TW201024204A - Method of fabricating micro-mirror assembly - Google Patents

Method of fabricating micro-mirror assembly Download PDF

Info

Publication number
TW201024204A
TW201024204A TW97149197A TW97149197A TW201024204A TW 201024204 A TW201024204 A TW 201024204A TW 97149197 A TW97149197 A TW 97149197A TW 97149197 A TW97149197 A TW 97149197A TW 201024204 A TW201024204 A TW 201024204A
Authority
TW
Taiwan
Prior art keywords
mirror
electrodes
handle
micromirror
metal layer
Prior art date
Application number
TW97149197A
Other languages
Chinese (zh)
Inventor
Gregory John Mcavoy
Ronan Padraig Sean O'reilly
Vincent Patrick Lawlor
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Priority to TW97149197A priority Critical patent/TW201024204A/en
Publication of TW201024204A publication Critical patent/TW201024204A/en

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A method of fabricating a micro-mirror assembly. The method comprises the steps of: (a) forming a pair of electrodes spaced apart on a surface of a substrate; (b) depositing a layer of sacrificial material over the electrodes and the substrate; (c) defining a stem opening in the sacrificial material so as to form a scaffold; (d) depositing a layer of resiliently flexible material over the scaffold; (e) depositing a metal layer over the flexible layer; (f) etching through the metal layer and the flexible layer to define an individual micro-mirror; and (g) removing the sacrificial material to provide the micro-mirror assembly. The method produces a micro-mirror assembly with minimal number of MEMS fabrication steps.

Description

201024204 九、發明說明 【發明所屬之技術領域】 本發明係有關一種數位微鏡裝置(Digital Device;簡稱DMD)。主要是爲了提供一種可使 的微機電系統(MEM S )製造步驟來製造之改良式 開發該DMD。 【先前技術】 數位微鏡裝置(DMD)目前較慣常地運用於諸 型投影機(data projector)等的許多光學裝置中。 裝置中,係以被配置在一半導體晶片(DMD)上的 中之細微小鏡產生影像。每一鏡代表被投射影像中 多個像素。鏡之數目對應於被投射影像之解析度。201024204 IX. Description of the Invention [Technical Field] The present invention relates to a digital device (Digital Device; DMD for short). The main purpose is to provide an improved development of the DMD that can be fabricated by a microelectromechanical system (MEM S ) manufacturing step. [Prior Art] A digital micromirror device (DMD) is currently conventionally used in many optical devices such as a data projector. In the device, an image is produced by a fine mirror placed in a semiconductor wafer (DMD). Each mirror represents a plurality of pixels in the projected image. The number of mirrors corresponds to the resolution of the projected image.

Texas Instruments 公司於 1980 年代開發 DMD 請參閱諸如US 4,956,61 9、US 4,662,746、及相關 )° DMD晶片於其表面上設有被配置在一長方形 之對應於要被顯示的影像中之像素的數十萬個微鏡 該等微鏡個別地旋轉±10-12°至一打開或關閉狀態 打開狀態中,來自投影機燈泡的光被反射到一鏡, 幕上顯示亮的像素。在該關閉狀態中,光被引導到 置(通常被引導到一散熱器),而顯示暗的像素。 爲了產生灰階,極迅速地打開及關閉該鏡,且 間與關閉時間間之比率決定了所產生的明暗(二進Texas Instruments developed the DMD in the 1980s. See, for example, US 4,956,61 9, US 4,662,746, and related). The DMD wafer has a number of pixels disposed on a surface of a rectangle corresponding to the image to be displayed. 100,000 micromirrors These micromirrors are individually rotated ±10-12° to an open or closed state. In the open state, light from the projector bulb is reflected to a mirror, which displays bright pixels. In this off state, light is directed (usually directed to a heat sink) and dark pixels are displayed. In order to generate gray scales, the mirror is turned on and off very quickly, and the ratio between the off time and the off time determines the brightness and darkness produced.

Mirror 用簡易 裝置而 如簡報 在這些 一矩陣 之一或 技術( 的專利 陣列中 。可將 。在該 而在螢 其他位 打開時 位脈寬 -5- 201024204 調變)。現有的DMD晶片可產生多達1024個灰階。 係由鋁製造該等鏡本身,且該等鏡通常是16微米的 正方形。每一鏡經由自該鏡的下表面延伸的一堅固柄而被 安裝在一軛上。一順應的扭轉鉸鏈支承該軛,而該扭轉鉸 鏈可使該軛(及連帶的該鏡)在其打開與關閉位置之間移 動。該等扭轉鉸鏈對機械疲乏及振動衝擊有較大的抗力。 一些電極以靜電吸引/排斥控制鏡之位置。一對電極 被定位在該鉸鏈的每一側,其中一電極對該軛起作用,且 另一電極對該鋁鏡直接起作用。大約20-30伏特的一偏壓 被施加到該鏡及軛,同時使用5伏特的CMOS定址到該等 電極。因此,當將該鏡一側上的電極被驅動到+5伏特時 ,該鏡朝向電極被驅動到〇伏特的相反側傾斜。將該等 CMOS電壓反接時,將使該鏡朝向另一側傾斜。因此,可 經由該CMOS而控制每一鏡的打開/關閉狀態。 若要得知對諸如前文所述的那些DMD等的DMD之 更詳細的說明,請參閱 David Armitage等人所著的 “Introduction to Microdisplays’’(由 John Wiley and Sons 於2006年出版)。 在過去大約十年中,對DMD的設計較無改變。然而 ,這類較複雜的設計以及每一鏡總成中之數個移動零件需 要有對應複雜的微機電系統(MEMS )製程。此種複雜性 提高了製造成本,且可能影響到每一鏡總成可被微縮的程 度。最好是可提供一種具有比習知的DMD簡單的設計之Mirror uses simple devices such as a briefing in one of these matrices or in a patented array of patents. In this case, when the other bits of the flash are turned on, the bit width is -5 - 201024204. Existing DMD wafers can produce up to 1024 gray levels. The mirrors themselves are made of aluminum, and the mirrors are typically squares of 16 microns. Each mirror is mounted on a yoke via a solid shank extending from the lower surface of the mirror. A compliant torsion hinge supports the yoke, and the torsion hinge moves the yoke (and the associated mirror) between its open and closed positions. These torsion hinges have greater resistance to mechanical fatigue and vibration shocks. Some electrodes attract/repeat the position of the mirror with static electricity. A pair of electrodes are positioned on each side of the hinge, with one electrode acting on the yoke and the other electrode acting directly on the aluminum mirror. A bias voltage of approximately 20-30 volts is applied to the mirror and yoke while being addressed to the electrodes using a 5 volt CMOS. Therefore, when the electrode on one side of the mirror is driven to +5 volts, the mirror is tilted toward the opposite side of the electrode that is driven to the volt. When the CMOS voltages are reversed, the mirror will be tilted toward the other side. Therefore, the on/off state of each mirror can be controlled via the CMOS. For a more detailed description of DMDs such as those described above, please refer to "Introduction to Microdisplays" by David Armitage et al. (published by John Wiley and Sons in 2006). The design of the DMD has remained unchanged for about a decade. However, this more complex design and the number of moving parts in each mirror assembly require a corresponding complex microelectromechanical system (MEMS) process. Increased manufacturing costs and may affect the extent to which each mirror assembly can be miniaturized. It is desirable to provide a design that is simpler than conventional DMDs.

DMD 201024204 【發明內容】 在一第一觀點中,提供了一種數位微鏡裝置,該數位 微鏡裝置包含被定位在一基材上的一陣列之微鏡總成,每 一微鏡總成包含: 與該基材間隔開之一鏡,該鏡具有一上反射表面及一 下支承表面; @ 支承該鏡之一柄,該柄自該基材延伸到該下支承表面 ,該柄界定了該鏡之一傾斜軸; —第一電極及一第二電極,該第一及第二電極被定位 在該柄之每一側,可經由該基材內之電子電路而個別地定 址到每一電極, 其中係由彈性可撓材料構成該柄,因而一靜電力可使該鏡 朝向該第一電極或第二電極傾斜。 因爲該鏡依著該可撓柄而傾斜,所以本發明不需要傳 φ 統DMD中之軛及扭轉鉸鏈配置。此種方式大幅簡化了 DMD的整體設計及其製造。 或可由諸如聚二甲基较氧院(polydimethylsiloxane ; 簡稱PDMS)等的聚合物構成該柄。PDMS具有較低的楊 氏模數(Young's modulus)(小於 lOOOMPa (百萬巴) ),因而可經由該一或多個電極施加的靜電力而彎曲該柄 。此外,本案申請人先前已證明PDMS在微機電系統( MEMS )中之效用、及其易於被加入微機電系統(MEMS )製程中。 201024204 或者,該上反射表面的全部範圍都是平坦的。其與先 前技術的DMD有懸殊差異,在先前技術的DMD中,上 反射表面中有因與該柄接合而造成的一中央小凹坑。與先 前技術之裝置相比時,完全平坦的上反射表面有利地改善 了光學品質。 或者,該鏡包含一金屬板,該金屬板界定了該上反射 表面。或者,該金屬板是一鋁板。 或者,該鏡進一步包含該金屬板之一支承平台,該支 承平台界定了該下支承表面。因此,該鏡通常是其中包含 該金屬板的一上金屬板及下支承平台之一整合式兩零件結 構。 或者,該支承平台實質上是連同該金屬板而延伸的。 或者,係由相同的材料構成該支承平台及柄。通常是 在一單一的沈積步驟中一起形成該柄及支承平台。例如, 沈積PDMS時,可一起形成該柄及支承平台。 或者,該第一及第二電極界定了該鏡之第一及第二接 合墊(landing pad ) ° 或者,該鏡具有用來接觸各別的第一及第二接合墊之 第一及第二接觸點,且其中係由一聚合物構成該第一及第 二接觸點。因爲係由一聚合物(例如,P D MS )構成該等 接觸點,所以該鏡被黏附在任一電極的可能性被最小化。 或者,該支承平台界定了該第一及第二接觸點。因此 ,不需要用來解決可能的黏附(stiction )問題之額外的 特徵。該支承平台執行支承一鋁上反射表面以及將該鏡與 -8 - 201024204 該等電極間之黏附最小化之雙重功能。 或者’該鏡係在電性上被連接到一偏壓。該偏壓通常 將該鏡保持在一高電位,因而可經由被CMOS電壓(通常 爲5伏特)控制的電極而使該鏡傾斜。 可由一導電聚合物構成該柄,使該柄提供至該偏壓的 電連接。例如,可由佈値了金屬離子的PDMS構成該柄。 或者’複數個鏡可被成列地稱合在一起,每一列係在 φ 電性上被連接到該偏壓之一端。因此,該偏壓可經由一共 同接點而被施加到一整列的鏡。 或者,每一列的鏡具有一共同傾斜軸。 或者,一列中之各鄰接鏡係經由一連桿組而被耦合在 一起,係沿著該共同傾斜軸而對準該連桿組。 或者,該基材是其中包含一或多個CMOS層之矽基材 ,該等CMOS層包含該電子電路。 在一第二觀點中,提供了一種投影機,該投影機包含 φ 前文所述之數位微鏡裝置。採用DMD之投影機及投影系 統將是熟悉此項技術者習知的。 在一第三觀點中,提供了 一種製造微鏡總成之方法, 該方法包含下列步驟: (a) 在一基材的表面上形成被間隔開的一對電極’ 該等電極被連接到該基材中之下方電子電路; (b) 在該等電極及該基材之上沈積一層犧牲材料; (c) 在該犧牲材料中界定一柄開孔’以便形成—臺 架,該柄開孔被定位在該等電極之間; -9- 201024204 (d) 在該臺架之上沈積一層彈性可撓材料; (e) 在該可撓層之上沈積一金屬層; (f) 蝕刻穿過該金靥層及該可撓層,以便界定被支 承在一可撓材料柄上之一個別的微鏡,該微鏡包含被熔接 到一支承平台之一金屬層;以及 (g) 去除該犧牲材料,以便提供該微鏡總成。 根據該第三観點之方法使用最少數目的製造步驟而提 供一種製造DMD的簡單且有效之方式。 或者,係由聚二甲基矽氧烷(PDMS )構成該彈性可 撓材料。 或者,該犧牲材料是光阻。 或者,係由鋁構成該金屬層。 或者,在該基材上同時製造一陣列的微鏡,該陣列界 定一數位微鏡裝置。 或者,該基材是包含一或多個CMOS層之一矽基材, 該等CMOS層包含該電子電路。 _ 在一第三觀點中,提供了 一種微鏡總成,該微鏡總成 包含被一柄支承的一可傾斜鏡,其中係由一彈性可撓材料 構成該柄。 或者,該可傾斜鏡包含一具有一上反射表面之一金屬 層。 或者,該可傾斜鏡進一步包含一支承平台,該支承平 台上安裝該金屬層,係由該彈性可撓材料構成該支承平台 -10- 201024204 或者,係由聚二甲基矽氧烷(PDMS )構成該彈性可 撓材料。 或者,一靜電力可使該鏡傾斜。 或者,一對電極被定位在該柄之每一側上,該等電極 提供該靜電力之至少一部分。 【實施方式】 φ 本案申請人先前已證明了聚二甲基矽氧烷(PDMS) 在微機電系統(MEMS )中之多方面適用性(請參閱諸如 於 2008年 6月 20曰提出申請的美國專利申請案 1 2/142,779、以及於2007年3月12日提出申請的美國專 利申請案1 1 /68 5,084,本發明特此引用每一該等專利申請 案之內容以供參照)。將PDMS加入傳統的MEMS製程 時,尤其已造成機械噴墨裝置的改良,且開啓了實驗室晶 片(lab-on-a-chip)及微分析系統( microanalysis system φ )的新領域。 現在發現了 PDMS具有適用於DMD的一些特性,因 而可以有比目前可自市場購得的DMD簡單許多之設計。 請參閱第1及2圖,圖中示出根據本發明的一數位微鏡裝 置之一部分。該DMD包含被配置在基材2的表面上的一 矩陣之複數個微鏡總成1。每一微鏡總成1通常與鄰近的 微鏡總成之間隔離了小於5微米(例如,大約2微米)。 該微鏡總成包含與基材2間隔開之一鏡5。每一鏡通常是 正方形的,且具有範圍大約在10至20微米之長度。 -11 - 201024204 鏡5包含一鋁板7,該鋁板7界定了該鏡的一上反射 表面8。鏡5進一步包含一支承平台1〇,該支承平台1〇 界定了該鏡的一下支承表面11。在該DMD的MEMS製造 期間,鋁板7被熔接到支承平台10。由於被安裝在支承 平台10上的鋁板7,所以可將鏡5的上反射表面8製造 成在在該表面的整個範圍都是平坦的。此種方式有利地提 供了優異的光清晰度。相比之下,先前技術的DMD通常 在反射表面中之支承柱被接合到該鏡處有凹陷。 雖然鋁是通常被用於DMD的反射材料,但是我們應 可了解:亦可替代地使用其他材料(例如,鈦)。 自基材2延伸到下支承表面11的一彈性可撓柄13支 承著鏡5。柄13及支承平台10形成了由相同的可撓材料 構成之一整合式結構。通常係由具有小於l〇〇〇Mpa的楊 氏模數之一聚合物構成柄13及支承平台10。用來形成柄 13的一較佳材料是具有大約600MPa的楊氏模數之聚二甲 基砂氧焼。 柄13界定了鏡5之傾斜軸。如第2圖更清楚地顯示 ,鏡5能夠在高達大約±15度(通常爲±7至15度)的角 度下依著該傾斜軸而傾斜。彈性可撓柄13應與將堅固的 柄以鉸鏈安裝在DMD的基部而可讓鏡傾斜的先前技術之 DMD有很大的不同。 柄13的形式可以是被連接到鏡5的形心之一支承柱 。或者,柄1 3可至少部分地沿著該傾斜軸而延伸。柄1 3 之形式通常爲沿著該傾斜軸延伸且連同鏡5而延伸之一支 201024204 承壁。 一·第一電極15及一第二電極16被定位在柄13之每 一側。矽基材2中能夠以靜電引力使鏡5傾斜之電子電路 可個別地定址到該第一及第二電極》下文中將更詳細地說 明該DMD之典型作業。該電子電路被包含在該基材的上 方部分中所含的CMOS層18中。 如第2圖最清晰地顯示,當鏡5傾斜時,該第一及第 φ 二電極界定了鏡5之接合墊。先前技術的DMD之一問題 在於鏡/軛與接合墊間之黏附力。黏附力可能使該鏡永久 性地被黏附在一個接合墊上,因而使鏡變得無法操作。然 而,在微鏡總成1中,支承平台10界定了用來接觸該等 接合墊之第一及第二接觸點。因爲係由PDMS有利地構成 支承平台丨〇,所以任何黏附力被最小化。 與先前技術的DMD比較時,本發明之DMD在鏡5 被一偏壓保持在較高的電位(例如,20至50伏特)之情 φ 形下將最有效地操作。因而在下方的5伏特CMOS電路將 該第一或第二電極打開或關閉時,將必要的靜電力最大化 〇 可經由支承柄13將該偏壓施加到鋁板7。雖然諸如 PDMS等的聚合物材料通常是在電氣上絕緣的,但是亦可 植入諸如鈦離子等的金屬離子,而使這些材料具有導電性 (請參閱諸如Dubois等人所著的“Sensor and Actuator A, 1 3 0- 1 3 1 (2006),147- 1 54”,本發明特此引用該文件之內容 以供參照)。因此,在使用一導電柄13之情形下,可將 -13- 201024204 錯板7保持在一高偏壓。 或者,如第3圖所示,可將該等板耦合在一起,並將 偏壓自一列鏡的一末端上的一電壓源施加到該列鏡,而將 該偏壓施加到鋁板7。係經由沿著該等鏡的傾斜軸而延伸 之連桿組20而將各鄰接的板互連。係沿著該傾斜軸將該 等連桿組定位,以便將該等連桿組對鏡傾斜的阻力最小化 〇 雖然連桿組20在鏡傾斜期間不可避免地將遭受小扭 轉力,但是這些連桿組通常不會因該扭轉力而產生疲勞。 這是由於該等耦合構件的可立即減輕任何晶體差排( crystal dislocation)之微觀尺度(microscopic scale)。 傳統DMD中之扭轉鉸鏈也因相同的理由而不會產生疲勞 〇 現在請參閱第2圖,圖中示出一微鏡總成1係處於一 傾斜位置。爲了移到所示之傾斜位置,CMOS電路1 8將 第一電極15設定爲+5伏特,並將該第二電極設定爲0伏 特。因爲該鋁板的偏壓被施加到大約+4 5伏特的電位,所 以鏡5受到來自該第一電極的靜電排斥力,且朝向該第二 電極傾斜。當然,將該等電極的極性顛倒時,將使鏡5沿 著相反方向傾斜。爲了將鏡5保持在其傾斜位置,可將兩 個電極都設定爲+5伏特或0伏特。 我們應可了解:在傾斜期間,柄13屈曲,以便適應 鏡5之傾斜。因此,與先前技術的設計不同,不需要任何 複雜的扭轉鉸鏈配置,即可使該鏡能夠進行有彈性的傾斜 -14- 201024204 現在請參閱第4至7圖,圖中示出用來製造第1圖所 示的DMD之一簡化MEMS製程。在第4至7圖中,並未 示出CMOS層1 8。 在第4圖所示之第一步驟中,將1微米的鋁層CMOS 基材1上,並蝕刻以界定個別的第一及第二電極15及16 ,而形成該等電極(或接合墊)。該等鋁電極被連接到下 φ 方CMOS中之一上金屬層,因而可個別地控制每一電極。 在第5圖所示之第二步驟中,一光阻層22被旋塗到 該等電極上,並在該光阻層22中產生圖案,以便界定柄 開孔23。該光阻層22被用來作爲一犧牲臺架,以供後續 沈積PDMS及鋁。 在第6圖所示之第三步驟中,一PDMS層被沈積到光 阻層22上,然後再沈積一鋁層。該PDMS層包含每一微 鏡總成的柄13及支承平台10。該鋁層包含該等具有上反 φ 射表面8之板7。 在第7圖所示之第四步驟中,該PDMS及鋁層被蝕刻 ,以便界定個別的鏡5。該蝕刻步驟使用被適當地產生圖 案的一光阻罩幕(圖中未示出),且可能需要不同的蝕刻 化學劑,用以蝕刻穿過不同的層。 在最後步驟中,使犧牲光阻22暴露於一氧化電漿( 例如,氧氣電漿),而去除該犧牲光阻22。該最後的“灰 化”(“ashing”)步驟提供了第1圖所示之DMD。 第8圖示出採用前文所述的DMD之一典型的簡報型 -15- 201024204 投影機1〇〇(例如,影像投影機或視訊投影機)。採用習 知DMD的任何簡報型投影機可替代地採用根據本發明的 DMD。如美國專利6,966,659 (本發明特此引用該專利之 內容以供參照)所述,該投影機可額外地包含一列印頭, 用以列印自一電腦系統1 0 1接收的影像。例如,如第8圖 所示,可自投影機100的後部輸出列印的資料102。 當然’應可了解:以只是舉例之方式說明了本發明, 且可在伴隨的申請專利範圍中界定的本發明之範圍內,對 細節作出修改。 【圖式簡單說明】 前文已參照各附圖而以只係爲舉例之方式說明了本發 明之一隨意的實施例,在該等附圖中: 第1圖是根據本發明的一 DMD之一斷面示意圖; 第2圖示出處於一傾斜位置的第1圖所示之DMD ; 第3圖是第1圖所示DMD之一平視圖; 第4圖示出用來形成電極的MEMS製程之第一階段 ♦ 第5圖示出用來形成犧牲臺架的MEMS製程之第二 階段; 第6圖示出用來沈積柄的MEMS製程之第三階段; 第7圖示出用來界定個別的微鏡的MEMS製程之第 四階段;以及 第8圖示出採用根據本發明的一 DMD之一簡報型投 201024204 影機。 【主要元件符號說明】 1 :微鏡總成 2 :基材 5 :鏡 7 :鋁板 φ 8 :上反射表面 1 〇 :支承平台 η ‘·下支承表面 1 3 :彈性可撓柄 15 :第一電極 16 :第二電極 18:互補金屬氧化物半導體層 20 :連桿組 φ 2 2 :光阻層 23 :柄開孔 1〇〇 :簡報型投影機 1 〇 1 :電腦系統 1 0 2 :列印的資料 -17-DMD 201024204 SUMMARY OF THE INVENTION In a first aspect, a digital micromirror device is provided, the digital micromirror device comprising an array of micromirror assemblies positioned on a substrate, each micromirror assembly comprising : a mirror spaced from the substrate, the mirror having an upper reflective surface and a lower support surface; @ supporting a handle of the mirror, the handle extending from the substrate to the lower support surface, the handle defining the mirror a tilting axis; a first electrode and a second electrode, the first and second electrodes being positioned on each side of the handle, individually addressable to each electrode via an electronic circuit within the substrate, The handle is formed of an elastically flexible material such that an electrostatic force tilts the mirror toward the first or second electrode. Because the mirror is tilted against the flexible handle, the present invention does not require a yoke and torsional hinge configuration in the DMD. This approach greatly simplifies the overall design and manufacture of DMD. Alternatively, the handle may be composed of a polymer such as polydimethylsiloxane (PDMS). The PDMS has a lower Young's modulus (less than 100 MPa (million bars)) so that the handle can be bent by the electrostatic force applied by the one or more electrodes. In addition, the applicant has previously demonstrated the utility of PDMS in microelectromechanical systems (MEMS) and its ease of integration into microelectromechanical systems (MEMS) processes. 201024204 Alternatively, the entire range of the upper reflective surface is flat. It differs from prior art DMDs in which a central small pit is created in the upper reflective surface due to engagement with the shank. A perfectly flat upper reflective surface advantageously improves optical quality when compared to prior art devices. Alternatively, the mirror includes a metal plate that defines the upper reflective surface. Alternatively, the metal plate is an aluminum plate. Alternatively, the mirror further comprises a support platform for the metal sheet, the support platform defining the lower support surface. Therefore, the mirror is usually an integrated two-part structure in which an upper metal plate and a lower support platform including the metal plate are included. Alternatively, the support platform extends substantially in conjunction with the metal sheet. Alternatively, the support platform and the shank are constructed of the same material. The handle and support platform are typically formed together in a single deposition step. For example, when depositing PDMS, the handle and support platform can be formed together. Alternatively, the first and second electrodes define first and second landing pads of the mirror. Alternatively, the mirror has first and second contacts for contacting the respective first and second bonding pads. Contact points, and wherein the first and second contact points are formed by a polymer. Since the contacts are made up of a polymer (e.g., P D MS ), the possibility of the mirror being adhered to either electrode is minimized. Alternatively, the support platform defines the first and second contact points. Therefore, there is no need for additional features to solve the possible sticking problem. The support platform performs the dual function of supporting an aluminum upper reflective surface and minimizing the adhesion of the mirror to the electrodes between -8 - 201024204. Or the mirror is electrically connected to a bias voltage. This bias typically maintains the mirror at a high potential so that the mirror can be tilted via an electrode controlled by a CMOS voltage (typically 5 volts). The handle can be constructed of a conductive polymer that provides the handle with an electrical connection to the bias. For example, the handle can be constructed from PDMS coated with metal ions. Alternatively, the plurality of mirrors may be joined together in a row, and each column is electrically connected to one end of the bias voltage. Thus, the bias voltage can be applied to a series of mirrors via a common contact. Alternatively, the mirrors of each column have a common tilt axis. Alternatively, each of the adjacent mirrors in a column is coupled together via a set of links that are aligned along the common tilt axis. Alternatively, the substrate is a germanium substrate comprising one or more CMOS layers, the CMOS layers comprising the electronic circuitry. In a second aspect, there is provided a projector comprising the digital micromirror device of the foregoing φ. Projectors and projection systems employing DMDs will be familiar to those skilled in the art. In a third aspect, a method of fabricating a micromirror assembly is provided, the method comprising the steps of: (a) forming a pair of spaced apart electrodes on a surface of a substrate; the electrodes are connected to the a lower electronic circuit in the substrate; (b) depositing a sacrificial material over the electrodes and the substrate; (c) defining a handle opening in the sacrificial material to form a gantry, the handle opening Positioned between the electrodes; -9- 201024204 (d) depositing an elastically flexible material over the gantry; (e) depositing a metal layer over the flexible layer; (f) etching through The metal layer and the flexible layer to define an individual micromirror supported on a handle of a flexible material, the micromirror comprising a metal layer fused to a support platform; and (g) removing the sacrifice Material to provide the micromirror assembly. A simple and efficient way of fabricating a DMD is provided using the minimum number of manufacturing steps in accordance with the method of the third defect. Alternatively, the elastically flexible material is composed of polydimethyl siloxane (PDMS). Alternatively, the sacrificial material is a photoresist. Alternatively, the metal layer is composed of aluminum. Alternatively, an array of micromirrors is fabricated simultaneously on the substrate, the array defining a digital micromirror device. Alternatively, the substrate is a germanium substrate comprising one or more CMOS layers, the CMOS layers comprising the electronic circuitry. In a third aspect, a micromirror assembly is provided, the micromirror assembly comprising a tiltable mirror supported by a handle, wherein the handle is formed of an elastically flexible material. Alternatively, the tiltable mirror comprises a metal layer having an upper reflective surface. Alternatively, the tiltable mirror further comprises a support platform on which the metal layer is mounted, the support platform is composed of the elastic flexible material - 201024204 or is a polydimethyl siloxane (PDMS) The elastically flexible material is constructed. Alternatively, an electrostatic force can tilt the mirror. Alternatively, a pair of electrodes are positioned on each side of the handle that provides at least a portion of the electrostatic force. [Embodiment] φ The applicant has previously demonstrated the applicability of polydimethyl methoxy oxane (PDMS) in microelectromechanical systems (MEMS) (see, for example, the United States filed on June 20, 2008) Patent Application No. 1 2/142,779, and U.S. Patent Application Serial No. 1 1/68, 084, filed on March 12, 2007, the disclosure of which is hereby incorporated by reference. The addition of PDMS to conventional MEMS processes has in particular led to improvements in mechanical inkjet devices and opens up new areas of lab-on-a-chip and microanalysis system φ. It has now been discovered that PDMS has some features that are suitable for DMD, so there can be many designs that are much simpler than the DMDs currently available from the market. Referring to Figures 1 and 2, there is shown a portion of a digital micromirror device in accordance with the present invention. The DMD comprises a plurality of micromirror assemblies 1 arranged in a matrix on the surface of the substrate 2. Each micromirror assembly 1 is typically separated from adjacent micromirror assemblies by less than 5 microns (e.g., about 2 microns). The micromirror assembly includes a mirror 5 spaced from the substrate 2. Each mirror is typically square and has a length ranging from about 10 to 20 microns. -11 - 201024204 Mirror 5 includes an aluminum plate 7 that defines an upper reflective surface 8 of the mirror. The mirror 5 further includes a support platform 1A that defines a lower bearing surface 11 of the mirror. During the MEMS fabrication of the DMD, the aluminum sheet 7 is fused to the support platform 10. Due to the aluminum plate 7 mounted on the support platform 10, the upper reflecting surface 8 of the mirror 5 can be made flat over the entire range of the surface. This approach advantageously provides excellent light clarity. In contrast, prior art DMDs typically have a recess in which the support posts in the reflective surface are joined to the mirror. Although aluminum is a reflective material commonly used for DMD, it should be understood that other materials (e.g., titanium) may alternatively be used. An elastic flexible handle 13 extending from the base material 2 to the lower support surface 11 supports the mirror 5. The shank 13 and the support platform 10 form an integrated structure of the same flexible material. The handle 13 and the support platform 10 are typically constructed of a polymer having a Young's modulus of less than 10 MPa. A preferred material for forming the shank 13 is a polydimethyl sulphate having a Young's modulus of about 600 MPa. The shank 13 defines the tilt axis of the mirror 5. As is more clearly shown in Fig. 2, the mirror 5 can be tilted according to the tilt axis at an angle of up to about ± 15 degrees (typically ± 7 to 15 degrees). The resiliently flexible handle 13 should be very different from prior art DMDs that have a sturdy handle hingedly mounted to the base of the DMD to tilt the mirror. The shank 13 may be in the form of a support post that is connected to the centroid of the mirror 5. Alternatively, the handle 13 can extend at least partially along the tilt axis. The form of the shank 13 is generally a wall extending along the slanting axis and extending along with the mirror 5 to support the 201024204 wall. A first electrode 15 and a second electrode 16 are positioned on each side of the shank 13. An electronic circuit in the crucible substrate 2 capable of tilting the mirror 5 with electrostatic attraction can be individually addressed to the first and second electrodes. The typical operation of the DMD will be described in more detail below. The electronic circuit is included in the CMOS layer 18 contained in the upper portion of the substrate. As shown most clearly in Figure 2, the first and second φ electrodes define the bond pads of the mirror 5 when the mirror 5 is tilted. One of the problems with prior art DMDs is the adhesion between the mirror/yoke and the bond pads. Adhesion may cause the mirror to be permanently adhered to a bond pad, rendering the mirror inoperable. However, in the micromirror assembly 1, the support platform 10 defines first and second contact points for contacting the bond pads. Since the support platform is advantageously formed by the PDMS, any adhesion is minimized. When compared to prior art DMDs, the DMD of the present invention will operate most efficiently when the mirror 5 is held at a higher potential (e.g., 20 to 50 volts) by a bias. Thus, the necessary electrostatic force is maximized when the lower 5 volt CMOS circuit turns the first or second electrode on or off. 偏压 The bias can be applied to the aluminum plate 7 via the support shank 13. Although polymer materials such as PDMS are generally electrically insulated, metal ions such as titanium ions may be implanted to make these materials conductive (see, for example, Dubois et al., "Sensor and Actuator" A, 1 3 0- 1 3 1 (2006), 147- 1 54", the disclosure of which is incorporated herein by reference. Therefore, in the case of using a conductive handle 13, the -13 - 201024204 stagger 7 can be maintained at a high bias. Alternatively, as shown in Fig. 3, the plates can be coupled together and a voltage source biased from one end of the array of mirrors is applied to the array of mirrors to apply the bias to the aluminum plate 7. The adjacent plates are interconnected via a set of links 20 that extend along the tilt axis of the mirrors. Positioning the sets of links along the tilting axis to minimize the resistance of the sets of links to tilting the mirror, although the set of links 20 will inevitably suffer from small torsional forces during mirror tilting, but these The rod set usually does not fatigue due to the torsional force. This is due to the fact that the coupling members can immediately alleviate the microscopic scale of any crystal dislocation. The torsion hinge in the conventional DMD does not cause fatigue for the same reason. 〇 Referring now to Figure 2, a micromirror assembly 1 is shown in an inclined position. To move to the tilted position shown, CMOS circuit 18 sets first electrode 15 to +5 volts and sets the second electrode to zero volts. Since the bias of the aluminum plate is applied to a potential of about +45 volts, the mirror 5 is subjected to an electrostatic repulsion force from the first electrode and is inclined toward the second electrode. Of course, when the polarity of the electrodes is reversed, the mirror 5 will be tilted in the opposite direction. To maintain the mirror 5 in its tilted position, both electrodes can be set to +5 volts or 0 volts. It should be understood that the shank 13 is flexed during tilting to accommodate the tilt of the mirror 5. Therefore, unlike prior art designs, the mirror can be flexibly tilted without any complicated torsional hinge configuration.-14- 201024204 Now see Figures 4 through 7, which are used to make the One of the DMDs shown in Figure 1 simplifies the MEMS process. In the 4th to 7th drawings, the CMOS layer 18 is not shown. In the first step shown in FIG. 4, a 1 micron aluminum layer CMOS substrate 1 is etched to define individual first and second electrodes 15 and 16 to form the electrodes (or bond pads). . The aluminum electrodes are connected to a metal layer on one of the lower φ square CMOS, so that each electrode can be individually controlled. In a second step, shown in Figure 5, a photoresist layer 22 is spin coated onto the electrodes and a pattern is created in the photoresist layer 22 to define the handle opening 23. The photoresist layer 22 is used as a sacrificial gantry for subsequent deposition of PDMS and aluminum. In the third step shown in Fig. 6, a PDMS layer is deposited on the photoresist layer 22, and then an aluminum layer is deposited. The PDMS layer includes a handle 13 for each micromirror assembly and a support platform 10. The aluminum layer comprises the plates 7 having the upper anti-φ emitting surface 8. In the fourth step shown in Figure 7, the PDMS and aluminum layers are etched to define individual mirrors 5. The etching step uses a photoresist mask (not shown) that is suitably patterned and may require different etch chemistries to etch through the different layers. In the final step, the sacrificial photoresist 22 is exposed to an oxidizing plasma (e.g., oxygen plasma) to remove the sacrificial photoresist 22. This final "ashing" step provides the DMD shown in Figure 1. Fig. 8 shows a typical presentation type -15-201024204 projector 1 (for example, a video projector or a video projector) using one of the aforementioned DMDs. Any presentation type projector employing the conventional DMD may alternatively employ the DMD according to the present invention. The projector may additionally include a row of printheads for printing images received from a computer system 101 as described in U.S. Patent No. 6,966,659, the disclosure of which is incorporated herein by reference. For example, as shown in Fig. 8, the printed material 102 can be output from the rear of the projector 100. Of course, it is to be understood that the invention has been described by way of example only, and the details may be modified within the scope of the invention as defined in the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] One of the arbitrarily described embodiments of the present invention has been described by way of example only with reference to the accompanying drawings, in which: FIG. 1 is one of a DMD according to the present invention. Fig. 2 shows the DMD shown in Fig. 1 at an inclined position; Fig. 3 is a plan view of the DMD shown in Fig. 1; Fig. 4 shows the MEMS process for forming electrodes One Stage ♦ Figure 5 shows the second stage of the MEMS process used to form the sacrificial gantry; Figure 6 shows the third stage of the MEMS process used to deposit the shank; Figure 7 shows the individual DM used to define the individual The fourth stage of the mirrored MEMS process; and FIG. 8 shows a 201024204 projector using one of the DMDs according to the present invention. [Main component symbol description] 1 : Micromirror assembly 2 : Substrate 5 : Mirror 7 : Aluminum plate φ 8 : Upper reflective surface 1 〇 : Support platform η '· Lower bearing surface 1 3 : Elastic flexible handle 15 : First Electrode 16: Second electrode 18: Complementary metal oxide semiconductor layer 20: Link group φ 2 2 : Photoresist layer 23: Handle opening 1 〇〇: Presentation type projector 1 〇1: Computer system 1 0 2 : Column Printed information-17-

Claims (1)

201024204 十、申請專利範圍 1. 一種製造微鏡總成之方法,該方法包含下列步驟: (a) 在一基材的表面上形成被間隔開的一對電極, 該等電極被連接到該基材中之下方電子電路; (b) 在該等電極及該基材之上沈積一層犧牲材料; (c) 在該犧牲材料中界定一柄開孔,以便形成一臺 架,該柄開孔被定位在該等電極之間; (d) 在該臺架之上沈積一層彈性可撓材料; (e) 在該可撓層之上沈積一金屬層; (f) 蝕刻穿過該金屬層及該可撓層,以便界定被支 承在一可撓材料柄上之一個別的微鏡,該微鏡包含被熔接 到一支承平台之一金屬層;以及 (g) 去除該犧牲材料,以便提供該微鏡總成。 2. 如申請專利範圍第1項之方法,其中係由聚二甲基 矽氧烷(PDMS )構成該彈性可撓材料。 3. 如申請專利範圍第1項之方法,其中該犧牲材料是 光阻。 4. 如申請專利範圍第1項之方法,其中係由鋁構成該 金屬層。 5. 如申請專利範圍第1項之方法,其中在該基材上同 時製造一陣列的微鏡,該陣列界定一數位微鏡裝置。 6. 如申請專利範圍第1項之方法,其中該基材是包含 —或多個互補金屬氧化物半導體(CMOS )層之一矽基材 ,該等CMOS層包含該電子電路。 201024204 7.—種微鏡總成,該微鏡總成包含被一柄支承的一可 傾斜鏡,其中係由一彈性可撓材料構成該柄。 8 .如申請專利範圍第7項之微鏡總成,其中該可傾斜 鏡包含具有一上反射表面之一金屬層。 9.如申請專利範圍第8項之微鏡總成,其中該可傾斜 鏡進一步包含一支承平台,該支承平台上安裝該金屬層, 係由該彈性可撓材料構成該支承平台。 φ 1 〇 .如申請專利範圍第7項之微鏡總成,其中係由聚 二甲基矽氧烷(PDMS )構成該彈性可撓材料。 11. 如申請專利範圍第7項之微鏡總成,其中一靜電 力可使該鏡傾斜。 12. 如申請專利範圍第7項之微鏡總成,進一步包含 被定位在該柄之每一側上的一對電極,該等電極提供該靜 電力之至少一部分。 ❹ -19-201024204 X. Patent Application Range 1. A method of manufacturing a micromirror assembly, the method comprising the steps of: (a) forming a pair of spaced apart electrodes on a surface of a substrate, the electrodes being connected to the base a lower electronic circuit in the material; (b) depositing a sacrificial material over the electrodes and the substrate; (c) defining a handle opening in the sacrificial material to form a frame, the handle opening being Positioned between the electrodes; (d) depositing an elastically flexible material over the gantry; (e) depositing a metal layer over the flexible layer; (f) etching through the metal layer and a flexible layer to define an individual micromirror supported on a handle of a flexible material, the micromirror comprising a metal layer fused to a support platform; and (g) removing the sacrificial material to provide the micro Mirror assembly. 2. The method of claim 1, wherein the elastically flexible material is composed of polydimethyl siloxane (PDMS). 3. The method of claim 1, wherein the sacrificial material is a photoresist. 4. The method of claim 1, wherein the metal layer is composed of aluminum. 5. The method of claim 1, wherein an array of micromirrors is simultaneously fabricated on the substrate, the array defining a digital micromirror device. 6. The method of claim 1, wherein the substrate comprises one or more complementary metal oxide semiconductor (CMOS) layers, the CMOS layer comprising the electronic circuit. 201024204 7. A micromirror assembly comprising a tiltable mirror supported by a handle, wherein the handle is formed of an elastically flexible material. 8. The micromirror assembly of claim 7, wherein the tiltable mirror comprises a metal layer having an upper reflective surface. 9. The micromirror assembly of claim 8, wherein the tiltable mirror further comprises a support platform on which the metal layer is mounted, the support platform being constructed from the elastically flexible material. Φ 1 〇. The micromirror assembly of claim 7, wherein the elastic flexible material is composed of polydimethyl siloxane (PDMS). 11. As in the micromirror assembly of claim 7, the electrostatic force may tilt the mirror. 12. The micromirror assembly of claim 7, further comprising a pair of electrodes positioned on each side of the handle, the electrodes providing at least a portion of the static electricity. ❹ -19-
TW97149197A 2008-12-17 2008-12-17 Method of fabricating micro-mirror assembly TW201024204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97149197A TW201024204A (en) 2008-12-17 2008-12-17 Method of fabricating micro-mirror assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97149197A TW201024204A (en) 2008-12-17 2008-12-17 Method of fabricating micro-mirror assembly

Publications (1)

Publication Number Publication Date
TW201024204A true TW201024204A (en) 2010-07-01

Family

ID=44851993

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97149197A TW201024204A (en) 2008-12-17 2008-12-17 Method of fabricating micro-mirror assembly

Country Status (1)

Country Link
TW (1) TW201024204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610095B (en) * 2012-07-02 2018-01-01 Nikon Corp Space light modulator and exposure device
CN109896496A (en) * 2019-03-28 2019-06-18 京东方科技集团股份有限公司 Mirror assembly and its control method, dimmer board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610095B (en) * 2012-07-02 2018-01-01 Nikon Corp Space light modulator and exposure device
CN109896496A (en) * 2019-03-28 2019-06-18 京东方科技集团股份有限公司 Mirror assembly and its control method, dimmer board
US11054633B2 (en) 2019-03-28 2021-07-06 Beijing Boe Display Technology Co., Ltd. Mirror assembly, control method thereof and light adjusting board
CN109896496B (en) * 2019-03-28 2021-11-16 京东方科技集团股份有限公司 Mirror assembly, control method thereof and light adjusting plate

Similar Documents

Publication Publication Date Title
AU2008365366B2 (en) Digital micro-mirror device
US6552840B2 (en) Electrostatic efficiency of micromechanical devices
US7654677B2 (en) Yokeless hidden hinge digital micromirror device
JP5936813B2 (en) Method and apparatus for operating a display
US7298542B2 (en) Microelectromechanical device with reset electrode
US7106491B2 (en) Split beam micromirror
TW201024203A (en) Digital micro-mirror device
KR100344610B1 (en) Improved Hinge for Micro-Mechanical Device
US8059323B2 (en) Stabilizer for MEMS devices having deformable elements
JP2004078136A (en) Optical deflection method and device, method for manufacturing optical deflecting device, optical information processor provided with the optical deflecting device, image forming device image projecting and display device and optical transmitting device
JPH07287177A (en) Method for formation of array of freely rotatable elements
US7944600B2 (en) Mirror device with an anti-stiction layer
TW201024204A (en) Method of fabricating micro-mirror assembly
US9448484B2 (en) Sloped electrode element for a torsional spatial light modulator
US20100149622A1 (en) Digital micro-mirror device
US20100149623A1 (en) Method of fabricating micro-mirror assembly
KR100689159B1 (en) Spring-ring micromechanical device
US7884988B2 (en) Supplemental reset pulse
KR100600248B1 (en) Digital micro-mirror device, and manufacturing method of the same
KR100677204B1 (en) A deformable micromirror with two dimension
JP2006251388A (en) Optical modulation element and image forming apparatus
TW200526984A (en) Micro-mirrors with flexure springs