TW201022140A - Method for making nanowire structure - Google Patents

Method for making nanowire structure Download PDF

Info

Publication number
TW201022140A
TW201022140A TW97147316A TW97147316A TW201022140A TW 201022140 A TW201022140 A TW 201022140A TW 97147316 A TW97147316 A TW 97147316A TW 97147316 A TW97147316 A TW 97147316A TW 201022140 A TW201022140 A TW 201022140A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
nanostructure
preparing
film
Prior art date
Application number
TW97147316A
Other languages
Chinese (zh)
Other versions
TWI481554B (en
Inventor
Jia-Ping Wang
jia-jia Wen
Qun-Feng Cheng
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097147316A priority Critical patent/TWI481554B/en
Publication of TW201022140A publication Critical patent/TW201022140A/en
Application granted granted Critical
Publication of TWI481554B publication Critical patent/TWI481554B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for making a nanowire structure. The method includes the following steps of: fabricating a carbon nanotube structure; introducing reacting materials into the carbon nanotube structure; and activating the reacting materials to grow a nanowire structure.

Description

201022140 . 九、發明說明: , 【發明所屬之技術領域】 本發明涉及一種奈米結構的製備方法,尤其涉及一種 以奈米碳管結構為模板的奈米結構的製備方法。 【先前技術】 奈米材料在基礎研究及實際應用如催化、傳感等方面 有著巨大價值。故,奈米材料的製備方法成為研究的熱點。 目前,奈米材料的製備方法可分為自發生長法 ❹(Spontaneous Growth)、模板合成法(Template-Based Synthesis)、電紡紗法(Electrospinning)、平板列印法 (Lithography)等。 先前技術提供一種電紡紗法製備二氧化鈦奈米線的方 法’請參見 “ Fabrication of Titania Nanofibers by Electrospinning”( Dan Li et al,Nano Letters, vol. 3, No· 4, ρ555·560 (2003))。該方法將礦物油與聚乙烯吡咯烷酮 ❹(PVP)的乙醇溶液及二氧化鈦前驅體混合製得漿料,然 後通過電紡紗製備二氧化鈦奈米結構。進一步,通過加熱 使礦物油與聚乙烯吡咯烷酮蒸發,可得到純的二氧化鈦奈 米結構。該二氧化鈦奈米結構包括複數個二氧化鈦奈米 線’且形成一自支撐結構。雖然電紡紗法可製備長度較大 的奈米線且可將其製備成一具有自支樓結構的奈来結構, 然,電纺紗法通f需要專門的電紡紗設備,需要—高電壓, 且需要先將紡紗原料配製成—漿料。故,採用電紡紗法製 備奈米材料工藝複雜’成本較高。 7 201022140 - 奈米碳管(Carbon Nanotube,CNT)為一種新型奈米結 構,由日本研究人員Iijima於1991年首次於實驗室製備獲 #’請參見 “Helical Microtubules of Graphitic Carbon”(S. Iijima,Nature, vol.354, p56 (1991))。由於奈米破管具有一 維形貌及化學、熱方面的穩定性,成為模板法合成奈米材 料的理想模板。 先前技術提供一種採用奈米碳管作為模板生長氮化矽 奈米線的方法,請參見何艷陽等於2005年12月19曰申 ❹請,並於2006年7月19日公開的中國大陸公開專利申請 第CN 1803586A號。該方法包括以下步驟:將矽粉與奈米 二氧化矽粉按一定的重量比混合;提供一雙層剛玉舟,並 將該碎粉與奈米二氧化梦粉的混合物置於該雙層剛玉舟的 下層;將一定量的奈米碳管粉末置於該雙層剛玉舟的上 層;將該雙層剛玉舟置於一含氮氣的高溫爐中進行還原及 氮化,於奈米碳管表面生長氮化矽奈米線。該反應過程中, ◎首先固態的Si及Si02反應生成SiO氣體,然後生成的si〇 氣體與氮氣反應,並於奈米碳管表面生成氮化矽奈米線。 與電紡紗法製備奈米材料相比較,模板法工藝簡單,易於 操作,成本低廉。 然而,上述採用奈米碳管作為模板生長奈米材料的方 法具有以下不足。第一,作為模板的奈米碳管為粉體材料, 其長度有限’故,製備的氮化矽奈米線長度較小。第二, 採用奈米碳管粉體作為模板不易控制產物形貌。第三,奈 米碳管粉體分佈不均勻,且容易團聚,影響產物的尺寸及 201022140 . 均勻性。第四,該方法製備的氮化矽奈米線無法形成一自 支撐結構(所謂自支撐結構指該結構可無需一基底而保持 一特定形狀,如線狀或膜狀),限制其使用。 范守善等人於2002年提出一種製備奈米碳管繩的方 法,請參見公告曰為2008年8月20日的大陸公告專利第 CN100411979C號;於2007年提出一種製備奈米碳管薄膜 結構的方法,請參見公開日為2008年8月13日的大陸公 開專利申請第CN101239712A號。該專利/專利申請提供了 ❹一種將微觀的奈米碳管製備成一宏觀奈米碳管結構的方 法。該奈米碳管繩或奈米碳管膜均為具有一自支撐特性的 宏觀奈米碳管結構。然,先前技術中沒有公開關於採用具 有自支撐特性的奈米碳管結構作為模板製備奈米結構的方 法。 有鑒於此,提供一種採用具有自支撐特性的奈米碳管 結構作為模板製備奈米結構的方法實為必要。 【發明内容】 一種奈米結構的製備方法,其包括以下步驟:提供一 奈米碳管結構;向該奈米碳管結構引入反應原料;及引發 反應原料進行反應,生長奈米結構。 相較於先前技術,由於該奈米碳管結構具有自支撐特 性,故,採用該奈米碳管結構作為模板可直接製備具有自 支撐特性的奈米結構,且工藝簡單,成本低廉。 【實施方式】 以下將結合附圖對本發明作進一步的詳細說明。 9 201022140 . 請參閱圖1,本發明提供一種奈米結構的製備方法, 其包括以下步驟: _ 步驟一,提供一奈米碳管結構。 所述奈米碳管結構包括至少一奈米碳管膜,至少一奈 米碳管線或其組合。當所述奈米碳管結構包括複數個奈米 碳管膜時,該奈米碳管膜可以平行無間隙或平行且重疊設 置。當所述奈米碳管結構僅包括一奈米碳管線時,該奈米 碳管線可以摺疊或纏繞成一層狀奈米碳管結構。當所述奈 ❹米碳管結構包括複數個奈米碳管線時,讓複數個奈米碳管 線可以平行設置、交又設置或編織成一層狀奈米碳管結 構。當所述奈米碳管結構包括奈米碳管膜與奈米碳管線 時,可以將奈米碳管線設置於奈米碳管膜的至少一表面。 所述奈米碳管膜包括複數個均勻分佈的奈米碳管。所 述奈米碳管有序或無序分佈且通過凡德瓦爾力緊密結合。 所述無序指奈米碳管的排列無規則,有序指至少多數奈米 碳管的排列方向具有一定規律。當奈米碳管膜包括無序排 列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列; 當奈米碳管膜包括有序排列的奈米碳管時,奈米碳管沿一 個方向或者複數個方向擇優取向排列。具體地,所述奈米 碳管膜包括奈米碳管拉膜、奈米碳管碾壓膜或奈米碳管絮 化膜。 該奈米碳管結構中的奈米碳管包括單壁奈米碳管、雙 壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈 米碳管的直徑為0.5奈米〜50奈米,雙壁奈米碳管的直徑 201022140 為1.0奈米〜50奈米, ,多壁奈米碳管的直徑為1.5奈米201022140. IX. Description of the Invention: [Technical Field] The present invention relates to a method for preparing a nanostructure, and more particularly to a method for preparing a nanostructure using a carbon nanotube structure as a template. [Prior Art] Nanomaterials have great value in basic research and practical applications such as catalysis and sensing. Therefore, the preparation method of nanomaterials has become a research hotspot. At present, the preparation method of the nano material can be classified into a spontaneous growth method, a template-based synthesis method, an electrospinning method, a plate printing method, and the like. The prior art provides a method for preparing titanium dioxide nanowires by electrospinning method [see Fabrication of Titania Nanofibers by Electrospinning" (Dan Li et al, Nano Letters, vol. 3, No. 4, ρ555.560 (2003)) . The method comprises mixing a mineral oil with an ethanol solution of polyvinylpyrrolidone (PVP) and a titanium dioxide precursor to prepare a slurry, and then preparing a titanium dioxide nanostructure by electrospinning. Further, by heating the mineral oil and polyvinylpyrrolidone by heating, a pure titanium oxide nanostructure can be obtained. The titanium dioxide nanostructure comprises a plurality of titanium dioxide nanowires' and forms a self supporting structure. Although the electrospinning method can prepare a nanowire with a large length and can be prepared into a Nailai structure with a self-supporting structure, the electrospinning method requires a special electrospinning device, which requires high voltage. And the spinning raw material needs to be first formulated into a slurry. Therefore, the process of fabricating nanomaterials by electrospinning is complicated and costly. 7 201022140 - Carbon Nanotube (CNT) is a new nanostructure obtained by Japanese researcher Iijima in laboratory for the first time in 1991. See also "Helical Microtubules of Graphitic Carbon" (S. Iijima, Nature, vol. 354, p56 (1991)). Because of its one-dimensional morphology and chemical and thermal stability, nanotubes are an ideal template for template synthesis of nanomaterials. The prior art provides a method for growing a tantalum nitride nanowire using a carbon nanotube as a template. Please refer to He Yanyang as claimed in December 19, 2005, and published on July 19, 2006. Apply for CN 1803586A. The method comprises the steps of: mixing the tantalum powder with the nanometer cerium oxide powder in a certain weight ratio; providing a double-layer corundum boat, and placing the mixture of the powder and the nano-montowed dream powder on the double-layer corundum The lower layer of the boat; a certain amount of carbon nanotube powder is placed on the upper layer of the double-layer corundum boat; the double-layer corundum boat is placed in a high-temperature furnace containing nitrogen for reduction and nitridation on the surface of the carbon nanotube Growing the tantalum nitride nanowire. During the reaction, ◎ firstly, solid Si and SiO 2 react to form SiO gas, and then the generated Si 气体 gas reacts with nitrogen gas to form a strontium nitride nanowire on the surface of the carbon nanotube. Compared with the preparation of nano materials by electrospinning, the stencil method is simple, easy to operate and low in cost. However, the above method of growing a nanomaterial using a carbon nanotube as a template has the following disadvantages. First, the carbon nanotube as a template is a powder material having a limited length. Therefore, the prepared tantalum nitride nanowire has a small length. Second, it is difficult to control the morphology of the product by using carbon nanotube powder as a template. Third, the carbon nanotube powder is unevenly distributed and easily agglomerated, affecting the size of the product and 201022140. Uniformity. Fourth, the tantalum nitride nanowire prepared by the method cannot form a self-supporting structure (so-called self-supporting structure means that the structure can maintain a specific shape such as a line or a film without a substrate), and its use is restricted. Fan Shoushan et al. proposed a method for preparing nanocarbon tube ropes in 2002. Please refer to the announcement of the mainland China Patent No. CN100411979C on August 20, 2008. In 2007, a method for preparing nanocarbon tube film structure was proposed. Please refer to the publication No. CN101239712A of the mainland publication patent dated August 13, 2008. This patent/patent application provides a method of preparing a microscopic carbon nanotube into a macroscopic carbon nanotube structure. The carbon nanotube rope or the carbon nanotube membrane are both macroscopic carbon nanotube structures having a self-supporting property. However, the prior art does not disclose a method for preparing a nanostructure using a carbon nanotube structure having a self-supporting property as a template. In view of this, it is necessary to provide a method for preparing a nanostructure using a carbon nanotube structure having self-supporting properties as a template. SUMMARY OF THE INVENTION A method for preparing a nanostructure includes the steps of: providing a carbon nanotube structure; introducing a reaction raw material to the carbon nanotube structure; and initiating reaction of the reaction raw material to grow a nanostructure. Compared with the prior art, since the carbon nanotube structure has self-supporting characteristics, the nanocarbon structure having the self-supporting property can be directly prepared by using the carbon nanotube structure as a template, and the process is simple and the cost is low. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. 9 201022140 . Referring to FIG. 1 , the present invention provides a method for preparing a nano structure, which comprises the following steps: _ Step 1, providing a carbon nanotube structure. The carbon nanotube structure comprises at least one carbon nanotube membrane, at least one carbon nanotube line, or a combination thereof. When the carbon nanotube structure comprises a plurality of carbon nanotube membranes, the carbon nanotube membranes may be arranged in parallel without gaps or in parallel and overlapping. When the carbon nanotube structure includes only one nanocarbon line, the nanocarbon line can be folded or wound into a layered carbon nanotube structure. When the naphtha carbon nanotube structure comprises a plurality of nanocarbon pipelines, a plurality of carbon nanotube tubes may be arranged in parallel, disposed, or woven into a layered carbon nanotube structure. When the carbon nanotube structure comprises a carbon nanotube membrane and a nanocarbon pipeline, the nanocarbon pipeline may be disposed on at least one surface of the carbon nanotube membrane. The carbon nanotube membrane comprises a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes are ordered or disorderly distributed and tightly bound by van der Waals forces. The disordered arrangement of the carbon nanotubes is irregular, and the ordering means that at least a majority of the carbon nanotubes have a certain regular arrangement direction. When the carbon nanotube membrane comprises a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or isotropically arranged; when the carbon nanotube membrane comprises an ordered arrangement of carbon nanotubes, the carbon nanotubes Arrange in a preferred direction in one direction or in multiple directions. Specifically, the carbon nanotube film comprises a carbon nanotube film, a carbon nanotube film or a carbon nanotube film. The carbon nanotubes in the carbon nanotube structure include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotubes is 0.5 nm to 50 nm, the diameter of the double-walled carbon nanotubes is 1.0 nm to 50 nm, and the diameter of the multi-walled carbon nanotubes is 1.5 nm.

璘管的長度優選為2〇0〜9〇〇微米。 (一)上述包括奈米碳管拉膜的奈米碳管結 仏砷丄〇录米〜50 。優選地,該奈米 構的製備 方法具體包括以下步驟: 首先,提供一奈米碳管陣列。 本發明中,所述奈米碳為—超㈣奈米竣 列。本發明提供的奈米碳管陣列基本不含有雜質,如無定 型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈 米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。本發明提 供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳 列及多壁奈米碳管陣列中的一種。 其次,從上述奈米碳管陣列中拉取獲得至少一奈米碳 管拉膜。 …^ 該奈米碳管拉膜的製備具體包括以下步驟:從上述奈 ❹米碳管陣列中選定一定寬度的複數個奈米碳管片斷,本發 明優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選 定一定寬度的至少一個奈米碳管片斷;以一定速度沿基本 垂直於奈米碳管陣列生長方向拉伸該複數個奈米碳管片 斷’以形成一連續的奈米碳管拉膜。 請參閱圖2及圖3’所述奈米碳管拉膜包括複數個首 尾相連且擇優取向排列的奈米碳管片段143。奈米碳管拉 膜中的奈米碳管片段143的長度基本相同,所述奈米碳管 片段143包括複數個具有相同長度且相互平行排列的奈米 11 201022140 -碳管145 ’奈米碳管145之間通過凡德瓦爾力緊密連接。 . 所述奈米碳管拉膜中的奈米碳管145具有相同的排列方 $。故,該奈米碳管拉膜中包括複數個首尾相連且擇優取 向排列的奈米碳管145。 最後,採用上述奈米碳管拉膜製備一奈米碳管結構。 所述奈米碳管結構的製備方法具體包括以下步驟:提 供一支撐體;將至少一個奈米碳管拉膜鋪設於該支撐體 上;去除支撐體外多餘的奈米碳管拉膜,形成一奈米碳管 ❹結構。可以理解,本發明中還可將至少兩個奈米碳管拉膜 重疊鋪設於支撐體上,形成一奈来碳管結構。所述奈米碳 管結構包括-奈米碳管拉膜或至少兩個重疊鋪設的奈米碳 管拉膜,且相鄰的奈米碳管拉膜中的奈米碳管排列方向形 成一夾角α,且0ο$α $ 90〇。 該支樓體的大小可依據實際需求確定,可為一基板或 框架。由於奈米碳管陣列中的奈米碳管非常純淨,且由於 ❹^碳管本身的比表面積非常大’故,該奈米碳管拉膜本 f具有較強的黏性,該奈米碳管拉膜可利用其本身的黏性 f;接黏附於支㈣上。可以理解,本發明也可通過-黏結 奈米碳管拉膜黏附於支撐體上。奈米碳管拉膜黏附 ^支樓體上,基板或框架外多餘的奈米碳管拉膜部分可用 蜂去*可以理解’當將奈米碳管拉膜設置於-框架上, 該不米碳管拉膜懸空設置。 =奈米碳管拉膜的製備方法請參見范守善等人於 年8月13日公開的中國大陸第cm〇1239712A號公 12 201022140 . 開專利申請,“奈米碳管薄膜結構及其製備方法”(申請 . 人:清華大學,鴻富錦精密工業(深圳)有限公司)。 由於奈米碳管結構具有一定的自支撐特性,可將該奈 米碳管結構取下後作為模板生長奈米結構。本發明中,為 操作方便,將設置於基板或框架上的奈米碳管結構直接用 作模板生長奈米結構。可以理解,將奈米碳管結構設置於 基板上作為模板生長奈米結構可通過選擇不同導熱係數的 基板控制生長奈米結構的速度。基板導熱係數越大,熱量 ❿向基板傳導就越快,而沿奈米碳管方向傳導就越慢,故, 奈米結構的生長速度越慢。反之則生長速度越快。由於空 氣的導熱係數很小,故,當奈米碳管結構懸空設置時,奈 米結構具有最快的生長速度。 (二)採用奈米碳管線的奈米碳管結構,其製備方法 具體包括以下步驟: 首先,製備至少一奈米碳管線。 所述奈米碳管線包括複數個奈米碳管沿該奈米碳管線 轴向/長度方向有序排列。具體地,該奈米碳管線中奈米碳 管沿該奈米碳管線軸向擇優取向排列或繞奈米碳管線轴向 螺旋排列。該奈米碳管線中奈米碳管通過凡德瓦爾力緊密 結合。請參見圖4,該奈米碳管線中奈米碳管沿該奈米碳 管線軸向/長度方向平行排列。請參見圖5,該奈米碳管線 中奈米碳管沿該奈米碳管線轴向/長度方向呈螺旋狀排列。 圖4所示的奈米碳管線的製備方法為:從上述超順排 的奈米碳管陣列中選取寬度較窄的奈米碳管片斷,採用一 13 201022140 •拉伸工具從奈米碳㈣列中直接拉取獲得;或先從上述超 .順排的奈米碳管陣列中拉取一奈米碳管拉膜,再將該奈米 碳管拉膜經過有機溶劑處理後獲得。該有機溶劑為揮發性 有機溶劑,可選用乙醇、甲醇、丙酮、二氣乙烧及氣仿中 ^種或者4種的混合。該使用有機溶劑處理的步驟可通過 試管將有機溶劑滴落於奈米碳管拉膜表面浸潤,或者,也 2將上述形成的奈求碳管拉膜浸人盛有有機溶劑的容器中 浸潤後取[所述的奈米碳管拉膜經有機溶劑浸潤處理 ❹後,於揮發性有機溶劑的表面張力的作用下,奈米碳管拉 膜收縮成-奈米碳管線。所述奈米碳管線的製備方法請參 見范守善等人於2GG7年6月2G日公開的中國大陸第The length of the manifold is preferably 2 〇 0 to 9 〇〇 micrometers. (1) The above-mentioned carbon nanotubes including the carbon nanotube film are arsenic arsenic recorded in the nanometer ~50. Preferably, the method for preparing the nanostructure comprises the following steps: First, an array of carbon nanotubes is provided. In the present invention, the nanocarbon is a super (tetra) nano column. The carbon nanotube array provided by the present invention contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals forces. The carbon nanotube array provided by the present invention is one of a single-walled carbon nanotube array, a double-walled nanocarbon array, and a multi-walled carbon nanotube array. Next, at least one carbon nanotube film is drawn from the above carbon nanotube array. The preparation of the carbon nanotube film comprises the following steps: selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes, and the invention preferably uses a tape having a certain width to contact the nanometer. The carbon tube array selects at least one carbon nanotube segment of a certain width; and stretches the plurality of carbon nanotube segments in a direction substantially perpendicular to the growth direction of the carbon nanotube array at a rate to form a continuous carbon nanotube Pull the film. Referring to Figures 2 and 3', the carbon nanotube film comprises a plurality of carbon nanotube fragments 143 which are connected end to end and arranged in a preferred orientation. The length of the carbon nanotube segment 143 in the carbon nanotube film is substantially the same, and the carbon nanotube segment 143 includes a plurality of nanometers 112022140-carbon tube 145' nanocarbon having the same length and arranged in parallel with each other. The tubes 145 are tightly connected by Van der Waals forces. The carbon nanotubes 145 in the carbon nanotube film have the same arrangement side. Therefore, the carbon nanotube film comprises a plurality of carbon nanotubes 145 which are connected end to end and are preferably aligned. Finally, a carbon nanotube structure was prepared by using the above carbon nanotube film. The method for preparing the carbon nanotube structure specifically includes the following steps: providing a support body; laying at least one carbon nanotube film on the support body; removing excess nano carbon tube film from the support body to form a film Nano carbon tube structure. It can be understood that in the present invention, at least two carbon nanotube films can be overlapped and laid on the support to form a carbon nanotube structure. The carbon nanotube structure comprises a carbon nanotube film or at least two stacked carbon nanotube film, and the arrangement of the carbon nanotubes in the adjacent carbon nanotube film forms an angle. α, and 0ο$α $ 90〇. The size of the building body can be determined according to actual needs, and can be a substrate or a frame. Since the carbon nanotubes in the carbon nanotube array are very pure, and because the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film has a strong viscosity, and the nano carbon The tube can be affixed to its support (4) by its own viscous f; It will be understood that the present invention can also be adhered to a support by a bonded carbon nanotube film. The carbon nanotube film is adhered to the support structure, and the excess carbon nanotube film on the substrate or the frame can be used by the bee to understand * when the carbon nanotube film is placed on the frame, the rice The carbon tube is suspended from the film. For the preparation method of the carbon nanotube film, please refer to Fan Shoushan et al., published on August 13th, China, No. 1239712A, No. 12 201022140. Open patent application, “Nanocarbon tube film structure and preparation method” (Application. Person: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd.). Since the carbon nanotube structure has a certain self-supporting property, the carbon nanotube structure can be removed and used as a template to grow the nanostructure. In the present invention, for convenience of operation, the carbon nanotube structure provided on the substrate or the frame is directly used as a template growth nanostructure. It can be understood that the arrangement of the carbon nanotube structure on the substrate as a template for growing the nanostructure can control the growth of the nanostructure by selecting substrates having different thermal conductivity. The higher the thermal conductivity of the substrate, the faster the heat transfer to the substrate, and the slower the conduction along the direction of the carbon nanotubes, so the slower the growth rate of the nanostructure. Otherwise, the faster the growth rate. Since the thermal conductivity of the air is small, the nanostructure has the fastest growth rate when the carbon nanotube structure is suspended. (2) A carbon nanotube structure adopting a nano carbon pipeline, and the preparation method thereof specifically comprises the following steps: First, at least one nano carbon pipeline is prepared. The nanocarbon pipeline includes a plurality of carbon nanotubes arranged in an axial/longitudinal direction along the nanocarbon pipeline. Specifically, the carbon nanotubes in the nanocarbon pipeline are arranged in an axially preferred orientation along the nanocarbon pipeline or axially helically arranged around the nanocarbon pipeline. The carbon nanotubes in the nanocarbon pipeline are tightly bonded by van der Waals force. Referring to Figure 4, the carbon nanotubes in the nanocarbon line are arranged in parallel along the axial/longitudinal direction of the nanocarbon line. Referring to Fig. 5, the carbon nanotubes in the nanocarbon line are spirally arranged along the axial/longitudinal direction of the nanocarbon line. The nano carbon pipeline shown in FIG. 4 is prepared by selecting a narrow carbon nanotube segment from the super-aligned carbon nanotube array, using a 13 201022140 • stretching tool from nano carbon (four) The column is directly pulled and obtained; or a nano carbon tube film is pulled from the above-mentioned ultra-aligned carbon nanotube array, and the carbon nanotube film is treated with an organic solvent. The organic solvent is a volatile organic solvent, and may be selected from the group consisting of ethanol, methanol, acetone, ethylene-dioxide, gas-mound, or a mixture of four. The step of treating with an organic solvent may be performed by injecting an organic solvent into a surface of the carbon nanotube film by a test tube, or by infiltrating the formed carbon nanotube film into a container containing an organic solvent. After the surface of the volatile organic solvent is treated by the surface tension of the volatile organic solvent, the carbon nanotube film is shrunk into a nanocarbon line. For the preparation method of the nano carbon pipeline, please refer to Fan Shoushan and others in the mainland China published on June 2G, 2GG7.

Cm9822G9A號公料利申請,“奈米碳管絲及其製作方 法(申》月人.凊華大學’鸿富錦精密工業(深圳)有限 a司)及2008年8月20日公告的中國大陸第 CN1?0411979C號公告專利’ “一種奈米碳管繩及其製造 ❹方法(申β青人.清華大學,鴻富錦精密工業(深圳)有 限公司)。 圖5所示的奈米碳管線的製備方法為:採用一機械外 力將圖4所示的奈米碳管線或者上述的奈米碳管拉膜扭轉 獲得。 其次,採用該奈米碳管線製備一奈米碳管結構。 採用該奈米碳管線製備一奈米碳管結構的方法包括: 將複數個奈米碳管線平行設置,將複數個奈米碳管線平行 且交叉設置或將複數個奈米碳管線編織成一奈米碳管結 201022140 . 構。 . (二)上述包括奈米碳管碾壓膜的奈米碳管結構的製 Θ方法具體包括以下步驟: 首先,提供一奈米碳管陣列形成於一基底,該陣列為 定向排列的奈米碳管陣列。 本發明中’所述奈米碳管陣列為一超順排奈米碳管陣 列。本發明提供的奈米碳管陣列基本不含有雜質,如無定 型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈 米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。本發明提 供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣 列及多壁奈来碳管陣列中的一種。 其次,採用一施壓裝置,擠壓上述奈米碳管陣列獲得 一奈米碳管碾壓膜,其具體過程為: 本發明中,可採用一壓頭,壓頭表面光滑,壓頭的形 狀及擠壓方向決定製備的奈米碳管礙屋膜令奈米碳管的排 〇列方式。具體地,當採用平面壓頭沿垂直於上述奈米碳管 陣列生長的基底的方向擠壓時’可獲得奈米碳管為各向同 性排列的奈米碳管礙壓膜;當採用滾轴狀壓頭沿某一固定 方向礙壓時,可獲得奈来碳管沿該固定方向取向排列的奈 米碳管碟廢膜;當採用滾軸狀壓頭沿不同方向礙壓時,可 獲得奈米碳管沿不同方向取向排列的奈米碳管礙壓膜。 *依據礙壓的方式不同,該奈来碳管碟壓膜中的奈米碳 管可沿-固定方向擇優取向排列,請參閱圖6;或沿不同 方向擇優取向排列,請參閱圖7。所述的複數個奈米碳管 15 201022140 '與該奈米碳管碾壓膜的表面成一夾角α,其中’α大於等 •於零度且小於等於15度(G此15。)。所述奈米碳管礙壓膜 中包括複數個沿同一方向或不同方向擇優取向排列的奈米 碳管,所述奈米碳管之間通過凡德瓦爾力相互吸引,因此 該奈米碳管碾壓膜具有很好的韌性。該奈米碳管碾壓膜 中,奈米碳管均勻分佈,規則排列。該奈米碳管碾壓膜具 有自支撐特性,可直接作為一奈米碳管結構使用。 所述奈米碳管碾壓膜的製備方法請參見申請日為 ❹2007年6月1日的中國大陸第200710074027.5號專利申 請,“奈米碳管薄膜的製備方法”(申請人:清華大學, 鴻富錦精密工業(深圳)有限公司)。 (四)上述包括奈米碳管絮化膜的奈米碳管結構的製 備方法具體包括以下步驟: 首先,提供一奈米碳管原料。 所述奈米碳管原料可為通過化學氣相沈積法、石墨電 ❹極恒流電弧放電沈積法或鐳射蒸發沈積法等各種方法製備 的奈米碳管。 本發明中,採用刀片或其他工具將定向排列的奈米碳 管陣列從基底刮落,獲得一奈米碳管原料。優選地,所述 的奈米碳管原料中,奈米碳管的長度大於1〇〇微米。 其次,將上述奈米碳管原料添加到一溶劑中並進行絮 化處理獲得一奈米碳管絮狀結構,將上述奈米碳管絮狀結 構從溶劑中分離,並對該奈米碳管絮狀結構定型處理以^ 得一奈米碳管薄膜。 16 201022140 • 所述的分離奈米碳管絮狀結構的方法具體包括以下步 驟··將上述含有奈米碳管絮狀結構的溶劑倒入一放有濾紙 _漏斗中’靜置乾燥一段時間從而獲得一分離的奈米碳管 絮狀結構。 所述的奈米碳管%狀結構的定型處理過程具鱧包括以 下步驟··將上述奈米碳管絮狀結構置於一容器中;將該奈 米碳管絮狀結構按照預定形狀攤開;施加一定麗力於攤開 的奈米竣官絮狀結構;及,將該奈米碳管絮狀結構中殘留 ❹的溶劑烘乾或等溶劑自然揮發後獲得一奈米碳管絮化膜。 另,上述分離與定型處理奈米碳管絮狀結構的步驟也 可直接通過抽濾的方式實現,具體包括以下步驟:提供一 微孔濾膜及一抽氣漏斗;將上述含有奈米碳管絮狀結構的 溶劑經過該微孔濾膜倒入該抽氣漏斗中;抽濾並乾燥後獲 得一奈米碳管絮化膜。 請參見圖8’上述奈来碳管絮化膜中包括相互纏繞的 ❹奈米碳管,所述奈米碳管之間通過凡德瓦爾力相互吸引、 纏繞’形成網絡狀結構’因此該奈米碳管絮化膜具有很好 的勃性。該奈米碳管絮化膜中,奈米碳管為各向同性,均 句分佈’無規則排列。該奈米碳管絮化膜具有自支撐特性, 可直接作為一奈米碳管結構使用。 所述奈米碳管絮化膜的製備方法請參見申請曰為 2007 生 λ 口 干4月13日的中國大陸第2〇〇71〇〇74699.6號專利申 请’奈米碳管薄膜的製備方法”(申請人:清華大學, 鴻富錦精密工業(深圳)有限公司)。 17 201022140 • 進一步’本發明還可將至少一奈米碳管線設置於至少 一奈米碳管膜的表面形成一複合結構作為奈米碳管結構。 步驟二’向該奈米碳管結構引入反應原料。 所述反應原料不限’與所要製備的奈米結構相關。該 反應原料可包括金屬、非金屬、半導體中的一種或多種。 如,生長金屬氧化物奈米結構,如氧化鈦、氧化鋁或氧化 鎳的奈米線’反應原料可為金屬(如鈦、紹或錄等)與含 氧氣體;生長金屬石夕化物奈米結構’如;5夕化鈦、碎化鐵或 ❿矽化鎳的奈米線,反應原料可為金屬(如鈦、鐵或鎳等) 與含發氣體;生長非金屬氮化物奈米結構,如氮化砍,反 應原料可為矽源氣與氮氣;生長非金屬碳化物奈米結構, 如碳化矽,反應原料可為矽源氣與碳源氣。 所述向奈米碳管結構引入反應原料的方法不限,可包 括物理氣相沈積法、化學氣相沈積法、浸潰法、喷塗法及 絲網列印法等中的一種或多種。可以理解,根據反應原料 ❿的不同,可選擇不同的方法於奈米碳管結構中的奈米碳管 表面形成反應原料。如,通過物理氣相沈積法可將金屬或 金屬氧化物減射到奈米碳管表面;通過化學氣相沈積法可 於奈求碳管表面形成非金屬氮化物或碳化物;通過浸漬 法、喷塗法或絲網列印法可將金屬有機溶液形成於奈米碳 管結構中的奈米碳管表面。所述反應原料可部分或全部包 覆於奈求石厌管表面或以氣體的形式分佈於奈米碳管周圍。 可以理解,當所述反應原料沈積於奈米碳管結構表面時, 反應原料的厚度應大於30奈米且小於等於1〇〇奈米。 18 201022140 . 步驟三,引發反應原料進行反應,生長奈米結構。 . 所述引發反應原料進行反應的方法包括加熱、鐳射照 射、反應濺射等方法中的一種或多種。可以理解,根據反 應原料反應條件的不同,可選擇不同的方法來引發反應原 料進行反應。如通過加熱可使矽源氣與碳源氣反應製備碳 化矽奈米結構;通過鐳射照射可使金屬與氧氣反應製備金 屬氧化物奈米結構;通過於真空中濺射金屬粒子,同時通 入含氧氣體反應可生長金屬氧化物奈米線。 〇 所述反應原料於反應條件下進行反應生長奈米線。該 奈米線沿奈米碳管結構中的奈米碳管長度方向生長,且包 覆於奈米碳管表面。由於本發明中所採用的奈米碳管結構 模板中的奈米碳管通過凡德瓦爾力緊密結合形成一具有自 支撐特性的奈米碳管結構,故,該反應生長的奈米線亦形 成一具有自支撐特性的奈米結構。 可以理解,當採用奈米碳管拉膜作為模板時,由於奈 ^ 米碳管拉膜中包括複數個首尾相連且沿同一方向擇優取向 ❿ 排列的奈米碳管,故,製備的奈米結構包括複數個奈米線 沿奈米碳管平行排列,且該奈米線的長度與奈米碳管拉膜 的長度相同。由於奈米碳管拉膜的長度不限,可達到數米 以上,故,製備的奈米結構中奈米線的長度可達到數米以 上。通過控制奈米碳管拉膜的鋪設方向,還可控制奈米結 構中的奈米線的排列方向。當採用奈米碳管碾壓膜作為模 板時,由於奈米碳管碾壓膜中包括複數個沿同一方向或不 同方向擇優取向排列的奈米碳管,故,製備的奈米結構包 19 201022140 . 括複數個奈米線沿同一方向或不同方向擇優取向排列。當 _ 採用奈米碳管絮化膜作為模板時,由於奈米碳管絮化膜中 &括複數個相互纏繞的奈米碳管,故,製備的奈米結構包 括複數個奈米線相互纏繞。 進一步,還可包括一將獲得的奈米結構與該奈米碳管 結構分離,獲得純奈米結構的步驟。分離的方法與獲得的 奈米結構的材料相關。本發明通過高溫氧化的過程可將奈 米碳管結構除去。具體地,將反應產物置於高溫爐中,於 ❹ 500〜1000°c條件下保持1〜4小時。可以理解,高溫氧化除 去奈米碳管結構的方法僅限於製備耐高溫的奈米結構, 如:金屬氧化物,非金屬氮化物等。 以下為本發明採用奈米碳管結構作為模板製備奈米結 構的具體實施例: 實施例1 請參閱圖9,本發明第一實施例提供一種奈米結構104 的製備方法,具體包括以下步驟: 步驟一,製備一二維奈米碳管結構100。 本實施例中,將兩個奈米碳管拉膜重疊鋪設於一金屬 環上得到一奈米碳管結構100,且兩個奈米碳管拉膜中奈 米碳管排列方向相同。 步驟二,向該奈米碳管結構100引入反應原料102。 本實施例中,通過磁控濺射法於奈米碳管結構100表 面沈積一層100奈米厚的鈦層。請參見圖10,鈦顆粒均勻 分佈於奈米碳管拉膜中的奈米碳管表面。 201022140 - 步驟三,引發反應原料102進行反應,生長奈米結構 104 ° . 本實施例中,將該沈積有鈦層的奈米碳管結構100置 於大氣環境中,使得奈米碳管結構表面的鈦顆粒與大氣中 的氧氣接觸。然後,採用鐳射掃描,引發自擴散反應,得 到一二維二氧化鈦奈米結構104。該奈米結構104包括複 數個平行排列於同一平面的二氧化鈦奈米線。其中,鐳射 掃描的速度為10〜200厘米/秒,鐳射掃描的功率為0.5〜10 ® 瓦。該自擴散反應的速度大於10厘米/秒。 所述反應原料102於反應條件下進行反應生長奈米線 106。由於本實施例採用奈米碳管拉膜作為模板,該奈米碳 管拉膜中包括複數個首尾相連且沿同一方向排列的奈米碳 管,該奈米線106沿奈米碳管拉膜中的首尾相連的奈米碳 管生長,且包覆於奈米碳管表面,故,在整個奈米碳管結 構100表面生長得到複數個平行排列的奈米線106。該奈 ©米線106的長度等於奈米碳管拉膜的長度。該複數個平行 排列的奈米線106形成二維的奈米結構104。 本實施例中,在奈米碳管拉膜表面製備得到複數個二 氧化鈦奈米線。請參見圖11,該二氧化鈦奈米線該沿著奈 米碳管結構中首尾相連的奈米碳管生長,形成複數個平行 設置的二氧化鈦奈米線,且二氧化鈦奈米線包覆於奈米碳 管表面。請參見圖12,二氧化鈦奈米線的微觀形貌為複數 個連續的類似橢球狀的小顆粒,且均勻分散或包覆於奈米 碳管表面。 21 201022140 . 進一步,本實施例中,將上述二氧化鈦奈米線於大氣 . 環境下熱處理以除去奈米碳管結構得到一純的二氧化鈦奈 米結構。所述熱處理溫度為900°C,所述熱處理的升溫速 » 度為10K/分鐘。請參見圖13,所述的純的二氧化鈦奈米線 形成一具有自支撐特性的薄膜。該二氧化鈦膜的厚度小於 100奈米。該二氧化鈦膜中的二氧化鈦奈米線長度大於900 微米,直徑小於100奈米。 由於本實施例採用奈米碳管拉膜作為模板製備二氧化 〇鈦奈米線,該奈米碳管拉膜包括複數個首尾相連的奈米碳 管,且首尾相連的奈米碳管具有較大的尺度(可達數米以 上),故,可於長達數米的較大的範圍内控制二氧化鈦奈米 線的生長,獲得由長度較大的二氧化鈦奈米線組成的二維 奈米結構104。長度較大的二氧化鈦奈米線有利於其於宏 觀器件中的應用。 實施例2 ©請參閱圖14,本發明第二實施例提供一種奈米結構 204的製備方法。所述奈米結構204的製備方法與本發明 第一實施例中奈米結構的製備方法基本相同,其區別在於 本實施例中將兩個奈米碳管拉膜重疊且垂直交叉鋪設作為 模板生長奈米結構204。 本實施例具體包括以下步驟: 步驟一,製備一二維奈米碳管結構200。 本實施例中,將兩個奈米碳管拉膜重疊且垂直交叉鋪 設於一金屬環上得到一奈米碳管結構200。所述兩個奈米 22 201022140 - 碳管拉膜中的奈米碳管排列方向垂直。 . 步驟二,向該二維奈米碳管結構200引入反應原料 202 ° 本實施例中,通過磁控濺射法於奈米碳管結構200雙 面各沈積一層100奈米後的鈦層作為反應原料202。 步驟三,引發反應原料202進行反應,生長奈米結構 204 ° 所述反應原料202於反應條件下進行反應生長奈米線 ❹ 206。由於本實施例採用奈米碳管拉膜作為模板,每個奈米 碳管拉膜包括複數個首尾相連的奈米碳管,且兩個奈米碳 管拉膜中奈米碳管的排列方向垂直,該奈米線206沿奈米 碳管拉膜中的首尾相連的奈米碳管生長,且包覆於奈米碳 管表面。故,於該奈米碳管結構200表面形成複數個奈米 線206。該複數個奈米線206形成二維奈米結構204。該二 維奈米結構204中的奈米線206部份沿第一方向平行排 ^ 列,部份沿第二方向平行排列,且該第一方向與第二方向 ❹ 相互垂直。 本實施例中,在奈米碳管拉膜表面製備得到兩層交叉 設置的二氧化鈦奈米線。請參見圖15,該二氧化鈦奈米線 包覆於奈米碳管表面。由於二氧化鈦奈米線分散或包覆於 奈米碳管表面,故,二氧化鈦的宏觀形貌與奈米碳管結構 的形貌一致。因此,通過控制奈米碳管拉膜的鋪設角度, 可製備不同交叉角度的二氧化鈦奈米線。 實施例3 23 201022140 - 請參閱圖16,本發明第三實施例提供一種奈米結構 .304的製備方法。所述奈米結構304的製備方法與本發明 第一實施例中奈米結構的製備方法基本相同,其區別在於 本實施例中採用至少一奈米碳管線作為模板生長奈米結構 304 ° 本實施例具體包括以下步驟: 步驟一,製備一一維奈米碳管結構300。 所述一維奈米碳管結構300為一由複數個奈米碳管組 ® 成的線狀結構,其包括單個奈米碳管線或複數個平行排列 成束狀的奈米碳管線。所述奈米碳管線的直徑小於100奈 米。當一維奈米碳管結構300包括複數個平行排列成束狀 的奈米碳管線時,所述奈米碳管線之間的間距大於5奈 米,以便生長奈米線。本實施例中,該奈米碳管結構300 為單個奈米碳管線。該奈米碳管線直徑為50奈米。 步驟二,向該一維奈米碳管結構300引入反應原料 • 302。 本實施例中,通過磁控濺射法於奈米碳管結構300表 面沈積複數個鈦顆粒作為反應原料302。該鈦顆粒直徑為 10〜50奈米。 步驟三,引發反應原料302進行反應,生長奈米結構 304。 所述一維奈米碳管結構300為一由複數個奈米碳管組 成的線狀結構。所述反應原料302於反應條件下進行反 應,並沿一維奈米碳管結構300長度方向生長形成——維 24 201022140 - 奈米結構304。該奈米結構304由單個或複數個奈米線組 . 成。當該一維奈米結構304由複數個奈米線組成時,複數 ,奈米線成束狀排列。 實施例4 請參閱圖17,本發明第四實施例提供一種奈米結構 404的製備方法。所述奈米結構404的製備方法與本發明 第一實施例中奈米結構的製備方法基本相同,其區別在於 本實施例中將奈米碳管膜製備成一三維結構作為模板生長 ❹奈米結構404。 本實施例具體包括以下步驟: 步驟一,製備一三維奈米碳管結構400。 所述三維奈米碳管結構400可以通過將第一實施例中 的奈米碳管拉膜、奈米碳管碾壓膜或奈米碳管絮化膜摺疊 或卷曲而獲得。本實施例中,將奈米碳管拉膜設置於一鋁 框架40上,通過卷曲框架40使奈米碳管拉膜卷成一圓筒 β作為模板。 步驟二,向該三維奈米碳管結構400引入反應原料 402 ° 本實施例中,通過磁控濺射法於奈米碳管結構400表 面沈積一鈦層作為反應原料402。該鈦層厚度為50奈米。 步驟三,引發反應原料402進行反應,生長奈米結構 404 ° 所述反應原料402於反應條件下進行反應生長奈米線 406。由於所述三維奈米碳管結構400中包括複數個首尾相 25 201022140 -連的奈米碳管,該奈米線406沿首尾相連的奈米碳管生 .長’且包覆於奈来碳管表面,故,於奈米碳管結構4〇〇表 孕生長知到複數個平行排列的奈米線4〇6。所述複數個奈 来線406平行於圓筒軸向排列,且形成—三維奈来結構 404 ° 综上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請m料者僅為本發狀較佳實施例, ❹自不能減關本案之巾料利_。舉凡減本案技藝 〇人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明的4米結構製備方法的流程圖。 圖2為本發明製備的奈米碳管拉膜的掃描電鏡照片。 =3為圖2中的奈米碳管拉膜中的奈米碳管片段的結 攝不意圖。 〇片。圖4及圖5為本發明製備的奈米碳管線的掃描電鏡照 鏡照^ ^及圖7為本發明製備的奈米碳管碾壓膜的掃描電 片。圖8為本發明製備的奈米破管絮化膜的掃描電鏡照 圖。圖9為本發明第一實施例的奈米結構製備工藝流程 圖10為本發明第一實施例製備的沈積有鈦層 的奈米 26 201022140 . 碳管結構的掃描電鏡照片。 圖11為本發明第一實施例製備的定向排列的二氧化 鈦奈米線的掃描電鏡照片。 圖12為本發明第一實施例製備的定向排列的二氧化 鈦奈米線的透射電鏡照片。 圖13為本發明第一實施例製備的定向排列的二氧化 鈦奈米線去除奈米碳管模板後的掃描電鏡照片。 圖14為本發明第二實施例的奈米結構製備工藝流程 ❿圖。 圖15為本發明第二實施例製備的交叉設置的二氧化 鈦奈米線的掃描電鏡照片。 圖16為本發明第三實施例的奈米結構製備工藝流程 圖。 圖17為本發明第四實施例的奈米結構製備工藝流程 圖。 100,200,300,400 102,202,302,402 104,204,304,404 106 ,206,406 143 145 ❿【主要元件符號說明】 奈米碳管結構 反應原料 奈米結構 奈米結線 奈米碳管片段 奈米碳管 27Cm9822G9A application for public materials, "Nano carbon tube wire and its production method (Shen" Yueren. Yuhua University 'Hongfujin Precision Industry (Shenzhen) Limited A Division) and mainland China announced on August 20, 2008 CN1?0411979C Announcement Patent '"A carbon nanotube rope and its manufacturing method (Shenzhen Qingren. Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd.). The nanocarbon line shown in Fig. 5 is prepared by twisting a nanocarbon line shown in Fig. 4 or the above-mentioned carbon nanotube film by a mechanical external force. Secondly, a carbon nanotube structure is prepared using the nano carbon line. The method for preparing a carbon nanotube structure by using the nano carbon pipeline comprises: placing a plurality of nano carbon pipelines in parallel, paralleling and cross-setting a plurality of nano carbon pipelines or weaving a plurality of nano carbon pipelines into one nanometer Carbon tube junction 201022140 . (2) The above-mentioned method for preparing a carbon nanotube structure including a carbon nanotube rolled film specifically includes the following steps: First, providing a carbon nanotube array formed on a substrate, the array is oriented nanometer Carbon tube array. In the present invention, the carbon nanotube array is an array of super-sequential carbon nanotubes. The carbon nanotube array provided by the present invention contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals forces. The carbon nanotube array provided by the present invention is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. Secondly, a pressure device is used to extrude the carbon nanotube array to obtain a carbon nanotube rolled film. The specific process is as follows: In the present invention, an indenter can be used, the surface of the indenter is smooth, and the shape of the indenter is used. And the direction of extrusion determines the manner in which the prepared carbon nanotubes block the membranes of the carbon nanotubes. Specifically, when the planar indenter is pressed in a direction perpendicular to the substrate grown by the above-described carbon nanotube array, the carbon nanotubes are obtained as isotropically aligned carbon nanotubes; when the roller is used; When the pressure head is pressed in a certain fixed direction, the carbon nanotube disc waste film which is arranged in the direction of the fixed direction of the carbon nanotubes can be obtained; when the roller-shaped indenter is pressed in different directions, the naphthalene can be obtained. The carbon nanotubes are arranged in different directions and aligned with the carbon nanotubes. *Depending on the way of impeding pressure, the carbon nanotubes in the carbon nanotube film can be arranged in a preferred orientation along the fixed direction, see Figure 6; or in different orientations, see Figure 7. The plurality of carbon nanotubes 15 201022140 'is at an angle α to the surface of the carbon nanotube rolled film, wherein 'α is greater than or equal to zero degrees and less than or equal to 15 degrees (G 15). The carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction or in different directions, and the carbon nanotubes are mutually attracted by van der Waals force, so the carbon nanotubes The laminated film has good toughness. In the carbon nanotube rolled film, the carbon nanotubes are evenly distributed and regularly arranged. The carbon nanotube rolled film has self-supporting properties and can be directly used as a carbon nanotube structure. For the preparation method of the carbon nanotube rolled film, please refer to the patent application of the Chinese mainland No. 200710074027.5 on June 1, 2007, "Preparation method of the carbon nanotube film" (Applicant: Tsinghua University, Hong Fujin Precision Industry (Shenzhen) Co., Ltd.). (4) The above preparation method of the carbon nanotube structure including the carbon nanotube flocculation membrane specifically comprises the following steps: First, a carbon nanotube raw material is provided. The carbon nanotube raw material may be a carbon nanotube prepared by various methods such as chemical vapor deposition, graphite electric constant current arc discharge deposition or laser evaporation deposition. In the present invention, an array of aligned carbon nanotube arrays is scraped off the substrate using a blade or other tool to obtain a carbon nanotube material. Preferably, in the carbon nanotube raw material, the length of the carbon nanotube is greater than 1 〇〇 micrometer. Next, the above carbon nanotube raw material is added to a solvent and subjected to flocculation treatment to obtain a nano carbon tube floc structure, and the above carbon nanotube floc structure is separated from the solvent, and the carbon nanotube is separated. The floc structure is shaped to obtain a carbon nanotube film. 16 201022140 • The method for separating the carbon nanotube floc structure comprises the following steps: pouring the solvent containing the carbon nanotube floc structure into a filter paper _ funnel to be allowed to stand for a period of time A separate carbon nanotube floc structure is obtained. The shaping treatment process of the carbon nanotube % structure comprises the following steps: placing the above-mentioned carbon nanotube floc structure in a container; spreading the carbon nanotube floc structure according to a predetermined shape Applying a certain force to the unfolded nano-feather-like floc structure; and drying the solvent of the residual ruthenium in the nano-carbon tube floc structure or naturally evaporating the solvent to obtain a carbon nanotube flocculation film . In addition, the step of separating and shaping the carbon nanotube floc structure can also be directly performed by suction filtration, and specifically includes the following steps: providing a microporous membrane and an extraction funnel; and the above-mentioned carbon nanotubes are included The solvent of the floc structure is poured into the suction funnel through the microporous membrane; after suction filtration and drying, a carbon nanotube flocculation membrane is obtained. Referring to FIG. 8 'the above-mentioned carbon nanotube flocculation film includes intertwined tantalum carbon tubes, which are attracted to each other by van der Waals forces, and are entangled to form a network structure. The carbon nanotube film has a good boobility. In the carbon nanotube flocculation membrane, the carbon nanotubes are isotropic, and the uniform distribution is 'arranged irregularly. The carbon nanotube flocculation membrane has self-supporting properties and can be directly used as a carbon nanotube structure. For the preparation method of the carbon nanotube film, please refer to the application for the preparation of the nano carbon tube film of the Japanese Patent No. 2, 71, 74699.6, which is filed on April 13, 2013. (Applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd.) 17 201022140 • Further, the present invention can also provide at least one nano carbon line on the surface of at least one carbon nanotube film to form a composite structure. As a carbon nanotube structure, step two 'introducing a reaction raw material to the carbon nanotube structure. The reaction raw material is not limited to being related to the nanostructure to be prepared. The reaction raw material may include metal, nonmetal, semiconductor For example, the growth metal oxide nanostructure, such as titanium oxide, aluminum oxide or nickel oxide nanowire 'reaction material can be metal (such as titanium, Shao or recorded) and oxygen-containing gas; growing metal stone The structure of the kiln nanostructure is as follows: a nanowire of titanium, iron hydride or nickel hydride, and the reaction raw material may be a metal (such as titanium, iron or nickel) and a gas containing a gas; a non-metal nitride nanoparticle is grown. Rice knot The structure, such as nitriding, the reaction raw material may be helium source gas and nitrogen gas; the growth of non-metal carbide nanostructure, such as niobium carbide, the reaction raw material may be helium source gas and carbon source gas. The method of introducing the reaction raw material is not limited, and may include one or more of a physical vapor deposition method, a chemical vapor deposition method, a dipping method, a spray coating method, and a screen printing method. Different, different methods can be selected to form the reaction raw materials on the surface of the carbon nanotubes in the carbon nanotube structure. For example, the metal or metal oxide can be reduced to the surface of the carbon nanotube by physical vapor deposition; The vapor deposition method can form a non-metal nitride or carbide on the surface of the carbon tube; the metal organic solution can be formed into the nano carbon in the carbon nanotube structure by dipping, spraying or screen printing. The surface of the tube may be partially or completely coated on the surface of the anaerobic tube or distributed in the form of a gas around the carbon nanotube. It is understood that when the reaction raw material is deposited on the surface of the carbon nanotube structure Reaction The thickness of the material should be greater than 30 nanometers and less than or equal to 1 nanometer. 18 201022140. Step 3, initiating the reaction raw material to carry out the reaction, growing the nanostructure. The method for initiating the reaction raw material to carry out the reaction includes heating, laser irradiation, One or more of the methods such as reactive sputtering, it can be understood that different methods may be selected to initiate the reaction of the reaction raw materials according to different reaction conditions of the reaction raw materials, such as heating to react the source gas with the carbon source gas to prepare lanthanum carbide. Nanostructure; metal oxide nanostructure can be prepared by laser irradiation to react with oxygen; metal oxide nanowires can be grown by sputtering metal particles in a vacuum while introducing an oxygen-containing gas reaction. The raw material is reacted under the reaction conditions to grow a nanowire. The nanowire is grown along the length of the carbon nanotube in the carbon nanotube structure and coated on the surface of the carbon nanotube. Since the carbon nanotubes in the carbon nanotube structure template used in the present invention are closely combined by van der Waals force to form a carbon nanotube structure having self-supporting properties, the nanowires of the reaction growth are also formed. A nanostructure with self-supporting properties. It can be understood that when a carbon nanotube film is used as a template, since the carbon nanotube film comprises a plurality of carbon nanotubes arranged end to end and aligned in the same direction, the prepared nanostructure is prepared. The plurality of nanowires are arranged in parallel along the carbon nanotubes, and the length of the nanowire is the same as the length of the carbon nanotube film. Since the length of the carbon nanotube film is not limited to several meters, the length of the nanowire in the prepared nanostructure can be several meters or more. By controlling the laying direction of the carbon nanotube film, it is also possible to control the arrangement direction of the nanowires in the nanostructure. When a carbon nanotube rolled film is used as a template, since the carbon nanotube rolled film includes a plurality of carbon nanotubes arranged in the same direction or in different directions, the prepared nanostructure package 19 201022140 A plurality of nanowires are arranged in the same direction or in different directions. When using a carbon nanotube flocculation membrane as a template, since the carbon nanotube flocculation membrane includes a plurality of intertwined carbon nanotubes, the prepared nanostructure includes a plurality of nanowires. Winding. Further, a step of separating the obtained nanostructure from the carbon nanotube structure to obtain a pure nanostructure may be included. The method of separation is related to the material of the obtained nanostructure. The present invention removes the carbon nanotube structure by a high temperature oxidation process. Specifically, the reaction product is placed in a high temperature furnace and maintained at ❹500 to 1000 ° C for 1 to 4 hours. It can be understood that the method for removing the carbon nanotube structure by high temperature oxidation is limited to the preparation of high temperature resistant nanostructures such as metal oxides, non-metal nitrides and the like. The following is a specific embodiment of the invention for preparing a nanostructure using a carbon nanotube structure as a template: Embodiment 1 Referring to FIG. 9, a first embodiment of the present invention provides a method for preparing a nanostructure 104, which specifically includes the following steps: In step one, a two-dimensional carbon nanotube structure 100 is prepared. In this embodiment, two carbon nanotube films are stacked on a metal ring to obtain a carbon nanotube structure 100, and the carbon nanotubes in the two carbon nanotube films are arranged in the same direction. In the second step, the reaction raw material 102 is introduced into the carbon nanotube structure 100. In this embodiment, a layer of 100 nm thick titanium is deposited on the surface of the carbon nanotube structure 100 by magnetron sputtering. Referring to Figure 10, the titanium particles are evenly distributed on the surface of the carbon nanotubes in the carbon nanotube film. 201022140 - Step 3, initiating the reaction of the starting material 102, and growing the nanostructure 104 °. In this embodiment, the carbon nanotube structure 100 deposited with the titanium layer is placed in an atmosphere to make the surface of the carbon nanotube structure The titanium particles are in contact with oxygen in the atmosphere. Then, a self-diffusion reaction is initiated by laser scanning to obtain a two-dimensional titanium dioxide nanostructure 104. The nanostructure 104 includes a plurality of titanium dioxide nanowires arranged in parallel on the same plane. Among them, the speed of laser scanning is 10~200 cm/sec, and the power of laser scanning is 0.5~10 ® watts. The rate of the self-diffusion reaction is greater than 10 cm/sec. The reaction starting material 102 is subjected to reaction growth of the nanowire 106 under the reaction conditions. Since the carbon nanotube film is used as a template in the embodiment, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in the same direction, and the nanowire 106 is stretched along the carbon nanotube. The first and last connected carbon nanotubes are grown and coated on the surface of the carbon nanotubes, so that a plurality of parallel aligned nanowires 106 are grown on the surface of the entire carbon nanotube structure 100. The length of the nano-line 106 is equal to the length of the carbon nanotube film. The plurality of parallel aligned nanowires 106 form a two-dimensional nanostructure 104. In this embodiment, a plurality of TiO 2 nanowires are prepared on the surface of the carbon nanotube film. Referring to FIG. 11, the titanium dioxide nanowires are grown along the carbon nanotubes connected end to end in the carbon nanotube structure to form a plurality of parallel titanium dioxide nanowires, and the titanium dioxide nanowires are coated on the nano carbon. Tube surface. Referring to Fig. 12, the microstructure of the titanium dioxide nanowire is a plurality of continuous ellipsoid-like small particles uniformly dispersed or coated on the surface of the carbon nanotube. 21 201022140. Further, in the present embodiment, the above titanium dioxide nanowire is heat-treated in the atmosphere to remove the carbon nanotube structure to obtain a pure titanium oxide nanostructure. The heat treatment temperature was 900 ° C, and the heat treatment rate of the heat treatment was 10 K / min. Referring to Figure 13, the pure titanium dioxide nanowires form a film having self-supporting properties. The thickness of the titanium dioxide film is less than 100 nm. The titanium dioxide nanowires in the titanium dioxide film have a length greater than 900 microns and a diameter less than 100 nanometers. Since the present embodiment uses a carbon nanotube film as a template to prepare a titanium dioxide nanowire, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end, and the carbon nanotubes connected end to end have a comparative Large scale (up to several meters), so the growth of titanium dioxide nanowires can be controlled in a large range of several meters, and a two-dimensional nanostructure composed of a large length of titanium dioxide nanowires can be obtained. 104. Larger titanium dioxide nanowires are advantageous for their applications in macro devices. Embodiment 2 © Referring to Figure 14, a second embodiment of the present invention provides a method of preparing a nanostructure 204. The preparation method of the nanostructure 204 is basically the same as the preparation method of the nanostructure in the first embodiment of the present invention, and the difference is that in the embodiment, two carbon nanotube films are overlapped and vertically cross-laid as a template growth. Nanostructure 204. This embodiment specifically includes the following steps: Step one, preparing a two-dimensional carbon nanotube structure 200. In this embodiment, two carbon nanotube films are overlapped and vertically laid on a metal ring to obtain a carbon nanotube structure 200. The two nanometers 22 201022140 - the carbon nanotubes in the carbon tube film are arranged in a vertical direction. Step 2, introducing a reaction material 202 ° into the two-dimensional carbon nanotube structure 200. In this embodiment, a layer of 100 nm titanium layer is deposited on both sides of the carbon nanotube structure 200 by magnetron sputtering. Reaction starting material 202. In the third step, the reaction raw material 202 is initiated to react, and the nanostructure is grown 204 °. The reaction raw material 202 is subjected to reaction to grow nanowire ❹ 206 under the reaction conditions. Since the carbon nanotube film is used as a template in the embodiment, each of the carbon nanotube films comprises a plurality of carbon nanotubes connected end to end, and the arrangement direction of the carbon nanotubes in the two carbon nanotube films is arranged. Vertically, the nanowire 206 grows along the end-to-end carbon nanotubes in the carbon nanotube film and is coated on the surface of the carbon nanotube. Therefore, a plurality of nanowires 206 are formed on the surface of the carbon nanotube structure 200. The plurality of nanowires 206 form a two-dimensional nanostructure 204. The portions of the nanowire 206 in the two-dimensional nanostructure 204 are arranged in parallel in the first direction, and the portions are arranged in parallel in the second direction, and the first direction and the second direction ❹ are perpendicular to each other. In this embodiment, two layers of titanium dioxide nanowires arranged in a cross section are prepared on the surface of the carbon nanotube film. Referring to Figure 15, the titanium dioxide nanowire is coated on the surface of the carbon nanotube. Since the titanium dioxide nanowires are dispersed or coated on the surface of the carbon nanotubes, the macroscopic morphology of the titanium dioxide is consistent with the morphology of the carbon nanotube structure. Therefore, by controlling the laying angle of the carbon nanotube film, different angles of titanium dioxide nanowires can be prepared. Example 3 23 201022140 - Referring to Figure 16, a third embodiment of the present invention provides a method of preparing a nanostructure .304. The preparation method of the nanostructure 304 is basically the same as the preparation method of the nanostructure in the first embodiment of the present invention, and the difference is that in the embodiment, at least one nano carbon pipeline is used as a template to grow the nanostructure 304 °. The example specifically includes the following steps: Step one, preparing a one-dimensional carbon nanotube structure 300. The one-dimensional carbon nanotube structure 300 is a linear structure composed of a plurality of carbon nanotube groups, and includes a single nano carbon line or a plurality of nano carbon lines arranged in parallel in a bundle. The nanocarbon line has a diameter of less than 100 nm. When the one-dimensional carbon nanotube structure 300 includes a plurality of nanocarbon lines arranged in parallel in a bundle, the spacing between the nanocarbon lines is greater than 5 nm to grow the nanowires. In this embodiment, the carbon nanotube structure 300 is a single carbon carbon pipeline. The nano carbon line has a diameter of 50 nm. In step two, a reaction material • 302 is introduced into the one-dimensional carbon nanotube structure 300. In the present embodiment, a plurality of titanium particles are deposited as a reaction material 302 on the surface of the carbon nanotube structure 300 by magnetron sputtering. The titanium particles have a diameter of 10 to 50 nm. In the third step, the reaction raw material 302 is initiated to react to grow the nanostructure 304. The one-dimensional carbon nanotube structure 300 is a linear structure composed of a plurality of carbon nanotubes. The reaction starting material 302 is reacted under the reaction conditions and grown along the length of the one-dimensional carbon nanotube structure 300 - dimension 24 201022140 - nanostructure 304. The nanostructure 304 is formed from a single or a plurality of nanowire sets. When the one-dimensional nanostructure 304 is composed of a plurality of nanowires, the plurality of nanowires are arranged in a bundle. Embodiment 4 Referring to Figure 17, a fourth embodiment of the present invention provides a method of fabricating a nanostructure 404. The preparation method of the nanostructure 404 is basically the same as the preparation method of the nanostructure in the first embodiment of the present invention, and the difference is that the carbon nanotube film is prepared into a three-dimensional structure as a template for growing the nanostructure in the embodiment. 404. This embodiment specifically includes the following steps: Step one, preparing a three-dimensional carbon nanotube structure 400. The three-dimensional carbon nanotube structure 400 can be obtained by folding or crimping the carbon nanotube film, the carbon nanotube film or the carbon nanotube film of the first embodiment. In this embodiment, the carbon nanotube film is placed on an aluminum frame 40, and the carbon nanotube film is wound into a cylinder β as a template by the crimping frame 40. Step 2, introducing a reaction material 402 ° into the three-dimensional carbon nanotube structure 400. In this embodiment, a titanium layer is deposited as a reaction material 402 on the surface of the carbon nanotube structure 400 by magnetron sputtering. The titanium layer has a thickness of 50 nm. In the third step, the reaction starting material 402 is initiated to react, and the nanostructure is grown at 404 °. The reaction starting material 402 is subjected to reaction to grow the nanowire 406 under the reaction conditions. Since the three-dimensional carbon nanotube structure 400 includes a plurality of first and last phase 25 201022140-connected carbon nanotubes, the nanowire 406 is formed along the end-to-end connected carbon nanotubes. On the surface of the tube, it is known that a plurality of parallel arranged nanowires 4〇6 are formed on the surface of the carbon nanotube structure. The plurality of Neil lines 406 are arranged parallel to the axial direction of the cylinder, and form a three-dimensional Nailai structure 404 °. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application for the patent application is only In the preferred embodiment of the present invention, it is not possible to reduce the profit of the case. Equivalent modifications or variations made by a person in accordance with the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method for preparing a 4-meter structure of the present invention. 2 is a scanning electron micrograph of a carbon nanotube film produced by the present invention. =3 is the result of the formation of the carbon nanotube segments in the carbon nanotube film of Fig. 2. Bracts. 4 and FIG. 5 are scanning electron microscopy images of the nano carbon pipeline prepared by the present invention, and FIG. 7 is a scanning electric film of the carbon nanotube rolled film prepared by the present invention. Fig. 8 is a scanning electron micrograph of a nanotube breaking flocculation membrane prepared by the present invention. Figure 9 is a flow chart showing a process for preparing a nanostructure according to a first embodiment of the present invention. Figure 10 is a perspective view of a carbon nanotube structure prepared by a titanium layer deposited on a titanium layer prepared in accordance with a first embodiment of the present invention. Figure 11 is a scanning electron micrograph of oriented aligned titanium dioxide nanowires prepared in accordance with a first embodiment of the present invention. Figure 12 is a transmission electron micrograph of oriented aligned titanium dioxide nanowires prepared in accordance with a first embodiment of the present invention. Figure 13 is a scanning electron micrograph of the aligned titanium dioxide nanowire prepared by the first embodiment of the present invention after removal of the carbon nanotube template. Figure 14 is a cross-sectional view showing a process for preparing a nanostructure according to a second embodiment of the present invention. Figure 15 is a scanning electron micrograph of a cross-arranged titanium dioxide nanowire prepared in accordance with a second embodiment of the present invention. Figure 16 is a flow chart showing the preparation process of a nanostructure according to a third embodiment of the present invention. Figure 17 is a flow chart showing the preparation process of a nanostructure according to a fourth embodiment of the present invention. 100,200,300,400 102,202,302,402 104,204,304,404 106 ,206,406 143 145 ❿【Main component symbol description】Nanocarbon tube structure Reaction raw material Nanostructure Nanowire Nano carbon nanotube fragment Carbon nanotube 27

Claims (1)

201022140 '十、申請專利範圍 ·!.:種奈米結構的製備方法,其包括以下步驟: .提供一奈米碳管結構; •向該’τΊ碳管結構引人反應原料;及 引發反應原料進行反應生長奈米結構。 2=申請專利範圍第i項所述的奈⑽構的製備方法,其 ’所述奈米碳管結構包括至少—奈米碳管拉膜、至 -奈米碳管碾壓膜、至少一奈米碳管絮化膜、至少一太 米碳管線或其組合。 ,T' 3·如申請專利範圍第2項所述的奈米結構的製備方法,其 中,所述奈米碳管拉膜包括複數個首尾相連且沿同一 向擇優取向排列的奈米碳管。 4·如申請專利範圍第2項所述的奈米結構的製備方法,其 中,進一步提供一支撐體,將至少一個奈米碳管拉膜設 置於該支撐體上。 ❹5·如申請專利範圍第4項所述的奈米結構的製備方法,其 中,所述支撐體為一基板或框架。 6·如申請專利範圍第2項所述的奈米結構的製備方法,其 中,所述奈米碳管礙壓膜包括複數個沿同一方向或不同 方向擇優取向排列的奈米碳管。 7.如申請專利範圍第2項所述的奈米結構的製備方法,其 中,所述奈米碳管絮化膜包括複數個相互纏繞的奈米碳 管。 8·如申請專利範圍第2項所述的奈米結構的製備方法,其 28 201022140 - 中,所述奈米碳管結構包括複數個奈米碳管線平行設置 . 或交叉設置。 9·.如申請專利範圍第2項所述的奈米結構的製備方法,其 中,所述奈米碳管線包括複數個奈米碳管沿該奈来碳管 線轴向擇優取向排列或繞奈米碳管線軸向螺旋排列。 10.如申請專利範圍第2項所述的奈米結構的製備方法,其 中,至少一奈米碳管線設置於該奈米碳管拉膜,奈米碳 管碾壓膜或奈米碳管絮化膜的至少一表面。 ❹11.如申請專利範圍第1項所述的奈米結構的製備方法,其 中,所述反應原料包括金屬、非金屬及半導體中的一種 或多種。 12.如申請專利範圍第1項所述的奈米結構的製備方法,其 中,所述向奈米碳管結構引入反應原料的方法包括物理 氣相沈積法、化學氣相沈積法、浸潰法、喷塗法及絲網 列印法中的一種或多種。 ⑩13.如申請專利範圍第}項所述的奈米結構的製備方法,其 中,所述引發反應原料進行反應的方法包括加熱、鐳射 照射及反應錢射中的一種或多種。 14. 如申請專利範圍第1項所述的奈来結構的製備方法,其 中’所述引發反減料進行反射長奈米結構的步驟之 後進-步包括-通過高溫氧化去除該奈来碳管結構的步 驟。 15. 如申請專利範圍第11項所述的奈米結構的製備方法, 其中,所述高溫氧化的溫度為5〇0〜100(TC,所述高溫氧 29 201022140 化的時間小於4小時。 i6_m範:第.1項所述的奈米結構的製備方法,其 構與所述奈米碳管結構的:=形成,且該奈 r所請第1項所料奈米结制㈣方法,其 结二結構包括複數個奈婦,所述奈米 =:複數個奈米樣’該奈米線沿著奈米碳管的長度 =種奈米結構的製備方法,其包括以下步驟·· 製備一奈米碳管結構; 向該奈米碳管結構表面沈積一金屬層;及 將該金屬層氧化,形成金屬氧化物奈米結構。 19·Γ備申範圍第18項所述的金屬氧化物奈米結構的 ί方法’其中’所述金屬層厚度應大於30奈米且小於 等於100奈米。 W 20.如申请專利範圍$ 18項所述的金屬氧化物奈米結構的 製備方法’其中,所述將金屬層氧化的方法包括於一含 氧環境下加熱或鐳射照射該金屬層。201022140 '10. Patent application scope!!: Preparation method of seed nano structure, which includes the following steps: providing a carbon nanotube structure; • introducing a reaction raw material to the 'τΊ carbon tube structure; and initiating a reaction raw material The reaction was carried out to grow a nanostructure. 2=The preparation method of the naphthalene (10) structure described in the scope of claim patent, wherein the carbon nanotube structure comprises at least a carbon nanotube film, a carbon nanotube film, at least one nanometer. A carbon tube flocculation membrane, at least one metre carbon pipeline or a combination thereof. The method for preparing a nanostructure according to claim 2, wherein the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation. 4. The method of preparing a nanostructure according to claim 2, wherein a support is further provided, and at least one carbon nanotube film is placed on the support. The method for producing a nanostructure according to the fourth aspect of the invention, wherein the support is a substrate or a frame. 6. The method for preparing a nanostructure according to claim 2, wherein the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction or in different directions. 7. The method of preparing a nanostructure according to claim 2, wherein the carbon nanotube flocculation membrane comprises a plurality of intertwined carbon nanotubes. 8. The method for preparing a nanostructure according to claim 2, wherein the carbon nanotube structure comprises a plurality of nano carbon pipelines arranged in parallel or in a cross arrangement. 9. The method for preparing a nanostructure according to claim 2, wherein the nanocarbon pipeline comprises a plurality of carbon nanotubes arranged in an axially preferred orientation along the nematic carbon pipeline or around the nanometer. The carbon pipelines are arranged in an axial spiral. 10. The method for preparing a nanostructure according to claim 2, wherein at least one nano carbon line is disposed on the carbon nanotube film, the carbon nanotube film or the carbon nanotube film At least one surface of the film. The method for producing a nanostructure according to the first aspect of the invention, wherein the reaction material comprises one or more of a metal, a nonmetal, and a semiconductor. 12. The method for preparing a nanostructure according to claim 1, wherein the method for introducing a reaction raw material into the carbon nanotube structure comprises physical vapor deposition, chemical vapor deposition, and dipping One or more of the spray coating method and the screen printing method. 1013. The method for preparing a nanostructure according to the invention of claim 1, wherein the method for initiating the reaction of the starting material comprises one or more of heating, laser irradiation, and reaction. 14. The method for preparing a Neil structure according to Item 1, wherein the step of inducing the counter-reduction to reflect the long nanostructure comprises: removing the carbon nanotube by high temperature oxidation. The steps of the structure. 15. The method for preparing a nanostructure according to claim 11, wherein the high temperature oxidation temperature is 5 〇 0 to 100 (TC, and the high temperature oxygen 29 201022140 is less than 4 hours. i6_m The method for preparing a nanostructure according to the above item 1, wherein the structure is the same as that of the carbon nanotube structure: and the nano-junction (4) method of the first item is The structure of the second structure includes a plurality of women, the nanometer =: a plurality of nanometers. The method of preparing the nanowire along the length of the carbon nanotubes = the structure of the nanostructure, which comprises the following steps: a carbon nanotube structure; depositing a metal layer on the surface of the carbon nanotube structure; and oxidizing the metal layer to form a metal oxide nanostructure. 19. The metal oxide naphthalene described in Item 18 of the preparation scope The method of the rice structure, wherein the thickness of the metal layer should be greater than 30 nm and less than or equal to 100 nm. W 20. The method for preparing a metal oxide nanostructure as described in claim 18, wherein The method of oxidizing a metal layer includes heating in an oxygen-containing environment or An irradiating the metal layer.
TW097147316A 2008-12-05 2008-12-05 Method for making nanowire structure TWI481554B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097147316A TWI481554B (en) 2008-12-05 2008-12-05 Method for making nanowire structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097147316A TWI481554B (en) 2008-12-05 2008-12-05 Method for making nanowire structure

Publications (2)

Publication Number Publication Date
TW201022140A true TW201022140A (en) 2010-06-16
TWI481554B TWI481554B (en) 2015-04-21

Family

ID=44832936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097147316A TWI481554B (en) 2008-12-05 2008-12-05 Method for making nanowire structure

Country Status (1)

Country Link
TW (1) TWI481554B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405712B (en) * 2010-08-27 2013-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making same
TWI405713B (en) * 2010-06-24 2013-08-21 Hon Hai Prec Ind Co Ltd Method for making raman scattering substrate
US8593047B2 (en) 2010-11-29 2013-11-26 Tsinghua University Field emission unit and pixel tube for field emission display
US8796024B2 (en) 2011-08-01 2014-08-05 Tsinghua University Method for culturing neural cells using culture medium comprising carbon nanotube wires
US8828725B2 (en) 2011-08-01 2014-09-09 Tsinghua University Culture medium
US8900866B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming nerve graft
US8900867B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming culture medium
TWI477599B (en) * 2011-01-28 2015-03-21 Hon Hai Prec Ind Co Ltd Culture substrate
TWI490335B (en) * 2011-04-19 2015-07-01 Hon Hai Prec Ind Co Ltd Culture layer and metohd for making the same and method for making nerve graft using the culture layer
TWI513819B (en) * 2011-06-30 2015-12-21 Hon Hai Prec Ind Co Ltd Culture layer, graft using the same, and metohd for making the graft
US9370607B2 (en) 2011-01-28 2016-06-21 Tsinghua University Nerve graft
US9523162B2 (en) 2010-08-23 2016-12-20 Tsinghua University Method for making marco-scale carbon nanotube tube structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311306A (en) * 2007-05-21 2008-11-26 辽宁科技大学 Method for plating copper on surface of carbon nanotube

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405713B (en) * 2010-06-24 2013-08-21 Hon Hai Prec Ind Co Ltd Method for making raman scattering substrate
US9523162B2 (en) 2010-08-23 2016-12-20 Tsinghua University Method for making marco-scale carbon nanotube tube structure
TWI405712B (en) * 2010-08-27 2013-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making same
US8593047B2 (en) 2010-11-29 2013-11-26 Tsinghua University Field emission unit and pixel tube for field emission display
US9114193B2 (en) 2011-01-28 2015-08-25 Tsinghua University Method for culturing cells on culture medium
US9233190B2 (en) 2011-01-28 2016-01-12 Tsinghua University Culture substrate comprising carbon nanotube structure
US8900867B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming culture medium
TWI477599B (en) * 2011-01-28 2015-03-21 Hon Hai Prec Ind Co Ltd Culture substrate
TWI477603B (en) * 2011-01-28 2015-03-21 Hon Hai Prec Ind Co Ltd Method for making culture substrate
US9370607B2 (en) 2011-01-28 2016-06-21 Tsinghua University Nerve graft
US8900866B2 (en) 2011-01-28 2014-12-02 Tsinghua University Method for forming nerve graft
TWI490335B (en) * 2011-04-19 2015-07-01 Hon Hai Prec Ind Co Ltd Culture layer and metohd for making the same and method for making nerve graft using the culture layer
US9334474B2 (en) 2011-04-19 2016-05-10 Tsinghua University Method for manufacturing culture medium comprising carbon nanotubes and growing cells thereon
TWI513819B (en) * 2011-06-30 2015-12-21 Hon Hai Prec Ind Co Ltd Culture layer, graft using the same, and metohd for making the graft
TWI490338B (en) * 2011-08-01 2015-07-01 Hon Hai Prec Ind Co Ltd Culture substrate and neural graft using the same
US8828725B2 (en) 2011-08-01 2014-09-09 Tsinghua University Culture medium
TWI482859B (en) * 2011-08-01 2015-05-01 Hon Hai Prec Ind Co Ltd A method for using a culture substrate
US9433703B2 (en) 2011-08-01 2016-09-06 Tsinghua University Neural graft
US8796024B2 (en) 2011-08-01 2014-08-05 Tsinghua University Method for culturing neural cells using culture medium comprising carbon nanotube wires

Also Published As

Publication number Publication date
TWI481554B (en) 2015-04-21

Similar Documents

Publication Publication Date Title
TW201022140A (en) Method for making nanowire structure
JP5518438B2 (en) Method for producing nanowire structure
JP5904562B2 (en) Granular substrate or linear substrate provided with aligned CNT aggregate
CN101880023B (en) Nanomaterial membrane structure
TWI327177B (en) Carbon nanotube film and method for making same
JP5363260B2 (en) Carbon nanotube composite material and manufacturing method thereof
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
US20150075667A1 (en) Carbon macrotubes and methods for making the same
Faraji et al. Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets
TW201238892A (en) Graphene-carbon nanotube film structure
CN101734618A (en) Preparation method of nanostructure
CN103896244A (en) Reactor and method for growing carbon nanotubes
TW201604129A (en) Carbon fiber film and method for making thereof
TWI411574B (en) Carbon nanotube composite material and method for making the same
TWI342027B (en) Method for making twisted yarn
Sun et al. Synthesis and characterization of diamond nanowires from carbon nanotubes
TW201040104A (en) Nano-material film structure
Kang et al. Controllable synthesis of carbon-nanocoil–carbon-microcoil hybrid materials
Ma et al. Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates
Kim et al. Cone-type multi-shell in the hollow core of multi-wall carbon nanotube
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure
Abdullah et al. Synthesis and morphological study of graphenated carbon nanotube aerogel from grapeseed oil
Knauss et al. In-Situ Formation of Carbon Nanofiber Hybrid Architectures for Functional Devices