TWI556354B - Memory device and method of manufacturing the same - Google Patents

Memory device and method of manufacturing the same Download PDF

Info

Publication number
TWI556354B
TWI556354B TW103144168A TW103144168A TWI556354B TW I556354 B TWI556354 B TW I556354B TW 103144168 A TW103144168 A TW 103144168A TW 103144168 A TW103144168 A TW 103144168A TW I556354 B TWI556354 B TW I556354B
Authority
TW
Taiwan
Prior art keywords
layer
layers
dielectric layer
upper portion
conductor
Prior art date
Application number
TW103144168A
Other languages
Chinese (zh)
Other versions
TW201624620A (en
Inventor
李鴻志
許漢輝
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103144168A priority Critical patent/TWI556354B/en
Publication of TW201624620A publication Critical patent/TW201624620A/en
Application granted granted Critical
Publication of TWI556354B publication Critical patent/TWI556354B/en

Links

Description

記憶元件及其製造方法Memory element and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種記憶元件及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a memory device and a method of fabricating the same.

一般而言,在記憶元件的製造過程中會面臨接面漏電(Junction Leakage)以及浮置閘極短路(Floating Gate Short)等問題。接面漏電是在電漿蝕刻過程中損害到穿隧介電層所造成的;而浮置閘極短路則是由於圖案化字元線(Patterning Word Line)時,相鄰的浮置閘極之間殘留閘極材料所導致的。然而,若是利用過蝕刻(Over-Etching)製程,以完全移除相鄰的浮置閘極之間的閘極材料,則會導致穿隧介電層遭受損害,進而增加接面漏電的風險。因此,接面漏電與浮置閘極短路處於一種權衡關係(Trade Off),上述兩者皆是影響產品的良率與可靠度的關鍵。In general, problems such as Junction Leakage and Floating Gate Short are encountered in the manufacturing process of memory elements. The junction leakage is caused by the tunneling dielectric layer during the plasma etching process; the floating gate short circuit is due to the patterning word line (Patterning Word Line), the adjacent floating gate Caused by residual gate material. However, if an over-etching process is used to completely remove the gate material between adjacent floating gates, the tunneling dielectric layer is damaged, thereby increasing the risk of junction leakage. Therefore, the junction leakage and the floating gate short circuit are in a trade-off relationship (Trade Off), both of which are the key factors affecting the yield and reliability of the product.

本發明提供一種記憶元件及其製造方法,其可解決接面漏電與浮置閘極短路的問題,進而提高產品的良率與可靠度。The invention provides a memory element and a manufacturing method thereof, which can solve the problem of junction leakage and floating gate short circuit, thereby improving product yield and reliability.

本發明提供一種記憶元件,包括:基底、多數個穿隧介電層、多數個隔離結構以及多數個頂蓋層。基底具有多數個第一區與多數個第二區。第一區與第二區沿著第一方向延伸,且沿著第二方向相互交替。穿隧介電層位於基底上。穿隧介電層沿著第二方向延伸,且橫越第一區與第二區。每一隔離結構具有上部與下部。隔離結構的下部位於基底中,且與穿隧介電層沿著第一方向相互交替。隔離結構的上部位於下部上。頂蓋層位於隔離結構的上部上。頂蓋層的頂面為一平面。The present invention provides a memory device comprising: a substrate, a plurality of tunneling dielectric layers, a plurality of isolation structures, and a plurality of cap layers. The substrate has a plurality of first regions and a plurality of second regions. The first zone and the second zone extend along the first direction and alternate with each other along the second direction. The tunneling dielectric layer is on the substrate. The tunneling dielectric layer extends along the second direction and traverses the first and second regions. Each isolation structure has an upper portion and a lower portion. The lower portion of the isolation structure is located in the substrate and alternates with the tunneling dielectric layer along the first direction. The upper part of the isolation structure is located on the lower part. The top cover layer is located on the upper portion of the isolation structure. The top surface of the top cover layer is a flat surface.

在本發明的一實施例中,每一隔離結構的上部的頂面高於每一穿隧介電層的頂面。每一隔離結構的上部的底面與每一穿隧介電層的頂面等高。In an embodiment of the invention, the top surface of the upper portion of each isolation structure is higher than the top surface of each of the tunnel dielectric layers. The bottom surface of the upper portion of each isolation structure is equal to the top surface of each tunneling dielectric layer.

在本發明的一實施例中,更包括多數個第一導體層、介電層以及第二導體層。第一導體層位於第二區的穿隧介電層上。介電層覆蓋在第一導體層上。第二導體層位於介電層上。第二導體層具有主體部與多數個延伸部。延伸部與第一導體層沿著第一方向相互交替。In an embodiment of the invention, a plurality of first conductor layers, a dielectric layer and a second conductor layer are further included. The first conductor layer is on the tunneling dielectric layer of the second region. A dielectric layer overlies the first conductor layer. The second conductor layer is on the dielectric layer. The second conductor layer has a body portion and a plurality of extensions. The extension and the first conductor layer alternate with each other along the first direction.

在本發明的一實施例中,每一隔離結構的上部以及位於上部上的頂蓋層的結構滿足下列式(1)至式(2): 式(1):b ≤ a < c, 式(2):b ≥ 1/3 a, 其中a為第二導體層之每一延伸部的底部寬度,b為每一頂蓋層的頂面寬度,c為每一隔離結構之上部的底面寬度。In an embodiment of the invention, the upper portion of each of the isolation structures and the structure of the cap layer on the upper portion satisfy the following formulas (1) to (2): Formula (1): b ≤ a < c, 2): b ≥ 1/3 a, where a is the bottom width of each extension of the second conductor layer, b is the top surface width of each cap layer, and c is the bottom surface width of the upper portion of each isolation structure.

在本發明的一實施例中,上述頂蓋層的材料包括高介電常數材料或高介電常數材料與低介電常數材料的組合。In an embodiment of the invention, the material of the cap layer comprises a high dielectric constant material or a combination of a high dielectric constant material and a low dielectric constant material.

本發明提供一種記憶元件,包括基底、多數個穿隧介電層、多數個隔離結構以及多數個頂蓋層。穿隧介電層位於基底上。每一隔離結構具有上部與下部。隔離結構的下部位於基底中,且與穿隧介電層沿著第一方向相互交替。隔離結構的上部位於下部上。頂蓋層位於隔離結構的上部上。頂蓋層的頂面為一平面。The present invention provides a memory device comprising a substrate, a plurality of tunneling dielectric layers, a plurality of isolation structures, and a plurality of cap layers. The tunneling dielectric layer is on the substrate. Each isolation structure has an upper portion and a lower portion. The lower portion of the isolation structure is located in the substrate and alternates with the tunneling dielectric layer along the first direction. The upper part of the isolation structure is located on the lower part. The top cover layer is located on the upper portion of the isolation structure. The top surface of the top cover layer is a flat surface.

在本發明的一實施例中,每一隔離結構的上部的頂面高於每一穿隧介電層的頂面。每一隔離結構的上部的底面與每一穿隧介電層的頂面等高。In an embodiment of the invention, the top surface of the upper portion of each isolation structure is higher than the top surface of each of the tunnel dielectric layers. The bottom surface of the upper portion of each isolation structure is equal to the top surface of each tunneling dielectric layer.

在本發明的一實施例中,每一隔離結構的上部以及位於上部上的頂蓋層的結構滿足下列式(1)至式(2): 式(1):b ≤ c-2×T1 < c, 式(2):b ≥ , 其中,T1為頂蓋層的厚度,b為每一頂蓋層的頂面寬度,c為每一隔離結構之上部的底面寬度。In an embodiment of the invention, the upper portion of each of the isolation structures and the structure of the cap layer on the upper portion satisfy the following formulas (1) to (2): Formula (1): b ≤ c-2 × T1 < c, Formula (2): b ≥ , where T1 is the thickness of the cap layer, b is the top surface width of each cap layer, and c is the bottom face width of the upper portion of each isolation structure.

本發明提供一種記憶元件的製造方法,其步驟如下。於基底上形成多數個堆疊層。每一堆疊層包括穿隧介電層與第一導體層。第一導體層位於穿隧介電層上。於堆疊層與基底中形成多數個隔離結構。以堆疊層為罩幕,移除部分隔離結構,以於堆疊層中形成多數個開口。開口的底面高於穿隧介電層的頂面。於隔離結構與堆疊層上共形形成介電層。於隔離結構上形成第二導體層。以第二導體層為罩幕,移除部分介電層,以形成頂蓋層,暴露第一導體層的表面。移除第一導體層與第二導體層,以暴露穿隧介電層的頂面。The present invention provides a method of manufacturing a memory element, the steps of which are as follows. A plurality of stacked layers are formed on the substrate. Each stacked layer includes a tunneling dielectric layer and a first conductor layer. The first conductor layer is on the tunneling dielectric layer. A plurality of isolation structures are formed in the stacked layer and the substrate. The stacked layers are used as a mask to remove a portion of the isolation structure to form a plurality of openings in the stacked layers. The bottom surface of the opening is higher than the top surface of the tunneling dielectric layer. Forming a dielectric layer on the isolation structure and the stacked layer. A second conductor layer is formed on the isolation structure. With the second conductor layer as a mask, a portion of the dielectric layer is removed to form a cap layer that exposes the surface of the first conductor layer. The first conductor layer and the second conductor layer are removed to expose a top surface of the tunneling dielectric layer.

在本發明的一實施例中,在移除部分介電層的步驟中,介電層與第一導體層的蝕刻選擇比以及介電層與第二導體層的蝕刻選擇比為1至15。In an embodiment of the invention, in the step of removing a portion of the dielectric layer, the etching selectivity ratio of the dielectric layer to the first conductor layer and the etching selectivity ratio of the dielectric layer to the second conductor layer are 1 to 15.

在本發明的一實施例中,上述介電層的材料包括高介電常數材料或高介電常數材料與低介電常數材料的組合。In an embodiment of the invention, the material of the dielectric layer comprises a high dielectric constant material or a combination of a high dielectric constant material and a low dielectric constant material.

基於上述,本發明利用隔離結構上的第二導體層當作罩幕層,移除部分介電層,以避免過蝕刻製程而導致穿隧介電層的損傷。另一方面,本發明又利用介電層與第一導體層以及介電層第二導體層之間的高蝕刻選擇比,以完全移除每一隔離結構之間的第一導體層,藉此避免浮置閘極短路的現象。如此一來,本發明之記憶元件及其製造方法便可有效解決接面漏電以及浮置閘極短路的問題,以提高所屬產品的良率與可靠度。Based on the above, the present invention utilizes the second conductor layer on the isolation structure as a mask layer to remove a portion of the dielectric layer to avoid damage to the tunnel dielectric layer caused by the overetch process. In another aspect, the present invention further utilizes a high etch selectivity ratio between the dielectric layer and the first conductor layer and the dielectric layer second conductor layer to completely remove the first conductor layer between each isolation structure, thereby Avoid floating gate shorts. In this way, the memory component and the manufacturing method thereof of the present invention can effectively solve the problem of junction leakage and floating gate short circuit, so as to improve the yield and reliability of the product.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A至圖1G為依照本發明實施例所繪示的記憶元件之製造流程的立體示意圖。1A-1G are perspective views of a manufacturing process of a memory device according to an embodiment of the invention.

請參照圖1A,本發明提供一種記憶元件的製造方法,其步驟如下。首先,提供基底100。基底100具有多數個第一區R1與多數個第二區R2。第一區R1與第二區R2沿著第一方向D1延伸,且沿著第二方向D2相互交替。雖然在圖1A中僅分別繪示一個第一區R1與一個第二區R2,但本發明並不限於此,其可表示多數個第一區R1與多數個第二區R2。以下圖式亦有相同情況則等同視之,於後便不再贅述。基底100例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。半導體例如是IVA族的原子,例如矽或鍺。半導體化合物例如是IVA族的原子所形成之半導體化合物,例如是碳化矽或是矽化鍺,或是IIIA族原子與VA族原子所形成之半導體化合物,例如是砷化鎵。Referring to FIG. 1A, the present invention provides a method of manufacturing a memory element, the steps of which are as follows. First, a substrate 100 is provided. The substrate 100 has a plurality of first regions R1 and a plurality of second regions R2. The first region R1 and the second region R2 extend along the first direction D1 and alternate with each other along the second direction D2. Although only one first region R1 and one second region R2 are separately illustrated in FIG. 1A, the present invention is not limited thereto, and may represent a plurality of first regions R1 and a plurality of second regions R2. The following figures are also equivalent to the same situation and will not be described again. The substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator (SOI)). The semiconductor is, for example, an atom of the IVA group, such as ruthenium or osmium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of Group IVA, such as tantalum carbide or germanium telluride, or a semiconductor compound formed of a group IIIA atom and a group VA atom, such as gallium arsenide.

接著,於基底100上形成多數個堆疊層101,並於多數個堆疊層101與基底100中形成多數個隔離結構10。每一堆疊層101包括穿隧介電層102與第一導體層104。如圖1A所示,第一導體層104位於穿隧介電層102上。穿隧介電層102的材料可例如是氧化矽,其形成方法可以是化學氣相沉積法、熱氧化法等。在一實施例中,穿隧介電層102的厚度例如是50至150埃。第一導體層104的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以利用化學氣相沈積法。在一實施例中,第一導體層104可例如是一層、兩層或更多層的導體材料層。而上述兩層或更多層的導體材料層可例如是相同導體材料,或者是不同導體材料。第一導體層104的厚度例如是500至1200埃。所述隔離結構10與所述堆疊層101沿著第一方向D1相互交替。所述隔離結構10的材料例如是摻雜或未摻雜的氧化矽、高密度電漿氧化物、氮氧化矽、旋塗式氧化矽(Spin-on silicon oxide)、低介電常數介電材料(Low-k dielectric)或其組合。隔離結構10例如是淺溝渠隔離結構。Next, a plurality of stacked layers 101 are formed on the substrate 100, and a plurality of isolation structures 10 are formed in the plurality of stacked layers 101 and the substrate 100. Each stacked layer 101 includes a tunneling dielectric layer 102 and a first conductor layer 104. As shown in FIG. 1A, the first conductor layer 104 is located on the tunnel dielectric layer 102. The material of the tunneling dielectric layer 102 may be, for example, hafnium oxide, which may be formed by a chemical vapor deposition method, a thermal oxidation method, or the like. In one embodiment, the thickness of the tunneling dielectric layer 102 is, for example, 50 to 150 angstroms. The material of the first conductor layer 104 may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method thereof may utilize a chemical vapor deposition method. In an embodiment, the first conductor layer 104 can be, for example, one, two or more layers of conductor material. The two or more layers of the conductor material may be, for example, the same conductor material or different conductor materials. The thickness of the first conductor layer 104 is, for example, 500 to 1200 angstroms. The isolation structure 10 and the stacked layers 101 alternate with each other along the first direction D1. The material of the isolation structure 10 is, for example, doped or undoped cerium oxide, high density plasma oxide, cerium oxynitride, spin-on silicon oxide, low dielectric constant dielectric material. (Low-k dielectric) or a combination thereof. The isolation structure 10 is, for example, a shallow trench isolation structure.

在一實施例中,於基底100上形成多數個堆疊層101,並於多數個堆疊層101與基底100中形成多數個隔離結構10的方法,可以先在基底100上形成堆疊材料層(未繪示)以及圖案化的罩幕層(未繪示),接著,進行乾式蝕刻製程例如是反應性離子蝕刻法(Reactive Ion Etching,RIE),圖案化堆疊材料層以形成堆疊層101,並在基底100中形成多數個溝渠(未繪示)。接著,在基底100上形成高密度電漿氧化層,以填滿上述溝渠。之後,利用化學機械研磨法(CMP)平坦化基底100上的高密度電漿氧化層,以暴露堆疊層101的第一導體層104的頂面。In one embodiment, a plurality of stacked layers 101 are formed on the substrate 100, and a plurality of isolation structures 10 are formed in the plurality of stacked layers 101 and the substrate 100. The stacked material layers may be formed on the substrate 100 (not drawn). And a patterned mask layer (not shown), followed by a dry etching process such as Reactive Ion Etching (RIE), patterning the stacked material layers to form the stacked layer 101, and on the substrate A plurality of ditches (not shown) are formed in 100. Next, a high density plasma oxide layer is formed on the substrate 100 to fill the trenches. Thereafter, a high density plasma oxide layer on the substrate 100 is planarized by chemical mechanical polishing (CMP) to expose the top surface of the first conductor layer 104 of the stacked layer 101.

請參照圖1B,以堆疊層101為罩幕,移除部分隔離結構10,以於相鄰兩個堆疊層101之間形成開口15,殘留隔離結構20。在本實施例中,此步驟可控制製程條件,使得開口15的底面高於穿隧介電層102的頂面,而且隔離結構20的頂面至穿隧介電層102的頂面的厚度T2為15 nm至40 nm。此厚度T2為有效場氧化物高度(Effective Field Oxide Height,EFH),其可避免隔離結構20被過度蝕刻,以保護穿隧介電層102避免受到損害。Referring to FIG. 1B , a portion of the isolation structure 10 is removed with the stacked layer 101 as a mask to form an opening 15 between the adjacent two stacked layers 101 to leave the isolation structure 20 . In this embodiment, this step can control the process conditions such that the bottom surface of the opening 15 is higher than the top surface of the tunneling dielectric layer 102, and the thickness T2 of the top surface of the isolation structure 20 to the top surface of the tunneling dielectric layer 102. It is from 15 nm to 40 nm. This thickness T2 is the Effective Field Oxide Height (EFH), which prevents the isolation structure 20 from being over-etched to protect the tunneling dielectric layer 102 from damage.

請參照圖1C,於隔離結構20與堆疊層101上共形形成介電層106。介電層106可以是由單層結構所構成。單層結構的材料可例如是高介電常數材料。高介電常數材料是指介電常數高於4的介電材料,例如是氧化鉿(HfO2 )、氧化鋁(Al2 O3 )、鉿氧化鋁(HfAlO)或氮化矽(SiN)等。介電層106也可以是由多層結構所構成。多層結構可由高介電常數材料與低介電常數材料的組合所組成,例如是氧化層/氮化層/氧化層(ONO)、氧化層/氮化層/氧化層/氮化層/氧化層(O(NO)x NO,x為大於1的整數)等堆疊結構。上述單層結構與多層結構的形成方法可以是化學氣相沉積法、熱氧化法或其組合。在一實施例中,介電層106的厚度T1為8 nm至20 nm。Referring to FIG. 1C, a dielectric layer 106 is conformally formed on the isolation structure 20 and the stacked layer 101. Dielectric layer 106 can be constructed from a single layer structure. The material of the single layer structure may be, for example, a high dielectric constant material. The high dielectric constant material refers to a dielectric material having a dielectric constant higher than 4, such as hafnium oxide (HfO 2 ), aluminum oxide (Al 2 O 3 ), hafnium oxide (HfAlO) or tantalum nitride (SiN). . Dielectric layer 106 can also be constructed of a multilayer structure. The multilayer structure may be composed of a combination of a high dielectric constant material and a low dielectric constant material, such as an oxide layer/nitride layer/oxide layer (ONO), an oxide layer/nitride layer/oxide layer/nitride layer/oxide layer. A stacked structure of (O(NO) x NO, x is an integer greater than 1). The above-described method of forming the single layer structure and the multilayer structure may be a chemical vapor deposition method, a thermal oxidation method, or a combination thereof. In an embodiment, the dielectric layer 106 has a thickness T1 of 8 nm to 20 nm.

請參照圖1D,於介電層106上依序形成第二導體層108與罩幕層110。第二導體層108的材料可例如是摻雜多晶矽、非摻雜多晶矽或其組合,其形成方法可以是化學氣相沈積法。罩幕層110可以是單層或是複合層,例如是氮氧化矽(SiON)、含碳材料、氧化物、非晶矽(a-Si)、氮化物、多晶矽(Poly-Si)或其組合。含碳材料可例如是非晶碳(a-C)、碳摻雜旋塗光阻(Carbon-doped Spin-on Resist)。舉例來說,罩幕層110可由氮氧化矽、非晶碳以及氧化矽的複合層所依序構成,但本發明並不以此為限。Referring to FIG. 1D, a second conductor layer 108 and a mask layer 110 are sequentially formed on the dielectric layer 106. The material of the second conductor layer 108 may be, for example, doped polysilicon, undoped polysilicon or a combination thereof, and the formation method may be a chemical vapor deposition method. The mask layer 110 may be a single layer or a composite layer, such as cerium oxynitride (SiON), a carbonaceous material, an oxide, an amorphous germanium (a-Si), a nitride, a polycrystalline silicon (Poly-Si), or a combination thereof. . The carbonaceous material may be, for example, amorphous carbon (a-C), carbon-doped spin-on Resist. For example, the mask layer 110 may be sequentially formed of a composite layer of bismuth oxynitride, amorphous carbon, and cerium oxide, but the invention is not limited thereto.

請參照圖1D與1E,然後,圖案化罩幕層110與第二導體層108,以形成圖案化罩幕層110a與第二導體層108a,暴露出第一區R1的介電層106的頂面。第二導體層108a具有主體部108b與延伸部108c。延伸部108c與主體部108b連接。延伸部108c位於第二區R2的開口15之中,且與第一導體層104沿著第一方向D1相互交替。第一區R1的開口15之中殘留第二導體層108d。第二導體層108d覆蓋在介電層106上,其頂面低於堆疊層101的頂面。在本實施例中,第二導體層108d的厚度為30 nm至45 nm。但本發明並不以此為限,在其他實施例中,只要第二導體層108d的厚度足以抵抗後續蝕刻製程,以避免下方的隔離結構20被侵蝕即可。如此一來,第二導體層108d便可保護下方的穿隧介電層102,以避免隔離結構20與穿隧介電層102之間的界面受到損害。另外,在本實施例中,第一區R1的第二導體層108a可例如是做為控制閘極或字元線(Word Line,WL)。Referring to FIGS. 1D and 1E, the mask layer 110 and the second conductor layer 108 are patterned to form a patterned mask layer 110a and a second conductor layer 108a, exposing the top of the dielectric layer 106 of the first region R1. surface. The second conductor layer 108a has a body portion 108b and an extension portion 108c. The extension portion 108c is connected to the main body portion 108b. The extension portion 108c is located in the opening 15 of the second region R2 and alternates with the first conductor layer 104 along the first direction D1. The second conductor layer 108d remains in the opening 15 of the first region R1. The second conductor layer 108d is overlaid on the dielectric layer 106 with a top surface lower than the top surface of the stacked layer 101. In the present embodiment, the second conductor layer 108d has a thickness of 30 nm to 45 nm. However, the present invention is not limited thereto. In other embodiments, as long as the thickness of the second conductor layer 108d is sufficient to resist the subsequent etching process, the underlying isolation structure 20 may be prevented from being eroded. In this way, the second conductor layer 108d can protect the underlying tunneling dielectric layer 102 to avoid damage to the interface between the isolation structure 20 and the tunneling dielectric layer 102. In addition, in the present embodiment, the second conductor layer 108a of the first region R1 may be, for example, a control gate or a word line (Word Line, WL).

請參照圖1E與1F,以第二導體層108d為罩幕,進行蝕刻製程,以移除部分介電層106,在第二區R2形成介電層106a,在第一區R1形成頂蓋層106b,並暴露出第一導體層104a的表面。在本實施例中,當介電層106的材料為高介電常數材料與低介電常數材料的組合,例如是氧化層/氮化層/氧化層(ONO)或其組合,移除部分介電層106的蝕刻氣體可例如是CF4 、CHF3 、O2 以及H,而移除第一導體層104a與第二導體層108d之間的部分介電層106的蝕刻氣體則可例如是CF4 、CH2 F2 、CHF3 、CH3 F、CH4 、O2 以及He。在一實施例中,在進行蝕刻的過程中,介電層106與第一導體層104a以及介電層106與第二導體層108d的蝕刻選擇比為1至15,因此,第一區R1的堆疊層101上的介電層106將會完全被移除。雖然介電層106與第一導體層104a之間具有高蝕刻選擇比,但仍有小部分第一導體層104a被移除,所以第一導體層104a的形狀會有些微的改變(如圖1F所示),但第一導體層104a的形狀變化並不影響後續製程與所屬記憶元件的操作。另外,在進行蝕刻的過程中,第二導體層108d側壁的介電層106以及下方的部分隔離結構20也被移除,而在第一區R1留下頂蓋層106b以及隔離結構20c。因此,隔離結構20c的上部20a具有些許斜度,其影響後續有效場氧化物高度(EFH)與形狀,於後續段落再詳細說明。Referring to FIGS. 1E and 1F, the second conductor layer 108d is used as a mask to perform an etching process to remove a portion of the dielectric layer 106, a dielectric layer 106a is formed in the second region R2, and a cap layer is formed in the first region R1. 106b and exposing the surface of the first conductor layer 104a. In this embodiment, when the material of the dielectric layer 106 is a combination of a high dielectric constant material and a low dielectric constant material, such as an oxide layer/nitride layer/oxide layer (ONO) or a combination thereof, the removed portion is introduced. The etching gas of the electric layer 106 may be, for example, CF 4 , CHF 3 , O 2 , and H, and the etching gas for removing the portion of the dielectric layer 106 between the first conductor layer 104a and the second conductor layer 108d may be, for example, CF. 4 , CH 2 F 2 , CHF 3 , CH 3 F, CH 4 , O 2 and He. In an embodiment, during the etching process, the etching selectivity ratio of the dielectric layer 106 to the first conductor layer 104a and the dielectric layer 106 and the second conductor layer 108d is 1 to 15, and thus, the first region R1 The dielectric layer 106 on the stacked layer 101 will be completely removed. Although there is a high etching selectivity ratio between the dielectric layer 106 and the first conductor layer 104a, a small portion of the first conductor layer 104a is removed, so the shape of the first conductor layer 104a may be slightly changed (as shown in FIG. 1F). Shown), but the change in shape of the first conductor layer 104a does not affect the subsequent process and operation of the associated memory element. In addition, during the etching process, the dielectric layer 106 of the sidewall of the second conductor layer 108d and the underlying partial isolation structure 20 are also removed, leaving the cap layer 106b and the isolation structure 20c in the first region R1. Thus, the upper portion 20a of the isolation structure 20c has a slight slope that affects the subsequent effective field oxide height (EFH) and shape, as will be described in detail in subsequent paragraphs.

請參照圖1F與1G,移除第一區R1位於穿隧介電層102上的第一導體層104a與位於頂蓋層106b上的第二導體層108d,以暴露出穿隧介電層102的頂面。由於第一導體層104a與頂蓋層106b之間以及第二導體層108d與頂蓋層106b之間均具有高蝕刻選擇比,因此,在移除第二導體層108d與第一導體層104a的過程中,頂蓋層106b可以保護下方的隔離結構20c,以避免隔離結構20c與穿隧介電層102之間的界面受到損害。如此一來,便可解決接面漏電與浮置閘極短路的問題,進而提高產品的良率與可靠度。另一方面,由於第一區R1的頂蓋層106b可保護下方的隔離結構20c不被損害,其使得隔離結構20c與頂蓋層106b的頂面為一平面。此外,在移除第一導體層104a與第二導體層108d的步驟中,其可能會移除部分圖案化罩幕層110a,而留下圖案化罩幕層110b。Referring to FIGS. 1F and 1G, the first conductor layer 104a on the tunneling dielectric layer 102 and the second conductor layer 108d on the capping layer 106b are removed to expose the tunneling dielectric layer 102. The top surface. Since the first conductor layer 104a and the cap layer 106b and between the second conductor layer 108d and the cap layer 106b have a high etching selectivity ratio, the second conductor layer 108d and the first conductor layer 104a are removed. During the process, the cap layer 106b can protect the underlying isolation structure 20c from damage to the interface between the isolation structure 20c and the tunneling dielectric layer 102. In this way, the problem of junction leakage and floating gate short circuit can be solved, thereby improving product yield and reliability. On the other hand, since the top cover layer 106b of the first region R1 can protect the underlying isolation structure 20c from being damaged, it causes the top surface of the isolation structure 20c and the cap layer 106b to be a flat surface. Further, in the step of removing the first conductor layer 104a and the second conductor layer 108d, it may remove the partially patterned mask layer 110a while leaving the patterned mask layer 110b.

請參照圖1G與圖2,本發明提供一種記憶元件包括:基底100、多數個穿隧介電層102、多數個隔離結構20c、多數個第一導體層104b、介電層106a、頂蓋層106b以及第二導體層108a。基底100具有多數個第一區R1與多數個第二區R2。第一區R1與第二區R2沿著第一方向D1延伸,且沿著第二方向D2相互交替。穿隧介電層102位於基底100上。穿隧介電層102沿著第二方向D2延伸,且橫越第一區R1與第二區R2。每一隔離結構20c具有上部20a與下部20b。隔離結構20c的上部20a位於下部20b上,且上部20a的底面與每一穿隧介電層102的頂面等高。隔離結構20c的下部20b位於基底100中,且與穿隧介電層102沿著第一方向D1相互交替。頂蓋層106b位於隔離結構20c的上部20a上。頂蓋層106b的頂面為一平面。第一導體層104b(可例如是做為浮置閘極)位於第二區R2的穿隧介電層102上。介電層106a覆蓋在第一導體層104b上,介於第一導體層104b與第二導體層108a之間。在本實施例中,介電層106a可當作是閘間介電層,以電性隔離第一導體層104b與第二導體層108c。第二導體層108a(例如是做為控制閘極或字元線)位於介電層106a上。第二導體層108a包括主體部108b與多數個延伸部108c。延伸部108c與主體部108b連接,而延伸於兩個第一導體層104b之間。換言之,延伸部108c與第一導體層104b沿著第一方向D1相互交替。此外,如圖2所示,本實施例之記憶元件包括隔離結構20d,其位於第二區R2的延伸部108c與基底100之間。由於隔離結構20d被其上方的介電層106a與延伸部108c所覆蓋,因此,在進行上述蝕刻製程時,隔離結構20d並未被損壞。所以,隔離結構20d與隔離結構20c的結構形狀並不相同。在本實施例中,隔離結構20d實質上為一矩形體。Referring to FIG. 1G and FIG. 2, the present invention provides a memory device including: a substrate 100, a plurality of tunneling dielectric layers 102, a plurality of isolation structures 20c, a plurality of first conductor layers 104b, a dielectric layer 106a, and a cap layer. 106b and the second conductor layer 108a. The substrate 100 has a plurality of first regions R1 and a plurality of second regions R2. The first region R1 and the second region R2 extend along the first direction D1 and alternate with each other along the second direction D2. The tunneling dielectric layer 102 is located on the substrate 100. The tunneling dielectric layer 102 extends along the second direction D2 and traverses the first region R1 and the second region R2. Each of the isolation structures 20c has an upper portion 20a and a lower portion 20b. The upper portion 20a of the isolation structure 20c is located on the lower portion 20b, and the bottom surface of the upper portion 20a is equal to the top surface of each of the tunnel dielectric layers 102. The lower portion 20b of the isolation structure 20c is located in the substrate 100 and alternates with the tunneling dielectric layer 102 along the first direction D1. The cap layer 106b is located on the upper portion 20a of the isolation structure 20c. The top surface of the top cover layer 106b is a flat surface. The first conductor layer 104b (which may, for example, be a floating gate) is located on the tunnel dielectric layer 102 of the second region R2. The dielectric layer 106a covers the first conductor layer 104b between the first conductor layer 104b and the second conductor layer 108a. In this embodiment, the dielectric layer 106a can be regarded as a dielectric layer between the gates to electrically isolate the first conductor layer 104b from the second conductor layer 108c. A second conductor layer 108a (e.g., as a control gate or word line) is located on dielectric layer 106a. The second conductor layer 108a includes a body portion 108b and a plurality of extensions 108c. The extension portion 108c is connected to the main body portion 108b and extends between the two first conductor layers 104b. In other words, the extension portion 108c and the first conductor layer 104b alternate with each other along the first direction D1. Further, as shown in FIG. 2, the memory element of the present embodiment includes an isolation structure 20d between the extension 108c of the second region R2 and the substrate 100. Since the isolation structure 20d is covered by the dielectric layer 106a and the extension portion 108c above it, the isolation structure 20d is not damaged during the etching process described above. Therefore, the structural shape of the isolation structure 20d and the isolation structure 20c are not the same. In the present embodiment, the isolation structure 20d is substantially a rectangular body.

另一方面,在本實施例中,每一個隔離結構20c的上部20a覆蓋著頂蓋層106b,且上部20a以及位於上部20a上的頂蓋層106b所組成的雙層結構為一梯形體,其結構滿足下列式(1)至式(2): 式(1):b ≤ a < c, 式(2):b ≥ 1/3 a, a為第二導體層108a之每一延伸部108c的底部寬度。 b為每一頂蓋層106b的頂面寬度。 c為每一隔離結構20c之上部20a的底面寬度。On the other hand, in the present embodiment, the upper portion 20a of each of the isolation structures 20c covers the top cover layer 106b, and the double layer structure composed of the upper portion 20a and the top cover layer 106b on the upper portion 20a is a trapezoidal body. The structure satisfies the following formula (1) to formula (2): Formula (1): b ≤ a < c, Formula (2): b ≥ 1/3 a, a is each extension portion 108c of the second conductor layer 108a Bottom width. b is the top surface width of each cap layer 106b. c is the width of the bottom surface of the upper portion 20a of each of the isolation structures 20c.

此外,在另一實施例中,每一隔離結構20c之上部20a的側壁與上部20a的底面的夾角θ例如為40度至87度。在本實施例中,每一個隔離結構20c的上部20a可以是一梯形體,所以上述夾角θ例如為40度至87度。Further, in another embodiment, the angle θ between the side wall of the upper portion 20a of each of the isolation structures 20c and the bottom surface of the upper portion 20a is, for example, 40 to 87 degrees. In the present embodiment, the upper portion 20a of each of the isolation structures 20c may be a trapezoidal body, so the above-mentioned angle θ is, for example, 40 degrees to 87 degrees.

圖3為依照本發明之另一實施例所繪示的記憶元件的立體示意圖。3 is a perspective view of a memory element in accordance with another embodiment of the present invention.

請參照圖3,本發明提供另一種記憶元件包括基底100、多數個穿隧介電層102、多數個隔離結構20c以及頂蓋層106b。穿隧介電層102位於基底100上。每一隔離結構20c具有上部20a與下部20b。隔離結構20c的上部20a位於下部20b上,且上部20a的底面與每一穿隧介電層102的頂面等高。隔離結構20c的下部20b位於基底100中,且與穿隧介電層102沿著第一方向D1相互交替。頂蓋層106b位於隔離結構20c的上部20a上。頂蓋層106b的頂面為一平面。Referring to FIG. 3, the present invention provides another memory device including a substrate 100, a plurality of tunneling dielectric layers 102, a plurality of isolation structures 20c, and a cap layer 106b. The tunneling dielectric layer 102 is located on the substrate 100. Each of the isolation structures 20c has an upper portion 20a and a lower portion 20b. The upper portion 20a of the isolation structure 20c is located on the lower portion 20b, and the bottom surface of the upper portion 20a is equal to the top surface of each of the tunnel dielectric layers 102. The lower portion 20b of the isolation structure 20c is located in the substrate 100 and alternates with the tunneling dielectric layer 102 along the first direction D1. The cap layer 106b is located on the upper portion 20a of the isolation structure 20c. The top surface of the top cover layer 106b is a flat surface.

在本實施例中,每一個隔離結構20c的上部20a覆蓋著頂蓋層106b,且上部20a以及位於上部20a上的頂蓋層106b的雙層結構為一梯形體,其結構滿足下列式(3)至式(4): 式(3):b ≤ c-2×T1 < c, 式(4):b ≥ , b為每一頂蓋層106b的頂面寬度。 c為每一隔離結構20c之上部20a的底面寬度。 T1為頂蓋層106b的厚度。In the present embodiment, the upper portion 20a of each of the isolation structures 20c covers the top cover layer 106b, and the double layer structure of the upper portion 20a and the top cover layer 106b on the upper portion 20a is a trapezoidal body, and the structure thereof satisfies the following formula (3) ) to the formula (4): Formula (3): b ≤ c-2 × T1 < c, Formula (4): b ≥ , b is the top surface width of each of the cap layers 106b. c is the width of the bottom surface of the upper portion 20a of each of the isolation structures 20c. T1 is the thickness of the cap layer 106b.

此外,每一隔離結構20c之上部20a的側壁與上部20a的底面的夾角θ例如為40度至87度。在本實施例中,每一個隔離結構20c的上部20a可以是一梯形體,所以上述夾角θ例如為40度至87度。Further, the angle θ between the side wall of the upper portion 20a of each of the isolation structures 20c and the bottom surface of the upper portion 20a is, for example, 40 to 87 degrees. In the present embodiment, the upper portion 20a of each of the isolation structures 20c may be a trapezoidal body, so the above-mentioned angle θ is, for example, 40 degrees to 87 degrees.

綜上所述,本發明在隔離結構上留有第二導體層當作罩幕層,因此在移除第一區的堆疊層上的介電層的過程中,可以保護下方的隔離結構,使隔離結構具有有效場氧化物高度。此外,由於隔離結構上被頂蓋層所覆蓋,因此在移除位於穿隧介電層上的第一導體層以及隔離結構上的第二導體層時,頂蓋層可以保護隔離結構,避免隔離結構被過度蝕刻,可避免隔離結構與穿隧介電層之間的界面受到損害且可使隔離結構具有有效場氧化物高度。另一方面,本發明又利用介電層與第一導體層之間以及介電層與第二導體層之間的高蝕刻選擇比,以完全移除隔離結構之間的第一導體層隔離結構上的第二導體層以及,藉此避免浮置閘極短路的現象。如此一來,本發明之記憶元件及其製造方法便可有效解決接面漏電以及浮置閘極短路的問題,以提高產品的良率與可靠度。In summary, the present invention leaves a second conductor layer on the isolation structure as a mask layer, so that in the process of removing the dielectric layer on the stacked layer of the first region, the isolation structure below can be protected. The isolation structure has an effective field oxide height. In addition, since the isolation structure is covered by the cap layer, the cap layer can protect the isolation structure from isolation when the first conductor layer on the tunnel dielectric layer and the second conductor layer on the isolation structure are removed. The structure is over-etched to avoid damage to the interface between the isolation structure and the tunneling dielectric layer and to provide the isolation structure with an effective field oxide height. In another aspect, the present invention further utilizes a high etch selectivity ratio between the dielectric layer and the first conductor layer and between the dielectric layer and the second conductor layer to completely remove the first conductor layer isolation structure between the isolation structures. The upper second conductor layer and thereby avoiding the phenomenon of shorting of the floating gate. In this way, the memory element and the manufacturing method thereof of the present invention can effectively solve the problem of junction leakage and floating gate short circuit, so as to improve product yield and reliability.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10、20、20c、20d‧‧‧隔離結構
20a‧‧‧上部
20b‧‧‧下部
15‧‧‧開口
100‧‧‧基底
101‧‧‧堆疊層
102‧‧‧穿隧介電層
104、104a、104b、108、108a、108d‧‧‧導體層
106、106a‧‧‧介電層
106b‧‧‧頂蓋層
108b‧‧‧主體部
108c‧‧‧延伸部
110、110a、110b‧‧‧罩幕層
a、b、c‧‧‧寬度
D1‧‧‧第一方向
D2‧‧‧第二方向
P‧‧‧部分
T1、T2‧‧‧厚度
R1、R2‧‧‧區
θ‧‧‧夾角
10, 20, 20c, 20d‧‧‧ isolation structure
20a‧‧‧ upper
20b‧‧‧ lower
15‧‧‧ openings
100‧‧‧Base
101‧‧‧Stacked layers
102‧‧‧Tunnel dielectric layer
104, 104a, 104b, 108, 108a, 108d‧‧‧ conductor layer
106, 106a‧‧‧ dielectric layer
106b‧‧‧Top cover
108b‧‧‧ Main body
108c‧‧‧Extension
110, 110a, 110b‧‧‧ cover layer
a, b, c‧ ‧ width
D1‧‧‧ first direction
D2‧‧‧ second direction
Part P‧‧‧
T1, T2‧‧‧ thickness
R1, R2‧‧‧ θ‧‧‧ angle

圖1A至圖1G為依照本發明實施例所繪示的記憶元件之製造流程的立體示意圖。 圖2為圖1G之部分P的放大圖。 圖3為依照本發明之另一實施例所繪示的記憶元件的立體示意圖。1A-1G are perspective views of a manufacturing process of a memory device according to an embodiment of the invention. Figure 2 is an enlarged view of a portion P of Figure 1G. 3 is a perspective view of a memory element in accordance with another embodiment of the present invention.

20a‧‧‧上部 20a‧‧‧ upper

20b‧‧‧下部 20b‧‧‧ lower

20c‧‧‧隔離結構 20c‧‧‧Isolation structure

100‧‧‧基底 100‧‧‧Base

102‧‧‧穿隧介電層 102‧‧‧Tunnel dielectric layer

106b‧‧‧頂蓋層 106b‧‧‧Top cover

b、c‧‧‧寬度 b, c‧‧‧width

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

D1‧‧‧第一方向 D1‧‧‧ first direction

D2‧‧‧第二方向 D2‧‧‧ second direction

θ‧‧‧夾角 Θ‧‧‧ angle

Claims (11)

一種記憶元件,包括: 一基底,具有多數個第一區與多數個第二區,其中該些第一區與該些第二區沿著一第一方向延伸,且沿著一第二方向相互交替; 多數個穿隧介電層,位於該基底上,該些穿隧介電層沿著該第二方向延伸,且橫越該些第一區與該些第二區; 多數個隔離結構,每一隔離結構具有一上部與一下部,其中該些隔離結構的該些下部位於該基底中,與該些穿隧介電層沿著該第一方向相互交替,該些隔離結構的該些上部位於該些下部上;以及 多數個頂蓋層,位於該些隔離結構的該些上部上,其中該些頂蓋層的頂面為一平面。A memory element, comprising: a substrate having a plurality of first regions and a plurality of second regions, wherein the first regions and the second regions extend along a first direction and are mutually along a second direction Alternating; a plurality of tunneling dielectric layers are disposed on the substrate, the tunneling dielectric layers extending along the second direction and traversing the first regions and the second regions; a plurality of isolation structures, Each of the isolation structures has an upper portion and a lower portion, wherein the lower portions of the isolation structures are located in the substrate, and the tunneling dielectric layers alternate with each other along the first direction, and the upper portions of the isolation structures Located on the lower portions; and a plurality of cap layers on the upper portions of the isolation structures, wherein the top surfaces of the cap layers are a flat surface. 如申請專利範圍第1項所述的記憶元件,其中每一隔離結構的該上部的頂面高於每一穿隧介電層的頂面,每一隔離結構的該上部的底面與每一穿隧介電層的頂面等高。The memory device of claim 1, wherein a top surface of the upper portion of each isolation structure is higher than a top surface of each tunneling dielectric layer, and a bottom surface of each upper portion of each isolation structure is worn by each The top surface of the tunnel dielectric layer is of equal height. 如申請專利範圍第1項所述的記憶元件,更包括: 多數個第一導體層,位於該些第二區的該些穿隧介電層上; 一介電層,覆蓋在該些第一導體層上;以及 一第二導體層,位於該介電層上,該第二導體層具有一主體部與多數個延伸部,該些延伸部與該些第一導體層沿著該第一方向相互交替。The memory device of claim 1, further comprising: a plurality of first conductor layers on the tunneling dielectric layers of the second regions; a dielectric layer covering the first portions On the conductor layer; and a second conductor layer on the dielectric layer, the second conductor layer has a body portion and a plurality of extensions, the extensions and the first conductor layers along the first direction Alternate. 如申請專利範圍第3項所述的記憶元件,其中每一隔離結構的該上部以及位於該上部上的該頂蓋層的結構滿足下列式(1)至式(2): 式(1):b ≤ a < c, 式(2):b ≥ 1/3 a, 其中a為該第二導體層之每一延伸部的底部寬度,b為每一頂蓋層的頂面寬度,c為每一隔離結構之該上部的底面寬度。The memory element according to claim 3, wherein the upper portion of each isolation structure and the structure of the top cover layer on the upper portion satisfy the following formulas (1) to (2): Formula (1): b ≤ a < c, Formula (2): b ≥ 1/3 a, where a is the bottom width of each extension of the second conductor layer, b is the top surface width of each cap layer, and c is per The width of the bottom surface of the upper portion of an isolation structure. 如申請專利範圍第1項所述的記憶元件,其中該頂蓋層的材料包括高介電常數材料或高介電常數材料與低介電常數材料的組合。The memory element of claim 1, wherein the material of the cap layer comprises a high dielectric constant material or a combination of a high dielectric constant material and a low dielectric constant material. 一種記憶元件,包括: 一基底; 多數個穿隧介電層,位於該基底上; 多數個隔離結構,每一隔離結構具有一上部與一下部,其中該些隔離結構的該些下部位於該基底中,與該些穿隧介電層沿著一第一方向相互交替,該些隔離結構的該些上部位於該些下部上;以及 多數個頂蓋層,位於該些隔離結構的該些上部上,其中該些頂蓋層的頂面為一平面。A memory element comprising: a substrate; a plurality of tunneling dielectric layers on the substrate; a plurality of isolation structures, each isolation structure having an upper portion and a lower portion, wherein the lower portions of the isolation structures are located on the substrate And the tunneling dielectric layers alternate along a first direction, the upper portions of the isolation structures are located on the lower portions; and a plurality of cap layers are located on the upper portions of the isolation structures The top surface of the cap layers is a flat surface. 如申請專利範圍第6項所述的記憶元件,其中每一隔離結構的該上部的頂面高於每一穿隧介電層的頂面,每一隔離結構的該上部的底面與每一穿隧介電層的頂面等高。The memory device of claim 6, wherein a top surface of the upper portion of each isolation structure is higher than a top surface of each tunneling dielectric layer, and a bottom surface of each upper portion of each isolation structure is worn by each The top surface of the tunnel dielectric layer is of equal height. 如申請專利範圍第6項所述的記憶元件,其中每一隔離結構的該上部以及位於該上部上的該頂蓋層的結構滿足下列式(1)至式(2): 式(1):b ≤ c-2×T1 < c, 式(2):b ≥ , 其中,T1為該頂蓋層的厚度,b為每一頂蓋層的頂面寬度,c為每一隔離結構之該上部的底面寬度。The memory element according to claim 6, wherein the upper portion of each isolation structure and the structure of the top cover layer on the upper portion satisfy the following formulas (1) to (2): Formula (1): b ≤ c-2 × T1 < c, formula (2): b ≥ , where T1 is the thickness of the cap layer, b is the top surface width of each cap layer, and c is the upper portion of each of the isolation structures The width of the bottom surface. 一種記憶元件的製造方法,包括: 於一基底上形成多數個堆疊層,每一堆疊層包括一穿隧介電層與一第一導體層,其中該第一導體層位於該穿隧介電層上; 於該些堆疊層與該基底中形成多數個隔離結構; 以該些堆疊層為罩幕,移除部分該些隔離結構,以於該些堆疊層中形成多數個開口,該些開口的底面高於該穿隧介電層的頂面; 於該些隔離結構與該些堆疊層上共形形成一介電層; 於該些隔離結構上形成一第二導體層; 以該第二導體層為罩幕,移除部分該介電層,以形成一頂蓋層,暴露該第一導體層的表面;以及 移除該第一導體層與該第二導體層,以暴露該穿隧介電層的頂面。A method of fabricating a memory device, comprising: forming a plurality of stacked layers on a substrate, each stacked layer comprising a tunneling dielectric layer and a first conductive layer, wherein the first conductive layer is located in the tunneling dielectric layer Forming a plurality of isolation structures in the stacked layers and the substrate; using the stacked layers as a mask to remove portions of the isolation structures to form a plurality of openings in the stacked layers, the openings a bottom surface is higher than a top surface of the tunneling dielectric layer; a dielectric layer is formed on the isolation structures and the stacked layers; a second conductor layer is formed on the isolation structures; The layer is a mask, a portion of the dielectric layer is removed to form a cap layer to expose a surface of the first conductor layer; and the first conductor layer and the second conductor layer are removed to expose the tunneling layer The top surface of the electrical layer. 如申請專利範圍第9項所述的記憶元件的製造方法,在移除部分該介電層的步驟中,該介電層與該第一導體層的蝕刻選擇比以及該介電層與該第二導體層的蝕刻選擇比為1至15。The method of manufacturing a memory device according to claim 9, wherein in the step of removing a portion of the dielectric layer, an etching selectivity ratio of the dielectric layer to the first conductor layer and the dielectric layer and the first layer The etching selectivity ratio of the two conductor layers is from 1 to 15. 如申請專利範圍第9項所述的記憶元件的製造方法,其中該介電層的材料包括高介電常數材料或高介電常數材料與低介電常數材料的組合。The method of manufacturing a memory device according to claim 9, wherein the material of the dielectric layer comprises a high dielectric constant material or a combination of a high dielectric constant material and a low dielectric constant material.
TW103144168A 2014-12-17 2014-12-17 Memory device and method of manufacturing the same TWI556354B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103144168A TWI556354B (en) 2014-12-17 2014-12-17 Memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103144168A TWI556354B (en) 2014-12-17 2014-12-17 Memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201624620A TW201624620A (en) 2016-07-01
TWI556354B true TWI556354B (en) 2016-11-01

Family

ID=56984837

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144168A TWI556354B (en) 2014-12-17 2014-12-17 Memory device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI556354B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027724A (en) * 2009-01-15 2010-07-16 Macronix Int Co Ltd Depletion-mode charge-trapping flash device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201027724A (en) * 2009-01-15 2010-07-16 Macronix Int Co Ltd Depletion-mode charge-trapping flash device

Also Published As

Publication number Publication date
TW201624620A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
US10930655B2 (en) Semiconductor device with air gap and method for fabricating the same
US9698055B2 (en) Semiconductor fin structures and methods for forming the same
US20230245930A1 (en) Semiconductor device
US11322505B2 (en) Ferroelectric random access memory devices and methods
KR102081400B1 (en) Semiconductor device and manufacturing method thereof
KR20150139223A (en) Semiconductor device
US10867842B2 (en) Method for shrinking openings in forming integrated circuits
US20230292513A1 (en) Vertical semiconductor device and method for fabricating the same
TWI763097B (en) Semiconductor structure and method forming the same
US20210175125A1 (en) Slot Contacts and Method Forming Same
KR102460716B1 (en) Method of manufacturing integrated circuit device
US11839075B2 (en) Semiconductor structure and the forming method thereof
TWI556354B (en) Memory device and method of manufacturing the same
KR20080081581A (en) Method of manufacturing a non-volatile memory device
CN105789208B (en) Memory element and its manufacturing method
US11024716B2 (en) Semiconductor structure and method for forming the same
US11842899B2 (en) Methods of cutting a fine pattern, methods of forming active patterns using the same, and methods of manufacturing a semiconductor device using the same
US20230413538A1 (en) Integrated circuit device
US20240072147A1 (en) Semiconductor device and manufacturing method thereof
US20240055525A1 (en) Semiconductor device and method of forming the same
US7508029B2 (en) Semiconductor device and method for fabricating the same
US20160190334A1 (en) Memory device and method of manufacturing the same
TW202147436A (en) Semiconductor device and method for forming the same
KR20230042963A (en) Semiconductor device comprising carbon-contained contact-fence
KR20240056326A (en) Integrated circuit device