TW201022743A - Light-guide plate - Google Patents

Light-guide plate Download PDF

Info

Publication number
TW201022743A
TW201022743A TW97147147A TW97147147A TW201022743A TW 201022743 A TW201022743 A TW 201022743A TW 97147147 A TW97147147 A TW 97147147A TW 97147147 A TW97147147 A TW 97147147A TW 201022743 A TW201022743 A TW 201022743A
Authority
TW
Taiwan
Prior art keywords
guide plate
micro
light guide
light
grooves
Prior art date
Application number
TW97147147A
Other languages
Chinese (zh)
Other versions
TWI379108B (en
Inventor
Ming-Chih Tsou
Jau-Hung Tzeng
Tsung-Sheng Teng
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW97147147A priority Critical patent/TWI379108B/en
Publication of TW201022743A publication Critical patent/TW201022743A/en
Application granted granted Critical
Publication of TWI379108B publication Critical patent/TWI379108B/en

Links

Abstract

A light-guide plate for guiding light emitted from a light source is provided. The light-guide plate includes a transparent layer and a plurality of cut grooves. The transparent layer includes a light entering surface, a first planar, and a second planar, wherein the light source is disposed adjacent to the light entering surface. An edge of the first planar is connected to the light entering surface, and the first planar is disposed opposite the second surface. The cut grooves are formed on the first planar, and each cut grooves is extended along an extending direction. The perpendicular distance from an edge of each cut groove to the corresponding extending direction is defined by a first sinusoidal function according to the extending direction. And the depth of each cut groove is defined by a second sinusoidal function according to the extending direction. The figure of each cut groove is varied consciously along the extending direction, thus the light refracted exits the first planar uniformly and negative effect due to the defects or dust is also eliminated.

Description

201022743 九、發明說明: 【發明所屬之技術領域】 本發明關於應用於背光模組之導光板,特別是關於一種可提升良 率並降低生產成本之導光板。 【先前技術】 液晶面板需要光線穿透液晶層,人眼才能觀察到液晶層變化。現 有的液晶面板採用背光模組由液晶層背側投射光線,背光模組提供之 光線必須均勻地穿透液晶層,且投射至液晶層之光線必須具備均一的 輝度。然而,光源型態為管狀光源,例如冷陰極管,管狀光源發出之 光線並無法均勻地且亮度均一地投射在一平面上。因此背光模組之光 學結構,必須能使得光線均勻地且輝度均一地穿透液晶層。 背光模組依據光源設置位置,分類為二種形式··直下式背光模組 及側射式背光模組。其中側射式背光模組係由光源由導光板之側向邊 緣投射光線進人導光板。進人導光板的級在導光㈣将生反射或 疋折射穿透導光板的二飾。其巾,折射穿透導光板底面的光線,會 被反射片或反射層反射而再度進入導光板中。最後,絕大部分光線都 會朝向導光板頂面離開。 為了使光線針由導光板正向離開,以提升輝度,並使輝度均勾 分佈’導光板之頂祕置折射結構,以產生集光效果,並使光線均句 地通過導歧之頂面。觸結構縣為v _面之微龍,並透過微 溝槽型態之變化和《觀錢切改善級㈣絲,藉以解決導 光板出光面因與光源距離獨出現明暗不—致的問題。 5 201022743 透過微雕辦加JL麟树光絲上形成微溝槽,鱗微溝槽於 透光基材表面呈現規則變化,以折射光線而改變光現行進方向。每一 微溝槽負責-特定區域的光線折射’因此微溝槽表面必須相當平滑, 以產生正4光線折射效果。若加工過程中,微溝槽之表面出現缺陷或 是有粉塵沾點’這些缺陷都报容易被觀察出來。前述問題造成了導光 板良率不佳,而加工耗時費成本之問題。 【發明内容】 ^ 鑑於上述問題’本發明目的在於提供-種導光板,係可避免缺陷 或疋有粉塵產生瑕庇’同時提升加工良率及降低生產成本。 為了達成上述目的,本發明提出一種導光板,用以導引一光源之 光線’其包含透光層與複數個微溝槽。透光層具有入光面、第一平面 與第二平面,其巾光源設置於人光面之—側且第—平面相連於該入 光面’且相對於第二平面。微溝槽設置於第一平面,各微溝槽分別沿 延伸方向延伸,其中各微溝槽之邊緣至延伸方向之垂直距離,係沿 ❹ L伸方向呈-第-正弦波形,且各微騎之底雜度變化沿延伸方向 呈-第二正弦波形。連續變化之微溝槽用以折射光源之光線,使光線 均句地由第-平面離開,同時並免缺陷或是粉塵形成瑕疫。 本發明魏在於’深歧寬度持輕化之徽可雜缺陷或 . 塵所造成的導光贼。因此,本發明之導光板不需要高加工精度即 可製作,從而降低加工成本並提升加工良率。 【實施方式】 清參閲第1圖與第2圖所示,本發明第一實施例所揭露之一種導 201022743 光板100’用以導引一光源之光線,改變光線方向’並使光線均勻地通 過一液晶面板。導光板100包含一透光層110及形成於透光層110上 之複數個微溝槽120。201022743 IX. Description of the Invention: [Technical Field] The present invention relates to a light guide plate applied to a backlight module, and more particularly to a light guide plate which can improve yield and reduce production cost. [Prior Art] The liquid crystal panel requires light to penetrate the liquid crystal layer, and the human eye can observe the change of the liquid crystal layer. The current liquid crystal panel uses a backlight module to project light from the back side of the liquid crystal layer, and the light provided by the backlight module must uniformly penetrate the liquid crystal layer, and the light projected onto the liquid crystal layer must have a uniform brightness. However, the light source type is a tubular light source, such as a cold cathode tube, and the light emitted by the tubular light source cannot be uniformly and uniformly projected onto a plane. Therefore, the optical structure of the backlight module must be such that the light uniformly and uniformly penetrates the liquid crystal layer. The backlight module is classified into two types according to the position of the light source. The direct-lit backlight module and the side-lit backlight module. The side-lit backlight module projects light from the lateral edge of the light guide plate into the light guide plate. The level of the light guide plate enters the light guide (4) to reflect or refract the light through the light guide plate. The towel, which refracts light passing through the bottom surface of the light guide plate, is reflected by the reflective sheet or the reflective layer and enters the light guide plate again. Finally, most of the light will leave the top surface of the light guide. In order to make the light needle forward away from the light guide plate, the luminance is raised, and the luminance is uniformly distributed to the top of the light guide plate to create a light collecting effect, and the light is uniformly passed through the top surface of the guide. The touch structure county is a v-face micro-dragon, and through the change of the micro-groove pattern and the improvement of the level (four) wire, the problem that the light-emitting surface of the light guide plate is not bright or dark due to the distance from the light source is solved. 5 201022743 Micro-grooves are formed on the filaments of JL Linshu through the micro-carving office. The scales and micro-grooves show regular changes on the surface of the transparent substrate to refract light and change the current direction of light. Each micro-groove is responsible for - the refraction of light in a particular area' so the surface of the micro-groove must be fairly smooth to produce a positive 4-ray refraction effect. If defects occur on the surface of the micro-grooves during processing or if there are dust spots, these defects are easily observed. The foregoing problems have caused problems in that the light guide plate yield is poor, and the processing is time consuming and costly. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a light guide plate which can prevent defects or dust from being generated, thereby improving processing yield and reducing production cost. In order to achieve the above object, the present invention provides a light guide plate for guiding a light source of a light source, which comprises a light transmitting layer and a plurality of micro grooves. The light transmissive layer has a light incident surface, a first plane and a second plane, and the light source of the towel is disposed on the side of the human light surface and the first plane is connected to the light incident surface and opposite to the second plane. The micro-grooves are disposed on the first plane, and the micro-grooves respectively extend along the extending direction, wherein the vertical distance from the edge of each micro-groove to the extending direction is a -first-sinusoidal waveform along the direction of the ❹ L, and each micro-riding The bottom heterozygosity changes in a direction of extension - a second sinusoidal waveform. The continuously changing micro-trench is used to refract the light of the light source, so that the light is uniformly separated from the first plane, and the defect or the dust is formed into a plague. The invention is based on the fact that the deep-width width of the light-weighted emblem can be mis-defective or caused by dust. Therefore, the light guide plate of the present invention can be produced without requiring high processing precision, thereby reducing the processing cost and improving the processing yield. [Embodiment] Referring to Figures 1 and 2, a light guide plate 100' disclosed in the first embodiment of the present invention is used to guide the light of a light source, change the direction of the light, and evenly illuminate the light. Through a liquid crystal panel. The light guide plate 100 includes a light transmissive layer 110 and a plurality of micro trenches 120 formed on the light transmissive layer 110.

再參閱第1圖、第2圖、第3圖與第4圖所示,透光層110具有 一入光面113、一第一平面Π1與一第二平面112,第一平面U1與第 一平面112分別相連於入光面113之相對二侧邊,且第一平面hi係 相對於第二平面112。其中,光源9〇〇設置於入光面之一側,使光 線通過入光面進入透光層11G中。光線係以光源咖為中心均勾地向 各方向投射,其中光線之部分係朝向第一平面m投射,其餘部分係 朝向第二平面112投射。第二平面112上更可設置—反光層或反光板 以反射光線’使投射於第二平面112之光線朝向第一平面⑴行進。 稷數個微溝槽120並列地設 ’ ’廿似洱倌分別 沿一延伸方向X延伸,其中延伸方向χ為遠離於人光面⑴之 =溝請象妓,細咖嫩,亦即梅請之 邊緣至延伸方向之垂直距離,係沿該延伸 使各微溝槽12G之邊緣㈣呈卿服之波_變化。^ 槽120之底部深度,亦呈現弦波函數變化 微溝 深度,係沿該延伸方向χ呈一第二正弦波形二微溝槽120之底部 深度型態呈現週期性之波浪型變化。 微溝槽120之底部 其中第—正弦波形之函數為: r = :ViW = sin」-+户 \2ηπ 7 201022743 其可依據實際應用上之需求,調整微溝槽之相對位置與絕對位 置,則第一正弦波形之函數修正為:Referring to FIG. 1 , FIG. 2 , FIG. 3 and FIG. 4 , the light transmissive layer 110 has a light incident surface 113 , a first plane Π 1 and a second plane 112 , and the first plane U1 and the first plane The planes 112 are respectively connected to opposite sides of the light incident surface 113, and the first plane hi is opposite to the second plane 112. The light source 9 is disposed on one side of the light incident surface, and the light enters the light transmitting layer 11G through the light incident surface. The light is projected in all directions centering on the light source coffee, wherein portions of the light are projected toward the first plane m, and the remaining portions are projected toward the second plane 112. Further disposed on the second plane 112 - a light reflecting layer or a reflector to reflect light - causes light incident on the second plane 112 to travel toward the first plane (1). A plurality of micro-grooves 120 are juxtaposed and arranged in the direction of an extension X, wherein the direction of extension is away from the human surface (1) = the groove is like a dragonfly, the fine coffee is tender, that is, the plum please The vertical distance from the edge to the extending direction is such that the edge (four) of each microgroove 12G is subjected to a wave change. ^ The depth of the bottom of the groove 120 also exhibits a sine wave function variation. The depth of the micro groove is a second sinusoidal waveform along the extending direction. The depth pattern exhibits a periodic wave-like change in the depth pattern. The function of the first-sinusoidal waveform at the bottom of the micro-groove 120 is: r = :ViW = sin"-+ household\2ηπ 7 201022743 It can adjust the relative position and absolute position of the micro-groove according to the needs of practical applications. The function of the first sinusoidal waveform is corrected to:

其中’ a值為第一正弦波形之震幅,η為微溝槽120之寬度及深度 變化週期’ η值介於3至500微米之間,亦即沿著延伸方向χ行進距離 η後,微溝槽之寬度完成一次週期變化(星現一個完整的弦波波形)。ρ • 為初始相位,各微溝槽120之邊緣所對應之第一正弦函數γ係為相同 相位,因此其等之Ρ值相同。而相鄰二個微溝槽12〇之邊緣所對應之 第一正弦函數係為不同相位,形成交錯的波形,因此其等之ρ值具備 一相位差,此一相位差以冗/2為最佳為一常數,為第一正弦波形 之中間值。 微溝槽120之寬度變化範圍介於3至微米之間,亦即微溝槽 UO之寬度至少為3微米,最大不超過5〇〇微米。微溝槽之寬度為兩倍 的第一正弦波形之震幅,是以微溝槽之寬度可表示為:Where 'a is the amplitude of the first sinusoidal waveform, η is the width of the micro-trench 120 and the period of the depth change' η is between 3 and 500 microns, that is, after the distance η along the extending direction, The width of the trench completes a periodic change (a complete sine wave waveform is present). ρ • is the initial phase, and the first sinusoidal function γ corresponding to the edge of each micro-groove 120 is the same phase, so the Ρ value is the same. The first sinusoidal function corresponding to the edge of the adjacent two micro-grooves 12〇 is different in phase, forming an interlaced waveform, so that the ρ value thereof has a phase difference, and the phase difference is /2. A constant is a median value of the first sinusoidal waveform. The width of the micro-grooves 120 varies between 3 and 10 microns, that is, the width of the micro-grooves UO is at least 3 microns and the maximum is no more than 5 microns. The amplitude of the first sinusoidal waveform is twice the width of the micro-groove, and the width of the micro-groove can be expressed as:

其亦可依據實際應用上之需求,配合位置γ調整微溝槽之相對寬 度與絕對寬度’職度正減形之函數修正為:It can also be modified according to the requirements of the actual application, and the relative width and absolute width of the micro-groove are adjusted according to the position γ to correct the function:

其中’ b值為3微米(Sin(x/2n;r+ ρ)=〇時有最小寬度),而0值 則小於497微米(Sin(x/2n7r)=l時有最大寬度)。 201022743 其-人’深度H跡之函數為: 亦可依據實庙田 與絕對深度配合寬度w纏微雜之相對深度 又則深度正弦波形之函數修正為·· Z:Where 'b is 3 microns (Sin(x/2n; r+ ρ) = 最小 has the smallest width), and 0 is less than 497 microns (Sin(x/2n7r) = l has the maximum width). 201022743 The function of the 'human' depth H trace is: It can also be modified according to the function of the real temple field and the absolute depth with the width w and the depth of the sinusoidal waveform.

微平⑽微辆⑽之寬度及深度變化週期,η值介於3至5〇〇 料之間,亦即沿著延伸方向χ行進 一 次週期轡介说做屏槽之冰厪70风 個70整的弦波波形)。相鄰二個該些微溝槽120之 b深X所對叙第二正弦函數ζ(χ)係為刊相位,形敍錯的波 形’因此其等之ρ值具備_相位差,此—相位差心/2為最佳。The width and depth change period of the micro-flat (10) micro-vehicle (10), the η value is between 3 and 5, which means that the cycle is traversed along the extending direction, and the temperature is 70. Sine wave waveform). The second sinusoidal function ζ(χ) of the adjacent two micro-grooves 120 is a phase, and the waveform of the shape is wrong. Therefore, the value of ρ has a phase difference, which is the phase difference. Heart/2 is the best.

之各微溝槽120深度之波峰介於1至50微米之間,亦即微溝 果又最J處為1至50微米。c值為第二正弦波形之震幅,且微溝槽 之床度變化範圍介於3至5〇〇微米之間,亦即第二正弦波形之震幅 c介於3至_微米。d值為—常數,為第二正弦波形之中間值。 深度及寬度持續變化之微溝槽12〇,產生不賴之絲折射及導引 效果’使得_第-平面U1之光線行進方向賴地交錯。當微溝槽 120或第一平面1U上出現加工缺陷或粉塵時,相鄰區域所折射之光線 恰可遮掩所造成的導光瑕疵。因此,本發明之導光板1〇〇不需要高加 工精度即可製作’從而降低加工成本並提升加工良率。 如前所述’深度及寬度持續變化之微溝槽120,使得離開第一平面 201022743 ⑴上_要密佈微 、 卿,導光板100更可包含複數間隔平面130,位於相鄰之 二個微溝槽12Q間,卿第,⑴並非__ _構成, φ 亦包含了相鄰微溝槽12〇之間的間隔平面13〇,間隔平面⑽為第—平 面上沒有經過微_等加工程序之部分,隔平面⑽的存在代表可 減少微溝槽120之數目,降低微雕刻微溝槽120所需要之工時。前述 之各間隔平面13〇之寬度範圍介於3至_微米之間,以維持微溝槽 ^0所财區域具備適當的比例,其中微溝槽12〇與間隔平面伽於第 一平面之投影面積比例制介於1/2G至20為最佳。 參閱第5圖所示,n為微溝槽12〇之寬度變化週期,n值介於3至 5〇〇微米之間,η值係可於調整範圍内變化,改變寬度及深度使微溝槽 ⑽呈現不同長寬_,第5斷之軸⑽_ 讀 槽之型態變化。 屏 〃請參閱第6圖、第7圖、第8圖與第9圖所示,為本發明第二實 施例所揭露之—種導光板’包含—透光層210及形成於透光層上之 複數個微溝槽220。於第-實施例中’微溝槽m之寬度及深度,係於 固定範圍内呈現正弦波形變化,而於第二實施例中,微溝槽呦之寬 度及深度係沿著延伸方向x呈現遞增變化,亦即第—正弦波形丫⑴之 波峰(觸沿延伸方向遞增。第二正弦波形ζ(χ)之波谷或波谷沿延 2方向遞增’亦即各微溝槽22()深度之鱗或波谷隨與光源_之距 遞增。因此,於第二實施射’第-正弦波形y(x)修正為: 201022743 7=少3〇): 丨/少丨0)>-备 yi{x)<~ 微溝槽120寬度修正為: a(x) fF=W3w=|^~Wi(x)+i>5 〇 » if 遞增之函數a(x),使得微溝槽220之寬度沿著延伸方向χ呈現遞增The peaks of the depths of the micro-grooves 120 are between 1 and 50 microns, that is, the micro-grooves are at most 1 to 50 microns. The c value is the amplitude of the second sinusoidal waveform, and the bed of the micro-groove varies between 3 and 5 〇〇 micrometers, that is, the amplitude c of the second sinusoidal waveform is between 3 and _micrometers. The d value is a constant and is the middle value of the second sinusoidal waveform. The micro-grooves 12 持续 whose depth and width are constantly changing, produce a good refractive and guiding effect of the wire, so that the ray of the _th-plane U1 is staggered in the direction of travel. When a processing defect or dust occurs on the micro-groove 120 or the first plane 1U, the light refracted by the adjacent area can conceal the resulting light guide pupil. Therefore, the light guide plate 1 of the present invention can be manufactured without requiring high processing precision, thereby reducing the processing cost and improving the processing yield. As described above, the micro-grooves 120 whose depth and width are continuously changed are such that the first plane 201022743 (1) is densely covered, and the light guide plate 100 may further include a plurality of spaced planes 130 located in the adjacent two microgrooves. Between the slots 12Q, qing, (1) is not __ _ constitution, φ also includes the spacing plane 13 〇 between adjacent micro-grooves 12 〇, the spacing plane (10) is the part of the first plane without micro-processing procedures The presence of the spacer plane (10) represents a reduction in the number of micro-grooves 120 and a reduction in the man-hour required for micro-engraving the micro-grooves 120. Each of the aforementioned spacer planes 13A has a width ranging from 3 to _micron to maintain an appropriate ratio of the micro-grooves, wherein the micro-grooves 12 〇 and the spacer planes are projected on the first plane. The area ratio system is optimal from 1/2G to 20. Referring to Fig. 5, n is the width variation period of the micro-groove 12 ,, the n value is between 3 and 5 〇〇 micrometers, the η value can be varied within the adjustment range, and the width and depth are changed to make the micro-groove (10) Presenting different length and width _, the axis of the 5th break (10) _ the change of the type of the read groove. Referring to FIG. 6 , FIG. 7 , FIG. 8 and FIG. 9 , the light guide plate of the second embodiment of the present invention includes a light transmissive layer 210 and is formed on the light transmissive layer. A plurality of micro-grooves 220. In the first embodiment, the width and depth of the micro-grooves m exhibit a sinusoidal waveform variation in a fixed range, and in the second embodiment, the width and depth of the micro-grooves are increased along the extending direction x. The change, that is, the peak of the first-sinusoidal waveform 丫(1) (the direction of the extension of the contact edge increases. The valley or trough of the second sinusoidal waveform χ(χ) increases in the direction of the extension 2, that is, the scale of each micro-groove 22 () or The trough increases with the distance from the light source _. Therefore, in the second implementation, the 's-sinusoidal waveform y(x) is corrected to: 201022743 7=less 3〇): 丨/min 丨0)>-preparation yi{x) <~ The width of the micro-groove 120 is corrected as: a(x) fF=W3w=|^~Wi(x)+i>5 〇» if the function a(x) is incremented so that the width of the micro-groove 220 is along The direction of extension is increasing

同樣地’第二正弦波形Z修正為: a(x),、, , Z = z3(x) = |~ziW + ^ ^ zx{x)>-b ί 0 » if Z,{x)<-b 其中’ C值修正為一隨x遞增之函數c(x),使得微溝槽22〇之寬 度沿著延伸方向X呈現遞增。 微溝槽220之寬度及深度係沿著延伸方向X呈現遞增變化,使得 第一平面211上越遠離入光面213及光源900 ,微溝槽於第一平面211 上所佔的比例相對越高,提升光線入射至微溝槽22〇而被折射之比例。Similarly, the 'second sinusoidal waveform Z is corrected to: a(x),,, , Z = z3(x) = |~ziW + ^ ^ zx{x)>-b ί 0 » if Z,{x)&lt ;-b where 'C value is corrected to a function c(x) increasing with x, such that the width of the micro-groove 22〇 is incremented along the extension direction X. The width and depth of the micro-grooves 220 are incrementally changed along the extending direction X, so that the farther away from the light-incident surface 213 and the light source 900 on the first plane 211, the proportion of the micro-grooves on the first plane 211 is relatively high. The ratio at which the light is incident on the microchannel 22 and is refracted.

a值修正為一隨x 於實際應用時,光源900係設置於入光面213之一側,使光線自 入光面213投射進入透光層210。第一平面211上接近入光面213處, 其光線強度相對較高,而遠離入光面213處,光線強度相對較低。微 溝槽220於第一平面2Π所佔的比例隨著與入光面213的距離遞增, 使仔光線於接近入光面213處通過微溝槽220被折射的比例相對較 低,而遠離入光面213處通過微溝槽220被折射的比例相對較高,藉 以調整光線由第一平面211離開的強度,使第一平面2Π所呈現的亮 度更為均勻。 201022743 參閲第10至13圖所示,為本發明第三實施例所揭露之_種導光 板300,包含一透光層310及複數個微溝槽32〇。於第一實施例及第二 實施例中,微溝槽12G,220係連續地沿其所對應之延伸方向χ設置了 於第三實施例中,微溝槽320之至少一部份係間斷地沿其所對應又之延 伸方向X設置,且各微溝槽32〇之寬度及深度係沿著延伸方向X呈現 • 遞增變化。於延伸方向x上,微溝槽咖接近入光面313的部分王微 . 勒1 320不連續的區段越長,微溝槽320 _入光面313的部分,不 • 連續的區段較短’甚至變化為連續設置。微溝槽320不連續區段之變 化,改變微溝槽320於第-平面311上所佔的比例,也就是說,越遠 離入光面313 ’微溝槽320於第一平面311上所佔的比例就越高,提升 光線被微溝槽320折射之比例;越接近入光面犯,微溝槽32〇不連續 區段越多,使微溝槽320於第一平面311上所佔的比例越低。光源_ 發出之光線於接近入光面3U處通職溝槽32Q被折射的比例相對較 低,而遠離入光φ 311處通過微溝槽32〇被折射的比例相對較高,藉 以調整光線由第-平面311離開的強度,使第一平面所呈現的亮度更 籲 為均勻。不連續之微溝槽32〇,降低微雕刻微溝槽320所需要之工時。 【圖式簡單說明】 第1圖為本發明第—實施财,導光板之立體圖。 .第2圖為本發明第-實施财,導光板之俯視圖。 -第3圖為第1圖中’沿B-B之剖面圖。 第4圖為第.1圖中,沿A-A之剖面圖。 第5圖為本發明第一實施例中,不同比例的導光板之立體圖。 第6囷為本發明第二實施例中,導光板之立體圖。 12 201022743 第7圖為本發明第二實施例中,導光板之俯視圖。 第8圖為第7圖中,沿D-D之剖面圖。 第9圖為第7圖中,沿C-C之剖面圖。 第10圖為本發明第三實施例中,導光板之立體圖。 第11圖為本發明第三實施例中,導光板之俯視圖。 第12圖為第11圖中,沿F-F之剖面圖。 第13圖為第11圖中,沿E-E之剖面圖。 【主要元件符號說明】 100 導光板 110 透光層 111 第一平面 112 第二平面 113 入光面 120 微溝槽 130 間隔平面 200 導光板 210 透光層 211 第一平面 213 入光面 220 微溝槽 300 導光板 310 透光層 311 第一平面 13 201022743 313 入光面 320 微溝槽 900 光源When the value of a is corrected to be a practical application, the light source 900 is disposed on one side of the light incident surface 213, and the light is projected from the light incident surface 213 into the light transmitting layer 210. The first plane 211 is close to the light incident surface 213, and the light intensity is relatively high, and the light intensity is relatively low away from the light incident surface 213. The proportion of the micro-grooves 220 in the first plane 2Π increases with the distance from the light-incident surface 213, so that the proportion of the light rays refracted by the micro-trench 220 near the light-incident surface 213 is relatively low, and is far away. The proportion of the smooth surface 213 that is refracted by the micro-grooves 220 is relatively high, thereby adjusting the intensity of the light leaving the first plane 211, so that the brightness of the first plane 2Π is more uniform. 201022743 Referring to FIGS. 10-13, a light guide plate 300 according to a third embodiment of the present invention includes a light transmissive layer 310 and a plurality of microchannels 32. In the first embodiment and the second embodiment, the micro-grooves 12G, 220 are continuously disposed along the extending direction of the third embodiment in the third embodiment, and at least a portion of the micro-grooves 320 are intermittently It is disposed along its corresponding extension direction X, and the width and depth of each micro-groove 32〇 are incrementally changed along the extending direction X. In the extension direction x, the micro-groove is close to the portion of the light-incident surface 313. The longer the discontinuous section of the Le 1 320, the portion of the micro-groove 320 _ into the light-emitting surface 313, not the continuous section Short 'even changes to continuous settings. The variation of the discontinuous sections of the micro-grooves 320 changes the proportion of the micro-grooves 320 on the first plane 311, that is, the farther away from the light-incident surface 313 ′ the micro-grooves 320 occupy the first plane 311 The higher the ratio, the ratio of the refracted light is refracted by the micro-grooves 320; the closer to the incident surface, the more the micro-grooves 32 〇 the discontinuous sections, the micro-grooves 320 occupying the first plane 311 The lower the ratio. The proportion of the light emitted by the light source _ being refracted by the groove 32Q near the entrance surface 3U is relatively low, and the ratio of the refracted light passing through the micro-groove 32 远离 away from the incident light φ 311 is relatively high, thereby adjusting the light by The intensity at which the first plane 311 leaves is such that the brightness exhibited by the first plane is more uniform. The discontinuous micro-grooves 32 降低 reduce the man-hours required to micro-engraving the micro-grooves 320. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a light guide plate according to the first embodiment of the present invention. Fig. 2 is a plan view showing a light guide plate according to the first embodiment of the present invention. - Fig. 3 is a cross-sectional view taken along line B-B in Fig. 1. Figure 4 is a cross-sectional view taken along line A-A in Fig. 1. Fig. 5 is a perspective view showing a light guide plate of different ratios in the first embodiment of the present invention. Fig. 6 is a perspective view of the light guide plate in the second embodiment of the present invention. 12 201022743 FIG. 7 is a plan view of a light guide plate in a second embodiment of the present invention. Figure 8 is a cross-sectional view taken along line D-D in Figure 7. Figure 9 is a cross-sectional view taken along line C-C in Figure 7. Figure 10 is a perspective view of a light guide plate in a third embodiment of the present invention. Figure 11 is a plan view of a light guide plate in a third embodiment of the present invention. Fig. 12 is a sectional view taken along line F-F in Fig. 11. Figure 13 is a cross-sectional view taken along line E-E in Figure 11. [Main component symbol description] 100 light guide plate 110 light transmissive layer 111 first plane 112 second plane 113 light incident surface 120 micro trench 130 spacer plane 200 light guide plate 210 light transmissive layer 211 first plane 213 light entrance surface 220 micro groove Slot 300 Light guide plate 310 Light transmissive layer 311 First plane 13 201022743 313 Light incident surface 320 Micro groove 900 Light source

Claims (1)

201022743 十、申請專利範圍: -種導光板’㈣導引―光源之鱗料光板包含·· 一透光層,具有-人光面、1—平面與一第二平面,其中該光 源设置於該入光面之一伽,Η兮结 _ w且3第—平面相連於該入光面,且相對於 該第二平面;及 、 複數個微溝槽’設置於該第-平面,各該微溝槽分別沿-延伸方 向延伸’其巾各該微之邊緣至該延伸方向之M距離,係沿該延 伸方向呈f正弦波形’且各該微騎之底部深度變化沿該延伸方 向呈一第二正弦波形。 2.如申請專利第2項所述之導光板,其中各該麟槽深度之波峰介 於1至50微米之間。 3·如申請專利範圍i所述之導光板,其中該第—正弦波形之函數為: / X 、2ηπ201022743 X. Patent application scope: - Kind of light guide plate '(4) Guide - Light source of the squash light plate contains · · A light transmissive layer having a human face, a 1-plane and a second plane, wherein the light source is disposed at a gamma of the light incident surface, a Η兮 _ w and a third plane are connected to the light incident surface and opposite to the second plane; and a plurality of micro trenches are disposed on the first plane, each of the micro The grooves respectively extend along the extending direction of the M-edge of each of the micro-edges of the towel to the extending direction, and have a sinusoidal waveform along the extending direction, and the depth variation of each of the micro-ridings is in the extending direction. Two sinusoidal waveforms. 2. The light guide plate of claim 2, wherein the peak of each of the ridge depths is between 1 and 50 microns. 3. The light guide plate of claim i, wherein the function of the first sinusoidal waveform is: /X, 2ηπ b+ — 2b+ — 2 其中,a為第一正弦波形之震幅; 11為各該微溝槽之寬度及深度變化週期; Ρ為初始相位;及 b為一常數。 4.如請求们所述之導光板,其中該第二正弦波形之函數為 X Jinn 22(^) = csir 其中,c為第二正弦波形之震幅; 15 201022743 η為各該微溝槽之寬度及深度變化週期; Ρ為初始相位;及 d為一常數。 5·如申睛專利範圍第3或4所述之導光板,其中各該微溝槽之寬度及深 度變化週期範圍介於3至5〇〇微米之間。 6.如申請專利範圍帛1所述之導光板,其中各該微溝槽之寬度範圍介於 ® 3至500微米之間。 7·如申請專利範圍第1所述之導光板,其中各該微溝槽之深度範圍介於 3至500微米之間。 8. 如申明專利範圍第1項所述之導光板,纟中至少一該微溝槽係連續地 沿其所對應之延伸方向設置。 9. 如申gf專利範圍第丨項所述之導光板’其中至少—該微溝槽係間斷地 沿其所對應之延伸方向設置。Where a is the amplitude of the first sinusoidal waveform; 11 is the period of the width and depth of each of the micro-grooves; Ρ is the initial phase; and b is a constant. 4. The light guide plate of claimant, wherein the function of the second sinusoidal waveform is X Jinn 22(^) = csir where c is the amplitude of the second sinusoidal waveform; 15 201022743 η is the micro-groove Width and depth change period; Ρ is the initial phase; and d is a constant. 5. The light guide plate of claim 3, wherein the width and depth variation period of each of the micro grooves are between 3 and 5 microns. 6. The light guide plate of claim 1, wherein each of the micro grooves has a width ranging from +/- 3 to 500 microns. 7. The light guide of claim 1, wherein each of the microchannels has a depth ranging from 3 to 500 microns. 8. The light guide plate of claim 1, wherein at least one of the microchannels is continuously disposed along a corresponding extension direction thereof. 9. The light guide plate of claim 3, wherein at least the microchannels are intermittently disposed along their corresponding extension directions. 说如申請專利綱第】項所述之導光板,其中更包含至少—職平面, 位於相鄰之二個該些微溝槽之間。 11.如申請專利細第1Q項之導光板,其巾各關隔平面之寬度範 圍介於3至500微米之間。 泛如申請專利細第1G項所述之導光板,其中該些微溝槽及該些間隔 平面於該第一平面之投影面積比例範圍介於1/2〇至2〇。 遠離於該入 13.如申請專利範圍第1項所述之導光板,其中各該延伸方向 16 201022743 光面。 14. 如申請專利範圍第13項所述之導光板,其中各該微溝槽深度之波峰 隨與該光源之距離遞增。 15. 如申請專利範圍第1項所述之導光板,其中各該微溝槽之邊緣所對應 之第一正弦函數係為相同相位。 16.如申π專利範圍第1項所述之導光板,其中相鄰二個該些微溝槽之邊 緣所對應之第一正弦函數係為不同相位。The light guide plate according to the application of the patent specification, wherein the light guide plate further comprises at least a job plane located between the adjacent two micro grooves. 11. The light guide plate of claim 1Q, wherein the width of each of the separation planes is between 3 and 500 microns. The light guide plate of the first aspect of the invention, wherein the ratio of the projected area of the micro-grooves and the spaced planes to the first plane ranges from 1/2 〇 to 2 〇. Keep away from the entrance. 13. The light guide plate according to claim 1, wherein each of the extending directions is 16 201022743. 14. The light guide plate of claim 13, wherein the peak of each of the microgroove depths increases with distance from the light source. 15. The light guide plate of claim 1, wherein the first sinusoidal function corresponding to the edge of each of the micro-grooves is the same phase. 16. The light guide plate of claim 1, wherein the first sinusoidal function corresponding to the edges of two adjacent microchannels is different in phase. 17·如申請專利賴第1項所述之導光板,其中相鄰二個該些微溝槽之底 部深度所對應之第二正弦函數係為不同相位。 .如申請專利㈣所述之導光板,其中該第_正_之波峰沿 該延伸方向遞增,且該第二正弦波形之波谷沿該延伸方向遞增。 19.Γ請專利娜18項所述之導光板,其中該第—观形之函數 為:The light guide plate of claim 1, wherein the second sinusoidal function corresponding to the depth of the bottom portions of the adjacent two micro-grooves is different. The light guide plate of claim 4, wherein the peak of the ___ is incremented in the extending direction, and the valley of the second sinusoidal waveform is increased in the extending direction. 19. Please refer to the light guide plate described in Patent No. 18, wherein the function of the first-view is: y3(x)^ <χ) ., b ,~j~ydx)+~, if γι{χ)>Λ 其中,a為一隨該划申額遞增之函數; ^i(^) = sinf—; \2ηπ 1 η為各該微溝槽之寬奴深錢化週期; ρ為初始相位;及 b為—常數。 17 201022743 2〇.為如申物軸18_伽,細帛:正錢形之函數 Z3(J〇 ~^(x、+ b, if Zl(x)>-b 〇 5 jf Zi(x)<-0 其中 ’ zi (x) = sin 2ηπ +户 c為—隨該延伸方向遞增之函數; ❹ η為各該微溝槽之寬度及深度變化週期; Ρ為初始相位;及 b為一常數》 21. 如申請專利範圍第!項所述之導光板,其中各該微溝槽之至少—部份 係間斷地沿其所對應之該延伸方向設置。 22. 如申請專利範圍第21項所述之導光板,其中,於該延伸方向上各 該微溝槽接近該入光面之不連續的區段長度,大於遠離該入光面之不 連續的區段長度。 18Y3(x)^ <χ) ., b ,~j~ydx)+~, if γι{χ)>Λ where a is a function that increases with the amount of the application; ^i(^) = sinf —; 2 η π 1 η is the width of each of the micro-grooves; ρ is the initial phase; and b is the constant. 17 201022743 2〇. For example, the approximation axis 18_ gamma, fine 帛: the function of the positive money shape Z3 (J〇~^(x, + b, if Zl(x)>-b 〇5 jf Zi(x) <-0 where ' zi (x) = sin 2ηπ + household c is - a function of increasing in the direction of extension; ❹ η is the period of width and depth of each micro-groove; Ρ is the initial phase; and b is one The light guide plate of claim 2, wherein at least a portion of each of the micro-grooves is intermittently disposed along the corresponding extending direction thereof. 22. As claimed in claim 21 In the light guide plate, the length of the discontinuous section of the microchannel adjacent to the light incident surface in the extending direction is greater than the length of the discontinuous section away from the light incident surface.
TW97147147A 2008-12-04 2008-12-04 Light-guide plate TWI379108B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97147147A TWI379108B (en) 2008-12-04 2008-12-04 Light-guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97147147A TWI379108B (en) 2008-12-04 2008-12-04 Light-guide plate

Publications (2)

Publication Number Publication Date
TW201022743A true TW201022743A (en) 2010-06-16
TWI379108B TWI379108B (en) 2012-12-11

Family

ID=44833094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147147A TWI379108B (en) 2008-12-04 2008-12-04 Light-guide plate

Country Status (1)

Country Link
TW (1) TWI379108B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575238B2 (en) 2014-05-05 2017-02-21 Au Optronics Corporation Back light module
TWI666477B (en) * 2018-06-06 2019-07-21 Global Lighting Technology Inc. Light guide plate with high light uniformity and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575238B2 (en) 2014-05-05 2017-02-21 Au Optronics Corporation Back light module
TWI666477B (en) * 2018-06-06 2019-07-21 Global Lighting Technology Inc. Light guide plate with high light uniformity and manufacturing method thereof

Also Published As

Publication number Publication date
TWI379108B (en) 2012-12-11

Similar Documents

Publication Publication Date Title
TWI526718B (en) A method of forming an uneven structure on a substrate and a method of mold-making
CN101403483B (en) All-in-one type light guide plate and backlight apparatus employing the same
US10598847B2 (en) Light source module and prism sheet thereof
TWI327249B (en) Light guide plate for liquid crystal display back light units and liquid crystal display back light unit using the same
KR101525535B1 (en) Optical sheet assembly and back light unit including the same
JP4874009B2 (en) Light diffuser
CN102955195B (en) The processing method of light guide plate, mould and mould
EP3358379A1 (en) Optical element, light guide plate, prism, backlight unit and display apparatus
CN206002812U (en) Display device
KR102015363B1 (en) Back light unit and display apparatus including the same
KR20110009070A (en) Illumination device and display device
JP2013120394A (en) Multilayer optical sheet module
JP2014186913A (en) Lighting unit and display device
CN210401732U (en) Light guide plate and light source module
TW201022743A (en) Light-guide plate
KR101147095B1 (en) Composite Light Guide Plate, and Backlight Unit Using the Same
JP2012079460A (en) Lighting unit using concealment lens sheet and display device equipped with this
TW200905274A (en) Light guide panel comprising step structure for back light unit of TFT-LCD
JP2011064986A (en) Optical film
TW200837410A (en) Light guide panel for LCD comprising stripe prism of irregular shape and cross prism
CN102401323A (en) Backlight module and light guide plate thereof
CN101424387B (en) Light guide board
JP4042960B2 (en) Highly directional light guide plate and surface light source device
TW201126208A (en) Brightness enhancement sheet
JP5672833B2 (en) Illumination unit and display device using the same