TWI481554B - Method for making nanowire structure - Google Patents

Method for making nanowire structure Download PDF

Info

Publication number
TWI481554B
TWI481554B TW097147316A TW97147316A TWI481554B TW I481554 B TWI481554 B TW I481554B TW 097147316 A TW097147316 A TW 097147316A TW 97147316 A TW97147316 A TW 97147316A TW I481554 B TWI481554 B TW I481554B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanostructure
preparing
carbon
film
Prior art date
Application number
TW097147316A
Other languages
Chinese (zh)
Other versions
TW201022140A (en
Inventor
Jia-Ping Wang
jia-jia Wen
Qun-Feng Cheng
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097147316A priority Critical patent/TWI481554B/en
Publication of TW201022140A publication Critical patent/TW201022140A/en
Application granted granted Critical
Publication of TWI481554B publication Critical patent/TWI481554B/en

Links

Description

奈米結構的製備方法 Preparation method of nano structure

本發明涉及一種奈米結構的製備方法,尤其涉及一種以奈米碳管結構為模板的奈米結構的製備方法。 The invention relates to a preparation method of a nano structure, in particular to a preparation method of a nano structure using a carbon nanotube structure as a template.

奈米材料在基礎研究及實際應用如催化、傳感等方面有著巨大價值。故,奈米材料的製備方法成為研究的熱點。目前,奈米材料的製備方法可分為自發生長法(Spontaneous Growth)、模板合成法(Template-Based Synthesis)、電紡紗法(Electrospinning)、平板列印法(Lithography)等。 Nanomaterials have great value in basic research and practical applications such as catalysis and sensing. Therefore, the preparation method of nanomaterials has become a research hotspot. At present, the preparation method of the nano material can be classified into a Spontaneous Growth method, a Template-Based Synthesis method, an Electrospinning method, a Lithography method, and the like.

先前技術提供一種電紡紗法製備二氧化鈦奈米線的方法,請參見“Fabrication of Titania Nanofibers by Electrospinning”(Dan Li et al,Nano Letters,vol.3,No.4,p555-560(2003))。該方法將礦物油與聚乙烯吡咯烷酮(PVP)的乙醇溶液及二氧化鈦前驅體混合製得漿料,然後通過電紡紗製備二氧化鈦奈米結構。進一步,通過加熱使礦物油與聚乙烯吡咯烷酮蒸發,可得到純的二氧化鈦奈米結構。該二氧化鈦奈米結構包括複數個二氧化鈦奈米線,且形成一自支撐結構。雖然電紡紗法可製備長度較大的奈米線且可將其製備成一具有自支撐結構的奈米結構,然,電紡紗法通常需要專門的電紡紗設備,需要一高電壓,且需要先將紡紗原料配製成一漿料。故,採用電紡紗法製備奈米材料工藝複雜,成本較高。 The prior art provides a method for preparing titanium dioxide nanowires by electrospinning, see "Fabrication of Titania Nanofibers by Electrospinning" (Dan Li et al, Nano Letters, vol. 3, No. 4, p555-560 (2003)). . The method comprises mixing a mineral oil with an ethanol solution of polyvinylpyrrolidone (PVP) and a titanium dioxide precursor to prepare a slurry, and then preparing a titanium dioxide nanostructure by electrospinning. Further, the mineral oil and polyvinylpyrrolidone are evaporated by heating to obtain a pure titanium oxide nanostructure. The titanium dioxide nanostructure comprises a plurality of titanium dioxide nanowires and forms a self-supporting structure. Although the electrospinning method can prepare a nanowire having a large length and can be prepared into a nanostructure having a self-supporting structure, the electrospinning method usually requires a special electrospinning device and requires a high voltage, and The spinning material needs to be first formulated into a slurry. Therefore, the process of preparing the nano material by the electrospinning method is complicated and the cost is high.

奈米碳管(Carbon Nanotube,CNT)為一種新型奈米結構,由日本研究人員Iijima於1991年首次於實驗室製備獲得,請參見“Helical Microtubules of Graphitic Carbon”(S.Iijima,Nature,vol.354,p56(1991))。由於奈米碳管具有一維形貌及化學、熱方面的穩定性,成為模板法合成奈米材料的理想模板。 Carbon Nanotube (CNT) is a new type of nanostructure obtained by Japanese researcher Iijima in laboratory for the first time in 1991. Please refer to “Helical Microtubules of Graphitic Carbon” (S.Iijima, Nature, vol. 354, p56 (1991)). Because the carbon nanotubes have one-dimensional morphology and chemical and thermal stability, they are ideal templates for template synthesis of nanomaterials.

先前技術提供一種採用奈米碳管作為模板生長氮化矽奈米線的方法,請參見何艷陽等於2005年12月19日申請,並於2006年7月19日公開的中國大陸公開專利申請第CN1803586A號。該方法包括以下步驟:將矽粉與奈米二氧化矽粉按一定的重量比混合;提供一雙層剛玉舟,並將該矽粉與奈米二氧化矽粉的混合物置於該雙層剛玉舟的下層;將一定量的奈米碳管粉末置於該雙層剛玉舟的上層;將該雙層剛玉舟置於一含氮氣的高溫爐中進行還原及氮化,於奈米碳管表面生長氮化矽奈米線。該反應過程中,首先固態的Si及SiO2反應生成SiO氣體,然後生成的SiO氣體與氮氣反應,並於奈米碳管表面生成氮化矽奈米線。與電紡紗法製備奈米材料相比較,模板法工藝簡單,易於操作,成本低廉。 The prior art provides a method for growing a tantalum nitride nanowire using a carbon nanotube as a template. Please refer to the application for publication of the Chinese mainland on December 19, 2005, and He Yanyang, which was published on July 19, 2006. CN1803586A. The method comprises the steps of: mixing the tantalum powder with the nanometer cerium oxide powder in a certain weight ratio; providing a double-layer corundum boat, and placing the mixture of the tantalum powder and the nanometer cerium oxide powder on the double-layer corundum The lower layer of the boat; a certain amount of carbon nanotube powder is placed on the upper layer of the double-layer corundum boat; the double-layer corundum boat is placed in a high-temperature furnace containing nitrogen for reduction and nitridation on the surface of the carbon nanotube Growing the tantalum nitride nanowire. In the reaction process, first, solid Si and SiO 2 react to form SiO gas, and then the generated SiO gas reacts with nitrogen gas to form a tantalum nitride nanowire on the surface of the carbon nanotube. Compared with the preparation of nano materials by electrospinning, the stencil method is simple, easy to operate and low in cost.

然而,上述採用奈米碳管作為模板生長奈米材料的方法具有以下不足。第一,作為模板的奈米碳管為粉體材料,其長度有限,故,製備的氮化矽奈米線長度較小。第二,採用奈米碳管粉體作為模板不易控制產物形貌。第三,奈米碳管粉體分佈不均勻,且容易團聚,影響產物 的尺寸及均勻性。第四,該方法製備的氮化矽奈米線無法形成一自支撐結構(所謂自支撐結構指該結構可無需一基底而保持一特定形狀,如線狀或膜狀),限制其使用。 However, the above method of growing a nanomaterial using a carbon nanotube as a template has the following disadvantages. First, the carbon nanotube as a template is a powder material having a limited length, so that the prepared tantalum nitride nanowire has a small length. Second, it is difficult to control the morphology of the product by using the carbon nanotube powder as a template. Third, the carbon nanotube powder is unevenly distributed and easily agglomerated, affecting the product. Size and uniformity. Fourth, the tantalum nitride nanowire prepared by the method cannot form a self-supporting structure (the so-called self-supporting structure means that the structure can maintain a specific shape such as a line or a film without a substrate), and its use is restricted.

范守善等人於2002年提出一種製備奈米碳管繩的方法,請參見公告日為2008年8月20日的大陸公告專利第CN100411979C號;於2007年提出一種製備奈米碳管薄膜結構的方法,請參見公開日為2008年8月13日的大陸公開專利申請第CN101239712A號。該專利/專利申請提供了一種將微觀的奈米碳管製備成一宏觀奈米碳管結構的方法。該奈米碳管繩或奈米碳管膜均為具有一自支撐特性的宏觀奈米碳管結構。然,先前技術中沒有公開關於採用具有自支撐特性的奈米碳管結構作為模板製備奈米結構的方法。 Fan Shoushan et al. proposed a method for preparing nanocarbon tube ropes in 2002. Please refer to the mainland announcement patent CN100411979C on August 20, 2008. In 2007, a method for preparing nanocarbon tube film structure was proposed. Please refer to the publication No. CN101239712A of the mainland publication patent dated August 13, 2008. This patent/patent application provides a method of preparing a microscopic carbon nanotube into a macroscopic carbon nanotube structure. The carbon nanotube rope or the carbon nanotube membrane are both macroscopic carbon nanotube structures having a self-supporting property. However, the prior art does not disclose a method for preparing a nanostructure using a carbon nanotube structure having self-supporting properties as a template.

有鑒於此,提供一種採用具有自支撐特性的奈米碳管結構作為模板製備奈米結構的方法實為必要。 In view of the above, it is necessary to provide a method for preparing a nanostructure using a carbon nanotube structure having self-supporting properties as a template.

一種奈米結構的製備方法,其包括以下步驟:提供一由複數奈米碳管首尾相連形成的具有自支撐性的奈米碳管結構作為模板;向該奈米碳管結構引入反應原料;及引發反應原料,使反應原料進行反應沿所述奈米碳管結構的表面生長形成一自支撐的奈米結構。 A method for preparing a nanostructure, comprising the steps of: providing a self-supporting carbon nanotube structure formed by a plurality of carbon nanotubes connected end to end as a template; introducing a reaction raw material to the carbon nanotube structure; The reaction raw material is initiated, and the reaction raw material is reacted to grow along the surface of the carbon nanotube structure to form a self-supporting nanostructure.

相較於先前技術,由於該奈米碳管結構具有自支撐特性,故,採用該奈米碳管結構作為模板可直接製備具有自支撐特性的奈米結構,且工藝簡單,成本低廉。 Compared with the prior art, since the carbon nanotube structure has self-supporting characteristics, the nano carbon tube structure can be used as a template to directly prepare a nano structure having self-supporting characteristics, and the process is simple and the cost is low.

以下將結合附圖對本發明作進一步的詳細說明。 The invention will be further described in detail below with reference to the accompanying drawings.

請參閱圖1,本發明提供一種奈米結構的製備方法,其包括以下步驟: Referring to FIG. 1, the present invention provides a method for preparing a nanostructure, which comprises the following steps:

步驟一,提供一奈米碳管結構。 In step one, a carbon nanotube structure is provided.

所述奈米碳管結構包括至少一奈米碳管膜,至少一奈米碳管線或其組合。當所述奈米碳管結構包括複數個奈米碳管膜時,該奈米碳管膜可以平行無間隙或平行且重疊設置。當所述奈米碳管結構僅包括一奈米碳管線時,該奈米碳管線可以摺疊或纏繞成一層狀奈米碳管結構。當所述奈米碳管結構包括複數個奈米碳管線時,該複數個奈米碳管線可以平行設置、交叉設置或編織成一層狀奈米碳管結構。當所述奈米碳管結構包括奈米碳管膜與奈米碳管線時,可以將奈米碳管線設置於奈米碳管膜的至少一表面。 The carbon nanotube structure comprises at least one carbon nanotube membrane, at least one nanocarbon pipeline or a combination thereof. When the carbon nanotube structure comprises a plurality of carbon nanotube membranes, the carbon nanotube membranes may be arranged in parallel without gaps or in parallel and overlapping. When the carbon nanotube structure includes only one nanocarbon line, the nanocarbon line can be folded or wound into a layered carbon nanotube structure. When the carbon nanotube structure comprises a plurality of nano carbon pipelines, the plurality of nanocarbon pipelines may be arranged in parallel, crosswise or woven into a layered carbon nanotube structure. When the carbon nanotube structure includes a carbon nanotube film and a nano carbon line, the nano carbon line may be disposed on at least one surface of the carbon nanotube film.

所述奈米碳管膜包括複數個均勻分佈的奈米碳管。所述奈米碳管有序或無序分佈且通過凡得瓦力緊密結合。所述無序指奈米碳管的排列無規則,有序指至少多數奈米碳管的排列方向具有一定規律。當奈米碳管膜包括無序排列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列;當奈米碳管膜包括有序排列的奈米碳管時,奈米碳管沿一個方向或者複數個方向擇優取向排列。具體地,所述奈米碳管膜包括奈米碳管拉膜、奈米碳管碾壓膜或奈米碳管絮化膜。 The carbon nanotube membrane comprises a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes are ordered or disorderly distributed and tightly bound by van der Waals forces. The disordered arrangement of the carbon nanotubes is irregular, and the ordering means that at least a majority of the carbon nanotubes have a certain regular arrangement direction. When the carbon nanotube membrane comprises a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or isotropically arranged; when the carbon nanotube membrane comprises an ordered arrangement of carbon nanotubes, the carbon nanotubes Arrange in a preferred direction in one direction or in multiple directions. Specifically, the carbon nanotube film comprises a carbon nanotube film, a carbon nanotube film or a carbon nanotube film.

該奈米碳管結構中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。所述奈米碳管的長度大於50微米。優選地,該奈米碳管的長度優選為200~900微米。 The carbon nanotubes in the carbon nanotube structure include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano. The carbon nanotubes have a length greater than 50 microns. Preferably, the length of the carbon nanotubes is preferably from 200 to 900 microns.

(一)上述包括奈米碳管拉膜的奈米碳管結構的製備方法具體包括以下步驟:首先,提供一奈米碳管陣列。 (1) The above preparation method of the carbon nanotube structure including the carbon nanotube film is specifically included in the following steps: First, an array of carbon nanotubes is provided.

本發明中,所述奈米碳管陣列為一超順排奈米碳管陣列。本發明提供的奈米碳管陣列基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡得瓦力緊密接觸形成陣列。本發明提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。 In the present invention, the carbon nanotube array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the present invention contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array provided by the invention is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array and a multi-walled carbon nanotube array.

其次,從上述奈米碳管陣列中拉取獲得至少一奈米碳管拉膜。 Next, at least one carbon nanotube film is drawn from the carbon nanotube array.

該奈米碳管拉膜的製備具體包括以下步驟:從上述奈米碳管陣列中選定一定寬度的複數個奈米碳管片斷,本發明優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的至少一個奈米碳管片斷;以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該複數個奈米碳管片斷,以形成一連續的奈米碳管拉膜。 The preparation of the carbon nanotube film comprises the following steps: selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array, and the present invention preferably uses a tape having a certain width to contact the carbon nanotube array. Selecting at least one carbon nanotube segment of a certain width; stretching the plurality of carbon nanotube segments at a constant speed along a direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film.

請參閱圖2及圖3,所述奈米碳管拉膜包括複數個首尾相 連且擇優取向排列的奈米碳管片段143。奈米碳管拉膜中的奈米碳管片段143的長度基本相同,所述奈米碳管片段143包括複數個具有相同長度且相互平行排列的奈米碳管145,奈米碳管145之間通過凡得瓦力緊密連接。所述奈米碳管拉膜中的奈米碳管145具有相同的排列方向。故,該奈米碳管拉膜中包括複數個首尾相連且擇優取向排列的奈米碳管145。 Referring to FIG. 2 and FIG. 3, the carbon nanotube film comprises a plurality of first and last phases. The carbon nanotube fragments 143 are evenly aligned. The length of the carbon nanotube segments 143 in the carbon nanotube film is substantially the same, and the carbon nanotube segment 143 includes a plurality of carbon nanotubes 145 having the same length and arranged in parallel with each other, and the carbon nanotubes 145 are They are closely connected by van der Waals. The carbon nanotubes 145 in the carbon nanotube film have the same alignment direction. Therefore, the carbon nanotube film comprises a plurality of carbon nanotubes 145 which are connected end to end and arranged in a preferred orientation.

最後,採用上述奈米碳管拉膜製備一奈米碳管結構。 Finally, a carbon nanotube structure was prepared by using the above carbon nanotube film.

所述奈米碳管結構的製備方法具體包括以下步驟:提供一支撐體;將至少一個奈米碳管拉膜鋪設於該支撐體上;去除支撐體外多餘的奈米碳管拉膜,形成一奈米碳管結構。可以理解,本發明中還可將至少兩個奈米碳管拉膜重疊鋪設於支撐體上,形成一奈米碳管結構。所述奈米碳管結構包括一奈米碳管拉膜或至少兩個重疊鋪設的奈米碳管拉膜,且相鄰的奈米碳管拉膜中的奈米碳管排列方向形成一夾角α,且0°≦α≦90°。 The method for preparing the carbon nanotube structure specifically includes the following steps: providing a support body; laying at least one carbon nanotube film on the support body; removing excess nano carbon tube film from the support body to form a film Nano carbon tube structure. It can be understood that in the present invention, at least two carbon nanotube film can be overlapped and laid on the support to form a carbon nanotube structure. The carbon nanotube structure comprises a carbon nanotube film or at least two stacked carbon nanotube film, and the arrangement of the carbon nanotubes in the adjacent carbon nanotube film forms an angle. α, and 0°≦α≦90°.

該支撐體的大小可依據實際需求確定,可為一基板或框架。由於奈米碳管陣列中的奈米碳管非常純淨,且由於奈米碳管本身的比表面積非常大,故,該奈米碳管拉膜本身具有較強的黏性,該奈米碳管拉膜可利用其本身的黏性直接黏附於支撐體上。可以理解,本發明也可通過一黏結劑將該奈米碳管拉膜黏附於支撐體上。奈米碳管拉膜黏附於支撐體上,基板或框架外多餘的奈米碳管拉膜部分可用小刀刮去。可以理解,當將奈米碳管拉膜設置於一框架上,該奈米碳管拉膜懸空設置。 The size of the support body can be determined according to actual needs, and can be a substrate or a frame. Since the carbon nanotube in the carbon nanotube array is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity, and the carbon nanotube The film can be directly adhered to the support by its own viscosity. It can be understood that the present invention can also adhere the nano carbon tube film to the support by a bonding agent. The carbon nanotube film is adhered to the support body, and the excess carbon nanotube film portion outside the substrate or the frame can be scraped off with a small knife. It can be understood that when the carbon nanotube film is placed on a frame, the carbon nanotube film is suspended.

所述奈米碳管拉膜的製備方法請參見范守善等人於2008年8月13日公開的中國大陸第CN101239712A號公開專利申請,“奈米碳管薄膜結構及其製備方法”(申請人:清華大學,鴻富錦精密工業(深圳)有限公司)。 For the preparation method of the carbon nanotube film, please refer to the patent application of CN101239712A, published on August 13, 2008 by Fan Shoushan et al., "Nano Carbon Tube Film Structure and Preparation Method" (Applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd.).

由於奈米碳管結構具有一定的自支撐特性,可將該奈米碳管結構取下後作為模板生長奈米結構。本發明中,為操作方便,將設置於基板或框架上的奈米碳管結構直接用作模板生長奈米結構。可以理解,將奈米碳管結構設置於基板上作為模板生長奈米結構可通過選擇不同導熱係數的基板控制生長奈米結構的速度。基板導熱係數越大,熱量向基板傳導就越快,而沿奈米碳管方向傳導就越慢,故,奈米結構的生長速度越慢。反之則生長速度越快。由於空氣的導熱係數很小,故,當奈米碳管結構懸空設置時,奈米結構具有最快的生長速度。 Since the carbon nanotube structure has a certain self-supporting property, the carbon nanotube structure can be removed and used as a template to grow the nanostructure. In the present invention, for convenience of operation, the carbon nanotube structure provided on the substrate or the frame is directly used as a template growth nanostructure. It can be understood that the arrangement of the carbon nanotube structure on the substrate as a template growth nanostructure can control the speed of growing the nanostructure by selecting substrates of different thermal conductivity. The higher the thermal conductivity of the substrate, the faster the heat is conducted to the substrate, and the slower the conduction along the direction of the carbon nanotubes, so the slower the growth rate of the nanostructure. Otherwise, the faster the growth rate. Since the thermal conductivity of air is small, the nanostructure has the fastest growth rate when the carbon nanotube structure is suspended.

(二)採用奈米碳管線的奈米碳管結構,其製備方法具體包括以下步驟:首先,製備至少一奈米碳管線。 (2) A carbon nanotube structure using a nano carbon pipeline, the preparation method specifically comprising the following steps: First, preparing at least one nano carbon pipeline.

所述奈米碳管線包括複數個奈米碳管沿該奈米碳管線軸向/長度方向有序排列。具體地,該奈米碳管線中奈米碳管沿該奈米碳管線軸向擇優取向排列或繞奈米碳管線軸向螺旋排列。該奈米碳管線中奈米碳管通過凡得瓦力緊密結合。請參見圖4,該奈米碳管線中奈米碳管沿該奈米碳管線軸向/長度方向平行排列。請參見圖5,該奈米碳管線中奈米碳管沿該奈米碳管線軸向/長度方向呈螺旋狀 排列。 The nanocarbon pipeline includes a plurality of carbon nanotubes arranged in an axial/longitudinal direction along the nanocarbon pipeline. Specifically, the carbon nanotubes in the nanocarbon pipeline are arranged in an axially preferred orientation along the nanocarbon pipeline or axially helically arranged around the nanocarbon pipeline. The carbon nanotubes in the nanocarbon pipeline are tightly bonded by van der Waals force. Referring to FIG. 4, the carbon nanotubes in the nanocarbon pipeline are arranged in parallel along the axial/longitudinal direction of the nanocarbon pipeline. Referring to FIG. 5, the carbon nanotubes in the nano carbon pipeline are spiraled along the axial/longitudinal direction of the nanocarbon pipeline. arrangement.

圖4所示的奈米碳管線的製備方法為:從上述超順排的奈米碳管陣列中選取寬度較窄的奈米碳管片斷,採用一拉伸工具從奈米碳管陣列中直接拉取獲得;或先從上述超順排的奈米碳管陣列中拉取一奈米碳管拉膜,再將該奈米碳管拉膜經過有機溶劑處理後獲得。該有機溶劑為揮發性有機溶劑,可選用乙醇、甲醇、丙酮、二氯乙烷及氯仿中一種或者幾種的混合。該使用有機溶劑處理的步驟可通過試管將有機溶劑滴落於奈米碳管拉膜表面浸潤,或者,也可將上述形成的奈米碳管拉膜浸入盛有有機溶劑的容器中浸潤後取出。所述的奈米碳管拉膜經有機溶劑浸潤處理後,於揮發性有機溶劑的表面張力的作用下,奈米碳管拉膜收縮成一奈米碳管線。所述奈米碳管線的製備方法請參見范守善等人於2007年6月20日公開的中國大陸第CN1982209A號公開專利申請,“奈米碳管絲及其製作方法”(申請人:清華大學,鴻富錦精密工業(深圳)有限公司)及2008年8月20日公告的中國大陸第CN100411979C號公告專利,“一種奈米碳管繩及其製造方法”(申請人:清華大學,鴻富錦精密工業(深圳)有限公司)。 The nano carbon pipeline shown in FIG. 4 is prepared by selecting a narrow carbon nanotube segment from the super-aligned carbon nanotube array and using a stretching tool directly from the carbon nanotube array. Pulling is obtained; or first pulling a carbon nanotube film from the above-mentioned super-aligned carbon nanotube array, and then obtaining the carbon nanotube film by organic solvent treatment. The organic solvent is a volatile organic solvent, and one or a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform may be used. The step of treating with an organic solvent may be performed by injecting an organic solvent into a surface of the carbon nanotube film by a test tube, or by immersing the formed carbon nanotube film in a container containing an organic solvent and then taking it out. . After the nano carbon tube film is infiltrated by an organic solvent, the nano carbon tube film is shrunk into a nano carbon line under the action of the surface tension of the volatile organic solvent. For the preparation method of the nano carbon pipeline, please refer to the patent application of CN 1982209A published by Fan Shoushan et al. on June 20, 2007, "Nano Carbon Tube and Its Manufacturing Method" (Applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd. and the announcement of China Mainland No. CN100411979C announced on August 20, 2008, “A Nano Carbon Pipe Rope and Its Manufacturing Method” (Applicant: Tsinghua University, Hong Fujin Precision Industry (Shenzhen) Co., Ltd.).

圖5所示的奈米碳管線的製備方法為:採用一機械外力將圖4所示的奈米碳管線或者上述的奈米碳管拉膜扭轉獲得。 The nanocarbon line shown in FIG. 5 is prepared by twisting the nano carbon line shown in FIG. 4 or the above-mentioned carbon nanotube film by a mechanical external force.

其次,採用該奈米碳管線製備一奈米碳管結構。 Secondly, a carbon nanotube structure is prepared using the nano carbon line.

採用該奈米碳管線製備一奈米碳管結構的方法包括:將複數個奈米碳管線平行設置,將複數個奈米碳管線平行且交叉設置或將複數個奈米碳管線編織成一奈米碳管結構。 The method for preparing a carbon nanotube structure by using the nano carbon pipeline comprises: arranging a plurality of nano carbon pipelines in parallel, paralleling and cross-setting a plurality of nano carbon pipelines or weaving a plurality of nano carbon pipelines into one nanometer. Carbon tube structure.

(三)上述包括奈米碳管碾壓膜的奈米碳管結構的製備方法具體包括以下步驟:首先,提供一奈米碳管陣列形成於一基底,該陣列為定向排列的奈米碳管陣列。 (3) The method for preparing the carbon nanotube structure including the carbon nanotube rolled film specifically includes the following steps: First, providing a carbon nanotube array formed on a substrate, the array is an aligned carbon nanotube Array.

本發明中,所述奈米碳管陣列為一超順排奈米碳管陣列。本發明提供的奈米碳管陣列基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡得瓦力緊密接觸形成陣列。本發明提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。 In the present invention, the carbon nanotube array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the present invention contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array provided by the invention is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array and a multi-walled carbon nanotube array.

其次,採用一施壓裝置,擠壓上述奈米碳管陣列獲得一奈米碳管碾壓膜,其具體過程為:本發明中,可採用一壓頭,壓頭表面光滑,壓頭的形狀及擠壓方向決定製備的奈米碳管碾壓膜中奈米碳管的排列方式。具體地,當採用平面壓頭沿垂直於上述奈米碳管陣列生長的基底的方向擠壓時,可獲得奈米碳管為各向同性排列的奈米碳管碾壓膜;當採用滾軸狀壓頭沿某一固定方向碾壓時,可獲得奈米碳管沿該固定方向取向排列的奈米碳管碾壓膜;當採用滾軸狀壓頭沿不同方向碾壓時,可獲得奈米碳管沿不同方向取向排列的奈米碳 管碾壓膜。 Secondly, a pressure device is used to extrude the carbon nanotube array to obtain a carbon nanotube rolled film. The specific process is as follows: in the present invention, an indenter can be used, the surface of the indenter is smooth, and the shape of the indenter is used. And the extrusion direction determines the arrangement of the carbon nanotubes in the prepared carbon nanotube rolled film. Specifically, when the planar indenter is pressed in a direction perpendicular to the substrate grown by the carbon nanotube array, the carbon nanotubes are obtained as isotropically arranged carbon nanotube rolled film; When the pressure head is rolled in a certain fixed direction, a carbon nanotube film which is aligned along the fixed direction of the carbon nanotubes can be obtained; when the roller-shaped indenter is rolled in different directions, the naphthalene can be obtained. Carbon nanotubes arranged in different directions Tube rolled film.

依據碾壓的方式不同,該奈米碳管碾壓膜中的奈米碳管可沿一固定方向擇優取向排列,請參閱圖6;或沿不同方向擇優取向排列,請參閱圖7。所述的複數個奈米碳管與該奈米碳管碾壓膜的表面成一夾角α,其中,α大於等於零度且小於等於15度(0≦α≦15°)。所述奈米碳管碾壓膜中包括複數個沿同一方向或不同方向擇優取向排列的奈米碳管,所述奈米碳管之間通過凡得瓦力相互吸引,因此該奈米碳管碾壓膜具有很好的韌性。該奈米碳管碾壓膜中,奈米碳管均勻分佈,規則排列。該奈米碳管碾壓膜具有自支撐特性,可直接作為一奈米碳管結構使用。 Depending on the way of rolling, the carbon nanotubes in the carbon nanotube rolled film can be arranged in a preferred orientation in a fixed direction, see Figure 6; or in a preferred orientation in different directions, see Figure 7. The plurality of carbon nanotubes form an angle α with the surface of the carbon nanotube rolled film, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees (0≦α≦15°). The carbon nanotube rolled film includes a plurality of carbon nanotubes arranged in a preferred orientation in the same direction or in different directions, and the carbon nanotubes are mutually attracted by van der Waals force, so the carbon nanotubes The laminated film has good toughness. In the carbon nanotube rolled film, the carbon nanotubes are evenly distributed and regularly arranged. The carbon nanotube rolled film has self-supporting properties and can be directly used as a carbon nanotube structure.

所述奈米碳管碾壓膜的製備方法請參見申請日為2007年6月1日的中國大陸第200710074027.5號專利申請,“奈米碳管薄膜的製備方法”(申請人:清華大學,鴻富錦精密工業(深圳)有限公司)。 For the preparation method of the carbon nanotube rolled film, please refer to the patent application of the Chinese mainland No. 200710074027.5 on June 1, 2007, "Preparation method of the carbon nanotube film" (Applicant: Tsinghua University, Hong Fujin Precision Industry (Shenzhen) Co., Ltd.).

(四)上述包括奈米碳管絮化膜的奈米碳管結構的製備方法具體包括以下步驟:首先,提供一奈米碳管原料。 (4) The preparation method of the above carbon nanotube structure including the carbon nanotube flocculation membrane specifically comprises the following steps: First, a carbon nanotube raw material is provided.

所述奈米碳管原料可為通過化學氣相沈積法、石墨電極恒流電弧放電沈積法或鐳射蒸發沈積法等各種方法製備的奈米碳管。 The carbon nanotube raw material may be a carbon nanotube prepared by various methods such as chemical vapor deposition, graphite electrode constant current arc discharge deposition or laser evaporation deposition.

本發明中,採用刀片或其他工具將定向排列的奈米碳管陣列從基底刮落,獲得一奈米碳管原料。優選地,所述 的奈米碳管原料中,奈米碳管的長度大於100微米。 In the present invention, an array of aligned carbon nanotube arrays is scraped off the substrate using a blade or other tool to obtain a carbon nanotube material. Preferably, said In the carbon nanotube raw material, the length of the carbon nanotube is greater than 100 microns.

其次,將上述奈米碳管原料添加到一溶劑中並進行絮化處理獲得一奈米碳管絮狀結構,將上述奈米碳管絮狀結構從溶劑中分離,並對該奈米碳管絮狀結構定型處理以獲得一奈米碳管薄膜。 Next, the above carbon nanotube raw material is added to a solvent and subjected to flocculation treatment to obtain a nano carbon tube floc structure, and the above carbon nanotube floc structure is separated from the solvent, and the carbon nanotube is separated. The flocculated structure is shaped to obtain a carbon nanotube film.

所述的分離奈米碳管絮狀結構的方法具體包括以下步驟:將上述含有奈米碳管絮狀結構的溶劑倒入一放有濾紙的漏斗中;靜置乾燥一段時間從而獲得一分離的奈米碳管絮狀結構。 The method for separating the carbon nanotube floc structure specifically comprises the steps of: pouring the solvent containing the carbon nanotube floc structure into a funnel with a filter paper; and drying for a period of time to obtain a separation. Nano carbon tube floc structure.

所述的奈米碳管絮狀結構的定型處理過程具體包括以下步驟:將上述奈米碳管絮狀結構置於一容器中;將該奈米碳管絮狀結構按照預定形狀攤開;施加一定壓力於攤開的奈米碳管絮狀結構;及,將該奈米碳管絮狀結構中殘留的溶劑烘乾或等溶劑自然揮發後獲得一奈米碳管絮化膜。 The shaping treatment process of the carbon nanotube floc structure specifically comprises the steps of: placing the above-mentioned carbon nanotube floc structure in a container; spreading the carbon nanotube floc structure according to a predetermined shape; applying A certain pressure is applied to the expanded carbon nanotube floc structure; and the residual solvent in the nano carbon tube floc structure is dried or the solvent is naturally volatilized to obtain a carbon nanotube flocculation film.

另,上述分離與定型處理奈米碳管絮狀結構的步驟也可直接通過抽濾的方式實現,具體包括以下步驟:提供一微孔濾膜及一抽氣漏斗;將上述含有奈米碳管絮狀結構的溶劑經過該微孔濾膜倒入該抽氣漏斗中;抽濾並乾燥後獲得一奈米碳管絮化膜。 In addition, the step of separating and shaping the carbon nanotube floc structure can also be directly performed by suction filtration, and specifically includes the following steps: providing a microporous membrane and an extraction funnel; and the above-mentioned carbon nanotubes are included The solvent of the floc structure is poured into the suction funnel through the microporous membrane; after suction filtration and drying, a carbon nanotube flocculation membrane is obtained.

請參見圖8,上述奈米碳管絮化膜中包括相互纏繞的奈米碳管,所述奈米碳管之間通過凡得瓦力相互吸引、纏繞,形成網絡狀結構,因此該奈米碳管絮化膜具有很好的韌性。該奈米碳管絮化膜中,奈米碳管為各向同性,均 勻分佈,無規則排列。該奈米碳管絮化膜具有自支撐特性,可直接作為一奈米碳管結構使用。 Referring to FIG. 8, the carbon nanotube film of the above-mentioned carbon nanotubes comprises intertwined carbon nanotubes, and the carbon nanotubes are mutually attracted and entangled by van der Waals to form a network structure, so the nanometer The carbon tube flocculation membrane has good toughness. In the carbon nanotube flocculation membrane, the carbon nanotubes are isotropic, both Evenly distributed, irregularly arranged. The carbon nanotube flocculation membrane has self-supporting properties and can be directly used as a carbon nanotube structure.

所述奈米碳管絮化膜的製備方法請參見申請日為2007年4月13日的中國大陸第200710074699.6號專利申請,“奈米碳管薄膜的製備方法”(申請人:清華大學,鴻富錦精密工業(深圳)有限公司)。 For the preparation method of the carbon nanotube flocculation membrane, please refer to the patent application of the Chinese mainland No. 200710074699.6 filed on April 13, 2007, "Preparation method of the carbon nanotube film" (Applicant: Tsinghua University, Hong Fujin Precision Industry (Shenzhen) Co., Ltd.).

進一步,本發明還可將至少一奈米碳管線設置於至少一奈米碳管膜的表面形成一複合結構作為奈米碳管結構。 Further, the present invention can also provide at least one nano carbon line on the surface of at least one carbon nanotube film to form a composite structure as a carbon nanotube structure.

步驟二,向該奈米碳管結構引入反應原料。 In step two, a reaction raw material is introduced into the carbon nanotube structure.

所述反應原料不限,與所要製備的奈米結構相關。該反應原料可包括金屬、非金屬、半導體中的一種或多種。 如,生長金屬氧化物奈米結構,如氧化鈦、氧化鋁或氧化鎳的奈米線,反應原料可為金屬(如鈦、鋁或鎳等)與含氧氣體;生長金屬矽化物奈米結構,如矽化鈦、矽化鐵或矽化鎳的奈米線,反應原料可為金屬(如鈦、鐵或鎳等)與含矽氣體;生長非金屬氮化物奈米結構,如氮化矽,反應原料可為矽源氣與氮氣;生長非金屬碳化物奈米結構,如碳化矽,反應原料可為矽源氣與碳源氣。 The reaction starting material is not limited and is related to the nanostructure to be prepared. The reaction raw material may include one or more of a metal, a non-metal, and a semiconductor. For example, growing a metal oxide nanostructure, such as a nanowire of titanium oxide, aluminum oxide or nickel oxide, the reaction raw material may be a metal (such as titanium, aluminum or nickel) and an oxygen-containing gas; the growth metal telluride nanostructure For example, a nanowire of titanium telluride, iron telluride or nickel telluride, the reaction raw material may be a metal (such as titanium, iron or nickel) and a helium containing gas; a non-metallic nitride nanostructure, such as tantalum nitride, a reaction material It can be a source gas and a nitrogen gas; a non-metal carbide nanostructure, such as niobium carbide, the reaction raw material can be a source gas and a carbon source gas.

所述向奈米碳管結構引入反應原料的方法不限,可包括物理氣相沈積法、化學氣相沈積法、浸漬法、噴塗法及絲網列印法等中的一種或多種。可以理解,根據反應原料的不同,可選擇不同的方法於奈米碳管結構中的奈米碳管表面形成反應原料。如,通過物理氣相沈積法可將 金屬或金屬氧化物濺射到奈米碳管表面;通過化學氣相沈積法可於奈米碳管表面形成非金屬氮化物或碳化物;通過浸漬法、噴塗法或絲網列印法可將金屬有機溶液形成於奈米碳管結構中的奈米碳管表面。所述反應原料可部分或全部包覆於奈米碳管表面或以氣體的形式分佈於奈米碳管周圍。可以理解,當所述反應原料沈積於奈米碳管結構表面時,反應原料的厚度應大於30奈米且小於等於100奈米。 The method of introducing the reaction raw material into the carbon nanotube structure is not limited, and may include one or more of physical vapor deposition, chemical vapor deposition, dipping, spraying, and screen printing. It can be understood that different methods can be used to form a reaction raw material on the surface of the carbon nanotube in the carbon nanotube structure depending on the reaction raw materials. For example, by physical vapor deposition Metal or metal oxide is sputtered onto the surface of the carbon nanotube; non-metal nitride or carbide can be formed on the surface of the carbon nanotube by chemical vapor deposition; by dipping, spraying or screen printing The metal organic solution is formed on the surface of the carbon nanotube in the carbon nanotube structure. The reaction raw material may be partially or completely coated on the surface of the carbon nanotube or distributed in the form of a gas around the carbon nanotube. It can be understood that when the reaction raw material is deposited on the surface of the carbon nanotube structure, the thickness of the reaction raw material should be greater than 30 nm and less than or equal to 100 nm.

步驟三,引發反應原料進行反應,生長奈米結構。 In the third step, the reaction raw material is initiated to react and grow the nanostructure.

所述引發反應原料進行反應的方法包括加熱、鐳射照射、反應濺射等方法中的一種或多種。可以理解,根據反應原料反應條件的不同,可選擇不同的方法來引發反應原料進行反應。如通過加熱可使矽源氣與碳源氣反應製備碳化矽奈米結構;通過鐳射照射可使金屬與氧氣反應製備金屬氧化物奈米結構;通過於真空中濺射金屬粒子,同時通入含氧氣體反應可生長金屬氧化物奈米線。 The method of initiating the reaction raw material to carry out the reaction includes one or more of heating, laser irradiation, reactive sputtering, and the like. It can be understood that different methods can be selected to initiate the reaction of the reaction raw materials depending on the reaction conditions of the reaction raw materials. For example, by heating, the helium source gas and the carbon source gas can be reacted to prepare a niobium carbide nanostructure; by laser irradiation, the metal can react with oxygen to prepare a metal oxide nanostructure; by sputtering the metal particles in a vacuum, and simultaneously introducing The oxygen gas reaction can grow a metal oxide nanowire.

所述反應原料於反應條件下進行反應生長奈米線。該奈米線沿奈米碳管結構中的奈米碳管長度方向生長,且包覆於奈米碳管表面。由於本發明中所採用的奈米碳管結構模板中的奈米碳管通過凡得瓦力緊密結合形成一具有自支撐特性的奈米碳管結構,故,該反應生長的奈米線亦形成一具有自支撐特性的奈米結構。 The reaction raw material is subjected to reaction growth of the nanowire under the reaction conditions. The nanowire grows along the length of the carbon nanotube in the carbon nanotube structure and coats the surface of the carbon nanotube. Since the carbon nanotubes in the carbon nanotube structure template used in the present invention are tightly combined by van der Waals force to form a carbon nanotube structure having self-supporting properties, the nanowires of the reaction growth are also formed. A nanostructure with self-supporting properties.

可以理解,當採用奈米碳管拉膜作為模板時,由於奈米碳管拉膜中包括複數個首尾相連且沿同一方向擇優取向 排列的奈米碳管,故,製備的奈米結構包括複數個奈米線沿奈米碳管平行排列,且該奈米線的長度與奈米碳管拉膜的長度相同。由於奈米碳管拉膜的長度不限,可達到數米以上,故,製備的奈米結構中奈米線的長度可達到數米以上。通過控制奈米碳管拉膜的鋪設方向,還可控制奈米結構中的奈米線的排列方向。當採用奈米碳管碾壓膜作為模板時,由於奈米碳管碾壓膜中包括複數個沿同一方向或不同方向擇優取向排列的奈米碳管,故,製備的奈米結構包括複數個奈米線沿同一方向或不同方向擇優取向排列。當採用奈米碳管絮化膜作為模板時,由於奈米碳管絮化膜中包括複數個相互纏繞的奈米碳管,故,製備的奈米結構包括複數個奈米線相互纏繞。 It can be understood that when a carbon nanotube film is used as a template, since the carbon nanotube film comprises a plurality of end-to-end and preferred orientations in the same direction The carbon nanotubes are arranged. Therefore, the prepared nanostructure includes a plurality of nanowires arranged in parallel along the carbon nanotubes, and the length of the nanowires is the same as the length of the carbon nanotube film. Since the length of the carbon nanotube film is not limited, it can reach several meters or more, so the length of the nanowire in the prepared nanostructure can reach several meters or more. By controlling the laying direction of the carbon nanotube film, it is also possible to control the arrangement direction of the nanowires in the nanostructure. When a carbon nanotube rolled film is used as a template, since the carbon nanotube rolled film includes a plurality of carbon nanotubes arranged in the same direction or in different directions, the prepared nanostructure includes a plurality of The nanowires are arranged in the same direction or in different directions. When a carbon nanotube flocculation membrane is used as a template, since the carbon nanotube flocculation membrane includes a plurality of intertwined carbon nanotubes, the prepared nanostructure includes a plurality of nanowires intertwined with each other.

進一步,還可包括一將獲得的奈米結構與該奈米碳管結構分離,獲得純奈米結構的步驟。分離的方法與獲得的奈米結構的材料相關。本發明通過高溫氧化的過程可將奈米碳管結構除去。具體地,將反應產物置於高溫爐中,於500~1000℃條件下保持1~4小時。可以理解,高溫氧化除去奈米碳管結構的方法僅限於製備耐高溫的奈米結構,如:金屬氧化物,非金屬氮化物等。 Further, a step of separating the obtained nanostructure from the carbon nanotube structure to obtain a pure nanostructure may be included. The method of separation is related to the material of the obtained nanostructure. The present invention removes the carbon nanotube structure by a high temperature oxidation process. Specifically, the reaction product is placed in a high temperature furnace and maintained at 500 to 1000 ° C for 1 to 4 hours. It can be understood that the method for removing the carbon nanotube structure by high temperature oxidation is limited to preparing a high temperature resistant nanostructure such as a metal oxide, a non-metal nitride or the like.

以下為本發明採用奈米碳管結構作為模板製備奈米結構的具體實施例: The following is a specific embodiment of the invention for preparing a nanostructure using a carbon nanotube structure as a template:

實施例1 Example 1

請參閱圖9,本發明第一實施例提供一種奈米結構104的製備方法,具體包括以下步驟: Referring to FIG. 9, a first embodiment of the present invention provides a method for preparing a nanostructure 104, which specifically includes the following steps:

步驟一,製備一二維奈米碳管結構100。 In step one, a two-dimensional carbon nanotube structure 100 is prepared.

本實施例中,將兩個奈米碳管拉膜重疊鋪設於一金屬環上得到一奈米碳管結構100,且兩個奈米碳管拉膜中奈米碳管排列方向相同。 In this embodiment, two carbon nanotube films are stacked on a metal ring to obtain a carbon nanotube structure 100, and the carbon nanotubes in the two carbon nanotube films are arranged in the same direction.

步驟二,向該奈米碳管結構100引入反應原料102。 In the second step, the reaction raw material 102 is introduced into the carbon nanotube structure 100.

本實施例中,通過磁控濺射法於奈米碳管結構100表面沈積一層100奈米厚的鈦層。請參見圖10,鈦顆粒均勻分佈於奈米碳管拉膜中的奈米碳管表面。 In this embodiment, a layer of 100 nm thick titanium is deposited on the surface of the carbon nanotube structure 100 by magnetron sputtering. Referring to Figure 10, the titanium particles are evenly distributed on the surface of the carbon nanotubes in the carbon nanotube film.

步驟三,引發反應原料102進行反應,生長奈米結構104。 In the third step, the reaction raw material 102 is initiated to react to grow the nanostructure 104.

本實施例中,將該沈積有鈦層的奈米碳管結構100置於大氣環境中,使得奈米碳管結構表面的鈦顆粒與大氣中的氧氣接觸。然後,採用鐳射掃描,引發自擴散反應,得到一二維二氧化鈦奈米結構104。該奈米結構104包括複數個平行排列於同一平面的二氧化鈦奈米線。其中,鐳射掃描的速度為10~200厘米/秒,鐳射掃描的功率為0.5~10瓦。該自擴散反應的速度大於10厘米/秒。 In this embodiment, the carbon nanotube structure 100 deposited with the titanium layer is placed in an atmosphere such that the titanium particles on the surface of the carbon nanotube structure are in contact with oxygen in the atmosphere. Then, a self-diffusion reaction is initiated by laser scanning to obtain a two-dimensional titanium dioxide nanostructure 104. The nanostructure 104 includes a plurality of titanium dioxide nanowires arranged in parallel on the same plane. Among them, the speed of laser scanning is 10~200 cm/sec, and the power of laser scanning is 0.5~10 watts. The rate of the self-diffusion reaction is greater than 10 cm/sec.

所述反應原料102於反應條件下進行反應生長奈米線106。由於本實施例採用奈米碳管拉膜作為模板,該奈米碳管拉膜中包括複數個首尾相連且沿同一方向排列的奈米碳管,該奈米線106沿奈米碳管拉膜中的首尾相連的奈米碳管生長,且包覆於奈米碳管表面,故,在整個奈米碳管結構100表面生長得到複數個平行排列的奈米線106。該奈米線106的長度等於奈米碳管拉膜的長度。該複數個 平行排列的奈米線106形成二維的奈米結構104。 The reaction starting material 102 is subjected to a reaction to grow the nanowire 106 under the reaction conditions. Since the carbon nanotube film is used as a template in the embodiment, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in the same direction, and the nanowire 106 is stretched along the carbon nanotube. The first and last connected carbon nanotubes are grown and coated on the surface of the carbon nanotubes, so that a plurality of parallel aligned nanowires 106 are grown on the surface of the entire carbon nanotube structure 100. The length of the nanowire 106 is equal to the length of the carbon nanotube film. The plural The nanowires 106 arranged in parallel form a two-dimensional nanostructure 104.

本實施例中,在奈米碳管拉膜表面製備得到複數個二氧化鈦奈米線。請參見圖11,該二氧化鈦奈米線該沿著奈米碳管結構中首尾相連的奈米碳管生長,形成複數個平行設置的二氧化鈦奈米線,且二氧化鈦奈米線包覆於奈米碳管表面。請參見圖12,二氧化鈦奈米線的微觀形貌為複數個連續的類似橢球狀的小顆粒,且均勻分散或包覆於奈米碳管表面。 In this embodiment, a plurality of titanium dioxide nanowires are prepared on the surface of the carbon nanotube film. Referring to FIG. 11, the titanium dioxide nanowires are grown along the carbon nanotubes connected end to end in the carbon nanotube structure to form a plurality of parallel titanium dioxide nanowires, and the titanium dioxide nanowires are coated on the nano carbon. Tube surface. Referring to FIG. 12, the microstructure of the titanium dioxide nanowire is a plurality of continuous small ellipsoid-like small particles uniformly dispersed or coated on the surface of the carbon nanotube.

進一步,本實施例中,將上述二氧化鈦奈米線於大氣環境下熱處理以除去奈米碳管結構得到一純的二氧化鈦奈米結構。所述熱處理溫度為900℃,所述熱處理的升溫速度為10K/分鐘。請參見圖13,所述的純的二氧化鈦奈米線形成一具有自支撐特性的薄膜。該二氧化鈦膜的厚度小於100奈米。該二氧化鈦膜中的二氧化鈦奈米線長度大於900微米,直徑小於100奈米。 Further, in the present embodiment, the titanium dioxide nanowire is heat-treated in an atmosphere to remove the carbon nanotube structure to obtain a pure titanium oxide nanostructure. The heat treatment temperature was 900 ° C, and the heat treatment rate of the heat treatment was 10 K / min. Referring to Figure 13, the pure titanium dioxide nanowires form a film having self-supporting properties. The thickness of the titanium dioxide film is less than 100 nm. The titanium dioxide nanowires in the titanium dioxide film have a length greater than 900 microns and a diameter less than 100 nanometers.

由於本實施例採用奈米碳管拉膜作為模板製備二氧化鈦奈米線,該奈米碳管拉膜包括複數個首尾相連的奈米碳管,且首尾相連的奈米碳管具有較大的尺度(可達數米以上),故,可於長達數米的較大的範圍內控制二氧化鈦奈米線的生長,獲得由長度較大的二氧化鈦奈米線組成的二維奈米結構104。長度較大的二氧化鈦奈米線有利於其於宏觀器件中的應用。 Since the present embodiment adopts a carbon nanotube film as a template to prepare a titanium dioxide nanowire, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end, and the carbon nanotubes connected end to end have a larger scale. (Up to several meters or more), the growth of the titanium dioxide nanowire can be controlled in a large range of several meters, and a two-dimensional nanostructure 104 composed of a relatively long titanium dioxide nanowire can be obtained. The larger length of the titanium dioxide nanowire is advantageous for its application in macroscopic devices.

實施例2 Example 2

請參閱圖14,本發明第二實施例提供一種奈米結構204的 製備方法。所述奈米結構204的製備方法與本發明第一實施例中奈米結構的製備方法基本相同,其區別在於本實施例中將兩個奈米碳管拉膜重疊且垂直交叉鋪設作為模板生長奈米結構204。 Referring to FIG. 14, a second embodiment of the present invention provides a nanostructure 204. Preparation. The preparation method of the nanostructure 204 is basically the same as the preparation method of the nanostructure in the first embodiment of the present invention, and the difference is that in the embodiment, two carbon nanotube films are overlapped and vertically cross-laid as a template growth. Nanostructure 204.

本實施例具體包括以下步驟: This embodiment specifically includes the following steps:

步驟一,製備一二維奈米碳管結構200。 In the first step, a two-dimensional carbon nanotube structure 200 is prepared.

本實施例中,將兩個奈米碳管拉膜重疊且垂直交叉鋪設於一金屬環上得到一奈米碳管結構200。所述兩個奈米碳管拉膜中的奈米碳管排列方向垂直。 In this embodiment, two carbon nanotube films are overlapped and vertically laid on a metal ring to obtain a carbon nanotube structure 200. The carbon nanotubes in the two carbon nanotube films are arranged in a vertical direction.

步驟二,向該二維奈米碳管結構200引入反應原料202。 In step two, the reaction raw material 202 is introduced into the two-dimensional carbon nanotube structure 200.

本實施例中,通過磁控濺射法於奈米碳管結構200雙面各沈積一層100奈米後的鈦層作為反應原料202。 In the present embodiment, a layer of 100 nm of titanium is deposited as a reaction material 202 on both sides of the carbon nanotube structure 200 by magnetron sputtering.

步驟三,引發反應原料202進行反應,生長奈米結構204。 In step three, the reaction starting material 202 is initiated to react to grow the nanostructure 204.

所述反應原料202於反應條件下進行反應生長奈米線206。由於本實施例採用奈米碳管拉膜作為模板,每個奈米碳管拉膜包括複數個首尾相連的奈米碳管,且兩個奈米碳管拉膜中奈米碳管的排列方向垂直,該奈米線206沿奈米碳管拉膜中的首尾相連的奈米碳管生長,且包覆於奈米碳管表面。故,於該奈米碳管結構200表面形成複數個奈米線206。該複數個奈米線206形成二維奈米結構204。該二維奈米結構204中的奈米線206部份沿第一方向平行排列,部份沿第二方向平行排列,且該第一方向與第 二方向相互垂直。 The reaction starting material 202 is subjected to a reaction to grow the nanowire 206 under the reaction conditions. Since the carbon nanotube film is used as a template in the embodiment, each of the carbon nanotube films comprises a plurality of carbon nanotubes connected end to end, and the arrangement direction of the carbon nanotubes in the two carbon nanotube films is arranged. Vertically, the nanowire 206 grows along the end-to-end carbon nanotubes in the carbon nanotube film and is coated on the surface of the carbon nanotube. Therefore, a plurality of nanowires 206 are formed on the surface of the carbon nanotube structure 200. The plurality of nanowires 206 form a two-dimensional nanostructure 204. The nanowire 206 portions of the two-dimensional nanostructure 204 are arranged in parallel along the first direction, and the portions are arranged in parallel along the second direction, and the first direction and the first The two directions are perpendicular to each other.

本實施例中,在奈米碳管拉膜表面製備得到兩層交叉設置的二氧化鈦奈米線。請參見圖15,該二氧化鈦奈米線包覆於奈米碳管表面。由於二氧化鈦奈米線分散或包覆於奈米碳管表面,故,二氧化鈦的宏觀形貌與奈米碳管結構的形貌一致。因此,通過控制奈米碳管拉膜的鋪設角度,可製備不同交叉角度的二氧化鈦奈米線。 In this embodiment, two layers of titanium dioxide nanowires are provided on the surface of the carbon nanotube film. Referring to Figure 15, the titanium dioxide nanowire is coated on the surface of the carbon nanotube. Since the titanium dioxide nanowires are dispersed or coated on the surface of the carbon nanotubes, the macroscopic morphology of the titanium dioxide is consistent with the morphology of the carbon nanotube structure. Therefore, by controlling the laying angle of the carbon nanotube film, different angles of titanium dioxide nanowires can be prepared.

實施例3 Example 3

請參閱圖16,本發明第三實施例提供一種奈米結構304的製備方法。所述奈米結構304的製備方法與本發明第一實施例中奈米結構的製備方法基本相同,其區別在於本實施例中採用至少一奈米碳管線作為模板生長奈米結構304。 Referring to FIG. 16, a third embodiment of the present invention provides a method for preparing a nanostructure 304. The preparation method of the nanostructure 304 is basically the same as the preparation method of the nanostructure in the first embodiment of the present invention, except that at least one nanocarbon pipeline is used as the template growth nanostructure 304 in the embodiment.

本實施例具體包括以下步驟: This embodiment specifically includes the following steps:

步驟一,製備一一維奈米碳管結構300。 In step one, a one-dimensional carbon nanotube structure 300 is prepared.

所述一維奈米碳管結構300為一由複數個奈米碳管組成的線狀結構,其包括單個奈米碳管線或複數個平行排列成束狀的奈米碳管線。所述奈米碳管線的直徑小於100奈米。當一維奈米碳管結構300包括複數個平行排列成束狀的奈米碳管線時,所述奈米碳管線之間的間距大於5奈米,以便生長奈米線。本實施例中,該奈米碳管結構300為單個奈米碳管線。該奈米碳管線直徑為50奈米。 The one-dimensional carbon nanotube structure 300 is a linear structure composed of a plurality of carbon nanotubes, and includes a single nano carbon line or a plurality of nano carbon lines arranged in parallel in a bundle. The nanocarbon line has a diameter of less than 100 nanometers. When the one-dimensional carbon nanotube structure 300 includes a plurality of nanocarbon lines arranged in parallel in a bundle, the spacing between the nanocarbon lines is greater than 5 nm to grow the nanowires. In this embodiment, the carbon nanotube structure 300 is a single carbon carbon pipeline. The nano carbon line has a diameter of 50 nm.

步驟二,向該一維奈米碳管結構300引入反應原料302。 In step two, a reaction raw material 302 is introduced into the one-dimensional carbon nanotube structure 300.

本實施例中,通過磁控濺射法於奈米碳管結構300表面沈積複數個鈦顆粒作為反應原料302。該鈦顆粒直徑為10~50奈米。 In the present embodiment, a plurality of titanium particles are deposited as a reaction material 302 on the surface of the carbon nanotube structure 300 by magnetron sputtering. The titanium particles have a diameter of 10 to 50 nm.

步驟三,引發反應原料302進行反應,生長奈米結構304。 In the third step, the reaction raw material 302 is initiated to react to grow the nanostructure 304.

所述一維奈米碳管結構300為一由複數個奈米碳管組成的線狀結構。所述反應原料302於反應條件下進行反應,並沿一維奈米碳管結構300長度方向生長形成一一維奈米結構304。該奈米結構304由單個或複數個奈米線組成。當該一維奈米結構304由複數個奈米線組成時,複數個奈米線成束狀排列。 The one-dimensional carbon nanotube structure 300 is a linear structure composed of a plurality of carbon nanotubes. The reaction starting material 302 is reacted under the reaction conditions and grown along the length of the one-dimensional carbon nanotube structure 300 to form a one-dimensional nanostructure 304. The nanostructure 304 consists of a single or a plurality of nanowires. When the one-dimensional nanostructure 304 is composed of a plurality of nanowires, a plurality of nanowires are arranged in a bundle.

實施例4 Example 4

請參閱圖17,本發明第四實施例提供一種奈米結構404的製備方法。所述奈米結構404的製備方法與本發明第一實施例中奈米結構的製備方法基本相同,其區別在於本實施例中將奈米碳管膜製備成一三維結構作為模板生長奈米結構404。 Referring to FIG. 17, a fourth embodiment of the present invention provides a method for preparing a nanostructure 404. The preparation method of the nano structure 404 is basically the same as the preparation method of the nano structure in the first embodiment of the present invention, and the difference is that the carbon nanotube film is prepared into a three-dimensional structure as a template growth nano structure 404 in this embodiment. .

本實施例具體包括以下步驟: This embodiment specifically includes the following steps:

步驟一,製備一三維奈米碳管結構400。 In step one, a three-dimensional carbon nanotube structure 400 is prepared.

所述三維奈米碳管結構400可以通過將第一實施例中的奈米碳管拉膜、奈米碳管碾壓膜或奈米碳管絮化膜摺疊或卷曲而獲得。本實施例中,將奈米碳管拉膜設置於一鋁框架40上,通過卷曲框架40使奈米碳管拉膜卷成一圓筒 作為模板。 The three-dimensional carbon nanotube structure 400 can be obtained by folding or crimping the carbon nanotube film, the carbon nanotube film or the carbon nanotube film of the first embodiment. In this embodiment, the carbon nanotube film is placed on an aluminum frame 40, and the carbon nanotube film is rolled into a cylinder by the crimping frame 40. As a template.

步驟二,向該三維奈米碳管結構400引入反應原料402。 In step two, a reaction material 402 is introduced into the three-dimensional carbon nanotube structure 400.

本實施例中,通過磁控濺射法於奈米碳管結構400表面沈積一鈦層作為反應原料402。該鈦層厚度為50奈米。 In this embodiment, a titanium layer is deposited as a reaction material 402 on the surface of the carbon nanotube structure 400 by magnetron sputtering. The titanium layer has a thickness of 50 nm.

步驟三,引發反應原料402進行反應,生長奈米結構404。 In step three, the reaction starting material 402 is initiated to react to grow the nanostructure 404.

所述反應原料402於反應條件下進行反應生長奈米線406。由於所述三維奈米碳管結構400中包括複數個首尾相連的奈米碳管,該奈米線406沿首尾相連的奈米碳管生長,且包覆於奈米碳管表面,故,於奈米碳管結構400表面生長得到複數個平行排列的奈米線406。所述複數個奈米線406平行於圓筒軸向排列,且形成一三維奈米結構404。 The reaction starting material 402 is subjected to a reaction-growth nanowire 406 under the reaction conditions. Since the three-dimensional carbon nanotube structure 400 includes a plurality of carbon nanotubes connected end to end, the nanowire 406 is grown along the end-to-end carbon nanotubes and is coated on the surface of the carbon nanotubes. The surface of the carbon nanotube structure 400 is grown to obtain a plurality of parallel aligned nanowires 406. The plurality of nanowires 406 are aligned parallel to the axis of the cylinder and form a three-dimensional nanostructure 404.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

100,200,300,400‧‧‧奈米碳管結構 100,200,300,400‧‧‧Nano carbon nanotube structure

102,202,302,402‧‧‧反應原料 102,202,302,402‧‧‧Reactive raw materials

104,204,304,404‧‧‧奈米結構 104,204,304,404‧‧‧ nanostructure

106,206,406‧‧‧奈米結線 106,206,406‧‧‧Nami line

143‧‧‧奈米碳管片段 143‧‧‧Nano carbon nanotube fragments

145‧‧‧奈米碳管 145‧‧・Nano carbon tube

圖1為本發明的奈米結構製備方法的流程圖。 1 is a flow chart of a method for preparing a nanostructure of the present invention.

圖2為本發明製備的奈米碳管拉膜的掃描電鏡照片。 2 is a scanning electron micrograph of a carbon nanotube film produced by the present invention.

圖3為圖2中的奈米碳管拉膜中的奈米碳管片段的結構示意圖。 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of FIG. 2.

圖4及圖5為本發明製備的奈米碳管線的掃描電鏡照片。 4 and 5 are scanning electron micrographs of a nanocarbon pipeline prepared by the present invention.

圖6及圖7為本發明製備的奈米碳管碾壓膜的掃描電鏡照片。 6 and 7 are scanning electron micrographs of a carbon nanotube rolled film prepared by the present invention.

圖8為本發明製備的奈米碳管絮化膜的掃描電鏡照片。 Figure 8 is a scanning electron micrograph of a carbon nanotube film of the present invention.

圖9為本發明第一實施例的奈米結構製備工藝流程圖。 Figure 9 is a flow chart showing the preparation process of the nanostructure according to the first embodiment of the present invention.

圖10為本發明第一實施例製備的沈積有鈦層的奈米碳管結構的掃描電鏡照片。 Figure 10 is a scanning electron micrograph of a structure of a carbon nanotube deposited with a titanium layer prepared in accordance with a first embodiment of the present invention.

圖11為本發明第一實施例製備的定向排列的二氧化鈦奈米線的掃描電鏡照片。 Figure 11 is a scanning electron micrograph of oriented aligned titanium dioxide nanowires prepared in accordance with a first embodiment of the present invention.

圖12為本發明第一實施例製備的定向排列的二氧化鈦奈米線的透射電鏡照片。 Figure 12 is a transmission electron micrograph of oriented aligned titanium dioxide nanowires prepared in accordance with a first embodiment of the present invention.

圖13為本發明第一實施例製備的定向排列的二氧化鈦奈米線去除奈米碳管模板後的掃描電鏡照片。 Figure 13 is a scanning electron micrograph of a aligned titanium dioxide nanowire prepared by a first embodiment of the present invention after removal of a carbon nanotube template.

圖14為本發明第二實施例的奈米結構製備工藝流程圖。 Figure 14 is a flow chart showing the preparation process of the nanostructure according to the second embodiment of the present invention.

圖15為本發明第二實施例製備的交叉設置的二氧化鈦奈米線的掃描電鏡照片。 Figure 15 is a scanning electron micrograph of a cross-mounted titanium dioxide nanowire prepared in accordance with a second embodiment of the present invention.

圖16為本發明第三實施例的奈米結構製備工藝流程圖。 Figure 16 is a flow chart showing a process for preparing a nanostructure according to a third embodiment of the present invention.

圖17為本發明第四實施例的奈米結構製備工藝流程圖。 Figure 17 is a flow chart showing a process for preparing a nanostructure according to a fourth embodiment of the present invention.

Claims (20)

一種奈米結構的製備方法,其包括以下步驟:提供一由複數奈米碳管首尾相連形成的具有自支撐性的奈米碳管結構作為模板;向該奈米碳管結構引入反應原料;及引發反應原料,使反應原料進行反應沿所述奈米碳管結構的表面生長形成一自支撐的奈米結構。 A method for preparing a nanostructure, comprising the steps of: providing a self-supporting carbon nanotube structure formed by a plurality of carbon nanotubes connected end to end as a template; introducing a reaction raw material to the carbon nanotube structure; The reaction raw material is initiated, and the reaction raw material is reacted to grow along the surface of the carbon nanotube structure to form a self-supporting nanostructure. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述奈米碳管結構包括至少一奈米碳管拉膜、至少一奈米碳管碾壓膜、至少一奈米碳管絮化膜、至少一奈米碳管線或其組合。 The method for preparing a nanostructure according to claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film, at least one carbon nanotube rolled film, at least one nanometer. A carbon tube flocculation membrane, at least one nanocarbon line, or a combination thereof. 如申請專利範圍第2項所述的奈米結構的製備方法,其中,所述奈米碳管拉膜包括複數個首尾相連且沿同一方向擇優取向排列的奈米碳管。 The method for preparing a nanostructure according to claim 2, wherein the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction. 如申請專利範圍第2項所述的奈米結構的製備方法,其中,進一步提供一支撐體,將至少一個奈米碳管拉膜設置於該支撐體上。 The method for preparing a nanostructure according to claim 2, wherein a support is further provided, and at least one carbon nanotube film is disposed on the support. 如申請專利範圍第4項所述的奈米結構的製備方法,其中,所述支撐體為一基板或框架。 The method for preparing a nanostructure according to claim 4, wherein the support is a substrate or a frame. 如申請專利範圍第2項所述的奈米結構的製備方法,其中,所述奈米碳管碾壓膜包括複數個沿同一方向或不同方向擇優取向排列的奈米碳管。 The method for preparing a nanostructure according to claim 2, wherein the carbon nanotube rolled film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction or in different directions. 如申請專利範圍第2項所述的奈米結構的製備方法,其中,所述奈米碳管絮化膜包括複數個相互纏繞的奈米碳管。 The method for preparing a nanostructure according to claim 2, wherein the carbon nanotube flocculation membrane comprises a plurality of intertwined carbon nanotubes. 如申請專利範圍第2項所述的奈米結構的製備方法,其中 ,所述奈米碳管結構包括複數個奈米碳管線平行設置或交叉設置。 The method for preparing a nanostructure as described in claim 2, wherein The carbon nanotube structure includes a plurality of nano carbon pipelines arranged in parallel or in a cross arrangement. 如申請專利範圍第2項所述的奈米結構的製備方法,其中,所述奈米碳管線包括複數個奈米碳管沿該奈米碳管線軸向擇優取向排列或繞奈米碳管線軸向螺旋排列。 The method for preparing a nanostructure according to claim 2, wherein the nanocarbon pipeline comprises a plurality of carbon nanotubes arranged along an axially preferred orientation of the nanocarbon pipeline or around a carbon nanotube shaft. Arranged in a spiral. 如申請專利範圍第2項所述的奈米結構的製備方法,其中,至少一奈米碳管線設置於該奈米碳管拉膜,奈米碳管碾壓膜或奈米碳管絮化膜的至少一表面。 The method for preparing a nanostructure according to claim 2, wherein at least one nano carbon line is disposed on the carbon nanotube film, the carbon nanotube film or the carbon nanotube film At least one surface. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述反應原料包括金屬、非金屬及半導體中的一種或多種。 The method for preparing a nanostructure according to claim 1, wherein the reaction raw material comprises one or more of a metal, a nonmetal, and a semiconductor. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述向奈米碳管結構引入反應原料的方法包括物理氣相沈積法、化學氣相沈積法、浸漬法、噴塗法及絲網列印法中的一種或多種。 The method for preparing a nanostructure according to the first aspect of the invention, wherein the method for introducing a reaction raw material into a carbon nanotube structure comprises physical vapor deposition, chemical vapor deposition, dipping, and spraying. And one or more of the screen printing methods. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述引發反應原料進行反應的方法包括加熱、鐳射照射及反應濺射中的一種或多種。 The method for preparing a nanostructure according to claim 1, wherein the method of initiating the reaction raw material to perform the reaction includes one or more of heating, laser irradiation, and reactive sputtering. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述引發反應原料進行反應生長奈米結構的步驟之後進一步包括一通過高溫氧化去除該奈米碳管結構的步驟。 The method for preparing a nanostructure according to claim 1, wherein the step of initiating the reaction raw material to carry out the reaction to grow the nanostructure further comprises the step of removing the carbon nanotube structure by high temperature oxidation. 如申請專利範圍第14項所述的奈米結構的製備方法,其中,所述高溫氧化的溫度為500~1000℃,所述高溫氧化的時間小於4小時。 The method for preparing a nanostructure according to claim 14, wherein the high temperature oxidation temperature is 500 to 1000 ° C, and the high temperature oxidation time is less than 4 hours. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述奈米結構與所述奈米碳管結構的形貌一致。 The method for preparing a nanostructure according to claim 1, wherein the nanostructure is identical to the morphology of the carbon nanotube structure. 如申請專利範圍第1項所述的奈米結構的製備方法,其中,所述奈米碳管結構包括複數個奈米碳管,所述奈米結構包括複數個奈米線,該奈米線沿著奈米碳管的長度方向生長。 The method for preparing a nanostructure according to claim 1, wherein the carbon nanotube structure comprises a plurality of carbon nanotubes, and the nanostructure comprises a plurality of nanowires, the nanowire It grows along the length of the carbon nanotubes. 一種奈米結構的製備方法,其包括以下步驟:製備一由複數奈米碳管首尾相連形成的具有自支撐性的奈米碳管結構,所述奈米碳管結構作為模板;向該奈米碳管結構表面沈積一金屬層;及將該金屬層氧化,沿所述奈米結構的表面生長形成自支撐的金屬氧化物奈米結構。 A method for preparing a nanostructure, comprising the steps of: preparing a self-supporting carbon nanotube structure formed by connecting a plurality of carbon nanotubes end to end, the carbon nanotube structure being used as a template; Depositing a metal layer on the surface of the carbon tube structure; and oxidizing the metal layer to form a self-supporting metal oxide nanostructure along the surface of the nanostructure. 如申請專利範圍第18項所述的金屬氧化物奈米結構的製備方法,其中,所述金屬層厚度應大於30奈米且小於等於100奈米。 The method for preparing a metal oxide nanostructure according to claim 18, wherein the metal layer has a thickness of more than 30 nm and less than or equal to 100 nm. 如申請專利範圍第18項所述的金屬氧化物奈米結構的製備方法,其中,所述將金屬層氧化的方法包括於一含氧環境下加熱或鐳射照射該金屬層。 The method for preparing a metal oxide nanostructure according to claim 18, wherein the method of oxidizing the metal layer comprises heating or laser irradiating the metal layer in an oxygen-containing environment.
TW097147316A 2008-12-05 2008-12-05 Method for making nanowire structure TWI481554B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097147316A TWI481554B (en) 2008-12-05 2008-12-05 Method for making nanowire structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097147316A TWI481554B (en) 2008-12-05 2008-12-05 Method for making nanowire structure

Publications (2)

Publication Number Publication Date
TW201022140A TW201022140A (en) 2010-06-16
TWI481554B true TWI481554B (en) 2015-04-21

Family

ID=44832936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097147316A TWI481554B (en) 2008-12-05 2008-12-05 Method for making nanowire structure

Country Status (1)

Country Link
TW (1) TWI481554B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405713B (en) * 2010-06-24 2013-08-21 Hon Hai Prec Ind Co Ltd Method for making raman scattering substrate
CN102372251B (en) 2010-08-23 2014-03-26 清华大学 Carbon nanotube structure and preparation method thereof
TWI405712B (en) * 2010-08-27 2013-08-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making same
CN102013376B (en) 2010-11-29 2013-02-13 清华大学 Field emission unit and field emission pixel tube
TWI477599B (en) * 2011-01-28 2015-03-21 Hon Hai Prec Ind Co Ltd Culture substrate
CN102614032B (en) 2011-01-28 2015-04-15 清华大学 Preparation method of neural implant
CN102614031B (en) 2011-01-28 2015-06-03 清华大学 Neural implant
TWI477603B (en) * 2011-01-28 2015-03-21 Hon Hai Prec Ind Co Ltd Method for making culture substrate
CN102747028B (en) 2011-04-19 2015-07-29 清华大学 This culture layer of culture layer and its preparation method and application prepares the method for transplant
CN102847199B (en) * 2011-06-30 2015-01-21 清华大学 Culture base body, transplant using the culture base body, and preparation method for the transplant
CN102911913B (en) 2011-08-01 2015-03-11 清华大学 Application method of culture matrix
CN102911912B (en) 2011-08-01 2014-12-31 清华大学 Culture matrix and nerve graft by using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311306A (en) * 2007-05-21 2008-11-26 辽宁科技大学 Method for plating copper on surface of carbon nanotube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311306A (en) * 2007-05-21 2008-11-26 辽宁科技大学 Method for plating copper on surface of carbon nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. E. and A.H. W.,(2008/3/14)"Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes" J. Mater. Chem., Vol. 18, pp. 2036-2043. *

Also Published As

Publication number Publication date
TW201022140A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TWI481554B (en) Method for making nanowire structure
CN104192792B (en) The preparation method of nanostructured
JP5363260B2 (en) Carbon nanotube composite material and manufacturing method thereof
TWI327177B (en) Carbon nanotube film and method for making same
CN101880023B (en) Nanomaterial membrane structure
JP5700606B2 (en) Powdered single-walled carbon nanotube aligned assembly
CN101964229B (en) Carbon nano tube stranded wire and preparation method thereof
TWI490032B (en) Reactor and a method for growing carbon nanotube
CN101837287B (en) Preparation of carbon nano-tube nano-particle composite material
TWI504436B (en) Reactor and a method for growing carbon nanotube
Faraji et al. Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets
WO2009107603A1 (en) Process and apparatus for producing carbon nanotube, carbon nanotube fiber, and the like
TWI565653B (en) Method for making carbon nanotube composite wire
CN101734618A (en) Preparation method of nanostructure
TWI411574B (en) Carbon nanotube composite material and method for making the same
TWI387556B (en) Nano-material film structure
TW200939249A (en) Method for making twisted yarn
Ma et al. Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates
Kim et al. Cone-type multi-shell in the hollow core of multi-wall carbon nanotube
TWI438150B (en) Hydrophilic carbon nanotube composite structure
Guo et al. Growth of carbon nanofibers/tubes by an in-situ polymerization route without metal-catalyst
Knauss et al. In-Situ Formation of Carbon Nanofiber Hybrid Architectures for Functional Devices
TW201105947A (en) Method for making transmission electron microscope sample