TWI379108B - Light-guide plate - Google Patents

Light-guide plate Download PDF

Info

Publication number
TWI379108B
TWI379108B TW97147147A TW97147147A TWI379108B TW I379108 B TWI379108 B TW I379108B TW 97147147 A TW97147147 A TW 97147147A TW 97147147 A TW97147147 A TW 97147147A TW I379108 B TWI379108 B TW I379108B
Authority
TW
Taiwan
Prior art keywords
guide plate
micro
light guide
light
grooves
Prior art date
Application number
TW97147147A
Other languages
Chinese (zh)
Other versions
TW201022743A (en
Inventor
Ming Chih Tsou
Jau Hung Tzeng
Tsung Sheng Teng
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW97147147A priority Critical patent/TWI379108B/en
Publication of TW201022743A publication Critical patent/TW201022743A/en
Application granted granted Critical
Publication of TWI379108B publication Critical patent/TWI379108B/en

Links

Landscapes

  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

1379108 九、發明說明: 【發明所屬之技術領域】 本發明關於應用於背光模組之導光板,特別是關於一種可提升良 率並降低生產成本之導光板。 【先前技術】 液晶面板需要光線穿透液晶層,人眼才能觀察到液晶層變化。現 ^ 有的液晶面板採用背光模組由液晶層背側投射光線,背光模組提供之 光線必須均勻地穿透液晶層,且投射至液晶層之光線必須具備均一的 輝度。然而’光源型態為管狀光源,例如冷陰極管,管狀光源發出之 • 光線並無法均句地且亮度均—地投射在_平面上。因此背光模組之光 學結構,必須能使得光線均勻地且輝度均一地穿透液晶層。 为光核組依據光源設置位置,分類為二獅式:直下式背光模組 及側射式背光模組。其中側射式背光模組係由光源由導光板之側向邊 緣投射光線私導紐。進人導光板的光線在導光㈣部發生反射或 ® 是折射穿透導光板的二側面。其中,折射穿透導光板底面的光線,會 被反射片妖射層反射而再度進人導光板中H駄部分光線都 會朝向導光板頂面離開。 . 為了使絲集中由導光板正向離開,以提升輝度,並使輝度均句 分佈,導光板之頂面处折射結構,以產生減效果,並使光線均句 地通過導光板之頂面。折射結構通常為v型截面之微溝槽,並透過微 溝槽型態之魏和《槽深度變化以改善光線分佈效果,藉以解決導 光板出光面因與光源距離不同出現明暗不一致的問題。 5 透過微雕刻等加工技術於透絲材上形成微溝 透光綱—規軌,爾維概·料ΓΓ 微溝槽負責-特定區域的光線折射,因此微溝槽表面必須相當平滑, ^產^正確光線折射效果。若加工過程中,微溝槽之表面出現缺陷或 是有粉塵沾黏,這些缺_很容鎌觀察出來。前朝題造成了導光 板良率不佳’而加工耗時費成本之問題。 【發明内容】 鑑於上述問題,本發明目的在於提供一種導光板,係可避免缺陷 或疋有4塵產生瑕疫’同時提升力σ工良率及降低生產成本。 為了達成上述目的,本發明提出一種導光板,用以導引—光源之 光線’其包含透光層與複數個微溝槽。透光層具有入光面、第一平面 與第二平面,其巾統設置於人絲之—側,且第―平面相連於該入 光面’且姆於第二平面。微賴設置於第__平面各微溝槽分別沿 k伸方向延伸’其中各微溝槽之邊緣至延伸方向之垂直距離係沿 延伸方向呈-第-正弦波形,且各微溝槽之底部深度變化沿延伸方向 呈-第二正弦波形。連續變化之微溝槽用以折射光源之光線,使光線 均勻地由第-平轉開’同時並免缺陷或是粉獅成瑕疲。 本發月功效在於’冰度及寬度持續變化之微溝槽恰可遮掩缺陷或 私塵所造成的導光械。因此,本發明之導光板*需要高加工精度即 可製作,從而降低加工成本並提升加工良率。 【實施方式】 清參閱第1 n與第2圖所示,本發明第—實施綱揭露之一種導 1379108 ⑴之光線行進方向㈣地交錯,因此第—平面⑴上就不需要密佈微 溝槽120。亦即,導光板100更可包含複數間隔平面13〇 ’位於相鄰之 二個微溝槽120間,亦即第-平面⑴並非完全為微溝槽⑽所構成, 亦包含了相鄭微溝槽120之間的間隔平面13〇,間隔平面⑽為第一平 . 面上沒有經過微雕解加工程序之部分。間隔平面⑽的存在代表可 . 減少微溝槽120之數目,降低微雕刻微溝槽120所需要之工時。前述 之各間隔平面130之寬度範圍介於3至500微米之間,以維持微溝槽 φ 120所佔有區域具備適當的比例,其中微溝槽12〇與間隔平面13〇於第 平面之投影面積比例範圍介於1/20至20為最佳。 參閱第5圖所示,n為微溝槽12〇之寬度變化週期,n值介於3至 . 50_之間,η值係可於調整範圍峻化,改變寬度及深度使微溝槽 呈現不寬比例,第5圖所示之導級⑽為調整η值後,微溝 槽之型態變化。 請參閱第6圖、第7圖、第8圓與第9圖所示,為本發明第二實 # 施例所揭露之一種導光板,包含-透光層21〇及形成於透光層上之 複數個微顧⑽。於[實_,微溝_之寬度„度,係於 固定範圍内呈現正弦波形變化,而於第二實施例中,微溝槽刎之寬 度及深度係沿著延伸方向χ呈現遞增變化,亦即第一正弦波形y⑴之 . 抖(純)沿延料向遞增。第二轉波形z⑴之波錢波谷沿延 °遞;亦即各微溝槽22Q深度之波♦或波谷隨與光源咖之距 離遞增。因此,於第二實施例中,第—正弦波形灿修正為: 1379108 Y = y3(x)=· a{x) 少丨w+套, Φ , if 微溝槽120寬度修正為: W = w3 (χ)= ~^{x) + b, 〇 , if z/ 叫⑷>-6其中Μ/,(χ)<-6 a值修正為一隨χ 遞增之錄a(x),使得微溝槽22〇之寬度沿著延伸方向X呈現遞增 同樣地,第二正弦波形2修正為:1379108 IX. Description of the Invention: [Technical Field] The present invention relates to a light guide plate applied to a backlight module, and more particularly to a light guide plate which can improve yield and reduce production cost. [Prior Art] The liquid crystal panel requires light to penetrate the liquid crystal layer, and the human eye can observe the change of the liquid crystal layer. Some liquid crystal panels use a backlight module to project light from the back side of the liquid crystal layer. The light provided by the backlight module must uniformly penetrate the liquid crystal layer, and the light projected onto the liquid crystal layer must have a uniform brightness. However, the light source type is a tubular light source, such as a cold cathode tube, and the light emitted by the tubular light source cannot be uniformly projected on the _ plane. Therefore, the optical structure of the backlight module must be such that the light uniformly and uniformly penetrates the liquid crystal layer. For the light core group, the position is set according to the light source, and is classified into two types: a direct type backlight module and a side shot type backlight module. The side-lit backlight module is formed by a light source projecting a light private guide from a lateral edge of the light guide plate. Light entering the light guide plate is reflected in the light guide (four) or ® is refracted through the two sides of the light guide plate. Wherein, the light refracting through the bottom surface of the light guide plate is reflected by the reflective layer of the reflective sheet and is again incident on the light guide plate, and some of the light rays are directed away from the top surface of the light guide plate. In order to concentrate the filaments away from the light guide plate to enhance the brightness and distribute the luminance uniformity, the top surface of the light guide plate is refracted to produce a subtractive effect, and the light is uniformly passed through the top surface of the light guide plate. The refractive structure is usually a micro-trench of a v-shaped cross-section, and passes through the micro-groove type and the groove depth change to improve the light distribution effect, thereby solving the problem that the light-emitting surface of the light guide plate is inconsistent due to the distance from the light source. 5 Through the micro-engraving and other processing techniques to form micro-ditch transmissive-rails on the transparent wire, the weiwei material ΓΓ micro-groove is responsible for the light refraction of a specific area, so the surface of the micro-groove must be quite smooth. ^ Correct light refraction effect. If there is a defect in the surface of the micro-groove or there is dust on the surface during processing, these defects are easily observed. The former problem caused the poor light guide plate yield, and the processing time and cost. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a light guide plate which can avoid defects or plagues caused by dust, and simultaneously improve the productivity and reduce the production cost. In order to achieve the above object, the present invention provides a light guide plate for guiding a light source of a light source, which comprises a light transmitting layer and a plurality of micro grooves. The light transmissive layer has a light incident surface, a first plane and a second plane, and the towel is disposed on the side of the human filament, and the first plane is connected to the light incident surface and is in the second plane. The micro-pits are disposed on the __ plane, and the micro-grooves respectively extend in the k-extension direction. The vertical distance from the edge of each micro-groove to the extending direction is a -th-sinusoidal waveform along the extending direction, and the bottom of each micro-groove The depth change is in the direction of extension - a second sinusoidal waveform. The continuously changing micro-trench is used to refract light from the source, so that the light is evenly turned from the first to the flat, while avoiding defects or lions. The effect of this month is that the micro-grooves with constant changes in ice and width can just obscure the light guides caused by defects or private dust. Therefore, the light guide plate* of the present invention requires high processing precision to be produced, thereby reducing the processing cost and improving the processing yield. [Embodiment] Referring to FIGS. 1n and 2, a light guide direction (4) of a guide 1379108 (1) disclosed in the first embodiment of the present invention is staggered, so that the micro-groove 120 is not required to be dense on the first plane (1). . That is, the light guide plate 100 may further include a plurality of spaced planes 13' between two adjacent microchannels 120, that is, the first plane (1) is not completely composed of microchannels (10), and also includes phase Zhengwei The spacing plane 13 is between the grooves 120, and the spacing plane (10) is the portion of the first flat surface that has not undergone the micro-engraving process. The presence of the spacer plane (10) represents a reduction in the number of micro-grooves 120 and reduces the man-hours required to micro-engraving the micro-grooves 120. Each of the aforementioned spacer planes 130 has a width ranging from 3 to 500 micrometers to maintain an appropriate ratio of the area occupied by the micro-grooves φ 120, wherein the micro-trench 12 〇 and the spacing plane 13 lie on the projected area of the plane The ratio range is from 1/20 to 20 is optimal. Referring to Fig. 5, n is the width variation period of the micro-trench 12〇, and the n value is between 3 and 50. The η value can be sharpened in the adjustment range, and the width and depth are changed to make the micro-groove appear. In the case of a non-wide ratio, the guide (10) shown in Fig. 5 is a type change of the micro-groove after adjusting the value of η. Referring to FIG. 6 , FIG. 7 , FIG. 8 , and FIG. 9 , a light guide plate disclosed in the second embodiment of the present invention includes a light transmissive layer 21 and is formed on the light transmissive layer. A multitude of (10). In the case of [real_, microgroove_width], the sinusoidal waveform changes in a fixed range, and in the second embodiment, the width and depth of the microgrooves are incrementally changed along the extending direction. That is, the first sinusoidal waveform y(1). The jitter (pure) is increasing along the extension direction. The second wave of the waveform z(1) is extended along the wave trough; that is, the wave of each microgroove 22Q depth or the valley is accompanied by the light source The distance is incremented. Therefore, in the second embodiment, the first-sinusoidal waveform is corrected to: 1379108 Y = y3(x)=· a{x) less 丨w+ sleeve, Φ, if the micro-groove 120 width is corrected to: W = w3 (χ)= ~^{x) + b, 〇, if z/ is called (4)>-6 where Μ/,(χ)<-6 a value is corrected to a 递增 incremental record a(x), The width of the micro-grooves 22〇 is increased along the direction of extension X. Similarly, the second sinusoidal waveform 2 is modified to:

a{x) Z = z3(X) = < ~2 ζ〗(λ) + 厶,if ζ}(χ) > -b 0 > if zy(x)<-b 其中,c值修正為-隨x遞增之函數c(x),使得微溝槽22〇之寬 度沿著延伸方向X呈現遞增。a{x) Z = z3(X) = < ~2 ζ〗 (λ) + 厶, if ζ}(χ) > -b 0 > if zy(x)<-b where c value is corrected The function c(x), which is incremented by x, causes the width of the microgrooves 22 to be incremented along the direction of extension X.

微溝槽220之寬度及深度係沿著延伸方向χ呈現遞增變化,使得 第一平面211上越遠離入光面213及光源_,微溝槽於第一平面扪 上所佔的比例相對越高,提升光線入射至微溝槽220而被折射之比例。 於實際應用時,光源_係設置於入光面213之-側,使光線自 入光面加投射進入透光層,第一平面211上接近入光面⑽處, 其光線強度相對較高’而遠離入光面213處,光線強度相對較低。微 溝,220於第-平面211所佔的比峨著與入光面213的距離遞增, 使得光f於接近八光面213處通過微溝槽220被折射的比例相對較 低而祕入光φ 213處通過微溝槽22〇被折射的比例相對較高,夢 以調整光線由第—平面211離開的強度,使第-平面211所呈現的^ 度更為均匀。 11 137910.8 參閱第10至13圖所示,為本發明苐三實施例所揭露之一種導光 板300 ’包含一透光層31〇及複數個微溝槽32〇。於第一實施例及第二 實施例中’微溝槽120, 220係連續地沿其所對應之延伸方向\設置。 於第三實施例中’微溝槽32〇之至少一部份係間斷地沿其所對應之延 伸方向X設置,且各微溝槽32G之寬度及深度係沿著延伸方向χ呈現 遞增變化。於延伸方向χ上,微溝槽32Q接近人光面313的部分,微 溝槽320不連續的區段越長,微溝槽32〇遠離入光面313的部分,不 連續的區段較短’甚至變化為連續設置。微溝槽32()不連續區段之變 化,改變微溝槽320於第-平面311上所佔的比例,也就是說,越遠 離入光面313,微溝槽320於第一平面311上所佔的比例就越高,提升 光線被微溝槽320折射之比例;越接近入光面311,微溝槽咖不連續 區&越多’使财槽㈣於第—平面3n上所佔的_越低。光源_ 發出之光線於接近入光面311處通過微溝槽32G被折射的比例相對較 低’而遠離入光面311處通過微溝槽32〇被折射的比例相對較高,藉 以調整光線由第-平面311離開的強度.,使第一平面所呈現的亮度^ 為均勻。不連續之微溝槽320,降低微雕刻微溝槽320所需要之工時。 【圖式簡單說明】 第1圖為本發明第一實施例中,導光板之立體圖。 第2圖為本發實施例巾,導光板之俯視圖。 第3圖為第1圖中’沿B_B之剖面圖。 第4圖為第’ 1圖中,沿A-A之剖面圖。 第5圖為本發明第—實施例中,不同比例的導光板之立體圖。 第6圖為本發明第二實施例中,導光板之立體圖。 12 137.9108 第7圖為本發明第二實施例中,導光板之俯視圖。 第8圖為第7圖中,沿D-D之剖面圖。 第9圖為第7圖中,沿C-C之剖面圖。 第10圖為本發明第三實施例中,導光板之立體圖。 第11圖為本發明第三實施例中,導光板之俯視圖。 第12圖為第11圖中,沿F-F之剖面圖。 第13圖為第11圖中,沿E-E之剖面圖。 【主要元件符號說明】 100 導光板 110 透光層 111 第一平面 112 第二平面 113 入光面 120 微溝槽 130 間隔平面 200 導光板 210 透光層 211 第一平面 213 入光面 220 微溝槽 300 導光板 310 透光層 311 第一平面 13 137.9108 313 入光面 320 微溝槽 900 光源The width and depth of the micro-grooves 220 are incrementally changed along the extending direction ,, so that the farther away from the light-incident surface 213 and the light source _ on the first plane 211, the proportion of the micro-grooves on the first plane 相对 is relatively higher. The ratio at which the light is incident on the microchannel 220 and is refracted. In actual application, the light source _ is disposed on the side of the light incident surface 213, so that the light is projected from the light incident surface into the light transmitting layer, and the first plane 211 is close to the light incident surface (10), and the light intensity is relatively high' And away from the light entrance surface 213, the light intensity is relatively low. The microgrooves 220 are in the first plane 211 and the distance from the light incident surface 213 is increased, so that the light f is refracted by the microgrooves 220 near the octagonal surface 213, and the light is secreted into the light. The ratio of φ 213 being refracted by the micro-grooves 22 相对 is relatively high, and the dream is to adjust the intensity of the light leaving the first plane 211 to make the degree of the first plane 211 more uniform. 11 137910.8 Referring to FIGS. 10 to 13, a light guide plate 300' disclosed in the third embodiment of the present invention includes a light transmissive layer 31'' and a plurality of microchannels 32'. In the first embodiment and the second embodiment, the micro-grooves 120, 220 are continuously disposed along their corresponding extension directions. In the third embodiment, at least a portion of the micro-grooves 32 are intermittently disposed along their corresponding extension directions X, and the width and depth of each of the micro-grooves 32G are incrementally changed along the extending direction χ. In the extending direction, the micro-groove 32Q is close to the portion of the human light surface 313, the longer the discontinuous portion of the micro-groove 320 is, the micro-groove 32 is away from the portion of the light-incident surface 313, and the discontinuous portion is shorter. 'Even changes to continuous settings. The change of the discontinuous section of the micro-groove 32() changes the proportion of the micro-groove 320 on the first plane 311, that is, the farther away from the light-incident surface 313, the micro-groove 320 is on the first plane 311. The higher the proportion, the higher the proportion of the light refracted by the micro-grooves 320; the closer to the light-incident surface 311, the more the micro-groove discontinuous area & the more 'making the financial trough (four) on the first plane 3n The lower the _. The light source _ emitted light is relatively refracted by the micro-groove 32G near the light-incident surface 311, and the proportion of the light refracted away from the light-incident surface 311 through the micro-groove 32 is relatively high, thereby adjusting the light by The intensity of the first plane 311 leaving, so that the brightness of the first plane is uniform. The discontinuous micro-grooves 320 reduce the man-hours required to micro-engraving the micro-grooves 320. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a light guide plate in a first embodiment of the present invention. Fig. 2 is a plan view of the light guide plate of the embodiment of the present invention. Fig. 3 is a cross-sectional view taken along line B_B in Fig. 1. Fig. 4 is a cross-sectional view taken along line A-A in Fig. 1. Figure 5 is a perspective view of a light guide plate of different ratios in the first embodiment of the present invention. Figure 6 is a perspective view of a light guide plate in a second embodiment of the present invention. 12 137.9108 FIG. 7 is a plan view of a light guide plate in a second embodiment of the present invention. Figure 8 is a cross-sectional view taken along line D-D in Figure 7. Figure 9 is a cross-sectional view taken along line C-C in Figure 7. Figure 10 is a perspective view of a light guide plate in a third embodiment of the present invention. Figure 11 is a plan view of a light guide plate in a third embodiment of the present invention. Fig. 12 is a sectional view taken along line F-F in Fig. 11. Figure 13 is a cross-sectional view taken along line E-E in Figure 11. [Main component symbol description] 100 light guide plate 110 light transmissive layer 111 first plane 112 second plane 113 light incident surface 120 micro trench 130 spacer plane 200 light guide plate 210 light transmissive layer 211 first plane 213 light entrance surface 220 micro groove Slot 300 Light guide plate 310 Light transmissive layer 311 First plane 13 137.9108 313 Light entrance surface 320 Micro groove 900 Light source

Claims (1)

1379108 卜广* . J < tU爹(史)正替換負j ^ ____— —一 十、申請專利範圍: h 一種導光板,用以糾—城之光線,該導光板包含: 透光層,具有一入光面、一第一平面與一第二平面,其中該光 源<•又置於該入光面之一側,且該第一平面相連於該入光面 ,且相對於 該第二平面; 複數個微/冓槽,設置於該第__平面,各該微溝槽分別沿一延伸方 鲁 肖延伸”中各該微溝槽之邊緣至該延伸方向之垂直距離,係沿該延 伸方向呈帛正弦波形,且各該微溝槽之底部深度變化沿該延伸方 向呈一第二正弦波形;及 至乂一間隔平面,位於相鄰之二個該些微溝槽之間,其中該些微 溝槽及該些間隔平面於該第一平面之投影面積比例範圍介於1/2〇至 20 »1379108 卜广* . J < tU爹 (history) is replacing negative j ^ ____ - ten, patent application scope: h a light guide plate for correcting the light of the city, the light guide plate comprises: a light transmitting layer, Having a light incident surface, a first plane and a second plane, wherein the light source <• is placed on one side of the light incident surface, and the first plane is connected to the light incident surface, and relative to the first a second plane; a plurality of micro/grooves disposed at the first __ plane, each of the micro-grooves extending along an extending edge of each of the micro-grooves to a vertical distance from the edge of the micro-groove to the extending direction The extension direction is a sinusoidal waveform, and a depth variation of a bottom of each of the micro-grooves is a second sinusoidal waveform along the extending direction; and a first spacing plane is located between the adjacent two of the micro-grooves, wherein the The ratio of the projected area of the micro-grooves and the spacing planes to the first plane ranges from 1/2〇 to 20 » 2.如申吻專利圍第Μ所述之導光板,其巾各該跡度之波峰介 於1至50微米之間。 •如申明專利範圍1所述之導光板,其中該第一正弦波形之函數為: ^2W = ^sini—+ pV ^ 1 \ η ) 2 其中’a為第一正弦波形之震幅; η為各該微溝槽之寬度及深度變化週期; Ρ為初始相位;及 15 年义月7曰修(更)正替換頁 b為一常數。 如請求項1所述之導絲,其t該第二正弦波形之函數為 ζ2 (χ) = csin^^^ + P^ + d 其中,c為該第二正弦波形之震幅; η為各該微溝槽之寬度及深度變化週期; Ρ為初始相位;及 d為一·常數。 如申明專利範圍第3或4所述之導光板,其中各該微溝槽之寬度及深 度變化週期範圍介於3至500微米之間。 如申π專概圍第1所述之導光板,其中各該微溝槽之寬度範圍介於 3至500微米之間。 如U鄕圍第1所述之導光板,其巾各該微溝槽之深錄圍介於 3至500微米之間。 如申明專利範圍第1項所述之導光板,其中至少—該微溝槽係連續地 沿其所對應之延伸方向設置。 如申4專概圍第丨項所述之導光板’其中至少—職溝槽係間斷地 沿其所對應之延伸方向設置。 如申明專概圍第i項所述之導光板,其巾各關隔平面之寬度範圍 介於3至5〇〇微米之間。 I ί 卜(免)月7时(史)正fuJ L如申請專概@第1項所叙導光板,其巾各該延伸方向雜於該入 光面。 如申凊專概Μ 11彻述之導光板,其巾各職溝槽深度之波峰 隨與該光源之距離遞增。 13.如申請專利範圍第i項所述之導光板,其中各該微溝槽之邊緣所對應 之第一正弦函數係為相同相位。 14·如申請專利範圍第i項所述之導光板其中相鄰二個該些微溝槽之邊 緣所對應之第一正弦函數係為不同相位。 K如申請專利範圍第!項所述之導光板,其中相鄰二倾些微溝槽之底 部深度所對應之第二正弦函數係為不同相位。 16.如申請專利賴第丨項所述之導光板,其中該第—正弦波形之波峰沿 該延伸方向遞增,且該第二正弦波形之波谷沿該延伸方向遞增。 Π.如申請專利細第16項所述之導光板,其中該第—正弦波形之函數 為: Φ) ^W = i 2 少l(X)+i, Φ , if if 少丨(啦-备 其中,a為一隨該延伸方向遞增之函數; V « ) n為各該微溝槽之寬度及深度變化週期; P為初始相位;及 17 1379108 3修(更)正智扶a! b為一常數 -正弦波形之函數 18.如申請專利範圍第16項所述之導光板,其令該第, 為: ζ3(λ:) = . ~γ-ζ,(χ) + 6, if zt(x) > -b 0 5 lf Z^^-b 其十,= + ^ V ^ J c為一隨該延伸方向遞增之函數; 11為各該微溝槽之寬度及深度變化週期; Ρ為初始相位;及 b為一常數。 19. 如申响專利範圍第i項所述之導光板’其中各該微溝槽之至少一部份 係間斷地沿其所對應之該延伸方向設置。 20. 如申請專利範圍第19項所述之導光板,其中,於該延伸方向上,各 該微溝槽接近該入光面之不連續的區段長度,大於遠離該入光面之不 連續的區段長度。 182. A light guide plate as described in the Japanese Patent Application Laid-Open, the peak of each of which is between 1 and 50 microns. The light guide plate of claim 1, wherein the function of the first sinusoidal waveform is: ^2W = ^sini−+ pV ^ 1 \ η ) 2 where 'a is the amplitude of the first sinusoidal waveform; η is The width and depth change period of each micro-groove; Ρ is the initial phase; and 15 years of the 义月曰 repair (more) positive replacement page b is a constant. The guide wire according to claim 1, wherein the function of the second sinusoidal waveform is ζ2 (χ) = csin^^^ + P^ + d wherein c is the amplitude of the second sinusoidal waveform; The width and depth of the micro-groove vary; Ρ is the initial phase; and d is a constant. The light guide plate of claim 3, wherein each of the microgrooves has a width and a depth variation period ranging from 3 to 500 μm. The light guide plate of the first aspect, wherein each of the micro grooves has a width ranging from 3 to 500 μm. For example, in the light guide plate of the first aspect, the deep groove of each of the micro grooves is between 3 and 500 micrometers. The light guide plate of claim 1, wherein at least the microchannel is continuously disposed along a corresponding extending direction thereof. The light guide plate as described in the fourth paragraph of the application of the fourth aspect of the present invention is disposed at least in the corresponding extension direction. For example, the light guide plate described in item i of the specification has a width ranging from 3 to 5 micrometers. I ί 卜 (free) at 7 o'clock (history) is the fuJ L. If you apply for the light guide plate according to the first item, the extension direction of the towel is mixed with the illuminating surface. For example, in the light guide plate, the peak of the groove depth of each towel increases with the distance from the light source. 13. The light guide plate of claim i, wherein the first sinusoidal function corresponding to the edge of each of the microgrooves is the same phase. 14. The light guide plate of claim i, wherein the first sinusoidal function corresponding to the edges of two adjacent microchannels is different in phase. K as the scope of patent application! The light guide plate of the item, wherein the second sinusoidal function corresponding to the depth of the bottom of the adjacent two micro-grooves is different. 16. The light guide plate of claim 1, wherein the peak of the first sinusoidal waveform is incremented in the extending direction, and the valley of the second sinusoidal waveform is incremented in the extending direction.导. The light guide plate according to claim 16, wherein the function of the first sinusoidal waveform is: Φ) ^W = i 2 less l(X)+i, Φ, if if less 丨Where a is a function that increases with the extension direction; V « ) n is the width and depth change period of each micro-groove; P is the initial phase; and 17 1379108 3 repair (more) positive wisdom a! b is a A function of a constant-sinusoidal waveform. 18. The light guide plate of claim 16, wherein the first is: ζ3(λ:) = . ~γ-ζ, (χ) + 6, if zt(x > -b 0 5 lf Z^^-b Its ten, = + ^ V ^ J c is a function that increases with the extension direction; 11 is the width and depth variation period of each micro-groove; Phase; and b is a constant. 19. The light guide plate of claim ii, wherein at least a portion of each of the micro-grooves is intermittently disposed along the corresponding extension direction thereof. 20. The light guide plate of claim 19, wherein in the extending direction, each of the micro-grooves is adjacent to a discontinuous section length of the light-incident surface, and is larger than a discontinuity away from the light-incident surface. The length of the section. 18
TW97147147A 2008-12-04 2008-12-04 Light-guide plate TWI379108B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97147147A TWI379108B (en) 2008-12-04 2008-12-04 Light-guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97147147A TWI379108B (en) 2008-12-04 2008-12-04 Light-guide plate

Publications (2)

Publication Number Publication Date
TW201022743A TW201022743A (en) 2010-06-16
TWI379108B true TWI379108B (en) 2012-12-11

Family

ID=44833094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97147147A TWI379108B (en) 2008-12-04 2008-12-04 Light-guide plate

Country Status (1)

Country Link
TW (1) TWI379108B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201543118A (en) 2014-05-05 2015-11-16 Au Optronics Corp Back light module and display device
TWI666477B (en) * 2018-06-06 2019-07-21 Global Lighting Technology Inc. Light guide plate with high light uniformity and manufacturing method thereof

Also Published As

Publication number Publication date
TW201022743A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US8550687B2 (en) Light guide plate, surface light source device and transmissive display apparatus
KR101178722B1 (en) Light guide panel and lcd back light unit using the same
JP5321767B1 (en) Lighting device and display device
JP2007003852A (en) Diffusion sheet, method for manufacturing diffusion sheet, backlight device and liquid crystal display device
CN101403483A (en) All-in-one type light guide plate and backlight apparatus employing the same
KR100825904B1 (en) Prism sheet having wet-out property and lcd back light unit thereby
TW201604602A (en) Light guide plate, method for fabricating the same, backlight unit, and liquid crystal display
KR20160072049A (en) Complex optical sheet, liquid crystal display using the same and method of manufacturing the same
WO2016082248A1 (en) Light guide plate, backlight module and display
JP2014186913A (en) Lighting unit and display device
TWI379108B (en) Light-guide plate
CN202791597U (en) Backlight module for liquid crystal display device and liquid crystal display device
KR101147095B1 (en) Composite Light Guide Plate, and Backlight Unit Using the Same
TWI325971B (en) Light diffusion device, backlight module and liquid crystal display
KR100961290B1 (en) Manufacturing device and manufacturing method of light guide plate with twofold for high brightness
CN104820258B (en) A kind of integrated guide tabula rasa with light diffusion function
KR20140074763A (en) Hyperbolic Curve Pattern Type Prism Sheet
CN104834051B (en) Pattern-free light guide plate optical diaphragm and backlight module
KR101100923B1 (en) light guided panel and back light unit of liquidcrystal display device having the same
TW201017282A (en) Method and structure of light-emitting uniformity for backlight module
TWI709774B (en) Light guide plate and light source module
KR100869147B1 (en) Light guide panel for back light unit
KR101205198B1 (en) Edge lighting type surface light source apparatus
WO2017107273A1 (en) Light guide plate, backlight module and liquid crystal display
TW200935094A (en) A method of forming light-scattering dots inside the diffusion plate and light guide plate by laser engraving