TW201012017A - A micro solid state laser module - Google Patents

A micro solid state laser module Download PDF

Info

Publication number
TW201012017A
TW201012017A TW97133929A TW97133929A TW201012017A TW 201012017 A TW201012017 A TW 201012017A TW 97133929 A TW97133929 A TW 97133929A TW 97133929 A TW97133929 A TW 97133929A TW 201012017 A TW201012017 A TW 201012017A
Authority
TW
Taiwan
Prior art keywords
state laser
light
solid state
micro
laser
Prior art date
Application number
TW97133929A
Other languages
Chinese (zh)
Inventor
Zhi-xiao CHEN
Guo-Ren Chen
Ming-Hua Wen
Original Assignee
Alvis Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alvis Technologies Corp filed Critical Alvis Technologies Corp
Priority to TW97133929A priority Critical patent/TW201012017A/en
Publication of TW201012017A publication Critical patent/TW201012017A/en

Links

Abstract

This invention is a micro solid state laser module. From the laser source to the final projecting output laser, comprising the following major components in this order: a solid state laser that emits a laser light beam; a wave length converter that utilizes harmonic theory to convert the wave length of a laser beam into a laser light beam in such a different wave length as green light; a light dispersion device, such as a prism, that is placed at the rear part of the wave length convertor and splits the converted laser light into two separate light beams: the first light beam as the main light beam that contains the majority part of the power and that can vertically emit outside to form a main output light source, the second light beam that passes the light dispersion device, such as a prism, and enters into a light detector; and a light detector that is used for inspecting the power of the second light beam. Hence, through placing the light dispersion device, such as a prism, every component is allowed to be packaged on a plane surface for processing which is beneficial for a relatively small packaging type like a TO-can packaging; in addition, when compared to the traditional solid state laser module, the design is more superior in size, capability, and yield. Moreover, compensation can be made because the light detector being used can directly inspect the laser light converted by the wave length convertor; therefore, temperature reduction controls like increasing or lowering of the driving current to the solid state laser, or the notification of the nearby auxiliary temperature controller, such as a TE-cooler, can be performed. As a result, the error of the feedback compensation is minimized and is far better than traditional feedback method.

Description

201012017 倍頻晶體20b 入射端21 出射端22 分光裝置30 分光面31 光檢測器(PD ) 40 載板50 平面51 底座60 ❷溫度控制器61 八、 本案若有化學式時,請揭示最能顯示發明特徵的化 學式:(無) 九、 發明說明: 【發明所屬之技術領域】 本發明係有關一種微型固態雷射模組,尤指一種利用 一分光裝置如棱鏡安排在波長轉換器後方以將轉換後之雷 射光分成兩道光束’使其中第一道光束可垂直射出為主要 攀輸出光源’另第二道光束可穿過分光裝置如一稜鏡並入射 至一光檢測器上,以使所有元件可封裝在平面上處理,最 終的輸出光源又可垂直射出,且又可透過光檢測器直接该 測到經過非線性晶體的光源以進行補償修正者。 【先前技術】 固態雷射模組(solid state laser module )為常見的— 種光電裝置(Photo-electronic/ Photonic Device),其係利用 波長轉換器(wavelength conversion device,或稱波長轉換 晶體)以倍頻原理將一已知波長之雷射光轉換成不同波長 (λ2)之雷射光如藍光、綠光等供可隨不同的需要而選擇 201012017 使用;因此光電裝置或雷射模組一般通稱為波長轉換光電 裝置(Wavelength Conversion Photonic Device)。 一光電裝置如本案所指之固態雷射模組,其可選擇使 用不同的結構設計之波長轉換器,而基本上每一種波長轉 換器在轉換前雷射光(波長λι)及轉換後雷射光(波長 入2 )之間存在波長轉換效率(wavelength conversion efficiency from九丨to λ2),且當轉換前雷射光之波長必 須匹配或吻合(coincident with)某一特定波長時(該特定波 長即稱為最大轉換波長maximum conversion wavelength ❹、)’其波長轉換效率才可達到最大值,也就是達成最 大波長轉換效率(maximum wavelength conversion efficiency )之最佳運作狀態,而當轉換前雷射光之波長 λι未匹配或吻合(coincident with)其最大轉換波長λ。 時’如小於或大於該最大轉換波長(λ。),其波長轉換效 率即降低;然而,一雷射光之轉換前之波長(λΟ或一波 長轉換器之最大轉換波長(λ。)皆是隨其雷射裝置或波長 轉換器之溫度改變而變化,而環境溫度又常會改變該雷射 裝置及波長轉換器之溫度,而且雷射光轉換前之波長 (λ!)及波長轉換器之最大轉換波長(λ。)相對於溫度每 度的溫度改變率(changing rate of temperature per temperature)是不同的,如假設在某一特定環境溫度下一 雷射光之轉換前波長(λ】)剛好相同於一波長轉換器之最 大轉換波長(λ。),而當環境溫度改變時如改變(一般是 昇高)至另一溫度,上述雷射光之轉換前波長(λ!)與波 長轉換器之最大轉換波長(λ。)即因不同變化程度(即不 同改變率)而不再相同,即波長轉換效率會降低 (degraded),使波長轉換光電裝置如本案之固態雷射模組 向外投射之雷射光,即轉換後雷射光(波長λ2)無法達成 預期之亮度;因此,針對一波長轉換光電裝置如本案之固 201012017 態雷射模組之使用而言,當環境溫度改變致波長轉換效率 相對降低時,此時調控固態雷射模組以達成並維持在最大 波長轉換效率,也就是回饋監控以增進固態雷射模組向外 投射之雷射光的亮度,是有其需要性及必要性的。 傳統式的固態雷射包含各種不同的結構設計,如二極 體泵固態(diode pumped solid state,簡稱 DPSS)雷射,但 大都有體積大(bulky)、須加外部聲光調變器(external acoustic optical modulator )、低轉換效率(low conversion efficiency)、無溫度補償機制(no temperature ❹ comPensati〇n mechanism)及高能量耗損(large energy consumption)的缺點,如:US 4,731,795係採用同軸式的 方式來做組裝,其整組雷射模組之體積相當大,且構裝方 式較不易利用類式半導體封裝方式大量生產,且採用該方 式無法做直接回餚監控,故該固態雷射模組對於輸出功率 的穩定性較低。US 5,440,574與上述US 4,731795類式之 間的差別在於構裝的結構有些不同,且不同點在於雷射到 非線性晶體的耦合鏡片上之的差異。US5,187,714係須配 合特殊的封裝外殼,在平面構裝完成後只能從側面發光, 0 無法垂直射出,且無法做直接回饋監控,對於輸出功率的 穩定性較低。US 6,778,582揭示利用面射型雷射(VCSEL) 並疊上非線性晶艘(nonlinear crystal)最後再疊上一個反射 鏡’而上述結構係放置在一散熱基座(heatsink)上,其封 裝結構係採用垂直方向的堆疊技術,而其架構原理是利用 近紅外的面射型雷射,如l〇64nm的波長的光,經過非線 性晶體(倍頻晶體)轉換產生532nm的綠光,再經過外部 的反射鏡及面射型雷射的頂面共振放大以產生綠光。201012017 Multiplier crystal 20b Incident end 21 Exit end 22 Spectroscopic device 30 Splitting surface 31 Photodetector (PD) 40 Carrier 50 Plane 51 Base 60 ❷ Temperature controller 61 8. If there is a chemical formula in this case, please reveal the best display invention. Chemical formula of the characteristic: (none) IX. Description of the invention: [Technical field of the invention] The present invention relates to a micro solid state laser module, in particular to a rear view of a wavelength converter using a spectroscopic device such as a prism to be converted The laser beam is split into two beams 'so that the first beam can be emitted vertically as the main source of the output light' and the second beam can pass through the beam splitting device such as a beam and incident on a photodetector so that all components can be The package is processed on a plane, and the final output source can be vertically emitted, and the light source passing through the nonlinear crystal can be directly detected by the photodetector to compensate the corrector. [Prior Art] A solid state laser module is a common photo-electronic device (Photo-electronic/Photonic Device), which is multiplied by a wavelength conversion device (or wavelength conversion device). The frequency principle converts laser light of a known wavelength into laser light of different wavelengths (λ2) such as blue light, green light, etc., which can be used according to different needs in 201012017; therefore, the photoelectric device or the laser module is generally called wavelength conversion. Optoelectronic device (Wavelength Conversion Photonic Device). An optoelectronic device, such as the solid-state laser module referred to in the present invention, may select a wavelength converter of a different structural design, and substantially each of the wavelength converters converts the laser light (wavelength λι) and the converted laser light before conversion ( There is a wavelength conversion efficiency (wavelength conversion efficiency from 9 丨 to λ2), and the wavelength of the laser light before the conversion must match or coincide with a specific wavelength (the specific wavelength is called maximum The conversion wavelength maximum conversion wavelength ❹,) 'the wavelength conversion efficiency can reach the maximum value, that is, to achieve the maximum wavelength conversion efficiency (maximum wavelength conversion efficiency), and the wavelength λι of the laser light before conversion does not match or Coincident with its maximum conversion wavelength λ. If the wavelength is less than or greater than the maximum conversion wavelength (λ.), the wavelength conversion efficiency is lowered; however, the wavelength before the conversion of a laser light (λΟ or the maximum conversion wavelength of a wavelength converter (λ.) is The temperature of the laser device or the wavelength converter changes, and the ambient temperature often changes the temperature of the laser device and the wavelength converter, and the wavelength before the laser light conversion (λ!) and the maximum conversion wavelength of the wavelength converter (λ.) The change rate of temperature per temperature is different, as the wavelength (λ) of the laser light is converted to be exactly the same at a certain ambient temperature. The maximum conversion wavelength (λ.) of the converter, and when the ambient temperature changes, such as changing (generally rising) to another temperature, the wavelength of the pre-conversion laser (λ!) and the maximum conversion wavelength of the wavelength converter ( λ.) is no longer the same due to different degrees of change (ie different rate of change), ie the wavelength conversion efficiency is degraded, so that the wavelength conversion optoelectronic device is as in this case The laser light projected from the solid-state laser module, that is, the converted laser light (wavelength λ2) cannot achieve the desired brightness; therefore, for the use of a wavelength-converting photovoltaic device such as the solid-state 201012017 laser module of the present invention, When the ambient temperature changes and the wavelength conversion efficiency is relatively reduced, the solid state laser module is adjusted to achieve and maintain the maximum wavelength conversion efficiency, that is, feedback monitoring to improve the brightness of the laser light projected by the solid state laser module. There is a need and necessity. Traditional solid-state lasers contain various structural designs, such as diode pumped solid state (DPSS) lasers, but most of them are bulky. The disadvantages of external acoustic optical modulator, low conversion efficiency, no temperature com comPensati〇n mechanism, and large energy consumption, such as: US 4,731,795 is assembled in a coaxial manner, and the entire set of laser modules is quite large and constructed. It is not easy to mass-produce by type semiconductor packaging, and it can not be directly monitored by this method, so the solid-state laser module has low stability to output power. Between US 5,440,574 and the above-mentioned US 4,731795 type The difference is that the structure of the structure is somewhat different, and the difference lies in the difference between the laser and the coupling lens of the nonlinear crystal. US5,187,714 must be matched with a special package casing, which can only be illuminated from the side after the planar structure is completed. , 0 can't be shot vertically, and can't do direct feedback monitoring, and the stability of output power is low. US 6,778,582 discloses the use of a surface-emitting laser (VCSEL) and a stack of non-linear crystals and finally a mirror-over stack and the structure is placed on a heatsink, the package structure The vertical stacking technology is used, and the architectural principle is to use a near-infrared surface-emitting laser, such as a wavelength of l〇64nm, to generate 532nm green light through a nonlinear crystal (double frequency crystal) conversion, and then through the external The top surface of the mirror and the surface-emitting laser is resonantly amplified to produce green light.

Pub. No. US 2008 / 0002745 A1揭示利用非投影區來做轉 換後光源波長補償,即利用非投影區地方來監控輸出光 (轉換後光源)功率的穩定性,其補償架構係利用經過波 201012017 長轉換器(wavelength converter)之後的光再利用分光鏡將 部分的光擷取到檢測器(detector),而利用檢測器所檢測的 電流值來判斷D B R雷射的中心波長及非線性晶艎中心波長 是否有匹配,當檢測器所檢測的電流值變小時表示DBR雷 射的中心波長及非線性晶體中心波長沒有匹配,此時回饋 電路將會啟動(利用非投影區動作)調整DBR雷射phase section的電流值進而調整DBR雷射之中心波長,以達到輸 出光(轉換後光源)功率的穩定效果。美國康寧公司 (Corning Inc.)的論文「Wavelength Matching and Tuning in 0 Green Laser Packaging using Second HarmonicPub. No. US 2008 / 0002745 A1 discloses the use of non-projection areas for wavelength compensation of the source after conversion, that is, using the non-projection area to monitor the stability of the output light (converted light source) power, and its compensation architecture utilizes the wave 201012017 The light after the wavelength converter then uses a beam splitter to extract part of the light to the detector, and uses the current value detected by the detector to determine the center wavelength of the DBR laser and the center of the nonlinear crystal Whether the wavelength is matched, when the current value detected by the detector becomes small, the center wavelength of the DBR laser and the center wavelength of the nonlinear crystal do not match, and the feedback circuit will start (using the non-projection area action) to adjust the DBR laser phase. The current value of the section further adjusts the center wavelength of the DBR laser to achieve a stable effect of the output light (converted light source) power. Corning Inc.'s paper "Wavelength Matching and Tuning in 0 Green Laser Packaging using Second Harmonic

Generation」係利用近紅外雷射二極體(DBR laser)發出波 長1064nm雷射光,並利用聚光鏡片將雷射光射入非線性 晶體(波長轉換器)中以使l〇64nm雷射光轉換成532nm 的綠光,其架構係分別在雷射二極體(DBRlaser)及非線性 晶體(波長轉換器)下方設置一溫度控制器及溫度感測 器’然此架構無法即時去做雷射二極體(DBRlaser)及非線 性晶體(波長轉換器)中心波長的最佳化匹配,只能利用 量測所得的溫度去做假設雷射二極艎(DBR laser)及非線性 ❹晶體(波長轉換器)兩個中心波長的匹配,即調整雷射二 極體(DBRlaser)及非線性晶體(波長轉換器)的溫度,以 讓個別的中心波長移動,因此會產生失真的情況,也就是 轉換後之輸出光的功率將隨外在溫度而產生變化。 目前固態雷射模組之應用範圍相當廣泛,包含:科學 研究方面如材料特性量測、科學用激發光源、太空遙測與 資源探測等;國防工業方面如雷射測距儀、雷射追縱掃描 系統、雷射防衛武器等;工業與民生方面如材料處理(如 微機電系統MEMS加工、電阻裝飾、晶片標記)、水下攝 影及海底探測、非破壞性檢測、半導體晶圓檢測等;醫療 用途方面如眼科治療、皮膚治療、牙齒治療、牙科手術 201012017 等。目前固態雷射的產值已位居所有雷射模組排行的第四 位,已經深入到一般人的生活周遭》又目前固態雷射都是 以產生綠光及藍光為主。 目前固態雷射模組中常使用之波長轉換器可以是週期 性極化鈮酸鋰晶體(Periodically Poled Lithium Niobate, 簡稱為PPLN)、釩酸鉀晶體(KTi0P04,簡稱為 KTP) 、LBO、BBO、ADP等晶體,其中,PPLN具有較 高的波長轉換效率(可達到約50%);相對之下,KTP的 轉換效率就低了許多(約5%〜10%),但因ΚΤΡ之轉換效率 ❹對於外界溫度變化較不敏感,且元件償格相對ppLN低許 多,故若採用ΚΤΡ為固態雷射模組的波長轉換器,將對於 性能要求不高的低價市場極具競爭力;又ΚΤΡ為堆疊 、 (Bulk)的型態,其光麵合口徑較大,易於雷射光的搞 合;因此,本發明乃在此提出一種簡化的微型固態雷射模 組架構如一微型固態綠光雷射模組,而其封裝仍採用 TO-can封裝(TO-can packaging)模式,相較傳統的固態 (綠光)雷射模組,可望於模組之體積、性能、產能與價 格上,有壓倒性的競爭力。 、 φ 【發明内容】 本發明主要目的乃在於提供一種微型固態雷射模組 (compact solid state laser module ),其係利用一分光裝置 如稜鏡(Prism)安排在波長轉換器之後方用以將射入之轉 換後雷射光分成兩道光束,一道光束垂直射出為主要輸出 光源,另一道光束穿過分光裝置如稜銳並入射至一光檢測 器(PD)上’以使固態雷射、波長轉換器(非線性晶艘)、 分光裝置如一棱鏡及光檢測器等所有元件可封裝在一平面 上處理而利於封裝在一較小的TO-can封裝(T〇_can packaging)中’且最終的輸出光源又可垂直向外射出;進 一步並可透過光檢測器直接偵測經過波長轉換器之轉換後 201012017 $行補償修正,如利用遇敍_ Φ ?欠 =:==r藉或通知=:= ;效降低回錢補償之誤差Generation uses a near-infrared laser diode (DBR laser) to emit laser light with a wavelength of 1064 nm, and uses a concentrating lens to inject laser light into a nonlinear crystal (wavelength converter) to convert l〇64 nm laser light into 532 nm. Green light, its architecture is to set a temperature controller and temperature sensor under the laser diode (DBRlaser) and nonlinear crystal (wavelength converter) respectively. However, this architecture can not be used as a laser diode ( DBRlaser) and the optimal matching of the central wavelength of the nonlinear crystal (wavelength converter) can only use the measured temperature to make the assumption of the laser diode (DBR laser) and the nonlinear germanium crystal (wavelength converter). Matching of the center wavelength, that is, adjusting the temperature of the laser diode (DBRlaser) and the nonlinear crystal (wavelength converter) to move the individual center wavelengths, thus causing distortion, that is, the converted output light The power will vary with the external temperature. At present, the application range of solid-state laser modules is quite extensive, including: scientific research such as material property measurement, scientific excitation light source, space telemetry and resource detection, etc.; defense industry such as laser range finder, laser tracking Systems, laser defense weapons, etc.; industrial and people's livelihood such as material processing (such as MEMS processing, resistance decoration, wafer marking), underwater photography and seabed detection, non-destructive testing, semiconductor wafer testing, etc.; medical use Aspects such as ophthalmic treatment, skin treatment, dental treatment, dental surgery 201012017, etc. At present, the output value of solid-state lasers ranks fourth among all laser modules, and has penetrated into the lives of ordinary people. Currently, solid-state lasers are mainly produced by green light and blue light. The wavelength converter commonly used in solid-state laser modules can be periodically polarized lithium niobate (PPLN), potassium vanadate crystal (KTi0P04, KTP for short), LBO, BBO, ADP. Such crystals, in which PPLN has a higher wavelength conversion efficiency (up to about 50%); in contrast, KTP conversion efficiency is much lower (about 5% to 10%), but because of the conversion efficiency ❹ The external temperature change is less sensitive, and the component compensation is much lower than ppLN. Therefore, if the wavelength converter is used as the solid-state laser module, it will be competitive for the low-cost market with low performance requirements; The (Bulk) type has a large smooth surface and is easy to engage with laser light. Therefore, the present invention proposes a simplified micro solid state laser module structure such as a micro solid green laser module. The package is still in TO-can packaging mode. Compared with the traditional solid-state (green) laser module, it is expected to be overwhelming in terms of module size, performance, capacity and price. Competitiveness. The main purpose of the present invention is to provide a compact solid state laser module, which is arranged after the wavelength converter by using a spectroscopic device such as Prism. After the injection is converted, the laser light is split into two beams, one beam is emitted perpendicularly as the main output source, and the other beam passes through the beam splitting device such as sharp and incident on a photodetector (PD) to make the solid state laser, wavelength All components such as converters (non-linear crystal lattices), spectroscopic devices such as a prism and photodetector can be packaged on a flat surface for processing in a small TO-can package (T〇_can packaging) and ultimately The output light source can be directly emitted outward; further, the light detector can directly detect the 201012017 $ line compensation correction after the conversion by the wavelength converter, such as using the encounter _ Φ owe =:==r l or notification = := ; Effectiveness reduces the error of return compensation

,雷一:的乃在於提供一種微型固態雷射模組, 接採用額外的微光學元件(*。 广以成先耦合的需求,如採用光耦合鏡片 em^mglens )或準直鏡片配合聚焦鏡片(e。出 1)的間接光輕合方式,以取代原來的 ίίί?:式,藉以大幅加大組裝定位精度的公差而有 ;量產化,且對於光能量的衰減相當小(小於2% ), ^it影ΐ輸光雷射光之功率’藉以避免因直接光麵合方 式需要極高的組裝定位精度(約lum)致會挑戰組裝 台的極限而相對降低組裝作業效率。 本發明另一目的乃在於提供一種微型固態雷射模組, 該雷射模組進一步可配合利用一直角棱鏡(right angle prism )以回折由固態雷射至分光裝置之間的光路,使本 f明微型固態雷射模組之主要元件及相配合使用之微光學 元件可排列形成二平行直列,藉以有效縮小本發明雷射模 組之容置空間,以有利於封裝在一較小的TO-can封裝 中。 為達成上述目的,本發明之微型固態雷射模組主要利 用一固態雷射(solidstatelaser )、一波長轉換器(或稱波 長轉換晶體,wavelength conversion device )、一分光裝 201012017Lei Yi: It is to provide a miniature solid-state laser module, which uses additional micro-optical components (*. Widely used for coupling first, such as optical coupling lens em^mglens) or collimating lens with focusing lens (e. out of 1) indirect light-lighting method, in place of the original ίίί?:, to greatly increase the tolerance of assembly positioning accuracy; mass production, and the attenuation of light energy is quite small (less than 2%) ), ^it affects the power of the transmitted laser light to avoid the need for extremely high assembly positioning accuracy (about lum) due to the direct smoothing method, which will challenge the limit of the assembly station and relatively reduce the efficiency of assembly work. Another object of the present invention is to provide a micro solid state laser module, which can further cooperate with a right angle prism to fold back the optical path between the solid state laser and the spectroscopic device. The main components of the micro-solid-state laser module and the micro-optical elements used in combination can be arranged to form two parallel in-line, thereby effectively reducing the accommodation space of the laser module of the invention, so as to facilitate packaging in a small TO- Can in the package. In order to achieve the above object, the micro solid state laser module of the present invention mainly uses a solid state laser (solid state laser), a wavelength converter (or wavelength conversion device), and a light distribution device 201012017.

置如棱鏡(Prism )、及一光檢測器(photo detector,簡 稱PD )等主要元件而依序設在一平面上構成,其中,該 固態雷射係用以發射雷射光並入射至波長轉換器;該波長 轉換器係以倍頻原理將前述固態雷射所發射之雷射光的波 長轉換成不同波長之雷射光如綠光並入射至分光裝置如一 稜鏡;該分光裝置如一稜鏡係安排在波長轉換器後方用以 將射入之轉換後雷射光分成兩道光束,其中之第一道光束 係主光束可垂直該設置平面而向外射出以成為主要輸出光 源,其中之第一道光束係穿過分光裝置如一棱鏡而入射至 光檢測器;該光檢測器係用以檢測第二道光束之光功率; 其中,利用該分光裝置如稜鏡之安排使所有元件可封裝在 一平面上處理,且有利於封裝在一較小的T0_can型式之 封裝(TO-can packaging )中,可有效減縮雷射模組之體 積、增進使用效率並簡化組裝結構,使本發明之微型固態 雷射模組在體積、性能、產能方面均優於傳統固態雷射g 組0The main components such as a prism (Prism) and a photo detector (PD) are sequentially arranged on a plane, wherein the solid laser system emits laser light and is incident on the wavelength converter. The wavelength converter converts the wavelength of the laser light emitted by the solid-state laser into a laser light of different wavelengths such as green light by a frequency doubling principle and enters the light splitting device such as a light-emitting device; the light-splitting device is arranged in a The laser converter is used to split the converted laser light into two beams, wherein the first beam of the main beam can be perpendicular to the set plane and emitted outward to become the main output source, wherein the first beam is Passing through a spectroscopic device such as a prism to the photodetector; the photodetector is for detecting the optical power of the second beam; wherein, by using the spectroscopic device, the components are packaged on a plane for processing And it is beneficial to package in a small TO-can packaging, which can effectively reduce the size of the laser module, improve the efficiency of use and simplify assembly. Configuration, so that the solid-state laser module micro volume present invention, performance, production capacity is superior to conventional solid-state laser group 0 g

本發明進一步透過該光檢測器(PD )以直接偵測經 該波長轉換器轉換後之雷射光,並藉以做為回饋補償及修 正的依據,如利用邏輯電路以控制提升或降低固態雷射的 驅動電流’或通知其附加的溫度控制器如致冷器 (ΤΕ-cooler )以對固態雷射進行降溫的控制(因雷 組在其溫度—般會昇高),藉以使所進行回饋補償 之誤差為最小而遠優於傳統式的回饋方式。 本發明微型固態雷射模組係利用前述之固態雷射、波 長轉換器、分光裝置如一稜鏡及光檢測器等主要元 設ί一t面上構成,其中,該等主要元件可在平面上以直 接光柄°方式排列形成-JL歹1J,以使其排列方式最為精簡 且所占空間亦為最小,以可容納在τ〇_5的構裝中。 又馨於上述之直接光耦合方式需要極高的組裝定位精 201012017 度(約lum),致會挑戰組裝用機台的極限而相對降低組 裝作業效率,因此本發明之雷射模組進一步可間接採用額 外的微光學元件(micro optics )以取代原來的直接光麵 合方式,如採用光耦合鏡片(coupling lens )的光耦合方 式或準直鏡片配合聚焦鏡片(collimator lens + focusing lens)的間接光耦合方式,藉以大幅加大組裝定位精度的 公差而有利於量產化,且對於光能量的衰減也相當小(小 於2%),不至影響輸光雷射光之功率。 又鑒於一 TO-Can的構裝方式中其内部可供容放元件 ❹ 的空間相當有限,如以TO-5而言其内部可容放元件的面 積約為5mm X 5mm,本發明之雷射模組進一步可配合利 用一直角稜鏡(right angle prism)以回折由固態雷射至分 光裝置之間的光路,如使用一光耦合鏡片與一直角稜鏡等 微光學元件(microoptics ),使固態雷射該所發射之雷 射光先射入一光耦合鏡片再入射至一直角稜鏡以產生180 度回折,再射入一光耦合鏡片及後續之波長轉換器及分光 裝置,使本發明微型固態雷射模組之主要元件及相配合使 用之微光學元件可排列形成二平行直列,藉以有效縮小本 φ 發明雷射模組之容置空間,以有利於封裝在一較小的 TO-can 封裝。 本發明微型固態雷射模組之固態雷射進一步可設具一 溫度控制器(temperature control device)如電阻式致熱器 (thermal resistor)或致冷器(TE-cooler)用以控制固態雷射 之溫度’當該光檢測器(PD )直接偵測經該波長轉換器 轉換後之雷射光並欲進行回饋補償及修正時,即可通知該 溫度控制器進行溫度控制,並利用改變固態雷射之溫度的 方法以改變其所發射之雷射光波長,藉以將雷射光之波長 調整至等於或趨近波長轉換器之最佳轉換波長,以提昇雷 射模組之波長轉換效率(conversion efficiency )而增進其 201012017 使用效率。至於本發明微型固態雷射模組之波長 選擇對於外界溫度變化較不敏感之晶體如釩酸卸€艘 (KTi〇p〇4,簡稱為KTP),藉以使波長轉換器^最佳轉 換波長維持於在固定值而不隨外界溫度變化而相對變化, 藉以可在對於性能要求不高的低價市場中具有競爭力。 【實施方式】 為使本發明更加明確詳實,茲列舉較佳實施例並配合 下列圖示,將本發明之結構及其技術特徵詳述如後: 參照圖1、2所示,其分別係本發明微型固態雷射模 ❹組之基本架構示意圖及其上視示意囷。本發明係種微型 固態雷射模組(solid state laser module ) 1,其由雷射光 光源至最終向外投射之輸出雷射光依序包含下列主要元 件:一固態雷射(solid state laser ) 10、一波長轉換器 (或稱波長轉換晶體 ’ wavelength conversion device ) 20、一分光裝置30如稜鏡(Prism )、及一光檢測器 (photo detector,簡稱PD ) 40,而上述該等主要元件係 依序設在一平面上,如設在一矽載板(Si substrate ) 50之 上表平面51上,或導熱良好之載板的表平面上。 ❼ 該固態雷射10可為一半導體雷射(semiconductor laser) 或二極體固態(diode pumped solid state,DPSS)雷射, 且可為單晶片雷射(DFB,multi-section DBR laser)或一 具有數個光電裝置之模組(如一半導體雷射發出波長χ〇之 光並經一固態晶艘而產生波長λ!之雷射光),如使用808 雷射二極體晶片(808 LDchip,即可發射波長8〇8nm之 雷射光),其係用以發射雷射光並入射至波長轉換器20之 入射端21 ;又固態雷射10可利用提升或降低其驅動電流以 控制改變其所發射之雷射光的波長;又固態雷射10進一步 可設置在一底座(sub-mount ) 60上,且該底座60上可設 具一溫度控制器61如電阻式致熱器(thermal resistor)或致 201012017 冷器(TE-cooler)用以控制固態雷射10之溫度,供可利用改 變固態雷射10之溫度的方法以改變固態雷射10所發射之雷 射光的波長。 該波長轉換器20可利用一非線性晶體20a與一倍頻晶 體20b組成,該非線性晶體20a可為鈥釔石榴石晶體(簡 稱 Nd:YAG,其中:Nd 為敍-Neodymium,Y 為記 -Yttrium,A 為銘 Al_ Aluminium ,G 為石榴石·The present invention further transmits the laser light converted by the wavelength converter directly through the photodetector (PD), and serves as a basis for feedback compensation and correction, such as using a logic circuit to control lifting or lowering the solid state laser. Drive current' or notify its additional temperature controller, such as a chiller, to control the cooling of the solid-state laser (because the ray group will rise at its temperature), so that the feedback compensation is performed. The error is minimal and far superior to the traditional feedback method. The micro-solid-state laser module of the present invention is constructed by using the above-mentioned solid-state laser, wavelength converter, and spectroscopic device, such as a germanium and a photodetector, etc., wherein the main components can be on a plane. The -JL歹1J is arranged in a direct light handle manner so that the arrangement is the most compact and the space occupied is also small, so as to be accommodated in the structure of τ〇_5. In addition, the direct optical coupling method described above requires an extremely high assembly positioning precision 201012017 degree (about lum), which will challenge the limit of the assembly machine and relatively reduce the assembly work efficiency, so the laser module of the present invention can be further indirectly The use of additional micro optics to replace the original direct face-to-face approach, such as optical coupling with a coupling lens or indirect light with a collimator lens + focusing lens The coupling method is beneficial to mass production by greatly increasing the tolerance of assembly positioning accuracy, and the attenuation of light energy is also relatively small (less than 2%), and does not affect the power of the transmitted laser light. In addition, in the TO-Can configuration, the space for the internal accommodating component ❹ is quite limited. For example, in the case of TO-5, the area of the internal accommodating component is about 5 mm X 5 mm, and the laser of the present invention. The module can further cooperate with a right angle prism to fold back the optical path between the solid state laser and the spectroscopic device, such as using a micro-optical lens such as an optical coupling lens and a right angle 使 to make the solid state The laser light emitted by the laser is first incident on an optical coupling lens and then incident on a right angle 稜鏡 to produce a 180 degree foldback, and then incident on an optical coupling lens and a subsequent wavelength converter and a beam splitting device to make the micro solid state of the present invention The main components of the laser module and the micro-optical components used in combination can be arranged in two parallel in-line to effectively reduce the housing space of the laser module of the invention, thereby facilitating packaging in a small TO-can package. . The solid state laser of the micro solid state laser module of the present invention can further be provided with a temperature control device such as a thermal resistor or a cooler (TE-cooler) for controlling the solid state laser. Temperature 'When the photodetector (PD) directly detects the laser light converted by the wavelength converter and wants to perform feedback compensation and correction, the temperature controller can be notified to perform temperature control, and the solid state laser is changed. The method of temperature to change the wavelength of the laser light emitted by it, thereby adjusting the wavelength of the laser light to be equal to or approaching the optimum conversion wavelength of the wavelength converter to improve the wavelength conversion efficiency of the laser module. Improve its efficiency in 201012017. As for the wavelength of the micro-solid laser module of the present invention, the crystal which is less sensitive to external temperature changes, such as vanadium acid (KTi〇p〇4, abbreviated as KTP), is used to maintain the optimum wavelength of the wavelength converter. It is relatively variable at a fixed value and does not change with the external temperature, so that it can be competitive in a low-price market that does not require high performance. [Embodiment] In order to make the present invention more clear and detailed, the preferred embodiment and the following drawings are used to describe the structure and technical features of the present invention as follows: Referring to Figures 1 and 2, respectively, A schematic diagram of the basic architecture of the invention of the micro solid state laser module group and a schematic diagram thereof. The invention relates to a solid state laser module 1, wherein the output laser light from the laser light source to the final outward projection sequentially comprises the following main components: a solid state laser 10 . a wavelength converter (or wavelength conversion device) 20, a light splitting device 30 such as Prism, and a photo detector (PD) 40, and the above main components are The sequence is set on a plane, such as on the surface 51 of the substrate above the Si substrate 50, or on the surface of the carrier plate with good thermal conductivity. The solid-state laser 10 can be a semiconductor laser or a diode pumped solid state (DPSS) laser, and can be a single-chip laser (DFB) or a single-chip laser (DFB). A module with several optoelectronic devices (such as a semiconductor laser that emits a wavelength of light and a laser beam with a wavelength of λ!), such as a 808 laser diode chip (808 LDchip) a laser emitting light having a wavelength of 8 〇 8 nm) for emitting laser light and incident on the incident end 21 of the wavelength converter 20; and the solid-state laser 10 can use the boosting or lowering of its driving current to control the change of the thunder that is emitted therefrom The wavelength of the light; the solid-state laser 10 can further be disposed on a sub-mount 60, and the base 60 can be provided with a temperature controller 61 such as a thermal resistor or a cold 201012017 The TE-cooler is used to control the temperature of the solid-state laser 10 for changing the wavelength of the laser light emitted by the solid-state laser 10 by changing the temperature of the solid-state laser 10. The wavelength converter 20 can be composed of a nonlinear crystal 20a and a octave crystal 20b, which can be a yttrium garnet crystal (Nd:YAG for short, wherein: Nd is a Syrian-Neodymium, Y is a -Yttrium) , A is Ming Al_ Aluminium, G is Garnet ·

Garnet ),該倍頻晶體20b可為釩酸鉀晶體(KTiOP〇4, 簡稱KTP);波長轉換器20之主要作用係使固態雷射1〇所 ❹發射之雷射光由入射端21射入,並以倍頻原理將前述固態 雷射10所發射之雷射光的波長轉換成不同波長之雷射光如 綠光’再由出射端22射出並入射至分光裝置30如一稜鏡; 而由於本發明之波長轉換器係選擇使用對於外界溫度變化 較不敏感之晶體如鈥釔石榴石晶體(簡稱Nd:YAG )與釩 酸鉀晶體(KTiOP〇4,簡稱KTP),因此本發明之波長轉 換器之最佳轉換波長(maximum conversion wavelength ) 可維持於在固定值而不隨外界溫度變化而相對變化。 ,該分光裝置30如一稜鏡可為一具有一45度分光面31之 φ 分光裝置,其係安排在波長轉換器20之後方,當由波長轉 換器20之出射端22射出之雷射光η入射至分光裝置3〇之45 度分光面31時,該轉換後之雷射光丨丨可分成兩道光束,其 =之第一道光束12係主光束可垂直該設置平面51而向外射 ΐ以成為本發明微型固態雷射模組1之主要輸出光源,其 中;:二道光束13係穿過分光裝置30之45度分= j鏡面)而入射至光檢測器4〇。因此該分光裝置3〇如一 之ΐί作用係使該轉換後之雷射光11分成一大一小兩 1、=政、中之大部分雷射光即第一道光束12向外輸出以形 成本發明微型固態雷射模組1之主要輪出光源,% 小部分雷射光即第二道光束13則射之 12 201012017 4〇,使分光裝置30之分光面31當作雷射光n的部分反射 f丄使雷射光11之大部分雷射光即第一道光束12入射在分 光裝置30之分光面31上時會被反射,只有 第二道光束13會穿透分光裝置30之分光面31 而被光檢測器40接收;又分光裝置30之分光面31可為配合 雷射光11波長之部分反射材料,或可增設一配合雷射光u 波長之部分反射分光鏡。 該光檢測器40係用以檢測第二道光束13之光功率並藉 以控制固態雷射10所發射之雷射光的波長,以使本發明微 ❹型固態雷射模組1可透過該光檢測器40直接偵測轉換後雷 射光之第二道光束13以進行補償修正,如利用邏輯電路以 控制提升或降低固態雷射10的驅動電流,或通知固態雷射 10之底座60上所附設之溫度控制器61以進行溫度控制,藉 以將固態雷射10所發射之雷射光的波長控制並調整至等於 或趨近於波長轉換器20之最佳轉換波長,以提昇雷射模組 之波長轉換效率而增進其光功率,達成直接式監測效果以 有效降低回館補償之誤差。至於在上述利用邏輯電路以自 動控制提升或降低固態雷射10的驅動電流或通知固態雷射 10之底座60上所附設之溫度控制器61以進行溫度控制中, ® 所述之邏輯電路的設計及其以自動控制功能可藉習知電路 設計而達成,故在此不另詳述該邏輯電路的線路設計。 藉由該分光裝置30如一稜鏡之安排,使本發明微型固 態雷射模組1所設具之主要元件包含固態雷射ίο、波長轉 換器20、分光裝置30如一稜鏡及光檢測器40,可封裝在一 平面上處理如設在矽載板50之上表平面51上,故有利於封 裝在一較小的TO-can封裝型式(TO-can packaging )之 組裝結構中如圖7、8、9所示,可有效減縮微型固態雷 射模組1之體積,並增進微型固態雷射模組1之使用效率 及簡化其組裝結構,使本發明之微型固態雷射模組1簡在 13 201012017 體積、性能、產能方面均優於傳統固態雷射模組。 又藉由光檢測器40之安排,使本發明微型固態雷射模 、组1可透過該光檢測器40直接偵測轉換後雷射光之第二道 光束13以進行補償修正,達成直接式監測效果以有效降低 回饋補償之誤差,藉以使所進行回饋補償之誤差為最小, 而遠優於傳統式的回饋方式。 ❹ Ο 人士發明微型固態雷射模組1具有上述之基本架構,即 ^ 3 固態雷射、一波長轉換器20、一分光裝置30如一 ,,及一光檢測器(PD ) 4〇等主要元件,且係依序設在 =平面上如設在一矽載板50之上表平面51上如囷1、2所 示j然、’,該等主要元件在平面上的光耦合方式並不限制, 在平面上以直接光耦合方式排列形成一直列,或可間 接^用額外的微光學元件(microoptics )以取代直接光 Ϊΐί式,如採用光耦合鏡片的光耦合方式或準直鏡片配 ^聚焦,片的間接光耦合方式或排列方式並不限制;又該 要元件在平面上的排列方式並不限制,如進一步可配 ^ ^ 直角稜鏡(right angle prism )以回折由固態雷射 拗ίί裝置之間的光路’使該等主要元件及相配合使用之 件可排列形成二平行直列,藉以有效縮小本發明 W射模組之容置空間。玆以較佳實施例分別說明如下: &lt;第一實施例〉 扣夕圖1、2所示’其分別係本發明微型固態雷射模 m 架構(可視為第一實施例)示意囷及其上視示意 =^本,施例之微型固態雷射模組1係採用直接光耦合的 f P本實施例使用808雷射二極體晶片(808 LD 以發射波長808nm之雷射光,並在極短的距離内約 Μ〜入射至波長轉換器20之非線性晶艘20&amp;與倍頻晶 中··再由波長轉換器20 (倍頻晶體20b )之出射端 ,經由具45度分光面31之分光裝置3〇,使其中之第 201012017 一道光束12可以與原入射角度呈9〇度的方向出射,即垂直 該設置平面51而向外射出,以成為本發明微型固態雷射模 組1之主要輸出光源。而本實施例採用之直接光耗合的方 式如圖2所示,是以直接光耦合的方式排列,即固態雷射 10與波長轉換器20形成一直列排列,如此之排列方式最為 精簡’所占空間亦最小,可容納在TO-5 ( TO-Can )之 封裝結構中,但相對需要極高的組裝定位精度(約 lum),在進行組裝定位作業時,將會挑戰組裝機台的極 限而相對降低組裝作業效率。 ® &lt;第二實施例〉 參照圖3所示,其係本發明微型固態雷射模組之第二 實施例立體示意囷。本實施例之微型固態雷射模組2進— 步採用間接光耦合的方式以取代第一實施例的直接光麵合 方式,也就是另外採用額外的微光學元件(Micro °Garnet), the frequency doubling crystal 20b may be potassium vanadate crystal (KTiOP〇4, abbreviated as KTP); the main function of the wavelength converter 20 is to cause the laser light emitted by the solid state laser to be emitted from the incident end 21, And converting, according to the frequency doubling principle, the wavelength of the laser light emitted by the solid-state laser 10 into laser light of different wavelengths, such as green light, and then emitted by the exit end 22 and incident on the spectroscopic device 30, as shown in FIG. The wavelength converter is selected to use a crystal that is less sensitive to changes in external temperature, such as yttrium garnet crystal (Nd:YAG) and potassium vanadate crystal (KTiOP〇4, KTP for short), so the wavelength converter of the present invention is the most The maximum conversion wavelength can be maintained at a fixed value without a relative change with the external temperature. The spectroscopic device 30 can be a φ spectroscopic device having a 45-degree spectroscopic surface 31, which is arranged behind the wavelength converter 20, and is incident when the laser light η emitted from the exit end 22 of the wavelength converter 20 is incident. When the splitting light is 31, the converted laser beam can be divided into two beams, and the first light beam 12 of the first light beam 12 can be perpendicular to the setting plane 51 and emitted outward. It becomes the main output light source of the micro solid state laser module 1 of the present invention, wherein: the two beams 13 pass through the 45-minute sub-beam of the spectroscopic device 30 and are incident on the photodetector 4 。. Therefore, the function of the spectroscopic device 3 is such that the converted laser light 11 is divided into a large one and a small one, and most of the laser light, that is, the first light beam 12 is output outward to form the micro-invention of the present invention. The main source of the solid-state laser module 1 is a light source, and a small portion of the laser light, that is, the second beam 13 is incident on the surface of the laser beam 31. Most of the laser light of the laser beam 11 is reflected when the first beam 12 is incident on the spectroscopic surface 31 of the spectroscopic device 30, and only the second beam 13 passes through the spectroscopic surface 31 of the spectroscopic device 30 and is used by the photodetector. 40, the splitting surface 31 of the light splitting device 30 may be a part of the reflective material matching the wavelength of the laser light 11, or a partial reflection beam splitter matching the wavelength of the laser light u may be added. The photodetector 40 is configured to detect the optical power of the second beam 13 and control the wavelength of the laser light emitted by the solid-state laser 10 to enable the micro-type solid-state laser module 1 of the present invention to pass the light detection. The device 40 directly detects the second beam 13 of the converted laser light for compensation correction, such as using a logic circuit to control the driving current for raising or lowering the solid laser 10, or notifying the base 60 of the solid-state laser 10 The temperature controller 61 performs temperature control to control and adjust the wavelength of the laser light emitted by the solid-state laser 10 to be equal to or close to the optimal conversion wavelength of the wavelength converter 20 to improve the wavelength conversion of the laser module. Efficiency increases its optical power and achieves direct monitoring to effectively reduce the error of returning compensation. As for the above-mentioned logic circuit design using the logic circuit for automatically controlling the driving current of raising or lowering the solid-state laser 10 or notifying the temperature controller 61 attached to the base 60 of the solid-state laser 10 for temperature control And its automatic control function can be achieved by the conventional circuit design, so the circuit design of the logic circuit will not be detailed here. The main components of the micro solid state laser module 1 of the present invention include a solid state laser, a wavelength converter 20, a beam splitting device 30 such as a chirp and a photodetector 40, by means of the arrangement of the spectroscopic device 30. The package can be packaged on a flat surface, such as disposed on the surface 51 of the carrier board 50, so that it is packaged in a small TO-can packaging assembly structure as shown in FIG. 7. As shown in FIG. 8 and 9, the volume of the micro solid state laser module 1 can be effectively reduced, and the use efficiency of the micro solid state laser module 1 is improved and the assembly structure thereof is simplified, so that the micro solid state laser module 1 of the present invention is simplified. 13 201012017 It is superior to traditional solid-state laser modules in terms of size, performance and productivity. By means of the arrangement of the photodetector 40, the micro-solid laser mode of the present invention, the group 1 can directly detect the second beam 13 of the converted laser light through the photodetector 40 for compensation correction, and achieve direct monitoring. The effect is to effectively reduce the error of the feedback compensation, so that the error of the feedback compensation is minimized, and is far superior to the traditional feedback mode. ❹ Ο The invention of the micro solid state laser module 1 has the above basic structure, namely, a solid state laser, a wavelength converter 20, a light splitting device 30, and a photodetector (PD). And the order is set on the = plane, such as on the surface 51 of the carrier 50, as shown by 囷 1, 2, ', the optical coupling of the main elements on the plane is not limited. Directly optically coupled to form a continuous array on a plane, or indirectly using additional microoptics instead of direct optical Ϊΐ, such as optical coupling using optically coupled lenses or collimating lenses The indirect optical coupling mode or arrangement of the film is not limited; the arrangement of the component elements on the plane is not limited, for example, the right angle prism can be further configured to be folded back by the solid state laser 拗 ί . The optical path between the devices enables the main components and the components used in combination to be arranged in two parallel in-line, thereby effectively reducing the accommodation space of the laser module of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following are respectively described as follows: <First Embodiment> FIG. 1 and FIG. 2 are respectively schematic diagrams showing the micro solid state laser mode m architecture (which can be regarded as the first embodiment) of the present invention. The top view shows the image of the miniature solid-state laser module 1 using direct optical coupling. This embodiment uses a 808 laser diode chip (808 LD to emit laser light with a wavelength of 808 nm, and Within a short distance, the output of the nonlinear crystal boat 20 &amp; and the frequency doubling crystal incident to the wavelength converter 20 and then the wavelength converter 20 (the frequency doubling crystal 20b) is passed through the 45-degree spectroscopic surface 31. The light splitting device 3 is configured such that a beam 12 of the 201012017 can be emitted in a direction of 9 degrees from the original incident angle, that is, perpendicular to the set plane 51 and emitted outward to become the micro solid state laser module 1 of the present invention. The main output light source, and the direct light absorbing mode adopted in this embodiment is as shown in FIG. 2, which is arranged in a direct optical coupling manner, that is, the solid-state laser 10 and the wavelength converter 20 are arranged in a row, and thus arranged. The most streamlined space is also the smallest. It is housed in the TO-5 (TO-Can) package structure, but it requires a very high assembly positioning accuracy (about lum). When assembling and positioning, it will challenge the limit of the assembly machine and reduce the assembly efficiency. ® &lt;Second Embodiment&gt; Referring to Fig. 3, it is a perspective view of a second embodiment of the micro solid state laser module of the present invention. The micro solid state laser module 2 of the present embodiment adopts an indirect The optical coupling method is used in place of the direct light surface combination of the first embodiment, that is, an additional micro-optical element is additionally used (Micro °

Optics)70來完成間接光耦合的需求,該微光學元件(MicrQ Optics)70可為一光麵合鏡片(coupling lens )(圖未 示),或如圖3所示由一準直鏡片(collimator lens ) 71 配合一聚焦鏡片(focusing lens ) 72組合形成(即準直銳 片 collimator lens + 聚焦鏡片 focusing lens ),藉此不但 可大幅加大組裝定位精度的公差而有利於量產化,而且對 於光能量的衰減也相當小(小於2% )’不至影響輸光雷 射光之功率。 &lt;第三實施例&gt; 參照圖4、5、6所示,其分別係一 TO-Can封裝結 構之内部尺寸參考圖及本發明微型固態雷射模組之第三實 施例之二不同上視示意圖。由於一 TO-Can的封裝結構中 其内部可供容放元件的空間相當有限,如以TO-5而言如 圖4所示,其内部可容放元件的面積約為5mm X 5mm, 15 201012017 因此若要在如此有限的面積擺置本發明微型固態雷射模組 之固態雷射10及其底座(Sub-mount ) 60、波長轉換器20 如非線性晶體20a與倍頻晶體20b(如Nd:YAG與KTP)、 及其他微光學元件(MicroOptics)70如圖3所示之準直鏡 片(collimator lens ) 71與聚焦鏡片(focusing lens )及 分光裝置30如一稜鏡及光檢測器40等元件,可能會有置放 空間不足的疑慮。 本實施例之微型固態雷射模組3所示進一步配合利用 一直角稜鏡(right angle prism) 80以回折由固態雷射10至 Φ 分光裴置30之間的光路,如使用一微光學元件(光耦合鏡 片)70與一直角稜鏡80,其中該微光學元件70可為一光耦 合鏡片(coupling lens )如圖5所示,使固態雷射10該所 發射之雷射光先射入一微光學元件(光耦合鏡片)70再入 射至直角稜鏡80以產生180度回折,再射入後續之波長轉 換器20、分光裝置30如一稜鏡及光檢測器40 ;或該微光學 元件70可由一準直鏡片(collimator lens ) 71與一聚焦鏡 片(focusing lens ) 72組合形成(即準直鏡片+聚焦鏡 片)如圖6所示,使固態雷射1〇該所發射之雷射光先射入 β —準直鏡片71再入射至直角稜鏡80以產生180度回折,再 射入聚焦鏡片72,再射入後續之波長轉換器20、分光裝置 30及光檢測器40,使本實施例之微型固態雷射模組3之主 要元件(10、20、30、40)及相配合使用之微光學元件 (70)可排列形成二平行直列如圖5、6所示,藉以有效 縮小微型固態雷射模組3之容置空間,以有利於封裝在一 較小的TO-can封裝。 參照圖7、8、9所示,其分別是本發明一微型固態 雷射模組實施例實際封裝至TO-Can封裝結構中的立體示 意圖及上視、側視(附尺寸)示意圖,其中,如圖3所示 本實施例之微型固態雷射模組2設在一 TO-can封裝結構 201012017 90内,而該TO-can封装結構90基本上包含一 TO-can鏡 片(TO-can lens)91、一 TO-can 蓋(TO-can cap)92、一 TO-can 承座(TO-can header)93 及 TO-can 電性連結部 (electronicconnection〇fT〇-can)94 ;而由圖 7、8、9所 示’本發明之微型固態雷射模組確實可封裝至T〇_Can封 裝結構中’以達成一微型固態雷射模組之使用狀態。 以上所述僅為本發明的優選實施例,對本發明而言僅 是說明性的,而非限制性的;本專業技術領域具通常二識 人員理解,在本發明權利要求所限定的精神和範圍内可 ❹其進行許多改變,修改,甚至等效變更,但都將落入太路 明的保護範圍内。 赞 【圖式簡單說明】 圖1 :係本發明微型固態雷射模組之基本架構( 例)示意圖。 币貫施 圖2 :係圖1之上視示意囷。 =3 :係本發明微型固態雷射模組之第二實施例立體示意 圖4 :係一 TO-Can封裝結構之内部尺寸參考圖。Optics 70 to complete the need for indirect optical coupling, the micro-optical component (MicrQ Optics) 70 can be a coupling lens (not shown), or a collimator (collimator) as shown in FIG. The lens 71 is combined with a focusing lens 72 (ie, collimator lens + focusing lens), thereby not only greatly increasing the tolerance of assembly positioning accuracy, but also facilitating mass production, and The attenuation of light energy is also quite small (less than 2%) 'not affecting the power of the transmitted laser light. &lt;Third Embodiment&gt; Referring to Figures 4, 5 and 6, respectively, the internal size reference drawing of a TO-Can package structure and the third embodiment of the micro solid state laser module of the present invention are different. See the schematic. Due to the limited space available for receiving components in a TO-Can package structure, as shown in Figure 4, the area of the internal accommodating component is about 5mm X 5mm, 15 201012017 Therefore, in order to place the solid-state laser 10 of the micro-solid-state laser module of the present invention and its sub-mount 60 in such a limited area, the wavelength converter 20 such as the nonlinear crystal 20a and the frequency doubling crystal 20b (such as Nd) : YAG and KTP), and other micro-optical components (MicroOptics) 70 as shown in FIG. 3, collimator lens 71 and focusing lens and spectroscopic device 30 such as a photodetector 40 and the like There may be doubts about insufficient space for placement. The micro solid state laser module 3 of the present embodiment is further configured to utilize a right angle prism 80 to fold back the optical path between the solid state laser 10 and the Φ beam splitter 30, such as using a micro-optical component. (optical coupling lens) 70 and a straight angle 稜鏡 80, wherein the micro-optical element 70 can be a coupling lens as shown in FIG. 5, so that the solid-state laser 10 emits the laser light first. The micro-optical element (optical coupling lens) 70 is again incident on the right angle 稜鏡 80 to produce a 180 degree fold back, and then incident on the subsequent wavelength converter 20, the beam splitting device 30 such as a pupil and photodetector 40; or the micro-optical element 70 It can be formed by a combination of a collimator lens 71 and a focusing lens 72 (ie, a collimating lens + a focusing lens). As shown in FIG. 6, the solid-state laser is emitted first. The β-collimating lens 71 is incident on the right angle 稜鏡80 to generate a 180 degree foldback, and then incident on the focusing lens 72, and then incident on the subsequent wavelength converter 20, the beam splitting device 30 and the photodetector 40, so that the embodiment Micro solid state laser module 3 The element (10, 20, 30, 40) and the micro-optical element (70) used in combination can be arranged to form two parallel in-line as shown in FIGS. 5 and 6, thereby effectively reducing the accommodation space of the micro-solid laser module 3. To facilitate packaging in a smaller TO-can package. Referring to FIG. 7 , FIG. 8 and FIG. 9 , which are respectively a perspective view of a practical embodiment of a micro solid state laser module according to the present invention and a top view and a side view (with dimensions). As shown in FIG. 3, the micro solid state laser module 2 of the present embodiment is disposed in a TO-can package structure 201012017 90, and the TO-can package structure 90 basically comprises a TO-can lens. 91, a TO-can cap (92), a TO-can header (TO-can header) 93 and a TO-can electrical connection (electronicconnection 〇 fT〇-can) 94; The miniature solid-state laser module of the present invention can be packaged into a T〇_Can package structure as shown in Figs. 8, 9 to achieve a state of use of a miniature solid-state laser module. The above description is only the preferred embodiments of the present invention, and is merely illustrative and not restrictive; the technical field is generally understood by those skilled in the art, and the spirit and scope defined by the claims of the present invention. Many changes, modifications, and even equivalent changes can be made to them, but they will fall within the scope of Tai Luming's protection. [Simplified description of the drawings] Fig. 1 is a schematic diagram showing the basic structure (example) of the micro solid state laser module of the present invention. Coin pertinence Figure 2: Figure 1 shows the top view. = 3 : is a perspective view of a second embodiment of the micro solid state laser module of the present invention. Fig. 4 is a reference view of the internal dimensions of a TO-Can package structure.

圖5 :係本發明微型固態雷射模組之第三實施例之一 示意圖。 上硯 圖ό :係本發明微型固態雷射模組之第三實施例 視示意圖。 ^为一上 至 圖7 ··係本發明一微型固態雷射模組實施例實際甸 TO-Can封裝結構中的立體示意圓。 圖8 ··係圖7之上視示意圖。 【主要元件符號說明】 圖9 :係圖7之侧視(附尺寸)示意圖。 微型固態雷射模組丨、2 固態雷射10 17 201012017Figure 5 is a schematic illustration of a third embodiment of a miniature solid state laser module of the present invention. Figure ό: A schematic view of a third embodiment of a miniature solid state laser module of the present invention. ^ is a top-down to FIG. 7 is a three-dimensional schematic circle in the actual Zen-TO-Can package structure of the embodiment of a miniature solid-state laser module of the present invention. Figure 8 is a top view of Figure 7. [Description of main component symbols] Fig. 9 is a side view (with dimensions) of Figure 7. Miniature solid state laser module 丨, 2 solid state laser 10 17 201012017

雷射光11 第一道光束12 第二道光束13 波長轉換器20 非線性晶體20a 倍頻晶體20b 入射端21 出射端22 分光裝置30 分光面31 光檢測器(PD ) 40 載板50 平面51 底座60 溫度控制器61 微光學元件(Micro Optics)70 準直鏡片(collimator lens ) 71 聚焦鏡片(focusing lens ) 72 直角棱鏡(right angle prism ) 80 TO-can封裝結構90 TO-can 鏡片(TO-canlens)91 TO-can 蓋(TO-can cap)92 TO-can 承座(TO-can header)93 TO-can 電性連結部(electronic connection of TO-can)94Laser light 11 First beam 12 Second beam 13 Wavelength converter 20 Nonlinear crystal 20a Frequency doubled crystal 20b Incident end 21 Exit end 22 Beam splitter 30 Beam splitter 31 Photodetector (PD) 40 Carrier 50 Plane 51 Base 60 Temperature Controller 61 Micro Optics 70 Collimator lens 71 Focusing lens 72 Right angle prism 80 TO-can package structure 90 TO-can lens (TO-canlens) ) 91 TO-can cap 92 TO-can header TO-can header 93 TO-can electronic connection of TO-can 94

Claims (1)

201012017 十、申請專利範圍: 1、一種微型固態雷射模組,包含一固態雷射、一波長轉 換器、一分光裝置及一光檢測器等主要元件,其中; 固態雷射,係可發射雷射光並入射至波長轉換器; 波長轉換器,係以倍頻原理將前述固態雷射所發射之 雷射光的波長轉換成不同波長之雷射光,並入射至分 光裝置; 分光裝置,係安排在波長轉換器後方用以將射入之轉 換後雷射光分成第一及第二兩道光束,其中第一道光 e 束係向外射出以成為主要輸出光源,其中第二道光束 係穿過分光裝置而入射至光檢測器; 光檢測器,係用以接收並檢測經過分光裝置之第二道 光束之光功率; 其中’利用該分光裝置之安排以使固態雷射、波長轉 換器、分光裝置及光檢測器等主要元件可封裝設置在 一平面上處理; 其中,透過該光檢測器偵測第二道光束之光功率,以 對第一道光束進行光功率之回饋補償及修正。 ❶ 2、如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射、波長轉換器、分光裝置及光檢測器等 主要元件係封裝在一矽載板(Si substrate)之表平面 上。 3、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射、波長轉換器、分光裝置及光檢測器^ 主要元件係封裝在一導熱良好的載板之表平面上。 4、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射係選自一半導艘雷射、二極雜固態 、 (diode pumped solid state,DPSS)雷射、單晶片雷射 (DFB,multi-section DBR laser)及一具有數個光電 201012017 裝置之模組中一種。 5、 如申請專利範圍第1或4項所述之微型固態雷射模 組,其中該固態雷射係使用一 808雷射二極體晶片而 可發射波長808nm之雷射光° 6、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射進一步可設具一溫度控制器以控制固態 雷射之溫度。 7、 如申請專利範圍第6項所述之微型固態雷射模組,其 中該溫度控制器至少包含電阻式致熱器(thermal resistor)或致冷器(TE-cooler)中一種。 8、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該波長轉換器係利用一#線性晶髏與一倍頻晶體組 成。 9、 如申請專利範圍第8項所述之微型固態雷射模組,其 中該非線性晶體可為鈥釔石榴石晶體(Nd:YAG)。 10、 如申請專利範圍第8項所述之微型固態雷射模組,其 中該倍頻晶體可為釩酸鉀晶體(KTi0P04,簡稱 KTP) 〇 11、 如申請專利範圍第1項所述之微型固態雷射模組,其 中經由波長轉換器轉換後之雷射光為綠光。 12、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該分光裝置係一具有45度分光面之稜鏡。 13、 如申請專利範圍第12項所述之微型固態雷射模組,其 中該分光裝置之分光面係配合入射之雷射光波長之部 分反射材料。 14、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該第一道光束係為大部分雷射光並以垂直該設置用 之平面的方向而向外射出以成為主要輸出光源。 15、 如申請專利範圍第1項所述之微型固態雷射模組,其 20 201012017 Γϊϊτ道光束係為小部分雷射光並穿過分光裝置而 16、射f光撿測器。 利範圍第1項所述之微型固態雷射模組,其 可檢測器在偵測第二道光束之光功率不足時, 流,輯電路以控制提升或降低固態雷射的驅動電 17 第一道光束進行光功率之回饋補償及修正。 址,2專利範圍第1或6項所述之微型固態雷射模 足卑其中當該光檢測器在偵測第二道光束之光功率不201012017 X. Patent application scope: 1. A miniature solid-state laser module, comprising a solid-state laser, a wavelength converter, a spectroscopic device and a photodetector, among which: solid-state laser, which can launch a mine The light is incident on the wavelength converter; the wavelength converter converts the wavelength of the laser light emitted by the solid-state laser into laser light of different wavelengths by the frequency doubling principle, and is incident on the light splitting device; the light splitting device is arranged at the wavelength The rear of the converter is used to split the converted laser light into first and second light beams, wherein the first light e beam is emitted outward to become a main output light source, wherein the second light beam passes through the light splitting device. And incident to the photodetector; the photodetector is configured to receive and detect the optical power of the second beam passing through the spectroscopic device; wherein 'the arrangement of the spectroscopic device is used to enable the solid state laser, the wavelength converter, the spectroscopic device, and The main components such as the photodetector can be packaged and disposed on a plane; wherein the optical power of the second beam is detected by the photodetector, A beam of light is used to compensate and correct the optical power feedback. 2. The micro solid state laser module according to claim 1, wherein the main components such as the solid laser, the wavelength converter, the spectroscopic device and the photodetector are packaged on a Si substrate. On the surface of the table. 3. The micro solid state laser module according to claim 1, wherein the solid laser, the wavelength converter, the spectroscopic device and the photodetector are packaged on a surface of a thermally conductive carrier. on. 4. The micro solid state laser module of claim 1, wherein the solid state laser is selected from the group consisting of a half guided laser, a diode pumped solid state (DPSS) laser, and a single. A multi-section DBR (DFB) and a module with several photovoltaic 201012017 devices. 5. The micro solid state laser module of claim 1 or 4, wherein the solid state laser emits a laser light having a wavelength of 808 nm using a 808 laser diode wafer. The micro solid state laser module of the first aspect, wherein the solid state laser further comprises a temperature controller to control the temperature of the solid state laser. 7. The micro solid state laser module of claim 6, wherein the temperature controller comprises at least one of a thermal resistor or a TE-cooler. 8. The micro solid state laser module of claim 1, wherein the wavelength converter comprises a linear crystal and a frequency doubling crystal. 9. The micro solid state laser module of claim 8, wherein the nonlinear crystal is yttrium garnet crystal (Nd: YAG). 10. The micro solid state laser module according to claim 8, wherein the frequency doubling crystal is potassium vanadate crystal (KTi0P04, abbreviated as KTP) 〇11, as described in claim 1 A solid state laser module in which laser light converted by a wavelength converter is green light. 12. The micro solid state laser module of claim 1, wherein the spectroscopic device has a 45 degree spectroscopic surface. 13. The micro solid state laser module of claim 12, wherein the spectroscopic surface of the spectroscopic device is adapted to partially reflect the wavelength of the incident laser light. 14. The micro solid state laser module of claim 1, wherein the first beam is a majority of the laser light and is emitted outward in a direction perpendicular to the plane of the arrangement to become the main output source. . 15. The micro-solid-state laser module according to claim 1, wherein the 20 201012017 Γϊϊτ beam is a small portion of the laser light and passes through the spectroscopic device. The micro-solid-state laser module according to the first item of the first aspect, wherein the detector can detect the driving power of the solid-state laser when the optical power of the second beam is insufficient. The beam is compensated and corrected for optical power feedback. Address, the micro-solid-state laser model described in item 1 or 6 of the patent scope, wherein the photodetector detects the optical power of the second beam 日寻^可利用邏輯電路通知固態雷射之溫度控制器以 雷射進行溫度控制,藉以將固態雷射所發射之 雷=光的波長控制並調整至等於或趨近於波長轉換器 佳轉換波長’以對第一道光束進行光功率之回饋 補償及修正。 8、如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射所發射之雷射光係採用直接光耦合方式 在極短的距離内耦合入射至波長轉換器中,使固態雷 射與波長轉換器形成一直列排列。 19、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射與波長轉換器之間進一步可設置微光學 凡件’使固態雷射所發射之雷射光採用間接光耦合方 式先經過微光學元件再耦合入射至波長轉換器中。 20、 如申請專利範圍第19項所述之微型固態雷射模組,其 中s亥微光學元件係一光柄合鏡片(C0UpHng iens )。 21、 如申請專利範圍第19項所述之微型固態雷射模組,其 中該微光學元件係由一準直鏡片(collimator lens ) 配合一聚焦鏡片(focusing lens )組合形成。 22、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射與波長轉換器之間進一步可配合設置一 直角稜鏡(right angle prism),使固態雷射所發射之 21 201012017 雷射光經該直角稜鏡產生180度回折後再射入後續之 波長轉換器,使固態雷射與波長轉換器之間形成二平 行直列排列。 23、如申請專利範圍第1項所述之微型固態雷射模組,其 中該微型固態雷射模組係設在一 TO-can封裝結構 内0The daytime search can use the logic circuit to notify the temperature controller of the solid-state laser to perform temperature control by laser, so as to control and adjust the wavelength of the light=light emitted by the solid-state laser to be equal to or close to the wavelength converter. 'To compensate and correct the feedback of the optical power of the first beam. 8. The micro solid state laser module of claim 1, wherein the laser light emitted by the solid state laser is coupled into the wavelength converter by a direct optical coupling method in a very short distance. Solid-state lasers and wavelength converters form a continuous array. 19. The micro-solid-state laser module according to claim 1, wherein the solid-state laser and the wavelength converter are further arranged with a micro-optical device to make the laser light emitted by the solid-state laser use indirect light. The coupling mode is first coupled to the wavelength converter via a micro-optical element. 20. The micro solid state laser module of claim 19, wherein the sigma micro-optical element is a light-handle lens (C0UpHng iens). 21. The micro solid state laser module of claim 19, wherein the micro-optical element is formed by a combination of a collimator lens and a focusing lens. 22. The micro solid state laser module of claim 1, wherein the solid state laser and the wavelength converter are further configured to provide a right angle prism for the solid state laser to emit. 21 201012017 Laser light passes through the right angle 稜鏡 to produce a 180 degree fold and then enters the subsequent wavelength converter, forming a parallel parallel arrangement between the solid state laser and the wavelength converter. 23. The micro solid state laser module of claim 1, wherein the micro solid state laser module is disposed in a TO-can package structure. 22twenty two
TW97133929A 2008-09-04 2008-09-04 A micro solid state laser module TW201012017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133929A TW201012017A (en) 2008-09-04 2008-09-04 A micro solid state laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133929A TW201012017A (en) 2008-09-04 2008-09-04 A micro solid state laser module

Publications (1)

Publication Number Publication Date
TW201012017A true TW201012017A (en) 2010-03-16

Family

ID=44828847

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133929A TW201012017A (en) 2008-09-04 2008-09-04 A micro solid state laser module

Country Status (1)

Country Link
TW (1) TW201012017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429472A (en) * 2019-09-10 2019-11-08 微源光子(深圳)科技有限公司 A kind of high-power dual output exocoel narrow linewidth laser of easy volume production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429472A (en) * 2019-09-10 2019-11-08 微源光子(深圳)科技有限公司 A kind of high-power dual output exocoel narrow linewidth laser of easy volume production

Similar Documents

Publication Publication Date Title
CN201440566U (en) Laser device with high wavelength conversion efficiency
US8102893B2 (en) Multiple emitter VECSEL
TW200845523A (en) Pulsed laser light source based on frequency conversion
EP1648059A2 (en) A semiconductor laser
US9019999B2 (en) Efficient and compact visible microchip laser source with periodically poled nonlinear materials
KR100898129B1 (en) Green laser module package
CN101673919B (en) Micro solid-state laser module
CN102820605A (en) High power mini laser package
CN101625499B (en) Micro-wavelength converting optical device and autocorrecting method thereof
US20120063477A1 (en) Laser light source apparatus
KR100950277B1 (en) Green laser generation device, and portable electronic machine having laser projection display using the said device
TW201012017A (en) A micro solid state laser module
TW201001851A (en) A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method
JP2005101504A (en) Laser apparatus
JP2011124444A (en) Optical module, method of manufacturing optical module, and method of adjusting optical module
Hoefer et al. High-performance at low cost: the challenge manufacturing frequency doubled green semiconductor lasers for mass markets
TWM349032U (en) Micro solid state laser module
Steegmueller et al. Progress in ultra-compact green frequency doubled optically pumped surface emitting lasers
CN110402522B (en) Thin disc laser device
CN216450929U (en) Self-frequency-doubling white light module
Steegmueller et al. 67.3: Progress in Small‐Form‐Factor Lasers for Projection Displays
KR20140140637A (en) Laser architectures
US20130266032A1 (en) Laser architectures
CN116247492A (en) Athermalization and thermal insensitivity laser for single-wavelength angular pumping
CN104115349A (en) Laser architectures