TWI363882B - High fill ratio reflective spatial light modulator with hidden hinge - Google Patents

High fill ratio reflective spatial light modulator with hidden hinge Download PDF

Info

Publication number
TWI363882B
TWI363882B TW93115857A TW93115857A TWI363882B TW I363882 B TWI363882 B TW I363882B TW 93115857 A TW93115857 A TW 93115857A TW 93115857 A TW93115857 A TW 93115857A TW I363882 B TWI363882 B TW I363882B
Authority
TW
Taiwan
Prior art keywords
micromirror
mirror plate
hinge
mirror
array
Prior art date
Application number
TW93115857A
Other languages
Chinese (zh)
Other versions
TW200528752A (en
Inventor
Shaoher X Pan
Xiao Yang
Original Assignee
Miradia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miradia Inc filed Critical Miradia Inc
Publication of TW200528752A publication Critical patent/TW200528752A/en
Application granted granted Critical
Publication of TWI363882B publication Critical patent/TWI363882B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Description

1363882 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係關於空間光調變器(SLM),特別關於具有隱 藏式鉸鏈以使像素塡充比最大、使散射及漫射最小 '以及 取得高對比和高影像品質的微鏡結構。 【先前技術】 在光資訊處理、投射式顯示器、影像及圖形監視器、 電視、及電子照相列印領域中,空間光調變器具有不同的 應用。反射式S LM是以空間圖案調變入射以反射對應於 電或光輸入的影像。入射光可以在相位上、強度上、或偏 轉反向上被調變。反射式S LM典型上包含能夠反射入射 光之可尋址的畫素(像素)之區域或二維陣列。S L Μ的關鍵 參數,特別是在顯示器應用上,係光學上主動區至像素區 的部份(也以反映SLM的全部表面區之SLM表面區的一 部份作爲量測,也稱爲塡充比)。需要有高的塡充比。 習知的SLM具有不同的缺點。這些缺點包含但不限 於:(〗)低於最佳光學主動區,降低光學效率;(2)粗糙的 反射表面,降低鏡的反射率;(3)繞射及散射,降低顯示 器的對比;(4)所使用的材料具有長期可靠性問題;及(5) 複雜製程,增加開銷及降低裝置產能。 很多習知的裝置在它們的表面上包含實質上非反射的 區域。這提供低塡充比,以及提供低於最佳反射效率。舉 例而言,美國專利號4 J2 9,73 2揭示形成於裝置表面上的 (2) (2)1363882 MOSFET裝置以及鏡。這些MOSFET裝置佔據表面區,降 低典型上是光學是主動之裝置面積的部份以及降低反射效 率。在裝置的表面上之MOSFET裝置也會使入射光繞射 ,降低顯示器的對比。此外,撞擊曝露的MOSFET裝置 之強光會使MOSFET裝置充電及使電路過熱,因而干擾 裝置的適當操作。 某些 SLM設計具有使入射光散射及降低反射率之粗 糙表面。舉例而言,在某些SLM設計中,反射表面是沈 積於LPCVD氮化矽層上的鋁膜。由於這些反射鏡的表面 是沈積有薄膜,所以,它們的平滑度難以控制。因此,最 後的產品具有粗糙表面,降低反射效率。 因某些S LM.設計(特別是某些懸吊鏡設計)而降低 反射效率之另一問題是大的曝露鉸鏈表面積。這些曝露的 鉸鏈表面積會因鉸鏈結構而造成散射及漫射,相較於其它 參數,不利於對比。 很多傳統的SLM,例如美國專利號4,5 66,93 5中所揭 示之SLM具有由鋁合金製成的鉸鏈。鋁、以及其它金屬 易於受到疲勞及塑膠變形影響,導致長期可靠度的問題。 而且’鋁易於受到胞「記億」影響,其中,其餘位置開始 向其最經常被佔據的位置傾斜。此外,4,5 6 6 : 9 3 5專利中 所揭示的鏡會因移除鏡表面下方的犧牲材料而被釋放。此 技術通常造成精密的微鏡結構於釋放期間斷裂。其也需也 在鏡之間有大間隙以便蝕刻劑移除鏡下方的犧牲材料,降 低光學上主動的裝置區之部份。 -6 - (3) 1363882 其它傳統的SLM需要多層,包含用於鏡之分離 鉸鏈、電極及/或控制電路。例如如多層SLM等的 需要使用多層薄膜堆疊以及蝕刻技術和製程。使用這 術和製程是昂貴並造成低產能。舉例而言,使用這些 通常會牽涉到大規模沈積及移除鏡板之下的犧牲材料 板表面之下的多層薄膜沈積及堆疊會造成較粗糙的鏡 ,藉因降低鏡的反射效率。此外,由於在不同層或基 具有鏡及鉸鏈,所以在鏡偏向時造成平移偏移◊由於 偏移,陣列中的鏡必須相間隔以避免相鄰的鏡之間的 干擾。由於陣列中的鏡無法被設置成太接近陣列中的 鏡,所以,SLM會苦於比最佳光學主動區還低或較 充比6 需要具有增進的反射效率、SLM裝置長期可靠 及簡化的製程之SLM。 【發明內容】 本發明係空間光調變器(SLM)。在一實施例中, 具有由第一基底製成之反射選擇性可偏轉微鏡陣列, 基底接合至具有個別可尋址的電極之第二基底。第二 也具有用於微鏡陣之定址及控制電路。或者,定址及 電路的部份是在分別的基底上且連接至第二基底上的 及電極。 微鏡陣列包含設有高度反射表面以反射入射光之 制地偏轉鏡板。此第一基底是單一材料的晶圓,在一 層、 製造 些技 技術 。鏡 表面 底中 平移 機械 其它 低塡 度' SLM 第一 基底 控制 電路 可控 實施 (4) (4)1363882 例中爲單晶矽。間隔器支撐壁在鏡板及電極之間提供分離 ,該電極係與該鏡板相關連,控制鏡板的偏轉。電極設於 第二基底上,第二基底接合至微鏡陣列。 由於鉸鏈及鏡板係在相同基底中(亦即,在相同層中 ),所以,當鏡圍繞鉸鏈的縱軸旋轉時,不會有平移移動 或位移。由於沒有平移位移,所以,鏡與支撐壁之間的間 隙僅受限於製造技術及製程。鏡板的緊密間隔及鉸鏈實質 上隱藏設於反射表面下方會允許微鏡陣列有高塡充比、增 進的對比、最小化光的散射及繞射,以及實際地消除通過 微鏡陣列而撞擊第二基底上的電路之光。 此外,由於在較佳實施例中鏡板及鉸鏈是由單晶矽材 料製成,所以,所造成的鉸鏈較強固且更可靠且實際上不 會苦於記憶效應、延著晶粒邊界斷裂或疲勞。單晶矽基底 比其它材料(特別是沈積的薄膜)具有顯著較少的微缺陷 及斷裂。結果,較不易延著裝置中的晶界斷裂(或增生微 斷裂)。而且,在本發明中使用單基底會最少使用多層薄 膜堆疊以及蝕刻製程及技術。 結果,所造成的SLM能夠取得高光學效率及性能以 可靠地及成本上有效地產生高品質影像。 【實施方式】 反射式空間光調變器(S L Μ) 1 0 0具有可偏轉鏡2 0 2的 陣列]0 3。藉由在該鏡2 0 2與對應的電極】2 6之間施加偏 壓,可選擇性地偏轉個別鏡202。每一鏡2 0 2的偏轉會控 (5) (5)1363882 制從光源反射至視頻顯示器之光。如此,控制鏡202的偏 轉會允許撞擊該鏡202之光於選擇的方向上反射,並因而 允許控制視頻顯示器上像素之出現。 空間光調變器槪述 圖1係顯示根據本發明的一實施例之SLM 1 00的一 般架構。所示之實施例具有三層。第一層是鏡層1〇3,具 有多個可偏轉的微鏡202。在一較佳實施例中,微鏡陣列 ]03係由例如單晶矽之單一材料的第一基底I 05製造。 第二層是具有多個用於控制微鏡202之電極126之電 極陣列104。每一電極126與微鏡202是相關連的並控制 該微鏡2 02的偏轉。尋址電路允許選取單一電極126,該 電極126係用於控制與其相關連之特定微鏡202。 第三層是控制電路I 06的層。此控制電路]06具有尋 址電路,允許控制電路106控制施加至被選取的電極126 之電壓。這會允許控制電路1 0 6經由電極1 2 6來控制鏡陣 列1 0 3中的鏡2 0 2之偏轉。典型上,控制電路1 0 6也包含 顯示控制]〇 8、線記憶體緩衝器]1 0、脈衝寬度調變陣列 】12、及用於視頻訊號120及繪圖訊號]22之輸入。在某 些實施例中,微控制器]]4、光控制電路Π 6、及快閃記 億體I 1 8可以是連接至控制電路]06之外部元件、或是包 含於控制電路1 06中。在不同的實施例中,上述所列之控 制電路]06的某些構件可以不存在、可以是在分別的基底 上及連接至控制電路]〇 6、或是其它增加的元件可以存在 (6) (6)1363882 以作爲控制電路]06的部份或連接至控制電路1 06。 在一實施例中,在單一第二基底]〇7上,使用半導體 製造技術,製造第二層104及第三層106。亦即,第二層 ]〇4無須分開且在第三層1 06上方。然而,「層」一詞係 有助於槪念化空間光調變器1 〇〇的不同構件。舉例而言, 在一實施例中,電極1 2 6的第二層1 〇 4係製於電制電路 106的第三層的頂部上,二者均製於單一第二基底107上 。亦即,在一實施例中,電極1 2 6、以及顯示控制1 0 8、 線記憶體緩衝器1 1 0、和脈衝寬度調變陣列〗1 2均製於單 一基底上。相較於顯示控制1 0 8、線記憶體緩衝器110、 及脈衝寬度調變陣列1 1 2製於分別的基底上之傳統的液晶 顯示裝置,控制電路]06的數個功能元件整合於相同基底 上會提供增進的資料傳送率之優點。此外,電極陣列]04 的第二層及控制電路106的第三層製於單一基底107上會 提供簡單及便宜的製造、以及輕巧的最終產品之優點。 在製造層103及107之後,它們會被接合在一起以形 成SLM 100。具有鏡陣列103之第一層會遮蓋總稱107之 第二及第三層I 04和106。在鏡陣列]〇3中的鏡202之下 的層會決定第一層103之下有多少空間用於電極126、及 尋址和控制電路]0 6。在鏡陣列]〇 3中微鏡2 0 2之下具有 有限的空間以適用於電極]26和適用於形成顯示控制1 08 、線記憶體緩衝器Π 0、及脈衝寬度調變陣列]]2之電子 元件。本發明允許在鏡陣列]〇 3的微鏡之下的有限區域中 將例如顯示控制1 0 8、線記憶體緩衝器1 1 〇、及脈衝寬度 -10- (7) (7)1363882 調變陣列112等更多項目整合於與電極】26相同的基底上 。在與電極1 26相同的基底1 〇7上包含此控制電路1 〇6, 會增進SLM 100的性能。這允許在微鏡陣列103中的微 鏡之下有限的面積中,將例如顯示控制]08、線記憶體緩 衝器〗1〇、及脈衝寬度調變陣列H2等更多項目與電極 126集成於相同基底上。在與電極126相同的基底107上 包含此控制電路106,會增進SLM 100的性能。在其它實 施例中,電極I 2 6與控制電路的元件之不同組合可以製於 不同基底上及電連接》 在其它實施例中,電極126與控制電路的元件之不同 組合可以製於不同基底上及電連接。 鏡: 圖2是單一微鏡202的一實施例之立體視圖,圖2b 是圖2a中所示的微鏡202之角落236的更詳細立體視圖 。在一較佳實施例中,微鏡202包含至少一鏡板204、鉸 鏈2 06、連接器2】6及反射表面203。在另一實施例中, 微鏡202又包含間隔器支撐框2 1 0,用於支撐鏡板、鉸鏈 2〇6、反射表面203及216。較佳地,鏡板204、鉸鏈206 、連接器2 1 6及間隔器支撐框2 ] 0係由例如單晶矽等單一 材料的晶圓所製成。如此,在此實施例之圖1中所示的第 一基底1 05係單晶矽晶圓。從單材料晶圓製造微鏡2 02會 大幅地簡化鏡202的製造。此外,單晶矽可以被拋光以產 生平滑鏡面,此平滑鏡面之表面粗糙度在量値等級上比沈 -11 - (8) (8)1363882 積膜之表面粗糙度更加平滑。由單晶矽製成的鏡202在機 械上是堅硬的’防止不必要的鏡表面彎曲或捲曲,以及’ 由單晶矽製成的鉸鏈較強固、更可靠並實質上未遭受微鏡 陣列中所使用的很多其它材料製成的鉸鏈所共有之記億影 響、延著晶界之斷裂等不利影響。在其它實施例中,可以 使用其它材料取代單晶矽。一種可能是使用其它型式的矽 (例如多晶矽、或非晶矽)於微鏡2 0 2,或是,完全從金屬 (例如鋁合金、或鎢合金)中製造鏡202。而且,在本發 明中使用單晶可以避免使用多層薄膜堆疊及蝕刻製程和技 術。 如圖2a-b、3、4a-b、7a及8所示及如上所述,微鏡 202具有鏡板2〇4。鏡板204是微鏡202的部份,其以連 接器216耦合至鉸鏈206及藉由施加偏壓於鏡202與對應 的電極]2 6之間而被選擇性地偏轉。圖3中所示的實施例 中之鏡板204包含三角部份204a4及2 04b。在圖9a ' 9b 及10所示的實施例中,鏡板204之形狀爲實質方形,且 對於225微米平方之近似面積,幾乎爲]5微米乘]5微米 ’但是,其它形狀及尺寸也是可能的。鏡板2 04具有上表 面205及下表面201。上表面205較佳地爲高度平滑表面 ’平均粗糙度小於2埃均方根且較佳地構成微鏡204的表 面積之大部份》在鏡板204的上表面205上及在鉸鏈206 的部份上方’沈積例如鋁或任何其它高度反射材料之反射 表面20 3。較佳地此反射表面203具有300A或更小的厚 度。反射表面或材料203的薄度確保其繼承上表面2 05之 -12- (9) (9)1363882 平滑表面。此反射表面203的面積大於鏡板204的上表面 205的面積’以及,以鏡板204的偏轉所決定之角度,反 射來自光源的光。注意,扭力彈簧鉸鏈206實質上形成於 鏡板204的上表面之下,且實質上由沈積於上表面205上 及鉸鏈206部份之上方的反射表面203所隱蔽。圖2a與 3之間的差異在於圖2a顯示之鏡板204具有加至上表面 205且實質上隱蔽鉸鏈206的反射表面203,而圖3顯示 之鏡板204未具有反射表面203,因此,露出鉸鏈206。 由於鉸鏈206及鏡板2 04是在相同基底105中,且如圖 7a及7b所示,鉸鏈206的中心高度796與鏡板204的中 心高度795或797實質上是共平面的,當鏡202繞著鉸鏈 2 06的縱軸旋轉時,不會有平移移動或位移。由於沒有平 移位移,所以,鏡板204與間隔器支撐框2 1 0的支撐間隔 器壁之間的間隙僅受限於製造技術及製程,典型上小於 0.1。鏡板2 04的緊密間隔與鉸鏈206實質上隱蔽在反射 表面2 03之下,允許微鏡陣列1 03有高塡充比、增加的對 比、最小的光散射及繞射、以及實質消除通過微鏡陣列 1〇3的光撞擊在第二基底107上的電路。 如圖 2a-b' 3、 4a-b、 7a、 8、 9a、 9b及]0,鏡板 204 藉由連接器2]6連接至扭力彈簧鉸鏈2 06。扭力彈簧鉸鏈 2 〇 6連接至間隔器支撐框2 1 0 ’支撐框2 1 0將扭力彈簧 206、連接器216'及鏡板204固持在原位。鉸鏈206包 含第一·臂206a及第二臂206b。如圖3及]0所示,每一 臂2 06a及2 06b的一端連接至間隔器支撐框210,而另一 -13- (10) (10)1363882 端連接至連接器216。在另一實施例中,可以在鏡板204 、鉸鏈206、及間隔器支撐框20】之間使用其它彈簧、鉸 鏈及連接設計。如同圖3及4a淸楚所示,扭力鉸鏈206 較佳地相對於間隔器支撐壁2 1 0而在對角線上定向(例如 ,45度角),並將鏡板204分成二部份、或複數側邊:第 —側2 0 4 a及第二側2 0 4 b。如圖7 b所示,二電極1 2 6與 鏡2 02、用於第一側2 04 a的一電極I 26a及用於第二側 204b之一電極126b相關連。這允許側204a或204b附著 至電極126a或126b之一之下並向下樞轉以及提供寬廣範 圍的角度運動。當藉由施加電壓於鏡2 02與對應的電極 126之間以將例如靜電力等力量施加至鏡板204時,扭力 彈簧2 06允許鏡板204繞著鉸鏈206的縱軸、相對於間隔 器支撐框2 I 0旋轉。此旋轉產生角度偏轉以在選取方向上 將光反射。由於鉸鏈2 06及鏡板204是在相同基底105中 ,以及,如圖7a及7b所示,鉸鏈2 06的中心高度7 96與 鏡板204的中心高度795或79 7實質上共平面,所以,鏡 2〇2會繞著鉸鏈206純旋轉地移動而無平移位移。在一實 施例中,如圖7 a及8所示,扭力彈簧鉸鏈2 06具有寬度 222,寬度222小於鉸鏈2 06的深度2 2 3 (垂直於鏡板204 之上表面205)。鉸鏈206的寬度222較佳地在約0.]2微 米至約0.2微米之間,且深度較佳地在約0.2微米與約 〇_3微米之間。 如圖2a-b ' 3、4a-b、6、及7a所示,間隔器支撐框 2 1 〇將鏡板2 04定位於電極】26及尋址電路上方的預定距 -14 - (11) 1363882 離處,以致於鏡板204可以向下偏轉至 2a、4a、9a及]0所示,間隔器支撐框2 撐壁,間隔器支撐壁較佳地由相同的第一 較佳地正交定位。這些壁有助於界定間隔 高度。根據鏡扳204與電極126之間所需 極的拓蹼設計,選擇間隔器支撐框2 1 0的 度允許鏡板2 04更多偏轉、以及更高的偏 偏轉角度通常提供更高的對比。在一實施 的偏轉角度是12度。在較佳實施例中, 的間隔及驅動電壓時,鏡板2 04可以旋輞 隔器支撐框210也提供支撐給鉸鏈206以 鏡陣列]03中其它的鏡板204相間隔。間 具有間隔器壁寬度212,當加上鏡板204 間的間隙時,間隔器壁寬度2 1 2實質上 2 02之間的距離。在一實施例中,間隔器 微米或更少。在一較佳實施例中,間隔老 0.5微米或更少。這會將這些鏡板204設 起以增加鏡陣列〗0 3的塡充比。 在某些實施例中,微鏡202包含元件 當鏡板2〇4向下偏轉至預定角度時,元件 停止鏡板 204的偏轉。典型上,這些$ 405a或405b以及著陸尖端710a或7】Ob。 ' 8、1 〇及]2所示,當鏡表面2 0 4偏轉 上的止動件4G5a或405b會接觸著陸尖 預定角度。如圖 ]〇包含間隔器支 基底105形成並 器支撐框2 ] 0的 的分離、以及電 高度。較大的高 轉角度。較大的 例中,鏡板204 假使被供予足夠 ¥多達90度。間 及使鏡板204與 丨隔器支撐框2 1 0 與支撐框2]0之 等於相鄰的微鏡 壁寬度212是1 i壁寬度2]2是 置成緊密地在一 405a 或 405b > 405a 或 405b 會 ζ件包含止動件 如圖 4 a、6、7 a 時,在鏡板204 端 7 ] 0 ( 7 ] 0 a 或 -15- (12) (12)1363882 710 b)。當此發生時,鏡板204不會進一步偏轉。止動件 405a或405b及著陸尖端7〗〇a或710b有數種可能的配置 "在圖4a、6、7a、8、10及12中所示的實施例中,止動 件是圓柱或機械止動件405a或405b,附著至鏡板2 04的 下表面201,著陸尖端710是第二基底107上對應的圓形 區。在圖7a、7b及8中所示的實施例中,著陸尖端7]0a 及710b電連接至間隔器支撐框210,因此,相對於止動 件4〇5a或4 05b,具有零電壓差,以防止止動件405a或 4〇5b分別黏著或熔接至著陸尖端7]0a或710b。如此,當 鏡板2〇4相對於間隔器支撐框210旋轉至預定角度(由機 械止動件405a或405b的長度及位置所決定)之外時,機 械止動件4053或405b將與著陸尖端7]0a或710b分別進 入實體接觸’以及,防止鏡板2〇4任何進一步的旋轉。 在較佳實施例中,止動件405a或405b由第一基底 105及由與鏡板204、鉸鏈206、連接器2]6和間隔器支 撐框210相同的材料所製成。著陸尖端71〇a或710b也較 佳地由同於止動件4〇5a或4〇5b、鉸鏈206、連接器216 及間隔器支撐框2】Q的材料所製成。在材料單晶矽之實施 例中,止動件4〇5a或4〇5b以及著陸尖端7】〇a或710b因 而由具有長的作用壽命之硬材料製成,這允許鏡陣列1〇3 維持長時間。此外’由於單晶矽是硬材料,所以,止動件 4〇5a或4〇5b及著陸尖端71〇a或7]〇b可以由小面積製成 ’在此小面積中,止動件4 5 〇 a或4 5 0 b會分別接觸著陸尖 端7】〇a或7 ] Ob,大幅降低黏著力及允許鏡板2〇4自由地 -16- (13) 1363882 偏轉。而且,此意指止動件405a或405b及著陸尖端 或7]0b維持在相同的電位,防止因止動件405a或 405b及著陸尖端71〇3或7]〇b在不同電位時經由熔接或 電荷注入處理而發生之黏著。本發明不限於停止上述鏡板 2〇4的偏轉之元件或技術。可以使用此技藝中所習知的任 何元件及技術。 圖4 a是立體視圖,顯示單一微鏡2 0 2之下側,包含 支撐壁2]0、鏡板2 04 (包含側204a和204b並具有上表面 205和下表面201)、鉸鏈206、連接器216和機械止動件 405a和405b。圖4b係圖4a中所示的微鏡之角落237的 更詳細立體視圖》 圖5是立體視圖,顯示具有微鏡202-]至2 02-9之微 鏡陣列1 03的頂部及側邊。雖然圖5顯示具有三列和三行 的微鏡陣列1 03,總共九個微鏡2 02,但是,其它尺寸的 微鏡陣列103也是可能的。典型上,每一微鏡202對應於 視頻顯示器上的像素。如此,具有更多微鏡2 02的較大陣 列會提供具有更多像素的視頻顯示器。 如圖5所示,微鏡陣列1 03的表面具有大的塡充比》 亦即,微鏡陣列〗03的表面的大部份是由微鏡202的反射 表面2 03製成。微鏡陣列1 03的表面之非常小的部份是非 反射的。如圖5所示,微鏡陣列1 03的表面之非反射部份 是在微鏡202的反射表面2 03之間的區域。舉例而言,鏡 202-1與202-2之間的區域的寬度是由間隔器支撐壁寬度 2】2與微鏡202 - 1與202-2的鏡板2〇4與間隔器支撐壁 -17- (14) (14)1363882 2 1 〇之間的間隙之寬度總合所決定。注意,雖然單—鏡 202如圖2a、2b、3、4a及4b所示般被描述成具有其自 己的間隔器支撐框2 1 0,但是,典型上,在例如鏡202_! 與202-2等鏡與鏡之間,未具有二分開的鄰接間隔器壁 21〇。然而,在鏡202·】與20-2之間典型上會有支撐框 210的一實體間隔器壁。由於在偏轉鏡板2〇4時無平移位 移’所以’間隙與間隔器壁寬度2 1 2可以製成與製造技術 所支援的特徵尺寸一般小。因此,在一實施例中,間隙是 0.2微米,在另—實施例中,間隙是0.13微米或更小。由 於半導體製造技術允許更小的尺寸,所以,間隔器壁2 1 0 與間隙的尺寸可以降低而允許更高的塡充比。本發明的實 施例允許高塡充比。在較佳實施例中,塡充比是96%或更 局。 圖6是立體視圖,顯示具有九個微鏡的微鏡陣列1〇3 之底部及側邊。如圖6所示,微鏡2 02的間隔器支撐框 210的支撐壁界定鏡板2 04之下的穴。這些穴提供空間給 鏡板204以向下偏轉,也允許鏡板204之下的大區域用於 配置具有電極126之第二層104,以及/或用於具有控制 電路1 06的第三層。圖6也顯示鏡板2〇4(包含側邊2〇4a 和2 04b)的下表面20],及間隔器支撐框210、扭力彈簧 鉸鏈206'連接器2]6、及止動件405a和405b的底部。 如圖5及6所示,正交於鏡板2 04之非常少的光可以 通過微鏡陣列1 03之外而到達微鏡陣列]〇3下方的任何電 極或控制電路]06。這是因爲間隔器支撐框2 ] 0及鏡板 -18- (15) (15)1363882 204的上表面205上和鉸鏈206的部份之上方的反射表面 2 03幾乎完全遮蓋微鏡陣列]03之下的電路。而且,由於 間隔器支撐框21 0會將鏡板2 04與微鏡陣列1 03之下的電 路分開,所以,以非垂直角度行進至鏡板204並通至鏡板 2 04之外的光容易撞擊間隔器支撐框2 ] 0的壁以及不會到 達微鏡陣列〗03之下。由於入射於微鏡陣列1 03之少量強 光會到達電路,所以,SLM 1 00可以避免與強光撞擊電路 有關的問題。這些問題包含入射光將電路加熱,以及入射 光子使電路元件充電,這二者均會造成電路固障。 圖9a係根據本發明的另一實施例之微鏡202的立體 視圖,圖9b係微鏡202的角落23 8之更詳細的立體視圖 。本實施例中的扭力鉸鏈2 0 6與間隔器支撐框2 1 0的間隔 器支撐壁平行。在鏡板204與對應的電極1 26之間施加偏 壓,會使鏡板204選擇性地朝向電極偏轉。圖9a中所示 的實施例比具有對角鉸鏈206之圖2a和2b中所示的鏡 2 02提供更小的角運動的總範圍,此範圍係始於相同支撐 壁高度。然而,如同圖2 a及2 b中所示的實施例般,圖 9a和9b中所示的實施例中的鉸鏈206是在鏡板204的上 表面下方且由反射表面203隱蔽,造成具有高塡充比、高 光學效率、高對比、低的光繞射和散射以及可靠和成本上 有效的性能之SLM 100。圖9b是微鏡202的角落之更詳 細的立體視圖,並顯示鏡板204、鉸鏈206 '間隔器支撐 框2]0的支撐壁及反射表面203。圖]〇顯示單一微鏡202 的下側,其包含鉸鏈2 0 6、連接器2 1 6及止動件4 0 5 a。在 -19 - (16) (16)1363882 其它實施例中,鉸鏈206可以實質上平行於鏡板2〇4的一 側以及仍然設置成將鏡板204分成二部份4〇5a和405b。 圖1]和12提供如圖9a、9b和10中所示的多個微鏡2〇2 所組成之微鏡陣列的立體視圖。 圖]3係形成於第二基底107上的電極126之一實施 例的立體視圖。在本實施例中,每一微鏡202具有對應的 電極]26。在此所示的實施例中,電極126係被製成高於 第二基底上的電路的其它部份。在較佳實施例中,電極 126設於與第二基底上的電路之其它部份相同水平。在另 —實施例中,電極126延伸至電路上方。在本發明的一實 施例中,電極】26係配接於微鏡板之下的個別鋁墊。電極 的形狀係取決於微鏡202的實施例。舉例而言,在圖2a 、2.b及3所示的實施例中,較佳地有二電極126在鏡202 之下,每一電極126具有如圖7b所示之三角形。在圖9a ' 9b及10中所示的實施例中,較佳地有單一的、方形的 電極126在鏡2 02之下。這些電極126係製於第二基底 107的表面上。在本實施例中電極126的大表面積會造成 下拉鏡板204至機械止動所需之相當低的尋址電壓,因而 造成微板2〇4之全預角偏轉。 >ee tS · XM · 在操作上,個別反射式微鏡2 02會被選擇性地偏轉並 用以在空間上調變入射至鏡2 02及由其反射之光。 圖7a及8係顯示延著圖2a中的虛線250所示之微鏡 -20- (17) 1363882 2 〇2的剖面視圖。注意,此剖面視圖係偏移微 心對角線,藉以顯示鉸鏈206的輪廓。圖7c 圖2a中的虛線2 50所示的微鏡202之不同吾IJ 意,此剖面視圖是延著中心對角線,垂直於絞 7a、7c及8是顯示電極126上方的微鏡202。 將電壓施加至微鏡202的一側上之電極126 126上方的鏡板204之對應部份的偏轉(圖8弓 。如圖8所示,當電壓施加至電極126時,| —半會附著至電極126,而鏡板204b的另一 2〇4的結構及剛性而被移離電極]26及第二基 會造成鏡板204圍繞扭力彈簧鉸鏈206旋轉。 電極126時,如圖7a所示,鉸鏈206耆造成 回至其未經偏移的位置。或者,在具有如圖2 所示的對角鉸鏈206之實施例中,電壓可以 2〇4的另一側上的電極126,以使鏡202在相 轉。如此,撞擊鏡2 02之光會在藉由施加電壓 而受控之方向上反射。 —實施例如下述般操作。起先,鏡202如 般未經偏轉。在此未偏移的狀態下,自光源歪 SLM ] 00之入射光會由平面鏡202反射。外離 射的光會由例如光泵所接收。從未經偏轉的鏡 光不會被反射至視頻顯示器。 當電壓偏壓施加於鏡板2 04 a的半部與其 126之間時,鏡202會因靜電吸引而偏轉。在 鏡202的中 係顯示延著 面視圖。注 鍵 206°圖 在操作上, 以控制電極 11 的側 204a) i板2 0 4 a的 半會因鏡板 底]07 。這 當電壓移離 鏡板204彈 a、2b 及 3 施加至鏡板 反方向上偏 至電極126 圖7a及7c 斜地入射至 的、經過反 202反射的 下方的電極 一實施例中 •21 - (18) (18)1363882 ,當鏡板204a如圖8所示般向下偏轉時,Ve,較佳地爲 】2伏特,Vb爲-10伏特,及Ve2爲0伏特。同樣地(或相 反地),當微板204b向下偏轉時,VM較佳地爲0伏特, Vb爲-]0伏特,及Ve2爲12伏特。由於鉸鏈206的設計 ,鏡板2 04 a或204b的一側(亦即 > 位於具有偏壓的電極 126的上方的側)會向下偏轉(朝向第二基底107),而鏡板 2 04b或204a的另一側會移離第二基底107。注意,在一 較佳實施例中,實質上所有的彎曲發生於鉸鏈206中的而 非鏡板2 04。在一實施例中,藉由使鉸鏈寬度22 2薄,以 及連接鉸鏈206至僅位於二端上的支撐柱,而達成此點。 如上所述般,鏡板204的偏轉受限於止動件4 05 a或4〇 5b 。鏡板2 04的全部偏轉會使外離的反射光偏轉至成像光件 及視頻顯示器。 當鏡板204偏轉通過「快動」或「下拉」電壓時(在 —實施例中幾乎爲12伏特或更低),鉸鏈206之恢復的機 械力或扭力無法再平衡靜電力或扭力,且在其下具有靜電 力之鏡板204的一半204a或204b會快速朝向其下的電極 126以取得完全偏轉,於所需時僅受限於止動件4〇5a或 405b。在如圖9a、9b及]0所示之鉸鏈206平行於間隔器 支撐框210的支撐壁之實施例中,爲了將鏡板2 (M從其完 全偏轉的位置釋放,電壓必須被關閉。在如圖2 a、2 b及 3所示之鉸鏈爲對角線的實施例中,爲了將鏡板2 (Μ從其 完全偏轉的位置釋放,當其它電極正被致能時電壓必須被 關閉,且鏡2 02附著至另一側。 -22- (19) 1363882 微鏡2 0 2是機電雙穩態裝置。在釋放電壓與快動電壓 之間給予特定電壓’則取決於鏡202偏轉的歷史,鏡板 204會有二種可能的偏轉角度。因此,鏡202偏轉表現如 同佇鎖。由於鏡202的偏轉所需之機械力相對於偏轉角度 大致上爲線性的,所以,這些雙穩定性及佇鎖特性會存在 ,而相反的靜電力是與鏡板204與電極126之間的距離成 反比。 由於鏡板2 04與電極126之間的靜電力取決於鏡板 204與電極126之間的總電壓差,所以,施加至鏡板204 的負電壓會降低施加至電極126所需之正電壓而取得給定 的偏轉量。如此,施加電壓至鏡陣列1 03可以降低電極 126的電壓量値需求。此點是有的,舉例而言,在某些應 用中,因爲5V的切換能力在半導體工業中是更加通用且 成本上更有效,所以,需要使必須施加至電極]2 6的最大 電壓保持在12V以下。 由於鏡202的最大偏轉是固定的,所以,假使SLM ]〇〇以超過快動電壓之電壓操作,則其可以以數位方式操 作。在如圖2 a、2b及3所示之鉸鏈平行於間隔器支撐框 210的支撐壁之實施例中,由於鏡板204會因電壓施加至 相關連的電極126而完全向下偏轉,或是無電壓施加至相 關連的電極126時,允許鏡板204向上彈,所以,操作基 本上是數位的。在具有如圖]2a、12b及13所示的鉸鏈 2 06對角線之實施例中,當使鏡板204的另一側上的其它 電極】26致能時,鏡板2〇4會因電壓施加至鏡板2 04的一 -23- (20) (20)1363882 側上之相關連的電極]26而完全向下偏轉至鏡板204的另 —側。造成鏡板204完全向下偏轉直到由停止鏡板204的 偏轉之實體元件停止爲止的電壓係稱爲「快動」或「下拉 」電壓。如此,爲了使鏡板2 04完全向下偏轉,將等於或 大於快動電壓之電壓施加至對應的電極126。在視頻顯示 應用中,當鏡板204完全向下偏轉時,入射於鏡板204上 的入射光會被反射至視頻顯示螢幕上對應的像素,且像素 會呈現明亮的。當鏡板204被允許向上彈時,光會以不會 撞擊視頻顯示螢幕之方式被偏轉,且像素呈現暗的。 在此數位操作期間,在相關連的鏡板2 04被完全偏轉 之後,無須在電極126上保持完全快動電壓。在「尋址階 段」期間,用在對應於應被完全偏轉的鏡板2〇4之被選取 電極]26的電壓會被設定於偏轉鏡板2〇4所需的位準。在 所討論之鏡板204因電極126上的電壓而被偏轉時,用以 將鏡板2〇4固持於偏轉位置所需之電壓會小於真正偏轉所 需的電壓。這是因爲被偏轉的鏡板2〇4與尋,址電極126之 間的間隙比鏡板2 04在被偏轉的過程中時還小。.因此,在 尋址階段之後的「固持階段」中,施加至所選取的電極 126之電壓會從其原先所需的位準縮減,卻不會實質地影 響鏡板2 04的偏轉狀態。具有較低固持階段之—優點係附 近的未被偏轉之鏡板2 (Μ會遭受較小的靜電吸力,且它們 因而保持較接近零偏轉位置。這會改進偏轉鏡板204與未 偏轉的鏡板2 04之間的光學對比。 藉由適當選取尺寸(在一實施例中,鏡板2〇4與電極 -24 - (21) (21)1363882 】26之間的支撐框210分離取決於鏡結構及偏轉角度需求 而爲1至5微米,且鉸鏈206厚度爲〇.〇5至0.45微米)及 材料(例如單晶矽(1 00)),可以將反射式SLM 1 00製成操 作電壓僅爲數伏特。由單晶矽製成的扭力彈簧206的剪力 模數可以爲5 X 1〇10牛頓/半徑平方米。將鏡板204維持 在適當電壓(負偏壓)而非接地,可以使電極126操作以完 全偏轉相關連的鏡板204之電壓更低。對於施加至電極 126之給定電壓,這會造成更大的偏轉角度。最大的負偏 壓是釋放電壓,所以,當尋址電壓降至零時,鏡板2 04可 以快動回至未偏轉的位置。 也能夠以更「類比」的方式,控制鏡板2 04的偏轉。 施加小於「快動電壓j之電壓以將鏡板204偏轉以及控制 入射光被反射的方向。 其它應用 除了視頻顯示器之外,空間光調變器100在其它應用 中也是有用的。一種此應用是無掩罩微影術,其中,空間 光調變器100會導引光以使所沈積的光阻顯影。這將不需 掩罩而能以所需圖案使光阻正確地顯影。 雖然已參考多個實施例,特別地顯示及說明本發明, 但是,習於相關技藝者應瞭解,在不悖離本發明的精神及 範圍之下,可以在形式上及細節上作不同的改變。舉例而 言,鏡板204可以藉由靜電吸引以外的其它方法而偏轉。 替代地,可以使用磁 '熱或壓電致動以偏轉鏡板204。 -25 - (22) (22)1363882 【圖式簡單說明】 圖1係說明根據本發明的一實施例之空間光調變器的 一般架構。 圖2a係本發明的一實施例中單一微鏡之立體視圖。 圖2b係圖2a的微鏡之角落的立體視圖》 圖3係無反射表面之單一微鏡的立體視圖,顯示本發 明一實施例中的微鏡陣列的鏡板之頂部及側邊。 圖4a係本發明的一實施例中單一微鏡的底部及側邊 〇 圖4b係圖4a的微鏡之角落的立體視圖。 圖5係立體視圖,顯示本發明的一實施例中微鏡的頂 部及側邊。 圖6係立體視圖,顯示本發明的一實施例中微鏡陣列 的底部及側邊。 圖7a係延著偏移對角剖面之圖2a中所示的未經偏轉 的微鏡之剖面視圖。 圖7b係在本發明的一實施例中形成於第二基底中的 鏡板下方的電極及著陸尖梢。 圖7c係延著中心對角線剖面之圖2a中所示的未經偏 轉的微鏡之剖面視圖。 圖8係顯示於圖2a中的偏轉的微鏡之剖面視圖》 圖9a係微鏡的另一實施例中的頂部及側邊的立體視 圖。 圖9b保圖9a的微鏡之角落之立體視圖。 -26- (23)1363882 圖 1 0 係 -±j. 體 視 圖 9 側邊 〇 圖 1 1 係 體 視 圖 ) 部及 側 邊 〇 圖 1 2 係 —JL·. 體 視 圖 部及 側 邊 〇 圖 1 3 係 —1-. 體 視 圖 —實 施 例 〇 主要 元 件 對 照 表 100 空 間 光 調 變 器 103 可 偏 轉 的 鏡 陣 列 104 電 極 陣 列 105 第 — 基 底 106 控 制 電 路 1 07 第 二 基 底 108 顯 示 控 制 1 1 0 線 記 憶 體 緩 衝 器 ]]2 脈 衝 調 變 陣 列 114 微 控 制 器 ]1 6 光 控 制 電 路 1 1 8 快 閃 記 億 體 ]20 視 頻 訊 號 122 繪 圖 訊 號 -27- (24) 1363882 126 126a 126b 20 1 202 202-1 〜 203 204 2 04a 204b 205 206 2 0 6 a 2 0 6 b 2 1 0 2 12 2 1 6 222 223 23 6 23 7 23 S 4 0 5 a 4 0 5 b 電極 電極 電極 下表面 微鏡 2 0 2-9 反射表 鏡板 第一側 第二側 上表面 鉸鏈 第一臂 第二臂 間隔器 間隔器 連接器 寬度 深度 角落 角落 角落 止動件 止動件 微鏡 面 支撐框 壁寬度 (25) 1363882 710a 著陸尖端 710b 著陸尖端 -29-1363882 (1) Field of the Invention The present invention relates to a spatial light modulator (SLM), and more particularly to having a hidden hinge to maximize pixel charge ratio, minimize scattering and diffusion', and A micro-mirror structure with high contrast and high image quality. [Prior Art] Spatial light modulators have different applications in the fields of optical information processing, projection display, image and graphic monitors, television, and electrophotographic printing. The reflective S LM is modulated in a spatial pattern to reflect an image corresponding to an electrical or optical input. The incident light can be modulated in phase, intensity, or deflection inversion. Reflective S LM typically includes an area or two-dimensional array of addressable pixels (pixels) that are capable of reflecting incident light. The key parameters of the SL ,, especially in display applications, are optically active to the pixel area (also measured as part of the SLM surface area that reflects the entire surface area of the SLM), also known as 塡 charging ratio). Need to have a high filling ratio. Conventional SLMs have different drawbacks. These disadvantages include, but are not limited to: ()) lower than the optimal optical active area, reducing optical efficiency; (2) rough reflective surface, reducing the reflectivity of the mirror; (3) diffraction and scattering, reducing the contrast of the display; 4) The materials used have long-term reliability issues; and (5) complex processes, increased overhead and reduced device throughput. Many conventional devices contain substantially non-reflective regions on their surface. This provides a low charge ratio and provides less than optimal reflection efficiency. For example, U.S. Patent No. 4,J2 9,73 2 discloses (2) (2) 1363882 MOSFET devices and mirrors formed on the surface of the device. These MOSFET devices occupy the surface area, which is typically a part of the active device area and reduces reflection efficiency. The MOSFET device on the surface of the device also diffracts the incident light, reducing the contrast of the display. In addition, the intense light striking the exposed MOSFET device can cause the MOSFET device to charge and overheat the circuit, thereby interfering with proper operation of the device. Some SLM designs have a rough surface that scatters incident light and reduces reflectivity. For example, in some SLM designs, the reflective surface is an aluminum film deposited on a LPCVD tantalum nitride layer. Since the surfaces of these mirrors are deposited with a film, their smoothness is difficult to control. Therefore, the final product has a rough surface and reduces reflection efficiency. Because of some S LM. Another problem with design (especially some suspension mirror designs) that reduces reflection efficiency is the large exposed hinge surface area. The surface area of these exposed hinges is scattered and diffused by the hinge structure, which is not conducive to comparison compared to other parameters. Many conventional SLMs, such as those disclosed in U.S. Patent No. 4,5,66,93, have a hinge made of an aluminum alloy. Aluminum and other metals are susceptible to fatigue and plastic deformation, leading to long-term reliability problems. Moreover, 'aluminum is susceptible to the impact of the cell, and the rest of the position begins to tilt toward its most frequently occupied position. In addition, the mirror disclosed in the 4,5 6 6 :9 3 5 patent is released by the removal of the sacrificial material beneath the mirror surface. This technique typically causes the delicate micromirror structure to break during release. It also requires a large gap between the mirrors so that the etchant removes the sacrificial material beneath the mirror, reducing portions of the optically active device area. -6 - (3) 1363882 Other conventional SLMs require multiple layers, including separate hinges, electrodes, and/or control circuitry for the mirror. For example, multilayer SLMs and the like require the use of multilayer film stacking as well as etching techniques and processes. The use of this process and process is expensive and results in low throughput. For example, the use of these layers of thin film deposition and stacking under the surface of the sacrificial material sheet, which would normally involve large-scale deposition and removal of the mirror plate, would result in a coarser mirror due to reduced mirror reflection efficiency. In addition, since mirrors and hinges are present at different layers or bases, translational shifts are caused when the mirrors are deflected. Due to the offset, the mirrors in the array must be spaced apart to avoid interference between adjacent mirrors. Since the mirrors in the array cannot be placed too close to the mirrors in the array, the SLM will suffer from lower or higher fill than the optimal optical active area. 6 requires improved reflection efficiency, long-term reliability and simplified process of the SLM device. SLM. SUMMARY OF THE INVENTION The present invention is a spatial light modulator (SLM). In one embodiment, there is a reflective selectively deflectable micromirror array made of a first substrate bonded to a second substrate having individually addressable electrodes. The second also has addressing and control circuitry for the micromirror array. Alternatively, portions of the addressing and circuitry are on separate substrates and connected to the electrodes on the second substrate. The micromirror array includes a deflection mirror plate that is provided with a highly reflective surface to reflect incident light. The first substrate is a single material wafer, and the technology is fabricated in one layer. Mirror surface bottom translational machinery other low ' degree ' SLM first substrate control circuit controllable implementation (4) (4) 1363882 in the case of single crystal germanium. The spacer support wall provides separation between the mirror plate and the electrode, the electrode being associated with the mirror plate to control deflection of the mirror plate. The electrodes are disposed on the second substrate and the second substrate is bonded to the array of micromirrors. Since the hinge and mirror plate are in the same substrate (i.e., in the same layer), there is no translational movement or displacement when the mirror is rotated about the longitudinal axis of the hinge. Since there is no translational displacement, the gap between the mirror and the support wall is limited only by the manufacturing technique and process. The close spacing of the mirror plates and the fact that the hinges are substantially concealed beneath the reflective surface allow the micromirror array to have a high contrast ratio, improved contrast, minimize light scattering and diffraction, and virtually eliminate the impact of the second through the micromirror array. The light of the circuit on the substrate. Moreover, since the mirror plate and the hinge are made of a single crystal enamel material in the preferred embodiment, the resulting hinge is stronger and more reliable and does not actually suffer from memory effects, grain boundary breakage or fatigue. Single crystal germanium substrates have significantly fewer micro defects and fractures than other materials, particularly deposited films. As a result, it is less likely to cause grain boundary fracture (or hyperplastic micro-fracture) in the apparatus. Moreover, the use of a single substrate in the present invention minimizes the use of multilayer film stacking and etching processes and techniques. As a result, the resulting SLM is capable of achieving high optical efficiency and performance to efficiently and cost-effectively produce high quality images. [Embodiment] A reflective spatial light modulator (S L Μ) 1 0 0 has an array of deflectable mirrors 2 0 2] 0 3 . The individual mirrors 202 are selectively deflectable by applying a bias between the mirror 220 and the corresponding electrode 26. The deflection of each mirror 2 2 2 is controlled (5) (5) 1363882 The light reflected from the light source to the video display. As such, the deflection of the control mirror 202 allows the light striking the mirror 202 to be reflected in a selected direction and thus allows control of the presence of pixels on the video display. Spatial Light Modulator Description FIG. 1 shows a general architecture of an SLM 100 in accordance with an embodiment of the present invention. The illustrated embodiment has three layers. The first layer is a mirror layer 1 〇 3 having a plurality of deflectable micromirrors 202. In a preferred embodiment, the micromirror array [03] is fabricated from a first substrate I05, such as a single material of single crystal germanium. The second layer is an array of electrodes 104 having a plurality of electrodes 126 for controlling the micromirrors 202. Each electrode 126 is associated with the micromirror 202 and controls the deflection of the micromirror 102. The addressing circuitry allows for the selection of a single electrode 126 that is used to control the particular micromirror 202 associated therewith. The third layer is the layer of control circuit I 06 . This control circuit 06 has an addressing circuit that allows the control circuit 106 to control the voltage applied to the selected electrode 126. This will allow control circuit 106 to control the deflection of mirror 2 0 2 in mirror array 1 0 3 via electrode 1 2 6 . Typically, the control circuit 106 also includes display control 〇 8, line memory buffer] 10, pulse width modulation array 12, and input for video signal 120 and mapping signal 22 . In some embodiments, the microcontroller 4], the light control circuit Π 6, and the flash memory I 1 8 may be external components connected to the control circuit 06 or included in the control circuit 106. In various embodiments, some of the components of the control circuit 06 listed above may be absent, may be on separate substrates and connected to the control circuit 〇6, or other added components may be present (6) (6) 1363882 is used as part of the control circuit]06 or connected to the control circuit 106. In one embodiment, the second layer 104 and the third layer 106 are fabricated on a single second substrate 〇7 using semiconductor fabrication techniques. That is, the second layer 〇4 does not have to be separated and is above the third layer 106. However, the term “layer” is used to help commemorate the different components of the spatial light modulator. For example, in one embodiment, the second layer 1 〇 4 of the electrode 126 is fabricated on top of the third layer of the electrical circuit 106, both on a single second substrate 107. That is, in one embodiment, the electrode 1 26, and the display control 1 0 8 , the line memory buffer 1 10 0, and the pulse width modulation array 1 2 are all fabricated on a single substrate. Compared with the conventional liquid crystal display device in which the display control 108, the line memory buffer 110, and the pulse width modulation array 1 1 2 are formed on the respective substrates, the plurality of functional elements of the control circuit 06 are integrated in the same The advantages of enhanced data transfer rates are provided on the substrate. In addition, the second layer of electrode arrays 04 and the third layer of control circuitry 106 on a single substrate 107 provide the advantages of simple and inexpensive manufacturing, as well as lightweight end products. After the layers 103 and 107 are fabricated, they are joined together to form the SLM 100. The first layer having the mirror array 103 covers the second and third layers I 04 and 106 of the collective name 107. The layer below the mirror 202 in the mirror array 〇3 determines how much space is below the first layer 103 for the electrodes 126, and the addressing and control circuitry]. In the mirror array] 〇3, there is a limited space under the micromirror 2 0 2 for the electrode]26 and is suitable for forming the display control 108, the line memory buffer Π 0, and the pulse width modulation array]] 2 Electronic components. The present invention allows, for example, display control 1 0 8 , line memory buffer 1 1 〇, and pulse width -10- (7) (7) 1363882 in a limited area under the micromirror of the mirror array 〇3 More items such as the array 112 are integrated on the same substrate as the electrode 26 . The inclusion of this control circuit 1 〇6 on the same substrate 1 〇7 as the electrode 126 enhances the performance of the SLM 100. This allows more items such as display control 08, line memory buffer 〇1, and pulse width modulation array H2 to be integrated with electrode 126 in a limited area under the micromirror in micromirror array 103. On the same substrate. The inclusion of this control circuit 106 on the same substrate 107 as the electrode 126 enhances the performance of the SLM 100. In other embodiments, different combinations of electrodes I 26 and components of the control circuit can be fabricated on different substrates and electrically connected. In other embodiments, different combinations of components of electrode 126 and control circuitry can be fabricated on different substrates. And electrical connection. Mirror: Figure 2 is a perspective view of an embodiment of a single micro-mirror 202, and Figure 2b is a more detailed perspective view of a corner 236 of the micro-mirror 202 shown in Figure 2a. In a preferred embodiment, the micromirror 202 includes at least one mirror plate 204, a hinge 206, a connector 2, and a reflective surface 203. In another embodiment, the micromirror 202 in turn includes a spacer support frame 210 for supporting the mirror plate, the hinges 〇6, and the reflective surfaces 203 and 216. Preferably, the mirror plate 204, the hinge 206, the connector 216, and the spacer support frame 2] are made of a single material wafer such as a single crystal germanium. Thus, the first substrate 10 shown in Fig. 1 of this embodiment is a single crystal germanium wafer. Fabrication of the micromirror 02 from a single material wafer greatly simplifies the fabrication of the mirror 202. In addition, the single crystal germanium can be polished to produce a smooth mirror surface having a smoother surface roughness than the surface roughness of the -11 - (8) (8) 1363882 laminate. The mirror 202 made of single crystal germanium is mechanically rigid 'to prevent unnecessary mirror surface bending or curling, and 'the hinge made of single crystal germanium is stronger, more reliable and substantially not subjected to micromirror arrays. The hinges made of many other materials used have a common influence on the impact of the cracks on the grain boundaries. In other embodiments, other materials may be substituted for the single crystal germanium. One possibility is to use other types of germanium (e.g., polycrystalline germanium, or amorphous germanium) in the micromirror 2 02, or to fabricate the mirror 202 entirely from a metal such as an aluminum alloy or a tungsten alloy. Moreover, the use of single crystals in the present invention avoids the use of multilayer film stacking and etching processes and techniques. As shown in Figures 2a-b, 3, 4a-b, 7a and 8 and as described above, the micromirror 202 has a mirror plate 2〇4. The mirror plate 204 is part of the micromirror 202 that is coupled to the hinge 206 by a connector 216 and selectively deflected by applying a bias between the mirror 202 and the corresponding electrode. The mirror plate 204 in the embodiment shown in Fig. 3 includes triangular portions 204a4 and 204b. In the embodiment shown in Figures 9a's 9b and 10, the shape of the mirror plate 204 is substantially square, and for an approximate area of 225 micrometers square, is almost 5 microns by 5 microns 'however, other shapes and sizes are also possible. . The mirror plate 2 04 has an upper surface 205 and a lower surface 201. The upper surface 205 is preferably a highly smooth surface having an average roughness of less than 2 angstrom root mean squares and preferably forming a substantial portion of the surface area of the micromirror 204 on the upper surface 205 of the mirror plate 204 and at the portion of the hinge 206. The upper surface 'reflects a reflective surface 20 3 such as aluminum or any other highly reflective material. Preferably, the reflective surface 203 has a thickness of 300 A or less. The thinness of the reflective surface or material 203 ensures that it inherits the smooth surface of the upper surface 2 05 -12- (9) (9) 1363882. The area of the reflective surface 203 is greater than the area ' of the upper surface 205 of the mirror plate 204 and the angle from the deflection of the mirror plate 204 reflects the light from the source. Note that the torsion spring hinge 206 is formed substantially below the upper surface of the mirror plate 204 and is substantially concealed by the reflective surface 203 deposited on the upper surface 205 and over the portion of the hinge 206. The difference between Figures 2a and 3 is that the mirror plate 204 shown in Figure 2a has a reflective surface 203 that is applied to the upper surface 205 and substantially conceals the hinge 206, while the mirror plate 204 shown in Figure 3 does not have a reflective surface 203, thus exposing the hinge 206. Since the hinge 206 and the mirror plate 206 are in the same base 105, and as shown in Figures 7a and 7b, the center height 796 of the hinge 206 and the center height 795 or 797 of the mirror plate 204 are substantially coplanar, when the mirror 202 is wound around When the longitudinal axis of the hinge 06 is rotated, there is no translational movement or displacement. Since there is no offset displacement, the gap between the mirror plate 204 and the spacer spacer wall of the spacer support frame 210 is limited only by the manufacturing technique and process, and is typically less than zero. 1. The close spacing of the mirror plates 04 and the hinges 206 are substantially concealed beneath the reflective surface 302, allowing the micromirror array 103 to have a high contrast ratio, increased contrast, minimal light scattering and diffraction, and substantial elimination through the micromirrors. The light of the array 1〇3 impinges on the circuit on the second substrate 107. 2a-b' 3, 4a-b, 7a, 8, 9a, 9b and 0, the mirror plate 204 is connected to the torsion spring hinge 206 by a connector 2]6. Torque spring hinge 2 〇 6 is attached to the spacer support frame 2 1 0 'The support frame 2 1 0 holds the torsion spring 206, the connector 216' and the mirror plate 204 in place. The hinge 206 includes a first arm 206a and a second arm 206b. As shown in Figures 3 and 0, one end of each of the arms 206a and 206b is coupled to the spacer support frame 210, and the other -13-(10) (10) 1363882 end is coupled to the connector 216. In another embodiment, other springs, hinges, and connection designs can be used between the mirror plate 204, the hinge 206, and the spacer support frame 20]. As shown in Figures 3 and 4a, the torsion hinge 206 is preferably oriented diagonally (e.g., at a 45 degree angle) relative to the spacer support wall 210 and divides the mirror plate 204 into two, or plural Side: first side 2 0 4 a and second side 2 0 4 b. As shown in Fig. 7b, the two electrodes 1 2 6 are associated with a mirror 02, an electrode I 26a for the first side 204a, and an electrode 126b for the second side 204b. This allows the side 204a or 204b to be attached to one of the electrodes 126a or 126b and pivoted downwardly and provides a wide range of angular motion. The torsion spring 206 allows the mirror plate 204 to wrap around the longitudinal axis of the hinge 206 relative to the spacer support frame by applying a voltage between the mirror 02 and the corresponding electrode 126 to apply a force such as an electrostatic force to the mirror plate 204. 2 I 0 rotation. This rotation produces an angular deflection to reflect light in the selected direction. Since the hinge 206 and the mirror plate 204 are in the same substrate 105, and as shown in Figures 7a and 7b, the center height 7 96 of the hinge 206 is substantially coplanar with the center height 795 or 79 7 of the mirror plate 204, so the mirror 2〇2 will move purely around the hinge 206 without translational displacement. In one embodiment, as shown in Figures 7a and 8, the torsion spring hinge 206 has a width 222 that is less than the depth 2 2 3 of the hinge 206 (perpendicular to the upper surface 205 of the mirror plate 204). The width 222 of the hinge 206 is preferably about 0. ] 2 microns to about 0. Between 2 microns, and the depth is preferably about 0. Between 2 microns and about 〇 3 microns. As shown in Figures 2a-b' 3, 4a-b, 6, and 7a, the spacer support frame 2 1 定位 positions the mirror plate 04 04 on the electrode 26 and a predetermined distance above the addressing circuit - 14 - (11) 1363882 The separation is such that the mirror plate 204 can be deflected downwardly to 2a, 4a, 9a and 0&0, the spacer support frame 2 is supported, and the spacer support walls are preferably positioned orthogonally by the same first, preferably orthogonal. These walls help define the height of the gap. Depending on the desired design of the pole between the mirror plate 204 and the electrode 126, the degree of spacing of the spacer support frame 2 1 0 allows for more deflection of the mirror plate 04, and a higher deflection angle generally provides a higher contrast. The deflection angle in one implementation is 12 degrees. In the preferred embodiment, the spacing of the mirror plate and the drive voltage, the mirror plate 204 can be rotated to provide support for the hinge 206 to be spaced apart by other mirror plates 204 in the mirror array. There is a spacer wall width 212, and when a gap between the mirror plates 204 is applied, the spacer wall width 2 1 2 is substantially a distance between 02. In one embodiment, the spacers are microns or less. In a preferred embodiment, the interval is old. 5 microns or less. This will set these mirror plates 204 to increase the fill ratio of the mirror array. In some embodiments, the micromirror 202 includes an element that stops the deflection of the mirror plate 204 when the mirror plate 2〇4 is deflected downward to a predetermined angle. Typically, these $405a or 405b and landing tip 710a or 7]Ob. As shown in '8, 1 〇 and 2', the stopper 4G5a or 405b on the deflection of the mirror surface 204 is in contact with the land tip by a predetermined angle. As shown in Fig. 〇, the spacer base 105 is formed to form a separation of the frame 2] 0 and the electrical height. Larger high angle of rotation. In the larger case, the mirror plate 204 is supplied as large as 90 degrees. And the mirror plate 204 and the spacer support frame 2 1 0 and the support frame 2] 0 are equal to the adjacent micromirror wall width 212 is 1 i wall width 2] 2 is set tightly at a 405a or 405b > The 405a or 405b assembly contains a stop as shown in Figures 4a, 6, and 7a, at the end of the mirror 204, 7] 0 (7) 0 a or -15- (12) (12) 1363882 710 b). When this occurs, the mirror plate 204 will not deflect further. There are several possible configurations for the stop 405a or 405b and the landing tip 7 〇a or 710b" in the embodiment shown in Figures 4a, 6, 7a, 8, 10 and 12, the stop is cylindrical or mechanical A stop 405a or 405b is attached to the lower surface 201 of the mirror plate 206, and the landing tip 710 is a corresponding circular area on the second substrate 107. In the embodiment shown in Figures 7a, 7b and 8, the landing tips 7] 0a and 710b are electrically connected to the spacer support frame 210, thus having a zero voltage difference with respect to the stop 4〇5a or 4 05b, To prevent the stoppers 405a or 4〇5b from being adhered or welded to the landing tip 7]0a or 710b, respectively. Thus, when the mirror plate 2〇4 is rotated relative to the spacer support frame 210 to a predetermined angle (determined by the length and position of the mechanical stop 405a or 405b), the mechanical stop 4053 or 405b will be with the landing tip 7 ]0a or 710b enter the physical contact respectively, and prevent any further rotation of the mirror plate 2〇4. In the preferred embodiment, the stop member 405a or 405b is formed from the first substrate 105 and from the same material as the mirror plate 204, the hinge 206, the connector 2]6, and the spacer support frame 210. The landing tip 71A or 710b is also preferably made of the same material as the stopper 4〇5a or 4〇5b, the hinge 206, the connector 216, and the spacer support frame 2Q. In the embodiment of the material single crystal crucible, the stopper 4〇5a or 4〇5b and the landing tip 7〇a or 710b are thus made of a hard material having a long active life, which allows the mirror array 1〇3 to be maintained. Long time. Furthermore, since the single crystal crucible is a hard material, the stoppers 4〇5a or 4〇5b and the landing tips 71〇a or 7]〇b can be made of a small area 'in this small area, the stopper 4 5 〇a or 4 5 0 b will contact the landing tip 7 〇a or 7 ] Ob, respectively, to significantly reduce the adhesion and allow the mirror 2〇4 to freely deflect -16- (13) 1363882. Moreover, this means that the stopper 405a or 405b and the landing tip or 7]0b are maintained at the same potential to prevent the stopper 405a or 405b and the landing tip 71〇3 or 7]〇b from being welded at different potentials or Adhesion occurs due to charge injection processing. The invention is not limited to elements or techniques for stopping the deflection of the mirror plates 2〇4 described above. Any of the elements and techniques known in the art can be used. Figure 4a is a perspective view showing the underside of a single micromirror 2 0 2 including a support wall 2]0, a mirror plate 2 04 (including sides 204a and 204b and having an upper surface 205 and a lower surface 201), a hinge 206, a connector 216 and mechanical stops 405a and 405b. Figure 4b is a more detailed perspective view of the corner 237 of the micromirror shown in Figure 4a. Figure 5 is a perspective view showing the top and sides of the micromirror array 103 having micromirrors 202-] through 02-9. Although Fig. 5 shows a micromirror array 103 having three columns and three rows, for a total of nine micromirrors 02, other sizes of micromirror arrays 103 are also possible. Typically, each micromirror 202 corresponds to a pixel on a video display. As such, a larger array with more micromirrors 02 will provide a video display with more pixels. As shown in Fig. 5, the surface of the micromirror array 103 has a large 塡 ratio", i.e., most of the surface of the micromirror array 03 is made of the reflective surface 203 of the micromirror 202. A very small portion of the surface of the micromirror array 103 is non-reflective. As shown in Fig. 5, the non-reflective portion of the surface of the micromirror array 103 is the region between the reflective surfaces 203 of the micromirror 202. For example, the width of the area between the mirrors 202-1 and 202-2 is determined by the spacer support wall width 2] 2 and the mirror plates 2 〇 4 of the micro mirrors 202 - 1 and 202-2 and the spacer support wall -17 - (14) (14) 1363882 2 1 The total width of the gap between the turns is determined. Note that although the single mirror 202 is depicted as having its own spacer support frame 210 as shown in Figures 2a, 2b, 3, 4a and 4b, typically, for example, mirrors 202_! and 202-2 Between the mirror and the mirror, there are no separate adjacent spacer walls 21〇. However, there is typically a physical spacer wall of the support frame 210 between the mirrors 202 and 20-2. Since the flat mirror shifts when deflecting the mirror plate 2〇4, the gap and the spacer wall width 2 1 2 can be made to be generally smaller than the feature sizes supported by the manufacturing technique. Therefore, in one embodiment, the gap is 0. 2 microns, in another embodiment, the gap is 0. 13 microns or less. Since the semiconductor fabrication technology allows for a smaller size, the spacer wall 210 and the size of the gap can be lowered to allow for a higher charge ratio. Embodiments of the present invention allow for high charge ratios. In the preferred embodiment, the charge ratio is 96% or more. Figure 6 is a perspective view showing the bottom and sides of the micromirror array 1〇3 having nine micromirrors. As shown in Fig. 6, the support wall of the spacer support frame 210 of the micromirror 206 defines a pocket below the mirror plate 04. These pockets provide space for the mirror plate 204 to deflect downwardly, as well as allowing a large area under the mirror plate 204 to be used to configure the second layer 104 having the electrodes 126, and/or for the third layer having the control circuit 106. Figure 6 also shows the lower surface 20 of the mirror plate 2〇4 (including the side edges 2〇4a and 024b), and the spacer support frame 210, the torsion spring hinge 206' connector 2]6, and the stoppers 405a and 405b. bottom of. As shown in Figures 5 and 6, very little light orthogonal to the mirror plate 04 can pass through the micromirror array 103 to reach any of the electrodes or control circuits under the micromirror array 〇3. This is because the reflective surface 203 on the upper surface 205 of the spacer support frame 2] 0 and the mirror plate -18-(15) (15) 1363882 204 and the portion of the hinge 206 almost completely covers the micro mirror array] The circuit underneath. Moreover, since the spacer support frame 20 0 separates the mirror plate 04 from the circuit under the micro mirror array 103, light traveling to the mirror plate 204 at a non-perpendicular angle and leading to the outside of the mirror plate 04 is easily hit by the spacer. The wall of the support frame 2] 0 does not reach below the micromirror array -03. Since a small amount of intense light incident on the micromirror array 103 reaches the circuit, the SLM 100 can avoid problems associated with strong light strikes. These problems include incident light heating the circuit and incident photons charging the circuit components, both of which cause circuit blockage. Figure 9a is a perspective view of a micromirror 202 in accordance with another embodiment of the present invention, and Figure 9b is a more detailed perspective view of a corner 23 of the micromirror 202. The torsion hinge 206 in this embodiment is parallel to the spacer support wall of the spacer support frame 210. Applying a bias between the mirror plate 204 and the corresponding electrode 126 causes the mirror plate 204 to selectively deflect toward the electrode. The embodiment shown in Figure 9a provides a total range of smaller angular motions than the mirror 02 shown in Figures 2a and 2b with diagonal hinges 206, starting at the same support wall height. However, as in the embodiment shown in Figures 2a and 2b, the hinge 206 in the embodiment shown in Figures 9a and 9b is below the upper surface of the mirror plate 204 and is concealed by the reflective surface 203, resulting in a stiletto Recharge, high optical efficiency, high contrast, low light diffraction and scattering, and reliable and cost effective performance of the SLM 100. Figure 9b is a more detailed perspective view of the corner of the micromirror 202 and shows the mirror plate 204, the support wall of the hinge 206' spacer support frame 2]0, and the reflective surface 203. Figure 〇 shows the underside of a single micromirror 202, which includes a hinge 206, a connector 216, and a stop 45005a. In other embodiments of -19 - (16) (16) 1363882, the hinge 206 can be substantially parallel to one side of the mirror plate 2〇4 and still be arranged to divide the mirror plate 204 into two portions 4〇5a and 405b. 1] and 12 provide perspective views of a micromirror array composed of a plurality of micromirrors 2〇2 as shown in Figs. 9a, 9b, and 10. Figure 3 is a perspective view of one embodiment of an electrode 126 formed on a second substrate 107. In the present embodiment, each micromirror 202 has a corresponding electrode]26. In the embodiment shown here, electrode 126 is formed to be higher than other portions of the circuitry on the second substrate. In the preferred embodiment, electrode 126 is disposed at the same level as other portions of the circuitry on the second substrate. In another embodiment, electrode 126 extends above the circuit. In one embodiment of the invention, the electrodes 26 are mated to individual aluminum pads below the micromirror plate. The shape of the electrodes is dependent on the embodiment of the micromirror 202. For example, in Figure 2a, 2. In the embodiment shown in b and 3, preferably two electrodes 126 are below the mirror 202, and each electrode 126 has a triangular shape as shown in Figure 7b. In the embodiment shown in Figures 9a's 9b and 10, preferably a single, square electrode 126 is below the mirror 02. These electrodes 126 are attached to the surface of the second substrate 107. The large surface area of the electrode 126 in this embodiment causes a relatively low addressing voltage required to pull down the mirror plate 204 to mechanical stop, thereby causing full pre-angle deflection of the microplate 2〇4. >ee tS · XM · In operation, the individual reflective micromirrors 202 are selectively deflected and spatially modulated to incident on the mirror 202 and the light reflected therefrom. Figures 7a and 8 show cross-sectional views of the micromirror -20-(17) 1363882 2 〇2 shown by the dashed line 250 in Figure 2a. Note that this cross-sectional view is offset from the diagonal of the microbes to show the outline of the hinge 206. Fig. 7c is a different view of the micromirror 202 shown by the dashed line 2 50 in Fig. 2a. The cross-sectional view is a diagonal of the center, and the micromirrors 202 are perpendicular to the strands 7a, 7c and 8 above the display electrode 126. A voltage is applied to the deflection of the corresponding portion of the mirror plate 204 above the electrode 126 126 on one side of the micromirror 202 (Fig. 8 as shown in Fig. 8. When a voltage is applied to the electrode 126, | The electrode 126, while the other 2〇4 of the mirror plate 204b is structurally and rigidly moved away from the electrode 26 and the second base causes the mirror plate 204 to rotate about the torsion spring hinge 206. When the electrode 126 is shown in Fig. 7a, the hinge 206耆 causes it to return to its undeflected position. Alternatively, in an embodiment having a diagonal hinge 206 as shown in Figure 2, the voltage can be 2 〇 4 on the other side of the electrode 126 to cause the mirror 202 to Thus, the light striking the mirror 202 will be reflected in a direction controlled by the application of a voltage. - The operation is as follows. At first, the mirror 202 is undeflected as it is. Next, the incident light from the source 歪SLM] 00 will be reflected by the plane mirror 202. The externally directed light will be received by, for example, an optical pump. The undeflected mirror light will not be reflected to the video display. When between the half of the mirror plate 04a and its 126, the mirror 202 is attracted by static electricity. Turn. In line with the mirror 202 to display the extension surface view. Note FIG key 206 ° in operation, to control electrode 11 side 204a) i 2 0 4 a plate of the bottom plate half mirror due] 07. This is when the voltage is removed from the mirror plate 204, the a, 2b and 3 are applied to the mirror plate in the opposite direction to the electrode 126. The electrodes below the oblique reflection are incident on the electrode 126 as shown in Figs. 7a and 7c. In the embodiment, 21 - (18) (18) 1363882, when the mirror plate 204a is deflected downward as shown in Fig. 8, Ve is preferably 2 volts, Vb is -10 volts, and Ve2 is 0 volts. Similarly (or vice versa), when the microplate 204b is deflected downward, VM is preferably 0 volts, Vb is -] 0 volts, and Ve2 is 12 volts. Due to the design of the hinge 206, one side of the mirror plate 04a or 204b (i.e., on the side above the biased electrode 126) will deflect downward (toward the second substrate 107), while the mirror plate 04b or 204a The other side will move away from the second substrate 107. Note that in a preferred embodiment, substantially all of the bending occurs in the hinge 206 rather than the mirror plate 04. In one embodiment, this is achieved by making the hinge width 22 2 thin and connecting the hinge 206 to a support post located only on the two ends. As described above, the deflection of the mirror plate 204 is limited to the stoppers 04 05 a or 4 〇 5b. The full deflection of the mirror plate 2 04 deflects the outwardly reflected light to the imaging optics and the video display. When the mirror plate 204 is deflected by a "quick motion" or "pull down" voltage (in the embodiment - almost 12 volts or less), the recovered mechanical force or torsion of the hinge 206 can no longer balance the electrostatic force or torque, and The half 204a or 204b of the electrostatically charged mirror plate 204 will quickly face the lower electrode 126 to achieve full deflection, limited only to the stop 4〇5a or 405b when desired. In the embodiment in which the hinge 206 shown in Figures 9a, 9b and "0" is parallel to the support wall of the spacer support frame 210, in order to release the mirror plate 2 (M from its fully deflected position, the voltage must be turned off. In the embodiment in which the hinges shown in Figures 2a, 2b and 3 are diagonal, in order to release the mirror 2 (the position from which it is fully deflected, the voltage must be turned off when the other electrodes are being activated, and the mirror 2 02 attached to the other side. -22- (19) 1363882 Micromirror 2 0 2 is an electromechanical bistable device. Given a specific voltage between the release voltage and the snap voltage 'depends on the history of deflection of the mirror 202, the mirror plate There are two possible deflection angles for the 204. Thus, the deflection of the mirror 202 behaves like a shackle. Since the mechanical force required to deflect the mirror 202 is substantially linear with respect to the angle of deflection, these bistability and shackles are characteristic. There will be, and the opposite electrostatic force is inversely proportional to the distance between the mirror plate 204 and the electrode 126. Since the electrostatic force between the mirror plate 04 and the electrode 126 depends on the total voltage difference between the mirror plate 204 and the electrode 126, The negative voltage applied to the mirror plate 204 is lowered A given amount of deflection is applied to the positive voltage required by electrode 126. Thus, applying a voltage to mirror array 103 can reduce the amount of voltage 电极 required for electrode 126. This is, for example, in some applications. Because the switching capability of 5V is more versatile and more cost effective in the semiconductor industry, it is necessary to keep the maximum voltage that must be applied to the electrode 226 to be below 12 V. Since the maximum deflection of the mirror 202 is fixed, In the case where the SLM is operated at a voltage exceeding the snap-action voltage, it can be operated in a digital manner. In the embodiment in which the hinges shown in Figures 2a, 2b and 3 are parallel to the support walls of the spacer support frame 210, Since the mirror plate 204 is deflected completely downward due to a voltage applied to the associated electrode 126, or when no voltage is applied to the associated electrode 126, the mirror plate 204 is allowed to spring up, so the operation is substantially digital. In the embodiment of the diagonal of the hinges 206 shown in Figures 2a, 12b and 13, when the other electrodes 26 on the other side of the mirror plate 204 are enabled, the mirror plates 2〇4 are applied to the mirror plate by voltage. 2 of 04 3- (20) (20) 1363882 The associated electrode on the side 26 is deflected completely downward to the other side of the mirror plate 204. The mirror plate 204 is deflected completely downward until the physical element of the deflection of the stop mirror plate 204 is stopped. The voltage is referred to as a "quick action" or "pull down" voltage. Thus, in order to deflect the mirror plate 04 4 fully downward, a voltage equal to or greater than the snap action voltage is applied to the corresponding electrode 126. In video display applications, when When the mirror plate 204 is fully deflected downward, incident light incident on the mirror plate 204 is reflected to corresponding pixels on the video display screen, and the pixels appear bright. When the mirror plate 204 is allowed to pop up, the light is deflected in a manner that does not strike the video display screen, and the pixels appear dark. During this digital operation, there is no need to maintain a full snap voltage on electrode 126 after the associated mirror plate 206 is fully deflected. During the "addressing phase", the voltage applied to the selected electrode 26 corresponding to the mirror plate 2〇4 which should be fully deflected is set to the level required for the deflecting mirror plate 2〇4. When the mirror plate 204 in question is deflected by the voltage on the electrode 126, the voltage required to hold the mirror plate 2〇4 in the deflected position will be less than the voltage required for true deflection. This is because the gap between the deflected mirror plate 2〇4 and the seek electrode 126 is smaller than when the mirror plate 04 is deflected. . Therefore, in the "holding phase" after the addressing phase, the voltage applied to the selected electrode 126 is reduced from its original desired level without substantially affecting the deflection state of the mirror 206. There is a lower retention phase - the advantage is that the undeflected mirror plates 2 are nearby (the Μ will suffer from less electrostatic attraction, and they thus remain closer to the zero deflection position. This will improve the deflection mirror plate 204 and the undeflected mirror plate 2 04 Optical contrast between the two. By appropriately selecting the dimensions (in one embodiment, the separation of the support frame 210 between the mirror plate 2〇4 and the electrode-24 - (21) (21) 1363882] 26 depends on the mirror structure and the deflection angle requirement. It is 1 to 5 microns, and the thickness of the hinge 206 is 〇. 〇5 to 0. 45 micron) and materials (such as single crystal germanium (1 00)), the reflective SLM 100 can be made to operate at only a few volts. The torsion spring 206 made of single crystal crucible can have a shear modulus of 5 X 1 〇 10 Newtons/radius square meters. Maintaining the mirror plate 204 at an appropriate voltage (negative bias) rather than ground can cause the electrode 126 to operate to fully deflect the associated mirror plate 204 to a lower voltage. This results in a larger deflection angle for a given voltage applied to electrode 126. The maximum negative bias is the release voltage, so when the address voltage drops to zero, the mirror 2 04 can snap back to the undeflected position. It is also possible to control the deflection of the mirror plate 04 in a more "analogous" manner. A direction less than "the voltage of the snap-action voltage j is applied to deflect the mirror plate 204 and control the direction in which the incident light is reflected. Other applications In addition to the video display, the spatial light modulator 100 is also useful in other applications. One such application is none. Mask lithography, wherein the spatial light modulator 100 directs light to develop the deposited photoresist. This will allow the photoresist to be properly developed in a desired pattern without masking. The invention is particularly shown and described, but it is understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention. The mirror plate 204 can be deflected by other methods than electrostatic attraction. Alternatively, magnetic 'thermal or piezoelectric actuation can be used to deflect the mirror plate 204. -25 - (22) (22) 1363882 [Simple diagram] 1 is a view showing a general structure of a spatial light modulator according to an embodiment of the present invention. Fig. 2a is a perspective view of a single micromirror in an embodiment of the present invention. Fig. 2b is a perspective view of a corner of the micromirror of Fig. 2a. 》 A perspective view of a single micromirror of a 3 series non-reflective surface showing the top and sides of a mirror plate of a micromirror array in accordance with an embodiment of the present invention. Figure 4a is a bottom and side of a single micromirror in an embodiment of the invention. 4b is a perspective view of the corner of the micromirror of FIG. 4a. Fig. 5 is a perspective view showing the top and side of the micromirror in an embodiment of the present invention. Fig. 6 is a perspective view showing an embodiment of the present invention. Figure 7a is a cross-sectional view of the undeflected micromirror shown in Figure 2a with an offset diagonal section. Figure 7b is formed in an embodiment of the invention. The electrode below the mirror plate in the second substrate and the landing tip. Figure 7c is a cross-sectional view of the undeflected micromirror shown in Figure 2a along the diagonal section of the center. Figure 8 is shown in Figure 2a. Fig. 9a is a perspective view of the top and side sides of another embodiment of the micromirror. Fig. 9b is a perspective view of the corner of the micromirror of Fig. 9a. -26-(23)1363882 1 0 series - ± j.  Figure 9 Side 〇 Figure 1 1 System view ) Side and side 〇 Figure 1 2 Series — JL·.  Body view and side 〇 Figure 1 3 Series —1-.  Body view - embodiment 〇 main component comparison table 100 spatial light modulator 103 deflectable mirror array 104 electrode array 105 - substrate 106 control circuit 1 07 second substrate 108 display control 1 1 0 line memory buffer]] 2 Pulse Modulation Array 114 Microcontroller]1 6 Light Control Circuit 1 1 8 Flash Flash Billion Body 20 Video Signal 122 Drawing Signal -27- (24) 1363882 126 126a 126b 20 1 202 202-1 ~ 203 204 2 04a 204b 205 206 2 0 6 a 2 0 6 b 2 1 0 2 12 2 1 6 222 223 23 6 23 7 23 S 4 0 5 a 4 0 5 b Electrode electrode lower surface micromirror 2 0 2-9 reflective specular panel First side second side upper surface hinge first arm second arm spacer spacer connector width depth corner corner corner stop stop micro mirror support frame wall width (25) 1363882 710a landing tip 710b landing tip -29 -

Claims (1)

13638821363882 拾、申請專利範圍 1 · 一種微鏡,包括: 鏡板,具有上表面及下表面; 鉸鏈,連接至該鏡板,用以允許該 的縱軸旋轉;及 反射表面,在該鏡板的上表面上和 方,該反射表面之面積大於該鏡板的上 2.如申請專利範圍第1項之微鏡, 實質上遮蔽該鉸鏈。 3 .如申請專利範圍第i項之微鏡, 上形&於該鏡板的上表面之下且實質上 e 4.如申請專利範圍第i項之微鏡, 框’該鉸鏈係連接至該間隔器支撐框。 5 ·如申請專利範圍第4項之微鏡, 第一臂及窠二臂,每一臂均具有二端, 器支撐框’另一端連接至該鏡板的連接 6 .如申請專利範圍第丨項之微鏡, 鉸鏈是由單件材料製成。 7 .如申請專利範圍第4項之微鏡, 鉸鏈及該間隔器支撐框是由單件材料製 8 如申請專利範圍第6項之微鏡, 晶砍。 9.如申請專利範圍第1項之微鏡, 鏡板相對於該鉸鏈 該鉸鏈的部份之上 表面之面積。 其中,該反射表面 其中,該鉸鏈實質 由該反射表面隱蔽 又包括間隔器支撐 其中’該鉸鏈具有 一端連接至該間隔 器。 其中’該鏡运及該 其中’該鏡棋、該 成。 其中,該材料是單 其中, 該鉸鏈是寬 30 1363882 度在約0.12微米至約0.2微米之間且深度在約0.2微米至 約0.3微米之間的扭力彈簧。 10.如申請專利範圍第1項之微鏡,又包括止動件, 該止動件附著至該鏡板的下表面,用於停止該鏡板圍繞該 鉸鏈的縱軸旋轉至預定角度之外的轉動。 1 1 _如申請專利範圍第4項之微鏡,其中,該間隔器 支撐框包含至少一壁,用於支撐該鏡板,該壁具有約1微 米或更小之厚度。 1 2 .如申請專利範圍第4項之微鏡,又包括控制基底 ,該控制基底連接至該間隔器支撐框及具有用於接收電壓 之電極,該電壓用以在該鏡板與該電極之間施加偏壓以便 可控制地偏轉該微鏡的鏡板。 1 3 ·如申請專利範圍第1 2項之微鏡,其中,該鉸鏈將 該鏡板分成第一部份及第二部份,以致於當該鏡板的第一 部份隨著該鏡圍繞該鉸鏈所界定的縱軸旋轉而朝向該控制 基底移動時,該鏡板的第二部份會移離該控制基底。 1 4 ·如申請專利範圍第1 1項之微鏡,其中,該間隔器 支撐框具有正交地定位之四壁以支撐該鏡板和鉸鏈以及鏡 圍繞該鉸鏈所界定的軸之旋轉。 1 5 _如申請專利範圍第1 1項之微鏡,其中,該鉸鏈平 行於該間隔器支撐框的壁。 1 6.如申請專利範圍第1項之微鏡,其中,該鉸鏈相 對於該間隔器支撐框對角地定向。 1 7 . —種微鏡陣列,包括: 31 1363882 多個微鏡板,鏡板均具有上表面及下表面; 多個鉸鏈,鉸鏈耦合至鏡板以允許鏡板圍繞著鉸鏈所 界定的軸而相對於間隔器支撐框旋轉;及 多個反射表面,反射表面位於鏡板的上表面上及鉸鏈 的部份之上方,每一反射表面之面積大於鏡板的上表面之 面積。 1 8 .如申請專利範圍第1 7項之微鏡陣列,其中,反射 表面實質上隱蔽鉸鏈。 1 9 ·如申請專利範圍第1 7項之微鏡陣列,其中,鉸鏈 實質上形成於鏡板的上表面之下且實質上由反射表面隱蔽 〇 20 ·如申請專利範圍第1 7項之微鏡陣列,又包括具有 多個壁的間隔器支撐框,該多個壁界定穴,每一穴對應於 —微鏡。 2 1.如申請專利範圍第20項之微鏡陣列,其中,鏡板 、鉸鏈及間隔器支撐框係由單件材料製成。 22·如申請專利範圍第21項之微鏡陣列,其中,該材 料是單晶砂。 23 .如申請專利範圍第1 7項之微鏡陣列’又包括多個 止動件,止動件附著至鏡板的下表面,當該鏡板旋轉至預 定角度時,用於停止該鏡板相對於該間隔器支撐框的旋轉 〇 2 4 ·如申請專利範圍第2 0項之微鏡陣列’又包括控制 基底’該控制基底連接至該間隔器支撐框及具有用於接收 32 · 1363882 電壓之對應於該多個鏡板中的每一鏡板之至少 電壓用以在該鏡板與該電極之間施加偏壓以便 轉該微鏡的鏡板。 2 5 .如申請專利範圍第2 4項之微鏡陣列, 鏈將該鏡板分成第一部份及第二部份,以致於 第一部份隨著該鏡圍繞該鉸鏈所界定的縱軸旋 控制基底移動時,該鏡板的第二部份會移離該 26.如申請專利範圍第24項之微鏡陣列, 制基底又包括尋址及控制電路,用於選擇性地 該多個電極以選擇性地可控制地偏.轉該陣列中 2 7 .如申請專利範圍第1 7項之微鏡陣列, 列中的反射表面構成該陣列的表面積之9 4.5 % 28.—種具有多個微鏡之陣列,包括: 第一微鏡,包含: 第一鏡板,具有第一上表面及第一下表面 第一鉸鏈,連接至第一鏡板,用以允許第 於第一鉸鏈的縱軸旋轉,及 第一反射表面,在第一鏡板的第一上表面 .鏈的上方,第一反射表面之面積大於第一鏡板 面之面積;以及 第二微鏡,包含: 第二鏡板,具有第二上表面及第二下表面 第二鉸鏈,連接至第二鏡板,用以允許第 於第二鉸鏈的縱軸旋轉,及 一電極,該 可控制地偏 其中,該鉸 當該鏡板的 轉而朝向該 控制基底。 其中,該控 施加電壓至 的鏡板。 其中,該陣 一鏡板相對 上及第一鉸 的第一上表 二鏡板相對 33 1363882 第二反射表面’在第二鏡板的第二上表面上及第二鉸 鏈的上方’第二反射表面之面積大於第二鏡板的第二上表 面之面積。 2 9 ·如申請專利範圍第2 8項之陣列,其中,第一微鏡 及第二微鏡又包括間隔器支撐框,第一鉸鏈連接至用於第 一微鏡之間隔器支撐框以及第二鉸鏈連接至用於第二微鏡 之間隔器支撐框。 3 〇 ·如申請專利範圍第2 8項之陣列,其中,第一及第 二微鏡板之形狀爲實質上方形。 3 1 .如申請專利範圍第2 8項之陣列,其中,第一及第 二鏡板之形狀爲實質上三角形。 3 2 .如申請專利範圍第2 8項之陣列,其中,第一及第 二上表面具有約225平方微米之面積。 3 3 ·—種空間光調變器,包括: 選取機構,用於在微鏡陣列中選取要偏轉之微鏡; 電壓施加機構,用於施加電壓至對應於所選取的微鏡 之電極,使得該微鏡圍繞鉸鏈旋轉,該鉸鏈設置成實質上 位於上表面之下及該微鏡的反射表面之下方,以及允許撞 擊該微鏡的光在所需方向上反射;及 其中,該微鏡又具有鏡板,在該鏡板上沈積有反射表 面及間及間隔器支撐框,該鉸鏈、鏡板及間隔器支撐框均 由單件材料製成。 3 4.如申請專利範圍第33項之空間光調變器,又包括 電壓移除機構,從對應於所選取的微鏡之電極移除電壓, 34 .. 1363882 允許該微鏡回至未被偏移的位置。 3 5 . —種空間光調變器,包括: 偏轉機構,具有上表面; 旋轉機構,用於使該偏轉機構圍繞著軸旋轉;及 光反射機構,沈積於該偏轉機構的上表面上及該旋轉 機構的上方以實質地隱蔽該旋轉機構。 35 -Patent application 1: A micromirror comprising: a mirror plate having an upper surface and a lower surface; a hinge coupled to the mirror plate for allowing the longitudinal axis to rotate; and a reflective surface on the upper surface of the mirror plate The area of the reflective surface is larger than the upper surface of the mirror plate. 2. The micromirror of claim 1 of the patent scope substantially shields the hinge. 3. The micromirror of claim i of the scope of the patent, the upper shape & is below the upper surface of the mirror plate and substantially e 4. The micromirror of the item i of claim patent, the frame is connected to the Spacer support frame. 5 · For the micromirror according to item 4 of the patent application, the first arm and the second arm each have two ends, and the other end of the support frame is connected to the connection of the mirror plate 6. As claimed in the patent application The micromirror, the hinge is made of a single piece of material. 7. For the micromirror of claim 4, the hinge and the spacer support frame are made of a single piece of material. 8 The micromirror of claim 6 of the patent scope, crystal cutting. 9. The micromirror of claim 1, wherein the mirror plate is opposite the area of the surface of the hinge portion of the hinge. Wherein the reflective surface is wherein the hinge is substantially concealed by the reflective surface and includes a spacer support wherein the hinge has one end connected to the spacer. Where 'the mirror and the one of the mirrors, the formation. Wherein the material is a single one, wherein the hinge is a torsion spring having a width of 30 1363882 degrees between about 0.12 microns and about 0.2 microns and a depth of between about 0.2 microns and about 0.3 microns. 10. The micromirror of claim 1, further comprising a stopper attached to a lower surface of the mirror plate for stopping rotation of the mirror plate about a longitudinal axis of the hinge to a predetermined angle . The micromirror of claim 4, wherein the spacer support frame comprises at least one wall for supporting the mirror plate, the wall having a thickness of about 1 micrometer or less. 1 2 . The micromirror of claim 4, further comprising a control substrate connected to the spacer support frame and having an electrode for receiving a voltage, the voltage being used between the mirror plate and the electrode A bias is applied to controllably deflect the mirror plate of the micromirror. 1 3 - The micromirror of claim 12, wherein the hinge divides the mirror plate into a first portion and a second portion such that a first portion of the mirror plate surrounds the hinge with the mirror As the defined longitudinal axis rotates toward the control substrate, the second portion of the mirror plate moves away from the control substrate. The micromirror of claim 11, wherein the spacer support frame has orthogonally positioned walls to support the mirror plate and the hinge and the rotation of the mirror about the axis defined by the hinge. 1 5 _ The micromirror of claim 11, wherein the hinge is parallel to the wall of the spacer support frame. The micromirror of claim 1, wherein the hinge is oriented diagonally with respect to the spacer support frame. 1 7 . A micromirror array comprising: 31 1363882 a plurality of micromirror plates each having an upper surface and a lower surface; a plurality of hinges coupled to the mirror plate to allow the mirror plate to surround the axis defined by the hinge relative to the spacer The support frame rotates; and a plurality of reflective surfaces are located on the upper surface of the mirror plate and above the hinge portion, and the area of each reflective surface is larger than the area of the upper surface of the mirror plate. 18. A micromirror array according to claim 17 wherein the reflective surface substantially conceals the hinge. The micromirror array of claim 17, wherein the hinge is substantially formed below the upper surface of the mirror plate and substantially concealed by the reflective surface ·20. The micromirror of claim 17 The array, in turn, includes a spacer support frame having a plurality of walls defining the pockets, each pocket corresponding to a micromirror. 2 1. A micromirror array according to claim 20, wherein the mirror plate, the hinge and the spacer support frame are made of a single piece of material. 22. A micromirror array according to claim 21, wherein the material is single crystal sand. 23. The micromirror array of claim 17 further comprising a plurality of stops attached to a lower surface of the mirror plate for stopping the mirror plate relative to the mirror plate when rotated to a predetermined angle Rotation of the spacer support frame 〇 2 4 · The micromirror array of claim 20, which further includes a control substrate, the control substrate is connected to the spacer support frame and has a corresponding voltage for receiving 32 · 1363882 At least a voltage of each of the plurality of mirror plates is used to apply a bias between the mirror plate and the electrode for rotating the mirror plate of the micromirror. 2 5. According to the micromirror array of claim 24, the chain is divided into a first portion and a second portion such that the first portion is rotated with the longitudinal axis defined by the mirror around the hinge. Controlling the movement of the substrate, the second portion of the mirror plate is moved away from the micromirror array of claim 24. The substrate further includes addressing and control circuitry for selectively the plurality of electrodes Selectively controllably biasing the array into a matrix of 2 7 . As in the micromirror array of claim 17 of the patent application, the reflective surface in the column constitutes 9 4.5 % of the surface area of the array. The array of mirrors includes: a first micromirror comprising: a first mirror plate having a first upper surface and a first lower surface first hinge coupled to the first mirror plate for allowing rotation of the longitudinal axis of the first hinge, And a first reflective surface, above the first upper surface of the first mirror plate, the area of the first reflective surface is larger than the area of the first mirror plate surface; and the second micromirror comprises: a second mirror plate having a second upper surface a second hinge on the surface and the second lower surface, connected to the second Plate, a longitudinal axis, and a second electrode to allow the first hinge, wherein the controllable offset from the hinge when the turn control the mirror plate towards the substrate. Wherein, the control applies a voltage to the mirror plate. Wherein, the mirror plate is opposite to the first upper surface of the first hinge, and the second reflective surface is opposite to the first reflective surface 'on the second upper surface of the second mirror plate and above the second hinge' Greater than the area of the second upper surface of the second mirror plate. 2 9 · The array of claim 28, wherein the first micromirror and the second micromirror further comprise a spacer support frame, the first hinge is connected to the spacer support frame for the first micromirror and the The two hinges are connected to the spacer support frame for the second micromirror. 3 〇 The array of claim 28, wherein the first and second micromirror plates are substantially square in shape. An array of claim 28, wherein the first and second mirror plates are substantially triangular in shape. An array of claim 28, wherein the first and second upper surfaces have an area of about 225 square microns. 3 3 · a spatial light modulator comprising: a selection mechanism for selecting a micromirror to be deflected in the micromirror array; a voltage applying mechanism for applying a voltage to an electrode corresponding to the selected micromirror, such that The micromirror is rotated about a hinge disposed substantially below the upper surface and below the reflective surface of the micromirror and allowing light impinging on the micromirror to be reflected in a desired direction; and wherein the micromirror There is a mirror plate on which a reflective surface and a spacer and spacer support frame are deposited. The hinge, the mirror plate and the spacer support frame are each made of a single piece of material. 3 4. The spatial light modulator according to claim 33, further comprising a voltage removing mechanism for removing the voltage from the electrode corresponding to the selected micromirror, 34 .. 1363882 allowing the micromirror to return to the unrecognized The location of the offset. a spatial light modulator comprising: a deflection mechanism having an upper surface; a rotating mechanism for rotating the deflection mechanism about the shaft; and a light reflecting mechanism deposited on the upper surface of the deflection mechanism and the The rotating mechanism is substantially concealed above the rotating mechanism. 35 -
TW93115857A 2003-06-02 2004-06-02 High fill ratio reflective spatial light modulator with hidden hinge TWI363882B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47540403P 2003-06-02 2003-06-02
US61112103A 2003-06-30 2003-06-30

Publications (2)

Publication Number Publication Date
TW200528752A TW200528752A (en) 2005-09-01
TWI363882B true TWI363882B (en) 2012-05-11

Family

ID=33514052

Family Applications (2)

Application Number Title Priority Date Filing Date
TW93115857A TWI363882B (en) 2003-06-02 2004-06-02 High fill ratio reflective spatial light modulator with hidden hinge
TW100124813A TWI467231B (en) 2003-06-02 2004-06-02 Method of operating a micro mirror array

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100124813A TWI467231B (en) 2003-06-02 2004-06-02 Method of operating a micro mirror array

Country Status (5)

Country Link
EP (1) EP1636628A4 (en)
JP (1) JP2006526805A (en)
KR (1) KR20060014434A (en)
TW (2) TWI363882B (en)
WO (1) WO2004109363A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483198B2 (en) 2003-02-12 2009-01-27 Texas Instruments Incorporated Micromirror device and method for making the same
US7113322B2 (en) 2004-06-23 2006-09-26 Reflectivity, Inc Micromirror having offset addressing electrode
US6980349B1 (en) 2004-08-25 2005-12-27 Reflectivity, Inc Micromirrors with novel mirror plates
US7436572B2 (en) 2004-08-25 2008-10-14 Texas Instruments Incorporated Micromirrors and hinge structures for micromirror arrays in projection displays
US7215459B2 (en) 2004-08-25 2007-05-08 Reflectivity, Inc. Micromirror devices with in-plane deformable hinge
US7119944B2 (en) 2004-08-25 2006-10-10 Reflectivity, Inc. Micromirror device and method for making the same
US7019880B1 (en) 2004-08-25 2006-03-28 Reflectivity, Inc Micromirrors and hinge structures for micromirror arrays in projection displays
JP5509912B2 (en) * 2010-02-22 2014-06-04 株式会社ニコン Spatial light modulator, illumination device, exposure device, and manufacturing method thereof
US11109004B2 (en) 2018-07-31 2021-08-31 Texas Instruments Incorporated Display with increased pixel count
US11131796B2 (en) 2018-09-10 2021-09-28 Texas Instruments Incorporated Optical display with spatial light modulator
US20210111537A1 (en) * 2019-10-15 2021-04-15 Texas Instruments Incorporated Mems-based phase spatial light modulating architecture

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312513A (en) * 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
US5535047A (en) * 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US5629794A (en) * 1995-05-31 1997-05-13 Texas Instruments Incorporated Spatial light modulator having an analog beam for steering light
US6046840A (en) * 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
DE19757197A1 (en) * 1997-12-22 1999-06-24 Bosch Gmbh Robert Manufacturing method for micromechanical device, esp. for resonant oscillating mirror device
KR100313851B1 (en) * 1998-04-10 2001-12-12 윤종용 Micromirror device for image display apparatus
US6323982B1 (en) * 1998-05-22 2001-11-27 Texas Instruments Incorporated Yield superstructure for digital micromirror device
US6867897B2 (en) * 2003-01-29 2005-03-15 Reflectivity, Inc Micromirrors and off-diagonal hinge structures for micromirror arrays in projection displays
WO2002012116A2 (en) * 2000-08-03 2002-02-14 Analog Devices, Inc. Bonded wafer optical mems process
US6873450B2 (en) * 2000-08-11 2005-03-29 Reflectivity, Inc Micromirrors with mechanisms for enhancing coupling of the micromirrors with electrostatic fields
US6906850B2 (en) * 2000-12-28 2005-06-14 Texas Instruments Incorporated Capacitively coupled micromirror
DE60214111T2 (en) * 2001-11-21 2007-02-22 Texas Instruments Inc., Dallas Jocheless digital micromirror device with concealed joint
US6856446B2 (en) * 2001-12-12 2005-02-15 Texas Instruments Incorporated Digital micromirror device having mirror-attached spring tips
US20040004753A1 (en) * 2002-06-19 2004-01-08 Pan Shaoher X. Architecture of a reflective spatial light modulator
US7009745B2 (en) * 2002-10-31 2006-03-07 Texas Instruments Incorporated Coating for optical MEMS devices
US6900922B2 (en) * 2003-02-24 2005-05-31 Exajoule, Llc Multi-tilt micromirror systems with concealed hinge structures
TW591778B (en) * 2003-03-18 2004-06-11 Advanced Semiconductor Eng Package structure for a microsystem

Also Published As

Publication number Publication date
EP1636628A1 (en) 2006-03-22
WO2004109363A1 (en) 2004-12-16
TW200528752A (en) 2005-09-01
TWI467231B (en) 2015-01-01
EP1636628A4 (en) 2009-04-15
JP2006526805A (en) 2006-11-24
KR20060014434A (en) 2006-02-15
TW201144860A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
US6992810B2 (en) High fill ratio reflective spatial light modulator with hidden hinge
US7428094B2 (en) Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US7092140B2 (en) Architecture of a reflective spatial light modulator
TWI267667B (en) Fabrication of a reflective spatial light modulator
US6046840A (en) Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US7118234B2 (en) Reflective spatial light modulator
US7538932B2 (en) High contrast spatial light modulator
CA2464207C (en) Light modulating microdevice
EP1116063B1 (en) A double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
TWI363882B (en) High fill ratio reflective spatial light modulator with hidden hinge
US7374962B2 (en) Method of fabricating reflective spatial light modulator having high contrast ratio
TWI356912B (en) Fabrication of a high fill ratio reflective spatia
CN100378496C (en) High fill ratio reflective spatial light modulator with hidden hinge
JP2008539455A (en) Miniature electromechanical device having deflectable reflective surfaces and electrode surfaces perpendicular to each other

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees