TW201013699A - Conductors for photovoltaic cells: compositions containing submicron particles - Google Patents

Conductors for photovoltaic cells: compositions containing submicron particles Download PDF

Info

Publication number
TW201013699A
TW201013699A TW98118099A TW98118099A TW201013699A TW 201013699 A TW201013699 A TW 201013699A TW 98118099 A TW98118099 A TW 98118099A TW 98118099 A TW98118099 A TW 98118099A TW 201013699 A TW201013699 A TW 201013699A
Authority
TW
Taiwan
Prior art keywords
composition
thick film
firing
silver
inorganic
Prior art date
Application number
TW98118099A
Other languages
Chinese (zh)
Inventor
Haixin Yang
Roberto Irizarry
Patricia J Ollivier
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Publication of TW201013699A publication Critical patent/TW201013699A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Embodiments of the invention relate to a silicon semiconductor device, and a conductive thick film composition for use in a solar cell device.

Description

201013699 六、發明說明:, 【發明所屬之技術領域】 本發明實施例係關於矽半導體裝置及用於太陽能電池裝 置中之導體厚膜組合物。 【先前技術】 具有P-型基體之習用太陽能電池結構可在電池之正面 (亦稱為陽光面或照射面)具有負極且可在背面具有正極。 射至半導體本體p-n接面上之適宜波長的輻射作為外部能 量源用來在該本體中產生電洞-電子對。由於在p_n接面處 存在電勢差’因此電洞及電子以相反方向跨越接面而移動 且由此產生能將電力傳送至外部電路之電流。大多數太陽 食b電池呈已經金屬化之石夕晶圓形式,即與導電金屬觸點一 起提供。 業内需求具有經改良電性能之組合物、結構(例如,半 導體、太陽能電池或光電二極體結構)、及半導體裝置(例201013699 VI. Description of the Invention: [Technical Field] The present invention relates to a germanium semiconductor device and a conductor thick film composition for use in a solar cell device. [Prior Art] A conventional solar cell structure having a P-type substrate may have a negative electrode on the front side (also referred to as a sun surface or an irradiation surface) of the battery and may have a positive electrode on the back side. Radiation of a suitable wavelength incident on the p-n junction of the semiconductor body is used as an external energy source to create a hole-electron pair in the body. Since there is a potential difference at the p_n junction, the holes and electrons move across the junction in opposite directions and thereby generate a current that can transfer power to the external circuit. Most solar b batteries are in the form of metallized wafers, which are provided with conductive metal contacts. There is a need in the industry for compositions, structures (e.g., semiconductors, solar cells, or photodiode structures) having improved electrical properties, and semiconductor devices (eg,

如,半導體、太陽能電池或光電二極體裝置)及其製造方 法0 【發明内容】 本發月之個實施例係關於包含下列之組合物:⑷一或 多種導電材料;(b)一或多種無機黏結劑;及⑷有機媒 介’其中無機细份之係次微米顆粒。在-個實施例 中’無機組份之85_99%可具有丄5_1〇微米之㈣。在一個 實幻中 或多種導電材料可包含銀。在一個實施例 中刀銀含有次微米顆粒。在-個實施例中’次微米 140747.doc 201013699 顆粒具有0·1-1微米之d50。在一個實施例中,,次微米顆粒 具有0.1-0.6微米之d50 »在一個實施例中,該等顆粒具有 雙峰型尺寸分佈。 該組合物可包含一或多種選自由下列組成之群之添加 劑·(a)金屬’其中該金屬係選自Zn、Pb、Bi、Gd、Ce、 Zr、Ti、Μη、Sn、Ru、Co、Fe、Cu及 Cr ; (b)—或多種選 自下列之金屬的金屬氧化物:Zn、Pb、Bi、. Gd、Ce、 Zr、Τι、Μη、Sn、Ru、Co、Fe、Cu及 Cr ; (c)燒製後可產 生(b)之金屬氧化物之任何化合物;及其混合物。在一 個實施例中,添加劑可包含Zn0、或燒製後形成Zn〇之化 合物。在一個實施例中,Zn〇及/或無機黏結劑可包含次微 米顆粒。ZnO可佔總組合物之2_10重量%。玻璃料可佔總 組合物之1-6重量%。導電材料可包含Ag。Ag可佔組合物 中固體之90_99重量%。在一個實施例巾,無機組份可佔總 組合物之70-95重量%。 另一實施例係關於製造半導體裝置之方法,其包含以下 步驟.(a)提供半導體基板、一或多個絕緣膜、及本文所述 厚膜組合物;(b)將絕緣膜施加至半導體基板上;將厚 臈組合物施加至半導體基板上之絕緣膜上,及(d)燒製半導 體、絕緣膜及厚膜組合物。在一個態樣中,絕緣膜可包含 —或多種選自下列之組份:氧化鈦、氮化矽、SiNx:H、氧 化矽、及氧化矽/氧化鈦。 再一實施例係關於由本文所述方法製造之半導體裝置。 一個態樣係關於包含電極之半導體裝置,其中在燒製前該 U0747.doc 201013699 電極包含本文所述組合物。一個實施例係關於包含半導體 裝置之太陽能電池。 一個實施例係關於包含半導體基板、絕緣膜及正面電極 之半導體裝置,其中該正面電極包括一或多種選自由下列 組成之群之組份:矽酸鋅、矽鋅礦(willemite)及矽酸鉍。 【實施方式】For example, a semiconductor, a solar cell, or a photodiode device, and a method of manufacturing the same, and a method of manufacturing the same as follows: [Invention] The present embodiment relates to a composition comprising: (4) one or more conductive materials; (b) one or more An inorganic binder; and (4) an organic medium in which the inorganic fine fraction is a submicron particle. In one embodiment, 85-99% of the inorganic component may have (4) 丄5_1 〇 microns. In a real or multiple conductive materials, silver may be included. In one embodiment the knife silver contains submicron particles. In one embodiment, the 'submicron 140,747.doc 201013699 particles have a d50 of 0·1-1 microns. In one embodiment, the sub-micron particles have a d50 of from 0.1 to 0.6 microns. » In one embodiment, the particles have a bimodal size distribution. The composition may comprise one or more additives selected from the group consisting of: (a) a metal wherein the metal is selected from the group consisting of Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (b) - or a plurality of metal oxides selected from the group consisting of Zn, Pb, Bi, . Gd, Ce, Zr, Τι, Μη, Sn, Ru, Co, Fe, Cu and Cr (c) any compound which produces a metal oxide of (b) after firing; and mixtures thereof. In one embodiment, the additive may comprise ZnO, or a compound that forms Zn stront after firing. In one embodiment, the Zn〇 and/or inorganic binder may comprise sub-micron particles. ZnO may comprise from 2 to 10% by weight of the total composition. The glass frit may comprise from 1 to 6% by weight of the total composition. The conductive material may comprise Ag. Ag may comprise 90_99% by weight of the solids in the composition. In one embodiment, the inorganic component can comprise from 70 to 95% by weight of the total composition. Another embodiment is directed to a method of fabricating a semiconductor device comprising the steps of: (a) providing a semiconductor substrate, one or more insulating films, and a thick film composition as described herein; (b) applying an insulating film to the semiconductor substrate Upper; the thick ruthenium composition is applied to the insulating film on the semiconductor substrate, and (d) the semiconductor, the insulating film, and the thick film composition are fired. In one aspect, the insulating film may comprise - or a plurality of components selected from the group consisting of titanium oxide, tantalum nitride, SiNx:H, cerium oxide, and cerium oxide/titanium oxide. Yet another embodiment relates to a semiconductor device fabricated by the methods described herein. One aspect relates to a semiconductor device comprising an electrode, wherein the U0747.doc 201013699 electrode comprises a composition as described herein prior to firing. One embodiment relates to a solar cell comprising a semiconductor device. One embodiment relates to a semiconductor device including a semiconductor substrate, an insulating film, and a front electrode, wherein the front electrode includes one or more components selected from the group consisting of zinc silicate, willemite, and bismuth ruthenate. . [Embodiment]

業内需求具有增加效率之經改良太陽能電池。業内需求 適合形成尚度增加之窄導線的導體組合物。本發明之一個 態樣係關於含有次微米顆粒之組合物。該等組合物可係厚 膜組合物。該等組合物可用來形成太陽能電池電極。該等 電極可位於太陽能電池之正面上。在—個實施例中,電極 線可較窄且具有增加之高度。 本文所用「厚膜組合物」係指在燒製基板後厚度為^ 100微米之組合物。厚臈組合物可含有導電材料、玻璃組 合物及有機媒介。厚膜組合物可包含其他組份。本文所用 其他組份稱為「添加劑」。 本文所述組合物包含—或多種電功能材料及_或多種分 散於有機媒介中之玻賴。該等組合物可係厚膜組合物。 該等組合物亦可包含一或多種添加劑。例示性添加劑可包 含金屬、金屬氧化物或在燒製期間可產生該等金屬氧化物 之任何化合物。 在-個實施例中,電功能粉末可係導電粉末。在一個實 施例中’該等組合物(例如導體組合物)可用於半導體裝置 中。在該實施例之—個態樣中,半導體裝置可係太陽能電 140747.doc 201013699 池或光電二極體。在該實施例之又一態g中,半導體裝置 可係寬範圍半導體裝置中的-種。在—個實施例中,半導 體裝置可係太陽能電池。 在-個實施例中,本文所述厚膜組合物可用於太陽能電 池1在該實施例之-個態樣中’太陽能電池效率可為參 考太陽能電池之70%以上。在另一實施例中,太陽能電池 效率可為參考太陽能電池之80%以上。太陽能電池效率可 為參考太陽能電池之90%以上。 U f ’厚膜組合物中有機媒介與分散液中無 機組份之比率可視施加膏糊之方法及所使用有機媒介之類 ^•而疋,如由熟習此項技術者所確定。在一個實施例中, 刀散液可包含70-95重量%的無機組份及5_3〇重量%的有機 媒介(媒劑)以獲得良好的潤濕性。 在個貫施你j中,|冑組份中的一部分可係次微米顆 粒在該實施例之一個態樣中,次微米顆粒可具有〇丄1微 ;; 在另態樣中’次微米顆粒可具有0.1-0.8微米 0在再態樣中’次微米顆粒可具有0·2-〇·6微米之 <150 ° 。在_實施例+,次微米顆粒可佔組合物之1-15重量 。在$ f施例中,二欠微米顆粒可佔、组合物之2-10重量 在又實施例中,:欠微米顆粒可伯組合物之3-6重量 %。 在一個實施例中,々他 ••人微未顆粒可納入一部分導電材料 中。在一個態樣中,導電材料之M5重量%可係次微米顆 140747.doc 201013699 粒。在另一態樣中,導電材料之2_10重量%可係次微米顆 粒》在又一態樣中,導體組合物之3_6重量%可係次微米顆 粒。 在一個實施例中,組合物中的一部分可具有15_1〇微米 之d5〇。在該實施例之一個態樣中,組合物中無機組份之 85-99重量%可具有1.5-10微米之d5〇。在該實施例之—個 態樣中,組合物中的一部分可具有2〇_7〇微米之d5〇。在 該實施例之一個態樣中,組合物中的一部分可具有2 5 5 〇 微米之d50。 在另一態樣中,導電材料可包含銀。在一個態樣中,導 電材料之5(MO〇重量%可係銀。在另一態樣中,導電材料 之70-99重量%、70-98重量%或80_95重量%可係銀。 玻璃料 在本發明之一個態樣中,該組合物包含玻璃料組合物。 用於本發明中之玻璃料組合物應由熟習此項技術者容易地 • 製備。舉例而言,可使用用於用來製備正面太陽能電池電 極之組合物中的玻璃料組合物。例示性玻璃料組合物包含 • 硼矽酸鉛玻璃。在一個實施例中,用於本發明中之玻璃料 , 組合物可包含20·24重量% Si〇2、0.2-0.8重量% Al2〇3、4〇_ 6〇重置% PbO、及5-8重量% B2〇3。在一個實施例中,玻 璃料組合物視情況亦可包含3_7重量% Ti〇2 ^在一個實施 例中,玻璃料組合物視情況亦可包含一或多種含氟組份, 其包含(但不限於):氟鹽、氟化物、金屬氧氟化合物、及 諸如此類。此等含氟組份包含(但不限於)pbF2、BiF3、 140747.doc 201013699 A1F3、NaF、LiF、KF、CsF、ZrF4、TiF4及 / 或 ZnF2。在一 個實施例中’玻璃料組合物可包含8-13重量% PbF2。 在該實施例之又一態樣中,厚膜組合物可包含電功能粉 末及分散於有機媒介中之玻璃-陶瓷料。在一個實施例 中,該等厚膜導體組合物可用於半導體裝置中。在該實施 例之一個態樣中,半導體裝置可係太陽能電池或光電二極 體。 導電材料 在個實靶例中,厚膜組合物可包含賦予組合物以適宜 電功月特性之功能相。在—個實施例中,電功能粉末可係 導電粕末。在一個實施例中,電功能相可包含導電材料 (亦稱為導電顆粒)。舉例而言,導電顆粒 粉末、導電薄片、或其混合物。 導電 在=實施例中,導電顆粒可包含Ag。在另—實施例 :電包含銀一⑽。在又-實施例中, ⑽、二種下:物質:一, 粒可包含-或客箱 纟-個實施例中,導電顆There is an improved solar cell in the industry that has increased efficiency. Industry Needs Suitable for forming conductor compositions with increased narrow conductors. One aspect of the invention pertains to compositions containing submicron particles. These compositions can be thick film compositions. These compositions can be used to form solar cell electrodes. The electrodes can be located on the front side of the solar cell. In one embodiment, the electrode lines can be narrower and have an increased height. As used herein, "thick film composition" means a composition having a thickness of 100 microns after firing the substrate. The thick enamel composition may contain a conductive material, a glass composition, and an organic medium. Thick film compositions can contain other components. The other components used herein are referred to as "additives." The compositions described herein comprise - or a plurality of electrically functional materials and / or a plurality of Borreol dispersed in an organic medium. These compositions can be thick film compositions. The compositions may also contain one or more additives. Exemplary additives can include metals, metal oxides, or any compound that can produce such metal oxides during firing. In one embodiment, the electrically functional powder can be a conductive powder. In one embodiment, such compositions (e.g., conductor compositions) can be used in semiconductor devices. In one aspect of this embodiment, the semiconductor device can be a solar cell 140747.doc 201013699 cell or photodiode. In still another aspect g of this embodiment, the semiconductor device can be a wide variety of semiconductor devices. In one embodiment, the semiconductor device can be a solar cell. In one embodiment, the thick film composition described herein can be used in solar cell 1 in a manner of this embodiment where the solar cell efficiency can be more than 70% of the reference solar cell. In another embodiment, the solar cell efficiency can be more than 80% of the reference solar cell. Solar cell efficiency can be more than 90% of the reference solar cell. The ratio of the organic medium to the non-component in the dispersion of the U f 'thick film composition can be determined by the method of applying the paste and the organic medium used, as determined by those skilled in the art. In one embodiment, the squeegee may comprise from 70 to 95% by weight of the inorganic component and from 5% to 3% by weight of the organic vehicle (vehicle) to obtain good wettability. In a single application, a portion of the 胄 component may be sub-micron particles. In one aspect of this embodiment, the sub-micron particles may have a 〇丄1 micro; in another aspect, the sub-micron granule It may have a thickness of 0.1-0.8 micrometers. In the re-image, the 'secondary microparticles may have a < 150 ° of 0·2-〇·6 micrometers. In Example +, the submicron particles may comprise from 1 to 15 parts by weight of the composition. In the $f embodiment, the two under-micron particles may comprise from 2 to 10% by weight of the composition. In still another embodiment, from 3 to 6% by weight of the submicron particles of the composition. In one embodiment, the human micro-particles may be incorporated into a portion of the conductive material. In one aspect, the M5 wt% of the conductive material can be sub-micron 140747.doc 201013699. In another aspect, 2-10% by weight of the electrically conductive material can be a submicron particle. In yet another aspect, 3-6 wt% of the conductor composition can be a submicron particle. In one embodiment, a portion of the composition can have a d5 15 of 15 to 1 micron. In one aspect of this embodiment, from 85 to 99% by weight of the inorganic component of the composition may have a d5 1.5 of from 1.5 to 10 microns. In one aspect of this embodiment, a portion of the composition can have a d5 〇 of 2 〇 7 7 microns. In one aspect of this embodiment, a portion of the composition can have a d50 of 2 5 5 microns. In another aspect, the electrically conductive material can comprise silver. In one aspect, 5 of the conductive material (MO〇% by weight may be silver. In another aspect, 70-99% by weight, 70-98% by weight or 80-95% by weight of the conductive material may be silver. In one aspect of the invention, the composition comprises a frit composition. The frit composition for use in the present invention should be readily prepared by those skilled in the art. For example, it can be used for A frit composition in a composition for preparing a front solar cell electrode. An exemplary frit composition comprises • lead borosilicate glass. In one embodiment, a frit used in the present invention, the composition may comprise 20· 24 wt% Si〇2, 0.2-0.8 wt% Al2〇3, 4〇_6〇Replacement % PbO, and 5-8 wt% B2〇3. In one embodiment, the glass frit composition may also be used as the case may be Included 3-7 wt% Ti〇2 ^ In one embodiment, the frit composition may optionally comprise one or more fluorine-containing components, including but not limited to: fluoride salts, fluorides, metal oxyfluoride compounds, And the like. These fluorine-containing components include, but are not limited to, pbF2 BiF3, 140747.doc 201013699 A1F3, NaF, LiF, KF, CsF, ZrF4, TiF4 and/or ZnF2. In one embodiment the 'glass frit composition may comprise 8-13% by weight of PbF2. In yet another embodiment of this embodiment In one aspect, the thick film composition can comprise an electrically functional powder and a glass-ceramic material dispersed in an organic medium. In one embodiment, the thick film conductor composition can be used in a semiconductor device. In one of the embodiments In one aspect, the semiconductor device can be a solar cell or a photodiode. Conductive material In a real target, the thick film composition can comprise a functional phase that imparts suitable electrical power characteristics to the composition. In one embodiment The electrically functional powder may be electrically conductive. In one embodiment, the electrically functional phase may comprise a conductive material (also known as a conductive particle), for example, a conductive particle powder, a conductive flake, or a mixture thereof. In an example, the conductive particles may comprise Ag. In another embodiment: the electricity comprises silver one (10). In still another embodiment, (10), two kinds of materials: one, the particles may comprise - or a passenger box - an embodiment Medium, conductive

Pt 物 (2)ΑΙ、Cu、Α 1 )A1 、Au、Ag、Pd及 心、鈎、咖之合金;及(3)其混合 在一個實施例中,組合物之功能相 塗佈之導電銀顆鉍 匕含經塗佈或未經 顆粒。在其中銀顆粒經塗佈 可經表面活性劍 c佈之實施例中,其 r劑至少部分地塗佈。在— 活性劑可包含— 個實施例中’表面 或多種以下非限制性* Γ表面活性劑:硬脂 140747.doc 201013699 酸、棕櫚酸、硬脂酸鹽、棕櫚酸鹽、月桂酸、棕櫊酸、油 酸、硬脂酸、癸酸、肉豆謹酸及亞油酸、及其混合物。抗 衡離子可係(但不限於)氫、銨、鈉、鉀及其混合物。 在一個實施例中,銀可佔膏糊組合物之60-90重量%。在 又實施例中’銀可佔膏糊組合物之70-85重量%。在又一 實施例中,銀可佔膏糊組合物之75_85重量%。在再一實施 例中’銀可佔膏糊組合物之78_82重量0/〇。 在一個實施例中,銀可佔組合物中固體(即有機媒介除 外)之90-99重量%。在另一實施例中銀可佔組合物中固 體之92-97重量%。在再一實施例中,銀可佔組合物中固體 之93-95重量〇/〇。 本文所用粒控」意欲指「平均粒徑」;「平均粒徑」意 才曰50%體積分佈尺寸。體積分佈尺寸可由熟習此項技術者 所瞭解之多種方法來測定,該等方法包含(但不限於)使用Pt (2) ΑΙ, Cu, Α 1 ) A1 , Au , Ag , Pd and alloys of hearts, hooks, and coffee; and (3) mixed in one embodiment, the functional phase coated conductive silver The crucible contains coated or uncoated particles. In embodiments in which the silver particles are coated and may be surface-active, the r-agent is at least partially coated. In the case where the active agent may comprise - one or more of the following non-limiting * Γ surfactants: stearin 140747.doc 201013699 acid, palmitic acid, stearate, palmitate, lauric acid, palm quinone Acid, oleic acid, stearic acid, citric acid, myristic acid and linoleic acid, and mixtures thereof. The counter ion can be, but is not limited to, hydrogen, ammonium, sodium, potassium, and mixtures thereof. In one embodiment, the silver may comprise from 60 to 90% by weight of the paste composition. In yet another embodiment, the silver can comprise from 70 to 85% by weight of the paste composition. In yet another embodiment, the silver can comprise from 75 to 85% by weight of the paste composition. In still another embodiment, the silver can account for 78-82 by weight of the paste composition. In one embodiment, the silver may comprise from 90% to 99% by weight of the solids (i.e., other than the organic medium) in the composition. In another embodiment, the silver may comprise from 92 to 97% by weight of the solids in the composition. In still another embodiment, the silver can comprise from 93 to 95 weight percent lanthanum per gram of solids in the composition. "Grain control as used herein" is intended to mean "average particle size"; "average particle size" means 50% by volume distribution size. The volume distribution size can be determined by a variety of methods known to those skilled in the art, including but not limited to

Microtrac粒徑分析儀之LASER繞射及分散方法。 在個實施例中,導電材料中的一部分可係次微米顆 粒。在該實施例之一個態樣中,次微米顆粒可具有微 米之<150。在另一態樣中,次微米顆粒可具有〇1〇8微米 之d50。在再一態樣中,次微米顆粒可具有〇.2_〇 6微米之 d50 〇 在一個實施例中,導電材料之115重量%可係次微米顆 粒。在另態樣中,導電材料之2-1 〇重量%可係次微米顆 粒。在又態樣中,導體組合物之3-6重量0/〇可係次微米顆 粒0 140747.doc 201013699 在-個實施例中,導電材料中的一部分可具有15,微 米之d50在„玄實施例之一個態樣中’導電材料之重 1%可具有1.5-10微米之d5Q。在該實施例之—個態樣中, 導電材料中的-部分可具有2 〇7()微米之咖。在該實施 例之個態樣中,導電材料中的—部分可具有2 %5 ^微米 之 d50。 添加劑 在個實施例中’厚膜組合物可包含一或多種添加劑。 在-個實施例中’添加劑可係選自下列之__或多種:⑷金 屬’其中該金屬係選自Zn、pb、Bi、Gd、Ce、Zr、Ti、The LASER diffraction and dispersion method of the Microtrac particle size analyzer. In one embodiment, a portion of the electrically conductive material may be sub-micron particles. In one aspect of this embodiment, the submicron particles can have a <150 of micro. In another aspect, the sub-micron particles can have a d50 of 〇1〇8 microns. In still another aspect, the sub-micron particles can have a d50 of 〇.2_〇 6 microns. In one embodiment, 115% by weight of the electrically conductive material can be sub-micron particles. In other aspects, 2-1% by weight of the conductive material may be sub-micron particles. In still another aspect, the conductor composition is 3-6 wt. 0 / 〇 can be sub-micron particles. 0 140747.doc 201013699 In an embodiment, a portion of the conductive material can have a micron of d50. In one aspect of the example, '1% by weight of the conductive material may have a d5Q of 1.5-10 microns. In one aspect of this embodiment, the - portion of the conductive material may have 2 〇 7 () microns of coffee. In one aspect of this embodiment, the portion of the electrically conductive material can have a d50 of 2% 5 ^ microns. Additives In one embodiment, the thick film composition can include one or more additives. In one embodiment 'Additives may be selected from the following __ or more: (4) a metal 'where the metal is selected from the group consisting of Zn, pb, Bi, Gd, Ce, Zr, Ti,

Mn Sn Ru Co ' Fe、cu及Cr ; (b)—或多種選自下列之 金屬的金屬氧化物:Zn、Pb、Bi、以、Ce、Zr、Ti、Mn Sn Ru Co 'Fe, cu and Cr; (b) - or a plurality of metal oxides selected from the group consisting of Zn, Pb, Bi, E, Ce, Zr, Ti,

Mn、Sn、Ru、Co、Fe、Cu&Cr;⑷燒製後可產生㈨之金 屬氧化物的任何化合物;及其混合物。 在一個實施例中,添加劑可包含含Zn添加劑。含Zn添加 劑可包含下列之一或多種:(a)Zn,(b)Zn之金屬氧化物, (c)燒製後可產生Zn之金屬氡化物的任何化合物,及(d)其 混合物。在一個實施例中,含Zn添加劑可包含樹脂酸Zn。 在一個實施例中,含Zn添加劑可包含Zn〇。在一個實施 例中,ZnO中的一部分可包含次微米顆粒。 在一個實施例中,ZnO可以佔總組合物2_ 1 〇重量%之範 圍存在於組合物中。在一個實施例中,Zn〇可以佔總組合 物3 -7重量〇/〇之範圍存在。在又一實施例中,Zn〇可以佔總 組合物4-6重量%之範圍存在。 •10· 140747.doc 201013699 有機媒介 在個實施例中,本文所述厚膜組合物可包含有機媒 介。可藉由⑼如)機械混合使無機組份與有機媒介混合以 形成膏糊。可使用多種惰性黏性材料作為有機媒介。在一 個實施例中,有機媒介 j係無機組伤可以充分穩定度分散 於其中之媒介。在—個實施例中,該媒介之流變性使得其 可將某些施用特性職予組合物,其包含:敎的固體分 散、適宜的網印點,Η: β^ 觸變性、基板及膏糊固體之適宜濕 m生良好的乾燥速率及良好的燒製特性。在—個實施例 中’厚膜組合物中所用有機媒介可為非水性惰性液體。本 發明涵蓋使用可或可不包含增稠劑、穩定劑及/或其他常 、狀夕種有機媒介。有機媒介可係聚合物溶於溶劑 中之溶液。在—個實施例中,有機媒介亦可包含一或多種 諸如表面活性劑蓉细々乂 /ra〜 等.且伤。在一個貫施例中,聚合物可係乙 土纖維素。其他例示性聚合物包含乙基經乙基纖維素、木 乙基纖維素與盼系樹脂之混合物、碳原子數較低醇 之聚甲基丙稀酸醋、及乙二酵單乙酸醋之單丁基趟、或其 混合物。在-個實施例中’用於本文所述厚膜組合物中之 溶劑包含醋醇及_如心或㈣品醇)或其與其他溶劑(例 如:油、鄰苯二甲酸二丁酯、丁基卡必醇、丁基卡必醇乙 酸酯、己二醇及高沸點醇及醇酯)之混合物。在另一實施 例中’有機媒介可包含施用至基板上後促進快速硬化之揮 發性液體。 在個實施例中,例如,聚合物可以佔總組合物8重量 140747.doc 201013699 /〇至11重量/〇之範圍存在於有機媒介中。可用有機媒介將 厚膜銀組合物調節至預定可網印黏度。 燒製厚膜組合物 在一個實施例中,有機媒介可於半導體裝置乾燥及燒製 期間除去在一個態樣中,在燒製期間可對破璃料、Ag及 添加劑實施燒結以形成電極。燒製電極可包含由燒製及燒 結製程所產生之組份、組合物及諸如此類。 在該實施例之一個態樣中,半導體裝置可係太陽能電池 或光電二極體。 製造半導饉裝置之方法 一個實施例係關於製造半導體裝置之方法。在一個實施 例中’半導體裝置可用於太陽能電池裝置中。半導體裝置 可包含正面電極,其中,在燒製前,正面(照射面)電極可 包含本文所述組合物。 在一個實施例中,製造半導體裝置之方法包含以下步 驟:(a)提供半導體基板;(b)將絕緣膜施加至半導體基板 上·’(c)將本文所述組合物施加至絕緣膜上;及(d)燒製該 裝置。 本文所述方法及裝置中所使用之例示性半導體基板應為 熟習此項技術者所瞭解’且其包含(但不限於):單晶石夕、 多晶矽、帶矽及諸如此類。半導體基板可具有接面。半導 體基板可換雜有填及蝴以形成p/n接面。換雜半導體基板 之方法應為熟習此項技術者所瞭解。 半導體基板之尺寸(長X寬)及厚度可變化,如熟習此項 140747.doc •12- 201013699 技術者所瞭解。在非限制性實例中,半導體基板之厚度可 係50-500微米、100_3〇〇微米、或ι4〇_2〇〇微米。在非限制 性實例中’半導體基板之長及寬可相等皆為1〇〇25〇毫 米、125-200毫米、或125-156毫米。 本文所述方法及裝置中所使用之例示性絕緣膜應為熟習 此項技術者所瞭解,且其包含(但不限於):氮化矽、氧化 矽、氧化鈦、SiNx:H、氫化非晶氮化矽、及氧化矽/氧化鈇 _ 膜。絕緣膜可由PECVD、CVD、及/或其他為熟習此項技 術者所習知之技術來形成。在其中絕緣膜係氮化矽之實施 例中’該氮化矽膜可藉由電漿增強化學氣相沈積 (PECVD)、熱CVD製程、或物理氣相沈積(PVD)形成。在 其中絕緣膜係氧化矽之實施例中,該氧化矽膜可藉由熱氧 化、熱CVD、電漿CVD、或PVD形成。絕緣膜(或層)亦可 稱為抗反射塗層(ARC)。 可藉由為熟習此項技術者所習知之多種方法將本文所述 • 組合物施加至經ARC塗佈之半導體基板上,該等方法包含 (但不限於)絲網印刷、喷墨、共擠出、注射布著' 直接寫 . 入、及氣溶膠喷墨。在一個實施例中,可使用美國專利申 請公開案第2003/01 00824號中所闡述之方法及裝置將組合 物施加至基板上,該案件以引用方式倂入本文中。組合物 可以圖案形式施加。組合物可以預定形狀且在預定位置施 加。在一個實施例中,組合物可用來形成正面電極之導電 指狀結構及匯流排二者。在一個實施例中,導電指狀結構 線的寬可係10-200微米、40-150微米、或6〇_1〇〇微米。在 140747.doc -13· 201013699 個實施例中,導電指狀結構線的寬可係10-100微米、15-80微米或20-75微米。在一個實施例中,導電指狀結構 線的厚度可係5-50微米、1〇_35微米、或153〇微米。在另 一實施例中,該組合物可用來形成導電“接觸指狀結構。 如熟習此項技術者所瞭解,可將經ARC塗佈半導體基板 上所塗佈的組合物乾燥(例如)〇 5_1〇分鐘,且隨後實施燒 製。在一個實施例中’在乾燥製程期間,可除去揮發性溶 劑及有機物質。燒製條件應為熟習此項技術者所瞭解。在 例示性非限制性燒製條件下’將矽晶圓基板加熱至介於 θ 600與900 C之間之最高溫度且持續丨秒至2分鐘。在一個實 施例中,在燒製期間可達到之最高矽晶圓溫度介於65〇_ 800C之間且持續!]〇秒。在另一實施例中,可在由氧及 氮之混合氣體組成之氣氛中燒製由導體厚膜組合物所形成 之電極此燒製製程將有機媒介除去並燒結導體厚膜組合 物中之玻璃料及Ag粉。在另—實施例中,可在高於有機媒 介除去溫度下於不含氧之惰性氣氛中燒製由導體厚膜組合 物所形成之電極。該燒製製程燒結或熔融厚膜組合物中的 基金屬導電材料,例如銅。 在一個實施例中,在燒製期間,燒製電極(較佳地指狀 . 結構)可與絕緣膜反應並滲透之,從而與矽基板形成電接 . 觸。 在另一實施例中,在燒製前,將其他導電及裝置增強材 料施加至半導體裝置之相反型區域上並共燒製或隨後與本 文所述組合物一起燒製。裝置之相反型區域位於裝置之相 140747.doc •14- 201013699 反側上。該等材料用作電接觸、鈍化層、及可焊接固定 區。 在一個實施例中,相反型區域可位於裝置之非照射(背) 面上。在該實施例之一個態樣中,背面導電材料可含有 鋁。例示性背面含鋁组合物及施用方法闡述於(例如)美國 專利第2006/0272700號中,其以引用方式倂入本文中。 在另一態樣中’可焊接固定材料可含有鋁及銀。含有銘 鲁 及銀之例示性固定組合物闡述於(例如)美國專利第 2006/0231803號中’其以引用方式倂入本文中。 在另一實施例中,施加至裝置相反型區域之材料因並排 形成之p及η區域而與本文所述材料毗鄰。此等裝置將所有 金屬接觸材料置於裝置非照射(背)面上,以使照射(正)面 上之入射光最大。 半導體裝置可藉由以下方法由結構元件來製造,該結構 元件係由具有接面之半導體基板及在其主要表面上形成之 0 氮化矽絕緣膜構成。製造半導體裝置之方法包含以下步 驟:以預定形狀且在預定位置將能滲透絕緣膜之導體厚膜 . 組合物施加(例如塗佈及印刷)至絕緣膜上,然後實施燒製 以使導體厚膜組合物熔化並流經絕緣膜,從而達成與矽基 板電接觸。導體厚膜组合物係厚膜膏糊組合物,如本文所 述,其由銀粉 '含Ζη添加劑 '玻璃或玻璃粉末混合物(具 有300-600°C之軟化點,分散於有機媒劑中)及視情況其他 金屬/金屬氧化物添加劑製成β 本發明之一個實施例係關於由本文所述方法製造之半導 140747.doc 201013699 體裝置。含有本文所述組合物之裝置可含有矽酸鋅,如上 文所述。 本發明之一個實施例係關於由上述方法所製造之半導體 裝置。 可與本文所述厚膜組合物一起使用之其他基板、裝置、 製造方法及諸如此類闡述於美國專利申請公開案第 2〇06/〇2318〇1號、美國專利第2〇〇6/〇231804號及美國專利 第2006/023 1800號中,該等案件之全文以引用方式倂入本 文中。 實例 藉由在約100°c下將聚合物溶於有機溶劑中來製備有機 媒介。將包含銀粉、玻璃料、氧化辞及其他添加劑在内之 其他成份添加至有機媒介中。藉由厚膜膏糊製造工業中所 習知之3輥-研磨製程分散所得混合物。形成表1中所示之 組合物I、II及III。 印刷前’經由Roki 40L-SHP-200XS過濾器囊對得自組合 物I及II之膏糊實施過滤。使用組合物而不過濾。 在室溫下藉由nScrypt公司製造之3D-450 Smart PumpTM 印刷機藉助ID/OD 5 0/75微米之可重新使用的陶瓷筆尖評 價膏糊。抽送壓力介於10卩8丨與1〇〇 psi之間。印刷速度介 於200毫米/秒與300毫米/秒之間。筆尖與基板表面之間的 間隙為150微米。 印刷若干組10條4英吋長的線,使其在15(^c箱式爐中乾 燥20分鐘,並在帶式爐中於85〇t>c峰值溫度下燒製2分鐘。 140747.doc 201013699 表1.銀膏糊組合物之概述 成份 組合物I 組合物II 組合物III 銀粉I 81.05 銀粉II 81.05 銀粉III 81.05 玻璃料I 2.5 玻璃料II 2.5 玻璃料III 2.5 氧化鋅 5.5 5.5 5.5 有機媒介 10.95 10.95 10.95 *以總組合物之重量%計 銀粉I,球形與片狀之混合物,且尺寸為D 10=0.88、 D50=4_60、D95 = 10.73微米。 銀粉II,球形粉末,且尺寸為D10 = 1.0、D50=1.71、 D95=4.41微米且表面積為0.44米2/克。 銀粉III,球形粉末,且尺寸為D1 0=0.26、D50=0.45、 D95 = l.67微米,且固體為99.5%。其表面積為1.0米2/克。 玻璃料I,Si02 23.0%、Al2〇3 0.4%、PbO 58.8%及B2〇3 7.8%,以玻璃組合物之重量%計,且尺寸為D10=0.36、 D50=0.61 及 D95 = 1.44微米。 玻璃料 II,Si02 22.08% > Al2〇3 0.38%、PbO 46.68%、 B2〇3 6·79%、Ti02 5_86% 及 PbF2 10.72%,以玻璃組合物之 重量%計,且尺寸為D10=0_42、D50=0.77及D90=1.96微 米。 140747.doc •17· 201013699 . 玻璃料 III,Si〇2 22.08%、Al2〇3 0.38%、PbO 46.68%、 B203 6.79%、Ti02 5.86%及PbF2 10.72%,以玻璃組合物之 重量%計,且尺寸為Dl〇=〇.34、D50=0.50及D95=0.89微 米。 氧化鋅’購自 Aldrich Chemicals。 實例I.在低於50 psi之抽送壓力下組合物I能通過50/75微 米筆尖且筆尖在不到5分鐘之時段内阻塞。所得最佳燒製 線係83微米寬及13微米高。 實例II.在低於60 psi之抽送壓力下組合物I能通過75/125 微米筆尖且筆尖在不到30分鐘之時段内阻塞。所得最佳燒 製線係100微米寬及12微米高。 實例III·在介於10 {)以至100 psi之間之抽送壓力下組合物 II能通過50/75微米筆尖且經至少3〇分鐘之時段停止印刷。 所得最佳燒製線係89微米寬及19微米高。 實例IV·在介於1〇 psi至8〇 psi之間之抽送壓力下重量百 分比率為95_5與4.5之組合物Π及組合物m的摻合物能通過 50/75微米筆尖且經至少3小時之時段停止印刷。所得最佳 燒製線係67微米寬及25微米高。 實例V.在大於30 psi之抽送壓力下組合物m不能通過 50/75微米筆夹進行印刷。在3〇 _下,印刷持續不到5秒 筆尖就發生阻塞。 / 實例VI·在大於60 psi之抽送壓力下,組合物出可通過 75/125微米筆尖進行印刷。在6〇㈣下,印刷持續不到5八 鐘筆尖就發生阻塞。 β 140747.doc -18· 201013699 實例VII.製備一系列重量比率介於90與10至1〇與9〇之間 之組合物II及III換合物並實施印刷,一旦組合物ΙΙΣ超過 30%,則50/75微米筆尖在1分鐘内阻塞。 實例VIII.對上文印刷基板之效率進行分析。下文提供例 示性效率測試。據預計,得自實例IV之太陽能電池的效率 大於得自其他實例之太陽能電池的效率。 測試程序-效率 對根據本文所述方法構造之太陽能電池的轉換效率進行 測試。下文提供測試效率之例示性方法。 在一個實施例中,將根據本文所述方法構造之太陽能電 池置於商業I-V測試儀中用於量測效率(ST_1000)。Ι-ν測試 儀中之Xe弧光燈模擬具有已知強度之陽光並輻射電池正表 面。 測試儀在約400個負載電阻設置下使用多點接觸法來量 測電流(I)及電壓(V)以確定電池的Ι-ν曲線。根據j-ν曲線 計算填充因數(FF)及效率(Eff)二者。 【圖式簡單說明】 圖1A至1F展示闡釋製作半導體裝置之製程流程圖。 圖1A至1F中所示之參考編號解釋如下。 10 : p-型矽基板 2〇 : η-型擴散層 3〇 :氮化矽膜、氧化鈦膜或氧化矽膜 40 : ρ+層(背表面電場,bsf) 6〇:在背面形成之鋁膏糊 140747.doc •19- 201013699 61 :背面鋁電極(藉由燒製背面鋁膏糊而獲得) 70:在背面形成之銀或銀/鋁膏糊 71 :背面銀或銀/鋁電極(藉由燒製背面銀膏糊而獲得) 5 00 :根據本發明在正面上形成之銀膏糊 501 :本發明正面銀電極(藉由燒製正面銀膏糊而形成) 【主要元件符號說明】 10 P-型矽基板 20 η-型擴散層 3 0 氮化矽膜/氧化鈦膜/氧化矽膜 40 ρ+層 60 在背面形成之鋁膏糊 61 背面銘電極 70 在背面形成之銀或銀/鋁膏糊 71 背面銀或銀/銘電極 500 根據本發明在正面上形成之銀膏糊 501 本發明正面銀電極 140747.docMn, Sn, Ru, Co, Fe, Cu&Cr; (4) any compound which produces a metal oxide of (9) after firing; and mixtures thereof. In one embodiment, the additive may comprise a Zn containing additive. The Zn-containing additive may comprise one or more of the following: (a) Zn, (b) a metal oxide of Zn, (c) any compound which produces a metal halide of Zn after firing, and (d) a mixture thereof. In one embodiment, the Zn-containing additive may comprise Zn resinate. In one embodiment, the Zn-containing additive may comprise Zn〇. In one embodiment, a portion of the ZnO can comprise submicron particles. In one embodiment, ZnO may be present in the composition in a range of from 2 to 1% by weight of the total composition. In one embodiment, Zn 〇 may be present in the range of from 3 to 7 weight 〇 / 总 of the total composition. In yet another embodiment, Zn〇 may be present in the range of from 4 to 6% by weight of the total composition. • 10.140747.doc 201013699 Organic Medium In one embodiment, the thick film compositions described herein can comprise an organic medium. The inorganic component can be mixed with an organic medium by (9), for example, mechanical mixing to form a paste. A variety of inert viscous materials can be used as the organic medium. In one embodiment, the organic medium j is a medium in which the inorganic group injury is sufficiently stable to be dispersed. In one embodiment, the rheology of the medium is such that it imparts certain application characteristics to the composition comprising: solid dispersion of cerium, suitable screen printing dots, Η: β^ thixotropy, substrate and paste The suitable wetness of the solid produces a good drying rate and good firing characteristics. The organic medium used in the 'thick film composition' may be a non-aqueous inert liquid in one embodiment. The present invention contemplates the use of organic agents that may or may not contain thickeners, stabilizers, and/or other conventional materials. The organic medium can be a solution in which the polymer is dissolved in a solvent. In one embodiment, the organic medium may also contain one or more such as surfactants, fines, and the like. In one embodiment, the polymer can be cellulose. Other exemplary polymers include ethyl ethyl cellulose, a mixture of wood ethyl cellulose and a resin, a polymethyl acrylate vinegar having a lower carbon number, and a single acetic acid vinegar. Butyl hydrazine, or a mixture thereof. In one embodiment, the solvent used in the thick film composition described herein comprises acetol and _heart or (tetra) alcohol or it is compatible with other solvents (eg, oil, dibutyl phthalate, butyl) A mixture of carbitol, butyl carbitol acetate, hexanediol, and a high boiling alcohol and an alcohol ester. In another embodiment, the 'organic vehicle can comprise a volatile liquid that promotes rapid hardening after application to the substrate. In one embodiment, for example, the polymer may be present in the organic vehicle in a range from the total composition of 8 weights 140747.doc 201013699 /〇 to 11 weight / 〇. The thick film silver composition can be adjusted to a predetermined screen print viscosity using an organic medium. Boiled Thick Film Composition In one embodiment, the organic medium can be removed in one aspect during drying and firing of the semiconductor device, and the frit, Ag, and additives can be sintered to form an electrode during firing. The fired electrode can comprise components, compositions, and the like that result from the firing and sintering process. In one aspect of this embodiment, the semiconductor device can be a solar cell or a photodiode. Method of Making a Semi-Conductive Device A method relates to a method of fabricating a semiconductor device. In one embodiment, a semiconductor device can be used in a solar cell device. The semiconductor device can comprise a front side electrode, wherein the front side (irradiated face) electrode can comprise the composition described herein prior to firing. In one embodiment, a method of fabricating a semiconductor device includes the steps of: (a) providing a semiconductor substrate; (b) applying an insulating film to the semiconductor substrate - 'c) applying a composition described herein to the insulating film; And (d) firing the device. Exemplary semiconductor substrates for use in the methods and apparatus described herein are to be understood by those skilled in the art and include, but are not limited to, single crystal, polycrystalline germanium, germanium, and the like. The semiconductor substrate can have a junction. The semiconductor substrate can be filled with a matte to form a p/n junction. The method of replacing the semiconductor substrate should be understood by those skilled in the art. The size (length X width) and thickness of the semiconductor substrate can vary, as is known to those skilled in the art. 140747.doc • 12- 201013699. In a non-limiting example, the thickness of the semiconductor substrate can be 50-500 microns, 100_3 microns, or ι 4 〇 2 〇〇 microns. In a non-limiting example, the length and width of the semiconductor substrate can be equal to 1 〇〇 25 〇 mm, 125-200 mm, or 125-156 mm. Exemplary insulating films for use in the methods and apparatus described herein are to be understood by those skilled in the art and include, but are not limited to, tantalum nitride, hafnium oxide, titanium oxide, SiNx:H, hydrogenated amorphous Niobium nitride, and yttria/yttria _ film. The insulating film can be formed by PECVD, CVD, and/or other techniques known to those skilled in the art. In the embodiment in which the insulating film is tantalum nitride, the tantalum nitride film can be formed by plasma enhanced chemical vapor deposition (PECVD), thermal CVD process, or physical vapor deposition (PVD). In the embodiment in which the insulating film is cerium oxide, the cerium oxide film can be formed by thermal oxidation, thermal CVD, plasma CVD, or PVD. The insulating film (or layer) may also be referred to as an anti-reflective coating (ARC). The compositions described herein can be applied to an ARC coated semiconductor substrate by a variety of methods known to those skilled in the art, including but not limited to screen printing, ink jet, coextrusion. Out, injection cloth 'direct write. In, and aerosol inkjet. In one embodiment, the composition can be applied to a substrate using the methods and apparatus set forth in U.S. Patent Application Publication No. 2003/0100824, the disclosure of which is incorporated herein by reference. The composition can be applied in the form of a pattern. The composition can be applied in a predetermined shape and at a predetermined position. In one embodiment, the composition can be used to form both the conductive fingers of the front side electrode and the bus bar. In one embodiment, the width of the conductive finger lines can be 10-200 microns, 40-150 microns, or 6 〇 1 〇〇 microns. In the embodiment of 140747.doc -13.201013699, the width of the conductive finger line can be 10-100 microns, 15-80 microns, or 20-75 microns. In one embodiment, the thickness of the conductive finger lines can be 5-50 microns, 1"-35 microns, or 153" microns. In another embodiment, the composition can be used to form a conductive "contact finger structure. As is known to those skilled in the art, the composition coated on the ARC coated semiconductor substrate can be dried (for example) 〇5_1 After a minute, and then firing is performed. In one embodiment, volatile solvents and organic materials may be removed during the drying process. The firing conditions are known to those skilled in the art. In an exemplary non-limiting firing Under conditions, the wafer substrate is heated to a maximum temperature between θ 600 and 900 C for a leap second to 2 minutes. In one embodiment, the highest wafer temperature that can be reached during firing is between Between 65 〇 _ 800 C and lasting!] 〇 second. In another embodiment, the electrode formed by the thick film composition of the conductor may be fired in an atmosphere composed of a mixed gas of oxygen and nitrogen. The organic medium removes and sinters the glass frit and the Ag powder in the conductor thick film composition. In another embodiment, the thick film composition by the conductor can be fired in an inert atmosphere containing no oxygen at an organic medium removal temperature. Formed electrode The firing process sinters or melts a base metal conductive material, such as copper, in a thick film composition. In one embodiment, the fired electrode (preferably a finger. structure) can react with the insulating film during firing. And infiltrating to form an electrical connection with the germanium substrate. In another embodiment, prior to firing, other conductive and device enhancing materials are applied to opposite regions of the semiconductor device and cofired or subsequently The compositions are fired together. The opposite region of the device is located on the opposite side of the device's phase 140747.doc • 14-201013699. The materials serve as electrical contacts, passivation layers, and solderable fixtures. In one embodiment The opposite region may be located on the non-irradiated (back) side of the device. In one aspect of this embodiment, the backside conductive material may contain aluminum. Exemplary backside aluminum-containing compositions and methods of application are set forth, for example, in U.S. Patent In the specification of 2006/0272700, which is incorporated herein by reference. In another aspect, the solderable fixing material may contain aluminum and silver. An exemplary fixing composition containing Minglu and silver is described in For example, U.S. Patent No. 2006/0231803, the disclosure of which is hereby incorporated herein by reference in its entirety in its entirety in its entirety in the the the the the the the These devices place all metal contact materials on the non-irradiated (back) side of the device to maximize incident light on the (positive) side of the device. Semiconductor devices can be fabricated from structural elements by the following methods. The semiconductor substrate having a junction and a germanium nitride insulating film formed on a main surface thereof. The method for fabricating a semiconductor device comprises the steps of: a conductor thick film capable of penetrating an insulating film in a predetermined shape and at a predetermined position. The article is applied (e.g., coated and printed) onto the insulating film, and then fired to melt the conductor thick film composition and flow through the insulating film to achieve electrical contact with the ruthenium substrate. The conductor thick film composition is a thick film paste composition, as described herein, which is composed of a silver powder 'containing Ζη additive' glass or glass powder mixture (having a softening point of 300-600 ° C, dispersed in an organic vehicle) and Depending on the case, other metal/metal oxide additives are made to beta. One embodiment of the invention pertains to a semiconducting 140747.doc 201013699 body device made by the method described herein. The device containing the compositions described herein may contain zinc phthalate as described above. One embodiment of the present invention relates to a semiconductor device fabricated by the above method. Other substrates, devices, methods of manufacture, and the like, which can be used with the thick film compositions described herein, are described in U.S. Patent Application Publication No. 2/06/23,181, and U.S. Patent No. 2/6/231, 804, 804. In U.S. Patent No. 2006/023, 1800, the entire contents of each of which are incorporated herein by reference. EXAMPLES An organic medium was prepared by dissolving the polymer in an organic solvent at about 100 °C. Add other ingredients including silver powder, frit, oxidized and other additives to the organic medium. The resulting mixture was dispersed by a 3-roll-grinding process as is known in the art of thick film paste manufacturing. Compositions I, II and III shown in Table 1 were formed. The pastes from Compositions I and II were filtered by a Roki 40L-SHP-200XS filter capsule before printing. The composition was used without filtration. The paste was evaluated by means of an ID/OD 5 0/75 micron reusable ceramic nib at room temperature using a 3D-450 Smart PumpTM printer manufactured by nScrypt. The pumping pressure is between 10 卩 8 丨 and 1 〇〇 psi. The printing speed is between 200 mm/sec and 300 mm/sec. The gap between the nib and the surface of the substrate is 150 microns. Several sets of 10 4 inch long lines were printed and allowed to dry in a 15 (c) oven for 20 minutes and fired in a belt furnace at a peak temperature of 85 °t > c for 2 minutes. 140747.doc 201013699 Table 1. Summary of Silver Paste Composition Ingredient Composition I Composition II Composition III Silver Powder 81.05 Silver Powder II 81.05 Silver Powder III 81.05 Glass Material I 2.5 Glass Material II 2.5 Glass Material III 2.5 Zinc Oxide 5.5 5.5 5.5 Organic Medium 10.95 10.95 10.95 * Silver powder I, a mixture of spherical and flakes, in the weight % of the total composition, and having a size of D 10 = 0.88, D50 = 4_60, D95 = 10.73 μm. Silver powder II, spherical powder, and size D10 = 1.0 , D50 = 1.71, D95 = 4.41 μm and surface area of 0.44 m 2 /g. Silver powder III, spherical powder, and dimensions D1 0 = 0.26, D50 = 0.45, D95 = 1.67 microns, and solids of 99.5%. The surface area is 1.0 m 2 /g. Glass frit I, SiO 2 23.0%, Al 2 〇 3 0.4%, PbO 58.8% and B 2 〇 3 7.8%, based on the weight % of the glass composition, and the size is D10 = 0.36, D50 = 0.61 and D95 = 1.44 μm. Glass frit II, Si02 22.08% > Al2〇3 0.38%, PbO 46.68%, B2〇3 6·79%, Ti02 5_86% and PbF2 10.72%, based on the weight % of the glass composition, and the dimensions are D10=0_42, D50=0.77 and D90=1.96 micron. 140747.doc •17· 201013699 . Material III, Si〇2 22.08%, Al2〇3 0.38%, PbO 46.68%, B203 6.79%, Ti02 5.86% and PbF2 10.72%, based on the weight % of the glass composition, and the size is Dl〇=〇.34, D50 = 0.50 and D95 = 0.89 microns. Zinc Oxide was purchased from Aldrich Chemicals. Example I. At a pumping pressure below 50 psi, Composition I can pass through a 50/75 micron tip and the tip of the pen can be blocked in less than 5 minutes. The resulting optimum firing line was 83 microns wide and 13 microns high. Example II. At a pumping pressure below 60 psi, Composition I was able to pass through a 75/125 micron pen tip and the tip of the pen was blocked in less than 30 minutes. The resulting optimum firing line is 100 microns wide and 12 microns high. Example III. Composition II can pass through a 50/75 micron pen tip for at least 3 minutes at a pumping pressure between 10 {) and 100 psi. The printing stopped at the time. The resulting optimum firing line was 89 microns wide and 19 microns high. Example IV. A blend of composition Π and composition m having a weight percentage of 95_5 and 4.5 at a pumping pressure between 1 psi and 8 psi can pass through a 50/75 micron tip and for at least 3 hours. The printing is stopped during the period. The resulting best firing line is 67 microns wide and 25 microns high. Example V. Composition m cannot be printed through a 50/75 micron pen holder at pumping pressures greater than 30 psi. At 3〇 _, printing lasts less than 5 seconds and the nib is blocked. /Example VI. At pumping pressures greater than 60 psi, the composition can be printed through a 75/125 micron tip. Under 6〇(4), the printing stopped for less than 5 or 8 minutes. β 140747.doc -18· 201013699 Example VII. Preparation of a series of compositions II and III of a weight ratio between 90 and 10 to 1 Torr and 9 Torr and printing, once the composition ΙΙΣ exceeds 30%, The 50/75 micron tip is blocked in 1 minute. Example VIII. Analysis of the efficiency of the above printed substrate. An exemplary efficiency test is provided below. It is expected that the efficiency of solar cells from Example IV is greater than the efficiency of solar cells from other examples. Test Procedure - Efficiency The conversion efficiency of solar cells constructed according to the methods described herein was tested. An exemplary method of testing efficiency is provided below. In one embodiment, a solar cell constructed in accordance with the methods described herein is placed in a commercial I-V tester for measurement efficiency (ST_1000). The Xe arc lamp in the Ι-ν tester simulates sunlight with a known intensity and radiates the front surface of the battery. The tester uses a multi-point contact method to measure current (I) and voltage (V) at approximately 400 load resistor settings to determine the Ι-ν curve of the battery. Both the fill factor (FF) and the efficiency (Eff) are calculated from the j-ν curve. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1F show a process flow chart for explaining a semiconductor device. The reference numerals shown in Figs. 1A to 1F are explained as follows. 10 : p-type germanium substrate 2〇: η-type diffusion layer 3〇: tantalum nitride film, titanium oxide film or hafnium oxide film 40: ρ+ layer (back surface electric field, bsf) 6〇: aluminum formed on the back surface Paste 140747.doc •19- 201013699 61 : Back aluminum electrode (obtained by firing the back aluminum paste) 70: Silver or silver/aluminum paste 71 formed on the back side: back silver or silver/aluminum electrode Obtained by firing a back silver paste) 00: Silver paste 501 formed on the front side according to the present invention: Front silver electrode of the present invention (formed by firing a front silver paste) [Explanation of main component symbols] 10 P-type germanium substrate 20 n-type diffusion layer 3 0 tantalum nitride film / titanium oxide film / hafnium oxide film 40 ρ + layer 60 aluminum paste formed on the back surface 61 back surface electrode 70 silver or silver formed on the back side Aluminum paste 71 back silver or silver/Ming electrode 500 Silver paste 501 formed on the front side according to the present invention Front side silver electrode 140747.doc

Claims (1)

201013699 七、申請專利範園: 1. 一種半導體裝置,其由包括下列步驟之方法製備:⑷提 供半導體基板、一或多個絕緣膜及厚膜組合物; (b) 將該絕緣膜施加至該半導體基板上, (c) 將該厚膜組合物施加至該半導體基板上之該絕緣膜 上,及 (d) 燒製該半導體、絕緣膜及厚膜組合物,其中該厚膜 組合物包括: 0 ⑴一或多種導電材料; (ii) 一或多種無機黏結劑;及 (iii) 有機媒介, 其中該等無機組份之1-15%係次微米顆粒。 2. -種包括電極之半導體裝置,其中在燒製前該電極包括 包含下列之組合物: U)—或多種導電材料; & (b)—或多種無機黏結劑;及 (c)有機媒介, 其中該等無機組份之1-15%係次微米顆粒。 3. 如請求項2之裝置,其中該等無機組份之85_99%具有15_ 10微米之d50。 4. 如請求項2之裝置,其中該一或多種導電材料包括銀。 5. 如請求項4之裝置,其中該等次微米顆粒包括銀。 6. 如請求項2之裝置,其中該等次微米顆粒具有〇1_丨微米 之d50 〇 '、 140747.doc 201013699 月长項2之裝置’其中該等次微米顆粒具有 米之d5〇。 如月长項2之裝置’其中該等無機組份具有雙峰型 分佈。 9. 如》月求項2之裝置,#中該厚膜組合物進—步包括一或 多種添加劑。 10. 如請求項9之裝置’其中該一或多種添加劑包括選自由 下列組成之群之組份:⑷金屬,其中該金屬係選自Zn、 Pb、Bi、Gd、Ce、Zr、Ti、Μη、Sn、RU、c〇、Fe、Cu 及Cr; (b)一或多種選自下列之金屬的金屬氧化物:zn、 Pb、Bi、Gd、Ce ' Zr ' Ti、Μη、Sn、RU、Co、Fe、Cu 及Cr ; (c)燒製後可產生(b)之該等金屬氧化物的任何化合 物;及(d)其混合物。 Π·如吻求項1〇之裝置,其中該一或多種無機添加劑包括 ZnO。 12. 如請求項5之裝置,其中該等次微米顆粒進—步包括Zn〇 及無機黏結劑。 13. 如請求項2之裝置,其進一步包括絕緣膜及半導體基 板。 14_ 一種太陽能電池,其包括如請求項2之半導體裴置。 15.如請求項13之裝置,其中該絕緣膜包括一或多種選自下 列之組份:氧化鈦、氮化石夕、SiNx:H、氧化碎、及氧化 矽/氧化鈦。 140747.doc201013699 VII. Patent Application: 1. A semiconductor device prepared by the method comprising the steps of: (4) providing a semiconductor substrate, one or more insulating films and a thick film composition; (b) applying the insulating film to the film And (d) firing the semiconductor, the insulating film and the thick film composition, wherein the thick film composition comprises: 0 (1) one or more electrically conductive materials; (ii) one or more inorganic binders; and (iii) an organic medium, wherein 1-15% of the inorganic components are submicron particles. 2. A semiconductor device comprising an electrode, wherein the electrode comprises a composition comprising: U) - or a plurality of electrically conductive materials; & (b) - or a plurality of inorganic binders; and (c) an organic medium prior to firing Wherein 1-15% of the inorganic components are submicron particles. 3. The device of claim 2, wherein 85_99% of the inorganic components have a d50 of 15-10 microns. 4. The device of claim 2, wherein the one or more electrically conductive materials comprise silver. 5. The device of claim 4, wherein the sub-micron particles comprise silver. 6. The device of claim 2, wherein the sub-micron particles have a d50 〇 ', 140747.doc 201013699 month long term 2 device wherein the sub-micron particles have a d5 米. For example, a device of monthly term 2 wherein the inorganic components have a bimodal distribution. 9. The apparatus of claim 2, wherein the thick film composition further comprises one or more additives. 10. The device of claim 9 wherein the one or more additives comprise a component selected from the group consisting of: (4) a metal selected from the group consisting of Zn, Pb, Bi, Gd, Ce, Zr, Ti, Μη. , Sn, RU, c〇, Fe, Cu, and Cr; (b) one or more metal oxides selected from the group consisting of zn, Pb, Bi, Gd, Ce ' Zr ' Ti, Μη, Sn, RU, Co, Fe, Cu, and Cr; (c) any compound that produces (b) the metal oxides after firing; and (d) a mixture thereof. The device of claim 1, wherein the one or more inorganic additives comprise ZnO. 12. The device of claim 5, wherein the submicron particles further comprise Zn〇 and an inorganic binder. 13. The device of claim 2, further comprising an insulating film and a semiconductor substrate. 14_ A solar cell comprising the semiconductor device of claim 2. 15. The device of claim 13, wherein the insulating film comprises one or more components selected from the group consisting of titanium oxide, nitride nitride, SiNx:H, oxidized ground, and cerium oxide/titanium oxide. 140747.doc
TW98118099A 2008-05-28 2009-06-01 Conductors for photovoltaic cells: compositions containing submicron particles TW201013699A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5660208P 2008-05-28 2008-05-28

Publications (1)

Publication Number Publication Date
TW201013699A true TW201013699A (en) 2010-04-01

Family

ID=40934860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118099A TW201013699A (en) 2008-05-28 2009-06-01 Conductors for photovoltaic cells: compositions containing submicron particles

Country Status (6)

Country Link
EP (1) EP2286417A1 (en)
JP (1) JP2011522423A (en)
KR (1) KR20110014676A (en)
CN (1) CN102017013A (en)
TW (1) TW201013699A (en)
WO (1) WO2009146356A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044281A1 (en) * 2010-09-28 2012-04-05 E. I. Du Pont De Nemours And Company Conductive paste for solar cell electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854103B2 (en) * 2001-06-28 2006-12-06 住友ベークライト株式会社 Conductive paste and semiconductor device using the paste
US7435361B2 (en) * 2005-04-14 2008-10-14 E.I. Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices
US7556748B2 (en) * 2005-04-14 2009-07-07 E. I. Du Pont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein

Also Published As

Publication number Publication date
KR20110014676A (en) 2011-02-11
WO2009146356A1 (en) 2009-12-03
CN102017013A (en) 2011-04-13
EP2286417A1 (en) 2011-02-23
JP2011522423A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
KR100837994B1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
TWI338308B (en) Method of manufacture of semiconductor device and conductive compositions used therein
TWI342568B (en) Method of manufacture of semiconductor device and conductive compositions used therein
JP6166248B2 (en) Low silver conductive paste
EP2720231B1 (en) Electro-conductive pastes with salts with an anion consisting of halogen and oxygen in solar cell applications
JP2012502503A (en) Solar cell electrode
KR20100005121A (en) Thick film conductive composition and processes for use in the manufacture of semiconductor device
US8748304B2 (en) Devices containing silver compositions deposited by micro-deposition direct writing silver conductor lines
US8128846B2 (en) Silver composition for micro-deposition direct writing silver conductor lines on photovoltaic wafers
EP2851906A1 (en) Electro-conductive paste comprising silver particles with silver oxide and organic additive
TW201840496A (en) Glass frit, conductive paste and use of the conductive paste
TW201130770A (en) Glass compositions used in conductors for photovoltaic cells
TWI702265B (en) Conductive paste composition for providing enhanced adhesion strength to a semiconductor sunstrate and its use
TW201529655A (en) Acrylic resin-containing organic vehicle for electroconductive paste
TW201013700A (en) Methods using compositions containing submicron particles used in conductors for photovoltaic cells
TW201013699A (en) Conductors for photovoltaic cells: compositions containing submicron particles
US8008179B2 (en) Methods using silver compositions for micro-deposition direct writing silver conductor lines on photovoltaic wafers
US10158032B2 (en) Solar cells produced from high Ohmic wafers and halogen containing paste
KR20120051764A (en) Conductors for photovoltaic cells
JP2017534560A (en) Thick film paste containing lead-tungsten based oxide and its use in the manufacture of semiconductor devices