TW200526984A - Micro-mirrors with flexure springs - Google Patents

Micro-mirrors with flexure springs Download PDF

Info

Publication number
TW200526984A
TW200526984A TW93113842A TW93113842A TW200526984A TW 200526984 A TW200526984 A TW 200526984A TW 93113842 A TW93113842 A TW 93113842A TW 93113842 A TW93113842 A TW 93113842A TW 200526984 A TW200526984 A TW 200526984A
Authority
TW
Taiwan
Prior art keywords
micromirror
flexible
mirror
spring
flexible object
Prior art date
Application number
TW93113842A
Other languages
Chinese (zh)
Inventor
Adel Jilani
James Guo
Kenneth Faase
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW200526984A publication Critical patent/TW200526984A/en

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

A micro-mirror device includes a micro-mirror (101) and a flexure spring (100) supporting the micro-mirror (101). The flexure spring (100) is configured to store potential energy during movement of the micro-mirror (101) that is released as kinetic energy to drive movement of the micro-mirror (101) when the micro-mirror (101) is re-oriented.

Description

200526984 政、發明說明: t發明戶斤屬之技術領域】 發明領域 本發明係一種具彎曲彈簧之微型鏡。 5 【先前 發明背景 空間光調制器(SLM)係為一種裝置,其能調制呈一空間 圖案的入射光而來形成一影像,該影像係對應於被該SLM 所接收的電或光輸入。該入射光可被調制其相位、強度、 10 偏振或方向。SLM具有多種用途。例如,SLM目前最常 用於投射影示器、視訊及圖像監視器、電視、光學資訊處 理及光電圖印刷等領域中。 一 SLM典型係由一陣列可個別定址的圖像元件所組 成,它們相當於在一幀影像資料中的像元。一連串的影像 15資料會輸入該SLM,且各圖像元件會依據一幀影像資料中 的對應像元來被驅動。故該影像資料會一次一巾貞地來顯示 在該SLM上。 一種SLM的形式為一微鏡陣列,其中每一可個別定址 的圖像元件係為一極微鏡小的鏡,它們可依據所接收的影 2〇像資料來被移動。傳統的微鏡裝置包含一陣列的靜電致動 鏡,其係以互補金屬氧化物半導體(CM〇s)相容的製法來製 设在一矽基材上的記憶胞元上。為滿足某些視訊器材的高 頻需求,該裝置必需能夠以一較高的速度來驅動該各微 鏡,使其能在各極端的位置之間變換。此必需在轉換時間 200526984 内元成,而衝擊能量要最小化,且操作的牢固性要最大化。 【發明内容I 發明概要 本發明係有關於一種微鏡裝置,包含:一微鏡;及一 5撓性彈簧會撐持該微鏡;一撓性彈簧會撐持該微鏡;其中 该撓性彈簧在該微鏡移動時係可貯存位能,而當該微鏡被 重新定向時,該位能即會被釋放成動能來驅動該微鏡。 本發明亦有關於一種微鏡陣列,包含:多數的微鏡; 及多數的撓性彈簧會撐持該各微鏡;其中該各撓性彈簧在 10當一對應的微鏡移動時係可貯存位能,而當該對應的微鏡 被重新定向時,該位能即會被釋放成動能來驅動該微鏡。 本發明亦有關於一種空間光調制裝置,包含··一微鏡; 及一易曲撓性物會撐持該微鏡,該撓性物具有一偏向力; 其中該撓性物在與該微鏡對抗該偏向力來移動時將會貯存 15能量;且當一對抗該偏向力之力被釋除時,該撓性物將會 釋放所貯存的能量來驅動該微鏡。 本發明亦有關於一種製造微鏡裝置的方法,包含:在_義 板上製成一撓性彈簧;及製成一微鏡被撐持在該撓性彈筈上。 圖式簡單說明 2〇 所附圖式係示出本發明之各種實施例,並構成本說明 書的一部份。所示各實施例僅為本發明之舉例說明,而非 用來限制本發明的範圍。 第1圖為一實施例之微鏡和撓性彈簧的側視圖。 第2圖為第1圖之微鏡和撓性彈簧的底視圖。 200526984 第3圖示出第1和2圖的微鏡與撓性彈簧設在一支撐基 板上。 第4圖為另一實施例的微鏡元件。 第5圖為一圖表係示出第3的微鏡總成相較於以扭力樞 5 轉件來移動之微鏡的反應時間。 第6圖為另一實施例之微鏡和撓性彈簧的側視圖。 第7圖為一微鏡和撓性彈簧之製造方法實施例的流程 在各圖式中,相同的標號係指類似 1〇 元件。 t ]| 較佳實施例之詳細說明 ^在目前的微鏡設計之一目標係欲使每一各別的微鏡皆 ΐ5 Τ達到高轉變速度。換言之,當輸入視訊資料指令時,各 U鏡皆必須能迅速地個別由-角位置轉變至另一角位置。 亦稱為父變移轉,,(“crossover transiti〇n”)。一古 :速度是許多數位顯示器材所需要的,其中該陣=; 鏡必須對連續_的資料快速地反應。 ^ 2。挽書:述-種微鏡,其係被樓持在-非扭轉的可 或斜彳/、 §该微鏡依據輸入的視訊或影像資料來_私 偏壓^動Π曲繞性彈菁將會儲存該微鏡對抗該彈^之 續移轉:將會==能。此位能在當該微鏡的位置於後 鏡。換言之動能,而可用來更快地重新定向該微 "鏡會被-撓冊簧賴動,並在其斜傾狀 200526984 悲下儲存充分的彈性應變能量,而在轉變至另一方向時, 可藉有效地釋出所儲存的應變能量來作為交變移轉的動 能,故得大大地減少轉換時間。 第1圖為一依本發明的原理之一微鏡與撓性彈簧的側 視Θ 。亥彳放鏡可為被支撐在一基板105上的微鏡陣列中 之者。该基板105可例如為一石夕、玻璃或塑膠基板。 各個微鏡101皆被支樓在一非扭力的撓性彈箬上, 其將會更詳細說明於後。在一靜止位置時,如第1圖所示, 該微鏡101會被該撓性彈簧100撐持在一與該基板1〇5平行 10 的方向。 該撓性彈簧100含有一腳柱104 倪性物103設在該腳 柱104頂上,而沿該鏡皿底下延伸。有二支柱皿設在該挽 15 性物期的兩端’其會將該鏡1〇1支撐在該繞性物期上並 分開該鏡1G1與撓性物1G3。該腳柱1()4、撓性物搬及支柱 1〇2等可全部由單獨一層材料來製成。或者,該等支柱搬 和鏡101亦可一起由一第二層材料來製成。 如第職示,驅動電路施會被設來控制該微鏡而。 该驅動電㈣6可被設在該基板1G5上。該撓性彈簧1〇〇例如 可被該驅動電路施以靜電或壓電式地驅動,而使該鏡皿 相對於該基板1Q5斜傾至-不同的角度。如前所述,該驅動 電路施將會喊、輸人㈣像f料來軸該微鏡逝,尤其 是二回應該微鏡逝在當時像财所代表之—特定像元的像 兀負料來驅動。 於所示實施例中,電極等會被設在該基板1〇5上而 20 200526984 位方、心1±物103上方。在本例中,該驅動電路撕會電連接 於該等電極109,並驅使它們造成一特定的靜電場。該撓性 物103將會回應於該等電極1〇9所造成的靜電場,而來斜傾 該微鏡101。 5 但,該撓性物103亦會具有一偏向力,其在當該彈簧100 未被4¾路106所驅動時,會令該撓性彈簧1〇〇相對於該基 板105以一特定方向來撐持該鏡101。如第1圖所示,此靜止 定向會令該鏡101大致平行於該基板105。 如前所述,當該撓性彈簧1〇〇被該電路1〇6所驅動時, 10該撓性物103即會彎曲而將該鏡101斜傾至一所需的角方 向。但是,此動作會對抗該撓性物103的自然偏向力。故, s 5亥撓性物103與鏡ιοί被驅動電路1〇6驅出該靜止定位(如 第1圖所示)時,即會有位能儲存在該撓性物103中。 當該驅動電路106停止驅動該撓性物103時,或若發自 15瀛驅動電路川6的訊號開始以一不同方向來驅動該撓性物 103時,則該位能即會釋放而使該撓性物1〇3以其偏彈力來 私向或超過該靜止定位。此位能的釋放與該撓性物103的偏 彈力’會使該鏡101比當沒有該撓性物103的偏彈力和位能 來協助該鏡101移轉的情況,更快甚多地定位於一新的所需 20 方向。 第2圖為第1圖之微鏡和撓性彈簧的底視圖。如第2圖所 示,該彈簧100的撓性物103可呈對角地延伸於一方形或矩 形微鏡101的相對邊角之間。 該腳柱104係設在該挽性物103的中心處。該等支柱1〇2 200526984 可為方形(立方體)或矩形的造型。或者,該等支枝亦可為圓 形。該等支柱102的邊角會匹配於該鏡101的邊角。該撓性 物103的兩端亦會匹配於該鏡1〇1和支柱1〇2的邊角。 第3圖示出該鏡101與該撓性彈簧10〇設在或裝在一基 5 板上。如前所述,該基板1〇5可例如為一秒、玻璃或塑 膠基板。該撓性彈簧1〇〇之各元件係被示為假想線來表示位 於該鏡101底下。 此外,如第3圖所示,該等電極1〇9係設在基板1〇5上以 驅動微鏡101。微鏡1〇1會繞著軸線11〇來斜傾。各分開的電 10 極1〇9係設在該軸線110的兩側。故,當該等電極109被電路 106所驅動而造成一靜電場時,將會吸引該撓性物1〇3,致 使微鏡繞該軸線110而呈斜傾。換言之,被支撐在支柱1〇2 上的微鏡110之邊角將會回應該等電極1〇9所造成的靜電場 而移向或移離該基板105。 15 第4圖係類似於第3圖,但示出另一實施例,其中有附 加的的撓性物106設在該鏡1〇1底下。故,該撓性物1〇3可形 成多數的撓性物沿該微鏡101的底側由該腳柱1〇4延伸。該 等附加撓性物106在當該鏡1〇1被驅動時,將會與該鏡的底 面接觸。此不論该鏡101是被靜電或麼電式地驅動時皆同。 20該等附加撓性物106將會彎曲對抗該鏡101斜傾的偏轉力。 當該鏡101不再受驅動時,該等附加撓性物1〇6的偏彈力將 會協助該鏡101更迅速地回復至原先未被驅動時的靜止位 置。 第5圖不出以所述撓性彈簧來支撐及驅動之微鏡改善 10 200526984 反應時間的結果,並與一設在一扭力彈簧或柩轉件上之傳 統微鏡比較的圖表。其垂直軸為該鏡的角方位,而水平轴 為反應時間(微秒)。 軌線400代表設在所述撓性彈簧上之微鏡的反應。而軌 5線4〇1代表表設在一傳統扭力彈簧上的微鏡之運動。該等軌 線(400和401)係使用20V的方形波所產生者。 如第5圖所示,由一0角度偏轉開始,該具有一撓性彈 簧的微鏡(即軌線400)會比傳統的微鏡(執線4的)更快甚多 地達到一極端負向的偏轉。且更為劇烈地,在2〇與3〇微秒 10之間,該鏡會由極負向偏轉切換至正向偏轉。該具有撓性 彈簧的微鏡(執線400)能夠幾乎立即地轉換,而傳統的鏡(執 線401)則需要稍久一些。故,部份藉該撓性彈簧來驅動, 則該微鏡將能更瞬應且容易地來控制。 第6圖示出被撐持在一撓性彈簧上之微鏡的另一實施 15例。第6圖的撓性彈簧1〇〇係以壓電而非靜電來控制。因此, 並不需要該等設在基板105上的電極109。而,該撓性物 103-1係被製成一壓電單元其當被電驅動時將會撓曲。故, 在此實施例中,該驅動電路1〇6會連接於該壓電撓性物 (103,1)。 20 當該驅動電路忉6驅動該撓性物103-1時,該撓性物將 會彎曲對抗偏向力而以如同前述的方式來斜傾該鏡1〇1。一 相反的電流可被施於該撓性物1〇3-1的相反側,或在該撓性 物103-1之相反側(即該軸線i 1〇之相反側)的壓電材料能被 反轉的位置。當該撓性物^34的驅動停止時,其自然偏彈 11 200526984 力將會協助驅動該鏡101回至原來的靜止定位。如前所述, 一壓電驅動的實施例亦可選擇地包含如第4圖所示的附加 撓性物106。 有些微鏡會在一介電液體中操作,該液體係佈設在支 、 5撐該等微鏡的基板上。該介電液體會加大該鏡的斜傾,並 減少操作該鏡所需的電壓。但是,所造成的液體阻滯作用 亦會阻礙該鏡以高頻率(例如約2〇KHz)由一所需斜角切換 至另一斜角。 上述用來支#並驅動一微鏡的撓性彈簧1〇〇亦可用來 鲁 1〇支擇及驅動在一流體中的微鏡。因此,該撓性彈箐的運作 會協助克服該流體阻滞該鏡移動的阻滯力。所以,該微鏡 能以一相當高的頻率來被定位及重新定位,而仍可享有使 用該介電流體的優點。又,如第i圖所示,該微鏡101係被 支柱102等定位而垂向地隔開該撓性物1〇3。此在當該微鏡 15 1〇1接近各極端角位置時,亦有助於減少在介電流體中操作 的流體阻滯作用。 如上所述將一微鏡支撐在一撓性彈簧上會有許多優 肇 點。例如,該等撓性物因由於較低的機械應力而比扭力樞 轉件較不會疲乏故障。所以,所述的微鏡設計會比使用扭 20力樞轉件的設計更為堅固耐用。此外,所述的設計亦能減 少該鏡系統内應力集中的問題,故可施以較大的靜電力。 藉著以該可彎曲的撓性彈簧來取代較短的扭力樞轉件將能 大大地減少該系統内產生的應力。 又,由於將該撓性物設在該鏡底下,故不需要額外的 12 200526984 空間來容納該撓性物。如前所述,該繞性彈菁可使用靜電 , 力或壓電力來作動,且在該鏡斜傾狀態時能貯存足夠的: 變能量’而藉有效地釋放所貯存的形變能量作為驅動該^ 變移轉的動能’故能大大地減少轉換至另—方向的時二 ' 5所述的微鏡設計將能藉改變該等撓性物的厚度、靜電面 · 择等撓性物具有不一致的寬度)、起動間隙、及材料厚= 等’而來最佳化以造成最大的極端角位置。 ^第1〜3圖所示之靜電驅動實施例的製造方法係被示於 第7圖中如第7圖所示,該製造方法係開始於提供一個雙 鲁 1〇金屬靜態隨機存取記憶體(SRAM)胞元(步驟7〇〇)。嗣,—通 道會被設來將該SRAM胞元電連接於將被製成的撓性彈簧 結構。(步驟701) 一層金屬材料嗣會被沈積來在該通道中形成一電極 (步知702)。此電極將被用來操作該撓性彈簧及其微鏡。此 15金屬材料層嗣會依據該電極所需的圖案,包括撓性彈簧的 腳柱104等,而使用光微影法來曝光(步驟703)。此曝光的金 屬材料層嗣會被㈣來製成該所需的電極(步驟7G4)。然 ^ 後,孩撓性支撐通道會由一犧牲光阻層來形成(步驟7仍)。 另一材料層鯛會被沈積(步驟7〇6)。此層是用來形成該 2〇抗)±彈育1〇〇的腳柱、撓性物和支柱等。此層亦會依據所需 支柱的圖案使用光微影法來曝光。該曝光層嗣令被#刻纟 _ 製成該腳柱和撓性物(步驟观)。然後,-鏡支擇通道會使 用一第二犧牲光阻層來形成(步驟7〇9)。 蚋 層用來製成該鏡101的材料會被沈積。利用光微 13 200526984 影法,该層嗣會依據該鏡的圖案來被曝光(步驟711)。此曝 光層嗣會被蝕刻來製成該鏡(步驟712)。 最後,一微機電系統(MEMS)保護步驟會被進行(步驟 、 713) 。該晶圓或基材嗣會被切割,且該鏡會被蝕刻來除去 · 5犧牲層,而使該鏡能在撓性彈簧的影響下來移動(步驟 714) 。最後,該完成的單元會被封裝以供使用(步驟715)。 、上彳田述僅用來說明本發明的實施例。並無意排他地 將本發明限制於任何所揭的細節。許多修正變化可依上述 内容來達成。故本發明的範疇要由以下申請專利範圍來界 · 10 定。 C圖式簡單說明】 第1圖為一實施例之微鏡和撓性彈簧的側視圖。 第2圖為苐1圖之微鏡和挽性彈簧的底視圖。 第3圖示出第丄和2圖的微鏡與撓性彈簧設在一支撐基 15 板上。 第4圖為另一實施例的微鏡元件。 第5圖為一圖表係示出第3的微鏡總成相較於以扭力樞 鲁 轉件來移動之微鏡的反應時間。 第6圖為另一實施例之微鏡和撓性彈簧的側視圖。200526984 Description of policy and invention: Technical Field of the Invention] The invention relates to a miniature mirror with a bending spring. [Prior Invention Background] A spatial light modulator (SLM) is a device that can modulate incident light in a spatial pattern to form an image, which corresponds to the electrical or optical input received by the SLM. The incident light can be modulated in its phase, intensity, polarization, or direction. SLM has multiple uses. For example, SLM is currently most commonly used in the fields of projection projectors, video and image monitors, television, optical information processing, and electrophotographic printing. An SLM is typically composed of an array of individually addressable image elements, which are equivalent to the pixels in a frame of image data. A series of image 15 data is input to the SLM, and each image element is driven according to the corresponding pixel in a frame of image data. Therefore, the image data will be displayed on the SLM one at a time. One form of SLM is a micromirror array, where each individually addressable image element is a micromirror small mirror, which can be moved based on the received image data. A conventional micromirror device includes an array of electrostatically actuated mirrors, which are fabricated on a memory cell on a silicon substrate by a complementary metal oxide semiconductor (CMos) compatible manufacturing method. To meet the high-frequency requirements of certain video equipment, the device must be able to drive the micromirrors at a higher speed so that they can switch between extreme positions. This must be done within the transition time 200526984, while the impact energy should be minimized and the robustness of the operation should be maximized. [Summary of the Invention I Summary of the Invention The present invention relates to a micromirror device, including: a micromirror; and a flexible spring will support the micromirror; a flexible spring will support the micromirror; wherein the flexible spring is in The micromirror can store potential energy when it moves, and when the micromirror is redirected, the potential energy is released into kinetic energy to drive the micromirror. The present invention also relates to a micromirror array, including: a plurality of micromirrors; and a plurality of flexible springs will support the micromirrors; wherein each of the flexible springs can be stored at 10 when a corresponding micromirror moves Yes, and when the corresponding micromirror is redirected, the potential energy is released into kinetic energy to drive the micromirror. The present invention also relates to a spatial light modulation device including a micromirror; and a flexible object supporting the micromirror, the flexible object having a biasing force; wherein the flexible object is in contact with the micromirror 15 energy will be stored when moving against the biasing force; and when a force against the biasing force is released, the flexible object will release the stored energy to drive the micromirror. The present invention also relates to a method for manufacturing a micromirror device, which includes: making a flexible spring on a prosthetic plate; and making a micromirror supported on the flexible spring. Brief Description of the Drawings 20 The attached drawings show various embodiments of the present invention and constitute a part of this specification. The embodiments shown are merely illustrative of the invention and are not intended to limit the scope of the invention. FIG. 1 is a side view of a micromirror and a flexible spring according to an embodiment. Figure 2 is a bottom view of the micromirror and flexible spring of Figure 1. 200526984 Figure 3 shows the micromirror and flexible spring of Figures 1 and 2 on a support substrate. FIG. 4 is a micromirror element according to another embodiment. FIG. 5 is a graph showing the reaction time of the third micromirror assembly compared to the micromirror moved by the torsion pivot 5. FIG. 6 is a side view of a micromirror and a flexible spring according to another embodiment. FIG. 7 is a flowchart of an embodiment of a method for manufacturing a micromirror and a flexible spring. In each drawing, the same reference numerals refer to similar components. t] | Detailed description of the preferred embodiment ^ One of the goals in the current micromirror design is to achieve a high transition speed of each individual micromirror. In other words, when the video data command is input, each U-mirror must be able to quickly and individually change from the -angular position to another angular position. Also known as parental transfer, ("crossover transiti〇n"). Yigu: Speed is required by many digital display devices, where the array =; mirror must quickly respond to continuous data. ^ 2. Book: Description-a kind of micromirror, which is held by the floor-non-twisted or oblique / / § This micromirror is based on the input video or image data The micromirror will be saved against the subsequent transfer of the bomb ^: will == able. This position can be when the position of the micromirror is in the rear mirror. In other words, kinetic energy can be used to reorient the micro " mirror faster by the torsion spring, and store sufficient elastic strain energy in its tilted shape, 200526984. When changing to another direction, The stored strain energy can be effectively used as the kinetic energy of alternating transfer, so the conversion time can be greatly reduced. Fig. 1 is a side view Θ of a micromirror and a flexible spring according to one of the principles of the present invention. The mirror can be one of a micromirror array supported on a substrate 105. The substrate 105 may be, for example, a stone, glass or plastic substrate. Each of the micromirrors 101 is supported on a non-torsional flexible impeachment, which will be described in more detail later. In a rest position, as shown in FIG. 1, the micromirror 101 is supported by the flexible spring 100 in a direction parallel to the substrate 105. The flexible spring 100 includes a leg 104, and a nib 103 is disposed on the top of the leg 104 and extends along the bottom of the mirror. There are two pillar dishes located at both ends of the flexible object period, which will support the mirror 101 on the flexible object period and separate the mirror 1G1 and the flexible object 1G3. The foot post 1 () 4, the flexible object carrier, the support 102, and the like can all be made of a single layer of material. Alternatively, the pillars and mirrors 101 can also be made of a second layer of material together. As described in the first post, the driving circuit may be configured to control the micromirror. The driving electrode 6 may be provided on the substrate 1G5. The flexible spring 100 can be electrostatically or piezoelectrically driven by the driving circuit, for example, so that the mirror can be tilted to different angles with respect to the substrate 1Q5. As mentioned before, the driver circuit will shout and input the image of the micro lens to the micro mirror, especially the second time the micro mirror should be represented at the time by the financial representative-the specific negative pixel image material To drive. In the embodiment shown, electrodes and the like will be disposed on the substrate 105 and 20 200526984 squares above the heart 1 ± 103. In this example, the driving circuit is electrically connected to the electrodes 109 and drives them to cause a specific electrostatic field. The flexible object 103 will tilt the micromirror 101 in response to the electrostatic field caused by the electrodes 109. 5 However, the flexible object 103 also has a biasing force, which will cause the flexible spring 100 to be supported in a specific direction relative to the substrate 105 when the spring 100 is not driven by the 4¾ circuit 106.该 镜 101。 The mirror 101. As shown in FIG. 1, this static orientation makes the mirror 101 substantially parallel to the substrate 105. As mentioned before, when the flexible spring 100 is driven by the circuit 106, the flexible object 103 will bend and tilt the mirror 101 to a desired angular direction. However, this action counteracts the natural biasing force of the flexible object 103. Therefore, when the flexible object 103 and the mirror 103 are driven out of the stationary position (as shown in FIG. 1) by the driving circuit 106, a bit energy can be stored in the flexible object 103. When the driving circuit 106 stops driving the flexible object 103, or if the signal sent from the driving circuit 15 starts to drive the flexible object 103 in a different direction, the bit energy will be released and the The flexible object 103 uses its partial elastic force to privately or exceed the stationary position. The release of this potential energy and the biasing force of the flexible object 103 will cause the mirror 101 to locate much faster and faster than if the biasing force and potential energy of the flexible object 103 were not available to assist the mirror 101 in moving In a new required 20 directions. Figure 2 is a bottom view of the micromirror and flexible spring of Figure 1. As shown in FIG. 2, the flexible object 103 of the spring 100 may extend diagonally between the opposite corners of a square or rectangular micromirror 101. The leg post 104 is located at the center of the armour 103. These pillars 102 200526984 can be square (cubic) or rectangular. Alternatively, the branches may be round. The corners of the pillars 102 will match the corners of the mirror 101. The two ends of the flexible object 103 will also match the corners of the mirror 101 and the pillar 102. Fig. 3 shows that the mirror 101 and the flexible spring 100 are provided or mounted on a base plate. As mentioned before, the substrate 105 may be, for example, a one-second, glass or plastic substrate. Each element of the flexible spring 100 is shown as an imaginary line to indicate that it is located under the mirror 101. In addition, as shown in FIG. 3, the electrodes 109 are provided on the substrate 105 to drive the micromirror 101. The micromirror 101 will tilt around the axis 11. Separate electrical 10 poles 10 are provided on both sides of the axis 110. Therefore, when the electrodes 109 are driven by the circuit 106 to cause an electrostatic field, the flexible object 10 will be attracted, causing the micromirror to tilt obliquely about the axis 110. In other words, the corners of the micromirror 110 supported on the pillar 102 will move toward or away from the substrate 105 in response to the electrostatic field caused by the electrodes 109. 15 FIG. 4 is similar to FIG. 3, but shows another embodiment in which an additional flexible object 106 is provided under the mirror 101. Therefore, the flexible object 103 can form a plurality of flexible objects extending from the leg post 104 along the bottom side of the micromirror 101. The additional flexible objects 106 will come into contact with the bottom surface of the mirror when the mirror 101 is driven. This is the same whether the mirror 101 is driven electrostatically or electrically. 20 The additional flexible objects 106 will bend against the tilting deflection force of the mirror 101. When the mirror 101 is no longer driven, the biasing force of the additional flexible objects 106 will assist the mirror 101 to return to the rest position more quickly when it was not driven. Fig. 5 does not show a graph of the improvement of the response time of the micromirror supported and driven by the flexible spring 10 200526984, which is compared with a conventional micromirror provided on a torsion spring or a swivel member. Its vertical axis is the angular orientation of the mirror, and its horizontal axis is the response time (microseconds). The trajectory 400 represents the response of a micromirror provided on the flexible spring. The track 5 line 401 represents the movement of a micromirror on a conventional torsion spring. These orbits (400 and 401) are generated using a 20V square wave. As shown in Figure 5, starting from a 0-degree deflection, the micromirror with a flexible spring (that is, the trajectory 400) will reach an extreme negative much faster than the traditional micromirror (the one with a wire 4) Deflection. And more drastically, between 20 and 30 microseconds 10, the mirror will switch from extremely negative deflection to positive deflection. The micromirror (wire 400) with a flexible spring can be switched almost immediately, while the conventional mirror (wire 401) takes a little longer. Therefore, in part driven by the flexible spring, the micromirror can be more instantaneously and easily controlled. Fig. 6 shows another example of 15 examples of a micromirror supported on a flexible spring. The flexible spring 100 in FIG. 6 is controlled by piezoelectricity rather than static electricity. Therefore, the electrodes 109 provided on the substrate 105 are not required. However, the flexible object 103-1 is made as a piezoelectric unit which will flex when electrically driven. Therefore, in this embodiment, the driving circuit 106 is connected to the piezoelectric flexible object (103, 1). 20 When the driving circuit 10 drives the flexible object 103-1, the flexible object will bend against the deflection force and tilt the mirror 101 in the same manner as before. An opposite current can be applied to the opposite side of the flexible object 103-1, or the piezoelectric material on the opposite side of the flexible object 103-1 (that is, the opposite side of the axis i 10) can be applied. Reverse position. When the driving of the flexible object 34 stops, its natural bias 11 200526984 force will help drive the mirror 101 back to its original stationary position. As mentioned earlier, a piezoelectrically driven embodiment may optionally include an additional flexible object 106 as shown in FIG. Some micromirrors operate in a dielectric liquid, and the liquid system is arranged on the substrate of the micromirrors. The dielectric liquid increases the tilt of the mirror and reduces the voltage required to operate the mirror. However, the resulting liquid blocking effect also prevents the mirror from switching from a desired oblique angle to another oblique angle at a high frequency (e.g., about 20 KHz). The aforementioned flexible spring 100 for supporting and driving a micromirror can also be used to support and drive a micromirror in a fluid. Therefore, the operation of the flexible impeachment will assist in overcoming the blocking force of the fluid that blocks the movement of the mirror. Therefore, the micromirror can be positioned and repositioned at a relatively high frequency, while still enjoying the advantages of using the dielectric fluid. In addition, as shown in Fig. I, the micromirror 101 is positioned by a pillar 102 or the like to vertically separate the flexible object 103. This also helps to reduce the fluid blocking effect of operating in a dielectric fluid when the micromirror 15 10 approaches each extreme angular position. There are many advantages to supporting a micromirror on a flexible spring as described above. For example, such flexible objects are less fatigue-failure than torsion pivots due to lower mechanical stress. Therefore, the described micromirror design is more robust than the design using a torsional 20-pivot member. In addition, the described design can also reduce the problem of stress concentration in the mirror system, so a larger electrostatic force can be applied. By replacing the short torsion pivot with the bendable flexible spring, the stresses generated in the system can be greatly reduced. In addition, since the flexible object is provided under the mirror, no additional space is required to accommodate the flexible object. As mentioned earlier, the flexible elastic can be operated using static electricity, force or piezoelectric power, and when the mirror is tilted, it can store enough: variable energy 'to effectively release the stored deformation energy as the driving force. ^ Variable kinetic energy 'so it can greatly reduce the number of transitions to the other direction'. The micromirror design described in 5 will be able to change the thickness of these flexible objects, the electrostatic surface, and other inflexible flexible objects. Width), starting gap, and material thickness = etc. are optimized to create the maximum extreme angular position. ^ The manufacturing method of the electrostatically driven embodiment shown in Figures 1 to 3 is shown in Figure 7 as shown in Figure 7. The manufacturing method begins by providing a dual-rule 10 metal static random access memory (SRAM) cells (step 700). Alas, the channel will be set up to electrically connect the SRAM cell to the flexible spring structure to be made. (Step 701) A layer of metallic material is deposited to form an electrode in the channel (Step 702). This electrode will be used to operate the flexible spring and its micromirror. The 15 metal material layer is exposed using a photolithography method in accordance with the desired pattern of the electrode, including the pin 104 of the flexible spring, etc. (step 703). The exposed layer of metal material will be scoured to make the desired electrode (step 7G4). Then, the flexible support channel is formed by a sacrificial photoresist layer (step 7). Another layer of sea bream is deposited (step 706). This layer is used to form the 20-foot) ± 100 feet, flexible objects and pillars. This layer is also exposed using photolithography according to the pattern of the required pillars. The exposure layer command was # 刻 纟 _ made into the leg post and the flexible object (step view). The -mirror-selective channel is then formed using a second sacrificial photoresist layer (step 709). The material of the hafnium layer used to make the mirror 101 is deposited. Using the light micro 13 200526984 shadowing method, the layer will be exposed according to the pattern of the mirror (step 711). The exposure layer is etched to form the mirror (step 712). Finally, a micro-electromechanical system (MEMS) protection step is performed (steps, 713). The wafer or substrate is cut, and the mirror is etched to remove the sacrificial layer, so that the mirror can be moved under the influence of a flexible spring (step 714). Finally, the completed unit is packaged for use (step 715). The above description is only used to explain the embodiment of the present invention. It is not intended to limit the invention exclusively to any of the details disclosed. Many amendments can be achieved as described above. Therefore, the scope of the present invention should be defined by the following patent application scope. Brief Description of Drawing C] FIG. 1 is a side view of a micromirror and a flexible spring according to an embodiment. Fig. 2 is a bottom view of the micromirror and the pull spring of Fig. 1. Figure 3 shows the micromirrors and flexible springs of Figures 丄 and 2 on a support base plate. FIG. 4 is a micromirror element according to another embodiment. Fig. 5 is a graph showing the reaction time of the third micromirror assembly compared to the micromirror moved by a torsion pivot member. FIG. 6 is a side view of a micromirror and a flexible spring according to another embodiment.

丄υυ·••撓性彈簧 1〇1···微鏡 102···支柱 103···撓性物 14 200526984 104···腳柱 105…基板 106···驅動電路 109···電極 110…轴線 103-1···撓性物 400,401…軌線 700〜715···製造步驟丄 υυ · •• Flexible spring 1〇1 ·· Micromirror 102 ·· Pillar 103 ··· Flexible 14 200526984 104 ·· Pillar 105… Substrate 106 ·· Drive circuit 109 ·· 110 ... Axis 103-1 ... Flexible 400, 401 ... Track 700 ~ 715 ... Production steps

1515

Claims (1)

200526984 10 15 20 拾、申請專利範圍: L 一種微鏡裝置,包含·· 一微鏡;及 繞性彈簧會撐持該微鏡; 一撓性彈簧會撐持該微鏡; 其中該撓性彈簧在該微鏡移動時係可貯存位能, =微鏡被重新定向時,該絲即會被釋放成動能來』 動该微鏡。 2·如申請專利範圍第巧之裝置,其中該繞性彈菩包含: 一腳柱; 一撓性物被撐持在該腳柱上;及 支柱等設在職性物上用來切該微鏡。 3. t°!請專利範圍第1項之裝置’其中該撓性彈簀包含-1電70件係可控制地定向該微鏡。 4. 如申請專利範圍第1項之裝置,更包含電極等能以靜1 驅動該撓性彈簧而可控制地定向該微鏡。 5. 如申。請專利範圍第!項之裝置’更包含驅動電路可㈣ 4彈黃來定向該微鏡。 6. =請專利範圍第1項之裝置,其中該挽性彈菁細 持在一基材上。 7· —種微鏡陣列,包含: 多數的微鏡;及 多數的撓性彈簧會撐持該各微鏡; /、中。亥各抗性5早黃在當一對應的微鏡移動時係200526984 10 15 20 Patent application scope: L A micromirror device, including a micromirror; and a winding spring will support the micromirror; a flexible spring will support the micromirror; wherein the flexible spring is in the Potential energy can be stored when the micromirror moves. = When the micromirror is reoriented, the filament will be released into kinetic energy to move the micromirror. 2. The device according to the scope of the patent application, wherein the winding elastic body comprises: a leg post; a flexible object is supported on the leg post; and a pillar or the like is provided on a professional object to cut the micromirror. 3. t °! Please refer to the device of the first scope of the patent ', wherein the flexible impeachment contains -1 electrical 70 pieces to controllably orient the micromirror. 4. For example, the device in the scope of patent application of the invention further includes an electrode and the like, which can drive the flexible spring with a static direction to control the micromirror. 5. As applied. Please patent the scope! The device of the item 'further includes a driving circuit that can be used to orient the micromirror. 6. = The device according to item 1 of the patent, wherein the pull elastic is held on a substrate. 7. A micromirror array including: most micromirrors; and most flexible springs supporting each micromirror; Heiji resistance 5 early yellow is when a corresponding micromirror moves 可 16 200526984 貯存位能,而當該對應的微鏡被重新定向時,該位能 即會被釋放成動能來驅動該微鏡。 8. —種空間光調制裝置,包含: 一微鏡;及 5 一易曲撓性物會撐持該微鏡,該撓性物具有一偏向 力; 其中該撓性物在與該微鏡對抗該偏向力來移動時 將會貯存能量;且 當一對抗該偏向力之力被釋除時,該撓性物將會釋 10 放所貯存的能量來驅動該微鏡。 9. 如申請專利範圍第8項之裝置,其中當該撓性物未被驅 動時,其會由於該偏向力而將該微鏡固持在一靜止方 向。 10. —種製造微鏡裝置的方法,包含: 在一基板上製成一撓性彈簧;及 製成一微鏡被撐持在該撓性彈簧上。 15May 16 200526984 stores potential energy, and when the corresponding micromirror is redirected, the potential energy is released into kinetic energy to drive the micromirror. 8. A spatial light modulation device, comprising: a micromirror; and 5 a flexible object will support the micromirror, the flexible object has a biasing force; wherein the flexible object is opposed to the micromirror Energy will be stored when the biasing force is moved; and when a force against the biasing force is released, the flexible object will release the stored energy to drive the micromirror. 9. The device of claim 8 in which the flexible object is held in a static direction due to the biasing force when the flexible object is not driven. 10. A method of manufacturing a micromirror device, comprising: making a flexible spring on a substrate; and making a micromirror supported on the flexible spring. 15
TW93113842A 2003-11-21 2004-05-17 Micro-mirrors with flexure springs TW200526984A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7192203A 2003-11-21 2003-11-21

Publications (1)

Publication Number Publication Date
TW200526984A true TW200526984A (en) 2005-08-16

Family

ID=52348200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93113842A TW200526984A (en) 2003-11-21 2004-05-17 Micro-mirrors with flexure springs

Country Status (1)

Country Link
TW (1) TW200526984A (en)

Similar Documents

Publication Publication Date Title
TWI374113B (en) Spatial light modulator, digital micromirror, micro-electromechanical device, display device, method for resetting at least one digital micromirror, method for making digital micromirror, and method for modulating light
CA2472350C (en) Architecture of a reflective spatial light modulator
TWI248522B (en) Micro-mirror device
US7280263B2 (en) Reflective spatial light modulator
US7477440B1 (en) Reflective spatial light modulator having dual layer electrodes and method of fabricating same
US7428094B2 (en) Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US7022245B2 (en) Fabrication of a reflective spatial light modulator
US7923789B2 (en) Method of fabricating reflective spatial light modulator having high contrast ratio
EP1803017B1 (en) Micromirror having offset addressing electrode
US7046415B2 (en) Micro-mirrors with flexure springs
TWI363882B (en) High fill ratio reflective spatial light modulator with hidden hinge
TW200526984A (en) Micro-mirrors with flexure springs
TW201024204A (en) Method of fabricating micro-mirror assembly