TW201022314A - Polyurethane resin composition and molded article thereof - Google Patents

Polyurethane resin composition and molded article thereof Download PDF

Info

Publication number
TW201022314A
TW201022314A TW98132211A TW98132211A TW201022314A TW 201022314 A TW201022314 A TW 201022314A TW 98132211 A TW98132211 A TW 98132211A TW 98132211 A TW98132211 A TW 98132211A TW 201022314 A TW201022314 A TW 201022314A
Authority
TW
Taiwan
Prior art keywords
acid
polyester polyol
solid acid
catalyst
polyurethane resin
Prior art date
Application number
TW98132211A
Other languages
Chinese (zh)
Inventor
Kouji Shiraishi
Hironobu Oki
Original Assignee
Dainippon Ink & Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink & Chemicals filed Critical Dainippon Ink & Chemicals
Publication of TW201022314A publication Critical patent/TW201022314A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention is related to a polyurethane resin composition and a molded article formed by using it, and the polyurethane resin composition can control the reaction of urethane esterification and obtain a cured article having less color and the excellent retentivity of wet-and-heat resistance strength. The composition is characterized in that comprises polyisocyanate and polyester polyol, and the said polyester polyol is a prepared by using polyalcohol and polycarboxylic acid in the presence of a solid acid catalyst selected from the acidic salts of metal oxide, zeolite, heteropoly acid and the like for promoting esterification.

Description

201022314 六、發明說明: 【發明所屬之技術領域】 本發明係關於可獲得著色少且耐濕熱強度保持率優異 的硬化物之可控制胺基甲酸酯化反應的聚胺基甲酸酯樹脂 組成物及其成形品。 【先前技術】 聚胺基甲酸酯樹脂由聚異氰酸酯與多元醇製造,尤其 使用聚醚多元醇、聚酯多元醇作爲多元醇之聚胺基甲酸酯 © 樹脂被用於許多用途。此聚酯多元醇之製造係使用鈦系或 錫系之均一系觸媒來進行。此等均一系觸媒經由完全地混 合於多元醇中,又於聚酯多元醇與聚異氰酸酯之胺基甲酸 酯化反應時作爲觸媒之機能,有難以控制胺基甲酸酯化反 應的問題’再者,於殘存觸媒之影響下,胺基甲酸酯樹脂 會著色,結果有所謂品質降低的問題。 因此’聚胺基甲酸酯樹脂製造用的聚酯多元醇之製 造’正嘗試於溶劑中質子性強酸觸媒之存在下製造聚酯多 ® 元醇後,添加鹼性物質,沉澱並分離觸媒,進而洗淨將觸 媒去除(專利文獻η 。又,嘗試添加磷化合物使觸媒失 去活性的方法(專利文獻2)。然而,此等方法有許多處 理步驟’且有無法充分去除該多元醇中殘留的觸媒或使其 失去活性的問題。 專利文獻1:特開平06-256461號公報 專利文獻2:特開平05_239201號公報 【發明内容】 ,201022314 發明之揭示 發明欲解決之課題 本發明之目的係提供一種聚胺基甲酸酯樹脂組成物及 其成形品’該聚胺基甲酸酯樹脂組成物係經由使用無殘存 觸媒的聚酯多元醇,製造無觸媒型之聚酯多元醇,而耐濕 熱強度保持率(耐水解性)優異,容易控制胺基甲酸酯化 反應’且著色極少之聚胺基甲酸酯樹脂組成物。 解決課題用之手段 ❹ 本發明者們於使用可分離的觸媒所製造的聚酯多元醇 作爲胺基甲酸酯原料上專心硏究的結果,遂而完成本發明。 即,本發明係關於聚胺基甲酸酯樹脂組成物及其成形 品,該聚胺基甲酸酯樹脂組成物之特徵係含有聚異氰酸酯 與聚酯多元醇,該聚酯多元醇係使用多元醇與多價羧酸於 固體酸觸媒(A)存在下所製造的聚酯多元醇。 發明之效果 本發明可提供一種聚胺基甲酸酯樹脂組成物及其成形 Φ 品,經由使用聚酯多元醇,其係使用由固體酸觸媒(A)製 造之聚酯多元醇,使觸媒之去除成爲容易,結果,獲得無 觸媒的聚酯多元醇,進而,經由使用此無觸媒的聚酯多元 醇,使胺基甲酸酯化反應之控制變得容易,可獲得著色少 且耐濕熱強度保持率優異的聚胺基甲酸酯樹脂。 【實施方式】 實施發明用之最佳形態 本發明所使用之聚異氰酸酯,係通常用於聚胺基甲酸 -4- 201022314 酯樹脂者,例如可列舉2,4 -伸甲苯基二異氰酸酯、2,6 -伸甲 苯基二異氰酸酯或此等之混合物、m -或p -伸苯基二異氰酸 酯、p-二甲苯二異氰酸酯、伸乙基二異氰酸酯、四亞甲基 -1,4-二異氰酸酯、六亞甲基-1,6-二異氰酸酯、二苯基甲烷 -4,4’-二異氰酸酯、3,3’-二甲基-二苯基甲烷-4,4-伸聯苯基 二異氰酸酯、3,3-二氯-4,4-伸聯苯基二異氰酸酯、4,4-伸聯 苯基二異氰酸酯或1,5-萘二異氰酸酯、聯甲苯胺二異氰酸 酯、伊夫索隆二異氰酸酯、環己烷二異氰酸酯、甲苯胺二 〇 異氛酸酯、粗製二苯基甲烷二異氰酸酯、以及二苯基甲烷 二異氰酸酯、三苯基甲烷三異氰酸酯及此等之各種衍生 物。又,亦可列舉使下述之多元醇與前述任一種聚異氰酸 酯反應之末端爲異氰酸酯基的聚胺基甲酸酯預聚物。 使用本發明中使用的固體酸觸媒(A)所製造的聚酯多 元醇係使通常使用的多價羧酸與多元醇於固體酸觸媒(A) 存在下反應而得者。此觸媒(A)爲固體,以過濾等可容易 分離。使用聚酯多元醇時,較佳經由過濾(吸引過濾、超 ® 過濾、加壓過濾等)或離心分離等,自爲反應生成物的聚 酯多元醇除去固體酸觸媒(A)。經由此等,觸媒對胺基甲 酸酯化反應完全沒有影響,可製造可容易地控制胺基甲酸 酯化反應的胺基甲酸酯樹脂。 前述固體酸觸媒(A)係具有促進酯化反應的機能,於 常溫〜3 00°C之溫度範圍下爲固體狀,其平均粒徑爲 Ιμιη〜3cm的觸媒任一者皆可。 作爲可使用於本發明之固體酸觸媒(A),可列舉金屬 201022314 氧化物、沸石、雜多酸之酸性鹽等。較佳爲金屬氧化物。 本發明中使用的固體酸觸媒(A)爲金屬氧f物的場 合,由金屬氧化物載體(A1)表面上負載金屬氧化物(A2) 而成的複合金屬氧化物所構成的固體酸觸媒(A)、或金屬 氧化物載體(A1)表面上負載非金屣化合物(A3)而成的 金屬氧化物所構成的固體酸觸媒(A)爲較佳。此場合,作 爲此金屬氧化物載體(A1),由觸媒之設計•裝飾之容易 性、觸媒能力是否充分發揮等之觀點,可使用選自至少1 〇 種以上之二氧化銷(二氧化銷、Zr02 )、二氧化矽(Si02 )、 氧化鋁(ai2o3)、二氧化鈦(Ti02)、二氧化矽·氧化鋁 (Si02_ AUG)〗)、氧化鎂(MgO)、氧化錫(Sn02、SnO)、 氧化給(Hf〇2)、氧化鐵(Fe2〇3、Fe3〇4)、砍藻土、堇 青石(cordierite )或沸石。此等之使用不僅可使用1種, 亦可以使用二氧化矽、氧化鋁、二氧化鈦、二氧化銷等2 種以上化學性複合化的氧化物載體。 又’作爲前述經負載的金屬氧化物(A2)之金屬元素, ® 可列舉鉬、鎢、鉬等,作爲負載金屬氧化物(A2 ),可列 舉鉬氧化物(Mo〇3等)、鎢氧化物(W03等)、钽氧化物 (Ta2〇5等)等。此負載金靥氧化物(A2)視必要可進一步 倂用1種類或其以上種類之任意元素而經負載爲複合化 者。作爲此等複合化之任意良元素,可列舉矽、鋁、磷、 鎢、鉋、鈮、鈦、錫、銀、銅、鋅、鉻、碲、銻、鉍、硒、 鐵、鎂、鈣、釩、鈽、錳、鈷、碘、鎳、鑭、鐯、銨、鉅、 釤、銪、釓、铽、鏑、鈥、餌、錶、鏡、鐫等。作爲非金 201022314 酸根 。的 而生 雜原 鉻及 此等 使用 、磷 -X 〇 4 0 表之 成的 性能 鉋等 銅、 等之 :鹽、 數未 二氧 氧化 屬化合物(A3),爲含有硫酸根之化合物、或含有磷 之化合物任一者,或倂用此等者。 使用雜多酸之酸性鹽作爲本發明之固體酸觸媒 場合,雜多酸之酸性鹽係指2種以上之無機氧酸經縮合 成的酸之酸性金屬鹽及酸性鑰鹽。作爲此雜多酸之 子,可列舉磷、矽、硼、鋁、鍺、鈦、锆、姉、鈷、 硫。又做爲多原子,可列舉鉬、鎢、釩、鈮、及鉬。 雜多酸爲向來公知,可經常法製造。作爲本發明中可 β 的雜多酸,可例示公知之雜多酸,例如可列舉磷鉬酸 鎢酸、矽鉬酸、及矽鎢酸。此等雜多酸中,h3pm〇xw12 或13丨1^1(^\^124〇4()(式中\爲1$乂$12之整數)所代 雜原子爲磷或矽,多原子爲鉬或鉬與鎢之混合配位而 雜多酸,作爲酸性金屬鹽或酸性鑰鹽時之酯化觸媒之 爲良好,而爲特佳。 作爲雜多酸之酸性金屬鹽,可列舉鈉、鉀、铷、 之鹼金屬鹽;鈹、鎂、鈣、鋸、鋇等之鹼土類金屬鹽; _ 銀、鋅、水銀等之過渡金屬鹽;再者鋁、鉈、錫、鉛 典型元素之鹽。又,作爲雜多酸之酸性鎗鹽,可列舉® 銨鹽、鐵鹽等。又,雜多酸之酸性鹽中氫原子之取代 特別限定》關於其使用法亦無特別限制,可爲負載於 化矽、氧化鋁、二氧化矽氧化鋁、矽藻土、沸石、二 鈦、二氧化锆、碳化矽、活性碳等之載體來使用。 使用沸石作爲固體酸觸媒(A)的場合,沸右爲結晶性 之鋁砂酸鹽(aluminosilicate),其基本構造單位爲矽及鋁 201022314 陽離子與氧陰離子之四面體。此等之四面體,各氧陰離子 係各自與其他之二氧化矽或氧化鋁四面體共有的方式結 合。三次元性形成的結晶格子成爲沸石骨格之構造單位。 經由此規則性配列所得的骨格構造,成爲具有大表面積的 細孔構造。經由二氧化矽與氧化鋁之四面體之幾何學的配 列的方式有100種類以上的沸石,其中以絲光沸石 (mordenite)型、ZSM-5 型、β型、八面沸石(faujasite ) 型等之抗衡離子爲氫者較佳。 ❹ 本發明中所使用的聚酯多元醇爲由含有前述金屬氧化 物載體(A1)與負載之金屬元素的氧化物(A2)所得的固體 酸觸媒(A)、雜多酸、沸石之任一者或倂用此等之2種類 以上所製造的聚酯多元醇。較佳爲含有金屬氧化物載體(A1) 與負載之金屬氧化物(A2)的固體酸觸媒(A)。 作爲前述固體酸觸媒(A),前述固體酸觸媒之金屬氧 化物載體(A1)爲二氧化锆,負載之金靥氧化物(A2)爲 三氧化鉬者爲特佳。 ® 前述固體酸觸媒(A )之酸強度以哈曼特(Hammett) 之酸度函數H〇表示時,H〇爲-3〜-9。哈曼特之酸度函數H〇, 如水溶液之酸•鹼之強度pH表示的方式,表示固體表面之 酸·鹼點之強度作爲指標。因於水溶液中ρΗ = Η〇,其強度 可直覺地理解,又’因實驗操作簡便,故此函數被廣泛接 受。Η〇之値越小表示酸性越強,Hq之値越大表示鹼性越強。 本發明之反應系中,本發明之固體酸觸媒(A)之H〇超過-3 時未表現觸媒活性而反應難以進行。另一方面,本發明之 201022314 固體酸觸媒(A )之H〇小於-9時,經由二醇之分子內脫水, 碳-碳雙鍵生成,進而經由此雙鍵與二醇,產生醚化反應等 之副反應而爲不佳。 前述酸度函數係定量地表現溶液之酸鹼之強度的數値 之一種,表示溶液賦予氫離子的能力、或接受氫離子的能 力的函數,關於酸則一般使用依據路易士·哈曼特之哈曼 特的酸度函數,溶液表現使質子移動至中性鹼基的傾向。 哈曼特之酸度函數,電性中性的鹼基B於水溶液中如下 ® 述式般結合。 B + H+ ^ BH + 因此,將BH +之酸解離常數作爲PKBH+,B放入某溶液 中時與H +結合的比率作爲CBH+,未結合的比率作爲CB, 哈曼特之酸度函數(H〇)以下式表示。 H〇= -pKBH+ + log ( CBH + / CB ) 本發明中使用的固體酸觸媒(A)之哈曼特之酸度函數 (H〇)較佳爲-3〜-9。哈曼特之酸度函數(HQ),如水溶液 ® 之酸•鹼之強度PH表示的方式,成爲表示固體表面之酸· 鹼點之強度的指標。因於水溶液中pH = H〇,此強度可直覺 地理解’又’因實驗操作簡便,故此函數被廣泛接受。H〇 値越小表示酸性越強,H〇之値越大表示鹼性越強。 本發明之酯化反應系中,固體酸觸媒(Α)之酸度函數 (Hg)超過-3時不顯示觸媒活性,酯化反應變的難以進行, 無法使用作爲聚酯製造觸媒。另一方面,本發明之固體酸 觸媒(A)之酸度函數(h〇)小於-9時經由與二醇之分子內 201022314 脫水’碳-碳雙鍵生成,進而經由此雙鍵與二醇,產生酯化 反應等之副反應,因此作爲聚酯製造固體酸觸媒爲不佳。 〈經由NH3-TPD測定之哈曼特之酸度函數(Η〇)的測定方 法&gt; (測定方法)·· 將作爲試料之固體酸觸媒O.lg置入BEL Japan, INC.製 TPD-AT-1型升溫脫離裝置之石英室(內徑10 mm),於氦氣 (30 cm3 min'1, 1 atm)流通下以 5 K mi n_1 升溫至 42 3 © K(150°C ),保持於423 K 3小時。之後照舊使氮氣流通,以 7_5 K min·1降溫至3 73 K (100°C)後,真空脫氣,導入100 Torr (1 Torr = 1 /760 atm = 133 Pa)之 NH3 使吸附 30 分鐘, 之後脫氣12分鐘後,進行水蒸氣處理。作爲水蒸氣處理, 係重複依序進行於373 K導入約25 Torr (約3 kPa)之蒸氣壓 之水蒸氣’以此原樣保持30分鐘,脫氣30分鐘,再導入水 蒸氣30分鐘,再脫氣30分鐘。之後一邊保持將氦氣0.041 mmol s·1 (於 298 K,25 °C,1 atm,相當於 60 cm3 min·1)減壓 ® (100 Torr),~邊使其流通,保持於373K30分鐘後,以10 K min·1將試料床升溫至98 3 κ (710°C),以質量分析計 (ANELVA M-QA 100F)分析出口 氣體。 測定時記錄全部之質量數(m/e) 2、4、14、15、16、17、 18、26、27、28、29、30、31、32、44 之質譜。終 了後將 1 mol %-NH3/He標準氣體進一步以氦稀釋而使氨氣濃度成爲 0、0.1、0.2、〇.3、0.4 mol %,合計流量爲 0.041 mmol s_1 的方式,流過檢測器,記錄光譜,作成氨之校正曲線而補 -10- 201022314 正檢測器強度。自升溫脫離時所測定的主要各質量光譜之 氨脫離TPD光譜’基於實測以1點法,由高峰面積決定酸 量、由高峰位置等決定平均酸強度。算出酸量與酸強度 (△H),計算求得酸度函數(H〇) 〇 作爲固體酸觸媒(A)之形狀,可列舉粉末狀、球形粒 狀、不定形顆粒狀' 圓柱形九粒狀、突出形狀、環形狀等, 但未限於此等形狀。又,具有數埃(A)程度或其以上尺寸 的細孔者爲宜,反應場於此細孔內控制空間的狀態亦爲 © 宜。此等之固體酸觸媒(A)之尺寸亦未特別限定,若考慮 合成聚酯後單離觸媒時,載體較佳爲比較大的粒子徑者。 反應之際使用固定床流通式反應器時,載體爲球狀的場 合,此粒子直徑極端地小時,使反應物流通時產生大的壓 力損失,恐有無法使反應物有效流通之虞。又,一旦粒子 徑極端大時反應原料物變成無法與固體酸觸媒(A)效率良 好地接觸,恐有變成未有效地進行觸媒反應之虞。因此, 本發明之固體酸觸媒(A)之大小,較佳經由塡充觸媒的管 ® 柱的大小與最適空隙率決定,本發明之觸媒之光散亂法 (Microtrac X100裝置)或篩分法之平均粒徑,較佳爲 lpm~3cm。再更佳爲於0.5mm~8mm之顆粒狀之金屬氧化物 載體(A1 ),於蛋殻(egg shell)型(外層負載)負載金 屬氧化物(A2)者爲較佳。 前述之聚酯多元醇係可爲多元醇與多價羧酸於固體酸 觸媒之存在下進行縮合反應而具有酯鍵者任一者皆可,亦 包含聚醚酯多元醇、聚碳酸酯聚酯多元醇等。前述聚酯多 -11- 201022314 佳爲經由聚苯乙烯換算之GPC的數量平均分子量爲 500〜5000者,特佳爲1〇〇〇〜3〇〇〇。 作爲前述多元醇,較佳爲主鏈碳數2〜15之直鏈二醇, 具體而言爲乙二醇、丨,3·丙二醇、二乙二醇、i,4-丁二醇、 1,5-五亞甲基二醇、U6_六亞甲基二醇、雙羥基乙氧基苯或 p-二甲苯二醇等之二醇類之烴爲主鏈者。碳原子總數較佳 爲3~3 4,更佳爲3〜17,例如可列舉l,2-丙二醇、2-甲基-1,3-丙二醇、二-1,2-丙二醇、l,2-丁 二醇、1,3-丁 二醇、2,3-丁 ® 二醇、2,2·二甲基-1,3-丙二醇、3·甲基-1,5-戊二醇、3-甲 基戊三醇、2,2,4-三甲基-1,3-戊二醇、2-乙基-1,3-己二醇、2,2-二甲基-3-羥基丙基-2,2-二甲基-3-羥基丙酸 酯、新戊基二醇、2-正丁基-2-乙基-1,3-丙二醇、3-乙基-1,5-戊二醇、3-丙基-1,5-戊二醇、2,2-二乙基-1,3-丙二醇、3-辛基-1,5-戊二醇、2-乙基-1,3-己二醇、3-十四醯基-1,5-戊 二醇、3-硬酯醯基-1,5-戊二醇、3-苯基-1,5-戊二醇、3-( 4-壬基苯基)-1,5-戊二醇、3,3-雙(4-壬基苯基)-1,5-戊二 ® 醇、1,2-雙(羥基甲基)環丙烷、1&gt;3_雙(羥基乙基)環丁 烷、1,3-雙(羥基甲基)環戊烷、ι,4-雙(羥基甲基)環己 烷、1,4-雙(羥基乙基)環己烷、1,4-雙(羥基丙基)環己 烷、1,4-雙(羥基乙基)環庚烷、i,4-雙(羥基甲氧基)環 己烷、1,4-雙(羥基乙氧基)環己烷、2,2-雙(4,-羥基甲 氧基環己基)丙烷、2,2-雙(4’·羥基乙氧基環己基)丙烷、 三羥甲基丙烷等,此等可單獨、或以2種以上使用。 作爲多元醇成分,可倂用羥基數3個以上之化合物。作 -12- 201022314 爲可倂用的化合物,以一般使用於聚酯多元醇者爲宜,例 如,可列舉甘油、己三醇、三乙醇胺、季戊四醇、乙二胺 等之多官能多羥基化合物。 前述之多價羧酸係指,例如丁二酸、順丁烯二酸、己 二酸、戊二酸、庚二酸、辛二酸、壬二酸、癸二酸、1,9-九亞甲基二羧酸、1,10-十亞甲基二羧酸、1,11-十一亞甲基 二羧酸、1,12-十二亞甲基二羧酸、十三亞甲基二羧酸,又, 作爲芳香族系二羧酸,例如可使用單獨之酞酸、異酞酸、 Ο 對酞酸、六氫對酞酸、六氫異酞酸或此等之無水物等或倂 用2種以上者。由工業上的觀點,主要使用己二酸。亦可使 用經由妥爾油(talloil)脂肪酸之聚合所得的二聚物酸等。 作爲妥爾油脂肪酸,爲油酸、亞油酸等之不飽和酸與十六 酸、硬脂酸等之混合物。 本發明之聚胺基甲酸酯樹脂組成物,與前述聚酯多元 醇一起可倂用其他高分子量多元醇,視必要可倂用鏈伸長 劑。此高分子量多元醇係指以聚苯乙烯換算之GPC的數量 ® 平均分子量爲1000〜5000,較佳爲1200-3000者,例如,選 自聚醚多元醇、丙烯酸多元醇、聚丁二烯多元醇、聚矽氧 烷多元醇、氟系多元醇 '聚碳酸酯多元醇、聚己內酯聚酯 多元醇、聚醚酯多元醇、聚碳酸酯聚酯多元醇等之i種以上 者。 前述聚醚多元醇係指具有活性氫爲2個以上,較佳爲 2~6個的化合物’例如,前述多元醇、甘油、三羥甲基丙院、 季戊四醇、山梨糖醇、甘露糖醇、二三羥甲基丙院、二季 -13- 201022314 戊四醇等,相對於伸烷基氧化物,例如環 烷、環氧丁烷等之單獨或2種以上,較佳爲 合而得的多元醇。其數量平均分子量較佳| 基價較佳爲250〜750。 作爲前述聚己內酯聚酯多元醇,例如 己內酯等之內酯類開環聚合所得的內酯系 爲此內酯系聚酯二醇,亦可使用先前所述 合ε-己內酯、δ-戊內酯、β-甲基- δ-戊內酯 〇 以上之任一者。 作爲前述聚碳酸酯多元醇,例如,使 二烷基碳酸酯縮合反應而得者。作爲前述 例如,可列舉1,6-己二醇、1,5-戊二醇等。 碳酸酯,例如可列舉二甲基碳酸酯、二乙 基碳酸酯等。 又,作爲聚碳酸酯多元醇,例如,可 多元醇進一步將內酯閉環加成聚合而得的 ® 酯多元醇,或其他聚酯多元醇或聚醚多元 多元醇共縮合的共縮合聚碳酸酯多元醇。 本發明之聚胺基甲酸酯樹脂組成物爲 甲酸酯彈性體時’可使用鏈伸長劑。較佳j 之低分子量直鏈二醇。作爲其代表例,可歹 丙二醇、1,3-丙二醇、2,3-丁 二醇、1,4-丁 基-1,3-丙二醇、二乙二醇、1,5-戊二醇、1,6 環己烷1,4-二醇、環己烷_1,4二醇、環己 氧乙院、環氧两 ;2〜9莫耳加成聚 ! 1200〜3000,經 ,亦可使用將ε-聚酯二醇類。作 多元醇中加成聚 等之一種或二種 低分子多元醇與 低分子多元醇, 又,作爲二烷基 基碳酸酯、伸乙 列舉於聚碳酸酯 內酯變性聚碳酸 醇等與聚碳酸酯 熱可塑性聚胺基 隱使用碳數2~10 【J舉乙二醇、1,2-二醇、2,2’-二甲 •六亞甲基二醇、 烷-1,4二甲醇等 -14- 201022314 之單獨或混合物。尤其,1,4·丁二醇爲較佳。 本發明之聚胺基甲酸酯樹脂組成物不僅是胺基甲酸酯 彈性體而且可爲水性聚胺基甲酸酯樹脂、水系聚胺基甲酸 酯樹脂。此聚胺基甲酸酯樹脂組成物,爲了水分散導入陰 離子性基、陽離子性基、及非離子性基等1種以上作爲親 水性基。此時,於使用固體酸觸媒製造的聚酯多元醇亦可 使用具親水性基的鏈伸長劑,一部份使用含親水性基的二 醇及/或含親水性基的二元酸作爲使用固體酸觸媒製造的 〇 聚酯多元醇之原料,製造親水化聚酯多元醇而使用,可使 用公知手法作成水系或水性聚胺基甲酸酯樹脂組成物。 作爲其製造方法,可採用例如,(i)使用聚酯多元醇(其 爲使用固體酸觸媒製造之不含有親水性基的聚酯多元 醇),使用於一分子內至少含有1個以上之與異氰酸酯基反 應而得的羥基、胺基,且一分子中含有1個以上選自陰離 子性基、陽離子性基、及非離子性基的親水性基的化合物, 來製造水系或水性聚胺基甲酸酯樹脂的方法。 ® (ii)使用含有多元醇(其含有陰離子性基、陽離子性 基、及非離子性基或此等中和鹽代表的親水性基)及/或前 醇元 元多 多酯 的聚 分的 成基 須性 必水 爲親 作有 物含 生造 衍製 酯媒 其觸 或酸 酸體 羧固 聚用 的使 基’ 性酸 水羧 親二 述與 法 方 的 脂 樹 酯 酸 甲 基 胺 聚 性 水 或 系 水 造 製 而 等 此 用 使 醇 羧 V- - T-、 基 羧 舉 列 可 佳 較 基 性 子 离 陰 之 基 性 水 親 述 前 爲 作 3 4 舉之 列 知 可公 佳以 較或 基, 性和 子中 離物 陽合 ’ 化 等性 基酸 根以 酸部 磺全 、 或 基部 酸一 磺其、 、 基基 根胺 酸級 -15- 201022314 級化劑4級化者,非離子性基較佳可列舉聚乙 聚合物。 前述陰離子性基、陽離子性基,此等之一 經由公知之鹼性化合物或酸性化合物中和者爲 離子性基之3級胺基以4級化劑4級化者爲宜 作爲前述含有陰離子性基的聚酯多元醇, 含有羧基的聚酯多元醇,或含有磺酸基的聚酯 本發明之聚胺基甲酸酯樹脂爲使用固體酸 〇 聚酯多元醇與聚異氰酸酯反應,而其末端異氰 基(甲基)丙烯酸酯反應者,即,亦包含胺基甲 酯樹脂。如此之樹脂,可使用自由基聚合起始 機過氧化物等,或光·υν等電子射線聚合起始 劑、或聚合禁止劑、硬化促進劑而硬化。 本發明之胺基甲酸酯樹脂組成物,可使用 聚胺基甲酸酯之製造方法,例如,一步法(one 聚物法或準預聚物法等之方法,再者,可使用 ® 聚合、溶液聚合、乳液聚合、乳化聚合等。生 爲向來公知之方法,可使用厚片(slab)方式、 (double conveyor)方式、熱硬化(hot cure) 化(cold cure)方式、RIM方式、經開放模具 複合材之一體成形、現場施工方式、噴霧方式, 注入、塗布、含浸等之方法。製造之際,聚異 元醇以莫耳比(NCO/OH)0.8〜1.1反應者爲較 1.0-1.05。又,於製造胺基甲酸酯之際,可以一 二醇及其共 部份或全部 宜,作爲陽 〇 例如可列舉 多元醇》 觸媒製造的 酸酯基與羥 酸酯丙烯酸 劑,例如有 劑、光增感 向來公知之 ! - shot)、預 團(b u 1 k ) 産方式亦宜 雙重輸送機 方式、冷硬 之成形、與 •流延方式、 氰酸酯與多 佳,更佳爲 般使用的添 -16- 201022314 加量使用公知之胺基甲酸酯化觸媒、界面活性劑、其他之 輔助劑等。 再者,本發明之胺基甲酸酯組成物,視必要可添加抗 氧化劑、紫外線吸收劑、水解防止劑、塡充劑、著色劑、 強化劑、脫模劑、難燃劑等。再者,於不損害如本發明之 胺基甲酸酯樹脂組成物之效果的範圍內,可添加其他之熱 可塑性聚胺基甲酸酯彈性體,或此以外之泛用的熱可塑性 樹脂,例如,ABS樹脂、AS樹脂、氯化乙烯樹脂、聚醯胺 ❹ 等。本發明之組成物亦可含有選自界面活性劑、觸媒、安 定劑、及顔料的各種添加劑。 本發明可使用作爲熱可塑性彈性體(TPU)、熱硬化性彈 性體(TSU)、水性聚胺基甲酸酯樹脂、自由基硬化性胺基甲 酸酯樹脂,可用於成形材料、接著劑、黏著劑、塗料、發 泡體、密封劑、光硬化性樹脂等所有領域之聚胺基甲酸酯 製品。具體而言,可使用於絲、薄膜、薄片、帶、軟管、 輥、輪胎、防振材、襯墊、鞋底等之3次元成形物,以及, ® 人工皮革、合成皮革、軟質·硬質發泡體、纖維材料、工業 材料、電機電子材料、光學材料、醫療材料、土木建設材 料等眾多領域。 實施例 其次’舉實施例及比較例具體說明本發明,但本發明 並未限定於此等例。實施例及比較例中之份,只要未特別 說明,則表示重量份。 聚酯之合成 -17- 201022314 調製例1&lt;固體酸觸媒(M〇03/Zr02)(al)之調製&gt; 將50g之於100°C乾燥一晚的氫氧化鉻(Zr(OH)4,日本 輕金屬工業製),使用以必要量的鉬酸銨 [(NH4)6M〇7024_4H20(Kishida化學製)]溶於純水的水溶液 (0.04ιη〇1·(1πΓ3),每次少許添加氫氧化锆之細孔容積分之前 述鉬酸銨水溶液而鉻載體表面成爲均一浸濡的狀態獲得 Μ0Ο3/ΖΓΟ2 (初期浸潤法(Incipient Wetness Method))。 三氧化鉬(Mo〇3)之負載量,以重量比成爲Mo/Zr = 0.1的方 〇 式調節溶液濃度。作爲反應前處理,於氧氣氛圍下,以煅 燒溫度1 073 K進行煅燒3小時。自然放置冷卻至常溫,獲 得固體酸觸媒(al)。 調整例2&lt;固體酸觸媒(Mo03/Zr〇2)(a2)之調製&gt; 除將煅燒溫度變成673 K之外,與上述調整例1同樣地 調製,獲得固體酸觸媒(a2)。 &lt;經由NH3-TPD測定之H。函數之測定方法&gt; 測定方法: ® 將約o.lg之前述固體酸觸媒(al)、固體酸觸媒(a2)放 置於BEL Japan,INC.製TPD-AT-1型升溫脫離裝置之石英 室(內徑l〇mm),氦氣(30cm3 min·1,latm)流通下,立刻以 SKmirT1升溫至423K(150°C),保持於423K中3小時。之 後,照舊使氦氣流通而以7.5K miiT1降溫至373K(100°C) 後,真空脫氣,導入 1 00Torr( 1 Torr= 1/760atm = 1 3 3 Pa)之 NH3,使吸附30分鐘,之後脫氣12分鐘後,進行水蒸氣處 理,作爲水蒸氣處理,依序重複進行於 3 73 K導入約 -18- 201022314 2 5 Torr (約3 kPa)之蒸氣壓之水蒸氣,原樣保持3〇分鐘,脫 氣30分鐘’再導入水蒸氣30分鐘,再脫氣30分鐘。之後, —邊保持使氦氣 0.041 mmol ,25 °C,1 atm 下,相 當於60(;111311^11_1)減壓(1 007'〇1'〇—邊使其流通,於3 73〖保 持30分鐘後,將試料床以lOKmin·1升溫至983K(7l〇t), 以質量分析計(ANELVA M-QA 100F)分析出口氣體。 測定時記錄全部之質量數(m/e)2、4、14、15、16、17、 18、26、27、28、29、30、31、32、44 之光譜。終 了後將 0 lmol%-NH3/He標準氣體進一步以氦稀釋而氨氣濃度〇、 0.1、0.2、0.3、0.4mol%,合計流量成爲 〇.〇41mmol s·1 的 方式,使其流通檢測器,記錄光譜,作成氨之校正曲線而 補正檢測器強度。 第1圖、第2圖顯示升溫脫離時測定的主要各質量光 譜。其他質量數(m/e)之信號約略在基線上,未顯示高峰。 任一試料皆可見於5 00K附近顯示氨之脫離的m/e = 16 之高峰,又固體酸觸媒(al)於900K以上、固體酸觸媒(a2) © 於780K附近可見小的m/e=l6之肩部。然而,與此等高溫 之肩部出現的同時,因亦可見m/e = 44之大的高峰(C02之 片段)及m/e = 28(C02之片段+N2),認爲高溫之肩部爲來自 C02之片段,而非來自氨。因此,後述之氨之定量去除此 部分。 第3圖顯示由m/e=16算出的氨TPD光譜。由此等光 譜算出酸量與酸強度(ΔΗ),示於表-1。 基於實測的1點法,由高峰面積決定酸量、高峰位置 -19- 201022314 等決定平均酸強度。經由此方法認爲每質量的固體酸觸媒 (al)之酸量約O.OSmolkg·1、固體酸觸媒B之酸量約〇.2mol kg'1有差異’表面密度(酸量/表面積)係固體酸觸媒(al)、(a2) 皆〇.4~0.7ππΓ2左右。平均酸強度於固體酸觸媒(al)爲 △ H=133 kJ mol·1,換算爲H。爲- 7.4’相對於此,固體酸 觸媒(a2)爲△HMWkJ mol·1’換算爲H。爲- 4.4而稍弱。 [表1] 觸媒 高峰 高峰 溫度 解析 方法 酸量/ mol kg'1 比表面 積/m2g-1 酸點之表面 密度/nnf2 氨吸附熱 ΔΗ/kJmol'1 H〇函數 al 全體 509 1點法 0.031 26.5 0.70 平均133 -7.4 a2 全體 513 1點法 0.201 252.6 0.48 平均116 -4.4 (合成例1)〈脂肪族聚酯多元醇之合成〉 5L之4 口燒瓶中置入2050份之1,4-丁二醇(BG)與 2950份之己二酸(AA),及50份之固體酸觸媒(ai),設置冷 卻管、凝集管、氮導入管,一邊流通氮氣一邊升溫至21 0。(:, 使脫水縮合獲得聚酯多元醇。又,觸媒以1微米之過濾器 吸引過濾而取出去除。所得的聚酯多元醇之羥基價爲 56.4,酸價爲 0.18,色調(APHA)爲 30。 (合成例2)〈芳香族聚酯多元醇之合成〉 5L之4 口燒瓶中置入2185份之二乙二醇與1318份之 己二酸、1498份之異酞酸,再添加50份之固體酸觸媒(ai)。 其次,設置冷卻管、凝集管、氮導入管,一邊流通氮氣一 邊升溫至23 0 °C,使脫水縮合獲得聚酯多元醇。又,觸媒 以1微米之過濾器吸引過濾而取出去除。所得的聚醋多元 -20- 201022314 醇之羥基價爲55.8,酸價爲0.22,色調(APHA)爲60。 (比較合成例1)〈脂肪族聚酯多元醇之合成〉 5L之4 口燒瓶中置入2050份之1,4-丁二醇與2950份 之己二酸、及0.5份之四丁基酞酸酯(TBT),設置冷卻管、 凝集管、氮導入管。其次,一邊流通氮氣一邊升溫至21 0°C, 使脫水縮合獲得聚酯多元醇。所得的聚酯多元醇之羥基價 爲56.1,酸價爲0.31,色調(ΑΡΗ A)爲40。 (比較合成例2)〈芳香族聚醋多元醇之合成〉 e 5L之4 口燒瓶中置入2185份之二乙二醇與1318份之 己二酸、1498份之異酞酸,再添加0.50份之四丁基酞酸酯 (以下簡稱爲TBT)。其次,設置冷卻管、凝集管、氮導入 管,一邊流通氮氣一邊升溫至23 0°C,使脫水縮合獲得聚 酯多元醇。所得的聚酯多元醇之羥基價爲56.0,酸價爲 〇. 1 2,色調(APHA)爲 90。 [表2] 合成例1 合成例2 -比較 合成例1 比較 合成例2 BG-AA DEG-AA/i PA BG-AA DEG-AA/i PA 分子量 1983 2003 1989 1999 觸媒 固體酸觸媒 Wt°/o 1.0 wt% 1.0 wt% — — TBT ppm — — lOOppm lOOppm 羥基價 56.4 55.8 56.1 56 酸價 0.18 0.22 0.31 0.12 色調APHA 30 60 40 90 黏度 mPa*s/75°C 750 1470 770 1430 觸媒殘渣 ppm 檢測 界限 以下 檢測界限 以下 9 8ppm 99ppm -21- 201022314 色調(APHA):ASTM D 4890-98 &lt;聚酯多元醇之觸媒殘渣之測定&gt; 經由觸媒之分離,能夠進行聚酯多元醇中之殘存觸媒 成分之定量,過濾後進行聚酯多元醇之螢光X射線分析。 使用均一化觸媒的比較例,相對於使用觸媒之金屬分被 1 0 0%檢測出,確認實施例之聚酯多元醇爲測定機器之檢測 界限以下(檢測界限5ppm)以下。 &lt;聚胺基甲酸酯薄片之作成&gt; 〇 (實施例1)〈使用脂肪族聚酯多元醇的聚胺基甲酸酯薄片之 作成〉 以杯量取5 00重量份之調溫至80°C的實施例1合成的 脂肪族系聚酯多元醇與63重量份之調溫至60°C的二苯基 甲烷二異氰酸酯(以下,略稱爲MDI)並充分地混合後,投 入於140 °C之回轉成形機並作成2mm壓之薄片。2小時後 自成形機取出,再於110 °C 12小時後硬化(after cure)作 成測定用聚胺基甲酸酯薄片。 © (實施例2)〈使用芳香族聚酯多元醇的聚胺基甲酸酯薄片之 作成〉 以杯量取5 00重量份之調溫至8〇t;的實施例2合成的 芳香族系聚酯多元醇與43.8重量份之調溫至60。(:的伸甲 苯基二異氰酸酯(以下,略稱爲TDI)並充分地混合後,投入 於140 °C之回轉成形機並作成2inm壓之薄片。2小時後自 成形機取出’再於1 1 0 °C 1 2小時後硬化作成測定用聚胺基 甲酸酯薄片。 -22- 201022314 (比較例1)〈使用脂肪族聚酯多元醇的聚胺基 之作成〉 以杯量取500重量份之與實施例同樣地調 比較例1所合成的脂肪族系聚酯多元醇與62.8 溫至60°C的MDI並充分混合後,投入於14〇t 機並作成2mm壓之薄片。2小時後自成形機 1 1 0°C 1 2小時後硬化作成測定用聚胺基甲酸酯| (比較例2)〈使用芳香族聚酯多元醇的聚胺基甲 ❹ 作成〉 以杯量取5 00重量份之調溫至80°C的比較 的芳香族系聚酯多元醇與43.6重量份之調溫至 並充分混合後,投入於140 °C之回轉成形機並^ 之薄片。2小時後自成形機取出,再於110 °c] 化作成測定用聚胺基甲酸酯薄片。 &lt;聚酯多元醇之反應性評價&gt; 以杯量取300重量份之調溫至80 °C的實施 ® 較例1、2之聚酯多元醇,於此等中投入調溫至 (量取相對於聚酯多元醇之莫耳比爲1.05的量 電動機混合1分鐘,以BM型回轉黏度計測淀 的時間。混合物(聚胺基甲酸酯樹脂)以未降低 於調溫至8 0 °C的恒溫油槽中測定。結果示於表 以TBT合成的聚酯多元醇相比,以固體酸觸媒 多元醇,與異氰酸酯之反應性慢(於胺基甲酸 響)。 甲酸酯薄片 溫至8 0 °C的 重量份之調 之回轉成形 取出,再於 I片。 酸酯薄片之 例2所合成 6 0〇C 的 TDI 乍成2mm壓 2小時後硬 例1、2、比 6 0°C 的 MDI )並以攪拌 :成爲20Pas 溫度的方式 -3。確認與 合成的聚酯 酯反應無影 -23- .201022314 , &lt;聚胺基甲酸酯薄片之色調評價&gt; 經由目視實施例與比較例之聚胺基甲酸酯薄片,確認 著色程度。使用實施例之使用固體酸觸媒的聚酯多元醇的 聚胺基甲酸酯薄片,與比較例之使用TBT的聚胺基甲酸酯 薄片相比,確認其著色少。結果示於表-3。 &lt;耐濕熱強度保持率(耐水解性)之評價&gt; 將聚胺基甲酸酯薄片之耐水解性以濕熱條件化之強度 保持率評價。將聚胺基甲酸酯薄片靜置於80 °C X 95 %RH之 φ 恒溫恒濕槽1週,確認相對於處理前之聚胺基甲酸酯薄片 之拉伸強度之耐濕熱強度保持率。使用實施例之使用固體 酸觸媒的聚酯多元醇的聚胺基甲酸酯薄片,與比較例之使 用TBT的聚胺基甲酸酯薄片相比,確認其強度保持率高。 結果不於表-3。 [表3] 實施例1 實施例2 比較例1 比較例2 聚酯多元醇 合成例1 500 合成例2 500 比較合成例1 500 比較合成例2 500 異氰酸酯 MDI 63.0 62.8 TDI-80 43.8 43.6 反應性 增黏時間(分鐘) 43 65 3 8 外觀 透明 淡黃色 淡黃色 黃色 薄片物性 拉伸強度Mpa 3.2 5.3 3.1 5.2 耐濕熱強度保 持率 38 42 8 13 【圊式簡單說明】 [第1圖]經由質量分析計,於固體酸觸媒al之升溫 脫離時測定的主要質量光譜。 [第2圖]經由質量分析計,於固體酸觸媒a2之升溫 -24- 201022314 脫離時測定的主要質量光譜。 [第3圖]經由TPD-AT-1型升溫脫離裝置,固體酸觸媒al 及a2之氨TPD光譜 【主要元件符號說明】 A :固體酸觸媒al B :固體酸觸媒a2201022314 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a polyurethane resin composition capable of controlling a urethanization reaction of a cured product having less coloration and excellent wet heat strength retention. And its molded products. [Prior Art] Polyurethane resins are produced from polyisocyanates and polyols, and in particular, polyether polyols and polyester polyols are used as the polyurethane of the polyol. The resin is used for many purposes. The polyester polyol is produced by using a titanium-based or tin-based homogeneous catalyst. These homogeneous catalysts act as catalysts by completely mixing in the polyol and in the urethane reaction of the polyester polyol with the polyisocyanate, and it is difficult to control the urethane reaction. The problem 'Furthermore, under the influence of the residual catalyst, the urethane resin is colored, and as a result, there is a problem that the quality is lowered. Therefore, 'the manufacture of polyester polyols for the manufacture of polyurethane resins' is attempting to produce polyester poly-ols in the presence of a protonic strong acid catalyst in a solvent, adding an alkaline substance, precipitating and separating the contacts. The medium is further washed and the catalyst is removed (Patent Document η. Further, an attempt is made to add a phosphorus compound to deactivate the catalyst (Patent Document 2). However, these methods have many processing steps' and there is a possibility that the plural cannot be sufficiently removed. The problem of the catalyst remaining in the alcohol or the inactivation of the catalyst. Patent Document 1: Japanese Laid-Open Patent Publication No. Hei 06-256461. The object of the invention is to provide a polyurethane resin composition and a molded article thereof. The polyurethane resin composition is produced by using a polyester polyol having no residual catalyst to produce a catalyst-free polyester. Polyol, which is excellent in moisture-heat-strength retention (hydrolysis resistance), and which is easy to control the urethanization reaction and has a very small coloring of the polyurethane resin composition. Means ❹ The present inventors have completed the present invention by focusing on the use of a polyester polyol produced by a separable catalyst as a urethane raw material. That is, the present invention relates to a polyamine group. a torylate resin composition and a molded article thereof, the polyurethane resin composition characterized by comprising a polyisocyanate and a polyester polyol, wherein the polyester polyol uses a polyhydric alcohol and a polyvalent carboxylic acid in a solid acid The polyester polyol produced in the presence of the catalyst (A). EFFECT OF THE INVENTION The present invention provides a polyurethane resin composition and a molded article thereof, which are used by using a polyester polyol. The polyester polyol produced by the acid catalyst (A) facilitates the removal of the catalyst, and as a result, a catalyst-free polyester polyol is obtained, and further, an amine group is obtained by using the catalyst-free polyester polyol. The control of the formic acidification reaction is easy, and a polyurethane resin having little coloration and excellent wet heat strength retention can be obtained. [Embodiment] The best form for carrying out the invention, the polyisocyanate used in the present invention, Department usually For the polyaminocarbamate-4-201022314 ester resin, for example, 2,4-strylene diisocyanate, 2,6-tolyl diisocyanate or a mixture thereof, m- or p-phenylene is exemplified. Isocyanate, p-xylene diisocyanate, ethyl diisocyanate, tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, diphenylmethane-4,4'-di Isocyanate, 3,3'-dimethyl-diphenylmethane-4,4-extended biphenyl diisocyanate, 3,3-dichloro-4,4-extended biphenyl diisocyanate, 4,4-extension Biphenyl diisocyanate or 1,5-naphthalene diisocyanate, tolidine diisocyanate, evoxarone diisocyanate, cyclohexane diisocyanate, toluidine diisocyanate, crude diphenylmethane diisocyanate, and Diphenylmethane diisocyanate, triphenylmethane triisocyanate and various derivatives thereof. Further, a polyurethane prepolymer having an isocyanate group at the end of the reaction of the following polyol with any of the above polyisocyanates may also be mentioned. The polyester polyol produced by using the solid acid catalyst (A) used in the present invention is obtained by reacting a commonly used polyvalent carboxylic acid with a polyhydric alcohol in the presence of a solid acid catalyst (A). This catalyst (A) is a solid and can be easily separated by filtration or the like. When a polyester polyol is used, it is preferred to remove the solid acid catalyst (A) from the polyester polyol which is a reaction product by filtration (suction filtration, super ® filtration, pressure filtration, etc.) or centrifugation. Thus, the catalyst has no effect on the urethanation reaction, and a urethane resin which can easily control the ureidoesterification reaction can be produced. The solid acid catalyst (A) has a function of promoting an esterification reaction, and is solid at a temperature of from room temperature to 30,000 ° C, and any one of the catalysts having an average particle diameter of from Ιμηη to 3 cm can be used. Examples of the solid acid catalyst (A) which can be used in the present invention include metal 201022314 oxide, zeolite, acid salt of heteropoly acid, and the like. Preferred is a metal oxide. When the solid acid catalyst (A) used in the present invention is a metal oxygen species, a solid acid contact composed of a composite metal oxide in which a metal oxide (A2) is supported on the surface of the metal oxide carrier (A1) A solid acid catalyst (A) composed of a metal oxide obtained by supporting a non-metal ruthenium compound (A3) on the surface of the medium (A) or the metal oxide carrier (A1) is preferred. In this case, as the metal oxide carrier (A1), it is possible to use a dioxide pin selected from at least one type or more from the viewpoints of ease of design and decoration of the catalyst, and whether or not the catalyst is sufficiently exhibited. Pin, Zr02), cerium oxide (SiO2), alumina (ai2o3), titanium dioxide (Ti02), cerium oxide, aluminum oxide (Si02_AUG), magnesium oxide (MgO), tin oxide (Sn02, SnO), Oxidation to (Hf〇2), iron oxide (Fe2〇3, Fe3〇4), chopping earth, cordierite or zeolite. One type of these may be used, and two or more chemically compounded oxide carriers such as cerium oxide, aluminum oxide, titanium oxide, and a sulfur dioxide pin may be used. Further, as the metal element of the supported metal oxide (A2), ?, molybdenum, tungsten, molybdenum, etc. may be mentioned, and as the supported metal oxide (A2), molybdenum oxide (such as Mo〇3) and tungsten oxide may be mentioned. (W03, etc.), cerium oxide (Ta2〇5, etc.), etc. The supported gold ruthenium oxide (A2) may further be subjected to a load as a composite by using any element of one type or more. As any good element of such a combination, bismuth, aluminum, phosphorus, tungsten, planer, bismuth, titanium, tin, silver, copper, zinc, chromium, lanthanum, cerium, lanthanum, selenium, iron, magnesium, calcium, Vanadium, bismuth, manganese, cobalt, iodine, nickel, strontium, barium, ammonium, giant, strontium, barium, strontium, strontium, barium, strontium, bait, table, mirror, enamel, etc. As non-gold 201022314 acid. And the use of phosphorus, such as the performance of phosphorus-X 〇4 0, such as copper, etc.: salt, the number of oxidized compounds (A3), is a compound containing sulfate, or Any of the compounds containing phosphorus, or those using them. When an acidic salt of a heteropolyacid is used as the solid acid catalyst of the present invention, the acidic salt of a heteropolyacid refers to an acidic metal salt and an acid key salt of an acid obtained by condensing two or more kinds of inorganic oxyacids. Examples of the heteropoly acid include phosphorus, ruthenium, boron, aluminum, ruthenium, titanium, zirconium, hafnium, cobalt, and sulfur. Further, as a poly atom, molybdenum, tungsten, vanadium, niobium, and molybdenum are exemplified. Heteropolyacids are known in the art and can be produced by conventional methods. The heteropoly acid which is β in the present invention may, for example, be a known heteropoly acid, and examples thereof include phosphomolybdate tungstic acid, decanomolybdic acid, and tungstic acid. Among these heteropolyacids, h3pm〇xw12 or 13丨1^1(^\^124〇4() (wherein \ is an integer of 1$乂$12) is a hetero atom which is phosphorus or ruthenium, and the polyatomic is molybdenum. Or a combination of molybdenum and tungsten and heteropoly acid, which is excellent as an esterification catalyst for an acidic metal salt or an acid key salt. Particularly preferred as the acidic metal salt of the heteropoly acid, sodium or potassium is mentioned. , alkali metal salts of strontium, barium, magnesium, calcium, saw, bismuth, etc.; _ transition metal salts of silver, zinc, mercury, etc.; and salts of typical elements of aluminum, bismuth, tin and lead. Further, examples of the acid gun salt of the heteropoly acid include an ammonium salt, an iron salt, etc. Further, the substitution of a hydrogen atom in the acid salt of the heteropoly acid is particularly limited, and the method of use thereof is not particularly limited and may be supported. Use of a carrier such as cerium oxide, aluminum oxide, cerium oxide alumina, diatomaceous earth, zeolite, dititanium, zirconium dioxide, cerium carbide, activated carbon, etc. When zeolite is used as a solid acid catalyst (A), boiling On the right is a crystalline aluminosilicate whose basic structural unit is lanthanum and aluminum 201022314 cation and oxyanion The tetrahedron, each of the oxyanions is combined with other cerium oxide or aluminum oxide tetrahedrons. The cubic lattice formed by the cubic element becomes the structural unit of the zeolite skeleton. The skeleton structure is a pore structure having a large surface area. There are more than 100 kinds of zeolites through the geometric arrangement of the tetrahedron of alumina and alumina, among which mordenite type and ZSM-5 type are used. Preferably, the counter ion of the β-type, faujasite type or the like is hydrogen. 聚酯 The polyester polyol used in the present invention is an oxidation of a metal element containing the metal oxide support (A1) and the support described above. Any one of the solid acid catalyst (A), the heteropoly acid, and the zeolite obtained by the product (A2) or the polyester polyol produced by using two or more of these types, preferably a metal oxide carrier (A1) And a solid acid catalyst (A) with a supported metal oxide (A2). As the solid acid catalyst (A), the metal oxide carrier (A1) of the solid acid catalyst is zirconium dioxide, and the gold is supported. Oxygen It is particularly preferable that the substance (A2) is molybdenum trioxide. The acid strength of the above solid acid catalyst (A) is represented by the acidity function H〇 of Hammett, and H〇 is -3 to -9. Mant's acidity function H〇, such as the pH of the acid/base of the aqueous solution, indicates the strength of the acid and alkali points on the solid surface as an indicator. Because of the ρΗ = Η〇 in the aqueous solution, its intensity can be intuitively understood. Moreover, the function is widely accepted because of the simple operation of the experiment. The smaller the Η〇, the stronger the acidity, and the larger the Hq, the stronger the basicity. In the reaction system of the present invention, the solid acid catalyst of the present invention ( When H) exceeds -3, the catalyst activity is not exhibited and the reaction is difficult to carry out. On the other hand, when the H〇 of the 201022314 solid acid catalyst (A) of the present invention is less than -9, it is formed by intramolecular dehydration of a diol, a carbon-carbon double bond, and further etherification via the double bond and the diol. Side reactions such as reactions are not good. The aforementioned acidity function is a function of quantitatively expressing the strength of the acid-base of the solution, indicating a function of the solution imparting hydrogen ions or a function of accepting hydrogen ions, and the acid is generally used according to the Lewis Hamant. Mant's acidity function, the solution exhibits a tendency to move protons to neutral bases. The acidity function of Harmantle, the electrically neutral base B, is combined in the aqueous solution as follows. B + H+ ^ BH + Therefore, the acid dissociation constant of BH + is taken as PKBH+, the ratio of B binding to H + when B is put into a solution is taken as CBH+, and the ratio of unbound is taken as CB, the acidity function of Harmant (H〇 ) is expressed by the following formula. H〇 = -pKBH + + log (CBH + / CB ) The acidity function (H〇) of the Harmant of the solid acid catalyst (A) used in the present invention is preferably -3 to -9. The acidity function (HQ) of Harmant, such as the intensity PH of the aqueous solution ® acid and alkali, is an indicator of the strength of the acid and alkali points on the solid surface. Because of the pH = H〇 in aqueous solution, this intensity can be intuitively understood 'and' is widely accepted due to the ease of experimentation. The smaller the H〇 値, the stronger the acidity, and the larger the H〇, the stronger the basicity. In the esterification reaction system of the present invention, when the acidity function (Hg) of the solid acid catalyst (?) exceeds -3, the catalyst activity is not exhibited, and the esterification reaction becomes difficult to proceed, and a catalyst for producing a polyester cannot be used. On the other hand, when the acidity function (h〇) of the solid acid catalyst (A) of the present invention is less than -9, it is formed by dehydrating the 'carbon-carbon double bond with the intra-molecular 201022314 of the diol, and further via the double bond and the diol. Since a side reaction such as an esterification reaction occurs, it is not preferable to produce a solid acid catalyst as a polyester. <Measurement method of the acidity function (Η〇) of Hammant measured by NH3-TPD> (Measurement method) · The solid acid catalyst O.lg as a sample was placed in TPD-AT manufactured by BEL Japan, INC. The quartz chamber (inner diameter 10 mm) of the -1 type temperature rise-off device is heated to 5 3 × K (150 ° C) at 5 K mi n_1 under the circulation of helium gas (30 cm3 min '1, 1 atm). 423 K 3 hours. After that, the nitrogen gas was circulated as usual, and after cooling to 7 73 K (100 ° C) at 7_5 K min·1, the mixture was degassed under vacuum, and introduced into a NH Torr of 100 Torr (1 Torr = 1 /760 atm = 133 Pa) for 30 minutes. After degassing for 12 minutes, steam treatment was carried out. As a steam treatment, water vapor having a vapor pressure of about 25 Torr (about 3 kPa) was introduced at 373 K in sequence, and kept for 30 minutes as it was, degassed for 30 minutes, and then introduced with steam for 30 minutes. Gas for 30 minutes. After that, keep the helium 0.041 mmol s·1 (at 298 K, 25 °C, 1 atm, equivalent to 60 cm3 min·1) under reduced pressure® (100 Torr), and let it circulate, after 373K for 30 minutes. The sample bed was heated to 98 3 κ (710 ° C) at 10 K min·1, and the outlet gas was analyzed by a mass spectrometer (ANELVA M-QA 100F). The mass spectrum of all masses (m/e) 2, 4, 14, 15, 16, 17, 18, 26, 27, 28, 29, 30, 31, 32, 44 was recorded at the time of measurement. After the end, 1 mol%-NH3/He standard gas was further diluted with hydrazine to make the ammonia concentration 0, 0.1, 0.2, 〇.3, 0.4 mol%, and the total flow rate was 0.041 mmol s_1, flowing through the detector. Record the spectrum and make a calibration curve for ammonia to supplement -10- 201022314 Positive detector intensity. The ammonia of the main mass spectrum measured at the time of the temperature rise and the detachment is desorbed from the TPD spectrum. The average acid strength is determined from the peak area by the one-point method, the acid amount by the peak area, and the peak position. Calculate the acid amount and the acid strength (ΔH), and calculate the acidity function (H〇). The shape of the solid acid catalyst (A) is exemplified by powder, spherical particles, and amorphous particles. Shape, protruding shape, ring shape, etc., but are not limited to these shapes. Further, it is preferable that the pores have a size of several angstroms (A) or more, and the state of the control space in the pores of the reaction field is also ©. The size of the solid acid catalyst (A) is not particularly limited. When considering the synthesis of the polyester and the single catalyst, the carrier is preferably a relatively large particle diameter. When a fixed-bed flow reactor is used in the reaction, the carrier is in the form of a spherical shape, and the particle diameter is extremely small, causing a large pressure loss when the reactant stream is passed, and there is a fear that the reactant cannot be efficiently circulated. Further, when the particle diameter is extremely large, the reaction raw material becomes ineffective contact with the solid acid catalyst (A), and the catalyst reaction may not be effectively carried out. Therefore, the size of the solid acid catalyst (A) of the present invention is preferably determined by the size of the tube column of the ruthenium catalyst and the optimum void ratio, and the light scattering method of the catalyst of the present invention (Microtrac X100 apparatus) or The average particle diameter of the sieving method is preferably from 1 to 8 cm. More preferably, it is a particulate metal oxide carrier (A1) of 0.5 mm to 8 mm, and a metal oxide (A2) is supported in an egg shell type (outer layer load). The polyester polyol described above may be any one of an ester bond in which a polyhydric alcohol and a polyvalent carboxylic acid are subjected to a condensation reaction in the presence of a solid acid catalyst, and also includes a polyether ester polyol and a polycarbonate poly Ester polyols and the like. The above polyester poly-11-201022314 is preferably a polystyrene-converted GPC having a number average molecular weight of 500 to 5,000, particularly preferably 1 to 3 Torr. The above-mentioned polyol is preferably a linear diol having a main chain carbon number of 2 to 15, specifically ethylene glycol, hydrazine, tripropylene glycol, diethylene glycol, i,4-butanediol, A hydrocarbon such as 5-pentamethylene glycol, U6_hexamethylene glycol, bishydroxyethoxybenzene or p-xylene glycol is a main chain. The total number of carbon atoms is preferably from 3 to 34, more preferably from 3 to 17, and examples thereof include 1,2-propanediol, 2-methyl-1,3-propanediol, di-1,2-propanediol, and 1,2- Butylene glycol, 1,3-butanediol, 2,3-butanediol, 2,2·dimethyl-1,3-propanediol, 3·methyl-1,5-pentanediol, 3- Methyl pentatriol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,2-dimethyl-3-hydroxypropyl -2,2-dimethyl-3-hydroxypropionate, neopentyl glycol, 2-n-butyl-2-ethyl-1,3-propanediol, 3-ethyl-1,5-pentane Alcohol, 3-propyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 3-octyl-1,5-pentanediol, 2-ethyl-1,3 - hexanediol, 3-tetradecyl-1,5-pentanediol, 3-stearate decyl-1,5-pentanediol, 3-phenyl-1,5-pentanediol, 3- (4-nonylphenyl)-1,5-pentanediol, 3,3-bis(4-mercaptophenyl)-1,5-pentanediol, 1,2-bis(hydroxymethyl) Cyclopropane, 1&gt;3_bis(hydroxyethyl)cyclobutane, 1,3-bis(hydroxymethyl)cyclopentane, iota,4-bis(hydroxymethyl)cyclohexane, 1,4-double (hydroxyethyl)cyclohexane, 1,4-bis(hydroxypropyl)cyclohexane 1,4-bis(hydroxyethyl)cycloheptane, i,4-bis(hydroxymethoxy)cyclohexane, 1,4-bis(hydroxyethoxy)cyclohexane, 2,2-dual ( 4,-hydroxymethoxycyclohexyl)propane, 2,2-bis(4'-hydroxyethoxycyclohexyl)propane, trimethylolpropane, etc., may be used alone or in combination of two or more. As the polyol component, a compound having three or more hydroxyl groups can be used. -12-201022314 is a compound which can be used, and is generally used for a polyester polyol. Examples thereof include polyfunctional polyhydroxy compounds such as glycerin, hexanetriol, triethanolamine, pentaerythritol, and ethylenediamine. The above polyvalent carboxylic acid means, for example, succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,9-nine Methyl dicarboxylic acid, 1,10-decethylene dicarboxylic acid, 1,11-undecethylene dicarboxylic acid, 1,12-dodecylene dicarboxylic acid, thirteen methylene dicarboxylate Further, as the aromatic dicarboxylic acid, for example, citric acid, isononanoic acid, hydrazine phthalic acid, hexahydrotereic acid, hexahydroisophthalic acid or the like, or the like, or the like may be used. Two or more types. From an industrial point of view, adipic acid is mainly used. A dimer acid or the like obtained by polymerization of talloil fatty acid can also be used. As the tall oil fatty acid, it is a mixture of an unsaturated acid such as oleic acid or linoleic acid with hexadecanic acid or stearic acid. The polyurethane resin composition of the present invention may be used together with the above polyester polyol in other high molecular weight polyols, and if necessary, a chain extender. The high molecular weight polyol refers to the amount of GPC in terms of polystyrene. The average molecular weight is from 1000 to 5,000, preferably from 1200 to 3,000. For example, it is selected from the group consisting of polyether polyols, acrylic polyols, and polybutadiene polyols. Any one or more of an alcohol, a polyoxyalkylene polyol, a fluorine-based polyol 'polycarbonate polyol, a polycaprolactone polyester polyol, a polyether ester polyol, and a polycarbonate polyester polyol. The polyether polyol refers to a compound having two or more active hydrogens, preferably 2 to 6 members, for example, the above-mentioned polyol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, mannitol, Ditrimethylol propyl broth, second quarter-13-201022314 pentaerythritol, etc., with respect to alkylene oxides, such as cycloalkane, butylene oxide, etc., alone or in combination of two or more, preferably combined alcohol. The number average molecular weight thereof is preferably | the base price is preferably from 250 to 750. The lactone obtained by ring-opening polymerization of the lactone polyester polyol, for example, a lactone such as caprolactone, is a lactone-based polyester diol, and the above-mentioned ε-caprolactone may also be used. Any one of δ-valerolactone and β-methyl-δ-valerolactone 〇. The polycarbonate polyol is obtained, for example, by a condensation reaction of a dialkyl carbonate. Examples of the above include 1,6-hexanediol and 1,5-pentanediol. Examples of the carbonate include dimethyl carbonate, diethyl carbonate and the like. Further, as the polycarbonate polyol, for example, a polyol ester obtained by subjecting a lactone to ring-close addition polymerization of a lactone, or a copolycondensed polycarbonate in which other polyester polyols or polyether polyols are co-condensed Polyol. When the polyurethane resin composition of the present invention is a formate elastomer, a chain extender can be used. A preferred low molecular weight linear diol. As a representative example thereof, propylene glycol, 1,3-propanediol, 2,3-butanediol, 1,4-butyl-1,3-propanediol, diethylene glycol, 1,5-pentanediol, 1 , 6 cyclohexane 1,4-diol, cyclohexane _1,4 diol, cyclohexyloxy ethoxylate, epoxy two; 2~9 molar addition to poly! 1200~3000, by, can also be used The ε-polyester diols. As a polyhydric alcohol, one or two kinds of low molecular weight polyols and low molecular weight polyols are added, and as a dialkyl carbonate, exemplified by polycarbonate lactone denatured polycarbonate, and the like Ester thermoplastic polyamine based carbon number 2~10 [Jet Ethylene glycol, 1,2-diol, 2,2'-dimethylhexaethylene glycol, alkane-1,4 dimethanol, etc. Individual or mixture of -14- 201022314. In particular, 1,4·butanediol is preferred. The polyurethane resin composition of the present invention is not only a urethane elastomer but also an aqueous polyurethane resin or an aqueous polyurethane resin. In the composition of the polyurethane resin, one or more kinds of anionic group, a cationic group, and a nonionic group are introduced as a hydrophilic group for water dispersion. In this case, a polyester polyol produced using a solid acid catalyst may also use a chain extender having a hydrophilic group, and a part using a hydrophilic group-containing diol and/or a hydrophilic group-containing dibasic acid as a A raw material of a ruthenium polyester polyol produced using a solid acid catalyst is used to produce a hydrophilized polyester polyol, and a water-based or aqueous polyurethane resin composition can be prepared by a known method. As a method for producing the same, for example, (i) a polyester polyol (which is a polyester polyol produced using a solid acid catalyst and containing no hydrophilic group) can be used, and at least one or more of them are used in one molecule. A compound having a hydroxyl group or an amine group obtained by reacting an isocyanate group and having one or more hydrophilic groups selected from the group consisting of an anionic group, a cationic group, and a nonionic group in one molecule, to produce an aqueous or aqueous polyamine group. A method of a formate resin. ® (ii) the use of a polyhydric alcohol containing a polyhydric alcohol (which contains an anionic group, a cationic group, and a nonionic group or a hydrophilic group represented by such a neutralizing salt) and/or a pre-alcoholic polyester. The basic nature of the water must be used for the production of the ester-containing ester medium or the acid-acid carboxyl group for the solidification of the base acid water carboxylate and the French fatty acid methylamine. Sexual water or water-based production, etc., so that the alcohol carboxy V--T-, carboxylic acid can be better than the basic cations of the basic water before the symmetry of the water for the description of Or the base, the cation and the cation in the cation, the sulphuric acid group, the acid sulfonate, or the basal acid monosulfonate, and the basal acid grade -15- 201022314 leveling agent, grade 4, non-ion Preferred examples of the group include a polyethylene polymer. It is preferable that one of the anionic group and the cationic group is a fourth-order amine group which is an ionic group through a well-known basic compound or an acidic compound neutralized by a fourth-stage agent. Polyester polyol, carboxyl group-containing polyester polyol, or sulfonic acid group-containing polyester. The polyurethane resin of the present invention is a reaction of a solid acid lanthanum polyester polyol with a polyisocyanate, and the end thereof The isocyano (meth) acrylate reactant, that is, also contains an aminomethyl ester resin. Such a resin can be cured by using a radical polymerization initiator peroxide or the like, an electron beam polymerization initiator such as υν, or a polymerization inhibitor or a hardening accelerator. The urethane resin composition of the present invention may be a method for producing a polyurethane, for example, a one-step method (one-polymer method or quasi-prepolymer method, etc., and further, polymerization may be used) , solution polymerization, emulsion polymerization, emulsion polymerization, etc. It is known to use a slab method, a double conveyor method, a hot cure method, a RIM method, a Open mold composite material forming, on-site construction method, spraying method, injection, coating, impregnation, etc. At the time of manufacture, the polyisohydric alcohol has a molar ratio (NCO/OH) of 0.8 to 1.1. Further, in the case of producing a urethane, a mono diol and a part or all of it may be used in combination, and as the cation, for example, an acid ester group and a hydroxy acid ester acrylate produced by a polyol catalyst may be mentioned. For example, there are agents and photosensitization are known! - shot), pre-bump (bu 1 k) production method is also suitable for double conveyor mode, chill forming, and casting method, cyanate ester and more, and more Good use of the addition -16- 201022314 plus Amino acid of a known esterification catalyst, surfactant, of other auxiliary agents. Further, the urethane composition of the present invention may contain an antioxidant, an ultraviolet absorber, a hydrolysis preventive agent, a chelating agent, a coloring agent, a reinforcing agent, a releasing agent, a flame retardant or the like as necessary. Further, other thermoplastic polyurethane elastomers or other general-purpose thermoplastic resins may be added to the extent that the effect of the urethane resin composition of the present invention is not impaired. For example, ABS resin, AS resin, vinyl chloride resin, polyamidoxime or the like. The composition of the present invention may also contain various additives selected from the group consisting of surfactants, catalysts, stabilizers, and pigments. The present invention can be used as a thermoplastic elastomer (TPU), a thermosetting elastomer (TSU), an aqueous polyurethane resin, a radical curable urethane resin, and can be used for a molding material, an adhesive, Polyurethane articles in all fields such as adhesives, coatings, foams, sealants, and photocurable resins. Specifically, it can be used for three-dimensional molded articles such as silk, film, sheet, belt, hose, roller, tire, vibration-proof material, gasket, sole, and the like, as well as ® artificial leather, synthetic leather, soft and hard hair. Bubbles, fiber materials, industrial materials, electrical and electronic materials, optical materials, medical materials, civil construction materials and many other fields. EXAMPLES Next, the present invention will be specifically described by way of Examples and Comparative Examples, but the present invention is not limited thereto. Parts in the examples and comparative examples are parts by weight unless otherwise specified. Synthesis of polyester -17- 201022314 Modification example 1 &lt;Preparation of Solid Acid Catalyst (M〇03/Zr02) (al)&gt; 50 g of chromium hydroxide (Zr(OH)4, manufactured by Nippon Light Metal Industry Co., Ltd.) which was dried overnight at 100 ° C was used. Ammonium molybdate [(NH4)6M〇7024_4H20 (manufactured by Kishida Chemical Co., Ltd.)] is dissolved in an aqueous solution of pure water (0.04 ηη〇1·(1πΓ3), and the above-mentioned molybdic acid is added in a small pore volume of zirconium hydroxide each time.铵0Ο3/ΖΓΟ2 (Incipient Wetness Method) is obtained by the aqueous ammonium solution and the surface of the chromium support is uniformly immersed. The loading amount of molybdenum trioxide (Mo〇3) is a ratio of Mo/Zr = 0.1 by weight. The concentration of the solution was adjusted by the hydrazine method, and as a pre-reaction treatment, calcination was carried out for 3 hours at a calcination temperature of 1,073 K in an oxygen atmosphere, and naturally cooled to room temperature to obtain a solid acid catalyst (al). &lt;Preparation of solid acid catalyst (Mo03/Zr2) (a2)> A solid acid catalyst (a2) was obtained in the same manner as in the above-mentioned adjustment example 1 except that the calcination temperature was changed to 673 K. &lt;H measured by NH3-TPD. Method for measuring the function> Measurement method: ® The solid acid catalyst (al) and the solid acid catalyst (a2) of about lg are placed in a TPD-AT-1 type temperature-releasing device manufactured by BEL Japan, INC. The quartz chamber (inner diameter l〇mm) and helium gas (30 cm3 min·1, lamm) were circulated, and immediately heated to 423 K (150 ° C) with SKmir T1 and kept at 423 K for 3 hours. After that, the gas stream was passed through and the temperature was lowered to 373 K (100 ° C) at 7.5 K miiT1, and then degassed under vacuum, and NH 3 of 1 Torr (1 Torr = 1/760 atm = 1 3 3 Pa) was introduced to adsorb for 30 minutes. After degassing for 12 minutes, steam treatment was carried out, and as a steam treatment, water vapor of about -18 to 201022314 2 5 Torr (about 3 kPa) was introduced at 3 73 K in this order, and was kept as it is. Minutes, degas for 30 minutes' and then introduce steam for 30 minutes, then degas for 30 minutes. After that, while maintaining the helium gas 0.041 mmol, 25 ° C, 1 atm, equivalent to 60 (; 111311 ^ 11_1) decompression (1 007 '〇 1 '〇 - while circulating, at 3 73 〖30 After a minute, the sample bed was heated to 983 K (7 l〇t) with lOKmin·1, and the outlet gas was analyzed by mass spectrometer (ANELVA M-QA 100F). The total mass (m/e) 2, 4 was recorded during the measurement. The spectrum of 14, 15, 16, 17, 18, 26, 27, 28, 29, 30, 31, 32, 44. After the end, the 0 lmol%-NH3/He standard gas is further diluted with hydrazine and the ammonia concentration is 〇, 0.1, 0.2, 0.3, and 0.4 mol%, and the total flow rate is 〇.〇41 mmol s·1, and the detector is passed, the spectrum is recorded, and a calibration curve of ammonia is prepared to correct the detector intensity. Fig. 1 and Fig. 2 The main mass spectra measured at the time of temperature rise and detachment are shown. The signals of other mass numbers (m/e) are approximately at the baseline and show no peak. Any sample can be seen at around 500 kb, showing m/e = 16 of ammonia detachment. Peak, solid acid catalyst (al) above 900K, solid acid catalyst (a2) © near 780K can see a small m / e = l6 shoulder. However, with this When the shoulder of the high temperature appears, it is also seen that the peak of m/e = 44 (the fragment of C02) and m/e = 28 (the fragment of C02 + N2), the shoulder of the high temperature is considered to be from C02. The fragment is not derived from ammonia. Therefore, the ammonia is quantitatively removed as described later. Fig. 3 shows the ammonia TPD spectrum calculated from m/e = 16. From this spectrum, the acid amount and the acid strength (ΔΗ) are calculated. Table-1. Based on the measured one-point method, the average acid strength is determined by the peak area determining the acid amount, the peak position -19-201022314, etc. The amount of acid per mass of solid acid catalyst (al) is considered to be about O by this method. .OSmolkg·1, the acid amount of solid acid catalyst B is about 2.2mol kg'1 is different 'surface density (acid amount / surface area) is solid acid catalyst (al), (a2) are all 〇.4~0.7ππΓ2 The average acid strength is Δ H = 133 kJ mol·1 in the solid acid catalyst (al), which is converted to H. It is - 7.4'. In contrast, the solid acid catalyst (a2) is ΔHMWkJ mol·1'. H. is -4.4 and slightly weaker. [Table 1] Catalyst peak peak temperature analysis method Acid amount / mol kg'1 Specific surface area / m2g-1 Surface density of acid point / nnf2 Ammonia adsorption heat ΔΗ / kJmol'1 H〇 function a total 509 1 point method 0.031 26.5 0.70 average 133 -7.4 a2 total 513 1 point method 0.201 252.6 0.48 average 116 -4.4 (synthesis example 1) <synthesis of aliphatic polyester polyol> 5L of 4 2050 parts of 1,4-butanediol (BG) and 2950 parts of adipic acid (AA), and 50 parts of solid acid catalyst (ai) were placed in a mouth flask, and a cooling tube, a condenser, and a nitrogen introduction were placed. The tube was heated to 21 0 while flowing nitrogen gas. (:: Dehydration condensation was carried out to obtain a polyester polyol. Further, the catalyst was suction-filtered and removed by a filter of 1 μm. The obtained polyester polyol had a hydroxyl value of 56.4, an acid value of 0.18, and a color tone (APHA) of 30. (Synthesis Example 2) <Synthesis of Aromatic Polyester Polyol> 2185 parts of diethylene glycol and 1318 parts of adipic acid, 1498 parts of isononanoic acid were placed in a 5 L 4-neck flask, and 50 was added. A solid acid catalyst (ai) was placed in the middle. Next, a cooling tube, a coagulation tube, and a nitrogen introduction tube were placed, and the temperature was raised to 23 ° C while flowing nitrogen gas to obtain a polyester polyol by dehydration condensation. Further, the catalyst was 1 μm. The filter was suctioned and removed by filtration, and the obtained polyacetate poly--20-201022314 alcohol had a hydroxyl group value of 55.8, an acid value of 0.22, and a color tone (APHA) of 60. (Comparative Synthesis Example 1) <Alipid Polyester Polyol Synthesis> 2050 parts of 1,4-butanediol, 2950 parts of adipic acid, and 0.5 parts of tetrabutyl phthalate (TBT) were placed in a 5L 4-neck flask, and a cooling tube, a condenser, Nitrogen introduction tube. Secondly, the temperature is raised to 21 °C while flowing nitrogen gas, and dehydration condensation is obtained to obtain polyester plural. The obtained polyester polyol has a hydroxyl group value of 56.1, an acid value of 0.31, and a color tone (ΑΡΗ A) of 40. (Comparative Synthesis Example 2) <Synthesis of Aromatic Polyglycol Polyol> e 5L 4-necked flask 2185 parts of diethylene glycol and 1318 parts of adipic acid, 1498 parts of isononanoic acid, and then 0.50 parts of tetrabutyl phthalate (hereinafter referred to as TBT). Secondly, a cooling tube, a coagulation tube, The nitrogen introduction tube was heated to 230 ° C while flowing nitrogen gas to obtain a polyester polyol by dehydration condensation. The obtained polyester polyol had a hydroxyl group value of 56.0, an acid value of 0.12, and a color tone (APHA) of 90. [Table 2] Synthesis Example 1 Synthesis Example 2 - Comparative Synthesis Example 1 Comparative Synthesis Example 2 BG-AA DEG-AA/i PA BG-AA DEG-AA/i PA Molecular Weight 1983 2003 1989 1999 Catalyst Solid Acid Catalyst Wt °/o 1.0 wt% 1.0 wt% — — TBT ppm — — lOOppm lOOppm Hydroxyl price 56.4 55.8 56.1 56 Acid value 0.18 0.22 0.31 0.12 Hue APHA 30 60 40 90 Viscosity mPa*s/75°C 750 1470 770 1430 Catalyst residue The ppm detection limit is below the detection limit of 9 8ppm 99ppm -21- 201022314 Hue (APHA): ASTM D 4890-98 &lt;Measurement of Catalyst Residue of Polyester Polyol&gt; By the separation of the catalyst, the amount of the residual catalyst component in the polyester polyol can be quantified, and after filtration, the fluorescent X-ray analysis of the polyester polyol can be carried out. In the comparative example using the uniform catalyst, the metal component with respect to the catalyst was detected by 100%, and it was confirmed that the polyester polyol of the example was below the detection limit of the measuring device (detection limit: 5 ppm). &lt;Preparation of Polyurethane Sheets&gt; 〇(Example 1) <Preparation of Polyurethane Sheet Using Aliphatic Polyester Polyol> The temperature of the cup is adjusted to 500 parts by weight to The aliphatic polyester polyol synthesized in Example 1 at 80 ° C was sufficiently mixed with 63 parts by weight of diphenylmethane diisocyanate (hereinafter, abbreviated as MDI) adjusted to 60 ° C, and then poured into The rotary forming machine at 140 °C was formed into a sheet of 2 mm pressure. After 2 hours, it was taken out from the molding machine, and further cured at 110 ° C for 12 hours to form a measurement polyurethane sheet. © (Example 2) <Preparation of a polyurethane sheet using an aromatic polyester polyol> The aromatic group synthesized in Example 2 was adjusted to a temperature of 8 Torr in a cup size. The polyester polyol was tempered to 60 with 43.8 parts by weight. (: toluene diisocyanate (hereinafter abbreviated as TDI) and sufficiently mixed, and then placed in a rotary forming machine at 140 ° C to form a sheet of 2 inm pressure. After 2 hours, it was taken out from the molding machine' and then 1 1 After 0 ° C for 1 hour, it was hardened to form a polyurethane sheet for measurement. -22- 201022314 (Comparative Example 1) <Preparation of a polyamine group using an aliphatic polyester polyol> 500 parts by weight in a cup amount In the same manner as in the Example, the aliphatic polyester polyol synthesized in Comparative Example 1 and the MDI at 62.8 to 60 ° C were thoroughly mixed and mixed, and then placed in a 14 Torr machine to prepare a sheet of 2 mm pressure. After 2 hours, Self-forming machine 1 1 0 ° C After 1 2 hours, it was hardened to prepare a polyurethane for measurement | (Comparative Example 2) <Polyaminocarbamidine using an aromatic polyester polyol Manufacture> Take a cup of 500 The comparative aromatic polyester polyol adjusted to a temperature of 80 ° C by weight was adjusted to a temperature of 43.6 parts by weight and thoroughly mixed, and then placed in a rotary forming machine at 140 ° C to form a sheet. The molding machine was taken out and further formed into a measurement polyurethane sheet at 110 °C. &lt;Evaluation of Reactivity of Polyester Polyol&gt; 300 parts by weight of a polyester which is adjusted to a temperature of 80 ° C in the amount of a cup of the polyester polyol of Examples 1 and 2, in which the temperature was adjusted to The motor was mixed for 1 minute with respect to the polyester polyol with a molar ratio of 1.05, and the time of the precipitation was measured by a BM type rotary viscometer. The mixture (polyurethane resin) was not lowered to the temperature to 80 ° The results are measured in a constant temperature oil bath of C. The results are shown in the table. The solid acid catalyst polyol is slower in reactivity with the isocyanate than the polyester polyol synthesized by TBT (in the case of urethane). 80 ° C of the weight of the transfer of the shape of the transfer, and then I. The ester film of Example 2 synthesis of 60 ° C TDI 乍 into 2mm pressure for 2 hours after the hard case 1, 2, than 60 ° M's MDI) and stir it: to a temperature of 20 Pas-3. It was confirmed that it did not react with the synthesized polyester ester. -23- .201022314 &lt;Color Evaluation of Polyurethane Sheets&gt; The degree of coloration was confirmed by visual observation of the polyurethane sheets of the examples and the comparative examples. Using the polyurethane granules of the polyester polyol using the solid acid catalyst of the examples, it was confirmed that the coloring was small as compared with the urethane sheet of the comparative example using TBT. The results are shown in Table-3. &lt;Evaluation of Moisture Resistant Strength Retention Rate (Hydrolysis Resistance)&gt; The retention rate of the hydrolysis resistance of the polyurethane sheet under the conditions of moist heat was evaluated. The polyurethane sheet was allowed to stand in a constant temperature and humidity chamber at 80 ° C X 95 % RH for 1 week, and the moisture heat retention retention rate with respect to the tensile strength of the polyurethane sheet before the treatment was confirmed. Using the polyurethane urethane sheet of the polyester polyol using the solid acid catalyst of the example, it was confirmed that the strength retention ratio was high as compared with the polycarboester sheet of the comparative example using TBT. The result is not in Table-3. [Table 3] Example 1 Example 2 Comparative Example 1 Comparative Example 2 Polyester Polyol Synthesis Example 1 500 Synthesis Example 2 500 Comparative Synthesis Example 1 500 Comparative Synthesis Example 2 500 Isocyanate MDI 63.0 62.8 TDI-80 43.8 43.6 Increased reactivity Sticking time (minutes) 43 65 3 8 Appearance transparent light yellow yellowish yellow flakes Physical tensile strength Mpa 3.2 5.3 3.1 5.2 Moisture-resistant heat retention rate 38 42 8 13 [Simple description] [Figure 1] via mass spectrometer The main mass spectrum measured at the time of temperature rise and detachment of the solid acid catalyst a. [Fig. 2] The main mass spectrum measured when the solid acid catalyst a2 was heated by a mass spectrometer -24-201022314. [Fig. 3] Ammonia TPD spectrum of solid acid catalyst a and a2 via TPD-AT-1 type temperature rise-off device [Explanation of main component symbols] A: Solid acid catalyst a B: Solid acid catalyst a2

-25--25-

Claims (1)

.201022314 . 七、申請專利範圍: 1_ 一種聚胺基甲酸酯樹脂組成物,其特徵爲包含聚異氰酸 酯與聚酯多元醇,該聚酯多元醇係於使用多元醇與多價 羧的固體酸觸媒(A)之存在下所製造的聚酯多元醇。 2.如申請專利範圍第1項之聚胺基甲酸酯樹脂組成物,其 中該聚酯多元醇爲製造後將固體酸觸媒(A)自聚酯多元 醇除去者。 3·如申請專利範圍第1項之聚胺基甲酸酯樹脂組成物,其 φ 中該固體酸觸媒(A)爲由金屬氧化物載體(A1)與負載的金 屬氧化物(A2)而成的複合金屬氧化物,或由金屬氧化物 載體(A1)與負載的非金屬化合物(A3)而成的金屬氧化物。 4. 如申請專利範圍第1或2項之聚胺基甲酸酯樹脂組成 物’其中該固體酸觸媒(A)之哈曼特(Hammett)酸度函 數 H。爲 H〇=-3 — 9。 5. 如申請專利範圍第3項之聚胺基甲酸酯樹脂組成物,其 中該固體酸觸媒使用的金屬氧化物載體(A1)爲二氧化 G 矽、氧化鋁、二氧化鈦、二氧化锆任一者,或使用此等 的載體。 6. 如申請專利範圍第3項之聚胺基甲酸酯樹脂組成物,其 中該固體酸觸媒之負載的金屬氧化物(A2)爲鎢氧化物、 鉬氧化物任一者,或倂用此等的固體酸觸媒。 7. 如申請專利範圍第3項之聚胺基甲酸酯樹脂組成物,其 中該固體酸觸媒之金屬氧化物載體(A1)爲二氧化鉻,負載 的氧化物(A2)爲三氧化鉬。 -26- 201022314 8.—種成形品,其使用如申請專利範圍第1至7項中任一 項之聚胺基甲酸酯樹脂組成物。.201022314 . VII. Patent Application Range: 1_ A polyurethane resin composition characterized by comprising a polyisocyanate and a polyester polyol, the polyester polyol being a solid acid using a polyhydric alcohol and a polyvalent carboxyl group A polyester polyol produced in the presence of a catalyst (A). 2. The polyurethane resin composition of claim 1, wherein the polyester polyol is a solid acid catalyst (A) which is removed from the polyester polyol after manufacture. 3. The composition of the polyurethane resin according to claim 1, wherein the solid acid catalyst (A) is a metal oxide carrier (A1) and a supported metal oxide (A2) A composite metal oxide or a metal oxide composed of a metal oxide support (A1) and a supported non-metal compound (A3). 4. The composition of the polyurethane resin composition of claim 1 or 2 wherein the solid acid catalyst (A) has a Hammett acidity function H. H〇=-3-9. 5. The polyurethane resin composition according to claim 3, wherein the metal oxide carrier (A1) used in the solid acid catalyst is G 矽, alumina, titania or zirconia. One, or use such a carrier. 6. The polyurethane resin composition according to claim 3, wherein the metal oxide (A2) supported by the solid acid catalyst is either tungsten oxide or molybdenum oxide, or These solid acid catalysts. 7. The polyurethane resin composition of claim 3, wherein the solid acid catalyst metal oxide support (A1) is chromium dioxide and the supported oxide (A2) is molybdenum trioxide . -26-201022314 8. A molded article using the polyurethane resin composition as claimed in any one of claims 1 to 7. -27--27-
TW98132211A 2008-09-25 2009-09-24 Polyurethane resin composition and molded article thereof TW201022314A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245734 2008-09-25

Publications (1)

Publication Number Publication Date
TW201022314A true TW201022314A (en) 2010-06-16

Family

ID=42059586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132211A TW201022314A (en) 2008-09-25 2009-09-24 Polyurethane resin composition and molded article thereof

Country Status (3)

Country Link
JP (1) JP4623240B2 (en)
TW (1) TW201022314A (en)
WO (1) WO2010035579A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2465073T3 (en) 2009-08-20 2014-06-05 Basf Se Procedure for the production of polyester alcohols
CN111849145B (en) * 2020-07-15 2021-11-30 福州大学 Halogen-free flame-retardant thermoplastic polyurethane nano composite material and preparation method thereof
CN113637222A (en) * 2021-08-13 2021-11-12 浙江工业大学 Multifunctional acidolysis assistant for polyurethane soft foam and synthesis method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791566B2 (en) * 1997-05-14 2006-06-28 ダイセル化学工業株式会社   Method for producing lactone polymer
JP3197513B2 (en) * 1997-08-12 2001-08-13 東邦理化株式会社 Flame retardant polyester polyol composition
JP3690930B2 (en) * 1998-12-24 2005-08-31 三井化学株式会社 Method for producing aromatic polyester polyol
JP4171999B2 (en) * 1999-02-10 2008-10-29 東洋ゴム工業株式会社 Rigid polyurethane foam stock solution and rigid polyurethane foam
DE19907861B4 (en) * 1999-02-24 2006-04-13 Basf Coatings Ag Polyaddition resins, preparable by heterogeneous catalysis, process and use
JP2005162801A (en) * 2003-12-01 2005-06-23 Mitsubishi Chemicals Corp Method for producing aliphatic polyester

Also Published As

Publication number Publication date
WO2010035579A1 (en) 2010-04-01
JP4623240B2 (en) 2011-02-02
JPWO2010035579A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
EP3087118B1 (en) A polyol based on dimer fatty acid residues and the corresponding polyurethanes
JP5588098B2 (en) Polyether-polysiloxane polyol
TWI596134B (en) Polyester and polyurethane manufacturing method
US10035876B2 (en) Branched poly (hydroxy acid) and production process thereof
KR20170115558A (en) Three-dimensional-modeling soluble material
RU2010142606A (en) HYDROPHILIC POLYURETHANE DISPERSIONS
JP2018507315A (en) Polybutadienol for the production of glassy polyurethane
JPWO2013157486A1 (en) Method for producing polyethers
JP2019536848A (en) New high molecular weight polymers derived from waste raw materials
TW201022314A (en) Polyurethane resin composition and molded article thereof
TW201910378A (en) Polyester resin composition and method of producing the same
KR101238355B1 (en) Urethane-forming reaction catalyst and method for producing urethane material
TW201000519A (en) Polyether polyol, rigid polyurethane foam and method for production thereof
CN107531868A (en) Polyurethane outer of water absorption rate with reduction and application thereof
US20170051098A1 (en) Method for producing a polyurethane foam by microcasting
JP6492468B2 (en) Polyalkylene oxide having excellent storage stability and process for producing the same
JPS61200120A (en) Production of lactone-modified compound
JP5716668B2 (en) Method for producing isocyanate group-terminated prepolymer and method for producing polyurethane resin
JP6610186B2 (en) Polyurethane resin-forming composition, sealing material, and hollow fiber membrane module
JP7392230B2 (en) Two-component polyurethane composition, reaction injection molded article, and reaction injection molding method
JP4088960B2 (en) Urethane elastomer-forming composition and process for producing cast urethane elastomer
JP2022515209A (en) Compact polyurethane
JP4199398B2 (en) Aromatic ester-modified polyol, method for producing the same, and method for producing polyurethane elastomer
JPWO2014073580A1 (en) Method for producing hydroxyl group-containing polyether, method for producing hydrolyzable silyl group-containing polyether, and method for producing urethane prepolymer
TW201414766A (en) Method of preparing polycarbonate and polycarbonate prepared by the same