TW201013700A - Methods using compositions containing submicron particles used in conductors for photovoltaic cells - Google Patents

Methods using compositions containing submicron particles used in conductors for photovoltaic cells Download PDF

Info

Publication number
TW201013700A
TW201013700A TW98118101A TW98118101A TW201013700A TW 201013700 A TW201013700 A TW 201013700A TW 98118101 A TW98118101 A TW 98118101A TW 98118101 A TW98118101 A TW 98118101A TW 201013700 A TW201013700 A TW 201013700A
Authority
TW
Taiwan
Prior art keywords
composition
thick film
silver
micron
weight
Prior art date
Application number
TW98118101A
Other languages
Chinese (zh)
Inventor
Haixin Yang
Roberto Irizarry
Patricia J Ollivier
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Publication of TW201013700A publication Critical patent/TW201013700A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Embodiments of the invention relate to a silicon semiconductor device, and a conductive thick film composition for use in a solar cell device.

Description

201013700 六、發明說明: 【發明所屬之技術領域】 本發明實施例係關於矽半導體裝置及用於太陽能電池裝 置中之導體厚膜組合物。 【先前技術】 具有P-型基體之習用太陽能電池結構可在電池之正面 (亦稱為陽光面或照射面)具有負極且可在背面具有正極。 射至半導體本體p-n接面上之適宜波長的輻射作為外部能 量源用來在該本體中產生電洞-電子對。由於在p_n接面處 存在電勢差,因此電洞及電子以相反方向跨越接面而移動 且由此產生能將電力傳送至外部電路之電流。大多數太陽 能電池呈已經金屬化之矽晶圓形式,即與導電金屬觸點一 起提供。 業内需求具有經改良電性能之組合物、結構(例如,半 導體、太陽能電池或光電二極體結構)、及半導體裝置(例 如,半導體、太陽能電池或光電二極體裝置)及其製造方 法。 【發明内容】 本發明之一個實施例係關於包含下列之組合物:(a) 一或 多種導電材料;(b)一或多種無機黏結劑;及⑷有機媒 介,其中無機組份之1_15%係次微米顆粒。在一個實施例 中,無機組份之85-99%可具有lwo微米之㈣。在一個 實施例中’―或多種導電材料可包含銀。在—個實施例 中,-部分銀含有次微米顆粒。.在_個實施例中,次微米 140746.doc 201013700 顆粒具有0·1-1微米之d50。在一個實施例中,次微米顆粒 具有〇. 1-0.6微米之d5〇。在一個實施例中,該等顆粒具有 雙峰型尺寸分佈。 該組合物可包含一或多種選自由下列組成之群之添加 劑:⑷金屬,其中該金屬係選自Zn、pb、Bi、Gd、Ce、 Zr、Ti、Μη ' Sn、RU、Co、Fe、〜及 Cr ; (b)_ 或多種選 自下列之金屬的金屬氧化物:Zn、Pb、Bi、Gd、Ce、 Zr、Ti、Μη、Sn、RU、Co、Fe、Cu及 Cr ; (c)燒製後可產 生(b)之金屬氧化物之任何化合物;及(d)其混合物。在一 個實施例中,添加劑可包含Zn◦、或燒製後形成Zn〇之化 合物。在一個實施例中,Zn〇及/或無機黏結劑可包含次微 米顆粒。ZnO可佔總組合物之2_1〇重量%。玻璃料可佔總 組合物之1-6重量。/。。導電材料可包含Ag〇 Ag可佔組合物 中固體之90-99重量%。在—個實施例中,無機組份可佔總 組合物之70-95重量〇/〇。 另一實施例係關於製造半導體裝置之方法,其包含以下 步驟:⑷提供半導體基板、一或多個絕緣膜、及本文所述 厚膜組合物;(b)將絕緣膜施加至半導體基板上;(c)將厚 膜組合物施加至半導體基板上之絕緣膜上,及(d)燒製半導 體、絕緣膜及厚膜組合物4 —個態樣中,絕緣膜可包含 -或多種選自下列之組份:氧化鈦、氮化矽、_χ:Η、氧 化矽、及氧化矽/氧化鈦。 再一實施例係關於由本文所述方法製造之半導體裝置。 —個態樣係關於包含電極之半導體裝置,其中在燒製^前該 140746.doc 201013700 電極包含本文所述組合物。一個實施例係關於包含半導體 裝置之太陽能電池。 一個實施例係關於包含半導體基板、絕緣膜及正面電極 之半導體裝置’其中該正面電極包括一或多種選自由下列 組成之群之組份:矽酸鋅、矽鋅礦(willemite)及矽酸鉍。 【實施方式】201013700 VI. Description of the Invention: TECHNICAL FIELD Embodiments of the present invention relate to a germanium semiconductor device and a conductor thick film composition for use in a solar cell device. [Prior Art] A conventional solar cell structure having a P-type substrate may have a negative electrode on the front side (also referred to as a sun surface or an irradiation surface) of the battery and may have a positive electrode on the back side. Radiation of a suitable wavelength incident on the p-n junction of the semiconductor body is used as an external energy source to create a hole-electron pair in the body. Since there is a potential difference at the p_n junction, the holes and electrons move across the junction in opposite directions and thereby generate a current that can transfer power to the external circuit. Most solar cells are in the form of an already metallized tantalum wafer, which is provided with conductive metal contacts. There is a need in the art for compositions, structures (e.g., semiconductors, solar cells, or photodiode structures) having improved electrical properties, and semiconductor devices (e.g., semiconductors, solar cells, or photodiode devices) and methods of making the same. SUMMARY OF THE INVENTION One embodiment of the present invention relates to a composition comprising: (a) one or more electrically conductive materials; (b) one or more inorganic binders; and (4) an organic medium wherein 1 to 15% of the inorganic components are Submicron particles. In one embodiment, 85-99% of the inorganic component may have (iv) of 1 wom. In one embodiment, the " or multiple conductive materials" may comprise silver. In one embodiment, the - portion of the silver contains submicron particles. In one embodiment, the submicron 140746.doc 201013700 particles have a d50 of 0·1-1 microns. In one embodiment, the submicron particles have a d5 〇 of from 1 to 0.6 microns. In one embodiment, the particles have a bimodal size distribution. The composition may comprise one or more additives selected from the group consisting of: (4) a metal, wherein the metal is selected from the group consisting of Zn, pb, Bi, Gd, Ce, Zr, Ti, Tn'Sn, RU, Co, Fe, ~ and Cr; (b) _ or a plurality of metal oxides selected from the group consisting of Zn, Pb, Bi, Gd, Ce, Zr, Ti, Mn, Sn, RU, Co, Fe, Cu, and Cr; Any compound which produces a metal oxide of (b) after firing; and (d) a mixture thereof. In one embodiment, the additive may comprise Zn ruthenium or a compound that forms Zn ruthenium after firing. In one embodiment, the Zn〇 and/or inorganic binder may comprise sub-micron particles. ZnO can comprise 2% by weight of the total composition. The glass frit may comprise from 1 to 6 parts by weight of the total composition. /. . The electrically conductive material may comprise Ag to Ag which may comprise from 90 to 99% by weight of the solids in the composition. In one embodiment, the inorganic component can comprise from 70 to 95 weight percent per gram of total composition. Another embodiment is directed to a method of fabricating a semiconductor device comprising the steps of: (4) providing a semiconductor substrate, one or more insulating films, and a thick film composition as described herein; (b) applying an insulating film to the semiconductor substrate; (c) applying the thick film composition to the insulating film on the semiconductor substrate, and (d) firing the semiconductor, the insulating film, and the thick film composition, the insulating film may include - or a plurality of selected from the following Components: titanium oxide, tantalum nitride, yttrium: lanthanum, cerium oxide, and cerium oxide/titanium oxide. Yet another embodiment relates to a semiconductor device fabricated by the methods described herein. A pattern relates to a semiconductor device comprising an electrode, wherein the electrode comprises a composition as described herein prior to firing. One embodiment relates to a solar cell comprising a semiconductor device. One embodiment relates to a semiconductor device including a semiconductor substrate, an insulating film, and a front electrode, wherein the front electrode includes one or more components selected from the group consisting of zinc silicate, willemite, and bismuth ruthenate. . [Embodiment]

業内需求具有增加效率之經改良太陽能電池。業内需求 適合形成高度增加之窄導線的導體組合物。本發明之一個 態樣係關於含有次微米顆粒之組合物。該等組合物可係厚 膜組合物。該等組合物可用來形成太陽能電池電極。該等 電極可位於太陽能電池之正面上。在—個實施例中,電極 線可較乍且具有增加之高度。 本文所用「厚膜組合物」係指在燒製基板後厚度為^ 100微米之組合物。厚膜組合物可含有導電材料、玻璃址 合物及有機媒介。厚膜組合物可包含其他組份。本文所用 其他組份稱為「添加劑」。 本文所述組合物包含—或多種電功能材料及-或多種分 之破璃料。該等組合物可係厚膜組合物。 物亦可包含—或多種添加劑。例示性添加劑可包 3金屬、金屬氧化物或在燒製 之任何化合物。 厓生忑等金屬氧化物 在一個實施例中,雷 ^,s}xb 電功能粉末可係導電粉末。在一個會 1 ,該等組合物(例如導體&人n φ十外也 等題組合物)可用於半導艚奘罟 中。在該實施例之— 干导體裒置 個I樣中,半導體裝置可係太陽能電 140746· doc 201013700 池或光電二極體。在該實施例之又一態樣中,半導體裝置 可係寬範圍半導體裝置中的一種。在一個實施例中,半導 體裝置可係太陽能電池。 在一個實施例中’本文所述厚膜組合物可用於太陽能電 池中。在該實施例之一個態樣中,太陽能電池效率可為參 考太陽能電池之7〇%以上。在另一實施例中,太陽能電池 效率可為參考太陽能電池之80%以上。太陽能電池效率可 為參考太陽能電池之90%以上。 在一個實施例中,厚膜組合物中有機媒介與分散液中無 機組份之比率可視施加膏糊之方法及所使用有機媒介之類 型而定,如由熟習此項技術者所確定。在一個實施例中, 分散液可包含7〇_95重量%的無機組份及㈣重量%的有機 媒介(媒劑)以獲得良好的潤濕性。 在一個實施例中,無機組份中的一部分可係次微米顆 粒。在該實施例之—個態樣中,次微米顆粒可具有微 米之d50。在另―態樣中’次微米顆粒可具有微米 之d50。在另一態樣中,次微 八饿木顆粒可具有〇.2-0.6微米之 d50。 % % % 在個實施例中,次微米顆粒可佔組合物之1-15重量 在另-實施例中,次微米顆粒可佔組合物之重量 在又—實施例中,次微米顆粒可佔組合物之3-6重量 在一個實施例中 中。在一個態樣中 次微米顆粒可納入一部分導電材料 導電材料之1-15重量%可係次微米顆 J40746.doc 201013700 粒。在另一態樣中,導電材料之2_丨〇重量%可係次微米顆 粒。在另一態樣中,導體組合物之3 _6重量%可係次微米顆 粒。 在一個實施例中,組合物中的一部分可具有15_1〇微米 之d50。在該實施例之—個態樣中,組合物中無機組份之 85-99重量%可具有i,5-i〇微米之d5(^在該實施例之—個 態樣中,組合物中的一部分可具有2 〇 7 〇微米之d5〇。在 該實施例之一個態樣中,組合物中的一部分可具有255〇 微米之d50。 在另一態樣中,導電材料可包含銀。在一個態樣中,導 電材料之50-100重量%可係銀。在另一態樣中,導電材料 之70-99重量%、70_98重量%或8〇95重量%可係銀。 玻璃料 在本發明之一個態樣中,該組合物包含玻璃料組合物。 用於本發明中之玻璃料组合物應由熟習此項技術者容易地 製備。舉例而t,可冑用用力用來製備正面太陽能電池電 極之組合物中的玻璃料組合物。例示性玻璃料組合物包含 蝴石夕自⑼玻璃。在—個實施财,用於本發明中之玻璃料 組合物可包含20-24重量% Si〇2、G2_G8重量% ALA、4〇· 6〇重量% Pb〇、及5_8重量% b2〇3。在一個實施例中,玻 璃料組合物視情況亦可包含3_7重量% Ti〇2。在一個實施 例中’玻璃料組合物視情況亦可包含_或多種含氟組份, 其包含(但不限於):氟鹽、氟化物、金屬氧氟化合物、及 諸如此類。此等含氟組份包含(但不限於)PbF2、BiF、 140746.doc 201013700 A1F3、NaF、LiF、KF、CsF、ZrF4、TiF4及 /或 ZnF2。在一 個實施例中,玻璃料組合物可包含8_丨3重量% pbF>2。 在該實施例之又一態樣中,厚膜組合物可包含電功能粉 末及分散於有機媒介中之玻璃-陶瓷料。在一個實施例 中,該等厚膜導體組合物可用於半導體裝置中。在該實施 例之一個態樣中,半導體裝置可係太陽能電池或光電二極 體。 導電材料 在一個實施例中,厚膜組合物可包含賦予組合物以適宜 電功能特性之功能相。在一個實施例中’電功能粉末可係 導電粉末。在-個實施例中,電功能相可包含導電材料 (本文亦稱為導電顆粒)。舉例而言,導電顆粒可包含導電 粉末、導電薄片、或其混合物。 在一個實施例中,導電顆粒可包含Ag。在另一實施例 中’導電顆粒可包含銀(Ag)及銘⑽。在又一實施例中, 導電顆粒可包含(例如)—或多種下列物質:Cu、Au、Ag、 A1 Ag_Pd、Pt_A4。在-個實施例中,導電顆 二多種下列物質:⑴Μ,、—, 物。 U、Au、Agmk合金;及⑺其混合 在一個實施例中,組合物 塗佈之導電銀顆粒。在其中銀^相L塗佈或未$ 可經表面、、顆粒經塗佈之實施例中,: 表面活性劑至少部分地塗佈。在加电 ' 活性劑可包含-t 實施例中,表1 次夕種以下非限制性表面活性劑:硬, 14-0746.doc 201013700 酸、棕櫚酸、硬脂酸鹽、棕櫚酸鹽、月桂酸、棕櫚酸、油 酸、硬脂酸、癸酸、肉豆蔻酸及亞油酸、及其混合物。抗 衡離子可係(但不限於)氫、銨、鈉、鉀及其混合物。 在一個實施例中,銀可佔膏糊組合物之60—90重量%。在 另一實施例中,銀可佔膏糊組合物之7〇·85重量%。在又一 實施例中,銀可佔膏糊組合物之75_85重量%。在再一實施 例中,銀可佔膏糊組合物之7 8 _ 8 2重量〇/〇。There is an improved solar cell in the industry that has increased efficiency. Industry Needs A conductor composition suitable for forming a highly increased narrow wire. One aspect of the invention pertains to compositions containing submicron particles. These compositions can be thick film compositions. These compositions can be used to form solar cell electrodes. The electrodes can be located on the front side of the solar cell. In one embodiment, the electrode lines can be relatively thin and have an increased height. As used herein, "thick film composition" means a composition having a thickness of 100 microns after firing the substrate. The thick film composition can contain a conductive material, a glass address, and an organic medium. Thick film compositions can contain other components. The other components used herein are referred to as "additives." The compositions described herein comprise - or a plurality of electrically functional materials and - or a plurality of divided frits. These compositions can be thick film compositions. The material may also contain - or a plurality of additives. Exemplary additives may comprise 3 metals, metal oxides or any compound that is fired. Metal oxides such as sassafras. In one embodiment, the electrical functional powder of Ray, s}xb may be a conductive powder. In a meeting 1, the compositions (e.g., conductor & human n φ ect.) can be used in semiconducting enthalpy. In this embodiment, the dry conductor is placed in a sample, and the semiconductor device can be a solar cell or a photodiode. In still another aspect of this embodiment, the semiconductor device can be one of a wide range of semiconductor devices. In one embodiment, the semiconductor device can be a solar cell. In one embodiment, the thick film compositions described herein can be used in solar cells. In one aspect of this embodiment, the solar cell efficiency can be more than 7% of the reference solar cell. In another embodiment, the solar cell efficiency can be more than 80% of the reference solar cell. Solar cell efficiency can be more than 90% of the reference solar cell. In one embodiment, the ratio of the organic medium to the non-component in the dispersion in the thick film composition can be determined by the method of applying the paste and the type of organic medium used, as determined by those skilled in the art. In one embodiment, the dispersion may contain 7 〇 95% by weight of the inorganic component and (4) % by weight of the organic vehicle (vehicle) to obtain good wettability. In one embodiment, a portion of the inorganic component can be sub-micron particles. In one aspect of this embodiment, the submicron particles can have a d50 of micro. In another aspect, the sub-micron particles may have a d50 of microns. In another aspect, the sub-height wood particles may have a d50 of from -2 to 0.6 microns. % % % In one embodiment, the submicron particles may comprise from 1 to 15 parts by weight of the composition. In other embodiments, the submicron particles may comprise the weight of the composition. In another embodiment, the submicron particles may comprise a combination. The 3-6 weight of the material is in one embodiment. In one aspect, the submicron particles can be incorporated into a portion of the electrically conductive material. 1 to 15% by weight of the electrically conductive material can be submicron J40746.doc 201013700. In another aspect, the 2% by weight of the electrically conductive material can be a submicron particle. In another aspect, 3 - 6 wt% of the conductor composition can be sub-micron particles. In one embodiment, a portion of the composition can have a d50 of 15 to 1 micron. In one aspect of this embodiment, 85 to 99% by weight of the inorganic component of the composition may have a d5 of i,5-i〇micron (in the aspect of the embodiment, in the composition) A portion of the composition may have a d5 2 of 2 〇 7 〇 microns. In one aspect of this embodiment, a portion of the composition may have a d50 of 255 Å. In another aspect, the conductive material may comprise silver. In one aspect, 50-100% by weight of the conductive material may be silver. In another aspect, 70-99% by weight, 70-98% by weight or 8〇95% by weight of the conductive material may be silver. In one aspect of the invention, the composition comprises a frit composition. The frit composition for use in the present invention should be readily prepared by those skilled in the art. For example, t can be used to prepare positive solar energy. The glass frit composition in the composition of the battery electrode. The exemplary frit composition comprises the glass (9) glass. The glass frit composition used in the present invention may comprise 20-24% by weight of Si. 〇2, G2_G8 wt% ALA, 4〇·6〇 weight% Pb〇, and 5_8 weight % b2〇3. In one embodiment, the glass frit composition may optionally comprise 3-7 wt% Ti〇2. In one embodiment, the 'glass frit composition may optionally include _ or a plurality of fluorine-containing components, It includes, but is not limited to, fluoride salts, fluorides, metal oxyfluoride compounds, and the like. These fluorine-containing components include, but are not limited to, PbF2, BiF, 140746.doc 201013700 A1F3, NaF, LiF, KF, CsF, ZrF4, TiF4 and/or ZnF2. In one embodiment, the frit composition may comprise 8_丨3 wt% pbF> 2. In yet another aspect of this embodiment, the thick film composition may comprise electricity Functional powders and glass-ceramic materials dispersed in an organic medium. In one embodiment, the thick film conductor compositions can be used in a semiconductor device. In one aspect of this embodiment, the semiconductor device can be a solar cell or Photoelectric Diodes. Conductive Materials In one embodiment, the thick film composition can comprise a functional phase that imparts suitable electrical functional properties to the composition. In one embodiment, the 'electric functional powder can be a conductive powder. In one embodiment Medium, electricity The energy phase can comprise a conductive material (also referred to herein as conductive particles). For example, the conductive particles can comprise a conductive powder, a conductive foil, or a mixture thereof. In one embodiment, the conductive particles can comprise Ag. In another embodiment The 'conductive particles may include silver (Ag) and Ming (10). In still another embodiment, the conductive particles may comprise, for example, - or a plurality of the following: Cu, Au, Ag, A1 Ag_Pd, Pt_A4. The conductive particles are of the following materials: (1) yttrium, yttrium, U, Au, Agmk alloys; and (7) a mixture of conductive silver particles coated in one embodiment. In embodiments wherein the silver phase L is coated or not coated, the particles are coated, the surfactant is at least partially coated. In the case of power-up, the active agent may comprise -t. In the example of Table 1, the following non-limiting surfactants are: Hard, 14-0746.doc 201013700 Acid, palmitic acid, stearate, palmitate, laurel Acid, palmitic acid, oleic acid, stearic acid, citric acid, myristic acid and linoleic acid, and mixtures thereof. The counter ion can be, but is not limited to, hydrogen, ammonium, sodium, potassium, and mixtures thereof. In one embodiment, the silver may comprise from 60 to 90% by weight of the paste composition. In another embodiment, the silver may comprise 7 〇 85% by weight of the paste composition. In yet another embodiment, the silver can comprise from 75 to 85% by weight of the paste composition. In still another embodiment, the silver may comprise 7 8 _ 8 2 weight 〇 / 〇 of the paste composition.

在一個實施例中,銀可佔組合物中固體(即有機媒介除 外)之90-99重量%。在另一實施例中,銀可佔組合物中固 體之92-97重量❶/〇。㈣一實施例中,♦可佔組合物中固體 之93-95重量%。 本文所用「粒徑」意欲指「平均粒徑」;「平均粒徑」 意指50%體積分佈尺寸。體積分佈尺寸可由熟習此項技術 者所瞭解之多種方法來測定,該等方法包含(但不限於)使 用MiCr〇trac粒徑分析儀之LASER繞射及分散方法。 在一個實施例中, 粒。在該實施例之一 導電材料中的一部分可係次微米顆 個態樣中,:欠微米顆粒可具有〇M微 米之d50。在另一態樣中 之d50。在再一態樣中, d50。 ’次微米顆粒可具有⑴丨^^微米 次微米顆粒可具有〇.2_〇 6微米之 在一個實施例中 粒。在另一態樣中 粒。在又一態樣中 粒。 ’導電材料之1_15重量%可係次微米顆 ’導電材料之2-10重量%可係次微米顆 導體組合物之3_6重量%可係次微米顆 140746.doc -9- 201013700 在個實知例中,導電材料中的-部分可具有1.5-10微 米之 在該實施例之一個態樣中,導電材料之85-99重 量。/〇可具有1.5-10糌半夕 械水之d5〇。在該實施例之一個態樣中, 導電材料中的一部公可曰^ 刀了具有2.0-7.0微米之d50。在該實施 例之一個態樣中,導雷铋 导電材枓中的一部分可具有2.5-5 ·0微米 之 d50 ° 添加劑 在一個實施例中,厚膜組合物可包含-或多種添加劑。 在個實施例中,添加劑可係選自下列之一或多種:⑷金 屬,其中該金屬係選自Zn、pb、m、⑸、zr、丁卜In one embodiment, the silver may comprise from 90% to 99% by weight of the solids (i.e., other than the organic medium) in the composition. In another embodiment, the silver can comprise from 92 to 97 weight percent lanthanum per gram of solids in the composition. (d) In one embodiment, ♦ may comprise from 93 to 95% by weight of the solids in the composition. As used herein, "particle size" is intended to mean "average particle size"; "average particle size" means a 50% volume distribution size. The volume distribution size can be determined by a variety of methods known to those skilled in the art, including, but not limited to, the LASER diffraction and dispersion methods using a MiCr®trac particle size analyzer. In one embodiment, the granules. In a portion of the conductive material of one of the embodiments, the submicron particles may have a d50 of 〇M micrometers. In another aspect, d50. In another aspect, d50. The 'sub-micron particles may have (1) 微米^^ micron sub-micron particles may have 〇.2_〇 6 microns in one embodiment. In another aspect, the granules. In another aspect, the granules. '1 to 15% by weight of the conductive material can be sub-micron' 2-10% by weight of the conductive material can be 3-6% by weight of the sub-micron conductor composition can be sub-micron 140746.doc -9- 201013700 The - portion of the electrically conductive material may have a thickness of from 1.5 to 10 microns in one aspect of the embodiment, from 85 to 99 weight of the electrically conductive material. /〇 can have a d5〇 of 1.5-10 糌 夕 械. In one aspect of this embodiment, one of the electrically conductive materials has a d50 of 2.0-7.0 microns. In one aspect of this embodiment, a portion of the thunder conductive material 枓 can have a d50 ° additive of 2.5-5 · 0 microns. In one embodiment, the thick film composition can include - or a plurality of additives. In one embodiment, the additive may be selected from one or more of the following: (4) a metal, wherein the metal is selected from the group consisting of Zn, pb, m, (5), zr, and dibutyl

Mn ' Sn ' Ru ' Co ' Fe ' Γι, a 〇Mn ' Sn ' Ru ' Co ' Fe ' Γι, a 〇

Cu及Cr ; (b) 一或多種選自下列之 金屬的金屬氧化物:Zn、pb、m、以、。、Zr、耵、Cu and Cr; (b) One or more metal oxides selected from the group consisting of Zn, pb, m, and . , Zr, 耵,

Mn、Sn、Ru、Co、Fe、r”》p C及Cr,(c)燒製後可產生(b)之金 屬氧化物的任何化合物;及(d)其混合物。 在-個實施例中’添加劑可包含仏添加劑。含&添加 劑可包含下列之一或多種:(a)Zn,(吻之金屑氧化物, ⑷燒製後可產生Zn之金屬氧化物的任何化合物,及⑷其 混合物。在一個實施例中,含Zn添加劑可包含樹脂酸Zn。 在-個實施射,含Zn添加劑可包含Zn〇。在—個實施 例中’ ZnQ中的-部分可包含次微米顆粒。 在-個實施例中,Zn〇可以佔總組合物2_1〇重量%之範 圍存在於組合物中。在-個實施例中,Μ可以佔總組合 物”重量%之範圍存在。在又-實施例中,Zn〇可以佔總 紐合物4-6重量%之範圍存在。 140746.doc -10. 201013700 有機媒介 在—個實施例中,本文所述厚膜組合物可包含有機媒 介可藉由(例如)機械混合使無機組份與有機媒介混合以 形成膏糊。可使用多種惰性黏性材料作為有機媒介。在— 實&例中’有機媒介可係無機組份可以充分穩定度分散 於其中之媒介。在一個實施例中,該媒介之流變性使得盆 -可將某些施用特性職予組合物,其包含:穩定的固體: • 散、適宜的網印點性及觸變性、基板及膏糊固體之適宜濕 潤性、良好的乾燥速率及良好的燒製特性。在一個實施例 中’厚膜組合物中所用有機媒介可為非水性惰性液體。本 發明涵蓋使用可或可不包含增稠劑、穩定劑及/或其他常 見添加劑之多種有機媒介。有機媒介可係聚合物溶於溶劑 中之溶液。在-個實施例中,有機媒介亦可包含一或多種 諸如表面活性劑等組份。在一個實施例中,聚合物可係乙 基纖維素。其他例示性聚合物包含乙基經乙基纖維素、木 • 松香、乙基纖維素與酚系樹脂之混合物、碳原子數較低醇 之聚甲基丙烯酸酯、及乙二醇單乙酸酯之單丁基醚、或其 . 混合物。在一個實施例中,用於本文所述厚膜組合物中之 溶劑包含酯醇及箱(例如心或卜萜品醇)或其與其他溶劑(例 如煤油、鄰苯二曱酸二丁酯、丁基卡必醇、丁基卡必醇乙 酸酯、己二醇及高沸點醇及醇酯)之混合物。在另一實施 例中,有機媒介可包含施用至基板上後促進快速硬化之揮 發性液體。 在一個實施例中,例如,聚合物可以佔總組合物8重量 140746.doc 201013700 可用有機媒介將 %至11重量%之範圍存在於有機媒介中 厚膜銀組合物調節至預定可網印黏度。 燒製厚膜組合物 在-個實施财,有機媒介可於半導體裝置乾燥及燒製 期間除去。在-個態樣中,在燒製期間可對玻璃料'^及 添加劑實施燒結以形成電極。燒製電極可包含由燒製及燒 結製程所產生之組份、組合物及諸如此類。 在該實施例之-個態樣中,半導體裝置可係太陽能電池 或光電二極體。 製造半導體裝置之方法 一個實施例係關於製造半導體裝置之方法。在—個實施 例中,半導體裝置可用於太陽能電池裝置中。半導體裝置 可包含正面電極’其中’在燒製前’正面(照射面)電極可 包含本文所述組合物。 在一個實施例中,製造半導體裝置之方法包含以下步 驟:(a)提供半導體基板;(b)將絕緣膜施加至半導體基板 上;(c)將本文所述組合物施加至絕緣膜上;及燒製該 裝置。 Λ 本文所述方法及裝置中所使用之例示性半導體基板應為 熟習此項技術者所瞭解,且其包含(但不限於):單晶石夕、 多晶矽、帶矽、及諸如此類。半導體基板可具有接面。半 導體基板可摻雜有麟及领以形成ρ/η接面。摻雜半導體基 板之方法應為熟習此項技術者所瞭解。 半導體基板之尺寸(長X寬)及厚度可變化,如熟習此項 140746.doc 12 201013700 技術者所瞭解。在非限制性實例中,半導體基板之厚度可 係50-500微米、100-300微米、或14〇_200微米。在非限制 性實例中’半導體基板之長及寬可相等皆為1〇〇 25〇毫 米、125-200毫米、或125-156毫米。 本文所述方法及袭置中所使用之例示性絕緣膜應為熟習 此項技術者所瞭解,且其包含(但不限於):氮化矽、氧化 矽、氧化鈦、SiNx:H、氫化非晶氮化矽、及氧化矽/氧化鈦 膜。絕緣膜可由PECVD、CVD、及/或其他為熟習此項技 術者所習知之技術來形成。在其中絕緣膜係氮化矽之實施 例中,該氮化矽膜可藉由電漿増強化學氣相沈積 (PECVD)、熱CVD製程、或物理氣相沈積(pVD)形成。在 其中絕緣膜係氧化石夕之實施例中’該氧化石夕膜可藉由熱氧 化、熱CVD、電漿CVD、或PVD形成。絕緣膜(或層)亦可 稱為抗反射塗層(ARC)。 可藉由為熟習此項技術者所習知之多種方法將本文所述 組合物施加至經ARC塗佈之半導體基板上,該等方法包含 (但不限於)絲網印刷、噴墨、共擠出、注射布著、直接寫 入、及氣溶膠噴墨。在一個實施例中,可使用美國專利申 請公開案第2003/0100824號中所闡述之方法及裝置將組合 物施加至基板上,該案件以引用方式倂入本文中。組合物 可以圖案形式施加。組合物可以預定形狀且在預定位置施 加。在一個實施例中,組合物可用來形成正面電極之導電 指狀結構及匯流排二者。在一個實施例中,導電指狀結構 線的寬可係10-200微米、40-150微米、或6〇_1〇〇微米。在 140746.doc -13- 201013700 一個實施例中’導電指狀結構線的寬可係丨〇_ i 〇〇微米、1 5_ 80微米、或20-75微米。在一個實施例中,導電指狀結構 線的厚度可係5-50微米、1〇_35微米、或15-30微米。在另 一實施例中,該組合物可用來形成導電8丨接觸指狀結構。 如熟習此項技術者所瞭解,可將經Arc塗佈半導體基板 上所塗佈的組合物乾燥(例如)〇 5_1〇分鐘,且隨後實施燒 製。在一個實施例中’在乾燥製程期間,可除去揮發性溶 劑及有機物質。燒製條件應為熟習此項技術者所瞭解。在 例示性非限制性燒製條件下,將矽晶圓基板加熱至介於 600與900°C之間之最高溫度且持續i秒至2分鐘。在一個實 施例中’在燒製期間可達到之最高矽晶圓溫度介於65〇_ 800 C之間且持續1_1〇秒。在另一實施例中,可在由氧及 氮之混合氣體組成之氣氛中燒製由導體厚膜組合物所形成 之電極。此燒製製程將有機媒介除去並燒結導體厚膜組合 物中之玻璃料及Ag粉。在另一實施例中,可在高於有機媒 介除去溫度下於不含氧之惰性氣氛中燒製由導體厚膜組合 物所形成之電極。該燒製製程燒結或熔融厚膜組合物中的 基金屬導電材料,例如銅。 在個實施例中,在燒製期間,燒製電極(較佳地指狀 、’=構)可與絕緣膜反應並滲透之,從而與矽基板形成電接 觸。 在另實施例中,在燒製前,將其他導電及裝置增強材 料施加至半導體裝置之相反型區域上並共燒製或隨後與本 文所述組合物一起燒製。裝置之相反型區域位於裝置之相 140746.doc 201013700 反側上。β亥等材料用作電接觸、純化層、及可焊接固定 區。 在一個實施例中,相反型區域可位於裝置之非照射(背) 面上。在該實施例之一個態樣中,背面導電材料可含有 鋁。例示性背面含鋁組合物及施用方法闡述於(例如)美國 專利第2006/0272700號中,其以引用方式倂入本文中。 在另一態樣中’可焊接固定材料可含有鋁及銀。含有鋁 及銀之例示性固定組合物闡述於(例如)美國專利第 2006/0231803號中,其以引用方式倂入本文中。 在另一實施例中,施加至裝置相反型區域之材料因並排 形成之ρ及η區域而與本文所述材料毗鄰。此等裝置將所有 金屬接觸材料置於裝置非照射(背)面上,以使照射(正)面 上之入射光最大。 半導體裝置可藉由以下方法由結構元件來製造,該結構 元件係由具有接面之半導體基板及在其主要表面上形成之 氮化矽絕緣膜構成。製造半導體裝置之方法包含以下步 驟:以預定形狀且在預定位置將能滲透絕緣膜之導體厚膜 組合物施加(例如塗佈及印刷)至絕緣膜上,然後實施燒製 以使導體厚膜組合物熔化並流經絕緣膜,從而達成與石夕基 板電接觸。導體厚膜組合物係厚膜膏糊組合物,如本文所 述,其由銀粉、含Ζη添加劑、玻璃或玻璃粉末混合物(具 有300-60(TC之軟化‘點,分散於有機媒劑中)及視情況其他 金屬/金屬氧化物添加劑製成。 本發明之一個實施例係關於由本文所述方法製造之半導 140746.doc 15 201013700 體裝置。含有本文所述組合物之裝置可含有矽酸鋅’如上 文所述。 本發明之一個實施例係關於由上述方法所製造之半導體 裝置。 可與本文所述厚膜組合物一起使用之其他基板、裝置、 製造方法及諸如此類闡述於美國專利申請公開案第 2006/0231801號、美國專利第2006/023 1804號及美國專利 第2006/023 1800號中,該等案件之全文以引用方式倂入本 文中。 實例 藉由在約100°C下將聚合物溶於有機溶劑中來製備有機 媒介。將包含銀粉、玻璃料、氧化辞及其他添加劑在内之 其他成份添加至有機媒介中。藉由厚膜膏糊製造工業中所 習知之3輥-研磨製程分散所得混合物。形成表1中所示之 組合物I、π及ΙΠ。 印刷前,經由Roki 40L-SHP-200XS過濾器囊對得自組合 物I及II之膏糊實施過濾。使用組合物ΠΙ而不過濾。 在室溫下藉由nScrypt公司製造之3D-450 Smart PumpTM 印刷機藉助ID/OD 50/75微米之可重新使用的陶瓷筆尖評 價紊糊。抽送壓力介於1〇 psi與1〇〇 psi之間。印刷速度介 於200毫米/秒與300毫米/秒之間。筆尖與基板表面之間的 間隙為150微米。 印刷若干組1〇條4英吋長的線,使其在150°C箱式爐中乾 燥20分鐘,並在帶式爐中於850°C峰值溫度下燒製2分鐘。 140746.doc •16- 201013700Mn, Sn, Ru, Co, Fe, r""p C and Cr, (c) any compound which produces a metal oxide of (b) after firing; and (d) a mixture thereof. In one embodiment The additive may comprise a cerium additive. The & additive may comprise one or more of the following: (a) Zn, (the kiss gold oxide, (4) any compound that produces a metal oxide of Zn after firing, and (4) In one embodiment, the Zn-containing additive may comprise Zn resin. The Zn-containing additive may comprise Zn 在. In one embodiment, the ~ part of ZnQ may comprise sub-micron particles. In one embodiment, Zn〇 may be present in the composition in a range of from 2% to 1% by weight of the total composition. In one embodiment, cerium may be present in the range of "% by weight of the total composition." Wherein, Zn〇 may be present in the range of 4-6 wt% of the total complex. 140746.doc -10. 201013700 Organic Medium In one embodiment, the thick film composition described herein may comprise an organic medium by ( For example, mechanical mixing allows the inorganic component to be mixed with an organic medium to form a paste. A variety of inert viscous materials are used as the organic medium. In the case of "real", the 'organic medium can be a medium in which the inorganic component can be sufficiently stabilized. In one embodiment, the rheology of the medium allows the basin to be Certain application characteristics are imparted to the composition comprising: a stable solid: • dispersed, suitable screen printing and thixotropy, suitable wettability of the substrate and paste solids, good drying rate and good firing characteristics The organic medium used in the 'thick film composition' may be a non-aqueous inert liquid in one embodiment. The invention encompasses the use of a variety of organic vehicles which may or may not contain thickeners, stabilizers and/or other common additives. A solution in which the polymer is dissolved in a solvent. In one embodiment, the organic vehicle may also comprise one or more components such as a surfactant. In one embodiment, the polymer may be ethyl cellulose. The polymer comprises ethyl ethyl cellulose, wood rosin, a mixture of ethyl cellulose and a phenolic resin, a polymethacrylate of a lower alcohol number, and a monobutyl ether of a diol monoacetate, or a mixture thereof. In one embodiment, the solvent used in the thick film composition described herein comprises an ester alcohol and a tank (eg, heart or diterpene alcohol) or a mixture of other solvents such as kerosene, dibutyl phthalate, butyl carbitol, butyl carbitol acetate, hexanediol, and high boiling alcohols and alcohol esters. In another embodiment The organic medium may comprise a volatile liquid that promotes rapid hardening after application to the substrate. In one embodiment, for example, the polymer may comprise up to 8 weight of the total composition 140746.doc 201013700 Available organic media will range from % to 11% by weight The thick film silver composition is present in the organic medium to a predetermined screen printable viscosity. The fired thick film composition can be removed during the drying and firing of the semiconductor device. In one aspect, the frit and the additive may be sintered to form an electrode during firing. The fired electrode can comprise components, compositions, and the like that result from the firing and sintering process. In one aspect of this embodiment, the semiconductor device can be a solar cell or a photodiode. Method of Manufacturing a Semiconductor Device One embodiment relates to a method of fabricating a semiconductor device. In one embodiment, a semiconductor device can be used in a solar cell device. The semiconductor device can comprise a front side electrode' wherein the 'before firing' front side (irradiation side) electrode can comprise a composition as described herein. In one embodiment, a method of fabricating a semiconductor device includes the steps of: (a) providing a semiconductor substrate; (b) applying an insulating film to the semiconductor substrate; (c) applying the composition described herein to the insulating film; The device is fired. Exemplary semiconductor substrates used in the methods and apparatus described herein are to be understood by those skilled in the art and include, but are not limited to, single crystal, polycrystalline germanium, germanium, and the like. The semiconductor substrate can have a junction. The semiconductor substrate may be doped with a collar and a collar to form a p/n junction. The method of doping the semiconductor substrate should be understood by those skilled in the art. The dimensions (length X width) and thickness of the semiconductor substrate can vary, as will be appreciated by those skilled in the art. In a non-limiting example, the thickness of the semiconductor substrate can be 50-500 microns, 100-300 microns, or 14"-200 microns. In a non-limiting example, the length and width of the semiconductor substrate can be equal to 1 〇〇 25 〇 mm, 125-200 mm, or 125-156 mm. Exemplary insulating films used in the methods and devices described herein are known to those skilled in the art and include, but are not limited to, tantalum nitride, hafnium oxide, titanium oxide, SiNx:H, hydrogenation Crystalline tantalum nitride, and tantalum oxide/titanium oxide film. The insulating film can be formed by PECVD, CVD, and/or other techniques known to those skilled in the art. In the embodiment in which the insulating film is tantalum nitride, the tantalum nitride film can be formed by plasma-thin chemical vapor deposition (PECVD), thermal CVD process, or physical vapor deposition (pVD). In the embodiment in which the insulating film is an oxidized oxide, the oxidized oxide film may be formed by thermal oxidation, thermal CVD, plasma CVD, or PVD. The insulating film (or layer) may also be referred to as an anti-reflective coating (ARC). The compositions described herein can be applied to an ARC coated semiconductor substrate by a variety of methods known to those skilled in the art, including, but not limited to, screen printing, ink jet, coextrusion. , injection coating, direct writing, and aerosol inkjet. In one embodiment, the composition can be applied to a substrate using the methods and apparatus set forth in U.S. Patent Application Publication No. 2003/0100824, the disclosure of which is incorporated herein by reference. The composition can be applied in the form of a pattern. The composition can be applied in a predetermined shape and at a predetermined position. In one embodiment, the composition can be used to form both the conductive fingers of the front side electrode and the bus bar. In one embodiment, the width of the conductive finger lines can be 10-200 microns, 40-150 microns, or 6 〇 1 〇〇 microns. In one embodiment, 140746.doc -13- 201013700 the width of the conductive finger line can be 丨〇 i 〇〇 micrometers, 15 _ 80 micrometers, or 20-75 micrometers. In one embodiment, the conductive finger lines may be 5-50 microns, 1" to 35 microns, or 15-30 microns thick. In another embodiment, the composition can be used to form a conductive 8 inch contact finger structure. As will be appreciated by those skilled in the art, the composition coated on the Arc coated semiconductor substrate can be dried, for example, for 5 to 1 minute, and subsequently fired. In one embodiment, volatile solvents and organic materials can be removed during the drying process. The firing conditions should be known to those skilled in the art. Under exemplary non-limiting firing conditions, the tantalum wafer substrate is heated to a maximum temperature between 600 and 900 °C for i seconds to 2 minutes. In one embodiment, the highest wafer temperature achievable during firing is between 65 〇 and 800 C for 1 〇 sec. In another embodiment, the electrode formed of the conductor thick film composition may be fired in an atmosphere composed of a mixed gas of oxygen and nitrogen. This firing process removes and sinters the organic medium from the frit and Ag powder in the conductor thick film composition. In another embodiment, the electrode formed from the thick film composition of the conductor can be fired in an inert atmosphere free of oxygen at a temperature above the removal temperature of the organic medium. The firing process sinters or melts a base metal conductive material, such as copper, in the thick film composition. In one embodiment, during firing, the fired electrode (preferably finger, ' configuration) can react with and penetrate the insulating film to form electrical contact with the germanium substrate. In other embodiments, other conductive and device reinforcing materials are applied to the opposite regions of the semiconductor device prior to firing and cofired or subsequently fired with the compositions described herein. The opposite type of device is located on the opposite side of the device's phase 140746.doc 201013700. Materials such as βH are used as electrical contacts, purification layers, and solderable fixtures. In one embodiment, the opposing region may be located on the non-irradiated (back) side of the device. In one aspect of this embodiment, the back side conductive material may contain aluminum. Illustrative backside aluminum-containing compositions and methods of application are described, for example, in U.S. Patent No. 2006/0272700, which is incorporated herein by reference. In another aspect, the solderable fixing material may contain aluminum and silver. An exemplary fixed composition comprising aluminum and silver is described, for example, in U.S. Patent No. 2006/0231803, which is incorporated herein by reference. In another embodiment, the material applied to the opposite region of the device is adjacent to the materials described herein by the ρ and η regions formed side by side. These devices place all metal contact materials on the non-irradiated (back) side of the device to maximize incident light on the (positive) side of the illumination. The semiconductor device can be fabricated from a structural element composed of a semiconductor substrate having a junction and a tantalum nitride insulating film formed on a main surface thereof. A method of manufacturing a semiconductor device includes the steps of applying (e.g., coating and printing) a conductive thick film composition capable of penetrating an insulating film to a predetermined film in a predetermined shape and at a predetermined position, and then performing firing to make a thick film combination of the conductor The material melts and flows through the insulating film to achieve electrical contact with the As-yed substrate. The conductor thick film composition is a thick film paste composition, as described herein, which consists of a silver powder, a Mn-containing additive, a glass or glass powder mixture (having a 300-60 (TC softening point, dispersed in an organic vehicle) And other metal/metal oxide additives as the case may be. One embodiment of the invention pertains to a semi-conductor 140746.doc 15 201013700 body device made by the method described herein. The device containing the composition described herein may contain tannic acid Zinc is as described above. One embodiment of the invention pertains to a semiconductor device fabricated by the above method. Other substrates, devices, methods of manufacture, and the like that can be used with the thick film compositions described herein are set forth in U.S. Patent Application The disclosures of the entire contents of each of the entireties are hereby incorporated by reference in the entire disclosure of the disclosure of the disclosure of the disclosure of the disclosure of The polymer is dissolved in an organic solvent to prepare an organic medium. Other ingredients including silver powder, glass frit, oxidized and other additives are added to the organic medium. The resulting mixture was dispersed by a 3-roll-grinding process as is known in the art of thick film paste manufacturing to form compositions I, π and ΙΠ shown in Table 1. Prior to printing, via a Roki 40L-SHP-200XS filter capsule pair The paste from Compositions I and II was subjected to filtration. The composition was used without filtration. Reusable by ID/OD 50/75 μm at room temperature by a 3D-450 Smart PumpTM printer manufactured by nScrypt The ceramic tip evaluates the paste. The pumping pressure is between 1 psi and 1 psi. The printing speed is between 200 mm/sec and 300 mm/sec. The gap between the nib and the substrate surface is 150 μm. Several sets of 1 inch long 4 inch long lines were printed, allowed to dry in a 150 ° C box furnace for 20 minutes, and fired in a belt furnace at a peak temperature of 850 ° C for 2 minutes. 140746.doc •16 - 201013700

表ι·銀赍糊組合物之概述 成份 ----- 組合物I 銀粉I 81.05 ----- 銀粉II 銀粉III ----_____ -—---- 玻璃料I 玻璃料II 玻璃料III 氧化辞 — 5.5 有機媒介 10.95Table ι·Detailed composition of silver paste composition----- Composition I Silver powder I 81.05 ----- Silver powder II Silver powder III ----_____ ------ Glass frit I Glass frit II Glass frit III oxidation word - 5.5 organic medium 10.95

組合物II 81.05 5^ 10.95Composition II 81.05 5^ 10.95

組合物III 81.05 2.5 5.5 10.95Composition III 81.05 2.5 5.5 10.95

*以總組合物之重量。/〇計 銀粉I,球形與片狀之混合物 D50=4.60、D95 = l〇.73微米。 銀粉π,球形粉末’且尺寸為勝1〇、齡171、 D95=4.41微米且表面積為〇44米~克。 銀粉in球形粉末,且尺寸為、 D95M.67微米,且固體為99 5%。其表面積係1〇米2/克。 玻璃料 I ’ Si02 23.0%、a12〇3 0.4%、Pb〇 58.8% 及 B2〇3 7.8%,以玻璃組合物之重量%計,且尺寸為D1〇=〇 36、 D50=0.61 及 D95 = 1.44 微米。 且尺寸為D10=0.88 玻璃料II,Si02 22.08%、Al2〇3 0.38%、PbO 46_68%、 B2〇3 6.79%、Ti02 5.86%及PbF2 10.72%,以玻璃組合物之 重量%計,且尺寸為D10=0.42、D50=0.77及D90=1.96微 米。 140746.doc -17- 201013700 玻璃料III,Si〇2 22.08%、Al2〇3 0.38%、PbO 46,68%、 B203 6.79%、Ti02 5.86%及PbF2 10.72%,以玻璃組合物之 重量%計,且尺寸為Dl0=0 34、D5〇=〇5〇及D95 = 〇89微 米。 氧化鋅’購自 Aldrich Chemicals。 實例I.在低於50 psi之抽送壓力下組合物χ能通過, 微米筆尖且筆尖在不到5分鐘之時段内阻塞。所得最佳燒 . 製線係8 3微米寬及13微米高。 實例II.在低於60 psi之抽送壓力下組合物ζ能通過75/ΐ25 ® 微米筆尖且筆央在不到30分鐘之時段内阻塞。所得最佳燒 製線係100微米寬及12微米高。 實例III.在介於1〇 psi至1〇〇 psi之間之抽送壓力下組合 物II能通過50/75微米筆尖且經至少3〇分鐘之時段停止; 刷。所得最佳燒製線係89微米寬及19微米高。 實例IV.在介於10卩以至⑽psi之間之抽送壓力下重量百 分比率為95.5與4.5之組合物„及組合物⑴的推合物能通過 50/75微米筆尖且經至少3小時之時段停止印刷。所 燒製線係67微米寬及25微米高。 實例V·在大於30 psi之抽送壓力下組合物m不能通過. 50/75微米筆尖進行印刷。在3〇叫下,印刷持續不到$秒 筆尖就發生阻塞。 實例Vi·纟大於60 psi之抽送壓力下,組合物m可通過 75/125微米筆尖進行印刷。在的㈣下,印刷持續不到… 鐘筆尖就發生阻塞。 140746.doc •18· 201013700 實例VI1·製備一系列重量比率介於90與ι〇至10與9〇之 間之組合物Π&ΠΙ摻合物並實施印刷。一旦組合物出超過 30% ’則50/75微米筆尖在1分鐘内阻塞。 實例VIII.對上文印刷基板之效率進行分析。下文提供 例示性效率測試。據預計,得自實例IV之太陽能電池的效 率大於得自其他實例之太陽能電池的效率。 測試程序-效率 對根據本文所述方法構造之太陽能電池的轉換效率進行 測試。下文提供測試效率之例示性方法。 在一個實施例中,將根據本文所述方法構造之太陽能電 池置於商業I-V測試儀中用於量測效率(ST_1000)。測試 儀中之Xe弧光燈模擬具有已知強度之陽光並輻射電池正表 面。 測試儀在約400個負載電阻設置下使用多點接觸法來量 測電流(I)及電壓(V)以確定電池的曲線。根據曲線 計算填充因數(FF)及效率(Eff)二者。 【圖式簡單說明】 圖1A至1F展示闡釋製作半導體裝置之製程流程圖。 圖1A至1F中所示之參考編號解釋如下。 10 : P-型矽基板 20 : η-型擴散層 30 :氮化矽膜、氧化鈦膜或氧化矽膜 4〇 : P+層(背表面電場,BSF) 60:在背面形成之鋁膏糊 140746.doc •19· 201013700 61 :背面铭電極(藉由燒製背面鋁膏糊而獲得) 70:在背面形成之銀或銀/鋁膏糊 71 :背面銀或銀/鋁電極(藉由燒製背面銀膏糊而獲得) 5〇〇:根據本發明在正面上形成之銀膏糊 501 :本發明正面銀電極(藉由燒製正面銀膏糊 【主要元件符號說明】 10 p-型矽基板 20 n-型擴散層 30 氮化碎膜/氧化鈦膜/氧化石夕膜 40 Ρ+層 60 在背面形成之鋁膏糊 61 背面銘電極 70 在背面形成之銀或銀/鋁膏糊 71 背面銀或銀/銘電極 500 根據本發明在正面上形成之銀膏糊 501 本發明正面銀電極 而形成)* Take the weight of the total composition. / 银 Silver powder I, a mixture of spheres and flakes D50 = 4.60, D95 = l〇.73 microns. Silver powder π, spherical powder 'and size is 1 〇, age 171, D95 = 4.41 μm and surface area 〇 44 m gram. Silver powder is in spherical powder and has a size of D95M.67 microns and a solids of 99 5%. Its surface area is 1 mil 2 / gram. Glass frit I 'SiO 2 23.0%, a12 〇 3 0.4%, Pb 〇 58.8% and B2 〇 3 7.8%, based on the weight % of the glass composition, and the dimensions are D1 〇 = 〇 36, D50 = 0.61 and D95 = 1.44 Micron. And the size is D10=0.88 glass frit II, SiO2 22.08%, Al2〇3 0.38%, PbO 46_68%, B2〇3 6.79%, Ti02 5.86% and PbF2 10.72%, based on the weight % of the glass composition, and the size is D10 = 0.42, D50 = 0.77 and D90 = 1.96 microns. 140746.doc -17- 201013700 Glass frit III, Si〇2 22.08%, Al2〇3 0.38%, PbO 46,68%, B203 6.79%, Ti02 5.86% and PbF2 10.72%, based on the weight % of the glass composition, And the dimensions are Dl0 = 0 34, D5 〇 = 〇 5 〇 and D95 = 〇 89 microns. Zinc oxide was purchased from Aldrich Chemicals. Example I. The composition was able to pass at a pumping pressure below 50 psi, the micron nib and the nib blocked in less than 5 minutes. The resulting best firing system is 8 microns wide and 13 microns high. Example II. At a pumping pressure below 60 psi, the composition can pass through a 75/ΐ25® micron tip and the pen is blocked in less than 30 minutes. The resulting optimum firing line is 100 microns wide and 12 microns high. Example III. Composition II can pass through a 50/75 micron tip and pass through a period of at least 3 minutes at a pumping pressure between 1 psi and 1 psi; brush. The resulting optimum firing line was 89 microns wide and 19 microns high. Example IV. Compositions with a weight percentage of 95.5 and 4.5 at a pumping pressure of between 10 Torr and (10) psi and a composition of composition (1) can pass through a 50/75 micron tip and stop for at least 3 hours. Printing. The fired wire is 67 microns wide and 25 microns high. Example V. At a pumping pressure greater than 30 psi, the composition m cannot be printed through a 50/75 micron pen tip. Blockage occurs at $2 nibs. For example Vi·纟 at a pumping pressure greater than 60 psi, composition m can be printed through a 75/125 micron tip. Under (iv), printing continues for less than... The tip of the pen is blocked. Doc •18· 201013700 Example VI1·Prepare a series of composition Π& ΠΙ blends with a weight ratio between 90 and ι to 10 and 9 并 and perform printing. Once the composition exceeds 30% '50/ The 75 micron nib was blocked in 1 minute. Example VIII. Analysis of the efficiency of the above printed substrate. An exemplary efficiency test is provided below. It is expected that the solar cell from Example IV is more efficient than the solar cell from other examples. effectiveness Test Procedure - Efficiency Tests the conversion efficiency of solar cells constructed according to the methods described herein. An exemplary method of testing efficiency is provided below. In one embodiment, a solar cell constructed in accordance with the methods described herein is placed in a commercial IV test. The instrument is used to measure efficiency (ST_1000). The Xe arc lamp in the tester simulates sunlight with known intensity and radiates the front surface of the battery. The tester uses multi-point contact method to measure current at about 400 load resistance settings. (I) and voltage (V) to determine the curve of the battery. Calculate both the fill factor (FF) and the efficiency (Eff) according to the curve. [Schematic Description of the Drawings] Figs. 1A to 1F show a process flow chart for explaining the fabrication of a semiconductor device. The reference numerals shown in Figs. 1A to 1F are explained as follows. 10: P-type germanium substrate 20: n-type diffusion layer 30: tantalum nitride film, titanium oxide film or hafnium oxide film 4: P+ layer (back surface electric field) , BSF) 60: Aluminum paste formed on the back surface 140746.doc •19· 201013700 61 : The back electrode (obtained by firing the back aluminum paste) 70: Silver or silver/aluminum paste 71 formed on the back side : back Silver or silver/aluminum electrode (obtained by firing a back silver paste) 5: Silver paste 501 formed on the front side according to the present invention: front side silver electrode of the present invention (by firing a front silver paste [ Explanation of main component symbols] 10 p-type 矽 substrate 20 n-type diffusion layer 30 nitriding film / titanium oxide film / oxidized stone film 40 Ρ + layer 60 aluminum paste formed on the back surface 61 back electrode 70 on the back Silver or silver/aluminum paste 71 formed on the back Silver or silver/Ming electrode 500 Silver paste 501 formed on the front side according to the present invention is formed by the front silver electrode of the present invention)

140746.doc -20-140746.doc -20-

Claims (1)

201013700 七、申請專利範圍: 一種製造半導體裝置之方法,其包括以下步驟: (a) 提供半導體基板、一或多個絕緣膜及厚膜組合物; (b) 將該絕緣膜施加至該半導體基板上, (c) 將該厚膜組合物施加至該半導體基板上之該絕緣膜 上,及201013700 VII. Patent Application Range: A method of manufacturing a semiconductor device, comprising the steps of: (a) providing a semiconductor substrate, one or more insulating films, and a thick film composition; (b) applying the insulating film to the semiconductor substrate (c) applying the thick film composition to the insulating film on the semiconductor substrate, and 2. (d)燒製該半導體、絕緣膜及厚膜組合物,其中該厚膜組 合物包括: (a) —或多種導電材料; (b) —或多種無機黏結劑;及 (c) 有機媒介, 其中該等無機組份之1_15%係次微米顆粒。 奢长項1之方法,其中該絕緣膜包括一或多種選自下 歹J之,且伤.氧化欽、氮化石夕、、氧化♦、及氧化 矽/氧化鈦。2. (d) firing the semiconductor, insulating film and thick film composition, wherein the thick film composition comprises: (a) - or a plurality of conductive materials; (b) - or a plurality of inorganic binders; and (c) organic Medium, wherein 1 to 15% of the inorganic components are submicron particles. The method of claim 1, wherein the insulating film comprises one or more selected from the group consisting of ruthenium, oxidized, nitrided, oxidized, and cerium oxide/titanium oxide. 3. 5.6. 如請求項1之方法 10微米之d5〇。 如請求項1之方法 如请求項4之方法 如請求項I之方法 之 d50 〇 其中該等無機組份之85-99%具有1.5- 其中該一或多種導電材料包括銀。 其中該等次微米顆粒包括銀。 其中該等次微米顆粒具有0.1-1微米 7,如請求項1之方法 米之d5〇。 8·如請求項1之方法 其中該等次微米顆粒具有0.1-0.6微 其中該等無機組份具有雙峰型尺寸 140746.doc 201013700 分佈。 9. 如請求項丨之方法,其中該厚膜組合物進—步包括一或 多種添加劑。 10. 如”月求項9之方法’其中該一或多種添加劑包括選自由 下列組成之群之組份:⑷金屬,其中該金屬係選自Zn、 Pb、Bi、Gd、Ce、Zr、Ti、Mn、%、Ru、c〇、Fe、cu 及Cr; (b)—或多種選自下列之金屬的金屬氧化物:zn、 Pb、、Gd、Ce、Zr、Ti、Mn、%、Ru、c〇、以、cu3. 5.6. The method of claim 1 is 10 micron d5〇. The method of claim 1 is as claimed in claim 4, wherein the method of claim 1 is d50 〇 wherein 85-99% of the inorganic components have 1.5- wherein the one or more electrically conductive materials comprise silver. Wherein the sub-micron particles comprise silver. Wherein the sub-micron particles have a size of from 0.1 to 1 micron 7, as claimed in claim 1 of the formula d5. 8. The method of claim 1 wherein the sub-micron particles have a thickness of from 0.1 to 0.6. wherein the inorganic components have a bimodal size of 140746.doc 201013700. 9. The method of claim 1, wherein the thick film composition further comprises one or more additives. 10. The method of claim 9 wherein the one or more additives comprise a component selected from the group consisting of: (4) a metal, wherein the metal is selected from the group consisting of Zn, Pb, Bi, Gd, Ce, Zr, Ti. , Mn, %, Ru, c〇, Fe, cu and Cr; (b) - or a plurality of metal oxides selected from the group consisting of zn, Pb, Gd, Ce, Zr, Ti, Mn, %, Ru , c〇, 、, cu 及Cr; (c)燒製後可產生(b)之該等金屬氧化物的任何化合 物;及(d)其混合物。 11. 如4求項1()之方法,其中該一或多種無機添加劑包括 ZnO。 如請求項5之方法,其中該等次微米顆粒進一步包括Zn〇 及無機黏結劑。 請求項1之方法,其中該一或多種無機黏結劑包括玻 璃料。And Cr; (c) any compound which produces (b) the metal oxides after firing; and (d) a mixture thereof. 11. The method of claim 1 (), wherein the one or more inorganic additives comprise ZnO. The method of claim 5, wherein the sub-micron particles further comprise Zn〇 and an inorganic binder. The method of claim 1, wherein the one or more inorganic binders comprise a glass frit. 求項1之方法,其中該等無機經份佔該總組合物之 70-95 重量 %。 140746.doc -2 -The method of claim 1, wherein the inorganic components comprise from 70 to 95% by weight of the total composition. 140746.doc -2 -
TW98118101A 2008-05-28 2009-06-01 Methods using compositions containing submicron particles used in conductors for photovoltaic cells TW201013700A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5659708P 2008-05-28 2008-05-28

Publications (1)

Publication Number Publication Date
TW201013700A true TW201013700A (en) 2010-04-01

Family

ID=40929538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98118101A TW201013700A (en) 2008-05-28 2009-06-01 Methods using compositions containing submicron particles used in conductors for photovoltaic cells

Country Status (6)

Country Link
EP (1) EP2294585A1 (en)
JP (1) JP2011525700A (en)
KR (1) KR20110014674A (en)
CN (1) CN102047346A (en)
TW (1) TW201013700A (en)
WO (1) WO2009146354A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011056087B4 (en) * 2011-12-06 2018-08-30 Solarworld Industries Gmbh Solar cell wafer and process for metallizing a solar cell
CN103204632B (en) * 2012-01-14 2015-09-02 比亚迪股份有限公司 Conductive glass powder and preparation method thereof, crystal silicon solar energy battery aluminum conductive electric slurry and preparation method
ES2649662T3 (en) * 2013-07-09 2018-01-15 Heraeus Deutschland GmbH & Co. KG An electroconductive paste comprising Ag particles with a multimodal diameter distribution in the preparation of electrodes in MWT solar cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556748B2 (en) * 2005-04-14 2009-07-07 E. I. Du Pont De Nemours And Company Method of manufacture of semiconductor device and conductive compositions used therein
US7435361B2 (en) * 2005-04-14 2008-10-14 E.I. Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices

Also Published As

Publication number Publication date
KR20110014674A (en) 2011-02-11
CN102047346A (en) 2011-05-04
EP2294585A1 (en) 2011-03-16
JP2011525700A (en) 2011-09-22
WO2009146354A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
TWI342568B (en) Method of manufacture of semiconductor device and conductive compositions used therein
JP5395995B2 (en) Conductive compositions and methods used in the manufacture of semiconductor devices
JP5362946B2 (en) Semiconductor device manufacturing method and conductive composition used therefor
JP6185232B2 (en) Use of conductive compositions containing lead-tellurium-based oxides in the manufacture of semiconductor devices with lightly doped emitters
JP2010524257A (en) Thick film conductive composition and method of use in the manufacture of semiconductor devices
TW201005755A (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
TW200931449A (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: Mg-containing additive
TW201035260A (en) Conductive paste for solar cell electrode
TW201101499A (en) Conductive paste for solar cell electrode
US8748304B2 (en) Devices containing silver compositions deposited by micro-deposition direct writing silver conductor lines
TW201115592A (en) Glass compositions used in conductors for photovoltaic cells
TW201626404A (en) Conductive composition, semiconductor element, and solar battery element
US8128846B2 (en) Silver composition for micro-deposition direct writing silver conductor lines on photovoltaic wafers
TW201013700A (en) Methods using compositions containing submicron particles used in conductors for photovoltaic cells
JP2013504177A (en) Conductor for photovoltaic cells
US8008179B2 (en) Methods using silver compositions for micro-deposition direct writing silver conductor lines on photovoltaic wafers
TW201013699A (en) Conductors for photovoltaic cells: compositions containing submicron particles