌฌโ€•ๆฐฎๅŒ–็Ÿณๅค•ๅฑคไน‹ t่ˆ‰ไพ‹่€Œ่จ€โ€™ๅฏๅœจๅŸบๆไธŠๅฎš็พฉๆฐฃๅŒ–โ™ฆไน‹็ทšๆข๏ผŒ่€Œ้€™i็ทš ^็ณธ็›ธๅฐๆ–ผ้ฐญ็‹€็‰ฉไน‹้ฎ็ฝฉใ€‚่ผƒไฝณๅฏฆๆ–ฝ่ดข๏ผŒ้€™ไบ›ๆฐฎๅŒ–็Ÿณๅค•็ทš 2ๅˆฉ็”จ้ž็ญ‰ๅ‘_ไน‹ๆ–นๅผๆˆ–ๅ…ถไป–ๆ–นๅผไฟฎๆ•ด๏ผŒไปฅๅฝขๆˆ ้ฒ ๆฟ€=4โ€™ไปฅๆฐฎๅŒ–็Ÿฝ็ทšๆข็‚บ่•ๅˆปๅน•็ฝฉ๏ผŒๅฐ‡ๅŸบๆ่•ๅˆปไปฅ ^ๆ•ธ้Œ„็‰ฉโ€™ๅ…ถๅœจๆœซ็ฅ•่ตท้ƒจๅˆ†ๅ…ทๆœ‰ๆฐงๅŒ–็‰ฉๅขŠไน‹็ทšๆข ็‰ฉi ็œŸfๆฒˆ็ฉๆ–ผ้š†่ตท้ƒจๅˆ†ไน‹้–“๏ผŒๅกซๅ……้ฐญ็‹€ ็‰ฉ:ๅŒๆ™‚๏ผŒๆฐงๅŒ–็‰ฉๅกพ่ˆ‡ๆฐฎๅŒ–ๆขฆไน‹็ทšๆข็”ฑใ€The complex digital element lines WL1 to WL32 are overlaid on the plurality of fins, wherein the word lines 1W32, W31 and W30 are numbered 15, 16, 17, which correspond to the structures similar to those of Figs. 1 and 2. The memory cell 60 is formed at the intersection of the word line W32 and the semiconductor line 1ใ€‡_2. Figure 3 illustrates a string select line SSL25 and a ground select line GSL26 on the opposite side of the complex digital line WL1 to WL32. In the preferred embodiment, the channel region under the SSL 25 and GSL 26 is p-type, so that the electro-crystalline system at the intersection of the fins with the SSL 25, GSL 26 (e.g., the illustrated elements 61, 62) operates in an enhanced mode, It has a positive threshold voltage Vt. The semiconductor lines are coupled to the opposite sides of the SSL 25 and GSL 26 by via holes (not shown) and upper (or lower) bit lines and ground lines, respectively. During the fabrication process, additional masks (including areas 3ใ€‡, 31) can separate the n-type doping of the channel region from the channel region under the SSLยท and GSL lines and the memory cell, while allowing the gate oxide The shape of the job 0 is in the maintenance structure (different from the data storage structure 19), for example, it can be a single layer of oxidation or $th gate insulator. It is also possible to extend the chemical in the SSL and GSL transistors. The structure of the structure and the data stored in other examples. (5) The use of p-type doping in the gas/SSL laser can be selected in series: relatively high The critical voltage ฮฝฯ„. No-doping, in the junction 40 of the gate 40, FIG. 4 is a cross-sectional view of another embodiment of the semiconductor line, L in the buried channel region 45' between the gates 40, 4b 42 to enhance the conductivity of the semiconductor line Sex. As the first! Figure 9: 201027724 In an embodiment, the fin with body contact includes a neck region 36 having a P+ doping to separate the buried channel region 37 from the underlying substrate 35. However, the jointless structure as described in Fig. 1 does not require the use of the implant in some embodiments because the conductivity of the buried via region is sufficient for the high efficiency operation of the NAND memory cell. A fin dy-tied finFET structure having a body contact can be fabricated in accordance with US Patent Publication No. 2008/0087942, entitled "Vertical Channel Memory and Manufacturing Method Thereof and Operating Method Using the Same According to a process embodiment, a substrate may be provided first, and then a first layer of tantalum nitride is formed on the tantalum nitride. The substrate is arranged such that the P-type substrate is fitted with an n-type channel device and the n-type substrate is fitted with a p-type channel device. In another embodiment, a pad layer may be formed between the substrate and the first layer of tantalum nitride. The lithography process forms a pattern on the ninth layer of the nitrite layer. For example, the line of vaporization โ™ฆ can be defined on the substrate, and the i line is ้ฎ with respect to the mask of the fin. Preferably, the nitriding lines 2 are trimmed by an anisotropic method or by other means to form a ruthenium=4' with a tantalum nitride line as an etch mask, and the substrate is etched into a number of recorded objects' In the last part of the secret part, there is a line of oxide pads. The true f is deposited between the ridges and fills the fins: at the same time, the lines of oxide ๅกพ and nitriding dreams are

้ƒจๅˆ†?้™คใ€‚ๅœจๅฆไธ€ๅฏฆๆ–ฝไพ‹ไธญ๏ผŒๅฏไฟ็•™ยท้ฐญ็‹€L ็‰ฉ็š„ใ€‡ ๅฉๅˆ†็š„ๆฐงๅŒ–็‰ฉๅกพโ€™็‚บๆŽฅ่ฟ‘ๆœซ็ซฏใˆฃ้ƒจๅˆ†ไน‹ๅฆน็‹€ ็‰ฉ็š„ๅดๅฃๅฎš็พฉ็‚บ้€š้“ๅ€ๅŸŸใ€‚ๅœจ .โ€˜ใ€ๆ›ฐ็‹€ ๆ‰€ๅฝขๆˆโ€™ๅ…ถๅŒ…ๅซๆฐงๅŒ–็Ÿณๅค•ใ€ๆฐฎๅŒ–็Ÿณๅค•ใ€ "่ฆ†่“‹่ค‡ๆ•ธ้ฐญ็‹€็‰ฉใ€‚ๅญ—mๆๆ–™ๅฑค๏ผˆไพ‹ 201027724 tๅคšๆ›ฐๆ›ฐ๏ผš๏ผ‰ๅฝขๆˆๆ–ผONONO่ฆ†่“‹ๅฑคไน‹ไธŠ๏ผŒๆŽฅ่‘—่•ๅˆป่ฉฒๅญ—ๅ…ƒ ็ทšๅฑคไปฅๅฎš็พฉๅญ—ๅ…ƒ็ทš๏ผŒ่ฉฒๅญ—ๅ…ƒ็ทš่ทจ่ถŠ่ค‡ๆ•ธ้ฐญ็‹€็‰ฉ๏ผŒไธฆ ไบคๅˆ้ปžไธŠๅปบ็ซ‹่ค‡ๆ•ธ่จ˜ๆ†ถ่ƒžใ€‚ ๅŒ•ๅœจ ็‚บ้€ ๆˆๆ›ดๆ˜Ž้กฏ็š„ๆ‘ป้›œ็‰นๆ€ง๏ผŒๅฏ่—‰็”ฑๅฝขๆˆใ€‡nใ€‡nใ€‡ ๅฑคไน‹ๅ‰็š„ๆคๅ…ฅๆญฅ้ฉŸ๏ผŒๆˆ–่€…ๅœจๆฒˆ็ฉๆฐงๅŒ–็‰ฉๅขŠ่ˆ‡็ฌฌไธ€ๆฐฎๅŒ–็Ÿฝๅฃฐ ๅฝขfไปฅๅ‰fๅค–ๆ ‘n่ณด็ตฒ่ฃฝ็จ‹ไธญๆŽก็”จ่‡จๅ ดๆ‘ป้›œ๏ผš =ๅฏไปฅๅปถ่‘—้ฐญ็‹€็‰ฉๆœซ็ซฏ้š†่ตท้ƒจๅˆ†็š„ๆทกๆ‘ป้›œ็ตๆง‹ๅฝขๆˆ f้€š้“ๅ€ๅŸŸใ€‚ๅœจๅฆโ€”ๅฏฆๆ–ฝๅฐ„๏ผŒๅฏ_ๆˆโ‘ฝ0N0่ฆ† โน =่กŒๆ‘ป้›œใ€‚ๅœจๅฝขๆˆโ‘ฝโ‘ฝ0่ฆ†่“‹ๅฑคๅพŒ้€ฒ่กŒๆคไบบ๏ผŒ้€š^ ้›œ็‰ฉๆ‰€ไฝฟ็”จ็š„็†ฑ้ ็ฎ—่ผƒไฝŽ๏ผŒๅŒๆ™‚ไบฆๅ…ทๆœ‰่ผƒไฝณไน‹ๆ‘ป้›œ^ๆ‘ป ็ฌฌ5ๅœ–็‚บๅ…ฉๅ€‹NANDไธฒๅˆ—ไน‹*ๆ„ๅœ–๏ผŒๅ…ถ่ฃฝไฝœๆ–นๆณ• ๅˆ—่—‰็”ฑSSL็ทšๆ‰€ๆŽงๅˆถ็š„SSL้›ปๆ™ถ้ซ”75่ผ•ๅˆ่‡ณไฝ 3 BL-iใ€‚่จ˜ๆ†ถ่ƒž76-1่‡ณ76_Nไฟ‚ไปฅไธฒ่ฏๆ–นๅผ่ผ•ๅˆ๏ผŒ= ๅทฑ็ทš 1 WU่‡ณๅ‰‡ๆ‰€ๆŽงๅˆถใ€‚ๅœฐ็ทš้ธๆ“‡้›ปๆ™ถ้ซ”^ =i Nๅฝขๆˆ็ฌฌไบŒไธฒๅˆ—๏ผŒๅ…ถ่—‰็”ฑSSL้›ปๆ™ถ้ซ”85 ;ใ€ไธจ๏ผš=2่€ฆๅˆใ€‚ๅœฐ็ทš้ธๆ“‡้›ปๆ™ถ้ซ”87ๅฐ‡็ฌฌไบŒNANDไธฒ ๅˆ—่ˆ‡ๆบๆฅต็ทšSL่€ฆๅˆใ€‚ Uไธฒ n็ณพ้ญ็‹€ๆ–™ไฟ‚ๆ–™ใ€Œๅ…จใˆฃ ่ฃ็ฝฎไธฒๅˆ—๏ผŒไพ‹ๅฆ‚่ฃ็ฝฎ75ใ€76-1่‡ณ76_N =ไน‹ ๆ†ถ่ƒžฮœ่‡ณ76-Nไธญ้ธๅฎš็š„ไธ€่จ˜ๆ†ถ่ƒžใ€‚็”ฑ๏ผ› =ๅฏ่ฎ“ๅŸ‹่—้€š้“็™ผๆฎๅŸ‹่—ไฝๅ…ƒ็ทšไน‹ๅŠŸ่ƒฝ:= :ๅทฅ=่จ˜๏ผ›ไฝŽ้€š้Ž้–˜ๆฅต็š„้›ปๅฃ“ไบŒ ๆญคๅค–๏ผŒๅœจๆŸไบ›ๅฏฆไพ‹ไธญไบŒ้ ˆๆŽก่ฒทไน‹็‰นๆ€งๅ‡ๅฏๆๅ‡ใ€‚ ๆฑฒๆฅตๆŽฅ้ขใ€‚ ๅฆ‚f 4_็คบไน‹้กๅค–ๆบๆฅต/ 11 201027724 ็จ‹ๅผๅŒ–ๅๅฃ“ๅฎ‰ๆŽ’ๅฆ‚ๅœ–ๆ‰€็คบ๏ผŒๅฏ็”ข็”Ÿไธฆๆ–ฝๅŠ ๆ–ผๅฆ‚็ฌฌ ็คบไน‹็ฉ้ซ”้›ป่ทฏ็ตๆง‹ใ€‚่ฉฒ็จ‹ๅผๅŒ–ๅๅฃ“็„ก้ ˆๅˆฉ 2 ็จ‹ๅผๅŒ–ฮฏๆญขๆ–นๆณ•ใ€‚่‡ช็™ผ็‚บ้‡ๅญไบ•่ˆ‡ๆŽฅๅˆ้ปžๆ‘ป้›œ็š„ ๅผ๏ผŒไธฆๆ–‡ๅˆฐๆŽฅๅˆ้ปžๆผ้›ปๆตไน‹ๅšด้‡ๅฝฑ้Ÿฟใ€‚่จญ ๆ™‚ใ€ ฮฏ่ชฟๆ•ดโ€ไบ•่ˆ‡ๆŽฅๅˆ้ปžไน‹็‰นๅพต๏ผŒไพ†้”ๆˆ่จ˜ๆ†ถ่ƒžๆ•ˆ;4: ่กจ็พไน‹้–“็š„ๅนณ่กกโ€™ๅ…ทๆœ‰็›ธ็•ถไน‹้›ฃๅบฆใ€‚ๅ› ๆญค๏ผŒ้žๅฆ‚ๅ‰^ ไธญๆ‰€่ฟฐ็š„่‡ช็™ผๆŠ€่ก“(ๅ…ถๅฟ…้ ˆๆŽก็”จๆทฑ็ฉบไนไปฅๅˆฉ่‡ช็™ผ ้€š้“่ฃ็ฝฎไธญๅฏไปฅ่ผ•ๆ˜“ๅœฐๆๅ‡ไฝๅ…ƒ็ทš้›ปไฝ๏ผŒๅ› ็‚บๅ…ถไธญ ฮทๅž‹้€š้“ๅ‡ๅ…ฑๅŒ้€ฃ็ตใ€‚ๅ› ๆญคโ€™็‚บ็จ‹ๅผๅŒ–่จ˜ๆ†ถ่ƒž๏ผŒไพ‹ๅฆ‚่จ˜ๆ†ถ โน ่ซธๆ–ผๅญ—ๅ…ƒ็ทšWL7 โ€™ไพ‹ๅฆ‚็ด„็‚บโ€œ L: ฮฯ‹ฯŠๅฃ“๏ผŒๆ–ฝๅŠ ๆ™‚้–“็ด„็‚บ2ใ€‡_ใ€‚ไฝๅ…ƒ็ทšbl_i ๏ผŒๅœฐ็ทšใ€‚่ขซๅ‹•่ณดVPASSไฟ‚ๆ–ฝๅŠ ๆ–ผไธฒๅฃฏๅ…ถไป–ๆ‰€ๆœ‰ ๏ผŒไปฅๅŠSSL็ทš๏ผŒๅ…ถ้›ปๅฃ“็ด„็‚บ5V่‡ณ9VqGsl็ทš็‚บๆŽฅๅœฐ้›ปไฝ๏ผŒ fๆบๆฅต็ทšไฟ‚ไฟๆŒๆตฎๅ‹•ใ€‚ๅŠๅฐŽ้ซ”ไธป้ซ”pๅž‹ไบ•๏ผˆๅœโ‘ฝ๏ผ‰ไบฆ็‚บๆŽฅ ^ใ€‚Iๆ™‚๏ผŒไฝ็–‹็ทšBL-2่€ฆๅˆ่‡ณไธ€ๆŠ‘ๅˆถ้›ปๅฃ“๏ผŒไพ‹ๅฆ‚็ด„โ€ฆ็›ด ๆŽฅ็ฒž่จ€่‡ณ่จ˜ๆ†ถ่ƒžใˆค่‡ณ่งฆ็š„ๆŠ‘ๅˆถ้›ปๅฃ“ใ€‚ๆŽฅๅ—ๅญ—ๅ…ƒ็ทšๅ’Œ =็จ‹ๅผๅŒ–้›ปๅฃ“็š„่จ˜ๆ†ถ่ƒž86_7็ตฒๅ—ๆœ€ ็ฑฒ โ€™็”š่‡ณๅœจ็จ‹ๅผๅŒ–ๅนฒๆ“พ็ตๆŸไน‹ๅพŒ๏ผŒ่ฉฒ่จ˜ๆ†ถ่ƒžไปไบŒ 2 ใ€‡:ไปฅไธ‹็š„่‡จ็•Œ้›ปๅฃ“โ€™ไฟๅญ˜่จ˜ๆ†ถ่ƒžๆ‰€้œ€็š„่ฎ€ๅ–็ฉบ้–“ใ€‚่—‰ ๆ–นไธจๅฃซ้“๏ผšๆ˜Œ่ทฏไน‹ๅŸ‹่—้€š้“ๆŠ€่ก“โ€™้€š้Ž้›ปๅฃ“ๅฏไปฅ้™ไฝŽ๏ผŒ่€Œไธฒ ^ไน‹ๅฐŽ้›ปๆ€งๅฏๆ้ซ˜โ€™่—‰ๆญคไฝฟๅพ—I็ฝฎๅฏไปฅๅ…ทๆœ‰่ผƒไฝŽ็š„ๆ“ไฝœ้›ป -็ถ ้™ค*ๅๅฃ“ๆ–ฝๅŠ ๆ–ผไธŠ่ฟฐ็ตๆง‹๏ผŒๅ…ถๅŒ…ๆ‹ฌโ€”็ฉฟ่ถŠ่จ˜ๆ†ถ่ƒžไน‹ๅญ— =ใ€^/ใ€ไธ€ๅฐŽ้ซ”ไธป้ซ”็š„่ฒ ๅ‘ๅๅฃ“โ€™ๅ…ถ็ด„็‚บ-14V่‡ณ-18V๏ผŒๆ–ฝๅŠ  ๅๅกตไน‹ๆ™‚้–“็ด„็‚บ1 ใ€‡msใ€‚ ๆฌฒ่ฎ€ๅ–้ธ็–‹ไน‹่ฎฐๆ†ถ่ƒž๏ผŒไฟ‚ๆ–ฝๅŠ›ใ€‚็›ธๅฐไฝŽ็š„้€š้Ž้›ป้บผ๏ผˆๅฆ‚ไฝŽ 12 201027724 ๆ–ผ5V)ๆ–ผๆœช้ธๅฎšไน‹ๅญ—ๅ…ƒ็ทšใ€SSLยท่ˆ‡GSLยทใ€‚่ฎ€ๅ–ๅๅฃ“ๆ–ฝๅŠ ๆ–ผ ้ธๅฎšไน‹ๅญ—ๅ…ƒ็ทš๏ผŒๅ…ถๆ˜ฏๆ–ผ่จ˜ๆ†ถ่ƒž่‡จ็•Œ็‹€ๆ…‹ไน‹้–“ใ€‚ ็ฌฌฯŒๅœ–็‚บไฝฟ็”จ่ƒฝๅธถๅŠ ๅทฅไป‹้›ป็ฉฟ้šงๅฑคไน‹ๅŸ‹่—้€š้“ใ€็ฉบไนๆจก ๅผ้›ป่ทๆ•ๆ‰5ๅทฑๆ†ถ่ƒž็š„็ฐกๅŒ–็คบๆ„ๅœ–ใ€‚่ฉฒ่จ˜ๆ†ถ่ƒžๅŒ…ๅซไธ€้€š้“ 90 ,ๅ…ถๅŒ…ๅซๆทกๆ‘ป้›œๅž‹ๆๆ–™๏ผˆๆ•ธ้‡็ดš็‚บ5E17cm_3)ๆˆ–ๆœช ๆ‘ป้›œไน‹ๆๆ–™๏ผŒไฝๆ–ผ็›ธๅฐๆฟƒๆ‘ป้›œไน‹ๅฉๅž‹ไบ•ไธญไปฅ้˜ป้šœไธ€ pๅž‹ๅŠ ๅฐŽ้ซ”ไธป้ซ”ไธญ๏ผˆๆ•ธ้‡็ดš็‚บ1E17enf3)ไน‹ๅฏ„็”Ÿๆผ้›ป่ทฏๅพ‘๏ผŒไปฅๅŠ ๆบๆฅต91ๅŠๆฑฒๆฅต92ๅ€ๅŸŸ๏ผŒไบฆ็‚บnๅž‹ๆˆ–ๆœชๆ‘ป้›œ่€Œ่‡จๆŽฅ่‡ณ่ฉฒ้€šPartially divided. In another embodiment, the oxide ๅกพ' of the ใ€‡ ๅฏ which can retain the fin L is defined as the channel region of the side of the sister near the end (four) portion. In the case of ', the shape of the scorpion' contains the oxidized stone eve, the nitrite eve, " covers a plurality of fins. The word m material layer (eg, 201027724 tๆ›ฐๆ›ฐ:) is formed over the ONONO overlay layer, and then the word line layer is etched to define a word line that spans the plurality of fins and is created at the point of intersection Complex memory cells. In order to cause more obvious doping characteristics, the implantation step before forming the ใ€‡nใ€‡nใ€‡ layer, or before depositing the oxide pad and the first tantalum nitride acoustic shape f In-situ doping is used: = The f-channel region can be formed by a lightly doped structure that extends along the ridge portion of the fin end. In another implementation, the radiation can be made into (10) 0N0 โน = row doping. After forming the (10)(10)0 cover layer, the implant has a lower thermal budget, and also has better doping. The fifth figure is the intention of two NAND strings. The SSL transistor 75 controlled by the SSL line is lightly coupled to the bit 3 BL-i. The memory cells 76-1 to 76_N are lightly connected in series, = the line 1 WU is controlled. The ground selection transistor ^ = i N forms a second series which is coupled by an SSL transistor 85;, ไธจ:=2. Ground select transistor 87 couples the second NAND string to source line SL. U string n ็บ  ็Šถ ๆ–™ " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " The function of the bit line: = : work = note; the voltage through the gate is low. In addition, in some cases, the characteristics of the second purchase can be improved. The bungee junction. If the f 4_ shows the additional source / 11 201027724 The stylized bias arrangement is shown in the figure and can be generated and applied to the integrated circuit structure as shown in the figure. The stylized bias is not required to be programmed. It is spontaneously doped with junctions. And the serious influence of the leakage current at the joint point. It is quite difficult to adjust the "well and the characteristics of the joint to achieve the memory effect; 4: the balance between performances". Therefore, it is not the spontaneous technology described in the previous section (it must use deep space to facilitate the spontaneous channel device, which can easily raise the bit line potential, because the n-type channels are all connected together. Therefore, it is a stylized memory cell. For example, the memory ่ฏธ is in the word line WL7 ', for example, about "L: ฮฯ‹ฯŠ, the application time is about 2 ใ€‡ _. The bit line bl_i, the ground line. The passive VS VPASS is applied to the string all other, and the SSL line, The voltage is about 5V to 9VqGsl, the line is grounded, and the f source line is kept floating. The semiconductor body p-type well (Bu(10)) is also connected to the I. The bit line BL-2 is coupled to a suppression voltage, for example From the direct rumor to the memory cell (5) to the suppression voltage of the touch. The memory cell 86_7 that accepts the word line and = stylized voltage is the most appealed. Even after the end of the stylized interference, the memory cell is still 2 ใ€‡: The threshold voltage 'saves the read space required for the memory cell. The borrower's gentleman's road: Changlu's buried channel technology 'pass voltage can be reduced, and the conductivity of the string can be improved', thereby making the I set can have a lower Operational electric-green removal*bias In the above structure, it includes - the word crossing the memory cell =, ^ /, the negative bias of a conductor body 'which is about -14V to -18V, and the time for applying the dust is about 1 ใ€‡ms. The memory cell of the ็–‹ is applied. The relatively low pass power (such as low 12 201027724 at 5V) on the unselected word line, SSLยท and GSLยท. The read bias is applied to the selected word line. It is between the critical state of the memory cell. The first diagram is a simplified schematic diagram of the buried channel of the dielectric tunneling layer and the trapped mode charge trapping 5 cells. The memory cell contains a channel 90, which contains a light Doped material (on the order of 5E17cm_3) or undoped material, located in a relatively heavily doped ๅฉ-type well to block the parasitic leakage path in a p-type semiconductor body (on the order of 1E17enf3), and the source 91 and ๆฑฒThe region of the pole 92 is also n-type or undoped and is connected to the pass

้“ใ€‚ ๆ›ฐๆœฌๅฏฆๆ–ฝไพ‹ไธญไน‹้–˜ๆฅต98ๅŒ…ๅซฯ+ๅคšๆ™ถ็Ÿฝ๏ผŒไบฆๅฏๆŽก็”จฮ+ๅคš ๆ™ถ็Ÿฝใ€‚ๅ…ถไป–ๅฏฆๆ–ฝไพ‹ไน‹้–˜ๆฅต98ๅฏๅˆฉ็”จ้‡‘ๅฑฌใ€้‡‘ๅฑฌๅŒ–ๅˆ็‰ฉใ€้‡‘ ๅฑฌ็ต„ๅˆ็‰ฉใ€ๆˆ–้‡‘ๅฑฌ่ˆ‡้‡‘ๅฑฌๅŒ–ๅˆ็‰ฉไน‹็ต„ๅˆ๏ผŒไพ‹ๅฆ‚็™ฝ้‡‘ใ€ๆฐฎๅŒ– ้’ฝใ€้‡‘ๅฑฌ็ŸฝๅŒ–็‰ฉใ€้‹ๆˆ–ๅ…ถไป–้‡‘ๅฑฌๆˆ–้‡‘ๅฑฌๅŒ–ๅˆ็‰ฉ้–˜ๆฅตๆๆ–™ใ€‚ ๅœจๆŸไบ›ๆ‡‰็”จไธญ๏ผŒ่ผƒไฝณๅฏฆๆ–ฝไพ‹ไฟ‚ๆŽก็”จๅŠŸๅ‡ฝๆ•ธ้ซ˜ๆ–ผ4.5eVไน‹ๆ ๆ–™ใ€‚็พŽๅœ‹ๅฐˆๅˆฉ6,912๏ผŒ163่™Ÿๆไพ›ไบ†ๅคš็จฎ้ซ˜ๅŠŸๅ‡ฝๆ•ธๆๆ–™๏ผŒๅ…ถๅฏ ้ฉ็”จๆ–ผๆญค่™•ๆœ—ไน‹้–˜ๆฅต็ต‚็ซฏใ€‚้€™ไบ›ๆๆ–™้€šๅธธยท้›œๆˆ– ๏ผŒ็†ๆฐฃ็›ธๆฒˆ็ฉๆŠ€่ก“้€ฒ่กŒๆฒˆ็ฉ๏ผŒๅŒๆ™‚ๅฏไปฅๆน˜ๅๆ‡‰้›ขๅญ้บตๅˆป โ€”_็ฝ”^้€šไน‹่ฒซๆ–ฝไพ‹๏ผŒไป‹้›ป็ฉฟ้šงๅฑคๅŒ…ๅซไธ€่ค‡ๅˆๆๆ–™๏ผŒ ไน‹ๆ‹ฌ๏ผšๆฐงๅŒ–็Ÿฝๆง‹ๆˆ็š„็ฌฌไธ€ๅฑค93๏ผŒไบฆ็จฑ็‚บ้›ปๆดž็ฉฟ้šงๅฑค๏ผŒๅ…ถไฝ )้€šI =ไน‹่กจ้ข90aไน‹ไธŠ๏ผŒ่ˆ‰ไพ‹่€Œ่จ€ไฟ‚็”Ÿ =ๅนฟๅŠ้ธๆ“‡ๆ€ง็š„ๆฐ›ๅŒ–๏ผŒ่ฉฒๆฐฃๅŒ–ไฟ‚ๅˆฉ็”จๅพŒๆฒˆ็ฉไปฅ ^ๆˆ–่€…ๅœจๆฒˆ็ฉๆ™‚ๅŠ ไบบNO็’ฐๅขƒใ€‚่ฉฒไบŒๆฐงๅˆ‡็ฌฌโ€”ๅฑค๏ผ… &ไฟ‚ไฝŽๆ–ผ20ๅŸƒ๏ผŒ่ผƒไฝณๅฏฆๆ–ฝไพ‹ไธญไฟ‚ๅฐๆ–ผ13ๅŸƒใ€‚ ๏ผŒไฟ‚ไฝๆ–ผๆฐง ๅญธๆฐฃ็›ธๆฒˆ็ฉ ๆฐฎๅŒ–็Ÿฝๆง‹ๆˆไน‹่–„ๅฑค94,ไบฆ็จฑ็‚บ่ƒฝๅธถ่ฃœๅ„Ÿๅฑค ๅŒ–็Ÿณๅค•ๆง‹ๆˆ็š„็ฌฌ-ๅฑค93ไน‹ไธŠ๏ผŒๅ…ถ_่ซธๅฆ‚ไฝŽๅฃ“ๅŒ– 13 201027724 LPCVDๅฝขๆˆ๏ผŒ่ˆ‰ไพ‹่€Œ่จ€ไฟ‚ๅˆฉ็”จไบŒๆฐฃ็Ÿฝ็ƒท๏ผˆDCS)็›ฅ_ ๅ‰้ฉ…็‰ฉๅœจ68(TCไน‹็’ฐๅขƒใ€‚ๅœจๅฆโ€”็จฎ่ฃฝ็จ‹ๅฏฆๆ–ฝไพ‹ไธญ/่ƒฝๅธถ่ฃœ ๅ„ŸๅฑคๅŒ…ๅซๆฐฎๆฐงๅŒ–็Ÿฝ๏ผŒๅ…ถๅˆฉ็”จ้กžไผผ่ฃฝ็จ‹่ˆ‡n2ใ€‡ๅ‰้ฉ…็‰ฉใ€‚ๆฐฎๅŒ– ็Ÿณๅค•่–„ๅฑค94ไน‹ๅŽšๅบฆไฟ‚ไฝŽๆ–ผ3GๅŸƒ๏ผŒ่ผƒไฝณๅฏฆ่ฃœไธญไฟ‚ไฝŽๆ–ผๅฆ‚ ๅŸƒใ€‚ ไบŒๆฐงๅŒ–็Ÿณๅค•ๆ‰€็ต„ๆˆไน‹็ฌฌไบŒๅฑค95๏ผŒไบฆ็จฑ็‚บ็ต•็ทฃๅฑค๏ผŒไฟ‚ไฝๆ–ผ ๆฐฎๅŒ–็Ÿณๅค•ๅฑค94ไน‹ไธŠโ€™ๅ…ถไฟ‚_่ซธๅฆ‚LpcVD้ซ˜ๆบซๆฐงๅŒ–็‰ฉhtใ€‡ ๆฒˆ็ฉๆ‰€ๅฝขๆˆใ€‚ไบŒๆฐงๅŒ–ๆญก็ฌฌไบŒๅฑค95็š„ๅŽšๅบฆไฝŽๆ–ผ็ด„3ใ€‡ๅŸƒ๏ผŒ ่ผƒไฝณๅฏฆๆ–ฝไพ‹ไธญไฟ‚ไฝŽๆ–ผ25ๅŸƒใ€‚ ๆœฌๅฏฆๆ–ฝไพ‹ไธญ็š„้›ป่ทๆ•ๆ‰ๅฑค96ๅŒ…ๅซๆฐฎๅŒ–็Ÿฝ๏ผŒๅ…ถๅŽšๅบฆๅคงๆ–ผ 50ๅŸƒ๏ผŒๅœจๆญคๅฏฆๆ–ฝไพ‹ไธญ็ด„็‚บ70ๅŸƒโ€™ไธฆๅˆฉ็”จ่ซธๅฆ‚LpcvDไน‹ๆ–น ๆณ•ๅฝขๆˆใ€‚ไบฆๅฏๆŽก็”จๅ…ถไป–้›ป่ทๆ•ๆ‰ๆๆ–™ไปฅๅŠ็ตๆง‹๏ผŒ่ˆ‰ไพ‹่€Œไปค ๅฏ็‚บๆฐฎๆฐงใˆฃ๏ผˆSixOyNz)ใ€ๅฏŒ้ญๅŒ–็‰ฉใ€ๅฏŒโ‘ฆๆฐงๅŒ–็‰ฉใ€^ ๅซๅŸ‹่—ไน‹ๅฅˆ็ฑณ็ฒ’ๅญไน‹ๆ•ๆ‰ๅฑค็ญ‰ใ€‚^ๅœ‹ๅฐˆๅˆฉ็”ณ่ซ‹่™Ÿ 2006/02614G41A1ๆญ้œฒไบ†ๅคš็จฎ้›ป่ทๆ•ๆ‰ๅฑคไน‹ๆๆ–™๏ผŒ.็ซ‹ๅ็‚บ r Novel Low Power Non-Vใ€‡latile Memory and Gate tackใ€๏ผŒ็™ผๆ˜Žไบบ็‚บBhattacharyya๏ผŒๅ…ฌ้–‹ๆ—ฅ ๏ผ… 23 ๆ—ฅใ€‚ โ€™ ฮฒ ๅฏฆ^ไพ‹ไธญ^้˜ป๏ผŒ้šœไป‹้›ปๅฑค97ๅŒ…ๅซไบŒๆฐงๅŒ–็Ÿณๅค•๏ผŒๅ…ถไฟ‚ๅˆฉ็”จ ่ฃฝ็จ‹๏ผŒๆˆ–ๆŽก็”จไธŠ่ฟฐๅ…ฉ็จฎ่ฃฝ็จ‹ใ€‚ๅœจๆญคๅฏฆๆ–ฝ =^ๅŽšๅบฆ็ด„็‚บ70ๅŸƒใ€‚ไบฆๅฏๆŽก็”จๅฆไธ€็จฎ่ค‡ๅˆ้˜ป้šœๅฑคๅ…ถๅŒ… ๅ„้ข๏ผ›ไธจ้›ปไฟ‚ๆ•ธ่ˆ‡ไธญไป‹้›ปไฟ‚ๆ•ธ้˜ป้šœๅฑคใ€‚ ๅœจๆœฌๅฏฆๆ–ฝไพ‹ไธญ๏ผŒ็ฌฌไธ€ๅฑค93ๅฏ็‚บไธจ.311111ไน‹ไบŒ ๅธถ=ๅฑค94ๅฏ็‚บ2nmไน‹ๆฐฎๅŒ–็Ÿณๅค•โ€™็ต•็ทฃๅฑค๏ผ…ๅฏ็‚บ2 5n^ ไธ€ๅทฉๅŒ–็Ÿฝ๏ผŒ้›ป่ทๆ•ๆ‰ๅฑค96ๅฏ็‚บ8nmไน‹ๆฐฌ ้›ปๅฑค97ๅฏ็‚บ7nm็š„ๆฐงๅŒ–็Ÿฝใ€‚้–˜ๆฅตๆๆ–™ๅฏ็‚บp+ๅคšๆ™ถ็Ÿฝ= 14 201027724 ๅ€ๅŸŸๅฆ‚ๆญคไน‹ๅคšๅฑค็ตๆง‹ไธญ๏ผŒ็ฉฟ้šจ็ต•็ทฃๅฑค่ˆ‡้€š้“ ่งธ๏ผŒๅ…ถๅŒ…ๅซไธ€ๆๆ–™ไน‹็ต„ๅˆ๏ผŒไปฅๅปบ็ซ‹uๅž‹ๅ่ฝ‰ ่ƒฝๅ…ถๅœจ้ ่ฟ‘้€š้“11ๅŸŸไน‹่กจ่ฝๅซ็›ธๅฐไฝŽ็š„ๅƒนๅธถ -ๆธ›ไธจ็Ÿณๅค•๏ผ‰โ€™ใˆคๆ™‚่ˆ‡้€š้“ๅ€ๅŸŸ่กจ้ขไน‹ไฝŽๆ–ผ2nmไน‹็ฌฌ ่ฏตใ€ๆ›พ็ŸฃIt็‚บใ€‚ๅ‡ฝ)ๅขžๅŠ ๅƒนๅธถ่ƒฝ้šŽ๏ผˆๆฐฎๅŒ–็Ÿฝ)๏ผŒ่€Œๅœจ่ˆ‡ ไป‹ไบŒ็ฌฌไบŒ่ท้›ข๏ผˆไพ‹ๅฆ‚็‚บ3.3nm)้™ไฝŽๅƒนๅธถ่ƒฝ้šŽ๏ผˆๆฐง ็”ŸๆŸฑไธ€่ท้›ขๅคงๆ–ผ่ฉฒ็ฌฌไธ€่ท้›ขใ€‚ๅ…ถไป–ๅฏฆๆ–ฝไพ‹ไธไธ€ๅฎšๆœ‰ ใ€…ๆฅš็•Œ็–‹ไน‹ๅ„ๅฑค้‚Š็•Œ๏ผŒไฝ†ไป็„ถ่ฃฝ้€ Uๅž‹ๅ่ฝ‰ไน‹ๅƒนๅธถ็‰นๆ€งใ€‚ ็ฌฌ7ๅœ–็‚บๅ…ทๆœ‰ๅŸ‹่—้€š้“้™ฃๅˆ—ไน‹็ฉ้ซ”้›ป่ทฏ็ฐกๅŒ–็คบๆ„ๅœ–๏ผŒๅ…ถ ๅ…ทๆœ‰ๆœฌ็™ผๆ˜Žๆ‰€ๆญ้œฒไน‹้›ป่ทๆ•ๆ‰่จ˜ๆ†ถ่ƒž๏ผŒไพ‹ๅฆ‚็ฉบไนๆจกๅผไน‹ FmFETBE_Sใ€‡Nใ€‡S NANDๅฟซ้–ƒ่จ˜ๆ†ถ้ซ”ใ€‚็ฉ้ซ”้›ป่ทฏ165ใ€‡ๅŒ… โน ๅซ่จ˜ๆ†ถ้™ฃๅˆ—1_๏ผŒๅ…ถไฝฟ็”จๆœฌ็™ผๆ˜Žๆ‰€่ฟฐไน‹้žๆฎ็™ผ่จ˜ๆ†ถ่ƒž๏ผŒ่ฉฒ =ๆ†ถ่ƒžไฝๆ–ผๅŠๅฐŽ้ซ”ๅŸบๆไน‹ไธŠใ€‚ๅˆ—่งฃ็ขผๅ™จ16ใ€‡1่€ฆๅˆ่‡ณ่ค‡ๆ•ธไน‹ ๅญ—ๅ…€็ทš1602๏ผŒๅ…ถไฟ‚ๆฒฟ่จ˜ๆ†ถ้™ฃๅˆ—16ใ€‡ใ€‡ไน‹ๆฉซๅˆ—่จญ็ฝฎใ€‚ๆญค่™•ๆ‰€ ่ฟฐไน‹่จ˜ๆ†ถ่ƒžๅฏ้…็ฝฎ็‚บNAND้™ฃๅˆ—๏ผŒๅœจๅ…ถไป–ๅฏฆๆ–ฝไพ‹ไธญไบฆๅฏ้… ็ฝฎ็‚บNOR้™ฃๅˆ—ใ€SOI AND้™ฃๅˆ—ใ€ๆˆ–ๅ…ถไป–้™ฃๅˆ—็ตๆง‹ใ€‚่กŒ่งฃ ็ขผๅ™จ1603่€ฆๅˆ่‡ณ่ค‡ๆ•ธไน‹ไฝๅ…ƒ็ทš16ใ€‡4 ,ๅ…ถไฟ‚ๆฒฟ่‘—่จ˜ๆ†ถ้™ฃๅˆ— 1600ไน‹็ธฑ่กŒๆŽ’ๅˆ—ใ€‚ไฝๅ€ๅฏ็”ฑๅŒฏๆตๆŽ’16ใ€‡5ๆไพ›่‡ณ่กŒ่งฃ็ขผๅ™จ 1603่ˆ‡ๅˆ—่งฃ็ขผๅ™จ1601ใ€‚ๆ–นๅกŠ1606ไธญ็š„ๆ„Ÿๆ‡‰ๆ”พๅคงๅ™จ่ˆ‡่ณ‡ๆ–™ ่ผธๅ…ฅ็ตๆง‹็ถ“็”ฑ่ณ‡ๆ–™ๅŒฏๆตๆŽ’1607่€ฆๅˆ่‡ณ่กŒ่งฃ็ขผๅ™จ16ใ€‡3ใ€‚่ณ‡ ๆ–™่—‰็”ฑ่ณ‡ๆ–™่ผธๅ…ฅ็ทš1611๏ผŒ็”ฑ่ผธๅ…ฅ/่ผธๅ‡บ่Ÿ‘ๅ‚ณ้žๅˆฐ็ฉ้ซ”้›ป่ทฏ 1650๏ผŒๆˆ–่€…็”ฑๅ…ถไป–ๅ†…้ƒจๆˆ–ๅค–้ƒจ่ณ‡ๆ–™ๆบๅˆฐ้”็ฉ้ซ”้›ป่ทฏ165ใ€‡๏ผŒ ่‡ณๆ–นๅกŠ1606ไธญ็š„่ณ‡ๆ–™่ผธๅ…ฅ็ตๆง‹ใ€‚่ณ‡ๆ–™ไบฆ็ถ“็”ฑ่ณ‡ๆ–™่ผธๅ‡บ็ทš 1615๏ผŒ็”ฑๆ„Ÿๆ‡‰ๆ”พๅคงๅ™จ1606่‡ณ็ฉ้ซ”้›ป่ทฏ1650ไธŠ็š„่ผธๅ…ฅ/่ผธๅ‡บ ๅŸ ๏ผŒๆˆ–ๅ…ถไป–็ฉ้ซ”้›ป่ทฏๅ†…้ƒจๆˆ–ๅค–้ƒจ็š„่ณ‡ๆ–™็ต‚้ปžใ€‚ๅๅฃ“่ชฟๆ•ด็‹€ ๆ…‹ๆฉŸๆง‹1609ๆŽงๅˆถๅๅฃ“่ชฟๆ•ดไน‹้›ปๅฃ“1608ใ€‚ไพ‹ๅฆ‚ๆŠน้™ค้ฉ—่ญ‰่ˆ‡ ็จ‹ๅผๅŒ–้ฉ—่ญ‰้›ปๅฃ“๏ผŒไปฅๅŠไพ›็จ‹ๅผๅŒ–ใ€ๆŠน้™คใ€่ฎ€ๅ–่จ˜ๆ†ถ่ƒžไน‹ๅ 15 201027724 ๅฃ“:ๅ‘จๆ•ดใ€‚ใ€ๅๅฃ“่ชฟๆ•ด็‹€ๆ…‹ๆฉŸๆง‹ๅฏๆ–ฝๅŠ ๅๅฃ“๏ผŒไปฅๅˆฉ็”จ+FN็ฉฟ้š ้€ฒไปƒ็จ‹ๅผๅŒ–๏ผŒๅ…ถๅŒ…ๅซไฝๆ–ผ้–˜ๆฅต่ˆ‡้€š้“ไน‹้–“็š„ๆญฃ้›ปๅฃ“๏ผŒๆˆ–่€… ไฝๆ–ผ้–˜ๆฅต่ˆ‡ๆบๆฅต่ˆ‡ๆฒ’ๆฅตไน‹ไธ€๏ผˆๆˆ–ๅ…ฉ่€…๏ผ‰็š„็ต‚็ซฏไน‹้–“็š„ๆญฃ้›ป ๅฃ“๏ผŒๅ…ถ่ถณไปฅ่ช˜็™ผ้›ปๅญ็ฉฟ้šง้€š้Ž็ฉฟ้šงไป‹้›ป็ตๆง‹๏ผŒ้€ฒๅ…ฅ้›ป่ทๆ• ๆ‰็ตๆง‹ใ€‚ๅŒๆ™‚โ€™่ฉฒๅๅฃ“่ชฟๆ•ด็‹€ๆ…‹ๆฉŸๆง‹ๅฏๆ–ฝๅŠ ๅๅฃ“่ชฟๆ•ด๏ผŒไปฅ ๅˆฉ็”จ-FN็ฉฟ้šง้€ฒ่กŒๆŠน้™ค๏ผŒๅ…ถๅŒ…ๅซไฝๆ–ผ้–˜ๆฅต่ˆ‡้€š้“ไน‹้–“็š„่ฒ  ้›ปๅฃ“๏ผŒๆˆ–่€…ไฝๆ–ผ้–˜ๆฅต่ˆ‡ๆบๆฅต่ˆ‡ๆฑฒๆฅตไน‹ไธ€๏ผˆๆˆ–ๅ…ฉ่€…๏ผ‰็š„็ต‚็ซฏ ไน‹้–“็š„่ฒ ้›ปๅฃ“โ€™็‹€ไปฅ่ช˜็™ผ้›ปๆดž็ฉฟ้š้€š้Ž็ฉฟ้šจไป‹้›ป็ตๆง‹๏ผŒ ้€ฒๅ…ฅ้›ป่ทๆ•ๆ‰็ตๆง‹ใ€‚ ่ฉฒ้™ฃๅˆ—่ˆ‡ๅ…ถไป–ๆจก็ต„ๅœจ็ฉ้ซ”้›ป่ทฏไน‹ไธŠ็ต„ๅˆ๏ผŒไพ‹ๅฆ‚่™•็†ๅ™จใ€โน ่จ˜ๆ†ถ้™ฃๅˆ—ใ€ๅฏ็จ‹ๅผๅŒ–้‚่ผฏๅ™จใ€ๅฐˆๅฑฌ้‚่ผฏๅ™จ็ญ‰ใ€‚ ๅ…ทๆœ‰ๅŸ‹่—้€š้“ใ€็ฉบไนๆจกๅผ็š„finFETBE-SONOS่ฃ็ฝฎ ๅทฒๅฆ‚ๅ‰่ฟฐใ€‚็›ธๅฐๆ–ผๅ‚ณ็ตฑๅฟซ้–ƒ่จ˜ๆ†ถ้ซ”ไน‹ๅขžๅผทๆจกๅผ่ฃ็ฝฎ๏ผŒๅ…ทๆœ‰ ฮท้€š้“ๅŸ‹่—้€š้“็š„่ฃ็ฝฎๅ…ทๆœ‰nๅž‹้ ‚้ƒจ่กจ้ขใ€‚ๅ› ๆญค๏ผŒ่ตท^่‡จ ็•Œ้›ปๅฃ“VT่ขซ้™ไฝŽ๏ผŒๅ…ถๅœจใ€Œ้€šๅธธ้–‹ๅ•Ÿใ€ไน‹ๆจกๅผไธ‹้‹ไฝœ๏ผŒๅŒๆ™‚ ๅฐ‡้™ไฝŽไบ†ๆŠน้™ค่ˆ‡็จ‹ๅผๅŒ–็‹€ๆ…‹็š„่‡จ็•Œๅˆ†ไฝˆใ€‚ๆŽก็”จ้กžไผผๅฆ‚ๅฐธยฃไธ ไน‹็ตๆง‹๏ผŒๅฏๅŠ ๅผท้–˜ๆฅตๆŽงๅˆถ่ƒฝๅŠ›๏ผŒๅŒๆ™‚ๆไพ›่ผƒไฝณไน‹ๅฐบๅฏธๆ•ˆๆ‡‰ใ€‚ ไผๅŒ•ๅค–ไธจ็”ฑๆ–ผ้€š้“ไปฅๆ•ด้ซ”ๅ่ฝ‰ๆจกๅผ้‹ไฝœ๏ผŒ่€Œ้žๅฆ‚ไปฅๅ‚ณ็ตฑๅข—ฮฒๅผท ๆจกๅผๆŽกๅ–่กจ้ขๅ่ฝ‰๏ผŒๅ› ๆญค่ฉฒๅŸ‹่—้€š้“่ฃ็ฝฎๆไพ›่ผƒไฝณไน‹่ฎ€ๅ–_ ้›ปๆต่ˆ‡ๆ•ด้ซ”ๅ‚ณๅฐŽ็‰นๆ€งใ€‚ๆญคๅค–๏ผŒๆ•ด้ซ”ๅ่ฝ‰ๅฐMfmFETๆœซ็ซฏไน‹ ่ง’่ฝ้‚Š็ทฃ่ผƒไธๆ•ๆ„Ÿ๏ผŒๆ‰€ไปฅๅฏไปฅ็ฒๅพ—่ผƒไฝณไน‹ไธ€่‡ดๆ€ง่ˆ‡่ผƒๅฐ็š„ ็จ‹ๅผๅŒ–่ˆ‡่ฎ€ๅ–้šœ็ค™ใ€‚ๆญค่™•ๆ‰€ๆญ้œฒไน‹็ฉบไนๆจกๅผ่ฃ็ฝฎๅฏ้ฉ็”จๆ–ผ ็„กๆŽฅ้ขไน‹ๅฏฆๆ–ฝไพ‹๏ผŒๅ…ถๅฏๆ‡‰็”จๆ–ผๆ›ดๅฐไน‹ๅฐบๅฏธ๏ผŒ่€ŒๅŒๆ™‚ๅ› ็‚บ้€š ้“ๅทฒ็ถ“ๆ˜ฏฮทๅž‹๏ผŒ็„ก้ ˆๅœจๅญ—ๅ…ƒ็ทšไน‹้–“ๆŽก็”จ้กๅค–ไน‹ๅฅธๅž‹ๆคๅ…ฅใ€‚ ๅœจNANDๅฟซ้–ƒ่จ˜ๆ†ถ่ฃ็ฝฎไธญ๏ผŒ่ฃ็ฝฎ้€šๅธธ่ขซๆŠน้™ค่‡ณ่ฒ ้›ปๅฃ“ Vt๏ผŒ่€Œ่ขซ็จ‹ๅผๅŒ–็‚บๆญฃ้›ปๅฃ“Vtใ€‚ๆ–ฐ็ฉบไนๆจกๅผ๏ผˆ้€šๅธธ้–‹ๅ•Ÿ๏ผ‰ไน‹ 16 201027724 ๅŸ‹่—้€š้“ใ€็„กๆŽฅ้ขไน‹n้€š้“ๅฟซ้–ƒ่จ˜ๆ†ถ่ฃ็ฝฎๆญ้œฒๆ–ผๆญคใ€‚ ^้“NANDๅฟซ้–ƒๅฐ‡็จ‹ๅผๅŒ–่ˆ‡ๆŠน้™คp/E %็ฏ„ๅœไธ‹้™ๅˆฐๅ‚ณ็ตฑ ่กจ้ข้€š้“่ฃ็ฝฎไน‹็ฏ„ๅœไปฅไธ‹๏ผŒๅŒๆ™‚ๆ›ด้ฉๆ–ผNANDๅฟซ้–ƒ่จ˜ๆ†ถ่ฃ $่จญ่จˆใ€‚็”ฑๆ–ผๅ•Ÿๅง‹VT่ผƒไฝŽโ€™ๆ•…่ฃ็ฝฎๅฏไปฅๅ‘ˆ็พ่ผƒๅฟซ็š„ๆŠน้™ค้€Ÿ ใ€ๅˆ๏ผŒๅŒๆ™‚่ผƒๅฏ้ฟๅ…่ฎ€ๅ–ๅนฒๆ“พใ€‚ๆญคๅค–๏ผŒๅŸ‹่—้€š้“่ฃ็ฝฎๅคง ้€ฒไบ†่ฃ๏ผŒ็š„ๅพช็’ฐๆ‰ฟๅ—ๅŠ›โ€™ๅ› ็‚บๅŸ‹่—้€š้“ๅฐๆ–ผ็จ‹ๅผๅŒ–/ๆŠน้™คไน‹ ไป‹้ข็‹€ๆ…‹๏ผˆDit)็”ข็”Ÿ่ผƒไธๆ•ๆ„Ÿใ€‚ไธ€ๆทกๆ‘ป้›œไน‹ๆทบใˆฃ้€š้“ๅŒ ๆ™‚ๅฏไฝœ็‚บๅŸ‹่—ไน‹ไฝๅ…ƒ็ทš๏ผŒไปฅๅŠ็„กๆŽฅ้ข็ตๆง‹ไน‹ๆบๆฅต็บงๆฅตใ€‚ๅˆฉ ^้กžไผผfmFETไน‹็ตๆง‹๏ผŒๅณๅฏๅ…‹ๆœ็Ÿญ้€š้“ๆ•ˆๆ‡‰ใ€‚ๅŸ‹่—้€š้“ โ€ข ^ๅŽฆ"ๅฟซ้–ƒ่จ˜ๆ†ถ้ซ”ๅˆฉ็”จ็›ดๆŽฅๆๅ‡ไฝๅ…ƒ็ทš้›ปไฝไน‹ๆ–นๆณ•๏ผŒๅˆฉ็”จ ้–“ๅ–ฎ็จ‹ๅผๅŒ–็ฆๆญข๏ผŒ่€Œ็„ก้ ˆๅฆ‚ๅ‚ณ็ตฑ่‡ช็™ผๆ–นๆณ•ๆ‰€้œ€๏ผŒ่ช˜็™ผๆทฑ็ฉบ ไนใ€‚ SONOSๅž‹โ€˜4ไน‹้›ป๏ผ…ๆ•ๆ‰็ตๆง‹็‚บโ€”็จฎ่ผƒไฝณๅฏฆๆ–ฝไพ‹๏ผˆไพ‹ ๅฆ‚โ€™ ^็ฌฌ6ๅœ–ไน‹็›ธ้—œ่ชชๆ˜Žๆ‰€็คบๅ› ๅ…ถๆไพ›ๅฟซ้€ŸๆŠน้™คไน‹ไธ‹ไธ€ ไปฃ้›ป่ทๆ•ๆ‰่ฃ็ฝฎ๏ผŒๅŒๆ™‚็ตๅˆ้กžไผผfmFETไน‹็ตๆง‹๏ผŒ้”ๆˆๅฎŒ็พŽ ฮ ฯŠๆŽงๅˆถ็‰นๆ€งใ€‚ไปฅไธ‹ๆ่ฟฐๅŸ‹่—้€š้“่ฃ็ฝฎไน‹้ƒจๅˆ†ๅ„ชๅ‹ข็‰น โน ^ (1)่ผƒๅฟซ็š„ๆŠน้™ค้€Ÿๅบฆ่‡ณVT<ใ€‡V๏ผŒๅŒๆ™‚ๅฐ็จฑ็š„ฮฝฯ„ๅˆ†ไฝˆ ๅ€้–“.็”ฑๆ–ผๆ›ดไฝŽ็š„ๅ•Ÿๅง‹้›ปๅฃ“ฮฝฯ„๏ผŒ่‡ช็„ถๆ›ดๅฎนๆ˜“ๅฐ‡่ฃ็ฝฎๆŠน้™ค่‡ณ ฮฝฯ„<ฮฟฮฝใ€‚่ฝ‰ๆ€งๅœจ้›ปๅˆถๅŸŸ็ฝฎๅทพๅˆถๆœ‰่‚–๏ผŒ็›ฎ็‚บๆญค็จฎ่ฃ ็ฝฎ็š„ๆŠน้™ค้€Ÿๅบฆ้€šๅธธไฝŽๆ–ผๆตฎ_ๆฅต่ฃ็ฝฎใ€‚ฮฝฯ„ไน‹ๅˆ†ไฝˆ่ผƒไฝŽไธ”ๅœจ ๅŸ‹่—้€š๏ผŒ่ค’็ฝฎไธญๆ›ด็‚บๅฐ็จฑ๏ผŒๆญค็ญ‰็‰นๆ€งๆœ‰ๅˆฉๆ–ผๅฟซ้–ƒ่จ˜ ๆ†ถ้ซ”ไน‹่จญ่จˆใ€‚ (2)่ผƒๅคง็š„ๅˆ†ไฝˆ้‚Š็•Œ๏ผš็”ฑๆ–ผ่ผƒไฝŽไน‹ๅ•Ÿๅง‹VT๏ผŒ็จ‹ๅผๅŒ–่ˆ‡ ๏ผŒ้™คๅนฒๆ“พ๏ผˆๅœจๅŒๆจฃ็š„ๅบ•ๅฑคๆฐงๅŒ–ๅ€ๅŸŸ่ช ๅŠ›ๆ™‚้–“๏ผ‰ๆ›ด่ƒฝๆŽงไบฒ; ฮฝฯ„<ฮฟฮฝไน‹ไธ‹โ€™ไปฅไพ›่ผƒๅคง็š„็„กๅนฒๆ“พๅ€้–“ๆ‰€็”จใ€‚ๆญคๅค–๏ผŒไฝŽ้–˜ 17 201027724 ๆฅต้€š้Ž้›ปๅฃ“๏ผˆ<5V)ไบฆ็‚บ่ฎ€ๅ–ๆ‰€ๅฟ…้ ˆใ€‚ ็‚บ=ๆƒณ่จญ่จˆ๏ผšn้ญ่—้€š้“ๅฏไปฅไฝœ ไบŒฯ„ = J๏ผŒๅ…ถๅฐ‡ๆ‰€ๆœ‰่ฃ็ฝฎ้€ฃๆŽฅๅœจ-่ตทใ€‚ๅ› ๆญค๏ผŒ็„ก้ ˆ ๅœจWLไน‹้–“่ฃฝไฝœ้กๅค–็š„ๆŽฅ้ขใ€‚ U ,ใ€๏ผŒใ€4 (4)็„ก้ ˆ่ค‡้›œ็š„่‡ช็™ผ็จ‹ๅผๅŒ–็ฆๆญข ่ˆ‡ๆŽฅ้ขๆ‘ป้จŽๆ–™ไน‹_้ญใ€‚ๅฏๅƒ็…ง่‡ช== ๅคง7:๏ผŒๅฏๆŠ“87,้ณฉใ€‚ๅŒๆ™‚๏ผŒๅ…ถไบฆๅ—ๅˆฐๆŽฅ้ขๆผ้›ปi ๆญค๏ผŒ่ฆๅœจ่จ˜ๆ†ถ่ƒžๆ•ˆ่ƒฝ่ˆ‡็‚บไบ†่‡ช็™ผ่€Œ้€ฒ่กŒ็š„ไบ•/ ไปฅใ€ใˆฃฮฏๆ•ดไน‹้–“ๅ–ๅพ—ๅนณ่กกโ€™ไฟ‚็‚บ็›ธไน‹้ธๆ“‡ใ€‚้žๅฆ‚ ใ€‡ :็”ฌ;็ฉบไนไปฅ้€ ๆˆ่‡ช็™ผไน‹ๅ‚ณ็ตฑ่กจ้ข้€š้“่ฃ็ฝฎ๏ผŒๅœจๅŸ‹่— k่ฃ็ฝฎๅทพโ€™้žๅธธใˆฃๅœฐๅณๅฏๆ–™๏ผŸ ฮทๅž‹ๅ€ๅŸŸๅ‡้€ฃๆŽฅๅœจโ€”่ตท๏ผ‰ใ€‚ wๅŒ•ใ€ไธญๆ‰€ๆœ‰ ๅปถๅฑ•ๅ…ƒไปถๅพช็’ฐๆ‰ฟๅ—ๅŠ›๏ผšๅŸ‹่—้€š้“่ฃ็ฝฎไน‹ๅพช็’ฐๆ‰ฟๆˆ ๅŠ›ๅคงๅน…ๆๅฑ€ใ€‚ๆญคไฟ‚ๅ› ็‚บๅ่ฝ‰้€š้“็ตฒ้ข่ท้›ข ฯ‚ ๆ–ผๅพช็’ฐๆ‡‰ๅŠ›ไน‹ๅพŒ็”ข็”Ÿไน‹่กจ้ข็‹€ๆ…‹๏ผˆDit)่ผƒไธๆ•ๆ„Ÿใ€‚Hๅฐ VTๅœจP/E็’ฐๆ‡‰ไน‹ๅพŒๅขžๅŠ ไน‹ๆƒ…ๆณๅฐฑ่ขซๆŠ‘ๅˆถใ€‚ ็›ธๅฐๆ–ผๅ…ธๅž‹ไน‹่กจ้ข้€š้“่ฃ็ฝฎโ€™ๅŸ‹่—้€š้“่ฃ็ฝฎ็š„็จ‹ๅผๅŒ–/ ๆŠน้™ค(ฮก/ฮ•)ๅ€็ธฃๆœฌไธŠไฟ‚ๅนณ่กŒๅœฐๅพ€่ผƒไฝŽ็š„Vtใˆฃใ€‚่ผƒไฝŽ็š„โน ๅ•Ÿๅง‹VTๅŒๆ™‚ไนŸ่ฎ“ๆŠน้™ค้€ŸๅบฆๅขžๅŠ ใ€‚ๅŒๆ™‚๏ผŒp/Eไน‹Vtๅˆ†ไฝˆ้ž ๅธธๅฐ็จฑ๏ผŒ่€Œ่ฉฒไฝŽๆŠน้™คไน‹vTๅˆ†ไฝˆๆไพ›่ผƒๅปฃไน‹ ็„กๅนฒๆ“พๅ€้–“ใ€‚ๆญคๅค–๏ผŒๆญค่™•ๆ‰€่ฟฐไน‹ๅŸ‹่—้€š้“่ฃ็ฝฎๅฏ^็”จๅคš้šŽ ่จ˜ๆ†ถ่ƒž(MLC)ไพ†ๅฎŒๆˆ๏ผŒๅ› ๆญคๅ„่ฃ็ฝฎๅฏๅ„ฒๅญ˜ไบŒไฝๅ…ƒๆˆ–ไปฅไธŠไน‹ ่ณ‡ๆ–™๏ผŒๅฆ‚ๆญคๆŠน้™ค็‹€ๆ…‹ๅ…ทๆœ‰่ฒ VTๅˆ†ไฝˆ๏ผŒ่€Œ่ฉฒไธ‰ๅ€‹ๆˆ–ไปฅไธŠ็š„็จ‹ ๅผๅŒ–็‹€ๆ…‹ๅ‰‡ๆœ‰ๆญฃ็š„VTๅˆ†ไฝˆใ€‚ ๅœจFinFET็ตๆง‹ไธญ๏ผŒๅŸŸ้€š้“่ฃ็ฝฎ้กฏ็คบไบ†่ผƒ่กจ้ข้€š้“่ฃ 18 201027724 ็ฝฎๆ›ดๅŠ ็š„ๅ…ƒไปถๆ‰ฟๅ—ๅŠ›ใ€‚ ๅŸ‹่—้€š้“่ฃ…็ฝฎๅฐ‡้ซ˜ๅ่ฝ‰้›ปๅญๅฏ†ๅบฆๅปถไผธ้€ฒๅ…ฅ้€š้“ ้ข ้ข้€š้“ๅƒ…ๅ…ทๆœ‰่กจ้ขๅ่ฝ‰ใ€‚ๅŸ‹่—้€š้“่ฃ็ฝฎๅฐๆ–ผๅ่ฝ‰ๆ™‚ไน‹ ็‹€ๆ…‹ๅฏ†ๅบฆ่ผƒไธๆ•ๆ„Ÿใ€‚ 1 t็™ผๆ˜Žไน‹่ผƒไฝณๅฏฆ้—œ๏ผŒ็ดฐๆœฌ็™ผๆ˜Ž็ธฃๅƒ…้™ๆ–ผ ่ฏฅ็ญ‰ๅฏฆๆ–ฝไพ‹:ๅ„็จฎ่ง€ใ€่ฎŠๅŒ–ใ€ไธฆๆ›ดใ€_ใ€ไปฅๅŠๅ‡ ๅ†…ๅฎนโ€™ๅฐๆ–ผ็†Ÿ็Ÿฅ่ฉฒๆŠ€่ก“้ ˜ๅŸŸไน‹ไบบ่€Œ่จ€ๅ‡ๅฑฌ้กฏ่€Œๆ˜“่ฆ‹๏ผŒๅŒ ๅ‡ไธ่„ซ้€ธๆ–ผๆœฌ็™ผๆ˜Žไน‹็ฒพ็ฅž่ˆ‡้ฝกไน‹ๅค–๏ผŒๅณๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ ๆ‰€๏ผ›jitใ€‚ ๅซRoad. The gate 98 in this embodiment includes ฯ+ polysilicon, and ฮ+polysilicon can also be used. The gate 98 of other embodiments may utilize a metal, a metal compound, a metal composition, or a combination of a metal and a metal compound such as platinum, tantalum nitride, metal telluride, aluminum or other metal or metal compound gate material. In some applications, the preferred embodiment employs materials having a work function greater than 4.5 eV. U.S. Patent 6,912,163 provides a variety of high work function materials which are suitable for use in the gate terminal herein. These materials are usually mixed or deposited by CVD, and can be applied to the surface of the ion-reactive layer. The dielectric tunneling layer contains a composite material, including the first composition of yttrium oxide. Layer 93, also referred to as a tunneling layer, is located above surface 90a of I = , for example, a wide- and selective-selective liquefaction, which is deposited after use or when deposited Add a NO environment. The dioxin-layer % & is less than 20 angstroms, and in the preferred embodiment is less than 13 angstroms. a thin layer 94 composed of an oxygen vapor deposited tantalum nitride layer, also referred to as a first layer 93 of a band-compensating layer fossil, which is formed, for example, by a low pressure 13 201027724 LPCVD, for example, utilizing Dioxane (DCS) ็›ฅ _ precursor in 68 (TC environment. In another process example / band compensation layer contains bismuth oxynitride, which uses a similar process with n2 ใ€‡ precursor. The thickness of 94 is less than 3G angstroms, preferably less than angstrom. The second layer 95, also known as the insulating layer, is located on the nitriding layer 94. Formed by a high temperature oxide htใ€‡ deposition such as LpcVD. The thickness of the second layer 95 of the oxidized oxide is less than about 3 angstroms, and in the preferred embodiment is less than 25 angstroms. The charge trapping layer 96 in this embodiment contains nitrogen. The ruthenium, which has a thickness greater than 50 angstroms, is about 70 angstroms in this embodiment, and is formed by a method such as LpcvD. Other charge trapping materials and structures can also be used, for example, it can be made of nitrogen oxides (SixOyNz), rich. Wei compound, rich 7 oxide, ^ capture layer containing buried nanoparticles, etc. The application number 2006/02614G41A1 discloses a variety of materials for the charge trapping layer, the name is r Novel Low Power Non-Vใ€‡latile Memory and Gate tack", the inventor is Bhattacharyya, the public day is 23 days. 'ฮฒ ๅฎžไพ‹The resistive dielectric layer 97 comprises a dioxide dioxide, which utilizes a process, or both processes. The thickness of the film is about 70 angstroms. Another composite barrier layer may be used. In the present embodiment, the first layer 93 can be 311.311111, the second layer = the layer 94 can be 2 nm of nitride, and the insulating layer can be 2 5n^ The charge trapping layer 96 may be an 8 nm argon layer 97 which may be 7 nm of yttrium oxide. The gate material may be p+ polysilicon = 14 201027724. In such a multilayer structure, the interlayer is in contact with the channel and includes A combination of materials to establish a u-inversion energy that is relatively low in the valence band near the channel 11 domain - minus ไธจ ๅค• ) ' ' ' ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ไธŽ ่ฏต ่ฏตIt is. The valence band energy level (tantalum nitride) is increased, and the valence band energy level is lowered at a second distance from the second layer (for example, 3.3 nm) (the oxygen column is greater than the first distance. Other embodiments do not necessarily have The boundary layer of the boundary layer is still formed, but the U-shaped inversion valence band characteristic is still produced. Fig. 7 is a simplified schematic diagram of the integrated circuit with the buried channel array, which has the charge trapping memory cell disclosed in the present invention, such as the depletion mode. The FmFETBE_Sใ€‡Nใ€‡S NAND flash memory. The integrated circuit 165 includes a memory array 1_, which uses the non-volatile memory cell of the present invention, which is located above the semiconductor substrate. 16ใ€‡1 is coupled to the complex word line 1602, which is disposed along the horizontal array of the memory array. The memory cells described herein may be configured as a NAND array, and in other embodiments may also be configured as a NOR array. The SOI AND array, or other array structure. The row decoder 1603 is coupled to a plurality of bit lines 16ใ€‡4 that are arranged along the wales of the memory array 1600. The addresses can be provided by the bus bars 16ใ€‡5 to the row decoder 1603. And column decoder 1601. In block 1606 The amplifier and data input structure is coupled to the row decoder 16ใ€‡3 via data bus 1607. The data is passed from the input/output port to the integrated circuit 1650 via the data input line 1611, or from other internal or external sources. The body circuit 165A, to the data input structure in block 1606. The data is also passed through the data output line 1615, from the sense amplifier 1606 to the input/output port on the integrated circuit 1650, or to the data end point inside or outside the other integrated circuit. The bias adjustment state mechanism 1609 controls the voltage of the bias adjustment 1608. For example, the erase verification and the stylized verification voltage, and the bias for programming, erasing, and reading the memory cell 15 201027724 Pressure: Weekly, bias adjustment state The mechanism can apply a bias voltage to program with +FN, which includes a positive voltage between the gate and the channel, or a terminal located at one of the gate and the source and the pole (or both) a positive voltage that is sufficient to induce electron tunneling through the tunneling dielectric structure into the charge trapping structure. At the same time, the bias adjustment state mechanism can apply bias adjustment to utilize -FN tunneling for erasing, which includes a negative voltage between the gate and the channel, or a negative voltage between the gate and the terminal of one of the source and the drain (or both) to induce electricity The hole penetrates through the dielectric structure and enters the charge trapping structure. The array is combined with other modules on the integrated circuit, such as a processor, a memory array, a programmable logic, a dedicated logic, etc. The finFETBE-SONOS device of the depletion mode has been as described above. Compared with the conventional enhanced mode device of the flash memory, the device having the n-channel buried channel has an n-type top surface. Therefore, the threshold voltage VT is lowered, which is Operating normally in mode, it will reduce the critical distribution of erase and stylized states. The use of a structure similar to that of a corpse can enhance gate control while providing better dimensional effects. The buried channel device provides better read-current and overall conduction characteristics because the channel operates in a global inversion mode rather than in a conventional ๅข—ฮฒ-strong mode. In addition, the overall inversion is less sensitive to the corner edges of the MfmFET ends, so better consistency and less stylized and readable barriers are achieved. The depletion mode device disclosed herein can be applied to a junctionless embodiment that can be applied to smaller sizes, while at the same time because the channel is already n-type, there is no need to use additional implants between the word lines. In a NAND flash memory device, the device is typically erased to a negative voltage Vt and programmed into a positive voltage Vt. New empty mode (usually turned on) 16 201027724 Buried channel, no-connect n-channel flash memory device is exposed here. ^ NAND flash flashes the range of program and erase p/E % down to the range of traditional surface channel devices, while being more suitable for NAND flash memory devices. Since the starting VT is low, the device can exhibit a faster erasing speed and, at the same time, avoid reading interference. In addition, the buried channel device is greatly loaded, and the cycle endurance is less sensitive to the staging/wiping interface state (Dit). A lightly doped shallow (four) channel can also serve as a buried bit line and a source-level pole of a junctionless structure. Similar to the structure of the fmFET, the short channel effect can be overcome. Buried channel โ€ข ^Xia " flash memory uses the method of directly increasing the potential of the bit line, using the staging of the stylization, without the need for traditional spontaneous methods, induced deep space. The SONOS type '4's electric % capture structure is a preferred embodiment (for example, '^ Figure 6 shows the next generation of charge trapping device provided by the related description, which combines the fmFET-like structure to achieve perfection. ฮ ฯŠControl characteristics. The following describes some of the advantages of buried channel devices. (1) Faster erase speed to VT<ใ€‡V, while symmetric ฮฝฯ„ distribution interval. Naturally easier due to lower starting voltage ฮฝฯ„ The device is erased to ฮฝฯ„ <ฮฟฮฝ. The rotation is in the electric system, and the wiping speed of such a device is usually lower than that of the floating-pole device. The distribution of ฮฝฯ„ is low and buried in the device. More symmetrical, these features are conducive to the design of flash memory. (2) Large distribution boundaries: due to the lower starting VT, stylized and, except for interference (in the same underlying oxidation area Chengli time) More controllable; ฮฝฯ„<ฮฟฮฝ' is used for larger interference-free intervals. In addition, low gate 17 201027724 pole pass voltage (<5V) is also necessary for reading. == want to design: n Weizang The channel can be used as two ฯ„ = J, which connects all devices Therefore, there is no need to make additional joints between WLs. U , , , , 4 (4) No need for complex spontaneous stylization prohibits the joining of the joints with the _Wei. Refer to since == Big 7 :, Grasping 87, ้ธ . At the same time, it is also subject to leakage. Therefore, it is necessary to strike a balance between the memory performance and the well/supplement that is carried out spontaneously. :็”ฌ; vacant to create a spontaneous traditional surface channel device, in the buried k device towel 'very (four) can be expected? ฮท-type areas are connected. wๅŒ•, all of the extended component cycle endurance: the cycle capacity of the buried channel device is greatly improved. This is because the surface of the inverted channel is less sensitive to the surface state (Dit) produced after the cyclic stress. The fact that H increases VT after the P/E loop should be suppressed. In contrast to the typical surface channel device, the stylized/erased (ฮก/ฮ•) area of the buried channel device is parallel to the lower Vt (four). The lower โน start VT also increases the erase speed. At the same time, the Vt distribution of p/E is very symmetrical, and the low erased vT distribution provides a wider interference-free interval. In addition, the buried channel device described herein can be implemented by multi-level memory cells (MLC), so each device can store two bits or more of data, such that the erased state has a negative VT distribution, and the three or The above stylized state has a positive VT distribution. In the FinFET configuration, the domain channel device shows more component endurance than the surface channel mount 18 201027724. The buried channel device extends the high inversion electron density into the channel. The surface channel only has surface inversion. The buried channel device is less sensitive to the state density at the time of inversion. 1 t invention is better than the invention, the county is limited to these embodiments: various views, changes, and more, _, and the contents are 'obvious to those who are familiar with the technical field, neither It is out of the spirit and age of the present invention, that is, as claimed in the patent; jit. call

ใ€ๅœ–ๅผ็ฐกๅ–ฎ่ชชๆ˜Žใ€‘ ็ฌฌ1ๅœ–็‚บๆฒฟ่‘—้ฐญ็‹€็‰ฉๆœซ็ซฏ้š†่ตทๆ‰€่จญ็ฝฎไน‹ๅŸ‹่—้€š้“่จ˜ๆ†ถ ่ƒžไธฒๅˆ—็š„ๅ‰–้ข็คบๆ„ๅœ–๏ผŒๅ…ถไฟ‚ๆŽก่‡ช็„กๆŽฅ้ขไน‹ๅฏฆๆ–ฝไพ‹๏ผŒ่ˆ‰ไพ‹่€Œ ่จ€ไฟ‚ๆฒฟ่‘—็ฌฌ3ๅœ–ไน‹็ทšๆฎตla_lb*็นช็คบใ€‚ ็ฌฌ2ๅœ–็‚บ่ทจ่ถŠ้ฐญ็‹€็‰ฉๆ‰€็นช็คบ็š„ๅŸ‹่—้€š้“่จ˜ๆ†ถ่ƒžไธฒๅˆ—ๅ‰– ้ข็คบๆ„ๅœ–โ€™่ˆ‰ไพ‹่€Œ่จ€ไฟ‚ๆฒฟ่‘—็ฌฌ3ๅœ–ไน‹็ทšๆฎต2a_2bๆ‰€็นช็คบใ€‚ ฮŸ ็ฌฌ3ๅœ–็‚บๅŒ…ๅซๅŸ‹่—้€š้“่จ˜ๆ†ถ่ƒžไน‹NAND้™ฃๅˆ—็š„ไฝˆๅฑ€ๅœ–ใ€‚ ็ฌฌ4ๅœ–็‚บ็ฐกๅŒ–ไน‹ๅŸ‹่—้€š้“่จ˜ๆ†ถ่ƒžไธฒๅˆ—ไน‹ๅฆไธ€ๅฏฆๆ–ฝไพ‹็š„ ๅ‰–้ขๅœ–โ€™ๅ…ถไธญๆบๆฅต/ๆฑฒๆฅตๆŽฅ้ขไฟ‚ๆคๅ…ฅๆ–ผๅญ—ๅ…ƒ็ทšไน‹้–“ใ€‚ ็ฌฌ5ๅœ–็‚บๅ…ฉๅ€‹ๆŽก็”จๅŸ‹่—้€š้“่จ˜ๆ†ถ่ƒžไน‹NANDไธฒๅˆ—็š„้›ป ่ทฏ็คบๆ„ๅœ–๏ผŒๅ…ถไธญ็นช็คบไธ€็จ‹ๅผๅŒ–ๅๅฃ“ๅฎ‰ๆŽ’ใ€‚ ็ฌฌ6ๅœ–็‚บๅŸ‹่—้€š้“่จ˜ๆ†ถ่ƒžไน‹ๅ‰–้ข็คบๆ„ๅœ–๏ผŒๅ…ถ็นช็คบๅœจ BE-SONOSไน‹่ผƒไฝณๅฏฆๆ–ฝไพ‹ไธญ็š„่ณ‡ๆ–™ๅ„ฒๅญ˜็ตๆง‹ใ€‚ ็ฌฌ7ๅœ–็‚บๅŒ…ๅซไธ€ๅŸ‹่—้€š้“้™ฃๅˆ—ไน‹็ฉ้ซ”้›ป่ทฏ่จ˜ๆ†ถ่ฃ็ฝฎ็š„ 201027724 ็ฐกๅŒ–ๆ–นๅกŠๅœ–๏ผŒๅ…ถไธญฮ’ฮ•-SONOS่จ˜ๆ†ถ่ƒžไฟ‚่จญ็ฝฎๆ–ผNAND้™ฃ ๅˆ—ไธญใ€‚ ใ€ไธป่ฆๅ…ƒไปถ็ฌฆ่™Ÿ่ชชๆ˜Žใ€‘ 10ใ€ 35 :ๅŸบๆ 10-1ใ€10-2ใ€10-3ใ€10-4 :้ฐญ็‹€็‰ฉ 11ใ€ 37 ยทยทๅŸ‹่—้€š้“ๅ€ๅŸŸ 12 :้š”็ต•ๅ€ๅŸŸ 15ใ€16ใ€17ใ€18 :ๅญ—ๅ…ƒ็ทš 19 :่ณ‡ๆ–™ๅ„ฒๅญ˜็ตๆง‹ 20 :ๅฑค้–“ไป‹้›ป็‰ฉ 21ใ€22ใ€23 :็ต•็ทฃๆบๆงฝ 25 :้ธๆ“‡็ทš 26 :ๅœฐ็ทš 30ใ€31 :้ฎ็ฝฉ 36 :้ ธ้ƒจๅ€ๅŸŸ 40ใ€41ใ€42ใ€98 :้–˜ๆฅต 44ใ€45 :ๆŽฅ้ข 60ใ€ 76ใ€86 :่จ˜ๆ†ถ่ƒž 61ใ€ 62 :ไบคๅ‰้ปž 75ใ€85ใ€87 :้›ปๆ™ถ้ซ” 90 :้€š้“ 91 :ๆบๆฅตๅ€ๅŸŸ 92 :ๆฑฒๆฅตๅ€ๅŸŸ 93 :้›ปๆดž็ฉฟ้šงๅฑค 94 :่ƒฝๅธถ่ฃœๅ„Ÿๅฑค ็ต•็ทฃๅฑค 95 201027724 96 :้›ป่ทๆ•ๆ‰ๅฑค 97 :้˜ป้šœไป‹้›ปๅฑคBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a buried channel memory cell array disposed along a fin end ridge, which is taken from a junctionless embodiment, for example, along the third diagram. The line segment la_lb* is shown. Figure 2 is a schematic cross-sectional view of a buried channel memory cell shown across the fins. For example, it is depicted along line 2a-2b of Figure 3. ฮŸ Figure 3 is a layout of a NAND array containing buried channel memory cells. Figure 4 is a cross-sectional view of another embodiment of a simplified buried channel memory cell array wherein the source/drain junctions are implanted between word lines. Figure 5 is a circuit diagram of two NAND strings using buried channel memory cells, showing a stylized bias arrangement. Figure 6 is a schematic cross-sectional view of a buried channel memory cell showing the data storage structure in the preferred embodiment of BE-SONOS. Figure 7 is a simplified block diagram of the 201027724 integrated circuit memory device including a buried channel array in which the ฮ’ฮ•-SONOS memory cell is placed in the NAND array. [Description of main component symbols] 10, 35: Substrate 10-1, 10-2, 10-3, 10-4: Fins 11, 37 ยท Buried channel area 12: Isolated areas 15, 16, 17, 18 : Word line 19: data storage structure 20: interlayer dielectric 21, 22, 23: insulating trench 25: selection line 26: ground line 30, 31: mask 36: neck region 40, 41, 42, 98 : Gate 44, 45: junction 60, 76, 86: memory cell 61, 62: intersection 75, 85, 87: transistor 90: channel 91: source region 92: drain region 93: hole tunneling layer 94: energy band with compensation layer 95 201027724 96 : charge trapping layer 97: barrier dielectric layer

Claims (1)

201027724 ไธƒ ใ€็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ ไธ€็จฎ้žๆฎ็™ผ่จ˜ๆ†ถ่ฃ็ฝฎ๏ผŒๅŒ…ๅซยทยท ๅŸ‹่—้€š้“ๅ€ๅŸŸ๏ผŒๅ…ถๅทฒๆ‘ป้›œๅฐŽ่ดขๅŒ…ๅซ่ค‡ๆ•ธๅ€‹ ไธ€ๅ„ฒๅญ˜็ตๆง‹ไฝๆ–ผ่ฉฒ่ค‡ๆ•ธๆขๅŠๅฐŽ้ซ” ไฝๆ–ผ่ฉฒ่ค‡ๆ•ธๅ€‹ๅŸ‹่—้€š้“ๅ€ๅŸŸ็š„็จฝ็‹€โ€™w็ฉฟ้šจ็ต•็ทฃๅฑค ่ฉฒ็ฉฟ้šจ็ต•็ทฃๅฑคไธŠ๏ผŒไปฅโ€”่ฝ‰ๆ–ผ ใ€‡ ้ซ”็ทšไน‹่ค‡ๆ•ธๅ€‹ไบคๅˆ้ปžไธŠใ€‚ใ€"ไบŒไบˆๅ…€็ทš่ˆ‡่ฏฅไบ›ๅŠๅฐŽ 2ๅฐŽไบŒ่ซ‹=ๅœๅฐŽ==่ฃ็ฝฎ๏ผŒๅ…ถๆคไธ€ ไธฆไธ”ๅปถไผธ่‡ณ่พญๅฐŽ็ด…^ใ€‚้š†่ตท๏ผŒๅ…ถ่ˆ‡่ค‡ๆ•ธ้ฐญ็‹€็‰ฉๆ•ดๅˆ iไฟ‚ๅœ็ฌฌ1้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ๏ผŒๅ…ถไธญ่ฉฒ้€š้“ๅ€ 4. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ1 ๅŸŸๆŽบ้›œ็‚บ-็ฌฌ-ๅฐŽ้›ป้ถด๏ผŒๅ…ถ2ไบ›ๅŸ‹ๆป…้€š้“ๅ€ ่ฉฒๅญ—ๅ…ƒ็ทšไน‹็›ธๅฐ้ข็š„่ฉฒ_: 3==ๆบๆฅต/ๆฒ’ๆฅตๅ€ๅŸŸไฝๆ–ผ ๆœ‰่ฉฒ็ฌฌไธ€ๅฐŽ้›ทๅˆ’่ƒฝโ€•ใ€ใ€็‰ฉไธŠโ€™ 5ไบฅๆ‘ป้›œไน‹ๆบๆฅต/ๆฑฒๆฅตๅ€ๅŸŸๅ…ท ๆœ‰็ฌฌๅฐŽ้›ปๅž‹ๆ…‹ไน‹ๆ‘ป้›œ๏ผŒๅ…ถๆฟƒๅบฆไฟ‚้ซ˜ๆ–ผ่ฉฒๅŸ‹่—้€š้“ๅ€ๅŸŸใ€‚ 5. ๅฆ‚็”ณๆ˜Žๅฐˆๅˆฉไนพๅœ็ฌฌj้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ ๅฑค่ˆ‡่ฉฒ_่จ˜ๆ†ถ่ƒžไน‹่ฉฒ้€š้“ๅ€ๅŸŸ่กจ^ๆŽฅ^่ƒž^ ็ต„ๅˆไปฅๅปบ็ซ‹-็›ธๅฐไฝŽไน‹ๅƒนๅธถ่ƒฝ้šŽ้€šฮž ่กจ้ข่™•โ€™ๅŒๆ™‚ๅœจ่ฉฒ้€š้“ๅ€ๅŸŸไน‹่ฉฒ่กจ้ขไธๅˆฐ2^ไน‹ไธ€็ฌฌ 22 201027724 ไบŒๅขžๅŠ ไน‹ๅƒนๅธถ่ƒฝ้šŽ๏ผŒไปฅๅŠๅœจ่ฉฒ้€š้“ๅ€ๅŸŸไน‹่ฉฒ่กจ้ข ็ฌฌโ€”่ท้›ขไน‹โ€”็ฌฌไบŒ่ท้›ข่™•ๅ…ทๆœ‰-้™ไฝŽไน‹ๅƒนๅธถ่ƒฝ้šŽใ€‚ ๅœ็ฌฌ1 2้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๆ›ดๅŒ…ๅซโ€”็‰นๅฎš้Ÿ“็‹€็‰ฉ ไบŒใ€็•œใ€็š†ไบŒ#็‰ฉไน‹ไธญ๏ผŒ่ฉฒ็‰นๅฎš้ฐญ็‹€็‰ฉๅŒ…ๅซไธ€ๅญ˜ๅ–้›ปๆ™ถ้ซ”๏ผŒๅ…ถๅ…ทๆœ‰ n ็‰นๆฎŠ้ฐญ็‹€็‰ฉไธญ๏ผŒไธฆๆ‘ป้›œไพ›ๅขžๅผทๆจกๅผ้‹ไฝœใ€‚ Lๅฆ‚็ฝฎ้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ่ฉฒ่ค‡ๆ•ธๅ€‹่จ˜ๆ†ถ่ƒž ๅˆฉ=็ฌฌ1้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ่ฉฒไบ›่จ˜ๆ†ถ่ƒžไน‹่ฉฒ ้€‹ๅŸŸๅ…ทๆœ‰nๅž‹ๆ‘ป้›œ๏ผŒๅ…ถๆฟƒๅบฆ็‚บไฝŽๆ–ผlxlใ€‡13/cm4 5 6 7 8ใ€‚ :ๅ€็ฏ„ๅœ็ฌฌ9้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๆ›ดๅŒ…ๅซ่ค‡ๆ•ธๅ€‹ๆ‘ป้›œ็ต• ็ทฃยฃ๏ผŒๆ–ผ9ไบฅๅ…ทๆœ‰pๅž‹ๆ‘ป้›œไน‹่ฉฒไบ› โ‘ฝ1 โ€•่ˆ‡lxlใ€‡1Wไน‹้–“๏ผŒไธ”่ฉฒๅŸบๆๅ…ทๆœ‰pๅž‹ๆœ‰ๆ‘ป้›œ่พฒๅบฆไฝๆ–ผ โน 23 1 1.ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ1้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๆ›ดๅŒ…ๅซ-ๆŽงๅˆถๅ™จ้บต 2 ไธ€๏ผŒๅๅฃ“ๆไพ›้›ป่ทฏ๏ผŒๅ…ถๅฏๅŸท่กŒโ€”็จ‹ๅผๅŒ–้‹ไฝœ๏ผŒ__ๆŠน้™ค้‹^๏ผŒใ€่ˆ‡ 3 ๆ‘ป้›œ็‰ฉไปฅไพ›็ฉบไนๆจกๅผ้‹ไฝœไน‹็”จ๏ผ› ใ€ๅ‹™้›œnๅž‹ 4 ^ๅ–้‹ไฝœโ€™่ฉฒๆŠน้™ค้‹ไฝœๅŒ…ๅซๆ–ฝๅŠ โ€”่ฒžๅ‘่ณดๆ–ผ่ฉฒๅญ—ๅ…ƒ็ทš่ก€ไบŒ 5 ็’‰็–‹่จ˜ๆ†ถ่ƒžไน‹ๅŸ‹่—ๅŸ‹่—้€š้“้–“๏ผŒไปฅๅผ•็™ผ้›ปๆดž็ฉฟ้šงใ€‚/ใ€ 6 โ€”็จฎ็ฉ้ซ”้›ป่ทฏ่จ˜ๆ†ถ่ฃ็ฝฎ๏ผŒๅŒ…ๅซ๏ผš 7 -ๅŠๅฐŽ้ซ”้ฐญ็‹€็‰ฉ๏ผŒๅ…ถๅปถไผธ้›ข้–‹ไธ€ๅŸบๆ๏ผŒไธฆๅ…ทๆœ‰ไธ€ 8 ่ฉฒ.้ฐญ็‹€็‰ฉๅŒ…ๅซๆฒฟ่‘—่ฉฒๆœซ็ซฏ้š†่ตทไน‹ไธ€ๅŸ‹่—้€š้“ ใ€ 201027724 ่ค‡ๆ•ธๅ€‹่จ˜ๆ†ถ่ƒž้–˜ๆฅต่จญ็ฝฎๆ–ผ่ฉฒๆฒฟ่‘—่ฉฒ็ธ›็‹€็‰ฉๆœซ็ซฏ้š†่ตทไน‹่ฉฒๅŸ‹ ่—ๅŸ‹่—้€š้“ๅ€ๅŸŸไน‹ไธŠ๏ผŒ่ฉฒ่ค‡ๆ•ธๅ€‹่จ˜ๆ†ถ่ƒž้–˜ๆฅตๅŒ…ๅซไธ€็ฌฌไธ€่จ˜ๆ†ถ่ƒž ้–˜ๆฅต่ˆ‡ไธ€ๆœ€ๆœซ่จ˜ๆ†ถ่ƒž้–˜ๆฅต๏ผŒๅ…ทๆœ‰็ต•็ทฃๆง‹ไปถๅฐ‡ไธฒๅˆ—ไน‹้–˜ๆฅต่ˆ‡็›ธ้„ฐ ไน‹ไธฒๅˆ—้–˜ๆฅต้š”็ต•๏ผ› ่ค‡ๆ•ธๅ€‹ไป‹้›ป้›ป่ทๆ•ๆ‰ไฝ็ฝฎไฝๆ–ผ่ฉฒ่ค‡ๆ•ธๅ€‹ไธฒๅˆ—่จ˜ๆ†ถ่ƒž้–˜ๆฅตไน‹ ่ถ…้Žไธ€่€…ไน‹ไธ‹๏ผŒ่ฉฒไป‹้›ป้›ป่ทๆ•ๆ‰ไฝ็ฝฎๅŒ…ๅซไธ€ๅคšๅฑค็ฉฟ้šง็ต•็ทฃ็ต ๆง‹โ€™ไธ€้›ป่ทๅ„ฒๅญ˜ๅฑค่จญ็ฝฎๆ–ผ่ฉฒ็ฉฟ้šง็ต•็ทฃ็ตๆง‹ไน‹ไธŠ๏ผŒไปฅๅŠไธ€้˜ป้šœ็ต• ็ทฃๅฑค่จญ็ฝฎๆ–ผ่ฉฒ้›ป่ทๅ„ฒๅญ˜ๅฑคไน‹ไธŠ๏ผ›ไปฅๅŠ ไธ€ไธฒๅˆ—้ธๆ“‡้–˜ๆฅตไฝๆ–ผ่ฉฒ็ธ›็‹€็‰ฉ็š„่ฉฒๆœซ็ซฏ้š†่ตทไน‹ไธŠ๏ผŒๅ…ถ่ˆ‡่ฉฒ็ฌฌ ไธ€่จ˜ๆ†ถ่ƒž้–˜ๆฅตๅˆ†้š”๏ผŒๅŒๆ™‚ๅ…ทๆœ‰ไธ€ Pๅž‹้€š้“ๅ€ๅŸŸไฝๆ–ผ่ฉฒ้ฐญ็‹€็‰ฉ็š„ฮ˜ ่ฉฒๆœซ็ซฏ้š†่ตทใ€‚ 13. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ12้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ่ฉฒๅŸบๆๅŒ…ๅซไธ€ๅŠ ๅฐŽ้ซ”ไธป้ซ”โ€™ๅŒๆ™‚่ฉฒ้ฐญ็‹€็‰ฉไฟ‚่ˆ‡่ฉฒๅŠๅฐŽ้ซ”ไธป้ซ”ๆ•ดๅˆ๏ผŒไธฆไธ”ๅปถไผธ่‡ณ ่ฉฒๅŠๅฐŽ้ซ”ไธป้ซ”ไน‹ๅค–ใ€‚ 14. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ12้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๆ›ดๅŒ…ๅซ่ค‡ๆ•ธๅ€‹ๆ‘ป้›œๆบ /ๆฑฒๆฅตๅ€ๅŸŸๆ–ผ่ฉฒ้ฐญ็‹€็‰ฉไน‹ไธŠ๏ผŒไธ”ไฝๆ–ผ่ฉฒ่ค‡ๆ•ธๅ€‹่จ˜ๆ†ถ่ƒž้–˜ๆฅตไธญ็š„่จ˜ ๆ†ถ่ƒž้–˜ๆฅตไน‹็›ธๅฐไพง๏ผŒ่ฉฒ่ค‡ๆ•ธๅ€‹ๆ‘ป้›œๆบ/ๆฑฒๆฅตๅ€ๅŸŸๅ…ทๆœ‰nๅž‹ๆ‘ป้›œใ€‚้ฒ 15. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ12้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ่ฉฒๅคšๅฑค็ฉฟ้šง็ต•็ทฃ ๅฑคๆŽฅ่งธ่ฉฒๅŸ‹่—้€š้“ๅ€ๅŸŸไน‹ไธ€่กจ้ข๏ผŒไธฆๅŒ…ๅซไธ€ๆๆ–™ไน‹็ต„ๅˆ๏ผŒๅ…ถๅฏ ๅปบ็ซ‹ไธ€็›ธๅฐไฝŽไน‹ๅƒนๅธถ่ƒฝ้šŽๆ–ผๆŽฅ่ฟ‘่ฉฒ้€š้“ๅ€ๅŸŸไน‹่ฉฒ่กจ้ข่™•๏ผŒ^ๆ™‚ ๅœจ่ฉฒ้€š้“ๅ€ๅŸŸไน‹่ฉฒ่กจ้ขไธๅˆฐ2 nmไน‹ไธ€็ฌฌไธ€่ท้›ข่™•ๅ…ทๆœ‰ไธ€ๅขžๅŠ  ไน‹ๅƒนๅธถ่ƒฝ้šŽ๏ผŒไปฅๅŠๅœจ่ฉฒ้€š้“ๅ€ๅŸŸไน‹่ฉฒ่กจ้ขๅคงๆ–ผ่ฉฒ็ฌฌไธ€่ท้›ข^ไธ€ ็ฌฌไบŒ่ท้›ข่™•ๅ…ทๆœ‰ไธ€้™ไฝŽไน‹ๅƒนๅธถ่ƒฝ้šŽใ€‚ 16. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ12้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ่ฉฒ้€š้“ๅ€ๅŸŸๅ…ทๆœ‰ 24 201027724 ฮทๅž‹ๆ‘ป้›œ๏ผŒๅ…ถๆฟƒๅบฆ็‚บไฝŽๆ–ผlxlใ€‡i8/cm3ใ€‚ 17. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌ16้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญ่ฉฒๅŸบๆๅŒ…ๅซไธ€ p ๅž‹ๅŠๅฐŽ้ซ”ไธป้ซ”๏ผŒๅŒๆ™‚่ฉฒ้ฐญ็‹€็‰ฉไฟ‚่ˆ‡่ฉฒๅŠๅฐŽ้ซ”ไธป้ซ”ๆ•ดๅˆ๏ผŒไธฆไธ”ๅปถ ไผธ่‡ณ่ฉฒๅŠๅฐŽ้ซ”ไธป้ซ”ไน‹ๅค–๏ผŒไธ”ๅŒ…ๅซๆ‘ป้›œ็ต•็ทฃๅ€ๅŸŸๆ–ผ่ฉฒ้ฐญ็‹€็‰ฉไธญๅ…ท ๆœ‰ไธ€ๆฟƒๅบฆไฝๆ–ผlxlใ€‡17/cm3่ˆ‡lxlใ€‡!8/cm3ไน‹้–“๏ผŒไธ”่ฉฒๆ‘ป้›œ็ต•็ทฃๅ€ ๅŸŸๅ…ทๆœ‰ฯๅž‹ๆ›้›œใ€‚ 18. ๅฆ‚็”ณ่ซ‹ๅฐˆๅˆฉ็ฏ„ๅœ็ฌฌu้ …ๆ‰€่ฟฐไน‹่ฃ็ฝฎ๏ผŒๅ…ถไธญๅŒ…ๅซไธ€ๆŽงๅˆถๅ™จ่ˆ‡ ๅ‚ท ๅๅฃ“ไพ›ๆ‡‰้›ป่ทฏ๏ผŒๅ…ถๅฏๅŸท่กŒ-็จ‹ๅผๅŒ–้‹ไฝœโ€™ -ๆŠน้™ค้‹ไฝœ๏ผŒ ้†ซ =ไธ€ฮชๅ–้‹ไฝœโ€™่ฉฒๆŠน้™ค้‹ไฝœๅŒ…ๅซๆ–ฝๅŠ ไธ€่ฒ ๅ‘้›ปๅฃ“ๆ–ผ่ฉฒๅญ—ๅ…ƒ็ทš่ˆ‡ ้ธ็–‹5ๅทฑๆ†ถ่ƒžไน‹่ฉฒๅŸ‹่—้€š้“โ€™ไปฅๅผ•็™ผ้›ปๆดž็ฉฟ้šงใ€‚ โน 25201027724 VII. Patent application scope A non-volatile memory device, comprising: a buried channel region, the doped wealth guide comprising a plurality of storage structures located in the plurality of semiconductors located in the plurality of buried channel regions The insulating layer is passed over the insulating layer to be transferred to a plurality of intersections of the body line. , " ไบŒไบˆๅ…€็บฟand these semi-guided guides 2 please = guidance == device, one of the shirts and extended to the resignation red ^. The ridge, which is integrated with the plurality of fins, wherein the channel region is 4. The doped region of the first domain is doped as a -th conductive crane, and the two channels are buried. The _: 3 == source/no-polar region of the opposite side of the word line is located at the source/drain region of the first guided lightning energy-, and the object has a first conductivity The doping of the type is higher than the buried channel region. 5. As stated in the device of paragraph j of the patent circumstance, wherein the layer is combined with the channel region of the _ memory cell to establish a relatively low valence band energy level at the surface of the surface at the same time The surface of the channel region is less than 2^22, the second valence band energy level, and the surface distance - the distance - the second distance at the second region of the channel region has a - reduced valence band energy level. The apparatus described in Item 12, further comprising - a specific Korean second, a livestock, a second body, the specific fin comprising an access transistor having n special fins, and Doping is performed in enhanced mode. The device of claim 1, wherein the plurality of memory cells are the device according to item 1, wherein the cells of the memory cells have n-type doping, and the concentration thereof is lower than lxlใ€‡13/cm4. 5 6 7 8. The device of claim 9 further comprises a plurality of doped insulation layers between the (10)1 and lxlใ€‡1W having a p-type doping at 9 Hz, and the substrate has a p-type doping The agricultural degree is located at โน 23 1 1. The device according to claim 1 of the patent application, further comprising a controller surface 2, a bias supply circuit, which can be operated-programmed, __ erased, ^, And the 3 dopants are used for the operation of the depletion mode; the miscellaneous n-type 4 ^ take operation 'the erase operation includes the application - the burial channel between the buried cell and the memory cell of the word line To initiate tunneling. /, 6 - an integrated circuit memory device, comprising: 7 - a semiconductor fin extending from a substrate and having an 8 . The fin comprises a buried channel along the end ridge, 201027724 plural The memory cell gate is disposed on the buried buried channel region bulging along the end of the binding body, and the plurality of memory cell gates comprise a first memory cell gate and a last memory cell gate, and are insulated The component isolates the gate of the series from the adjacent serial gate; the plurality of dielectric charge trapping locations are located under more than one of the plurality of serial memory gates, the dielectric charge trapping location comprising a plurality of a layer tunneling insulating structure, a charge storage layer is disposed over the tunneling insulating structure, and a barrier insulating layer is disposed over the charge storage layer; and a series of select gates is located at the end of the gate Above the ridge, it is separated from the first memory cell gate while having a P-type channel region located at the end of the fin. 13. The device of claim 12, wherein the substrate comprises a half conductor body' while the fin is integrated with the semiconductor body and extends outside of the semiconductor body. 14. The device of claim 12, further comprising a plurality of dopant source/drain regions over the fin, and a relative of the memory cell gates in the plurality of memory cell gates On the side, the plurality of dopant source/drain regions have n-type doping. The device of claim 12, wherein the multilayer tunneling insulating layer contacts a surface of the buried channel region and comprises a combination of materials that establish a relatively low valence band energy level Near the surface of the channel region, the surface has an increased valence band energy level at a first distance less than 2 nm of the surface of the channel region, and the surface in the channel region is greater than the first distance ^ A second distance has a reduced valence band energy level. 16. The device of claim 12, wherein the channel region has 24 201027724 n-type doping at a concentration of less than lxl ใ€‡ i8 / cm 3 . 17. The device of claim 16, wherein the substrate comprises a p-type semiconductor body while the fin is integrated with the semiconductor body and extends outside the semiconductor body and comprises doping The insulating region has a concentration in the fin between lxlใ€‡17/cm3 and lxlใ€‡!8/cm3, and the doped insulating region has a p-type impurity. 18. The device of claim 5, wherein the device comprises a controller and a bias bias supply circuit, the executable-programming operation is performed - the erase operation, the medical operation, the operation operation, and the erase operation The tunneling channel is applied to apply a negative voltage to the word line and select the 5 cells to initiate tunneling. โน 25
TW098144279A 2009-01-15 2009-12-22 Depletion-mode charge-trapping flash device TWI415249B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14493409P 2009-01-15 2009-01-15
US12/553,758 US8860124B2 (en) 2009-01-15 2009-09-03 Depletion-mode charge-trapping flash device

Publications (2)

Publication Number Publication Date
TW201027724A true TW201027724A (en) 2010-07-16
TWI415249B TWI415249B (en) 2013-11-11

Family

ID=42318436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098144279A TWI415249B (en) 2009-01-15 2009-12-22 Depletion-mode charge-trapping flash device

Country Status (3)

Country Link
US (1) US8860124B2 (en)
CN (1) CN101814507B (en)
TW (1) TWI415249B (en)

Cited By (4)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
US9305936B2 (en) 2013-07-03 2016-04-05 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US9385193B2 (en) 2011-05-26 2016-07-05 United Microelectronics Corp. FINFET transistor structure and method for making the same
TWI556354B (en) * 2014-12-17 2016-11-01 ๆ—บๅฎ้›ปๅญ่‚กไปฝๆœ‰้™ๅ…ฌๅธ Memory device and method of manufacturing the same
TWI571960B (en) * 2015-02-05 2017-02-21 ๆ—บๅฎ้›ปๅญ่‚กไปฝๆœ‰้™ๅ…ฌๅธ Semiconductor structure and method for manufacturing the same

Families Citing this family (37)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
US8772858B2 (en) * 2006-10-11 2014-07-08 Macronix International Co., Ltd. Vertical channel memory and manufacturing method thereof and operating method using the same
US8243526B2 (en) * 2009-12-14 2012-08-14 Intel Corporation Depletion mode circuit protection device
US20120217467A1 (en) * 2011-02-24 2012-08-30 Globalfoundries Singapore Pte. Ltd. Buried channel finfet sonos with improved p/e cycling endurance
CN102820334B (en) * 2011-06-08 2017-04-12 ่”ๅŽ็”ตๅญ่‚กไปฝๆœ‰้™ๅ…ฌๅธ Fin field effect transistor structure and method for forming fin field effect transistor structure
CN102956647B (en) * 2011-08-31 2015-04-15 ไธญๅ›ฝ็ง‘ๅญฆ้™ขๅพฎ็”ตๅญ็ ”็ฉถๆ‰€ Semiconductor device and method for manufacturing the same
US9136128B2 (en) 2011-08-31 2015-09-15 Micron Technology, Inc. Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials
CN107195684B (en) 2011-12-30 2020-12-08 ่‹ฑ็‰นๅฐ”ๅ…ฌๅธ Surrounding type groove contact part structure and manufacturing method
US8697536B1 (en) * 2012-11-27 2014-04-15 International Business Machines Corporation Locally isolated protected bulk finfet semiconductor device
US8866213B2 (en) * 2013-01-30 2014-10-21 Spansion Llc Non-Volatile memory with silicided bit line contacts
US9761721B2 (en) 2014-05-20 2017-09-12 International Business Machines Corporation Field effect transistors with self-aligned extension portions of epitaxial active regions
US11063559B2 (en) * 2015-06-05 2021-07-13 Taiwan Semiconductor Manufacturing Co., Ltd. High-implant channel semiconductor device and method for manufacturing the same
US9761584B2 (en) 2015-06-05 2017-09-12 Taiwan Semiconductor Manufacturing Co., Ltd. Buried channel semiconductor device and method for manufacturing the same
US10453855B2 (en) 2017-08-11 2019-10-22 Micron Technology, Inc. Void formation in charge trap structures
US10680006B2 (en) 2017-08-11 2020-06-09 Micron Technology, Inc. Charge trap structure with barrier to blocking region
US10446572B2 (en) 2017-08-11 2019-10-15 Micron Technology, Inc. Void formation for charge trap structures
US10164009B1 (en) 2017-08-11 2018-12-25 Micron Technology, Inc. Memory device including voids between control gates
US10777566B2 (en) 2017-11-10 2020-09-15 Macronix International Co., Ltd. 3D array arranged for memory and in-memory sum-of-products operations
US10957392B2 (en) 2018-01-17 2021-03-23 Macronix International Co., Ltd. 2D and 3D sum-of-products array for neuromorphic computing system
US10719296B2 (en) 2018-01-17 2020-07-21 Macronix International Co., Ltd. Sum-of-products accelerator array
US10242737B1 (en) 2018-02-13 2019-03-26 Macronix International Co., Ltd. Device structure for neuromorphic computing system
US10635398B2 (en) 2018-03-15 2020-04-28 Macronix International Co., Ltd. Voltage sensing type of matrix multiplication method for neuromorphic computing system
US10664746B2 (en) 2018-07-17 2020-05-26 Macronix International Co., Ltd. Neural network system
US11138497B2 (en) 2018-07-17 2021-10-05 Macronix International Co., Ltd In-memory computing devices for neural networks
US11636325B2 (en) 2018-10-24 2023-04-25 Macronix International Co., Ltd. In-memory data pooling for machine learning
US10672469B1 (en) 2018-11-30 2020-06-02 Macronix International Co., Ltd. In-memory convolution for machine learning
US11562229B2 (en) 2018-11-30 2023-01-24 Macronix International Co., Ltd. Convolution accelerator using in-memory computation
US11934480B2 (en) 2018-12-18 2024-03-19 Macronix International Co., Ltd. NAND block architecture for in-memory multiply-and-accumulate operations
US11119674B2 (en) 2019-02-19 2021-09-14 Macronix International Co., Ltd. Memory devices and methods for operating the same
US10783963B1 (en) 2019-03-08 2020-09-22 Macronix International Co., Ltd. In-memory computation device with inter-page and intra-page data circuits
US11132176B2 (en) 2019-03-20 2021-09-28 Macronix International Co., Ltd. Non-volatile computing method in flash memory
US10910393B2 (en) 2019-04-25 2021-02-02 Macronix International Co., Ltd. 3D NOR memory having vertical source and drain structures
CN112669891B (en) * 2019-10-15 2024-05-10 ่Šฏ็ซ‹ๅ˜‰้›†ๆˆ็”ต่ทฏ(ๆญๅทž)ๆœ‰้™ๅ…ฌๅธ Erasing method of semiconductor nonvolatile memory
US11177280B1 (en) 2020-05-18 2021-11-16 Sandisk Technologies Llc Three-dimensional memory device including wrap around word lines and methods of forming the same
US11737274B2 (en) 2021-02-08 2023-08-22 Macronix International Co., Ltd. Curved channel 3D memory device
US11916011B2 (en) 2021-04-14 2024-02-27 Macronix International Co., Ltd. 3D virtual ground memory and manufacturing methods for same
US11710519B2 (en) 2021-07-06 2023-07-25 Macronix International Co., Ltd. High density memory with reference memory using grouped cells and corresponding operations
CN114937670B (en) * 2022-07-22 2022-09-20 ไธญๅ›ฝ็”ตๅญ็ง‘ๆŠ€้›†ๅ›ขๅ…ฌๅธ็ฌฌไบ”ๅๅ…ซ็ ”็ฉถๆ‰€ SONOS (silicon oxide nitride oxide semiconductor) type FinFET (Fin field effect transistor) device structure and process integration method

Family Cites Families (29)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
US5574685A (en) * 1994-09-01 1996-11-12 Advanced Micro Devices, Inc. Self-aligned buried channel/junction stacked gate flash memory cell
US5981404A (en) * 1996-11-22 1999-11-09 United Microelectronics Corp. Multilayer ONO structure
US6639835B2 (en) * 2000-02-29 2003-10-28 Micron Technology, Inc. Static NVRAM with ultra thin tunnel oxides
US6583469B1 (en) * 2002-01-28 2003-06-24 International Business Machines Corporation Self-aligned dog-bone structure for FinFET applications and methods to fabricate the same
US6657252B2 (en) * 2002-03-19 2003-12-02 International Business Machines Corporation FinFET CMOS with NVRAM capability
US6642090B1 (en) * 2002-06-03 2003-11-04 International Business Machines Corporation Fin FET devices from bulk semiconductor and method for forming
JP2004111478A (en) * 2002-09-13 2004-04-08 Sharp Corp Nonvolatile semiconductor storage device and its manufacturing method
US6815268B1 (en) * 2002-11-22 2004-11-09 Advanced Micro Devices, Inc. Method for forming a gate in a FinFET device
KR100881201B1 (en) * 2003-01-09 2009-02-05 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Memory device having side gate and method of manufacturing the same
US7244651B2 (en) * 2003-05-21 2007-07-17 Texas Instruments Incorporated Fabrication of an OTP-EPROM having reduced leakage current
US6963104B2 (en) * 2003-06-12 2005-11-08 Advanced Micro Devices, Inc. Non-volatile memory device
JP2005294789A (en) * 2004-03-10 2005-10-20 Toshiba Corp Semiconductor device and its manufacturing method
US7262084B2 (en) * 2004-04-15 2007-08-28 International Business Machines Corporation Methods for manufacturing a finFET using a conventional wafer and apparatus manufactured therefrom
KR100560818B1 (en) * 2004-06-02 2006-03-13 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ A semiconductor device and method for fabricating the same
KR100555569B1 (en) * 2004-08-06 2006-03-03 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Semiconductor device having the channel area restricted by insulating film and method of fabrication using the same
KR100652384B1 (en) * 2004-11-08 2006-12-06 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ 2 bit type non-volatile memory device and method of fabricating the same
US7298004B2 (en) * 2004-11-30 2007-11-20 Infineon Technologies Ag Charge-trapping memory cell and method for production
US7315474B2 (en) * 2005-01-03 2008-01-01 Macronix International Co., Ltd Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
KR100644405B1 (en) * 2005-03-31 2006-11-10 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Gate structure of a non-volatile memory device and method of manufacturing the same
KR100715228B1 (en) * 2005-06-18 2007-05-04 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Sonos memory device having curved surface and method for fabricating the same
KR100645065B1 (en) * 2005-06-23 2006-11-10 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Fin fet and non-volatile memory device having the same and method of forming the same
KR100682537B1 (en) * 2005-11-30 2007-02-15 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Semiconductor devices and methods of forming the same
KR100764052B1 (en) * 2006-08-03 2007-10-08 ์‚ผ์„ฑ์ „์ž์ฃผ์‹ํšŒ์‚ฌ Flash memory device with flexible address boundary and program method thereof
JP4282699B2 (en) * 2006-09-01 2009-06-24 ๆ ชๅผไผš็คพๆฑ่Š Semiconductor device
US8772858B2 (en) * 2006-10-11 2014-07-08 Macronix International Co., Ltd. Vertical channel memory and manufacturing method thereof and operating method using the same
US7811890B2 (en) * 2006-10-11 2010-10-12 Macronix International Co., Ltd. Vertical channel transistor structure and manufacturing method thereof
US8785268B2 (en) * 2006-12-21 2014-07-22 Spansion Llc Memory system with Fin FET technology
US7932551B2 (en) * 2006-12-28 2011-04-26 Samsung Electronics Co., Ltd. Nonvolatile memory device and method of fabricating the same comprising a dual fin structure
US8735990B2 (en) * 2007-02-28 2014-05-27 International Business Machines Corporation Radiation hardened FinFET

Cited By (4)

* Cited by examiner, โ€  Cited by third party
Publication number Priority date Publication date Assignee Title
US9385193B2 (en) 2011-05-26 2016-07-05 United Microelectronics Corp. FINFET transistor structure and method for making the same
US9305936B2 (en) 2013-07-03 2016-04-05 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
TWI556354B (en) * 2014-12-17 2016-11-01 ๆ—บๅฎ้›ปๅญ่‚กไปฝๆœ‰้™ๅ…ฌๅธ Memory device and method of manufacturing the same
TWI571960B (en) * 2015-02-05 2017-02-21 ๆ—บๅฎ้›ปๅญ่‚กไปฝๆœ‰้™ๅ…ฌๅธ Semiconductor structure and method for manufacturing the same

Also Published As

Publication number Publication date
US8860124B2 (en) 2014-10-14
US20100176438A1 (en) 2010-07-15
CN101814507A (en) 2010-08-25
CN101814507B (en) 2012-03-28
TWI415249B (en) 2013-11-11

Similar Documents

Publication Publication Date Title
TW201027724A (en) Depletion-mode charge-trapping flash device
TWI663715B (en) String select line gate oxide method for 3d vertical channel nand memory
US9698156B2 (en) Vertical thin-channel memory
TWI304266B (en) Memory cell and memory cell array
US9082656B2 (en) NAND flash with non-trapping switch transistors
JP5878797B2 (en) Semiconductor device and manufacturing method thereof
US8068370B2 (en) Floating gate memory device with interpoly charge trapping structure
TWI451562B (en) Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
US7859066B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
TWI642166B (en) Semiconductor device and method of manufacturing the same
JP5592214B2 (en) Manufacturing method of semiconductor device
JP5629120B2 (en) Semiconductor device
JP5472894B2 (en) Nonvolatile semiconductor memory device
TW569437B (en) Nonvolatile memory structures and fabrication methods
TW200939405A (en) Semiconductor constructions, NAND unit cells, methods of forming semiconductor constructions, and methods of forming NAND unit cells
JP2012248652A (en) Semiconductor device and manufacturing method of the same
JP2008098602A (en) Laminated thin film transistor type nonvolatile memory device and method of manufacturing thereof
JP6998267B2 (en) Semiconductor devices and their manufacturing methods
TWI704682B (en) Low resistance vertical channel 3d memory
JP6620046B2 (en) Semiconductor device manufacturing method and semiconductor device
TW200820449A (en) Semiconductor device
TW201838193A (en) Semiconductor device and method of manufacturing the semiconductor device
JP2009054942A (en) Nonvolatile semiconductor storage device
JP2016034045A (en) Semiconductor device
JP2005116582A (en) Semiconductor device and its manufacturing method