TW201027724A - Depletion-mode charge-trapping flash device - Google Patents
Depletion-mode charge-trapping flash device Download PDFInfo
- Publication number
- TW201027724A TW201027724A TW098144279A TW98144279A TW201027724A TW 201027724 A TW201027724 A TW 201027724A TW 098144279 A TW098144279 A TW 098144279A TW 98144279 A TW98144279 A TW 98144279A TW 201027724 A TW201027724 A TW 201027724A
- Authority
- TW
- Taiwan
- Prior art keywords
- channel region
- memory cell
- layer
- region
- fin
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000003860 storage Methods 0.000 claims abstract description 17
- 108091006146 Channels Proteins 0.000 claims description 86
- 230000005641 tunneling Effects 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 17
- 230000004888 barrier function Effects 0.000 claims description 8
- 239000002019 doping agent Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 3
- 108010075750 P-Type Calcium Channels Proteins 0.000 claims description 2
- 238000009933 burial Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 1
- 244000144972 livestock Species 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 58
- 238000000034 method Methods 0.000 description 12
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 11
- 238000009826 distribution Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000002269 spontaneous effect Effects 0.000 description 5
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 4
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical group O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- LPQOADBMXVRBNX-UHFFFAOYSA-N ac1ldcw0 Chemical compound Cl.C1CN(C)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN3CCSC1=C32 LPQOADBMXVRBNX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000010000 changlu Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- SEOYNUHKXVGWFU-UHFFFAOYSA-N mu-oxidobis(oxidonitrogen) Chemical compound O=NON=O SEOYNUHKXVGWFU-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
- H01L29/513—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0483—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
201027724 ๅ ญใ็ผๆ่ชชๆ๏ผ ใ็ผๆๆๅฑฌไนๆ่ก้ ๅใ ๆฌ็ผๆไฟ้ๆผ้ป่ทๆๆ่จๆถ่ฃ็ฝฎ๏ผๅ ๅซไฝฟ็จๆผไธ ฮฮฮฯๅฟซ ้็ตๆ ็้ป่ทๆๆ่จๆถ่ฃ็ฝฎใ ใ ใๅ ๅๆ่กใ ๅฟซ้่จๆถ้ซ็บไธ็จฎ้ๆฎ็ผ็ฉ้ซ้ป่ทฏ่จๆถ้ซ ๆถ้ซไฟๆก็จๆตฎๅ้ๆฅต่จๆถ่ใ้จ่่จๆถ่ฃ็ฝฎไน =้ๆฅต่จๆถ่ไน_ๅ ้ ่ฟ๏ผๅฒๅญๅจ็ธ_ๅ้ๆฅตไธญ็ ๅณ้ ๆๅ้ก๏ผๅ ๆญคๅฝขๆ้ๅถ๏ผไฝฟๅพๆก็จๆตฎๅ ้ๆฅตไนๅฟซ้่จ่ณดๅฏๅบฆ็กๆณๆๅใๅฆโ ==่;;้ป่ทๆๆ่จๆถ่๏ผๅ ถๆก็จ้ป2= ใใๅญๅpU:ไบๆๆ5ๅทฑๆถ่ไฟๅฉ็จ้ป่ทๆๆๆๆโไธๆๅฆ ่ไน้็็ธไบๅฝฑ้ฟโไธฆไธๅฏไปฅๆ็จ โน ๅ ถไธญๅ ธ้ปๆถ้ซ(FET)็ตๆงโ ๅ ๆด่* = ็ตฒ่้โไปฅๅ่&ไป้ปๆๆ M ้ข็้ๆฅตใๅ ถไธญ่ฉฒไป้ปๆๆๅ ๅซ็ฉฟ้งไป้ป gๅฑคๅใๆฒๆฅต่้้ๅฝขๆๆผๅฝป(s)ไธ๏ผ็ฉฟ้จ (N)๏ผ้ป้ไป้ป:ไบ)ไบไธJ่ทๅฒๅญๅฑค็ฑๆฐฎๅ็ฝๅฝขๆ ็ณๅคโปใๆญค็จฎ=8ๆฐง:=)ๅฝขๆโ่้ๆฅตๅ็บๅคๆถ ไพ้ฒ้ฒไป็จๅผๅ๏ผๆ่ ้ป่ดข้งใ้ปๅญ้ๆพ 3 201027724 ้ป่ทๆๆ่จๆถ่็็ ็ฉถๆนๅไนไธ็บNANDๅ็็ตๆงใ่ ไพ่่จ๏ผ็ธ้็ ็ฉถๆ Shin e. al.๏ผโA Highly Reliable SONOS-type NAND Flash Memory Cell with A1203 or Top201027724 VI. Description of the Invention: [Technical Field] The present invention relates to a charge trap memory device including a charge trap memory device for use in a flash configuration. [Prior Art] Flash memory is a non-volatile integrated circuit memory. The memory system uses floating gate memory cells. As the memory device = the gate of the memory cell is close to the source, the problem is stored in the phase-moving gate, thus forming a limitation, so that the fast flash density of the floating open is not improved. Another - == cell;; charge trapping memory cell, which uses electricity 2 = ,, and mobilization pU: captures 5 cell memory cells using charge trapping material 'will not interact as a cell' and can be applied The typical transistor (FET) structure 'surge and * = wire and record' and borrow & dielectric material M away from the gate. Wherein the dielectric material comprises a tunneling dielectric g layer, the immersion and the channel are formed on the (s), the (N), the barrier dielectric: 2) the upper J storage layer is formed of tantalum nitride Shi Xi (8). This type of =8 oxygen: =) forms 'and the closed-pole is polycrystalline to enter the ไป program, or the electric tunnel, electron release 3 201027724 One of the research directions of charge trapping memory cells is the NAND type structure. For example, the related research is Shin e. al., "A Highly Reliable SONOS-type NAND Flash Memory Cell with A1203 or Top
Oxideโ IEDM๏ผ2003 (MANOS)ไปฅๅ Shin et alโ โA Novel NAND-type MONOS Memory using 63nm ProcessOxide" IEDM, 2003 (MANOS) and Shin et al" "A Novel NAND-type MONOS Memory using 63nm Process
Technology for a Multi-Gigabit Flash EEPROMs๏ผ๏ผ๏ผIEEE 2005ยทใ ๅจNANDๅ็ตๆงไธญโ่จๆถ่ๆๆๅบๅ๏ผๆไปฅ่ฎๅ่ณๆไน ้ปๆตๅฏๆต็ถไธ็ณปๅไน่จๆถ่ใๆญค็ฉฟ่ถ่จๆถ่ไน่ทฏๅพ้ๅถ้ป - ๆตไนๅคงๅฐ่้ๅบฆ๏ผไนๅๆๅฝฑ้ฟๅฎๆ่ฎๅๆไฝไนๆ็ใ โฉ ๆฌๆกไน็ผๆไบบๆพๅ่้ป่ทๆๆ่จๆถ้ซไน็ ็ฉถ๏ผๅ ถไฟไฝฟ็จ ่ฝๅธถๅ ๅทฅ๏ผbandgap engineered )้ป่ทๆๆๆ่ก๏ผ็จฑ็บ BE-SONOSใBE-SONOS่จๆถ่ไนๅค็จฎๅฏฆๆฝไพๅฏๅ่ฆ็พๅ ๅฐๅฉ7,426,440B2( Lue )ไปฅๅ็พๅๅฐๅฉๅ ฌ้่2007/0029625 (Lueetal.^BE-SONOSไน็น่ฒ็บๅฏไปฅๅจ็ธๅฐไฝ้ปๅ ดไนๆ ๆณไธ้ปๆญข้ป่ท็ฉฟ้ง๏ผ่ๅฏไปฅๅจไธญ้ซ้ปๅ ดๆ ๆณไธ่ด่ฝ้ๅธธๆ ๆ็็็ฉฟ้งใBE-SONOSๅ ทๆ่็จ่็ฉฉๅฎไน็นๆงใๅๆ๏ผ ไปฅไธๅ ฉ็ฏๆ็ปไบฆๆพๅปบ่ญฐๅจ้ฐญๅผๅ ดๆ้ปๆถ้ซ๏ผFinFET)้ๆฎ ็ผ่จๆถ้ซไธญไฝฟ็จBE-SONOSๆ่ก๏ผ็พๅๅฐๅฉๅ ฌ้่ 2008/0087946 ( Hsu et al.)่็พๅๅฐๅฉๅ ฌ้่ 2008/0087942 (Hsu et al.) ้ป่ทๆๆ่ฃ็ฝฎ็ๅธธ่ฆๅ้กไนไธ๏ผๅณๆฏ็ธ่ผๆผๆตฎๅ้ๆฅต NANDๅฟซ้่่จโ่จๆถๅ้้ๅธธๅไธๆๅๆญฃ็Vtๅ็งป๏ผ ไธฆๅ ็บๆญค็จฎ่จญ่จ้่ฆ่ผ้ซ็้้้ๆฅต้ปๅฃ๏ผ้ ๆ้ป่ทฏ่จญ่จ ไนๅฐ้ฃใๅทฒๆๆก็จๅฆ้ซๅๅฝๆธ้ๆฅต่ๅ ถไปๆ่กไพไฝฟๅพๆน้ค ็ๆฒ็ยงๅทฑๆถๅ้็บ่ฒ ๅผ๏ผ็ถ่๏ผๆญคๅจ่ผ้ซ่จ็้็ดๆไฝไน 4 201027724 ๅพๅไป็ถๆ้ ๆๅ้กใ โฒ โฒๅ ๆญค็ข็้ๆฑ๏ผๅธๆๆไพไธ็จฎๅฏไปฅๆๅNAND็ตๆงไน ๆ่ฝ๏ผไธฆไธๅฎนๆ่ฃฝไฝ็ไป้ป้ป่ทๆๆ่จๆถ่ใ ใ็ผๆๅ ๅฎนใ ๆฌ็ผๆๆญ้ฒไธ็จฎ็ฉ้ซ้ป่ทฏ่จๆถ่ฃ็ฝฎ๏ผๅ ๅซ้ป่ทๆๆ่จๆถ ๏ผ๏ผๅ ถ่จญ็ฝฎ้กไผผๆผfinFET็ตๆ ๏ผไธฆๅ ทๆไธๆป้ไนๅ่้้ ๅๅ๏ผๅฏไพ็ฉบไนๆจกๅผๆไฝใๅ ๆญค๏ผๅฐn้้่จๆถ่่่จ๏ผTechnology for a Multi-Gigabit Flash EEPROMs,,, IEEE 2005. In the NAND type structure, the memory cells are arranged in a sequence, so the current of reading data can flow through a series of memory cells. This path through the memory cell limits the size and speed of the current-flow and also affects the efficiency of the read operation. 10 The inventor of this case has been involved in the study of charge trapping memory, which uses bandgap engineered charge trapping technology called BE-SONOS. Various embodiments of BE-SONOS memory cells can be found in U.S. Patent No. 7,426,440 B2 (Lue) and U.S. Patent Publication No. 2007/0029625 (Lueetal.^BE-SONOS is characterized by the ability to prevent charge tunneling in the case of relatively low electric fields. Very efficient tunneling can be achieved in the case of medium to high electric fields. BE-SONOS has the characteristics of durability and stability. At the same time, the following two documents have also suggested the use of BE in FinFET non-volatile memory. -SONOS technology: U.S. Patent Publication No. 2008/0087946 (Hsu et al.) and U.S. Patent Publication No. 2008/0087942 (Hsu et al.) One of the common problems with charge trapping devices is that they are faster than floating gate NAND. In terms of flash, the 'memory interval is usually upwards toward a positive Vt offset, and because this design requires a higher pass gate voltage, the circuit design is difficult. It has been used such as high work function gates and other techniques to make the wipe In addition to the sorrowful ยง recall interval is negative, however, this tendency in the higher critical class operation 4 201027724 will still cause problems. โฒ โฒ therefore generate demand, hoping to provide a way to improve NAN The structure of the D structure is easy to fabricate the dielectric charge to capture the memory cell. SUMMARY OF THE INVENTION The present invention discloses an integrated circuit memory device including a charge trap memory, which is similar to the finFET configuration and has a doping The buried channel area can be operated in a depleted mode. Therefore, for n-channel memory cells,
๏ผๅ่้้ๅ ทๆฮทๅไนๆป้็ฉ๏ผไปฅ็บ่จๆถ่ๅปบ็ซไธ้ๅธธ็บ ใ้ๅใไน็ๆ ใไฝๆผ่ฉฒๅ่้้ไนไธ็้ป่ทๆๆ็ตๆงๅฏ ๅฒๅญ้ป่ท๏ผไปฅ่ช็ผไธๅๆๅคๅ้ซ่จ็้ปๅฃ็ๆ ๏ผๅ ถๅ ทๆๆญฃ ่จ็้ปๅฃvT๏ผๅ ทๆ่ฒ ่จ็้ปๅฃVt (ไพๅฆ้ๅธธ็บ้ๅ๏ผไน ไฝ่จ็็ๆ ใ่ฉฒ็ตๆงๅฏๅฉ็จใ็กๆฅ้ขใ็ตๆ ๅฎๆๅ ถไธญ่ฉฒ ๅ่้้ๅๅๅปถไผธไฝ็บ่ทจ่ถ่คๆธ่จๆถ่ไน้ฃ็บๅๅ๏ผใ่^ ๆๅนฒๆพๅ ทๆ่ผ้ซๆป้ๆฟๅบฆ็ๆบๆฅต/ๆฑฒๆฅตๅๅใๆฟไปฃๅฐ๏ผๅฏๆก ็จๆบๆฅต/ๆฑฒๆฅตๅๅๅๅใ็ฑๆผๅ่้้ไน่จญ่จ๏ผๅจๅณ็ตฑไป ้ป่ทๆๆ่จๆถ่ไธญ๏ผ่จ็้ปๅฃVtๅไธๅ็งปไน็ๆ ๆ่ขซ่ฃ ๅใๅ ๆญค๏ผๆญค่ๆๆญ้ฒไน่จๆถ่ๅฏ้ฉ็จๆผNAND็คพ ้่จๆถ้ซใ ^ ๆญค่ๆญ้ฒไนๅบๆฌ่จๆถ่ฃ็ฝฎๅ ๅซ็บๆผๅบๆไธ็่คๆธ ้ซ็ท๏ผ่ฉฒไบๅๅฐ้ซ็ทๅ ๅซๆป้ไนๅ่้้ๅๅ๏ผๅ ถๅฏไพๅค ไนๆจกๅผ้ไฝใไธๅฒๅญ็ตๆงไฝๆผ่ฉฒไบๅๅฐ้ซ็ทไนไธ๏ผๅ ^ไบ ๆผ่ฉฒ้ฐญ็็ฉไน้้ๅๅไธ็็ฉฟ้ง็ต็ทฃๅฑคใไฝๆผ่ฉฒ็ฉฟ้ง^ไฝ ๅฑคไธ็้ป่ทๅฒๅญๅฑคใไปฅๅไฝๆผ่ฉฒ้ป่ทๅฒๅญๅฑคไธ็้ป้็ต$ ๅฑคใ่คๆธๅญๅ ็ทไฝๆผ่ฉฒๅฒๅญ็ตๆงไนไธ๏ผไธฆ่ทจ่ถๅๅฐ้ซ็ทไน 5 201027724 ไบๅ ถไธญ่คๆธๅ่จๆถ่ไฝๆผ่ฉฒๅญๅ ็ท่่ฉฒๅๅฐ้ซ็ท ^ ^้ปไธใๅจ้ ่ฟไนๅบๆไธญ๏ผๅณ้กไผผfinFETไนๅฏฆ ็ทไบๅฐ้ซไธป้ซไปฅๅ่คๆธๅๅฐ้ซ็ทโ่ฉฒไบๅThe buried channel has an n-type dopant to establish a normally "on" state for the memory cell. A charge trapping structure over the buried channel can store charge to induce one or more high threshold voltage states having a positive threshold voltage vT with a low critical state of a negative threshold voltage Vt (e.g., typically on). The structure can be completed using a "no-junction" configuration in which the buried channel region extends as a continuous region across a plurality of memory cells, and interferes with a source/drain region having a higher doping concentration. Alternatively, a source/drain region region can be used. Due to the design of the buried channel, in the conventional dielectric charge trapping memory cell, the state in which the threshold voltage Vt is shifted upward is compensated. Therefore, the memory cells disclosed herein can be applied to NAND flash memory. ^ The basic memory device disclosed herein comprises a plurality of body lines on a substrate, the semiconductor lines comprising doped buried channel regions that are operable in a depleted mode. a storage structure is disposed over the plurality of semiconductor lines, a tunneling insulating layer on the channel region of the fin, a charge storage layer on the tunneling layer, and a charge storage layer on the charge storage layer The barrier is over $layer. The complex digital element line is located above the storage structure and spans the semiconductor line 5 201027724 2 wherein a plurality of memory cells are located at the word line and the semiconductor line ^ ^ point. In the substrate close to it, that is, the solid conductor two conductor body like the finFET and the plurality of semiconductor wires
่ฉฒๅ่้้ๅๅๅฐ้ปๆง่ณช็ธๅไน=่ฉฒ ^็^ไน้่ตท่ๅบๆ้็ตH ็ทๅฏ่็ฑ็ต็ทฃ็ตๆงๆๅ ถไปๆน่ฎ่ฉฒๅบๆH ไธฐ ๆHๆญ้ฒฮ่จๆถ่ๅ ๅซNAND่จๆถ่โๅ ถๅ ๅซไธๅๅฐ ฯ ๆๅปถไผธ๏ผไธฆๅ ทๆ-ๆซ็ซฏ้่ตท๏ผๅ ถไธญ่ฉฒ้ฐญ็ ้็ซฏ้่ตท(ไฝๆผๅ ถไธๅ/ๆๆผ่ฉฒ้่ตทไน-ๅดๆ ๅฏไพไปไนๆ=้ๅๅใ่ฉฒๅ้้ๆป้ฮทๅๆบ้็ฉ๏ผ ้ไฝใ่คๆธ่จๆถ่้ๆฅต๏ผไพๅฆๅญๅ ็ทไนไธ้จ ้ฐญ็็ฉๆซ็ซฏ้่ตทไนๅ่้้ๅๅไธ๏ผ่ฉฒ ้ป่ทไบไบr โ่จๆถ่้ๆฅตไปฅๅๆๅพ่จๆถ่้ๆฅตใไป้ป ้ๆฅตไนไธ^ไฝๆผ่ถ ้ไธๅ๏ผไพๅฆ16่32)็่จๆถ่ ็ฝฒ๏ผไฝๆๆไฝ็ฝฎๅ ๅซๅคๅฑค็ฉฟ้็ต็ทฃ็ตๆง๏ผ-้ป่ท ็ฝฎๆผไปฮๆฝๅฒ^้็ต็ทฃ็ตๆงไนไธโไปฅๅโ้ป้็ต็ทฃๅฑค่จญ ฯ ไธฆ่่ฉฒ็ฌฌไธ่จๆถ่้ๆฅตๅ ทๆ้้๏ผไบฆๅจ่ฉฒ ่ฝ็ไนๆซใ้่ตทไนไธๆโpๅ้้ๅๅใ ไน้ปๅฐ็บ่ฝๅธถๅ ๅซไน็ต่ณด๏ผ็งไพๆน้คๆจกๅผ ๆ!็ปไบบ่ฝๅธถๅ ๅซไน็ต็ทฃ้ซไน็นๆง็บๅ ๅซ่คๆธๆ โ ็ตฒๆญง็ซๅงไฝ็ๅนๅธถ ่ไธๅณๆ/ ่ฉฒ่กจ้ขไธๅฐ2nmไนไธ็ฌฌไธ่ท้ข ==ไนๅนๅธถ่ฝ้๏ผไปฅๅๅจ่ฉฒ้้ๅๅไน่ฉฒ่กจ้ขๅคง ' ไน็ฌฌไธ่ท้ข่ๅ ทๆไธ้ไฝไนๅนๅธถ่ฝ้ใไพ 6 201027724 ๆไธ็จฎ่ฝๅธถๅ ๅทฅ็ต็ทฃ้ซไนๅฏฆๆฝไพ๏ผๆๆไน็ตๅๅ ๅซไธๅๅบฆ ๅฐๆผ2nmไนๆฐงๅ็ฝๅบๅฑคใๅๅบฆๅฐๆผ2.5nmไนๆฐฎๅ็ฝไธญๅฑคใ ไปฅๅๅๅบฆๅฐๆผ2,5nmไนๆฐงๅ็ณๅค้ ๅฑคใ ๆฌ็ผๆไนๅ ถไป็ฎ็่ๅช้ปๅฐ่ฉณ่ฟฐๆผไธๅๅๅผใๅฏฆๆฝๆนๅผ ่็ณ่ซๅฐๅฉ็ฏๅใ ใๅฏฆๆฝๆนๅผใThe buried channel region has the opposite conductivity. The H-line of the buried channel can be isolated from the substrate. The H-line can be read by the insulating structure or other squares. H is exposed. The memory cell contains NAND memory cells. The ฯ material extends and has a -end ridge, wherein the fin-shaped double-end ridge is located thereon and/or on the side of the ridge or is available for the vacant = track region. The shout channel is doped with an n-type dopant , operation, complex memory cell gate (for example, on the buried channel region where one of the fin lines is raised at the end of the word line, the charge is two-r--memory cell gate and the last memory cell gate. Under the dielectric gate ^ More than one (for example, 16 and 32) memory cells: what capture position contains multiple layers of wear-insulating structures, - the charge is placed on the current storage structure with the insulation structure and - the barrier insulation layer is set to ฯ and The first memory cell has a space between the poles, and there is a p-channel region at the end of the turn and the ridge. The electric radiation is the only way to strengthen the band, and the private supply is used to erase the mode material! The reinforced insulator is characterized by a valence band containing a plurality of materials. And the right drawing / the surface is less than 2 nm, the first distance == the valence band energy level, and the first distance of the surface of the channel region has a reduced valence band energy level. According to 6 201027724 An embodiment capable of processing an insulator, the combination of materials comprising a ruthenium oxide underlayer having a thickness of less than 2 nm, a tantalum nitride intermediate layer having a thickness of less than 2.5 nm, and an oxidized oxidized top layer having a thickness of less than 2,5 nm. Advantages will be described in detail in the following figures, embodiments and patent claims.
ไปฅไธๅ็ งๅๅผ็ฌฌ1ๅ่ณ็ฌฌ7ๅ่ชชๆๆฌ็ผๆไน่ฉณ็ดฐๅฏฆๆฝๆน ๅผใ ็ฌฌ1ๅ็บๆฒฟ่ๅๅฐ้ซไธป้ซไน้ฐญ็็ฉๆ็นช็คบ็ๅ้ข็คบๆ ๅ๏ผๅ ถไธญ่ฉฒๅๅฐ้ซไธป้ซๅ ทๆๅๅไธฒๅ็่จๆถ่๏ผๅ ถไฝๆผ้ต ๅญฮ็ท15ใ16ใ17ใ18ไนไบคๅ้ปใ่ฉฒ้ฐญ็็ฉ่ๅบ^ ้็ทฃ่ผๅโๅจๆญคๅฏฆๆฝไพไธญๅบๆ็บฯๅใ้ฐญ็็ฉ็ ็ฆพ็ฅ้่ตทๅ ทๆๅ่้้๏ผburied_channel)ๅๅuใ ็ฉบไนๆจกๅผๆไฝใๅ ๆญค๏ผnๅ้้่จๆถ่ไธญ๏ผๅ่้ ไบt ;ใ?ไนf้ใๅ ธๅไนnๅ้้ๆป้ๅคง็ด็บ + ่ณ1x10 cm๏ผ่nๅ้้ไนๆทฑๅบฆๅคง ฮฏฮ้้U่็ฑๆผ้ฐญ็็ฉ้ ธ้จไนๆด้ซๆบ้็้็ตๅ ๏ผใฮกๅๅบๆ10้็ตใ่คๆธๆขๅญๅ ็ท15ใ16 fๅฑค้ไป้ป็ฉ20ๆ่ฆ่ใๅญๅ ็ท15ใ16ใ17ใ18ๅฆ๏ผไฟ ็ฑP+ๅๅคๆถ็ฝๅฝขๆ๏ผๆ่ ็ 18่ผไฝณๅฐ :็ทใ5๏ผใ17ใ18่ๅ่้้ๅๅ 9::ๆๆผๅญ โๅ่้้ๅๅ่กจ้ข ่ๅฏๅฝขๆๆผไบคๅ้ปไธใๅจๆญคๅฏฆๆฝ:๏ผ๏ผๆญค่จๆถ _Nใ็ตๆง๏ผๅ ถไธญๅ ๅซไฝๅญ็ตๆง็บ 7 201027724 ้ง็ต็ทฃๅฑค๏ผฮฮฮ)๏ผๆฐฎๅ็ฝ้ป่ทๆๆๅฑคใไปฅๅๆฐงๅ็ฝ้ป้ ๅฑคใ้ปๅฐๅฒๅญ็ตๆง่ผไฝณๅฏฆๆฝไพไนๆดๅค็ดฐ็ฏๅฏๅ็ ง็ฌฌ6ๅๅ ็จๅพไน่ชชๆใ็ฌฌไธๅไธญ๏ผ้ๆฅตไน้ทๅบฆๆจ็คบ็บL๏ผๅ ถๅฏๅฐๆ ๆผๅญๅ ็ทไนๅฏฌๅบฆ๏ผๅจ่ผไฝณๅฏฆๆฝไพไธญ็บๆฅตๅฐไนๅฐบๅฏธ๏ผไปฃ่กจๆง ็้ๆฅต้ทๅบฆ็บ30mn่ณlใใnmไน้ใ้็ถๅฒๅญ็ตๆง๏ผไพๅฆ 19)ๅจๅไธญ็นช็คบ็บๅๅฅ็ๅ ็๏ผไฝๅจๅ ถไปๅฏฆๆฝ ็ตๆงไบฆๅฏ็บ้ฃ็บ็่ฆ่ๅฑคใ ๅจๅญ ็ฌฌ2ๅ็บ่คๆธๅๅฐ้ซไธป้ซไน้ฐญ็็ฉ็ๅ้ข็คบๆๅ๏ผๅ ถๅจ. ๆฌๅฏฆๆฝไพไธญๅ ๅซๅๅ้ฐญ็็ฉ1(Mใ1ใ_2ใ1ใ_3่1ใ_/ใใๅจ-ๆ็คบ็ฏไพไธญ๏ผ้ฐญ็็ฉไบฆ็จฑ็บไธป้ซๆฅ่งธ๏ผbๅป๏ผ๏ผ ้็ทฃไฟ่ไธๆนๅบๆ10|ๅใ้ฐญ็็ฉ็้ ธ้จๅๅ12ไธๆโฌ =ไนๆป้โ่ๆญคๆๅถๅฏ็่ฃ็ฝฎๅฝขๆๆผๅบๆ1ใไธ็็บ็็ฉไน ้ใๅฆๅๆ็คบ๏ผๅญ่ฎ15ไฝๆผ้ป่ทๅฒๅญ็ตๆง19ไนไธ ็ทฃๆบๆงฝ21ใ22ใ23ๅ้ๅๅฅ้ฐญ็็ฉ1(ฮใ1ใ_2ใ1ใ 3่ก ไบๅไธญโ _็ฉๅฏฌๅบฆๆจ็คบ็บwโๅจ่ผไฝณๅฏฆๆฝไพ/ไธญ ๅin๏ผๅคง็ดๅจ3ใnm่ณ5ใnmไน้ใๅ่้้ๅๅไน f:็ด็บ3ใnmใ็ต็ทฃๆบๆงฝไนๅๅบฆๆจ็คบ็บ =ใnm=็บง๏ผๅ ถๅปถไผธ่ณ็ต็ทฃๆบๆงฝ่กจ้ขไปฅๅคโ ^ 30็ดฐ๏ผ่ๅ ถไฝๆผ็ต็ทฃๆบๆงฝ่กจ้ขไปฅไธไน ๅ3็บ_ ็จฮทๅๆป้็ฉ็ๅ่้้ๅๅไธญ ใๆก 10%3่ณ10%ฮท3,่็ต็ทฃ่กจๆง็ๆป้ๆฟๅบฆ็บ 2x10i8cm3ใ ่ใ้็ทฃยฃๅ็ไปฃ่กจๆงๆป้ๆฟๅบฆๅ็ด็บ ๅจๅฆไธๆฟไปฃๅฏฆๆฝไพไธญ๏ผๅฏไปฅๅฉ็จโ ๆ้็ต๏ผไปฅๅฝขๆ่ๅบๆ1Gๅ้็ๅ^็ทๅฑคๅฐ_็ฉ่ๅบ ็ฌฌ3ๅๆไพNAND็ตๆงไนๅฟซ้่จๆถ้ฃๅ็้ป่ทฏไฝๅฑๆถ 8 201027724 ๆงๅโๅ ถไธญๅ ๅซๅ่ฟฐไนๅ่้้่ฃ็ฝฎใๅจๆญค้ป่ทฏไฝๅฑไธญ๏ผ ๅ็ดๆๅๆผ็ฌฌ1ๅไธญ็ๅๅฐ้ซ็ท10-1ใ10-2ใ10-3่HM ็บ็ฌฌ3ๅไธญ็ทๆฎตla่ณๆฏ็ๅ้ขๅใ็ฌฌ2ๅๅ็บ็ฌฌ3ๅไธญ ็ทๅฐ2a่ณ2b็ๅ้ขๅใDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a detailed embodiment of the present invention will be described with reference to Figs. 1 to 7 of the drawings. Figure 1 is a schematic cross-sectional view taken along the fin of a semiconductor body having four strings of memory cells located at the intersection of the key lines 15, 16, 17, 18. The fin is lightly bonded to the base edge' in this embodiment the substrate is p-type. The Hei ridge of the fin has a buried channel region u. Depletion mode operation. Therefore, in the n-channel memory cells, the burial is passed through two t; A typical n-type channel doping is about + to 1 x 10 cm, while the depth of the n-type channel is large. The channel U is isolated by the higher doped isolation region of the fin neck. A plurality of word lines 15, 16 f are covered by an interlayer dielectric 20. The word lines 15, 16, 17, 18: are formed of P+ type polysilicon, or the basin 18 is preferably: line 5, 17, 18 and buried channel area 9:: in the word 'buried channel area surface cell Can be formed at the intersection and point. Herein, the memory _Nใ structure includes a memory structure of 7 201027724 tunneling insulating layer (ฮฮฮ), a tantalum nitride charge trapping layer, and a yttria barrier layer. Further details of the preferred embodiment of the electrospray storage structure can be found in Figure 6 and later. In the first figure, the length of the gate is denoted L, which may correspond to the width of the word line, which in the preferred embodiment is a very small size; the representative gate length is between 30 nm and 10 nm. Although the storage structures (e.g., 19) are illustrated as separate stacks in the figures, other embodiments may be continuous overlays. FIG. 2 is a schematic cross-sectional view of a fin of a plurality of semiconductor bodies, which in this embodiment includes four fins 1 (M, 1ใ_2, 1ใ_3, and 1ใ_/. - In the example shown, the fin is also referred to as the body contact (b kiss), and the edge is joined to the underlying substrate 10|. The neck region 12 of the fin has 13 = doping' thereby suppressing the parasitic device Formed between the continuations on the substrate 1 ใ. As shown, the word read 15 is located on the upper edge of the charge storage structure 19, and the trenches 21, 22, 23 separate the individual fins 1 (ฮ, 1ใ_2 In the case of 1ใ3 blood, the 'width of the object is denoted by w' in the preferred embodiment/in centimeter, between about 3 ใ nm and 5 ใ nm. The f of the buried channel region is about 3 ใ nm. The thickness of the insulating trench is indicated as = ใ nm = grade, which extends beyond the surface of the insulating trench "^ 30 thin, and its 3 is below the surface of the insulating trench _ in the buried channel region with the n-type dopant "10% 3 to 10% ฮท3, and the insulating doping concentration is 2x10i8cm3. However, the representative doping concentration of the ้ margin domain is about another alternative embodiment, which can be isolated by Shape A half-line layer separated from the substrate 1G will provide a circuit layout frame for the flash memory array of the NAND structure. FIG. 3 is a schematic diagram of the above-mentioned buried channel device. In this circuit layout, vertically arranged The semiconductor lines 10-1, 10-2, and 10-3 in Fig. 1 and HM are cross-sectional views of the line segment la in the third figure. Fig. 2 is a cross section of the line pair 2a to 2b in Fig. 3. Figure.
่คๆธๅญๅ ็ทWL1่ณWL32้็ๆผ่คๆธ้ฐญ็็ฉไนไธ๏ผๅ ถ ไธญๅญๅ ็ท1W32ใW31่W30ไฟ็ทจ่็บ15ใ16ใ17๏ผๅ ถๅฐ ๆๆผ้กไผผ็ฌฌ1ๅ่็ฌฌ2ๅไน็ตๆงใ่จๆถ่60ๅฝขๆๆผๅญๅ ็ท W32่ๅๅฐ้ซ็ท1ใ_2็ไบคๅ้ปใ็ฌฌ3ๅ็นช็คบไธไธฒๅ้ธๆ็ท SSL25่ไฝๆผ่คๆธๅญๅ ็ทWL1่ณWL32็ธๅฐๅด็ๅฐ็ท้ธๆ ็ทGSL26ใๅจ่ผไฝณๅฏฆๆฝไพไธญโไฝๆผSSL25ไปฅๅGSL26ไน ไธ็้้ๅๅ็บpๅ๏ผๅ ๆญคๅจ้ฐญ็็ฉ่SSL25ใGSL26ไน ไบคๅ้ป๏ผไพๅฆๅ็คบๅ ไปถ61ใ62)็้ปๆถ้ซไฟไปฅๅขๅผทๆจกๅผ้ ไฝ๏ผๅ ถๅ ทๆๆญฃ็่จ็้ปๅฃVtใๅๅฐ้ซ็ท่็ฑไปๅฑคๅญ๏ผๆช้กฏ ็คบ๏ผ่ไธๆน๏ผๆไธๆน๏ผ็ไฝๅ ็ท่ๅฐ็ทๅๅฅ่ฆๅๆผSSL25 ่GSL26็ธๅฐๅดใ ๅจ่ฃฝไฝ้็จไธญ๏ผ้กๅค็้ฎ็ฝฉ๏ผๅ ๆฌๅๅ3ใใ31)ๅฏ ๆผๅ้SSLยท่GSL็ทไนไธ็้้ๅๅ่่จๆถ่ไธญๅปบ็ซ ้้ๅๅ็ฮทๅๆป้๏ผๅๆๅฏๅ ่จฑ้ๆฅตๆฐงๅ็ฉไนๅฝข ่ท 0ๅจ ็ถญๆ ็ตๆง๏ผ็ฐๆผ่ณๆๅฒๅญ็ตๆง19)๏ผไพๅฆๅฏ็บๅฎๅฑคๆฐงๅๆ$ ไป้ๆฅต็ต็ทฃ็ฉใไบฆๅฏ่ฝๅจSSL่GSL้ปๆถ้ซไธญไผธ ๆๅ ถ ๅ็ฉโๅ ถ็ตๆง่ไป็จฎๅฏฆๆฝไพไธญ็่ณๆๅฒๅญ้พ ใคๆฅตๆฐฃ SSL/GSL้ปๆถ้ซไธญไฝฟ็จpๅๆป้ๅฏ็บไธฒๅ้ธ^ไบ: ็ธๅฐ้ซ็่จ็้ปๅฃฮฝฯใ ๆฒกๆฅตๆบ้๏ผๅจ้ๆฅต40 ๆๆฅ้ข44 ็ฌฌ4ๅ็บๅฆไธๅฏฆๆฝไพไนๅๅฐ้ซ็ทๅ้ขๅ๏ผ Lๅจ้ๆฅต40ใ4ๅ42ไน้็ๅ่้้ๅๅ 45โไปฅๅ ๅผทๅๅฐ้ซ็ท็ๅฐ้ปๆงใๅฆ็ฌฌ๏ผๅๆ^ 9 201027724 ๅฏฆๆฝไพ๏ผๅ ทๆๆฌ้ซๆฅ่งธ็้ฐญ็็ฉๅ ๅซ้ ธ้จๅๅ36๏ผ่ฉฒ้ ธ้จ ๅๅ36ๅ ทๆP+ๅๆป้ไปฅๅ้่ฉฒๅ่้้ๅๅ37่ไธๆน็ ๅบๆ35ใ็ถ่โๅฆ็ฌฌ1ๅๆ่ฟฐไน็กๆฅ้ข็ตๆง๏ผๆไบๅฏฆๆฝไพ ไธญ็ก้ ไฝฟ็จ่ฉฒๆคๅ ฅ๏ผๅ ็บ่ฉฒๅ่้้ๅๅไนๅฐ้ปๆงๅทฒ็ถ่ถณ ไพNAND่จๆถ่ไน้ซๆ่ฝๆไฝใ ๅ ทๆๆฌ้ซๆฅ่งธ็้ฐญ็็ฉๅ ดๆ้ปๆถ้ซ(bใdy-tied finFET) ็ตๆงโๅฏไพๆ็พๅๅฐๅฉๅ ฌ้่2008/0087942ไพ่ฃฝไฝ๏ผๅ ถๅ ็จฑ็บใVertical Channel Memory and Manufacturing Method Thereof and Operating Method Using the Sameใ๏ผๆฌๆๆไพ โ ็บๅ่2ไพๆไธ็จฎ่ฃฝ็จๅฏฆๆฝไพ๏ผๅฏๅ ๆไพไธๅบๆ๏ผ็ถๅพๅฐ ไธ็ฌฌไธๆฐฎๅ็ณๅคๅฑคๅฝขๆๆผๆฐฎๅ็ฝไนไธใ่ฉฒๅบๆไน่จญ็ฝฎ๏ผไฟ็บ Pๅๅบๆ้ ๅฮทๅ้้่ฃ็ฝฎ๏ผ่nๅๅบๆ้ ๅpๅ้้่ฃ ็ฝฎใๅจๅฆไธๅฏฆๆฝไพไธญ๏ผๅฏๅจๅบๆ่็ฌฌไธๆฐฎๅ็ฝๅฑคไน้ๅฝข^ -ๆฐงๅโฆๅขๅฑคใยทๅพฎๅฝฑ่ฃฝ็จๅฝขๆๅๆกๆผ็ฌฌโๆฐฎๅ็ณๅคๅฑคไน t่ไพ่่จโๅฏๅจๅบๆไธๅฎ็พฉๆฐฃๅโฆไน็ทๆข๏ผ่้i็ท ^็ณธ็ธๅฐๆผ้ฐญ็็ฉไน้ฎ็ฝฉใ่ผไฝณๅฏฆๆฝ่ดข๏ผ้ไบๆฐฎๅ็ณๅค็ท 2ๅฉ็จ้็ญๅ_ไนๆนๅผๆๅ ถไปๆนๅผไฟฎๆด๏ผไปฅๅฝขๆ ้ฒ ๆฟ=4โไปฅๆฐฎๅ็ฝ็ทๆข็บ่ๅปๅน็ฝฉ๏ผๅฐๅบๆ่ๅปไปฅ ^ๆธ้็ฉโๅ ถๅจๆซ็ฅ่ตท้จๅๅ ทๆๆฐงๅ็ฉๅขไน็ทๆข ็ฉi ็fๆฒ็ฉๆผ้่ตท้จๅไน้๏ผๅกซๅ ้ฐญ็ ็ฉ:ๅๆ๏ผๆฐงๅ็ฉๅกพ่ๆฐฎๅๆขฆไน็ทๆข็ฑใThe complex digital element lines WL1 to WL32 are overlaid on the plurality of fins, wherein the word lines 1W32, W31 and W30 are numbered 15, 16, 17, which correspond to the structures similar to those of Figs. 1 and 2. The memory cell 60 is formed at the intersection of the word line W32 and the semiconductor line 1ใ_2. Figure 3 illustrates a string select line SSL25 and a ground select line GSL26 on the opposite side of the complex digital line WL1 to WL32. In the preferred embodiment, the channel region under the SSL 25 and GSL 26 is p-type, so that the electro-crystalline system at the intersection of the fins with the SSL 25, GSL 26 (e.g., the illustrated elements 61, 62) operates in an enhanced mode, It has a positive threshold voltage Vt. The semiconductor lines are coupled to the opposite sides of the SSL 25 and GSL 26 by via holes (not shown) and upper (or lower) bit lines and ground lines, respectively. During the fabrication process, additional masks (including areas 3ใ, 31) can separate the n-type doping of the channel region from the channel region under the SSLยท and GSL lines and the memory cell, while allowing the gate oxide The shape of the job 0 is in the maintenance structure (different from the data storage structure 19), for example, it can be a single layer of oxidation or $th gate insulator. It is also possible to extend the chemical in the SSL and GSL transistors. The structure of the structure and the data stored in other examples. (5) The use of p-type doping in the gas/SSL laser can be selected in series: relatively high The critical voltage ฮฝฯ. No-doping, in the junction 40 of the gate 40, FIG. 4 is a cross-sectional view of another embodiment of the semiconductor line, L in the buried channel region 45' between the gates 40, 4b 42 to enhance the conductivity of the semiconductor line Sex. As the first! Figure 9: 201027724 In an embodiment, the fin with body contact includes a neck region 36 having a P+ doping to separate the buried channel region 37 from the underlying substrate 35. However, the jointless structure as described in Fig. 1 does not require the use of the implant in some embodiments because the conductivity of the buried via region is sufficient for the high efficiency operation of the NAND memory cell. A fin dy-tied finFET structure having a body contact can be fabricated in accordance with US Patent Publication No. 2008/0087942, entitled "Vertical Channel Memory and Manufacturing Method Thereof and Operating Method Using the Same According to a process embodiment, a substrate may be provided first, and then a first layer of tantalum nitride is formed on the tantalum nitride. The substrate is arranged such that the P-type substrate is fitted with an n-type channel device and the n-type substrate is fitted with a p-type channel device. In another embodiment, a pad layer may be formed between the substrate and the first layer of tantalum nitride. The lithography process forms a pattern on the ninth layer of the nitrite layer. For example, the line of vaporization โฆ can be defined on the substrate, and the i line is ้ฎ with respect to the mask of the fin. Preferably, the nitriding lines 2 are trimmed by an anisotropic method or by other means to form a ruthenium=4' with a tantalum nitride line as an etch mask, and the substrate is etched into a number of recorded objects' In the last part of the secret part, there is a line of oxide pads. The true f is deposited between the ridges and fills the fins: at the same time, the lines of oxide ๅกพ and nitriding dreams are
้จๅ?้คใๅจๅฆไธๅฏฆๆฝไพไธญ๏ผๅฏไฟ็ยท้ฐญ็L ็ฉ็ใ ๅฉๅ็ๆฐงๅ็ฉๅกพโ็บๆฅ่ฟๆซ็ซฏใฃ้จๅไนๅฆน็ ็ฉ็ๅดๅฃๅฎ็พฉ็บ้้ๅๅใๅจ .โใๆฐ็ ๆๅฝขๆโๅ ถๅ ๅซๆฐงๅ็ณๅคใๆฐฎๅ็ณๅคใ "่ฆ่่คๆธ้ฐญ็็ฉใๅญmๆๆๅฑค๏ผไพ 201027724 tๅคๆฐๆฐ๏ผ๏ผๅฝขๆๆผONONO่ฆ่ๅฑคไนไธ๏ผๆฅ่่ๅป่ฉฒๅญๅ ็ทๅฑคไปฅๅฎ็พฉๅญๅ ็ท๏ผ่ฉฒๅญๅ ็ท่ทจ่ถ่คๆธ้ฐญ็็ฉ๏ผไธฆ ไบคๅ้ปไธๅปบ็ซ่คๆธ่จๆถ่ใ ๅๅจ ็บ้ ๆๆดๆ้กฏ็ๆป้็นๆง๏ผๅฏ่็ฑๅฝขๆใnใnใ ๅฑคไนๅ็ๆคๅ ฅๆญฅ้ฉ๏ผๆ่ ๅจๆฒ็ฉๆฐงๅ็ฉๅข่็ฌฌไธๆฐฎๅ็ฝๅฃฐ ๅฝขfไปฅๅfๅคๆ n่ณด็ตฒ่ฃฝ็จไธญๆก็จ่จๅ ดๆป้๏ผ =ๅฏไปฅๅปถ่้ฐญ็็ฉๆซ็ซฏ้่ตท้จๅ็ๆทกๆป้็ตๆงๅฝขๆ f้้ๅๅใๅจๅฆโๅฏฆๆฝๅฐ๏ผๅฏ_ๆโฝ0N0่ฆ โน =่กๆป้ใๅจๅฝขๆโฝโฝ0่ฆ่ๅฑคๅพ้ฒ่กๆคไบบ๏ผ้^ ้็ฉๆไฝฟ็จ็็ฑ้ ็ฎ่ผไฝ๏ผๅๆไบฆๅ ทๆ่ผไฝณไนๆป้^ๆป ็ฌฌ5ๅ็บๅ ฉๅNANDไธฒๅไน*ๆๅ๏ผๅ ถ่ฃฝไฝๆนๆณ ๅ่็ฑSSL็ทๆๆงๅถ็SSL้ปๆถ้ซ75่ผๅ่ณไฝ 3 BL-iใ่จๆถ่76-1่ณ76_Nไฟไปฅไธฒ่ฏๆนๅผ่ผๅ๏ผ= ๅทฑ็ท 1 WU่ณๅๆๆงๅถใๅฐ็ท้ธๆ้ปๆถ้ซ^ =i Nๅฝขๆ็ฌฌไบไธฒๅ๏ผๅ ถ่็ฑSSL้ปๆถ้ซ85 ;ใไธจ๏ผ=2่ฆๅใๅฐ็ท้ธๆ้ปๆถ้ซ87ๅฐ็ฌฌไบNANDไธฒ ๅ่ๆบๆฅต็ทSL่ฆๅใ Uไธฒ n็ณพ้ญ็ๆไฟๆใๅ จใฃ ่ฃ็ฝฎไธฒๅ๏ผไพๅฆ่ฃ็ฝฎ75ใ76-1่ณ76_N =ไน ๆถ่ฮ่ณ76-Nไธญ้ธๅฎ็ไธ่จๆถ่ใ็ฑ๏ผ =ๅฏ่ฎๅ่้้็ผๆฎๅ่ไฝๅ ็ทไนๅ่ฝ:= :ๅทฅ=่จ๏ผไฝ้้้ๆฅต็้ปๅฃไบ ๆญคๅค๏ผๅจๆไบๅฏฆไพไธญไบ้ ๆก่ฒทไน็นๆงๅๅฏๆๅใ ๆฑฒๆฅตๆฅ้ขใ ๅฆf 4_็คบไน้กๅคๆบๆฅต/ 11 201027724 ็จๅผๅๅๅฃๅฎๆๅฆๅๆ็คบ๏ผๅฏ็ข็ไธฆๆฝๅ ๆผๅฆ็ฌฌ ็คบไน็ฉ้ซ้ป่ทฏ็ตๆงใ่ฉฒ็จๅผๅๅๅฃ็ก้ ๅฉ 2 ็จๅผๅฮฏๆญขๆนๆณใ่ช็ผ็บ้ๅญไบ่ๆฅๅ้ปๆป้็ ๅผ๏ผไธฆๆๅฐๆฅๅ้ปๆผ้ปๆตไนๅด้ๅฝฑ้ฟใ่จญ ๆใ ฮฏ่ชฟๆดโไบ่ๆฅๅ้ปไน็นๅพต๏ผไพ้ๆ่จๆถ่ๆ;4: ่กจ็พไน้็ๅนณ่กกโๅ ทๆ็ธ็ถไน้ฃๅบฆใๅ ๆญค๏ผ้ๅฆๅ^ ไธญๆ่ฟฐ็่ช็ผๆ่ก(ๅ ถๅฟ ้ ๆก็จๆทฑ็ฉบไนไปฅๅฉ่ช็ผ ้้่ฃ็ฝฎไธญๅฏไปฅ่ผๆๅฐๆๅไฝๅ ็ท้ปไฝ๏ผๅ ็บๅ ถไธญ ฮทๅ้้ๅๅ ฑๅ้ฃ็ตใๅ ๆญคโ็บ็จๅผๅ่จๆถ่๏ผไพๅฆ่จๆถ โน ่ซธๆผๅญๅ ็ทWL7 โไพๅฆ็ด็บโ L: ฮฯฯๅฃ๏ผๆฝๅ ๆ้็ด็บ2ใ_ใไฝๅ ็ทbl_i ๏ผๅฐ็ทใ่ขซๅ่ณดVPASSไฟๆฝๅ ๆผไธฒๅฃฏๅ ถไปๆๆ ๏ผไปฅๅSSL็ท๏ผๅ ถ้ปๅฃ็ด็บ5V่ณ9VqGsl็ท็บๆฅๅฐ้ปไฝ๏ผ fๆบๆฅต็ทไฟไฟๆๆตฎๅใๅๅฐ้ซไธป้ซpๅไบ๏ผๅโฝ๏ผไบฆ็บๆฅ ^ใIๆ๏ผไฝ็็ทBL-2่ฆๅ่ณไธๆๅถ้ปๅฃ๏ผไพๅฆ็ดโฆ็ด ๆฅ็ฒ่จ่ณ่จๆถ่ใค่ณ่งฆ็ๆๅถ้ปๅฃใๆฅๅๅญๅ ็ทๅ =็จๅผๅ้ปๅฃ็่จๆถ่86_7็ตฒๅๆ ็ฑฒ โ็่ณๅจ็จๅผๅๅนฒๆพ็ตๆไนๅพ๏ผ่ฉฒ่จๆถ่ไปไบ 2 ใ:ไปฅไธ็่จ็้ปๅฃโไฟๅญ่จๆถ่ๆ้็่ฎๅ็ฉบ้ใ่ ๆนไธจๅฃซ้๏ผๆ่ทฏไนๅ่้้ๆ่กโ้้้ปๅฃๅฏไปฅ้ไฝ๏ผ่ไธฒ ^ไนๅฐ้ปๆงๅฏๆ้ซโ่ๆญคไฝฟๅพI็ฝฎๅฏไปฅๅ ทๆ่ผไฝ็ๆไฝ้ป -็ถ ้ค*ๅๅฃๆฝๅ ๆผไธ่ฟฐ็ตๆง๏ผๅ ถๅ ๆฌโ็ฉฟ่ถ่จๆถ่ไนๅญ =ใ^/ใไธๅฐ้ซไธป้ซ็่ฒ ๅๅๅฃโๅ ถ็ด็บ-14V่ณ-18V๏ผๆฝๅ ๅๅกตไนๆ้็ด็บ1 ใmsใ ๆฌฒ่ฎๅ้ธ็ไน่ฎฐๆถ่๏ผไฟๆฝๅใ็ธๅฐไฝ็้้้ป้บผ๏ผๅฆไฝ 12 201027724 ๆผ5V)ๆผๆช้ธๅฎไนๅญๅ ็ทใSSLยท่GSLยทใ่ฎๅๅๅฃๆฝๅ ๆผ ้ธๅฎไนๅญๅ ็ท๏ผๅ ถๆฏๆผ่จๆถ่่จ็็ๆ ไน้ใ ็ฌฌฯๅ็บไฝฟ็จ่ฝๅธถๅ ๅทฅไป้ป็ฉฟ้งๅฑคไนๅ่้้ใ็ฉบไนๆจก ๅผ้ป่ทๆๆ5ๅทฑๆถ่็็ฐกๅ็คบๆๅใ่ฉฒ่จๆถ่ๅ ๅซไธ้้ 90 ,ๅ ถๅ ๅซๆทกๆป้ๅๆๆ๏ผๆธ้็ด็บ5E17cm_3)ๆๆช ๆป้ไนๆๆ๏ผไฝๆผ็ธๅฐๆฟๆป้ไนๅฉๅไบไธญไปฅ้ป้ไธ pๅๅ ๅฐ้ซไธป้ซไธญ๏ผๆธ้็ด็บ1E17enf3)ไนๅฏ็ๆผ้ป่ทฏๅพ๏ผไปฅๅ ๆบๆฅต91ๅๆฑฒๆฅต92ๅๅ๏ผไบฆ็บnๅๆๆชๆป้่่จๆฅ่ณ่ฉฒ้Partially divided. In another embodiment, the oxide ๅกพ' of the ใ ๅฏ which can retain the fin L is defined as the channel region of the side of the sister near the end (four) portion. In the case of ', the shape of the scorpion' contains the oxidized stone eve, the nitrite eve, " covers a plurality of fins. The word m material layer (eg, 201027724 tๆฐๆฐ:) is formed over the ONONO overlay layer, and then the word line layer is etched to define a word line that spans the plurality of fins and is created at the point of intersection Complex memory cells. In order to cause more obvious doping characteristics, the implantation step before forming the ใnใnใ layer, or before depositing the oxide pad and the first tantalum nitride acoustic shape f In-situ doping is used: = The f-channel region can be formed by a lightly doped structure that extends along the ridge portion of the fin end. In another implementation, the radiation can be made into (10) 0N0 โน = row doping. After forming the (10)(10)0 cover layer, the implant has a lower thermal budget, and also has better doping. The fifth figure is the intention of two NAND strings. The SSL transistor 75 controlled by the SSL line is lightly coupled to the bit 3 BL-i. The memory cells 76-1 to 76_N are lightly connected in series, = the line 1 WU is controlled. The ground selection transistor ^ = i N forms a second series which is coupled by an SSL transistor 85;, ไธจ:=2. Ground select transistor 87 couples the second NAND string to source line SL. U string n ็บ ็ถ ๆ " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " The function of the bit line: = : work = note; the voltage through the gate is low. In addition, in some cases, the characteristics of the second purchase can be improved. The bungee junction. If the f 4_ shows the additional source / 11 201027724 The stylized bias arrangement is shown in the figure and can be generated and applied to the integrated circuit structure as shown in the figure. The stylized bias is not required to be programmed. It is spontaneously doped with junctions. And the serious influence of the leakage current at the joint point. It is quite difficult to adjust the "well and the characteristics of the joint to achieve the memory effect; 4: the balance between performances". Therefore, it is not the spontaneous technology described in the previous section (it must use deep space to facilitate the spontaneous channel device, which can easily raise the bit line potential, because the n-type channels are all connected together. Therefore, it is a stylized memory cell. For example, the memory ่ฏธ is in the word line WL7 ', for example, about "L: ฮฯฯ, the application time is about 2 ใ _. The bit line bl_i, the ground line. The passive VS VPASS is applied to the string all other, and the SSL line, The voltage is about 5V to 9VqGsl, the line is grounded, and the f source line is kept floating. The semiconductor body p-type well (Bu(10)) is also connected to the I. The bit line BL-2 is coupled to a suppression voltage, for example From the direct rumor to the memory cell (5) to the suppression voltage of the touch. The memory cell 86_7 that accepts the word line and = stylized voltage is the most appealed. Even after the end of the stylized interference, the memory cell is still 2 ใ: The threshold voltage 'saves the read space required for the memory cell. The borrower's gentleman's road: Changlu's buried channel technology 'pass voltage can be reduced, and the conductivity of the string can be improved', thereby making the I set can have a lower Operational electric-green removal*bias In the above structure, it includes - the word crossing the memory cell =, ^ /, the negative bias of a conductor body 'which is about -14V to -18V, and the time for applying the dust is about 1 ใms. The memory cell of the ็ is applied. The relatively low pass power (such as low 12 201027724 at 5V) on the unselected word line, SSLยท and GSLยท. The read bias is applied to the selected word line. It is between the critical state of the memory cell. The first diagram is a simplified schematic diagram of the buried channel of the dielectric tunneling layer and the trapped mode charge trapping 5 cells. The memory cell contains a channel 90, which contains a light Doped material (on the order of 5E17cm_3) or undoped material, located in a relatively heavily doped ๅฉ-type well to block the parasitic leakage path in a p-type semiconductor body (on the order of 1E17enf3), and the source 91 and ๆฑฒThe region of the pole 92 is also n-type or undoped and is connected to the pass
้ใ ๆฐๆฌๅฏฆๆฝไพไธญไน้ๆฅต98ๅ ๅซฯ+ๅคๆถ็ฝ๏ผไบฆๅฏๆก็จฮ+ๅค ๆถ็ฝใๅ ถไปๅฏฆๆฝไพไน้ๆฅต98ๅฏๅฉ็จ้ๅฑฌใ้ๅฑฌๅๅ็ฉใ้ ๅฑฌ็ตๅ็ฉใๆ้ๅฑฌ่้ๅฑฌๅๅ็ฉไน็ตๅ๏ผไพๅฆ็ฝ้ใๆฐฎๅ ้ฝใ้ๅฑฌ็ฝๅ็ฉใ้ๆๅ ถไป้ๅฑฌๆ้ๅฑฌๅๅ็ฉ้ๆฅตๆๆใ ๅจๆไบๆ็จไธญ๏ผ่ผไฝณๅฏฆๆฝไพไฟๆก็จๅๅฝๆธ้ซๆผ4.5eVไนๆ ๆใ็พๅๅฐๅฉ6,912๏ผ163่ๆไพไบๅค็จฎ้ซๅๅฝๆธๆๆ๏ผๅ ถๅฏ ้ฉ็จๆผๆญค่ๆไน้ๆฅต็ต็ซฏใ้ไบๆๆ้ๅธธยท้ๆ ๏ผ็ๆฐฃ็ธๆฒ็ฉๆ่ก้ฒ่กๆฒ็ฉ๏ผๅๆๅฏไปฅๆนๅๆ้ขๅญ้บตๅป โ_็ฝ^้ไน่ฒซๆฝไพ๏ผไป้ป็ฉฟ้งๅฑคๅ ๅซไธ่คๅๆๆ๏ผ ไนๆฌ๏ผๆฐงๅ็ฝๆงๆ็็ฌฌไธๅฑค93๏ผไบฆ็จฑ็บ้ปๆด็ฉฟ้งๅฑค๏ผๅ ถไฝ )้I =ไน่กจ้ข90aไนไธ๏ผ่ไพ่่จไฟ็ =ๅนฟๅ้ธๆๆง็ๆฐๅ๏ผ่ฉฒๆฐฃๅไฟๅฉ็จๅพๆฒ็ฉไปฅ ^ๆ่ ๅจๆฒ็ฉๆๅ ไบบNO็ฐๅขใ่ฉฒไบๆฐงๅ็ฌฌโๅฑค๏ผ &ไฟไฝๆผ20ๅ๏ผ่ผไฝณๅฏฆๆฝไพไธญไฟๅฐๆผ13ๅใ ๏ผไฟไฝๆผๆฐง ๅญธๆฐฃ็ธๆฒ็ฉ ๆฐฎๅ็ฝๆงๆไน่ๅฑค94,ไบฆ็จฑ็บ่ฝๅธถ่ฃๅๅฑค ๅ็ณๅคๆงๆ็็ฌฌ-ๅฑค93ไนไธ๏ผๅ ถ_่ซธๅฆไฝๅฃๅ 13 201027724 LPCVDๅฝขๆ๏ผ่ไพ่่จไฟๅฉ็จไบๆฐฃ็ฝ็ท๏ผDCS)็ฅ_ ๅ้ฉ ็ฉๅจ68(TCไน็ฐๅขใๅจๅฆโ็จฎ่ฃฝ็จๅฏฆๆฝไพไธญ/่ฝๅธถ่ฃ ๅๅฑคๅ ๅซๆฐฎๆฐงๅ็ฝ๏ผๅ ถๅฉ็จ้กไผผ่ฃฝ็จ่n2ใๅ้ฉ ็ฉใๆฐฎๅ ็ณๅค่ๅฑค94ไนๅๅบฆไฟไฝๆผ3Gๅ๏ผ่ผไฝณๅฏฆ่ฃไธญไฟไฝๆผๅฆ ๅใ ไบๆฐงๅ็ณๅคๆ็ตๆไน็ฌฌไบๅฑค95๏ผไบฆ็จฑ็บ็ต็ทฃๅฑค๏ผไฟไฝๆผ ๆฐฎๅ็ณๅคๅฑค94ไนไธโๅ ถไฟ_่ซธๅฆLpcVD้ซๆบซๆฐงๅ็ฉhtใ ๆฒ็ฉๆๅฝขๆใไบๆฐงๅๆญก็ฌฌไบๅฑค95็ๅๅบฆไฝๆผ็ด3ใๅ๏ผ ่ผไฝณๅฏฆๆฝไพไธญไฟไฝๆผ25ๅใ ๆฌๅฏฆๆฝไพไธญ็้ป่ทๆๆๅฑค96ๅ ๅซๆฐฎๅ็ฝ๏ผๅ ถๅๅบฆๅคงๆผ 50ๅ๏ผๅจๆญคๅฏฆๆฝไพไธญ็ด็บ70ๅโไธฆๅฉ็จ่ซธๅฆLpcvDไนๆน ๆณๅฝขๆใไบฆๅฏๆก็จๅ ถไป้ป่ทๆๆๆๆไปฅๅ็ตๆง๏ผ่ไพ่ไปค ๅฏ็บๆฐฎๆฐงใฃ๏ผSixOyNz)ใๅฏ้ญๅ็ฉใๅฏโฆๆฐงๅ็ฉใ^ ๅซๅ่ไนๅฅ็ฑณ็ฒๅญไนๆๆๅฑค็ญใ^ๅๅฐๅฉ็ณ่ซ่ 2006/02614G41A1ๆญ้ฒไบๅค็จฎ้ป่ทๆๆๅฑคไนๆๆ๏ผ.็ซๅ็บ r Novel Low Power Non-Vใlatile Memory and Gate tackใ๏ผ็ผๆไบบ็บBhattacharyya๏ผๅ ฌ้ๆฅ ๏ผ 23 ๆฅใ โ ฮฒ ๅฏฆ^ไพไธญ^้ป๏ผ้ไป้ปๅฑค97ๅ ๅซไบๆฐงๅ็ณๅค๏ผๅ ถไฟๅฉ็จ ่ฃฝ็จ๏ผๆๆก็จไธ่ฟฐๅ ฉ็จฎ่ฃฝ็จใๅจๆญคๅฏฆๆฝ =^ๅๅบฆ็ด็บ70ๅใไบฆๅฏๆก็จๅฆไธ็จฎ่คๅ้ป้ๅฑคๅ ถๅ ๅ้ข๏ผไธจ้ปไฟๆธ่ไธญไป้ปไฟๆธ้ป้ๅฑคใ ๅจๆฌๅฏฆๆฝไพไธญ๏ผ็ฌฌไธๅฑค93ๅฏ็บไธจ.311111ไนไบ ๅธถ=ๅฑค94ๅฏ็บ2nmไนๆฐฎๅ็ณๅคโ็ต็ทฃๅฑค๏ผ ๅฏ็บ2 5n^ ไธๅทฉๅ็ฝ๏ผ้ป่ทๆๆๅฑค96ๅฏ็บ8nmไนๆฐฌ ้ปๅฑค97ๅฏ็บ7nm็ๆฐงๅ็ฝใ้ๆฅตๆๆๅฏ็บp+ๅคๆถ็ฝ= 14 201027724 ๅๅๅฆๆญคไนๅคๅฑค็ตๆงไธญ๏ผ็ฉฟ้จ็ต็ทฃๅฑค่้้ ่งธ๏ผๅ ถๅ ๅซไธๆๆไน็ตๅ๏ผไปฅๅปบ็ซuๅๅ่ฝ ่ฝๅ ถๅจ้ ่ฟ้้11ๅไน่กจ่ฝๅซ็ธๅฐไฝ็ๅนๅธถ -ๆธไธจ็ณๅค๏ผโใคๆ่้้ๅๅ่กจ้ขไนไฝๆผ2nmไน็ฌฌ ่ฏตใๆพ็ฃIt็บใๅฝ)ๅขๅ ๅนๅธถ่ฝ้๏ผๆฐฎๅ็ฝ)๏ผ่ๅจ่ ไปไบ็ฌฌไบ่ท้ข๏ผไพๅฆ็บ3.3nm)้ไฝๅนๅธถ่ฝ้๏ผๆฐง ็ๆฑไธ่ท้ขๅคงๆผ่ฉฒ็ฌฌไธ่ท้ขใๅ ถไปๅฏฆๆฝไพไธไธๅฎๆ ใ ๆฅ็็ไนๅๅฑค้็๏ผไฝไป็ถ่ฃฝ้ Uๅๅ่ฝไนๅนๅธถ็นๆงใ ็ฌฌ7ๅ็บๅ ทๆๅ่้้้ฃๅไน็ฉ้ซ้ป่ทฏ็ฐกๅ็คบๆๅ๏ผๅ ถ ๅ ทๆๆฌ็ผๆๆๆญ้ฒไน้ป่ทๆๆ่จๆถ่๏ผไพๅฆ็ฉบไนๆจกๅผไน FmFETBE_SใNใS NANDๅฟซ้่จๆถ้ซใ็ฉ้ซ้ป่ทฏ165ใๅ โน ๅซ่จๆถ้ฃๅ1_๏ผๅ ถไฝฟ็จๆฌ็ผๆๆ่ฟฐไน้ๆฎ็ผ่จๆถ่๏ผ่ฉฒ =ๆถ่ไฝๆผๅๅฐ้ซๅบๆไนไธใๅ่งฃ็ขผๅจ16ใ1่ฆๅ่ณ่คๆธไน ๅญๅ ็ท1602๏ผๅ ถไฟๆฒฟ่จๆถ้ฃๅ16ใใไนๆฉซๅ่จญ็ฝฎใๆญค่ๆ ่ฟฐไน่จๆถ่ๅฏ้ ็ฝฎ็บNAND้ฃๅ๏ผๅจๅ ถไปๅฏฆๆฝไพไธญไบฆๅฏ้ ็ฝฎ็บNOR้ฃๅใSOI AND้ฃๅใๆๅ ถไป้ฃๅ็ตๆงใ่ก่งฃ ็ขผๅจ1603่ฆๅ่ณ่คๆธไนไฝๅ ็ท16ใ4 ,ๅ ถไฟๆฒฟ่่จๆถ้ฃๅ 1600ไน็ธฑ่กๆๅใไฝๅๅฏ็ฑๅฏๆตๆ16ใ5ๆไพ่ณ่ก่งฃ็ขผๅจ 1603่ๅ่งฃ็ขผๅจ1601ใๆนๅก1606ไธญ็ๆๆๆพๅคงๅจ่่ณๆ ่ผธๅ ฅ็ตๆง็ถ็ฑ่ณๆๅฏๆตๆ1607่ฆๅ่ณ่ก่งฃ็ขผๅจ16ใ3ใ่ณ ๆ่็ฑ่ณๆ่ผธๅ ฅ็ท1611๏ผ็ฑ่ผธๅ ฅ/่ผธๅบ่ๅณ้ๅฐ็ฉ้ซ้ป่ทฏ 1650๏ผๆ่ ็ฑๅ ถไปๅ ้จๆๅค้จ่ณๆๆบๅฐ้็ฉ้ซ้ป่ทฏ165ใ๏ผ ่ณๆนๅก1606ไธญ็่ณๆ่ผธๅ ฅ็ตๆงใ่ณๆไบฆ็ถ็ฑ่ณๆ่ผธๅบ็ท 1615๏ผ็ฑๆๆๆพๅคงๅจ1606่ณ็ฉ้ซ้ป่ทฏ1650ไธ็่ผธๅ ฅ/่ผธๅบ ๅ ๏ผๆๅ ถไป็ฉ้ซ้ป่ทฏๅ ้จๆๅค้จ็่ณๆ็ต้ปใๅๅฃ่ชฟๆด็ ๆ ๆฉๆง1609ๆงๅถๅๅฃ่ชฟๆดไน้ปๅฃ1608ใไพๅฆๆน้ค้ฉ่ญ่ ็จๅผๅ้ฉ่ญ้ปๅฃ๏ผไปฅๅไพ็จๅผๅใๆน้คใ่ฎๅ่จๆถ่ไนๅ 15 201027724 ๅฃ:ๅจๆดใใๅๅฃ่ชฟๆด็ๆ ๆฉๆงๅฏๆฝๅ ๅๅฃ๏ผไปฅๅฉ็จ+FN็ฉฟ้ ้ฒไป็จๅผๅ๏ผๅ ถๅ ๅซไฝๆผ้ๆฅต่้้ไน้็ๆญฃ้ปๅฃ๏ผๆ่ ไฝๆผ้ๆฅต่ๆบๆฅต่ๆฒๆฅตไนไธ๏ผๆๅ ฉ่ ๏ผ็็ต็ซฏไน้็ๆญฃ้ป ๅฃ๏ผๅ ถ่ถณไปฅ่ช็ผ้ปๅญ็ฉฟ้ง้้็ฉฟ้งไป้ป็ตๆง๏ผ้ฒๅ ฅ้ป่ทๆ ๆ็ตๆงใๅๆโ่ฉฒๅๅฃ่ชฟๆด็ๆ ๆฉๆงๅฏๆฝๅ ๅๅฃ่ชฟๆด๏ผไปฅ ๅฉ็จ-FN็ฉฟ้ง้ฒ่กๆน้ค๏ผๅ ถๅ ๅซไฝๆผ้ๆฅต่้้ไน้็่ฒ ้ปๅฃ๏ผๆ่ ไฝๆผ้ๆฅต่ๆบๆฅต่ๆฑฒๆฅตไนไธ๏ผๆๅ ฉ่ ๏ผ็็ต็ซฏ ไน้็่ฒ ้ปๅฃโ็ไปฅ่ช็ผ้ปๆด็ฉฟ้้้็ฉฟ้จไป้ป็ตๆง๏ผ ้ฒๅ ฅ้ป่ทๆๆ็ตๆงใ ่ฉฒ้ฃๅ่ๅ ถไปๆจก็ตๅจ็ฉ้ซ้ป่ทฏไนไธ็ตๅ๏ผไพๅฆ่็ๅจใโน ่จๆถ้ฃๅใๅฏ็จๅผๅ้่ผฏๅจใๅฐๅฑฌ้่ผฏๅจ็ญใ ๅ ทๆๅ่้้ใ็ฉบไนๆจกๅผ็finFETBE-SONOS่ฃ็ฝฎ ๅทฒๅฆๅ่ฟฐใ็ธๅฐๆผๅณ็ตฑๅฟซ้่จๆถ้ซไนๅขๅผทๆจกๅผ่ฃ็ฝฎ๏ผๅ ทๆ ฮท้้ๅ่้้็่ฃ็ฝฎๅ ทๆnๅ้ ้จ่กจ้ขใๅ ๆญค๏ผ่ตท^่จ ็้ปๅฃVT่ขซ้ไฝ๏ผๅ ถๅจใ้ๅธธ้ๅใไนๆจกๅผไธ้ไฝ๏ผๅๆ ๅฐ้ไฝไบๆน้ค่็จๅผๅ็ๆ ็่จ็ๅไฝใๆก็จ้กไผผๅฆๅฐธยฃไธ ไน็ตๆง๏ผๅฏๅ ๅผท้ๆฅตๆงๅถ่ฝๅ๏ผๅๆๆไพ่ผไฝณไนๅฐบๅฏธๆๆใ ไผๅๅคไธจ็ฑๆผ้้ไปฅๆด้ซๅ่ฝๆจกๅผ้ไฝ๏ผ่้ๅฆไปฅๅณ็ตฑๅขฮฒๅผท ๆจกๅผๆกๅ่กจ้ขๅ่ฝ๏ผๅ ๆญค่ฉฒๅ่้้่ฃ็ฝฎๆไพ่ผไฝณไน่ฎๅ_ ้ปๆต่ๆด้ซๅณๅฐ็นๆงใๆญคๅค๏ผๆด้ซๅ่ฝๅฐMfmFETๆซ็ซฏไน ่ง่ฝ้็ทฃ่ผไธๆๆ๏ผๆไปฅๅฏไปฅ็ฒๅพ่ผไฝณไนไธ่ดๆง่่ผๅฐ็ ็จๅผๅ่่ฎๅ้็คใๆญค่ๆๆญ้ฒไน็ฉบไนๆจกๅผ่ฃ็ฝฎๅฏ้ฉ็จๆผ ็กๆฅ้ขไนๅฏฆๆฝไพ๏ผๅ ถๅฏๆ็จๆผๆดๅฐไนๅฐบๅฏธ๏ผ่ๅๆๅ ็บ้ ้ๅทฒ็ถๆฏฮทๅ๏ผ็ก้ ๅจๅญๅ ็ทไน้ๆก็จ้กๅคไนๅฅธๅๆคๅ ฅใ ๅจNANDๅฟซ้่จๆถ่ฃ็ฝฎไธญ๏ผ่ฃ็ฝฎ้ๅธธ่ขซๆน้ค่ณ่ฒ ้ปๅฃ Vt๏ผ่่ขซ็จๅผๅ็บๆญฃ้ปๅฃVtใๆฐ็ฉบไนๆจกๅผ๏ผ้ๅธธ้ๅ๏ผไน 16 201027724 ๅ่้้ใ็กๆฅ้ขไนn้้ๅฟซ้่จๆถ่ฃ็ฝฎๆญ้ฒๆผๆญคใ ^้NANDๅฟซ้ๅฐ็จๅผๅ่ๆน้คp/E %็ฏๅไธ้ๅฐๅณ็ตฑ ่กจ้ข้้่ฃ็ฝฎไน็ฏๅไปฅไธ๏ผๅๆๆด้ฉๆผNANDๅฟซ้่จๆถ่ฃ $่จญ่จใ็ฑๆผๅๅงVT่ผไฝโๆ ่ฃ็ฝฎๅฏไปฅๅ็พ่ผๅฟซ็ๆน้ค้ ใๅ๏ผๅๆ่ผๅฏ้ฟๅ ่ฎๅๅนฒๆพใๆญคๅค๏ผๅ่้้่ฃ็ฝฎๅคง ้ฒไบ่ฃ๏ผ็ๅพช็ฐๆฟๅๅโๅ ็บๅ่้้ๅฐๆผ็จๅผๅ/ๆน้คไน ไป้ข็ๆ ๏ผDit)็ข็่ผไธๆๆใไธๆทกๆป้ไนๆทบใฃ้้ๅ ๆๅฏไฝ็บๅ่ไนไฝๅ ็ท๏ผไปฅๅ็กๆฅ้ข็ตๆงไนๆบๆฅต็บงๆฅตใๅฉ ^้กไผผfmFETไน็ตๆง๏ผๅณๅฏๅ ๆ็ญ้้ๆๆใๅ่้้ โข ^ๅฆ"ๅฟซ้่จๆถ้ซๅฉ็จ็ดๆฅๆๅไฝๅ ็ท้ปไฝไนๆนๆณ๏ผๅฉ็จ ้ๅฎ็จๅผๅ็ฆๆญข๏ผ่็ก้ ๅฆๅณ็ตฑ่ช็ผๆนๆณๆ้๏ผ่ช็ผๆทฑ็ฉบ ไนใ SONOSๅโ4ไน้ป๏ผ ๆๆ็ตๆง็บโ็จฎ่ผไฝณๅฏฆๆฝไพ๏ผไพ ๅฆโ ^็ฌฌ6ๅไน็ธ้่ชชๆๆ็คบๅ ๅ ถๆไพๅฟซ้ๆน้คไนไธไธ ไปฃ้ป่ทๆๆ่ฃ็ฝฎ๏ผๅๆ็ตๅ้กไผผfmFETไน็ตๆง๏ผ้ๆๅฎ็พ ฮ ฯๆงๅถ็นๆงใไปฅไธๆ่ฟฐๅ่้้่ฃ็ฝฎไน้จๅๅชๅข็น โน ^ (1)่ผๅฟซ็ๆน้ค้ๅบฆ่ณVT<ใV๏ผๅๆๅฐ็จฑ็ฮฝฯๅไฝ ๅ้.็ฑๆผๆดไฝ็ๅๅง้ปๅฃฮฝฯ๏ผ่ช็ถๆดๅฎนๆๅฐ่ฃ็ฝฎๆน้ค่ณ ฮฝฯ<ฮฟฮฝใ่ฝๆงๅจ้ปๅถๅ็ฝฎๅทพๅถๆ่๏ผ็ฎ็บๆญค็จฎ่ฃ ็ฝฎ็ๆน้ค้ๅบฆ้ๅธธไฝๆผๆตฎ_ๆฅต่ฃ็ฝฎใฮฝฯไนๅไฝ่ผไฝไธๅจ ๅ่้๏ผ่ค็ฝฎไธญๆด็บๅฐ็จฑ๏ผๆญค็ญ็นๆงๆๅฉๆผๅฟซ้่จ ๆถ้ซไน่จญ่จใ (2)่ผๅคง็ๅไฝ้็๏ผ็ฑๆผ่ผไฝไนๅๅงVT๏ผ็จๅผๅ่ ๏ผ้คๅนฒๆพ๏ผๅจๅๆจฃ็ๅบๅฑคๆฐงๅๅๅ่ช ๅๆ้๏ผๆด่ฝๆงไบฒ; ฮฝฯ<ฮฟฮฝไนไธโไปฅไพ่ผๅคง็็กๅนฒๆพๅ้ๆ็จใๆญคๅค๏ผไฝ้ 17 201027724 ๆฅต้้้ปๅฃ๏ผ<5V)ไบฆ็บ่ฎๅๆๅฟ ้ ใ ็บ=ๆณ่จญ่จ๏ผn้ญ่้้ๅฏไปฅไฝ ไบฯ = J๏ผๅ ถๅฐๆๆ่ฃ็ฝฎ้ฃๆฅๅจ-่ตทใๅ ๆญค๏ผ็ก้ ๅจWLไน้่ฃฝไฝ้กๅค็ๆฅ้ขใ U ,ใ๏ผใ4 (4)็ก้ ่ค้็่ช็ผ็จๅผๅ็ฆๆญข ่ๆฅ้ขๆป้จๆไน_้ญใๅฏๅ็ ง่ช== ๅคง7:๏ผๅฏๆ87,้ณฉใๅๆ๏ผๅ ถไบฆๅๅฐๆฅ้ขๆผ้ปi ๆญค๏ผ่ฆๅจ่จๆถ่ๆ่ฝ่็บไบ่ช็ผ่้ฒ่ก็ไบ/ ไปฅใใฃฮฏๆดไน้ๅๅพๅนณ่กกโไฟ็บ็ธไน้ธๆใ้ๅฆ ใ :็ฌ;็ฉบไนไปฅ้ ๆ่ช็ผไนๅณ็ตฑ่กจ้ข้้่ฃ็ฝฎ๏ผๅจๅ่ k่ฃ็ฝฎๅทพโ้ๅธธใฃๅฐๅณๅฏๆ๏ผ ฮทๅๅๅๅ้ฃๆฅๅจโ่ตท๏ผใ wๅใไธญๆๆ ๅปถๅฑๅ ไปถๅพช็ฐๆฟๅๅ๏ผๅ่้้่ฃ็ฝฎไนๅพช็ฐๆฟๆ ๅๅคงๅน ๆๅฑใๆญคไฟๅ ็บๅ่ฝ้้็ตฒ้ข่ท้ข ฯ ๆผๅพช็ฐๆๅไนๅพ็ข็ไน่กจ้ข็ๆ ๏ผDit)่ผไธๆๆใHๅฐ VTๅจP/E็ฐๆไนๅพๅขๅ ไนๆ ๆณๅฐฑ่ขซๆๅถใ ็ธๅฐๆผๅ ธๅไน่กจ้ข้้่ฃ็ฝฎโๅ่้้่ฃ็ฝฎ็็จๅผๅ/ ๆน้ค(ฮก/ฮ)ๅ็ธฃๆฌไธไฟๅนณ่กๅฐๅพ่ผไฝ็Vtใฃใ่ผไฝ็โน ๅๅงVTๅๆไน่ฎๆน้ค้ๅบฆๅขๅ ใๅๆ๏ผp/EไนVtๅไฝ้ ๅธธๅฐ็จฑ๏ผ่่ฉฒไฝๆน้คไนvTๅไฝๆไพ่ผๅปฃไน ็กๅนฒๆพๅ้ใๆญคๅค๏ผๆญค่ๆ่ฟฐไนๅ่้้่ฃ็ฝฎๅฏ^็จๅค้ ่จๆถ่(MLC)ไพๅฎๆ๏ผๅ ๆญคๅ่ฃ็ฝฎๅฏๅฒๅญไบไฝๅ ๆไปฅไธไน ่ณๆ๏ผๅฆๆญคๆน้ค็ๆ ๅ ทๆ่ฒ VTๅไฝ๏ผ่่ฉฒไธๅๆไปฅไธ็็จ ๅผๅ็ๆ ๅๆๆญฃ็VTๅไฝใ ๅจFinFET็ตๆงไธญ๏ผๅ้้่ฃ็ฝฎ้กฏ็คบไบ่ผ่กจ้ข้้่ฃ 18 201027724 ็ฝฎๆดๅ ็ๅ ไปถๆฟๅๅใ ๅ่้้่ฃ ็ฝฎๅฐ้ซๅ่ฝ้ปๅญๅฏๅบฆๅปถไผธ้ฒๅ ฅ้้ ้ข ้ข้้ๅ ๅ ทๆ่กจ้ขๅ่ฝใๅ่้้่ฃ็ฝฎๅฐๆผๅ่ฝๆไน ็ๆ ๅฏๅบฆ่ผไธๆๆใ 1 t็ผๆไน่ผไฝณๅฏฆ้๏ผ็ดฐๆฌ็ผๆ็ธฃๅ ้ๆผ ่ฏฅ็ญๅฏฆๆฝไพ:ๅ็จฎ่งใ่ฎๅใไธฆๆดใ_ใไปฅๅๅ ๅ ๅฎนโๅฐๆผ็็ฅ่ฉฒๆ่ก้ ๅไนไบบ่่จๅๅฑฌ้กฏ่ๆ่ฆ๏ผๅ ๅไธ่ซ้ธๆผๆฌ็ผๆไน็ฒพ็ฅ่้ฝกไนๅค๏ผๅณๅฆ็ณ่ซๅฐๅฉ็ฏๅ ๆ๏ผjitใ ๅซRoad. The gate 98 in this embodiment includes ฯ+ polysilicon, and ฮ+polysilicon can also be used. The gate 98 of other embodiments may utilize a metal, a metal compound, a metal composition, or a combination of a metal and a metal compound such as platinum, tantalum nitride, metal telluride, aluminum or other metal or metal compound gate material. In some applications, the preferred embodiment employs materials having a work function greater than 4.5 eV. U.S. Patent 6,912,163 provides a variety of high work function materials which are suitable for use in the gate terminal herein. These materials are usually mixed or deposited by CVD, and can be applied to the surface of the ion-reactive layer. The dielectric tunneling layer contains a composite material, including the first composition of yttrium oxide. Layer 93, also referred to as a tunneling layer, is located above surface 90a of I = , for example, a wide- and selective-selective liquefaction, which is deposited after use or when deposited Add a NO environment. The dioxin-layer % & is less than 20 angstroms, and in the preferred embodiment is less than 13 angstroms. a thin layer 94 composed of an oxygen vapor deposited tantalum nitride layer, also referred to as a first layer 93 of a band-compensating layer fossil, which is formed, for example, by a low pressure 13 201027724 LPCVD, for example, utilizing Dioxane (DCS) ็ฅ _ precursor in 68 (TC environment. In another process example / band compensation layer contains bismuth oxynitride, which uses a similar process with n2 ใ precursor. The thickness of 94 is less than 3G angstroms, preferably less than angstrom. The second layer 95, also known as the insulating layer, is located on the nitriding layer 94. Formed by a high temperature oxide htใ deposition such as LpcVD. The thickness of the second layer 95 of the oxidized oxide is less than about 3 angstroms, and in the preferred embodiment is less than 25 angstroms. The charge trapping layer 96 in this embodiment contains nitrogen. The ruthenium, which has a thickness greater than 50 angstroms, is about 70 angstroms in this embodiment, and is formed by a method such as LpcvD. Other charge trapping materials and structures can also be used, for example, it can be made of nitrogen oxides (SixOyNz), rich. Wei compound, rich 7 oxide, ^ capture layer containing buried nanoparticles, etc. The application number 2006/02614G41A1 discloses a variety of materials for the charge trapping layer, the name is r Novel Low Power Non-Vใlatile Memory and Gate tack", the inventor is Bhattacharyya, the public day is 23 days. 'ฮฒ ๅฎไพThe resistive dielectric layer 97 comprises a dioxide dioxide, which utilizes a process, or both processes. The thickness of the film is about 70 angstroms. Another composite barrier layer may be used. In the present embodiment, the first layer 93 can be 311.311111, the second layer = the layer 94 can be 2 nm of nitride, and the insulating layer can be 2 5n^ The charge trapping layer 96 may be an 8 nm argon layer 97 which may be 7 nm of yttrium oxide. The gate material may be p+ polysilicon = 14 201027724. In such a multilayer structure, the interlayer is in contact with the channel and includes A combination of materials to establish a u-inversion energy that is relatively low in the valence band near the channel 11 domain - minus ไธจ ๅค ) ' ' ' ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ไธ ่ฏต ่ฏตIt is. The valence band energy level (tantalum nitride) is increased, and the valence band energy level is lowered at a second distance from the second layer (for example, 3.3 nm) (the oxygen column is greater than the first distance. Other embodiments do not necessarily have The boundary layer of the boundary layer is still formed, but the U-shaped inversion valence band characteristic is still produced. Fig. 7 is a simplified schematic diagram of the integrated circuit with the buried channel array, which has the charge trapping memory cell disclosed in the present invention, such as the depletion mode. The FmFETBE_SใNใS NAND flash memory. The integrated circuit 165 includes a memory array 1_, which uses the non-volatile memory cell of the present invention, which is located above the semiconductor substrate. 16ใ1 is coupled to the complex word line 1602, which is disposed along the horizontal array of the memory array. The memory cells described herein may be configured as a NAND array, and in other embodiments may also be configured as a NOR array. The SOI AND array, or other array structure. The row decoder 1603 is coupled to a plurality of bit lines 16ใ4 that are arranged along the wales of the memory array 1600. The addresses can be provided by the bus bars 16ใ5 to the row decoder 1603. And column decoder 1601. In block 1606 The amplifier and data input structure is coupled to the row decoder 16ใ3 via data bus 1607. The data is passed from the input/output port to the integrated circuit 1650 via the data input line 1611, or from other internal or external sources. The body circuit 165A, to the data input structure in block 1606. The data is also passed through the data output line 1615, from the sense amplifier 1606 to the input/output port on the integrated circuit 1650, or to the data end point inside or outside the other integrated circuit. The bias adjustment state mechanism 1609 controls the voltage of the bias adjustment 1608. For example, the erase verification and the stylized verification voltage, and the bias for programming, erasing, and reading the memory cell 15 201027724 Pressure: Weekly, bias adjustment state The mechanism can apply a bias voltage to program with +FN, which includes a positive voltage between the gate and the channel, or a terminal located at one of the gate and the source and the pole (or both) a positive voltage that is sufficient to induce electron tunneling through the tunneling dielectric structure into the charge trapping structure. At the same time, the bias adjustment state mechanism can apply bias adjustment to utilize -FN tunneling for erasing, which includes a negative voltage between the gate and the channel, or a negative voltage between the gate and the terminal of one of the source and the drain (or both) to induce electricity The hole penetrates through the dielectric structure and enters the charge trapping structure. The array is combined with other modules on the integrated circuit, such as a processor, a memory array, a programmable logic, a dedicated logic, etc. The finFETBE-SONOS device of the depletion mode has been as described above. Compared with the conventional enhanced mode device of the flash memory, the device having the n-channel buried channel has an n-type top surface. Therefore, the threshold voltage VT is lowered, which is Operating normally in mode, it will reduce the critical distribution of erase and stylized states. The use of a structure similar to that of a corpse can enhance gate control while providing better dimensional effects. The buried channel device provides better read-current and overall conduction characteristics because the channel operates in a global inversion mode rather than in a conventional ๅขฮฒ-strong mode. In addition, the overall inversion is less sensitive to the corner edges of the MfmFET ends, so better consistency and less stylized and readable barriers are achieved. The depletion mode device disclosed herein can be applied to a junctionless embodiment that can be applied to smaller sizes, while at the same time because the channel is already n-type, there is no need to use additional implants between the word lines. In a NAND flash memory device, the device is typically erased to a negative voltage Vt and programmed into a positive voltage Vt. New empty mode (usually turned on) 16 201027724 Buried channel, no-connect n-channel flash memory device is exposed here. ^ NAND flash flashes the range of program and erase p/E % down to the range of traditional surface channel devices, while being more suitable for NAND flash memory devices. Since the starting VT is low, the device can exhibit a faster erasing speed and, at the same time, avoid reading interference. In addition, the buried channel device is greatly loaded, and the cycle endurance is less sensitive to the staging/wiping interface state (Dit). A lightly doped shallow (four) channel can also serve as a buried bit line and a source-level pole of a junctionless structure. Similar to the structure of the fmFET, the short channel effect can be overcome. Buried channel โข ^Xia " flash memory uses the method of directly increasing the potential of the bit line, using the staging of the stylization, without the need for traditional spontaneous methods, induced deep space. The SONOS type '4's electric % capture structure is a preferred embodiment (for example, '^ Figure 6 shows the next generation of charge trapping device provided by the related description, which combines the fmFET-like structure to achieve perfection. ฮ ฯControl characteristics. The following describes some of the advantages of buried channel devices. (1) Faster erase speed to VT<ใV, while symmetric ฮฝฯ distribution interval. Naturally easier due to lower starting voltage ฮฝฯ The device is erased to ฮฝฯ <ฮฟฮฝ. The rotation is in the electric system, and the wiping speed of such a device is usually lower than that of the floating-pole device. The distribution of ฮฝฯ is low and buried in the device. More symmetrical, these features are conducive to the design of flash memory. (2) Large distribution boundaries: due to the lower starting VT, stylized and, except for interference (in the same underlying oxidation area Chengli time) More controllable; ฮฝฯ<ฮฟฮฝ' is used for larger interference-free intervals. In addition, low gate 17 201027724 pole pass voltage (<5V) is also necessary for reading. == want to design: n Weizang The channel can be used as two ฯ = J, which connects all devices Therefore, there is no need to make additional joints between WLs. U , , , , 4 (4) No need for complex spontaneous stylization prohibits the joining of the joints with the _Wei. Refer to since == Big 7 :, Grasping 87, ้ธ . At the same time, it is also subject to leakage. Therefore, it is necessary to strike a balance between the memory performance and the well/supplement that is carried out spontaneously. :็ฌ; vacant to create a spontaneous traditional surface channel device, in the buried k device towel 'very (four) can be expected? ฮท-type areas are connected. wๅ, all of the extended component cycle endurance: the cycle capacity of the buried channel device is greatly improved. This is because the surface of the inverted channel is less sensitive to the surface state (Dit) produced after the cyclic stress. The fact that H increases VT after the P/E loop should be suppressed. In contrast to the typical surface channel device, the stylized/erased (ฮก/ฮ) area of the buried channel device is parallel to the lower Vt (four). The lower โน start VT also increases the erase speed. At the same time, the Vt distribution of p/E is very symmetrical, and the low erased vT distribution provides a wider interference-free interval. In addition, the buried channel device described herein can be implemented by multi-level memory cells (MLC), so each device can store two bits or more of data, such that the erased state has a negative VT distribution, and the three or The above stylized state has a positive VT distribution. In the FinFET configuration, the domain channel device shows more component endurance than the surface channel mount 18 201027724. The buried channel device extends the high inversion electron density into the channel. The surface channel only has surface inversion. The buried channel device is less sensitive to the state density at the time of inversion. 1 t invention is better than the invention, the county is limited to these embodiments: various views, changes, and more, _, and the contents are 'obvious to those who are familiar with the technical field, neither It is out of the spirit and age of the present invention, that is, as claimed in the patent; jit. call
ใๅๅผ็ฐกๅฎ่ชชๆใ ็ฌฌ1ๅ็บๆฒฟ่้ฐญ็็ฉๆซ็ซฏ้่ตทๆ่จญ็ฝฎไนๅ่้้่จๆถ ่ไธฒๅ็ๅ้ข็คบๆๅ๏ผๅ ถไฟๆก่ช็กๆฅ้ขไนๅฏฆๆฝไพ๏ผ่ไพ่ ่จไฟๆฒฟ่็ฌฌ3ๅไน็ทๆฎตla_lb*็นช็คบใ ็ฌฌ2ๅ็บ่ทจ่ถ้ฐญ็็ฉๆ็นช็คบ็ๅ่้้่จๆถ่ไธฒๅๅ ้ข็คบๆๅโ่ไพ่่จไฟๆฒฟ่็ฌฌ3ๅไน็ทๆฎต2a_2bๆ็นช็คบใ ฮ ็ฌฌ3ๅ็บๅ ๅซๅ่้้่จๆถ่ไนNAND้ฃๅ็ไฝๅฑๅใ ็ฌฌ4ๅ็บ็ฐกๅไนๅ่้้่จๆถ่ไธฒๅไนๅฆไธๅฏฆๆฝไพ็ ๅ้ขๅโๅ ถไธญๆบๆฅต/ๆฑฒๆฅตๆฅ้ขไฟๆคๅ ฅๆผๅญๅ ็ทไน้ใ ็ฌฌ5ๅ็บๅ ฉๅๆก็จๅ่้้่จๆถ่ไนNANDไธฒๅ็้ป ่ทฏ็คบๆๅ๏ผๅ ถไธญ็นช็คบไธ็จๅผๅๅๅฃๅฎๆใ ็ฌฌ6ๅ็บๅ่้้่จๆถ่ไนๅ้ข็คบๆๅ๏ผๅ ถ็นช็คบๅจ BE-SONOSไน่ผไฝณๅฏฆๆฝไพไธญ็่ณๆๅฒๅญ็ตๆงใ ็ฌฌ7ๅ็บๅ ๅซไธๅ่้้้ฃๅไน็ฉ้ซ้ป่ทฏ่จๆถ่ฃ็ฝฎ็ 201027724 ็ฐกๅๆนๅกๅ๏ผๅ ถไธญฮฮ-SONOS่จๆถ่ไฟ่จญ็ฝฎๆผNAND้ฃ ๅไธญใ ใไธป่ฆๅ ไปถ็ฌฆ่่ชชๆใ 10ใ 35 :ๅบๆ 10-1ใ10-2ใ10-3ใ10-4 :้ฐญ็็ฉ 11ใ 37 ยทยทๅ่้้ๅๅ 12 :้็ตๅๅ 15ใ16ใ17ใ18 :ๅญๅ ็ท 19 :่ณๆๅฒๅญ็ตๆง 20 :ๅฑค้ไป้ป็ฉ 21ใ22ใ23 :็ต็ทฃๆบๆงฝ 25 :้ธๆ็ท 26 :ๅฐ็ท 30ใ31 :้ฎ็ฝฉ 36 :้ ธ้จๅๅ 40ใ41ใ42ใ98 :้ๆฅต 44ใ45 :ๆฅ้ข 60ใ 76ใ86 :่จๆถ่ 61ใ 62 :ไบคๅ้ป 75ใ85ใ87 :้ปๆถ้ซ 90 :้้ 91 :ๆบๆฅตๅๅ 92 :ๆฑฒๆฅตๅๅ 93 :้ปๆด็ฉฟ้งๅฑค 94 :่ฝๅธถ่ฃๅๅฑค ็ต็ทฃๅฑค 95 201027724 96 :้ป่ทๆๆๅฑค 97 :้ป้ไป้ปๅฑคBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a buried channel memory cell array disposed along a fin end ridge, which is taken from a junctionless embodiment, for example, along the third diagram. The line segment la_lb* is shown. Figure 2 is a schematic cross-sectional view of a buried channel memory cell shown across the fins. For example, it is depicted along line 2a-2b of Figure 3. ฮ Figure 3 is a layout of a NAND array containing buried channel memory cells. Figure 4 is a cross-sectional view of another embodiment of a simplified buried channel memory cell array wherein the source/drain junctions are implanted between word lines. Figure 5 is a circuit diagram of two NAND strings using buried channel memory cells, showing a stylized bias arrangement. Figure 6 is a schematic cross-sectional view of a buried channel memory cell showing the data storage structure in the preferred embodiment of BE-SONOS. Figure 7 is a simplified block diagram of the 201027724 integrated circuit memory device including a buried channel array in which the ฮฮ-SONOS memory cell is placed in the NAND array. [Description of main component symbols] 10, 35: Substrate 10-1, 10-2, 10-3, 10-4: Fins 11, 37 ยท Buried channel area 12: Isolated areas 15, 16, 17, 18 : Word line 19: data storage structure 20: interlayer dielectric 21, 22, 23: insulating trench 25: selection line 26: ground line 30, 31: mask 36: neck region 40, 41, 42, 98 : Gate 44, 45: junction 60, 76, 86: memory cell 61, 62: intersection 75, 85, 87: transistor 90: channel 91: source region 92: drain region 93: hole tunneling layer 94: energy band with compensation layer 95 201027724 96 : charge trapping layer 97: barrier dielectric layer
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14493409P | 2009-01-15 | 2009-01-15 | |
US12/553,758 US8860124B2 (en) | 2009-01-15 | 2009-09-03 | Depletion-mode charge-trapping flash device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201027724A true TW201027724A (en) | 2010-07-16 |
TWI415249B TWI415249B (en) | 2013-11-11 |
Family
ID=42318436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098144279A TWI415249B (en) | 2009-01-15 | 2009-12-22 | Depletion-mode charge-trapping flash device |
Country Status (3)
Country | Link |
---|---|
US (1) | US8860124B2 (en) |
CN (1) | CN101814507B (en) |
TW (1) | TWI415249B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9305936B2 (en) | 2013-07-03 | 2016-04-05 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and method of manufacturing the same |
US9385193B2 (en) | 2011-05-26 | 2016-07-05 | United Microelectronics Corp. | FINFET transistor structure and method for making the same |
TWI556354B (en) * | 2014-12-17 | 2016-11-01 | ๆบๅฎ้ปๅญ่กไปฝๆ้ๅ ฌๅธ | Memory device and method of manufacturing the same |
TWI571960B (en) * | 2015-02-05 | 2017-02-21 | ๆบๅฎ้ปๅญ่กไปฝๆ้ๅ ฌๅธ | Semiconductor structure and method for manufacturing the same |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8772858B2 (en) * | 2006-10-11 | 2014-07-08 | Macronix International Co., Ltd. | Vertical channel memory and manufacturing method thereof and operating method using the same |
US8243526B2 (en) * | 2009-12-14 | 2012-08-14 | Intel Corporation | Depletion mode circuit protection device |
US20120217467A1 (en) * | 2011-02-24 | 2012-08-30 | Globalfoundries Singapore Pte. Ltd. | Buried channel finfet sonos with improved p/e cycling endurance |
CN102820334B (en) * | 2011-06-08 | 2017-04-12 | ่ๅ็ตๅญ่กไปฝๆ้ๅ ฌๅธ | Fin field effect transistor structure and method for forming fin field effect transistor structure |
CN102956647B (en) * | 2011-08-31 | 2015-04-15 | ไธญๅฝ็งๅญฆ้ขๅพฎ็ตๅญ็ ็ฉถๆ | Semiconductor device and method for manufacturing the same |
US9136128B2 (en) | 2011-08-31 | 2015-09-15 | Micron Technology, Inc. | Methods and apparatuses including memory cells with air gaps and other low dielectric constant materials |
CN107195684B (en) | 2011-12-30 | 2020-12-08 | ่ฑ็นๅฐๅ ฌๅธ | Surrounding type groove contact part structure and manufacturing method |
US8697536B1 (en) * | 2012-11-27 | 2014-04-15 | International Business Machines Corporation | Locally isolated protected bulk finfet semiconductor device |
US8866213B2 (en) * | 2013-01-30 | 2014-10-21 | Spansion Llc | Non-Volatile memory with silicided bit line contacts |
US9761721B2 (en) | 2014-05-20 | 2017-09-12 | International Business Machines Corporation | Field effect transistors with self-aligned extension portions of epitaxial active regions |
US11063559B2 (en) * | 2015-06-05 | 2021-07-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | High-implant channel semiconductor device and method for manufacturing the same |
US9761584B2 (en) | 2015-06-05 | 2017-09-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Buried channel semiconductor device and method for manufacturing the same |
US10453855B2 (en) | 2017-08-11 | 2019-10-22 | Micron Technology, Inc. | Void formation in charge trap structures |
US10680006B2 (en) | 2017-08-11 | 2020-06-09 | Micron Technology, Inc. | Charge trap structure with barrier to blocking region |
US10446572B2 (en) | 2017-08-11 | 2019-10-15 | Micron Technology, Inc. | Void formation for charge trap structures |
US10164009B1 (en) | 2017-08-11 | 2018-12-25 | Micron Technology, Inc. | Memory device including voids between control gates |
US10777566B2 (en) | 2017-11-10 | 2020-09-15 | Macronix International Co., Ltd. | 3D array arranged for memory and in-memory sum-of-products operations |
US10957392B2 (en) | 2018-01-17 | 2021-03-23 | Macronix International Co., Ltd. | 2D and 3D sum-of-products array for neuromorphic computing system |
US10719296B2 (en) | 2018-01-17 | 2020-07-21 | Macronix International Co., Ltd. | Sum-of-products accelerator array |
US10242737B1 (en) | 2018-02-13 | 2019-03-26 | Macronix International Co., Ltd. | Device structure for neuromorphic computing system |
US10635398B2 (en) | 2018-03-15 | 2020-04-28 | Macronix International Co., Ltd. | Voltage sensing type of matrix multiplication method for neuromorphic computing system |
US10664746B2 (en) | 2018-07-17 | 2020-05-26 | Macronix International Co., Ltd. | Neural network system |
US11138497B2 (en) | 2018-07-17 | 2021-10-05 | Macronix International Co., Ltd | In-memory computing devices for neural networks |
US11636325B2 (en) | 2018-10-24 | 2023-04-25 | Macronix International Co., Ltd. | In-memory data pooling for machine learning |
US10672469B1 (en) | 2018-11-30 | 2020-06-02 | Macronix International Co., Ltd. | In-memory convolution for machine learning |
US11562229B2 (en) | 2018-11-30 | 2023-01-24 | Macronix International Co., Ltd. | Convolution accelerator using in-memory computation |
US11934480B2 (en) | 2018-12-18 | 2024-03-19 | Macronix International Co., Ltd. | NAND block architecture for in-memory multiply-and-accumulate operations |
US11119674B2 (en) | 2019-02-19 | 2021-09-14 | Macronix International Co., Ltd. | Memory devices and methods for operating the same |
US10783963B1 (en) | 2019-03-08 | 2020-09-22 | Macronix International Co., Ltd. | In-memory computation device with inter-page and intra-page data circuits |
US11132176B2 (en) | 2019-03-20 | 2021-09-28 | Macronix International Co., Ltd. | Non-volatile computing method in flash memory |
US10910393B2 (en) | 2019-04-25 | 2021-02-02 | Macronix International Co., Ltd. | 3D NOR memory having vertical source and drain structures |
CN112669891B (en) * | 2019-10-15 | 2024-05-10 | ่ฏ็ซๅ้ๆ็ต่ทฏ(ๆญๅท)ๆ้ๅ ฌๅธ | Erasing method of semiconductor nonvolatile memory |
US11177280B1 (en) | 2020-05-18 | 2021-11-16 | Sandisk Technologies Llc | Three-dimensional memory device including wrap around word lines and methods of forming the same |
US11737274B2 (en) | 2021-02-08 | 2023-08-22 | Macronix International Co., Ltd. | Curved channel 3D memory device |
US11916011B2 (en) | 2021-04-14 | 2024-02-27 | Macronix International Co., Ltd. | 3D virtual ground memory and manufacturing methods for same |
US11710519B2 (en) | 2021-07-06 | 2023-07-25 | Macronix International Co., Ltd. | High density memory with reference memory using grouped cells and corresponding operations |
CN114937670B (en) * | 2022-07-22 | 2022-09-20 | ไธญๅฝ็ตๅญ็งๆ้ๅขๅ ฌๅธ็ฌฌไบๅๅ ซ็ ็ฉถๆ | SONOS (silicon oxide nitride oxide semiconductor) type FinFET (Fin field effect transistor) device structure and process integration method |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5574685A (en) * | 1994-09-01 | 1996-11-12 | Advanced Micro Devices, Inc. | Self-aligned buried channel/junction stacked gate flash memory cell |
US5981404A (en) * | 1996-11-22 | 1999-11-09 | United Microelectronics Corp. | Multilayer ONO structure |
US6639835B2 (en) * | 2000-02-29 | 2003-10-28 | Micron Technology, Inc. | Static NVRAM with ultra thin tunnel oxides |
US6583469B1 (en) * | 2002-01-28 | 2003-06-24 | International Business Machines Corporation | Self-aligned dog-bone structure for FinFET applications and methods to fabricate the same |
US6657252B2 (en) * | 2002-03-19 | 2003-12-02 | International Business Machines Corporation | FinFET CMOS with NVRAM capability |
US6642090B1 (en) * | 2002-06-03 | 2003-11-04 | International Business Machines Corporation | Fin FET devices from bulk semiconductor and method for forming |
JP2004111478A (en) * | 2002-09-13 | 2004-04-08 | Sharp Corp | Nonvolatile semiconductor storage device and its manufacturing method |
US6815268B1 (en) * | 2002-11-22 | 2004-11-09 | Advanced Micro Devices, Inc. | Method for forming a gate in a FinFET device |
KR100881201B1 (en) * | 2003-01-09 | 2009-02-05 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Memory device having side gate and method of manufacturing the same |
US7244651B2 (en) * | 2003-05-21 | 2007-07-17 | Texas Instruments Incorporated | Fabrication of an OTP-EPROM having reduced leakage current |
US6963104B2 (en) * | 2003-06-12 | 2005-11-08 | Advanced Micro Devices, Inc. | Non-volatile memory device |
JP2005294789A (en) * | 2004-03-10 | 2005-10-20 | Toshiba Corp | Semiconductor device and its manufacturing method |
US7262084B2 (en) * | 2004-04-15 | 2007-08-28 | International Business Machines Corporation | Methods for manufacturing a finFET using a conventional wafer and apparatus manufactured therefrom |
KR100560818B1 (en) * | 2004-06-02 | 2006-03-13 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | A semiconductor device and method for fabricating the same |
KR100555569B1 (en) * | 2004-08-06 | 2006-03-03 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Semiconductor device having the channel area restricted by insulating film and method of fabrication using the same |
KR100652384B1 (en) * | 2004-11-08 | 2006-12-06 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | 2 bit type non-volatile memory device and method of fabricating the same |
US7298004B2 (en) * | 2004-11-30 | 2007-11-20 | Infineon Technologies Ag | Charge-trapping memory cell and method for production |
US7315474B2 (en) * | 2005-01-03 | 2008-01-01 | Macronix International Co., Ltd | Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays |
KR100644405B1 (en) * | 2005-03-31 | 2006-11-10 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Gate structure of a non-volatile memory device and method of manufacturing the same |
KR100715228B1 (en) * | 2005-06-18 | 2007-05-04 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Sonos memory device having curved surface and method for fabricating the same |
KR100645065B1 (en) * | 2005-06-23 | 2006-11-10 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Fin fet and non-volatile memory device having the same and method of forming the same |
KR100682537B1 (en) * | 2005-11-30 | 2007-02-15 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Semiconductor devices and methods of forming the same |
KR100764052B1 (en) * | 2006-08-03 | 2007-10-08 | ์ผ์ฑ์ ์์ฃผ์ํ์ฌ | Flash memory device with flexible address boundary and program method thereof |
JP4282699B2 (en) * | 2006-09-01 | 2009-06-24 | ๆ ชๅผไผ็คพๆฑ่ | Semiconductor device |
US8772858B2 (en) * | 2006-10-11 | 2014-07-08 | Macronix International Co., Ltd. | Vertical channel memory and manufacturing method thereof and operating method using the same |
US7811890B2 (en) * | 2006-10-11 | 2010-10-12 | Macronix International Co., Ltd. | Vertical channel transistor structure and manufacturing method thereof |
US8785268B2 (en) * | 2006-12-21 | 2014-07-22 | Spansion Llc | Memory system with Fin FET technology |
US7932551B2 (en) * | 2006-12-28 | 2011-04-26 | Samsung Electronics Co., Ltd. | Nonvolatile memory device and method of fabricating the same comprising a dual fin structure |
US8735990B2 (en) * | 2007-02-28 | 2014-05-27 | International Business Machines Corporation | Radiation hardened FinFET |
-
2009
- 2009-09-03 US US12/553,758 patent/US8860124B2/en active Active
- 2009-12-22 TW TW098144279A patent/TWI415249B/en active
-
2010
- 2010-01-15 CN CN201010002969.4A patent/CN101814507B/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9385193B2 (en) | 2011-05-26 | 2016-07-05 | United Microelectronics Corp. | FINFET transistor structure and method for making the same |
US9305936B2 (en) | 2013-07-03 | 2016-04-05 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and method of manufacturing the same |
TWI556354B (en) * | 2014-12-17 | 2016-11-01 | ๆบๅฎ้ปๅญ่กไปฝๆ้ๅ ฌๅธ | Memory device and method of manufacturing the same |
TWI571960B (en) * | 2015-02-05 | 2017-02-21 | ๆบๅฎ้ปๅญ่กไปฝๆ้ๅ ฌๅธ | Semiconductor structure and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
US8860124B2 (en) | 2014-10-14 |
US20100176438A1 (en) | 2010-07-15 |
CN101814507A (en) | 2010-08-25 |
CN101814507B (en) | 2012-03-28 |
TWI415249B (en) | 2013-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201027724A (en) | Depletion-mode charge-trapping flash device | |
TWI663715B (en) | String select line gate oxide method for 3d vertical channel nand memory | |
US9698156B2 (en) | Vertical thin-channel memory | |
TWI304266B (en) | Memory cell and memory cell array | |
US9082656B2 (en) | NAND flash with non-trapping switch transistors | |
JP5878797B2 (en) | Semiconductor device and manufacturing method thereof | |
US8068370B2 (en) | Floating gate memory device with interpoly charge trapping structure | |
TWI451562B (en) | Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure | |
US7859066B2 (en) | Nonvolatile semiconductor memory device and method of manufacturing the same | |
TWI642166B (en) | Semiconductor device and method of manufacturing the same | |
JP5592214B2 (en) | Manufacturing method of semiconductor device | |
JP5629120B2 (en) | Semiconductor device | |
JP5472894B2 (en) | Nonvolatile semiconductor memory device | |
TW569437B (en) | Nonvolatile memory structures and fabrication methods | |
TW200939405A (en) | Semiconductor constructions, NAND unit cells, methods of forming semiconductor constructions, and methods of forming NAND unit cells | |
JP2012248652A (en) | Semiconductor device and manufacturing method of the same | |
JP2008098602A (en) | Laminated thin film transistor type nonvolatile memory device and method of manufacturing thereof | |
JP6998267B2 (en) | Semiconductor devices and their manufacturing methods | |
TWI704682B (en) | Low resistance vertical channel 3d memory | |
JP6620046B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
TW200820449A (en) | Semiconductor device | |
TW201838193A (en) | Semiconductor device and method of manufacturing the semiconductor device | |
JP2009054942A (en) | Nonvolatile semiconductor storage device | |
JP2016034045A (en) | Semiconductor device | |
JP2005116582A (en) | Semiconductor device and its manufacturing method |