TW201001851A - A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method - Google Patents

A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method Download PDF

Info

Publication number
TW201001851A
TW201001851A TW97123991A TW97123991A TW201001851A TW 201001851 A TW201001851 A TW 201001851A TW 97123991 A TW97123991 A TW 97123991A TW 97123991 A TW97123991 A TW 97123991A TW 201001851 A TW201001851 A TW 201001851A
Authority
TW
Taiwan
Prior art keywords
wavelength
laser
laser light
conversion
micro
Prior art date
Application number
TW97123991A
Other languages
Chinese (zh)
Other versions
TWI361533B (en
Inventor
Zhi-xiao CHEN
Guo-Ren Chen
Ming-Hua Wen
Original Assignee
Alvis Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alvis Technologies Corp filed Critical Alvis Technologies Corp
Priority to TW97123991A priority Critical patent/TW201001851A/en
Publication of TW201001851A publication Critical patent/TW201001851A/en
Application granted granted Critical
Publication of TWI361533B publication Critical patent/TWI361533B/zh

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The present invention provides a micro wavelength conversion photonic device with self-calibration function, and its self-calibration method. The wavelength conversion photonic device, e.g. a laser module, converts the wavelength of laser light (λ) into the output light with a different wavelength λ (such as the green light) using the frequency multiplication principle with a wavelength conversion device. When the conversion efficiency of the wavelength conversion device varies or reduces due to the variation of ambient temperature in the usage, a photo detector (PD) is used to measure the current of the laser light power (I1) before the conversion and the current of output light power (I2) after the conversion respectively to obtain the ratio between the two currents (I2/I1), an iteration logic circuit is used to regulate the injection current of laser for regulating the wavelength of laser light (λ1) for performing the dynamic calibration and compensation mechanism, so as to automatically lock the wavelength of laser light (λ1) at the best conversion wavelength (λ C) of the wavelength conversion device, thereby achieving the best conversion efficiency and maintaining the best operational state of the micro photon device.

Description

201001851 入射面3 01 出射面302 分光裝置40 平面(入射面)401 第二光電檢測器50 重覆邏輯(iteration l〇gic)電路6〇 八、本案若有化學式時,請揭示最能顯示發明特徵的化 學式:(無) 〇 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種具有自動校正功能之微型波長轉換 光電裝置及其自動校正方法,尤指一種藉光電檢測器以分 別量測並取得經波長轉換器轉換前、後雷射光功率之電流 (1丨及I2),再利用轉換前、後之兩電流之間的比例值 (12/1丨),並以重覆邏輯(iteration logic)電路之調控方 式以調控雷射之注入電流(inj ection current),以自動將轉 換前雷射光之波長(¾)鎖定於吻合波長轉換器之最佳轉換 〇 波長(λ〇),藉以使波長轉換器達成並持續維持在最大波長 轉換效率(maximum wavelength conversion efficiency )。 【先前技術】 目前常見的光電裝置(Photo-electronic/ Photonic Device)如雷射模組(laser module),其應用範圍相當廣 泛,包含:科學研究方面如材料特性量測、科學用激發光 源、太空遙測與資源探測等;國防工業方面如雷射測距 儀、雷射追縱掃描系統、雷射防衛武器專,工業與民生方 面如材料處理(如微機電系統MEMS加工、電阻裝飾、晶 片標記)、水下攝影及海底探測、非破壞性檢測、半導體 3 201001851 晶圓檢測等;醫療用途方面如眼科治療、皮膚治療、牙齒 治療、牙科手術等;而一光電裝置如雷射模組一般係利用 波長轉換器(wavelength conversion device,或稱波長轉換 晶體)以倍頻原理將光電裝置(如雷射模組)中一已知波 長h之光源如雷射光轉換成不同波長&之光源以適合不同 需要使用,而該光電裝置(或雷射模組)一般通稱為波長 轉換光電裝置(Wavelength Conversion Photonic Device); 而一波長轉換光電裝置(或雷射模組)所設之波長轉換器 可設計不同的結構,但每一種波長轉換器將轉換前波長^ 之雷射光轉換成轉換後波長&之雷射光的波長轉換效率 (wavelength conversion efficiency fromli ΐολ2),其相對於轉 換前雷射光之波長λ!的關係皆形成一特定如拋物線般之曲 線關係,也就是當轉換前波長\必須匹配或吻合 (coincident with)某一特定之轉換前雷射波長時,即稱為最 大轉換波長(maximum conversion wavelengthAc),其波長 轉換效率(wavelength conversion efficiency)才可達到最大 值,也就是達成最大波長轉換效率(maximum wavelength conversionefficiency)之最佳運作狀態,而當 轉換前雷射光之波長λ丨未匹配或吻合(coincident with)其最 U 大轉換波長^時,如小於或大於該最大轉換波長\,其波 長轉換效率即降低;然而,一雷射光轉換前之波長& 波長轉換器之最大轉換波長^皆是隨其雷射裝置或波長轉 換器之溫度改變而變化,而環境溫度又會改變該雷射裝置 及波長轉換器之溫度,而且一雷射光轉換前之波長\及一 波長轉換器之最大轉換波長^相對於溫度每一度的溫度改 變率(changing rate of temperature per temperature)是不同 的,如假設在某一特定環境溫度下一雷射光轉換前之波長 λ!剛好相同於一波長轉換器之最大轉換波長^,則當環境 溫度改變時’上述雷射光轉換前之波長\與波長轉換器之 4 201001851 最大轉換波長\就不再相同,即波長轉換效率也會降低 (degraded);因此,針對一波長轉換光電裝置而言,當 境巧度改變時仍然使雷射光轉換前之波長&保持與波長轉 換器之最大轉換波長\相同(吻合)以使其波長轉換器達 成並維持在最大波長轉換效率(maximuin wavelength conversion efficiency )是有其必要性。 傳統的波長轉換光電裝置(Wavelength C〇nversi〇n201001851 Incident surface 3 01 Exit surface 302 Spectroscopic device 40 Plane (incident surface) 401 Second photodetector 50 Repeated logic (iteration l〇gic) circuit 6〇8. If there is a chemical formula in this case, please reveal the most characteristic features of the invention. Chemical formula: (none) 发明 、, invention description: [Technical field of invention] The present invention relates to a micro wavelength conversion photoelectric device with automatic correction function and an automatic correction method thereof, and more particularly to a photodetector Measure and obtain the current (1丨 and I2) of the laser power before and after the conversion by the wavelength converter, and then use the ratio between the two currents before and after the conversion (12/1丨), and repeat the logic ( Iteration logic) The regulation of the circuit to regulate the injection current of the laser to automatically lock the wavelength of the laser light before conversion (3⁄4) to the optimum conversion wavelength (λ〇) of the matching wavelength converter. The wavelength converter is achieved and continuously maintained at maximum wavelength conversion efficiency. [Prior Art] Photo-electronic/Photonic Devices, such as laser modules, are widely used in a wide range of applications, including scientific research such as material property measurement, scientific excitation light source, and space. Telemetry and resource detection; for the defense industry, such as laser range finder, laser tracking system, laser defense weapon, industrial and people's livelihood such as material processing (such as MEMS processing, resistance decoration, wafer marking) , underwater photography and seabed detection, non-destructive testing, semiconductor 3 201001851 wafer inspection, etc.; medical applications such as ophthalmic treatment, skin treatment, dental treatment, dental surgery, etc.; and an optoelectronic device such as laser module is generally utilized A wavelength conversion device (wavelength conversion crystal) converts a light source of a known wavelength h, such as laser light, into a light source of a different wavelength & in a photovoltaic device (such as a laser module) to suit different frequencies. Need to use, and the optoelectronic device (or laser module) is generally known as wavelength conversion optoelectronic device (Wavel Ength Conversion Photonic Device); The wavelength converter provided by a wavelength conversion optoelectronic device (or laser module) can be designed with different structures, but each wavelength converter converts the laser light before the conversion into the converted wavelength. &the wavelength conversion efficiency fromli ΐολ2, the relationship with respect to the wavelength λ! of the laser light before conversion forms a specific parabolic curve relationship, that is, the wavelength before the conversion must match Or coincident with a particular pre-conversion laser wavelength, known as the maximum conversion wavelength (a maximum conversion wavelength Ac), its wavelength conversion efficiency (wavelength conversion efficiency) can reach the maximum, that is, to achieve maximum wavelength conversion The optimal operating state of the maximum wavelength conversion efficiency, and when the wavelength λ丨 of the laser light before conversion is not matched or coincident with its most U-converted wavelength ^, such as less than or greater than the maximum conversion wavelength, The wavelength conversion efficiency is reduced; however, a wave before the laser light conversion The maximum conversion wavelength of the wavelength converter is changed with the temperature of the laser device or the wavelength converter, and the ambient temperature changes the temperature of the laser device and the wavelength converter, and before the laser light is converted. The wavelength \ and the maximum conversion wavelength of a wavelength converter ^ are different with respect to the temperature change rate per temperature, such as the wavelength before the laser light conversion at a certain ambient temperature. λ! Just the same as the maximum conversion wavelength of a wavelength converter ^, when the ambient temperature changes, 'the wavelength before the laser light conversion\ is the same as the wavelength conversion converter 4 201001851 maximum conversion wavelength\, that is, the wavelength conversion efficiency It will also be degraded; therefore, for a wavelength-converting optoelectronic device, the wavelength before the laser light conversion is still kept the same as the maximum conversion wavelength of the wavelength converter for the wavelength change (in agreement). It is necessary for the wavelength converter to achieve and maintain the maximum wavelength conversion efficiency (maximuin wavelength conversion efficiency). Traditional wavelength conversion optoelectronic device (Wavelength C〇nversi〇n

Photonic Device)如 DPSS(diode pumped solid state)雷 射’大致上都具有體積大(bulky)、需要外部聲光調變器 f (require external acoustic optical modulator)、低轉換效率 (low conversion efficiency)、無溫度補償機制(no temperature compensation mechanism)及高能量耗損(large energy consumption)的缺點;而目前在波長轉換光電裝置 之應用技術中,進一步包括US 6,778,582、Pub. No. US2008/0002745A1及美國康寧公司(Corning Inc.)所發佈 的論文「Wavelength Matching and Tuning in Green Laser Packaging using Second Harmonic Generation」,其中: US 6,778,582主要係揭示利用面射型雷射(VCSEL)並 疊上非線性晶體(nonlinear crystal)最後再疊上一個反射 鏡,而上述結構係放置在一散熱基座(heat sink)上,其封 裝結構係採用垂直方向的堆疊技術,而其架構原理是利用 近紅外的面射型雷射,如1064nm的波長的光,經過非線 性晶體(倍頻晶體)轉換產生532nm的綠光,再經過外部 的反射鏡及面射型雷射的頂面共振放大以產生綠光;然, 此種方式較難做到即時匹配雷射波長及非線性晶體中心波 長,因無法擷取面射型雷射及轉換後固態雷射的光強度, 致會限制此架構之雷射的使用溫度範圍,而且該架構並無 法藉由自動調控方式以使其非線性晶體(倍頻晶體)達成 並持續維持在最大波長轉換效率(maximum wavelength 5 201001851 conversion efficiency ) °Photonic Device) such as DPSS (diode pumped solid state) laser 'has generally bulky, requires external acoustic optical modulator f (require external acoustic optical modulator), low conversion efficiency (low conversion efficiency), no The disadvantages of no temperature compensation mechanism and large energy consumption; currently, in the application technology of wavelength conversion optoelectronic devices, further include US 6,778,582, Pub. No. US2008/0002745A1 and Corning Incorporated ( Corning Inc., published in the paper "Wavelength Matching and Tuning in Green Laser Packaging using Second Harmonic Generation", wherein: US 6,778,582 mainly reveals the use of a surface-emitting laser (VCSEL) and stacks of nonlinear crystals. A mirror is stacked, and the above structure is placed on a heat sink. The package structure is a vertical stacking technique, and the architectural principle is to use a near-infrared surface-emitting laser, such as Light at a wavelength of 1064 nm is converted by a nonlinear crystal (multiplier crystal) Produces 532nm of green light, and then excites the top surface of the external mirror and the surface-emitting laser to generate green light; however, it is difficult to match the laser wavelength and the nonlinear crystal center wavelength in this way. The inability to capture the intensity of the surface-emitting laser and the converted solid-state laser will limit the temperature range of the laser used in this architecture, and the architecture cannot be controlled by its own nonlinear crystal (multiplier) The crystal) is achieved and continuously maintained at the maximum wavelength conversion efficiency (maximum wavelength 5 201001851 conversion efficiency ) °

Pub. No. US 2008 / 0002745 A1主要係揭示利用非 影區來做轉換後光源波長補償’即利用非投影區地方來^ 控輸出光(轉換後光源)功率的穩定性,其補償架構係利 用經過波長轉換器(wavelength converter)之後的光再利用 分光鏡將部分的光擷取到檢測器(detector),而利用檢測器 所檢測的電流值來判斷DBR雷射的中心波長及非線性晶^ 中心波長是否有匹配,當檢測器所檢測的電流值變小日^表 示DBR雷射的中心波長及非線性晶體中心波長沒有匹配, ' 此時回饋電路將會啟動(利用非投影區動作)調整〇3汉雷 射phase section的電流值進而調整DBR雷射之中心波長, 以達到輸出光(轉換後光源)功率的穩定效果,然,其補 償架構只是利用檢測器(detector)以擷取並檢測經過波長轉 換器(wavelength converter)轉換後之光的電流值來判斷 DBR雷射的中心波長及非線性晶體中心波長是否有匹配, 因此該架構只能使輸出光(轉換後光源)功率達到穩定, 並無法藉由自動調控方式以使其波長轉換器(wavelength converter)達成並持續維持在最大波長轉換效率 (maximum wavelength conversion efficiency )。 ) 美國康寧公司(Corning Inc.)的論文「WavelengthPub. No. US 2008 / 0002745 A1 mainly reveals the use of non-shadow areas for wavelength compensation of light source after conversion. That is, the use of non-projection area to control the stability of output light (converted light source) power, and its compensation architecture is utilized. The light after the wavelength converter is used to take part of the light to the detector, and the current value detected by the detector is used to determine the center wavelength of the DBR laser and the nonlinear crystal. Whether the center wavelength is matched, when the current value detected by the detector becomes smaller, ^ indicates that the center wavelength of the DBR laser and the center wavelength of the nonlinear crystal do not match, 'At this time, the feedback circuit will be activated (using the non-projection area action) to adjust The current value of the phase3 Han laser phase section adjusts the center wavelength of the DBR laser to achieve the stable effect of the output light (converted light source) power. However, the compensation architecture only uses the detector to capture and detect. The current value of the light converted by the wavelength converter is used to determine whether the center wavelength of the DBR laser and the center wavelength of the nonlinear crystal have Matching, therefore, the architecture can only stabilize the output light (converted light source) power, and can not achieve the maximum wavelength conversion efficiency by the wavelength converter through automatic regulation. ). Corning Inc.'s paper "Wavelength

Matching and Tuning in Green Laser Packaging using Second Harmonic Generation」,係利用近紅外雷射二極體 (DBR laser)發出波長1064nm雷射光,並利用聚光鏡片將 雷射光射入非線性晶體(波長轉換器)中以使l〇64nm雷 射光轉換成532nm的綠光,其架構係分別在雷射二極體 (DBR laser)及非線性晶體(波長轉換器)下方設置一溫度 控制器及溫度感測器;然,此架構無法即時去做雷射二極 體(DBR laser)及非線性晶體(波長轉換器)中心波長的最 佳化匹配’只能利用量測所得的溫度去做假設雷射二極體 6 201001851 (DBR laser)及非線性晶體(波長轉換器)兩個中心波長的 匹配’即調整雷射二極體(DBR laser)及非線性晶體(波長 轉換器)的溫度,以讓個別的中心波長移動,因此會產生 失真的情況,也就是轉換後之輸出光的功率將隨外在溫度 而產生變化,故其架構並無法藉由自動調控方式以使其非 線性晶體(波長轉換器)達成並持續維持在最大波長轉換 效率(maximum wavelength conversion efficiency ) 〇 由上可知,波長轉換光電裝置之應用技術中,包含傳 統的波長轉換光電裝置如DPSS(diode pumped solid state) 雷射及目前新發展的波長轉換光電裝置如US 6,778,582、 Pub. No. US2008/0002745A1 及美國康寧公司(Corning Inc.)所發佈的論文,均無法自動將轉換前之雷射光波長 (λ!)鎖定於波長轉換器之最佳轉換波長以達成並持續 維持在最大波長轉換效率( maximum wavelength conversion efficiency )。而本發明即是針對上述需求而設 計者。 【發明内容】 本發明主要目的乃在於提供一種具有自動校正功能之 微型波長轉換光電裝置及其自動校正方法(A Compact Wavelength Conversion Photonic Device with Self-Calibration Function and Self-Calibration Method thereof),主要包含:一第一光電檢測器(photo detector,PD)設於雷射之一侧面處用以接收並同時量測 由該雷射一侧面所發出之一小部分已知波長(λ〇雷射光之 功率(optical power)的電流(I!); 一雷射可為一半導體雷 射(semiconductor laser)或二極體固態(diode pumped solid state,DPSS)雷射用以發出波長λ!之雷射光並可藉 注入電流(injection current)之調變以改變其雷射光波長 Μ;—波長轉換器設於雷射之另一側面處用以接收由雷射 7 201001851 ΐ? + t戶f發出波長λι雷射光並以倍頻原理轉換產生波 ίΐί,並具有一可隨溫度改變之最佳轉換波長 H i = t光裝置用以將由波長轉換器輸出之波長&雷射 光士Of2雷射光向外輸出,並將其中一小部分雷射光輸 丨:ΐ二光電檢測器;一第二光電檢測器(PD)用以接收並 二日寸^測士述一小部分波長λ2雷射光之功率之電流; 覆邏輯(iterationlogic)電路供可進行重覆邏 Ϊ f异功此以調控雷射之注入電流(injection current)以同 二Ϊίίί波長(λΐ);其中,當波長轉換器之轉換效率 ^使,中因環境溫度變化而造成變異或降低時,即^與當 時t取佳轉換波長&不同時,則可藉第一、二光電檢測器 所夏測之兩電流之間的比例值(Ι2/Ιι),並藉重覆邏輯 (lteratl〇nl〇gic)電路以調控雷射之注入電流(injection current) ’藉以可利用改變雷射之注入電流的方法以調控 f射所發iU雷射光之波長(λι) ’以自動將#射光之波長 (^)隨時都鎖定並科波長轉換器之最佳轉換波長⑹, 藉以使微型光電裝置之波長轉換效率(conversion efficiency )達成並持續維持在最佳運作狀態。 本發明再一目的乃在於提供一種具有自動校正功能之 微型波長轉換光電裝置及其自動校正方法,其中,該雷射 進一步可δ又具一溫度感測器(temperature北旧丨叩如^⑶)用 以檢測雷射之溫度,及一溫度控制器(temperature c〇ntr〇1 device)如電阻式致熱器(thermal resistor)或致冷器 (TE-cooler)用以控制雷射之溫度,藉以可利用改變雷射 度的方法以改變雷射光波長,以自動將雷二=二 隨時都鎖定並等於波長轉換器之最佳轉換波長,藉以 使微型光電裝置之波長轉換效率(c〇nversi〇n eff|cienCy ) 達成並持續維持在最佳運作狀態,並擴大操作溫度範圍, 以增進微型光電裝置之使用效率。 8 201001851 本發明另一目的乃在於提供一種具有自動校正功能之 微型波長轉換光電裝置及其自動校正方法,其中該波長轉 換器進一步可設具一溫度感測器(temperature sensing device)用以檢測波長轉換器之溫度,及一溫度控制器 (temperature control device)如電阻式致熱器⑽ermal resistor)或致冷器(TE-cooler)用以控制波長轉換器之溫 度,藉以在使用中可控制波長轉換器之溫度並保持固定, 進而使波長轉換器之最佳轉換波長(心)保持固定而不隨環 境溫度之變化而改變,以自動將雷射光之波長(λι)隨時都 f、 鎖定並等於波長轉換器之最佳轉換波長(λ〇),藉以使微型 光電裝置之波長轉換效率(conversion efficiency)達成並 持續維持在最佳運作狀態’並擴大操作溫度範圍,以增進 微型光電裝置之使用效率。 【實施方式】 為使本發明更加明確詳實’茲列舉較佳實施例並配合 下列圖示,將本發明之結構及其技術特徵詳述如後: 參照圖1-4所示,其分別係本發明微型波長轉換光電 裝置之基本架構示意圖及第一實施例之結構及局部結構示 〇 意圖。本發明係一種具有自動校正功能之微型波長轉換光 電裝置(A Compact Wavelength Conversion Photonic Device with Self-Calibration Function)〗,其基本架構依序 包含:一第一光電檢測器(photo detector,PD) 10、一雷 射20、一波長轉換器30、一分光裝置40、一第二光電檢測 器(PD)50以及至少一重覆邏輯(iteration logic)電路60設 在相關之電路系統中。 該第一光電檢測器(PD1)10係設於雷射20之一侧面 處,其主要作用是用以接收並同時量測由該雷射2〇—侧面 201所發出之一小部分已知波長(λ〇雷射光202之光功率 (optical power)之電流(1丨),也就是該電流(1〇可代表雷 9 201001851 射光202之光功率;該第一光電檢測器(PD)10可為單晶片 (single chip)或一具有數個光電裝置之模組(a module with several photonic devices),而為防止雷射光 202 反射 回到雷射20,如圖1、2所示,第一光電檢測器之入射面 (facet) 101可不垂直於雷射光202之光軸(optical beam axis)。 該雷射(laser)20可為一半導體雷射(semiconductor laser)或二極體固態(diode pumped solid state ,DPSS) 雷射,且可為單晶片雷射(DFB ,multi-section DBR laser)或一具有數個光電裝置之模組(如一半導體雷射發 出波長λ〇之光並經一固態晶體而產生波長&之光);該雷 射20可由其一側面201發出之一小部分已知波長(λ】)之雷 射光202,並可由其另一側面203發出大部分已知波長 (λ!)之雷射光204以聚焦射至波長轉換器30之入射面 301 ;又,雷射20上可設具一溫度感測器(temperature sensing device)以檢測其溫度,及設具一溫度控制器 (temperature control device)如加熱電阻器(thermal resistor)或致冷器(TE-cooler)以控制其溫度,並可擴大操 作溫度範圍;進一步可利用調變其注入電流(injection current,IL)或改變其溫度的方法以改變雷射20之雷射光 波長(λι)。 該波長轉換器30係設於面對雷射20之侧面203處,藉 其入射面301用以接收由雷射一側面203所發出波長λ〗之 雷射光204並以倍頻原理轉換產生波長&之雷射光205而 由出射面302向外輸出;波長轉換器30可為一堆疊材料或 一波導(waveguide)材料以由其入射面301接收雷射光; 若波長轉換器30設有波導(waveguide)結構,則其波導之 入射面301尺寸可較大以容易接收由雷射2〇發出之雷射光 204 ;而為防止雷射光204反射回到雷射20,波長轉換器 201001851 30之入射面301可不垂直於雷射光204之光軸(optical beam axis);又入射面301可鑛一層配合波長λι雷射光之 禁(抗)反射(anti-reflection,AR)鍍膜,以使其容易接 收由雷射20發出之雷射光204 ;出射面302可鍍一層配合 波長λ2之禁反射(anti-reflection,AR)鍍膜,以使轉換後 波長λ2之雷射光205容易由出射面302送出;又出射面 302可鍍一層對波長^之高反射鍍膜以防止波長\之雷射 光204由出射面302送出;又波長轉換器30可設具一溫度 感測器(temperature sensing device)以檢測其溫度,及設具 一波長轉換器可設具溫度控制器(temperature control device)如加熱電阻器(thermal resistor)或致冷器 (TE-cooler)以控制其溫度,並可擴大操作溫度範圍;又波 長轉換器30相對於入射之雷射光204的波長有一最大波長 轉換效率(rnaximum wavelength conversion efficiency ), 也就是’當入射之雷射光204的波長λ〗能調控至等於(吻 合)波長轉換器30之最大轉換波長(maximum conversion wavelength)Xc時,即可使波長之轉換工作達成最大波長轉 換效率;又可利用改變波長轉換器30之溫度以改變其最大 波長轉換波長Ac。 該分光裝置40係用以將由波長轉換器3〇之出射面3〇2 所輸出之波長雷射光205分成一大一小兩部分,其中之 大部分雷射光206向外輸出以形成本發明微型波長轉換光 電裝置1所要求之輸出雷射光,而其中之小部分雷射光 207則射至(輸入)第二光電檢測器5〇 ;以圖i為例說 明,分光裝置40之平面(入射面)4〇1用以使雷射光束 205由水平方向入射而轉彎9〇度再垂直向上出射,使平面 401當作波長&之雷射光205的部分反射面,使雷射光 205之大部分雷射光206入射在平面401上時會被反射, 只有小部分雷射光207會穿透平面401而被第二光電檢測 201001851 器(PD)50接收;又入射面401可為配合波長\之部分 材料,或可增設一配合波長&之部分反射分光鏡。刀 ' 該第二光電檢測器(PD)之主要作用係用以接收並 時量測由分光裝置40送來之小部分已知波長(λ2)雷射光α 207之功率(optical power)之電流(ΙΟ,也就是該電 (工2)可代表雷射光207之光功率;又該第二光電檢測/器 (PD)可為單晶片(single Chip)或一具有數個光電襄置之模 組(a module with several photonic devices)。 、Matching and Tuning in Green Laser Packaging using Second Harmonic Generation, which uses a near-infrared laser diode to emit laser light with a wavelength of 1064 nm, and uses a condensing lens to inject laser light into a nonlinear crystal (wavelength converter). In order to convert l〇64nm laser light into 532nm green light, the architecture is to set a temperature controller and a temperature sensor under the laser diode (DBR laser) and the nonlinear crystal (wavelength converter); This architecture is not able to perform the optimal matching of the center wavelength of the laser diode (DBR laser) and the nonlinear crystal (wavelength converter). The temperature of the measured laser can only be used to make the hypothetical laser diode 6 201001851 (DBR laser) and nonlinear crystal (wavelength converter) two center wavelength matching 'that adjusts the temperature of the laser diode (DBR laser) and nonlinear crystal (wavelength converter) to allow individual center wavelength Moving, so there will be distortion, that is, the power of the converted output light will change with the external temperature, so the architecture cannot be controlled by automatic regulation. The nonlinear crystal (wavelength converter) achieves and continues to maintain the maximum wavelength conversion efficiency. From the above, the application technology of the wavelength conversion optoelectronic device includes a conventional wavelength conversion optoelectronic device such as DPSS (diode pumped solid). State) Lasers and current developments in wavelength-converted optoelectronic devices such as US 6,778,582, Pub. No. US2008/0002745A1 and Corning Inc., are not able to automatically convert the wavelength of the laser light before conversion (λ) !) Locked at the optimal conversion wavelength of the wavelength converter to achieve and sustain the maximum wavelength conversion efficiency. The present invention is also designed for the above needs. SUMMARY OF THE INVENTION The main object of the present invention is to provide an AW Wavelength Conversion Photonic Device with Self-Calibration Function and Self-Calibration Method thereof (A Compact Wavelength Conversion Photonic Device with Self-Calibration Function and Self-Calibration Method thereof), which mainly includes: A first photo detector (PD) is disposed at one side of the laser for receiving and simultaneously measuring a small portion of the known wavelength (λ 〇 laser light power emitted by one side of the laser ( Optical power (I!); a laser can be a semiconductor laser or a diode pumped solid state (DPSS) laser to emit laser light of wavelength λ! The modulation current is modulated to change the wavelength of the laser light Μ; the wavelength converter is disposed at the other side of the laser for receiving the wavelength λι laser light emitted by the laser 7 201001851 +? Converting to a wave by the frequency doubling principle and having an optimum switching wavelength that can be changed with temperature. H i = t The optical device is used to output the wave output by the wavelength converter. &Laser OpticsOf2 laser light output to the outside, and a small part of the laser light is transmitted: ΐ2 photodetector; a second photodetector (PD) is used to receive and two days of measurement a small part of the wavelength λ2 laser light power; the logic (iteration logic) circuit can be used to repeat the logic f to control the laser injection current (injection current) to the same two ίίί wavelength (λ ΐ); When the conversion efficiency of the wavelength converter is changed or decreased due to changes in the ambient temperature, that is, when the wavelength is different from that of the time t, the first and second photodetectors can be used for summer measurement. The ratio between the two currents (Ι2/Ιι), and by means of a repetitive logic (lteratl〇nl〇gic) circuit to regulate the injection current of the laser, so that the method of changing the injection current of the laser can be used to regulate The wavelength of the iU laser light emitted by the f-ray (λι) 'automatically locks the wavelength of the light (^) at any time and the optimum conversion wavelength of the wavelength converter (6), so that the wavelength conversion efficiency of the micro-optical device (conversion efficiency) Reached The invention further provides a micro wavelength conversion photoelectric device with an automatic correction function and an automatic calibration method thereof, wherein the laser further has a temperature sensor and a temperature sensor ( The temperature north is like ^(3)) to detect the temperature of the laser, and a temperature controller (temperature c〇ntr〇1 device) such as a thermal resistor or a cooler (TE-cooler) In order to control the temperature of the laser, the method of changing the laser degree can be used to change the wavelength of the laser light to automatically lock the Ray II=2 at any time and equal the optimal conversion wavelength of the wavelength converter, thereby making the micro photoelectric device The wavelength conversion efficiency (c〇nversi〇n eff|cienCy) is achieved and maintained at an optimal operating state, and the operating temperature range is extended to enhance the efficiency of use of the micro-optoelectronic device. 8 201001851 Another object of the present invention is to provide a micro wavelength conversion photoelectric device with an automatic correction function and an automatic calibration method thereof, wherein the wavelength converter can further be provided with a temperature sensing device for detecting the wavelength The temperature of the converter, and a temperature control device such as an ermal resistor or a chiller to control the temperature of the wavelength converter, thereby controlling wavelength conversion in use. The temperature of the device is kept constant, so that the optimal conversion wavelength (heart) of the wavelength converter remains fixed without changing with the change of ambient temperature, so that the wavelength of the laser light (λι) is automatically f, locked and equal to the wavelength. The optimum conversion wavelength (λ〇) of the converter is such that the wavelength conversion efficiency of the micro-optoelectronic device is achieved and maintained in an optimal operating state' and the operating temperature range is expanded to enhance the efficiency of use of the micro-optoelectronic device. [Embodiment] In order to make the present invention more clear and detailed, the preferred embodiment of the present invention will be described with reference to the following drawings, and the structure and technical features of the present invention will be described in detail as follows: Referring to Figures 1-4, respectively, The schematic diagram of the basic architecture of the invention of the micro-wavelength conversion optoelectronic device and the structure and partial structure of the first embodiment are shown. The present invention is an A Compact Wavelength Conversion Photonic Device with Self-Calibration Function. The basic architecture includes a first photo detector (PD). A laser 20, a wavelength converter 30, a beam splitting device 40, a second photodetector (PD) 50, and at least one iterative logic circuit 60 are provided in the associated circuitry. The first photodetector (PD1) 10 is disposed at one side of the laser 20, and its main function is to receive and simultaneously measure a small portion of the known wavelength emitted by the laser 2 side-side 201 (The current of the optical power of the λ 〇 laser light (1 丨), that is, the current (1 〇 can represent the optical power of the Ray 9 201001851 illuminating light 202; the first photodetector (PD) 10 can be A single chip or a module with several photonic devices, and to prevent the laser light 202 from being reflected back to the laser 20, as shown in Figures 1 and 2, the first photodetection The facet 101 of the device may not be perpendicular to the optical beam axis of the laser light 202. The laser 20 may be a semiconductor laser or a diode pumped solid state. , DPSS) laser, and can be a single-chip laser (DFB, multi-section DBR laser) or a module with several optoelectronic devices (such as a semiconductor laser emits light of wavelength λ〇 and is generated by a solid crystal Wavelength &light; the laser 20 can be on one side The face 201 emits a small portion of the laser light 202 of known wavelength (λ) and can emit most of the known wavelength (λ!) of the laser light 204 from the other side 203 thereof to focus the incident light onto the wavelength converter 30. Surface 301; in addition, a temperature sensing device can be provided on the laser 20 to detect the temperature thereof, and a temperature control device such as a thermal resistor or a cooling device is provided. (TE-cooler) to control its temperature and expand the operating temperature range; further to change the laser's injection current (IL) or change its temperature to change the laser light wavelength of the laser 20 (λι) The wavelength converter 30 is disposed at a side 203 facing the laser 20, and the incident surface 301 is configured to receive the laser light 204 of the wavelength λ emitted by the laser side 203 and convert the wavelength by the frequency doubling principle. The laser light 205 is outputted outward by the exit surface 302; the wavelength converter 30 can be a stacked material or a waveguide material to receive the laser light from its incident surface 301; if the wavelength converter 30 is provided with a waveguide ( Waveguide The entrance surface 301 of the waveguide may be larger in size to easily receive the laser light 204 emitted by the laser 2; and to prevent the laser light 204 from being reflected back to the laser 20, the incident surface 301 of the wavelength converter 201001851 30 may not It is perpendicular to the optical beam axis of the laser light 204; and the incident surface 301 is coated with a layer of λι laser light for anti-reflection (AR) coating to make it easy to receive by the laser 20 The emitted laser light 204; the exit surface 302 can be plated with an anti-reflection (AR) coating with a wavelength λ2, so that the converted laser light 205 of the wavelength λ2 is easily sent out by the exit surface 302; and the exit surface 302 can be plated. A layer of high-reflection coating is applied to prevent the wavelength of the laser light 204 from being emitted from the exit surface 302; and the wavelength converter 30 can be provided with a temperature sensing device to detect the temperature and set a wavelength. The converter can be provided with a temperature control device such as a thermal resistor or a cooler (TE-cooler) to control its temperature and expand the operating temperature range; For the wavelength of the incident laser light 204, there is a maximum wavelength conversion efficiency, that is, when the wavelength λ of the incident laser light 204 can be adjusted to be equal to (match) the maximum conversion wavelength of the wavelength converter 30 (maximum When the conversion wavelength)Xc, the wavelength conversion operation can achieve the maximum wavelength conversion efficiency; and the temperature of the wavelength converter 30 can be changed to change its maximum wavelength conversion wavelength Ac. The beam splitting device 40 is configured to divide the wavelength laser light 205 outputted by the exit surface 3〇2 of the wavelength converter 3 into two large and small portions, and most of the laser light 206 is output outward to form the micro wavelength of the present invention. The output laser light required by the photoelectric device 1 is converted, and a small portion of the laser light 207 is incident on (input) the second photodetector 5 〇; the plane (incident surface) of the light splitting device 40 is illustrated by taking FIG. 〇1 is used to make the laser beam 205 enter the horizontal direction and turn 9 degrees and then vertically upward, so that the plane 401 is regarded as a partial reflection surface of the laser light 205 of the wavelength & the majority of the laser light of the laser light 205 is 206. When incident on the plane 401, it will be reflected. Only a small portion of the laser light 207 will pass through the plane 401 and be received by the second photodetection 201001851 (PD) 50. The incident surface 401 may be part of the material of the wavelength, or may be A partial reflection beam splitter with a wavelength & The main function of the second photodetector (PD) is to receive the current of the optical power of a small portion of the known wavelength (λ2) of the laser light α 207 sent by the spectroscopic device 40 ( ΙΟ, that is, the electricity (Work 2) can represent the optical power of the laser light 207; and the second photodetector (PD) can be a single chip or a module having a plurality of photoelectric devices ( a module with several photonic devices).

該重覆邏輯(iteration logic)電路60係具有重覆、羅 運算功能’其可根據所提供之資料以進行所設定之羅 輯運算功能,以本發明微型波長轉換光電裝置1而古,^ 係利用重覆邏輯之運算功能以自動調控雷射2〇之注又带流 (injectioncurrent),藉以同步調控雷射光波長⑹。电洲· 藉上述結構,當波長轉換器30之轉換效率在使 環境溫度變化而造成變異或降低時,即入射波長轉 之雷射光204的波長λ!與當時最大轉換波長心不 ^ 達成最大波長轉換效率時,則可藉第一、二光電檢 10、50所量測之L、I2兩電流之間的比例值(以/ ; 參數,並藉重覆邏輯(iteration logic )電路以進行所二— 之重覆邏輯運算功能,以自動調控雷射2〇之注入電漭又疋 (injection current),如:以增加雷射2〇之注入電= 算,若所得之波長轉換效率反而降低,就反向改 射20之,入電流以提昇波長轉換效率,如此重覆邏輯糞 =可藉調控雷射2G之注人電流以達成最大波長轉換效 ^是,利用重覆改變雷射20之注入電流的方法以J 身:2〇所發出雷射光川4的波長㈤,以自動將雷射= 的波長λ!隨時調控並鎖定等於波長轉換器3〇之最 ^ ^轉換波長(Μ,藉以使微型光電裝m長^換效 率(c〇nversionefflciency)達成並持續維持在最佳運作狀 12 201001851 態。 又本發明微型波長轉換光電裝置丨具有上述之基本架 ,,即包含一第一光電檢測器1〇、一雷射2〇、一波長轉換 器30、二分光裝置40、一第二光電檢測器(?〇)5〇及至少一 重覆邏輯(iteration logic)電路6〇等基本構件,然其組裝 方式或封裝(packaging)方式並不限制,如上述如圖2所示 之基本架構可以晶片(wafer)積體化方式並配合T〇_can封 裝(T0-Can packaging)模式組裝形成,也可以一般光學元 件如傳送光學次模組(transmit optical sub-assembly,簡稱 f" T0SA)常用之套筒(holder)方式組裝形成,其可隨量產需 要或成本考量而選擇,玆以較佳實施例分別說明如下: <第一實施例> 參照圖2-5所示,其分別係本發明微型波長轉換光電 裝置第一實施例之結構、第一光電檢測器局部、第二光電 才双測器局部及其封裝(T〇-can packaging)結構之示意圖。 本實施例微型波長轉換光電裝置1 a係以晶片(wafer)積體化 方式組裝形成’其基本架構包含:一第一光電檢測器10、 一雷射20、一波長轉換器30、一分光裝置40、一第二光電 〇 檢測器50及在相關之電路系統中至少設有一重覆邏輯 (iteration logic )電路60 (圖2未示);其中,本實施例 如圖2所示,在雷射20及波長轉換器3〇之間可設一鏡片 7〇,用以將由雷射20發出之雷射光(204)聚焦至波長轉換 器30 :該鏡片70可為單一鏡片或一具數個鏡片之鏡片系 統’其可為一球面鏡、一非球面鏡、一漸層式鏡(GRIN lens)或其他可聚光/聚焦雷射光束之光學裝置;而若雷射 光束(204)進入波長轉換器30的散開程度不大時,該鏡片 70則非必要。 第一光電檢測器10之入射面101可不垂直於雷射光 202之光軸(optical beam axis);而為簡化包裝作業,第一 13 201001851 光電檢測器10之結構如圖3所示,可使所有的電子接觸板 墊(electronic contact pad)l02 、103、104 及第一光電檢 測器晶片105都置放在平行於基板(substrate )106之支律 面的平面上以簡化晶片與基板的結合(die bonding)或連接 線(金線)與基板的結合(wire bonding)之自動化作業。 該支撐用基板(substrate) 106可利用對波長λ〇低損失 (low loss)之材質做成,或設具環繞在雷射光202之光徑 外圍之孔槽以減少雷射光202從入射面101至第一光電檢 測器晶片(photo detector chip) 105 之接收光圈(receiving 〇 aperture)107之光損失;而反射面ΐ〇8將入射之雷射光 202反射至光電檢測器晶片1〇5之接收光圈(receiving aperture) 107 ’為達成此目的,反射面108可形成為使雷 射光202之入射角大於全内反射(total internal reflection, TIR)之臨界角(critical angle),或反射面107上可鍍一層 對波長λ〇具高反射率之鍍膜,或增設一反射鏡。 該波長轉換器30係用接收由雷射發出波長\之雷射光 204並轉換產生波長λ2之雷射光205,波長轉換器30可為 一堆疊材料或一波導(waveguide)材料以由其入射面301 i} 接收光能;若波長轉換器30設有波導結構,則其波導之側 'J 面尺寸可較大以容易接收由雷射發出之光能;而為防止雷 射光205反射回到雷射20,圖2中波長轉換器30之入射面 301 (請參熙圖1)可不垂直於雷射光204之光軸 (optical beam axis);入射面301可鍍一層配合波長&之禁 反射(anti-reflection,AR)鍍膜,以使容易接收由雷射20 發出之雷射光;出射面302可鍍一層配合波長λ2之禁反射 (anti-reflection,AR)鍍膜,以使轉換後波長Χ2之雷射光 容易送出;出射面302可為對波長λ!之高反射鍍膜以防止 波長λ】由出射面302送出;又,波長轉換器30可設具溫度 感測器(圖未示)以檢測其溫度,又波長轉換器可設具溫 201001851 度控制器(圖未示)如熱電阻器(thermal resistor)或致冷 器(TE-cooler)以控制其溫度,並可擴大操作溫度範圍;由 於波長轉換器30相對於入射之雷射光204之波長有一最大 波長轉換效率’則可利用改變波長轉換器30之溫度以改變 該最大轉換波長。 如圖2所示,入射面401用以使雷射光205轉彎(如 圖示之90度)至垂直於基板η之支撐面,該入射面401係 當作波長&之雷射光205之部分反射面,大部分光功率入 射在入射面401上會被反射,只有一小部分雷射光會穿透 c 入射面401而被第二光電檢測器(PD,photo detector)50 接收;入射面401可為配合波長〜之部分反射材料,或可 增設一配合波長&之部分反射分光鏡。 第二光電檢測器(PD,photo detector)50用以接收由 入射面401發出(即穿透入射面401)之小部分雷射光 207,其可為單晶片(single chip)或一具有數個光電裝置 之模組(a module with several photonic devices);而為容易 包裝作業,該第二光電檢測器50之結構如圖4所示,可使 所有的電子接觸板塾(electronic contact pad)503、504、 (' 505及第二光電檢測器晶片(photo detector chip)501都置 1 放在平行於基板(substrate)506之支撐面之平面上以容易於 晶片與基板之結合(die bonding)或導線(金線)之結合 (wire bonding)的自動化作業;而圖4中之支撐用基板 (substrate)506可利用對波長&低耗損之材質做成,或設具 環繞在雷射光207之光徑外圍之孔槽以減少雷射光207從 入射面507至第二光電檢測器晶片501之接收光圈 (receivingaperture)502之光耗損。又反射面508係將入射 之雷射光207反射至光電檢測器晶片501之接收光圈 (receiving aperture)502,為達成此目的,反射面508可形 成為使雷射光207之入射角大於全内反射(total internal 15 201001851 reflection,TIR)之臨界角(critical angle),或反射面 508 上可鑛一層對波長λ〇具高反射率之鍍膜,或增設一反射 鏡。 而圖2所示之基板(substrate)ll係用以定位設置第一 光電檢測器10、雷射20、鏡片70、波長轉換器30之基板 (substrate)402及第二光電檢測器50,並也提供雷射20之電 性連結,及雷射20及波長轉換器30可能設置之熱控裝置 (thermal control device);該基板(substrate)ll 可設具校正 鍵(alignment key)及/或蝕刻洞(etched hole)以使第一光 p 電檢測器10、雷射20、鏡片70、波長轉換器30之載板 (substrate)402及第二光電檢測器50容易精準定位;支撐 (承載)基板(substrate)ll可設具溫度感測器(圖未示) 以檢測其溫度’又可設具溫度控制器(temperature control device)(圖未示)如熱電阻器(thermal resistor)或致冷器 (TE-cooler)以控制其溫度,並可擴大操作溫度範圍;又圖 2中之鏡片80為選擇性裝置,用以聚光/聚焦由反射面 401反射之雷射光206而向外輸出。 如圖5所示,其係圖2第一實施例之TO-can封裝 (TO-can packaging)模式之結構示意圖。如圖2所示第一 ^ 實施例之整體結構體可設在一 TO-can封裝12内,包含一 TO-can 鏡片(TO-can lens)121 、一 TO-can 蓋(TO-can cap)122、一 TO-can 承座(TO-can header)123 及 TO-can 電性連結部(electronic connection of TO-can)124 ’藉此可利用該TO-can電性連結部124以控 制及檢測上述如圖2所示第一實施例整體結構上之各裝 置。 ’ <第二實施例> 參照圖6所示,其係本發明微型波長轉換光電裝置第 二實施例之封裝結構示意圖。本實施例之微型波長轉換光 16 201001851 電裝置lb係以一般光學元件如傳送光學次模組(transmit optical sub-assembly,簡稱TOSA)常用之金屬外套筒 (metal holder)方式組裝形成,其基本架構包含:一第一光 電檢測器10、一雷射20可為一DBR雷射、一波長轉換器30 可為一 PPLN(Periodically Poled Lithium Niobate)晶體、一 分光裝置40可為一分光鏡、一第二光電檢測器5〇及在相關 之電路系統中至少設有一重覆邏輯(iteration logic )電路 60 (圊6中未示),而本實施例如圖6所示,在雷射20及 波長轉換器30之間可設一鏡片70用以將由雷射20發出之雷 ίΛ 射光204聚焦至波長轉換器30,該鏡片70可為單一鏡片或 ' 一具數個鏡片之鏡片系統,其可為一球面鏡、一非球面 鏡、一漸層式鏡(GRIN lens)或其他可聚光/聚焦雷射光束 之光學裝置,但若雷射光204進入波長轉換器30的散開程 度不大時’該鏡片70則非必要。又本實施例可設一鏡片80 及一保護用外罩鏡片81,該鏡片80為選擇性裝置,用以聚 光/聚焦由反射面401反射之雷射光206而向外輸出。 而本實施例微型波長轉換光電裝置lb之架構具有同軸 式調校功能’其係利用一金屬質之第一外套筒(metal holder)13以定位組裝該第一光電檢測器1〇及雷射20及/或 I1 鏡片,並利用一金屬質之第二外套筒(metal holder) 14以 定位組裝該波長轉換器30、分光裝置40及第二光電檢測器 50及/或鏡片80、保護用外罩鏡片81 ;再藉調整第一外套 筒(metal holder) 13 及第二外套筒(metal holder) 14 以使二者 之間對準對位至一最佳位置,再將第一外套筒13及第二外 套筒14定位黏結成一體。 <第三實施例> 參照圖7所示,其係本發明微型波長轉換光電裝置第 三實施例之封裝結構示意圖。本實施例之微型波長轉換光 電裝置1 c之封裝結構類似於第二實施例之微型波長轉換光 17 201001851 電裝置lb ’也藉調整第一外套筒(metal holder) 13及第二外 套筒(metalholder)14而具有同軸式調校功能;而本實施例 另於雷射20及波長轉換器30上分別設具一溫度感測器 (temperature sensing device)90以檢測其溫度,及一溫度控 制器(temperature control device)91 如致冷器(TE-cooler)以 控制溫度’可相對擴大本實施例之操作溫度範圍,藉以增 進微型光電裝置之使用效率。 <第四實施例>The iteration logic circuit 60 has a function of repeating and arranging operations, which can perform the set calculation function according to the provided data, and the micro-wavelength conversion photoelectric device 1 of the present invention is The function of the repeated logic is used to automatically control the laser's injection and injection current (injectioncurrent) to synchronously control the laser light wavelength (6). According to the above structure, when the conversion efficiency of the wavelength converter 30 is caused to vary or decrease due to changes in the ambient temperature, that is, the wavelength λ! of the incident wavelength of the laser light 204 is changed to the maximum wavelength of the maximum conversion wavelength at that time. In the conversion efficiency, the ratio between the L and I2 currents measured by the first and second photodetectors 10 and 50 (with the /; parameter, and the logic of the iteration logic circuit) can be used. Repeated logic operation function to automatically control the injection current of the laser 2,, such as: to increase the injection of laser 2〇, if the wavelength conversion efficiency obtained is reduced, it is reversed. To the re-improvement 20, the current is increased to increase the wavelength conversion efficiency, so that the logic manure can be repeated to control the laser current of the laser 2G to achieve the maximum wavelength conversion effect, and the injection current of the laser 20 is changed by repeated The method uses the wavelength of the laser Guangchuan 4 emitted by the J body: (2), and automatically adjusts and locks the wavelength λ! of the laser = equal to the wavelength of the wavelength converter 3 (?, to make the micro-photoelectric Install m long ^ change efficiency (c Nversionefflciency) is achieved and continuously maintained in the best mode of operation 12 201001851. The microwavelength conversion optoelectronic device of the present invention has the above basic frame, that is, includes a first photodetector, a laser, a wavelength, a wavelength The basic components such as the converter 30, the dichotomy device 40, the second photodetector (5), and the at least one iteration logic circuit 6 are not limited in terms of assembly or packaging. The basic structure as shown in FIG. 2 can be assembled in a wafer integrated manner and combined with a T〇-can packaging (T0-Can packaging) mode, or a general optical component such as a transmission optical sub-module. The optical sub-assembly, abbreviated as f"T0SA), is usually assembled in a sleeve manner, which can be selected according to mass production requirements or cost considerations, and is described as follows in the preferred embodiment: <First Embodiment> Referring to FIG. 2-5, which are respectively the structure of the first embodiment of the micro wavelength conversion photoelectric device of the present invention, the first photodetector part, and the second photoelectric double detector part. A schematic diagram of a package structure of the present invention. The micro-wavelength-converting photovoltaic device 1a of the present embodiment is assembled in a wafer form. The basic structure includes: a first photodetector 10, a a laser 20, a wavelength converter 30, a beam splitting device 40, a second photodetector detector 50, and at least one iteration logic circuit 60 (not shown in FIG. 2) in the associated circuit system; In the present embodiment, as shown in FIG. 2, a lens 7A can be disposed between the laser 20 and the wavelength converter 3A for focusing the laser light (204) emitted by the laser 20 to the wavelength converter 30: the lens 70 can be a single lens or a lens system with a plurality of lenses. It can be a spherical mirror, an aspherical mirror, a GRIN lens or other optical device capable of collecting/focusing a laser beam; The lens 70 is not necessary when the laser beam (204) enters the wavelength converter 30 to a lesser extent. The incident surface 101 of the first photodetector 10 may not be perpendicular to the optical beam axis of the laser light 202; and to simplify the packaging operation, the structure of the first 13 201001851 photodetector 10 is as shown in FIG. The electronic contact pads 102, 103, 104 and the first photodetector wafer 105 are placed on a plane parallel to the branch surface of the substrate 106 to simplify the bonding of the wafer to the substrate (die Bonding) or automated operation of wire bonding between a wire (gold wire) and a substrate. The support substrate 106 may be made of a material having a low loss of wavelength λ , or provided with a hole surrounding the optical path of the laser light 202 to reduce the laser light 202 from the incident surface 101 to The light of the receiving aperture 107 of the first photodetector chip 105 is lost; and the reflecting surface 8 reflects the incident laser light 202 to the receiving aperture of the photodetector wafer 1〇5 ( Receiving aperture 107' To achieve this, the reflecting surface 108 may be formed such that the incident angle of the laser light 202 is greater than the critical angle of the total internal reflection (TIR), or the reflective surface 107 may be plated. A coating with a high reflectivity for the wavelength λ, or a mirror. The wavelength converter 30 is configured to receive the laser light 205 emitted by the laser emitting wavelength 204 and convert it to generate the wavelength λ2. The wavelength converter 30 can be a stacked material or a waveguide material to be incident on the surface 301 thereof. i} receiving light energy; if the wavelength converter 30 is provided with a waveguide structure, the side of the waveguide may be larger in size to facilitate receiving light energy emitted by the laser; and to prevent the laser light 205 from being reflected back to the laser 20, the incident surface 301 of the wavelength converter 30 in FIG. 2 (see Figure 1) may not be perpendicular to the optical beam axis of the laser light 204; the incident surface 301 may be plated with a wavelength matching & anti-reflection (anti -reflection, AR) coating to make it easy to receive the laser light emitted by the laser 20; the exit surface 302 can be coated with an anti-reflection (AR) coating with a wavelength of λ2 to make the converted laser light of wavelength Χ2 Easily sent out; the exit surface 302 can be a highly reflective coating for the wavelength λ! to prevent the wavelength λ from being sent out by the exit surface 302; in addition, the wavelength converter 30 can be provided with a temperature sensor (not shown) to detect the temperature, Wavelength converter can be set to have a temperature of 201001851 degrees A controller (not shown) such as a thermal resistor or a cooler (TE-cooler) controls its temperature and can expand the operating temperature range; due to the wavelength of the wavelength converter 30 relative to the incident laser light 204 A maximum wavelength conversion efficiency can be used to change the temperature of the wavelength converter 30 to change the maximum conversion wavelength. As shown in FIG. 2, the incident surface 401 is used to turn the laser light 205 (as shown by 90 degrees) to a support surface perpendicular to the substrate η, which is reflected as a partial reflection of the wavelength & The majority of the optical power incident on the incident surface 401 is reflected, and only a small portion of the laser light passes through the c incident surface 401 and is received by a second photodetector (PD) 50; the incident surface 401 can be A part of the reflective material with a wavelength of ~, or a partial reflection beam splitter with a matching wavelength & A second photodetector (PD) 50 is configured to receive a small portion of the laser light 207 emitted by the incident surface 401 (ie, penetrating the incident surface 401), which may be a single chip or a plurality of photovoltaics. A module with several photonic devices; and for easy packaging operation, the structure of the second photodetector 50 is as shown in FIG. 4, and all electronic contact pads 503, 504 can be used. (' 505 and the second photodetector chip 501 are placed on a plane parallel to the support surface of the substrate 506 to facilitate die bonding or wire bonding between the wafers ( The automated bonding of the wire bonding; and the support substrate 506 of FIG. 4 can be made of a material having a wavelength & low loss, or a periphery of the optical path surrounding the laser light 207. The apertures are designed to reduce the optical loss of the laser 207 from the entrance surface 507 to the receiving aperture 502 of the second photodetector wafer 501. The reflective surface 508 reflects the incident laser light 207 to the photodetector wafer 501. Receiving aperture 502, for this purpose, reflective surface 508 may be formed such that the incident angle of laser light 207 is greater than the critical angle of total internal 15 201001851 reflection (TIR), or the reflective surface 508 The upper ore layer has a high reflectivity coating on the wavelength λ, or a mirror is added. The substrate shown in FIG. 2 is used to position the first photodetector 10, the laser 20, and the lens. 70. A substrate 402 of the wavelength converter 30 and a second photodetector 50, and also provides electrical connection of the laser 20, and a thermal control device that the laser 20 and the wavelength converter 30 may be provided. The substrate ll may be provided with an alignment key and/or an etched hole to enable the first photo p detector 10, the laser 20, the lens 70, and the wavelength converter 30. The substrate 402 and the second photodetector 50 are easily positioned accurately; the support (bearing) substrate ll can be provided with a temperature sensor (not shown) to detect the temperature thereof, and a temperature controller can be provided ( Temperature control dev Ice) (not shown) such as a thermal resistor or a cooler (TE-cooler) to control its temperature and to expand the operating temperature range; and the lens 80 in FIG. 2 is an optional device for The concentrated/lighted laser light 206 reflected by the reflecting surface 401 is output to the outside. As shown in FIG. 5, it is a schematic structural view of a TO-can packaging mode of the first embodiment of FIG. 2. The overall structure of the first embodiment shown in FIG. 2 can be disposed in a TO-can package 12, and includes a TO-can lens 121 and a TO-can cap. 122, a TO-can header 123 and a TO-can electrical connection of TO-can 124' can be used to control and detect the TO-can electrical connection 124 The above-mentioned apparatus of the entire structure of the first embodiment shown in Fig. 2 is as described above. <Second Embodiment> Referring to Fig. 6, there is shown a package structure diagram of a second embodiment of the micro wavelength conversion photovoltaic device of the present invention. The micro-wavelength conversion light 16 of the present embodiment is formed by assembling a general optical component such as a metal holder which is commonly used in a transmission optical sub-assembly (TOSA). The architecture includes: a first photodetector 10, a laser 20 can be a DBR laser, a wavelength converter 30 can be a PPLN (Periodically Poled Lithium Niobate) crystal, and a spectroscopic device 40 can be a beam splitter, The second photodetector 5 is provided with at least one iterative logic circuit 60 (not shown in FIG. 6) in the associated circuit system, and the present embodiment is shown in FIG. 6, in the laser 20 and wavelength conversion. A lens 70 can be disposed between the devices 30 for focusing the light emitted by the laser 20 to the wavelength converter 30. The lens 70 can be a single lens or a lens system with a plurality of lenses, which can be a A spherical mirror, an aspherical mirror, a GRIN lens or other optical device that can concentrate/focus the laser beam, but if the laser light 204 enters the wavelength converter 30, the lens 70 is non- necessary. In this embodiment, a lens 80 and a protective cover lens 81 are provided. The lens 80 is an optional device for collecting/focusing the laser light 206 reflected by the reflecting surface 401 and outputting it outward. The architecture of the micro-wavelength conversion optoelectronic device 1b of the present embodiment has a coaxial adjustment function, which utilizes a metal first metal holder 13 to position and assemble the first photodetector 1 and the laser. 20 and/or I1 lens, and using a metal second metal holder 14 to positionally assemble the wavelength converter 30, the spectroscopic device 40 and the second photodetector 50 and/or the lens 80, and protect The outer cover lens 81; and the first outer sleeve (metal holder) 13 and the second outer metal sleeve 14 are adjusted to align the two to an optimal position, and then the first outer sleeve The barrel 13 and the second outer sleeve 14 are positioned and bonded together. <Third Embodiment> Referring to Fig. 7, there is shown a package structure diagram of a third embodiment of the micro wavelength conversion photovoltaic device of the present invention. The package structure of the micro wavelength conversion optoelectronic device 1 c of this embodiment is similar to the micro wavelength conversion light 17 of the second embodiment. 201001851 The electric device lb ' also adjusts the first outer metal sleeve 13 and the second outer sleeve. (Metal holder) 14 has a coaxial adjustment function; in this embodiment, a temperature sensing device 90 is respectively disposed on the laser 20 and the wavelength converter 30 to detect the temperature thereof, and a temperature control The temperature control device 91, such as a TE-cooler to control the temperature, can relatively expand the operating temperature range of the embodiment, thereby improving the efficiency of use of the micro-optoelectronic device. <Fourth embodiment>

參照圖8所示,其係本發明微型波長轉換光電裝置第 四實施例之封裝結構示意圖。本實施例之微型波長轉換光 電裝置Id之封裝結構類似於第二實施例之微型波長轉換光 電4置lb ’可藉調整第一外套筒(metai holder) 13及第二外 套筒(metalholder)14而具有同軸式調校功能;而本實施例 之微型波長轉換光電裝置1 d與第二實施例之微型波長轉換 光電裝置lb二者之間的不同處在於:本實施例微型波長轉 換^,裝置1 d之第二光電檢測器50係組裝在雷射光205經 過分光裝置40之相對側,即小部分雷射光2〇7係穿透分光 裝f 40而約與雷射光205平行並射至第二光電檢測器5〇 ; 二實施例微型波長轉換光電裝置lb之封裝結構中,其 =光裝置40之分光鏡結構功能不同,使其第二光電檢測器 可組裝在雷射光束(2〇5)經過分光裝置4〇反射呈9〇度角 面:即與雷射光205垂直,也就是第二實施例微型波 ,換光電裝置lb之第二光電檢測㈣係組裝在雷射光 經過分光裝置4〇之9〇度垂直侧, 經由分光裝置40反射而與雷射光20;▲二一2〇: 電檢測器50。 世旦工耵芏弟一九 <第五實施例> 參照圖9所示,其係本發明微型波長轉換光電裝置第 18 201001851 五實施例之封裝結構示意圖。本實施例之微型波長轉換光 電裝置le之封裝結構類似於第四實施例之微型波長轉換光 電裝置Id’也藉調整第一外套筒(metal holder) 13及第二外 套筒(metalholder)14而具有同軸式調校功能;而本實施例 另於雷射20及波長轉換器30上分別設具一溫度感測器 (temperature sensing device)90以檢測其溫度,及一溫度控 制器(temperature control device)91 如致冷器(TE-cooler)以 控制溫度,可相對擴大本實施例之操作溫度範圍,藉以增 進微型光電裝置之使用效率。 再以本發明具有自動校正功能之微型波長轉換光電裝 置而§ ’轉換則之雷射波長λ〗必須吻合(coincident with)波 長轉換器之最大轉換波長(maximum conversion wavelength)^,以使雷射波長(λι)轉換成雷射波長^的轉 換工作達成最大波長轉換效率(maximum wavelength conversion wavelength),然而,雷射波長\及波長轉換器 之最大轉換波長(maximum conversion wavelength) &將隨著 雷射及波長轉換器之溫度改變而改變,也就是當轉換前波 長(λ〇必須達到或吻合(coincident with)某一特定之轉換前 雷射波長時,即稱為最大轉換波長(maximum conversion wavelengthAc) ’ 其波長轉換效率(wavelength conversion efficiency)才可達到最大值,也就是達成最佳運作狀態, 而當轉換前波長(λ〖)未吻合(coincident with)其最大轉換波 長(λ〇)時,如小於或大於該最大轉換波長\,其波長轉換 效率即降低;然而,一雷射光源之雷射波長(轉換前)或 一波長轉換器之最大轉換波長^皆是隨其雷射裝置或波長 轉換器之溫度改變而變化,而環境溫度將改變該雷射裝置 及波長轉換器之溫度’而且一雷射光源之雷射波長(轉換 前)及一波長轉換器之最大轉換波長&相對於溫度每一度 的溫度改變率(changing rate of temperature per 19 201001851 temperature)是不同的,如假芍太登 雷射光源之雷射波長(轉換前°)剛=度下- 境溫度改變時,上述之雷射波長,則當環 之最大轉換波長\就不再相同(吻合、^與波長轉換器 也降”d—ded);因此’針對一;轉:以=率 言’當環境溫度改變時仍然使雷射波長裝” 轉換器之最大轉換波長\保持相同、與波長 性。 、刃σ )疋有其必要Referring to Fig. 8, there is shown a package structure diagram of a fourth embodiment of the micro wavelength converting photovoltaic device of the present invention. The package structure of the micro wavelength conversion optoelectronic device Id of this embodiment is similar to the micro wavelength conversion photoelectric device 4 of the second embodiment. The first outer sleeve 13 and the second outer sleeve can be adjusted. 14 has a coaxial adjustment function; and the difference between the micro wavelength conversion photoelectric device 1 d of the present embodiment and the micro wavelength conversion photoelectric device 1b of the second embodiment is: the micro wavelength conversion ^ of the embodiment The second photodetector 50 of the device 1 d is assembled on the opposite side of the laser beam 205 passing through the beam splitting device 40, that is, a small portion of the laser light 2 〇 7 is transmitted through the spectroscopic device f 40 and is parallel to the laser light 205 and is incident on the first Two photodetectors 5〇; in the package structure of the micro-wavelength conversion optoelectronic device 1b of the second embodiment, the splitter mirror structure of the optical device 40 has different functions, so that the second photodetector can be assembled in the laser beam (2〇5) ) is reflected by the spectroscopic device 4 at an angle of 9 degrees: that is, perpendicular to the laser light 205, that is, the micro wave of the second embodiment, and the second photodetection (4) of the photoelectric conversion device lb is assembled in the laser beam passing through the spectroscopic device 4 9〇 Vertical side, through a beam splitter 40 and reflected laser light 20; ▲ twenty-one 2〇: an electrical detector 50. The fifth embodiment of the present invention is shown in Fig. 9, which is a schematic diagram of the package structure of the fifth embodiment of the micro wavelength conversion photoelectric device of the present invention. The package structure of the micro wavelength conversion photoelectric device le of the present embodiment is similar to that of the micro wavelength conversion photoelectric device Id' of the fourth embodiment by adjusting the first outer metal holder 13 and the second outer metal holder 14 The coaxial calibration function is provided. In this embodiment, a temperature sensing device 90 is respectively disposed on the laser 20 and the wavelength converter 30 to detect the temperature thereof, and a temperature controller (temperature control) Device) 91, such as a refrigerator (TE-cooler) to control the temperature, can relatively expand the operating temperature range of the embodiment, thereby improving the efficiency of use of the micro-optoelectronic device. Further, in the micro wavelength conversion photoelectric device having the automatic correction function of the present invention, the laser wavelength λ of the conversion must be coincident with the maximum conversion wavelength of the wavelength converter to make the laser wavelength (λι) conversion to laser wavelength ^ conversion work to achieve maximum wavelength conversion efficiency (maximum wavelength conversion wavelength), however, the laser wavelength \ and wavelength converter maximum conversion wavelength (maximum conversion wavelength) & will follow the laser And the temperature of the wavelength converter changes, that is, when the wavelength before conversion (λ〇 must be achieved or coincident with a particular pre-conversion laser wavelength, it is called the maximum conversion wavelength Ac (maximum conversion wavelength Ac) The wavelength conversion efficiency can reach the maximum value, that is, the optimal operating state is achieved, and when the wavelength before the conversion (λ 〖) is not coincident with its maximum conversion wavelength (λ〇), such as less than Or greater than the maximum conversion wavelength\, the wavelength conversion efficiency is reduced; however, The laser wavelength of the laser source (before conversion) or the maximum conversion wavelength of a wavelength converter is changed with the temperature of the laser device or the wavelength converter, and the ambient temperature will change the laser device and wavelength conversion. The temperature of the device 'and the laser wavelength of a laser source (before conversion) and the maximum conversion wavelength of a wavelength converter & temperature change rate (changing rate of temperature per 19 201001851 temperature) is different For example, if the laser wavelength of the laser light source (pre-conversion) is just under the degree - the temperature of the above-mentioned laser changes, then the maximum conversion wavelength of the ring is no longer the same (consistent, ^ And the wavelength converter also drops "d-ded"; therefore 'for one; turn: to = rate 'when the ambient temperature changes, the laser wavelength is still installed" converter maximum conversion wavelength \ remain the same, and wavelength. , blade σ ) has its necessity

如圖10所示’其係揭示一種當環境溫度改 波長(轉換前)與波長轉換器之最大轉 射 (吻合)的方法,其中·· 得換波長、保持相同 L是由第一光電檢測器10所量測取得之 第-光電檢測UK)所接收到之光功率成比例,其與雷H 由一側面201發出之雷射光功率2〇2成比例的,也S射 20由一側面203發出之雷射光2〇4之功率(ρι)成比例;l 提供重覆邏輯(iteration l0gic)電路6〇之調控方式以控 雷射20之波長λ丨所需之資料;此外,j】可提供雷射光:率 控制邏輯(laser power control logic)以控制雷射之光功率 (the P〇wer 〇f the laser)所需之資料,即自動光功率控制 (即 APC,Auto-Power control),一例是使 P1 維持不變 當雷射20溫度改變時;例如當雷射2〇溫度增加時,pi降 低及11降低’然後’雷射光功率控制邏輯(laser power control logic)增加雷射 2〇之注入電流(injecu〇n current), 可將雷射之光功率拉回原來的水準。 是由第二光電檢測器5〇所量測取得之光電流,其與 第二光電檢測器50所接收到之雷射光207之功率成比例, 其與波長&雷射光205之功率成比例的;由於波長轉換器 30之波長轉換效率是決定於(&_&),吾人可設定波長轉換 201001851 轉換效率為C(X<1_Ac) ’即c為(λι-、)的函數, =ίίΐί,換效率為成比例,藉Ζ。導 出本發明之自動校正方法。 ▼ 於、古!=自動將!射光204的波長λι隨時調控並鎖定等 ί3:,(最大)轉換波長…)的自動^ i ϊ n 率鎖定(p〇wer __ ΐί置交正功能之微型波長轉換光 ^置1可達成最大輸出功率敎(p〇wermaxi_As shown in FIG. 10, it discloses a method for changing the wavelength (before conversion) to the maximum conversion (matching) of the wavelength converter, wherein the wavelength is changed and the same L is maintained by the first photodetector. The optical power received by the 10th measured photo-detection UK) is proportional to the laser light power 2〇2 emitted by the side H of the side H, and the S-ray 20 is emitted by a side 203. The power of the laser light 2〇4 is proportional to the power (ρι); l provides the information of the repeating logic (iteration l0gic) circuit 6〇 to control the wavelength of the laser 20 λ丨; in addition, j] can provide lightning Light: The power required by the laser power control logic to control the laser power (the P〇wer 〇f the laser), ie, the automatic optical power control (APC, Auto-Power control), an example is Keep P1 constant when the temperature of the laser 20 changes; for example, when the temperature of the laser 2〇 increases, the pi decreases and the 11 decreases. Then the laser power control logic increases the injection current of the laser 2〇. (injecu〇n current), can be laser The optical power is pulled back to its original level. Is the photocurrent obtained by the second photodetector 5?, which is proportional to the power of the laser light 207 received by the second photodetector 50, which is proportional to the power of the wavelength & laser light 205. Since the wavelength conversion efficiency of the wavelength converter 30 is determined by (&_&), we can set the wavelength conversion 201001851 conversion efficiency to C(X<1_Ac) 'that is, c is a function of (λι-,), =ίίΐί, The conversion efficiency is proportional and borrowed. The automatic correction method of the present invention is derived. ▼ Yu, ancient! = Automatically! The wavelength λι of the illuminating light 204 is controlled and locked at any time. ί3:, (maximum) conversion wavelength...) automatic ^ i ϊ n rate locking (p〇wer __ ΐ 置 置 positive function of the miniature wavelength conversion light ^ set 1 to achieve maximum output Power 敎 (p〇wermaxi_

lockmg)機制之功效;請同時參照圖1〇所示,本發明之自 動校正方法可包含以下步驟: ium 提供一波長轉換光電裝置;該波長轉換光電裝置(1) 至少包含一雷射(20)及一波長轉換器(3〇),其中該雷射2〇 可由其一側面(203)發出已知波長(λ〇之雷射光(2〇4)以 射入波^轉換器(30)之入射面(3〇1);其中該波長轉換器 (30)可藉其入射面(3〇1)以接收由雷射所發出波長&之雷 射光功率(204)並以倍頻原理轉換產生波長^之雷射光 (205)而由其出射面(3〇2)向外輸出,其中該波長轉換器 (30)相對於入射之雷射光(2〇4)的波長有一最大波長轉換 效率及一達成最大轉換效率時之最大轉換波長(maximi conversion wavelength)Ac ; 知:供一第一光電檢測器(PD,photo detector)(10)& — 第二光電檢測器(PD)(50),其中該第一光電檢測器(ίο)係 設於前述雷射(20)之一側面(201)處用以接收並可同時量 測由該雷射(20) —側面(201)所發出之一小部分已知波長 (\)雷射光(202)之功率的電流L ;其中該第二光電檢測 器(50)係設於前述波長轉換器(3〇)之出射面(302)處,用 以接收並可同時量測由該波長轉換器(30)之出射面(302) 所發出之已轉換為波長(λ2)之雷射光(205)之一小部分已 21 201001851 知波,(¾)之雷射光(2〇7)之功率之電流i2,· & (、至少一重覆邏輯(iteration logic)電路(60),其 根提供之資料以進行所設定之重覆邏輯運算功能;、 瓜择鏺π I ί波長轉換器(3〇)之轉換效率在使用中因環境 低時、:即入射波長轉換器⑽之雷射光 大波导鯓拖^ϊ當時最大轉換波長心不同而無法達成最 所暑二轉f效率時’可以第一、二光電檢測器(10、50) 香薄。112兩電流之間的比例值12/11當作參數,並藉 r 利用iiiii60)以進行所設定之重覆邏輯運算功能,以 所發出ΐ射光?注入電流,以自動調控雷射(2〇) 型ϊ 轉換器(30)之最大轉換波長、,藉以 . ,置(1)之波長轉換效率(conversion e IClency、)達成並持續維持在最佳運作狀態。 是述僅為本發明的優選實施例’對本發明而言僅 理本發明權利要求所限定的精神“圍内可ί 明的保護範圍内。甚至4效變更,但都將落入本發 【圖式簡單說明】 =·係本發明微型波長轉換光電裝置之基本架構示意 7|\ 圖。 電裝置第一實施例之結構 圖3 :係圖2中第—光電檢測器 圖4 :係圖2中第-目,丨堪句1^、,°構不意圖 圖5 .後R 9 I :先電榀測器之局部結構示意圖。 packaging)模式之結構示意圖。 妒(_ 圖6 :係本發明微型波長轉換光電裝置第二實施例之封| 22 201001851 結構不意圖。 圖7 :係本發明微型波長轉換光電裝置第三實施例之封裝 結構不意圖。 圖8 :係本發明微型波長轉換光電裝置第四實施例之封裝 結構示意圖。 圖9 :係本發明微型波長轉換光電裝置第五實施例之封裝 結構示意圖。 圖10 :係本發明微型波長轉換光電裝置之自動校正方法功 能方塊示意圖。 Ο 【主要元件符號說明】 微型波長轉換光電裝置1、la、lb、lc、Id、le 第一光電檢測器10 入射面101 電子接觸板塾(electronic contact pad)102、103、104 第一光電檢測器晶片105 基板(substrate ) 106 接收光圈(receiving aperture) 107 反射面108 Ο 基板11 TO-can 封裝 12 TOcan 鏡片(TO-canlens)121 TO-can 蓋(TO-can cap)122 TO-can 承座(TO-can header) 123 TO-can 電性連結部(electronic connection of TO-can) 124 第一外套筒(holder) 13 第二外套筒(holder) 14 雷射20 側面 201、203 23 201001851 雷射光 202、204、205、206、207 波長轉換器30 入射面301 出射面302 分光裝置40 入射面401 第二光電檢測器50 第二光電檢測器晶片501 接收光圈(receiving aperture)502 電子接觸板墊503、504、505 基板(substrate)506 入射面507 反射面508 重覆邏輯(iteration logic)電路60 鏡片70 鏡片80 外罩鏡片81 溫度感測器(temperature sensing device)90 溫度控制器(temperature control device)91 24The function of the lockmg) mechanism; please also refer to FIG. 1A, the automatic calibration method of the present invention may comprise the following steps: ium providing a wavelength conversion optoelectronic device; the wavelength conversion optoelectronic device (1) comprising at least one laser (20) And a wavelength converter (3 〇), wherein the laser 2 〇 can emit a known wavelength (λ 〇 laser light (2 〇 4) from one side ( 203 ) to enter the wave converter ( 30 ) Surface (3〇1); wherein the wavelength converter (30) can receive the wavelength of the laser light emitted by the laser (204) by its incident surface (3〇1) and convert the wavelength by the frequency doubling principle The laser light (205) is outputted outward by its exit surface (3〇2), wherein the wavelength converter (30) has a maximum wavelength conversion efficiency with respect to the wavelength of the incident laser light (2〇4) and an achievement Maximum conversion wavelength at the time of maximum conversion efficiency Ac; for: a first photodetector (PD) (10) & - a second photodetector (PD) (50), wherein The first photodetector (ίο) is disposed at one side (201) of the aforementioned laser (20) for connection And simultaneously measuring the current L of a small portion of the known wavelength (\) of the laser light (202) emitted by the laser (20) - the side (201); wherein the second photodetector (50) Is disposed at an exit surface (302) of the wavelength converter (3) for receiving and simultaneously measuring the converted wavelength (λ2) emitted by the exit surface (302) of the wavelength converter (30) a small portion of the laser light (205) has been 21 201001851 知波, (3⁄4) laser light (2〇7) power current i2, · & (at least one repeat logic (iteration logic) circuit (60 ), the root provides the data to perform the reset logic operation function; the conversion efficiency of the 鏺π I ί wavelength converter (3〇) is low in use when the environment is low: the incident wavelength converter (10) The laser light is large and the wavelength of the waveguide is different. When the maximum conversion wavelength is different, it is impossible to achieve the best heat transfer rate. 'The first and second photodetectors (10, 50) are thin. The ratio between the two currents is 112. The value 12/11 is taken as a parameter, and r is used by iiiii60) to perform the set repeated logic operation function. The spurt light is injected to inject current to automatically control the maximum conversion wavelength of the laser (2〇) type ϊ converter (30), and the wavelength conversion efficiency (conversion e IClency) of (1) is achieved and maintained. In the best mode of operation, it is to be understood that the preferred embodiment of the invention is only within the scope of the invention as defined by the appended claims. Even 4 effects change, but will fall into the hair [Simplified description of the figure] = · is the basic architecture of the micro-wavelength conversion optoelectronic device of the present invention 7|\ Figure. The structure of the first embodiment of the electric device is shown in Fig. 3: Fig. 2 is the first photodetector in Fig. 2. Fig. 4 is the first item in Fig. 2, and the Fig. 2 is not shown in Fig. 5. After R 9 I: A schematic diagram of the local structure of the electric detector. Schematic diagram of the packaging mode.妒 (_ Figure 6 is a seal of the second embodiment of the micro-wavelength-converting photovoltaic device of the present invention | 22 201001851 The structure is not intended. Figure 7 is a schematic view of the package structure of the third embodiment of the micro-wavelength-converting photovoltaic device of the present invention. Fig. 9 is a schematic view showing the package structure of the fifth embodiment of the micro wavelength conversion photoelectric device of the present invention. Fig. 9 is a schematic view showing the package structure of the fifth embodiment of the micro wavelength conversion photoelectric device of the present invention. Schematic diagram of the function of the automatic correction method Ο [Description of main component symbols] Micro-wavelength conversion optoelectronic device 1, la, lb, lc, Id, le First photodetector 10 Incident plane 101 Electronic contact pad 102, 103, 104 First Photodetector Wafer 105 Substrate 106 Receiving aperture 107 Reflecting surface 108 基板 Substrate 11 TO-can Package 12 TOcan lens (TO-canlens) 121 TO-can cover (TO-can cap ) 122 TO-can header (TO-can header) 123 TO-can electronic connection of TO-can 124 first outer sleeve (holder) 13 second Sleeve 14 Laser 20 Side 201, 203 23 201001851 Laser light 202, 204, 205, 206, 207 Wavelength converter 30 Incidence surface 301 Exit surface 302 Spectroscopic device 40 Incidence surface 401 Second photodetector 50 Second Photodetector wafer 501 Receiving aperture 502 Electronic contact pad 503, 504, 505 Substrate 506 Incidence surface 507 Reflecting surface 508 Iteration logic circuit 60 Lens 70 Lens 80 Cover lens 81 Temperature sense Temperature sensing device 90 temperature control device 91 24

Claims (1)

201001851 十、申請專利範圍: 1、一種具有自動校正功能之微型波長轉換光電裝置,包 含一第一光電檢測器、一雷射、一波長轉換器、一分 光裝置、一第二光電檢測器及至少一重覆邏輯 (iteration logic)電路設在相關之電路系統中,其 中: 第一光電檢測器,其係設於雷射之一側面處,用以接 收由該雷射一側面所發出一小部分已知波長(\)之雷 射光並同時量測得知該雷射光功率之電流(D ; 雷射,其係由其一側面發出一小部分已知波長(\)雷 射光以射入第一光電檢測器,並可由其另一側面發出 大部分已知波長(λ〇之雷射光並聚焦射至波長轉換器 之入射面,又可利用調變雷射之注入電流(injection current’ IL)以改變雷射所發出之雷射光之波長 (λ〇 ; 波長轉換器,其係設於雷射之一側面處以藉其入射面 接收由雷射一側面所發出波長(λ!)之雷射光並以倍頻 原理轉換產生不同波長(λ2)之雷射光而由其出射面向 外輸出,又其相對於入射之雷射光的波長有一最大波 長轉換效率’其中當入射之雷射光功率的波長(^)等 於波長轉換器之最大轉換波長(χ〇)時,可使波長轤 器之波長轉換工作達成最大波長轉換效率; 、 分光裝置,其係設有一入射面用以將由波長轉換器之 出射面所輸出之波長(β之雷射光分成一大部分^射 光以向外輸出及一小部分雷射光以射至第二光電檢測 器; 第二光電檢測器,其係用以接收由分光裝置所傳送之 小部分已知波長(¾)之雷射光並同時量測得知該雷 光功率之電流(12); ' 25 201001851 重覆邏輯(iteration logic)電路,其係可根據所提供 的參數以進行重覆邏輯運算; 其中’當上述波長轉換器之轉換效率在使用中因環境 溫度變化而降低時’則可藉上述第一、二光電檢測器 所量測之兩電流(1丨、12)之間的比例值(12/1丨)當 作參數’並藉上述重覆邏輯(iteration logic )電路以 進行重覆邏輯運算’藉以調控上述雷射之注入電流 (injection current),以調控上述雷射所發出雷射光的 波長(λ!),以自動將雷射光的波長(λι;)調控並鎖定等 於波長轉換器之最大轉換波長(Ac),藉以使微型光電 裝置之波長轉換效率(conversion efficiency)達成並 持續維持在最大波長轉換效率。 2、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該第一光電檢測器係選自單晶片及一具有數 個光電裝置之模組中一種。 3、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該雷射係選自一半導體雷射(semiconductor laser)、二極體固態(diode pumped solid state , DPSS)雷射、單晶片雷射(DFB,multi-section DBR laser)、一具有數個光電裝置之模組中一種。 4、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該雷射進一步可設具一溫度感測器以檢測其 溫度及一溫度控制器以控制其溫度。 5、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該波長轉換器係為一堆疊材料構成之晶體。 6、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該波長轉換器係為一波導(waveguide)材料 以由其入射面接收雷射光。 7、 如申請專利範圍第1項所述之微型波長轉換光電裝 26 201001851 置,其中該波長轉換器進一步可設具一溫度感測器以 檢測其溫度及一溫度控制器以控制其溫度。 8、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該分光裝置之入射面可為配合入射之雷射光 波長(λ》之部分反射材料。 9、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該分光裝置之入射面可增設一配合入射之雷 射光波長(^)之部分反射分光鏡。 10、 如申請專利範圍第1項所述之微型波長轉換光電裝 置’其中該第二光電檢測器係選自單晶片及一具有數 個光電裝置之模組中一種。 11、 如申請專利範圍第1項所述之微型波長轉換光電I 置’其中在該雷射及波長轉換器之間可設置一聚^/ 聚光用鏡片。 12、 如申請專利範圍第1或11項所述之微型波長轉換光電 裝置’其進—步可利用一支撐用基板(substrate)以定 位設置該第一光電檢測器、雷射、鏡片、波長轉換器 及第二光電檢測器,並藉基板以提供雷射之電性連 結。 ° 13、如申請專利範圍第1項所述之微型波長轉換光電裝 置,其中該微型波長轉換光電裝置可採用T〇_ean"封 裝(TO-can packaging)。 14、 如申請專利範圍第丨項所述之微型波長轉換光電裝 置,其進一步可利用一金屬質第一外套筒以定位組裝 該第一光電檢測器及雷射,並利用一金屬質之第二外 套筒以定位組裝該波長轉換器、分光裝置及第二光電 檢測器,且第一外套筒及第二外套筒之間可對^對位 調整同軸再定位黏結成一體。 15、 一種微型波長轉換光電裝置之自動校正方法,包含以 27 201001851 下步驟: ^供-波長轉換光電裝置,其至少包含 =換=其中該雷射可由其—側面發出已知^長,皮 (λ!)之雷射光以射入波長轉換器之入射面,其 長轉換器可藉其入射面以接收由雷射所發出二波^ (入丨)之雷射光並以倍頻原理轉換產生不同波/ ίΐί:由i出射面向外輸出,其中該波長轉換2器相 對1入射之雷射光的波長具有一最大波長轉換效率及 一達成最大轉換效率時之最大轉換波長(λχ0;201001851 X. Patent application scope: 1. A miniature wavelength conversion photoelectric device with automatic correction function, comprising a first photodetector, a laser, a wavelength converter, a spectroscopic device, a second photodetector and at least An iterative logic circuit is disposed in the associated circuit system, wherein: a first photodetector is disposed at one side of the laser for receiving a small portion of a portion of the laser that has been emitted Knowing the wavelength (\) of the laser light and simultaneously measuring the current of the laser light power (D; laser, which emits a small portion of the known wavelength (\) laser light from one side to enter the first photoelectric The detector can emit most of the known wavelength from the other side (the laser light of λ〇 and focus on the incident surface of the wavelength converter, and can also change the injection current (IL) of the modulated laser to change The wavelength of the laser light emitted by the laser (λ 〇; the wavelength converter, which is disposed at one side of the laser to receive the laser light of the wavelength (λ!) emitted by one side of the laser by its incident surface and multiplied The principle conversion produces laser light of different wavelengths (λ2) and is emitted outwardly from the output, and has a maximum wavelength conversion efficiency with respect to the wavelength of the incident laser light. Wherein the wavelength of the incident laser light power (^) is equal to the wavelength conversion When the maximum conversion wavelength (χ〇) of the device is used, the wavelength conversion operation of the wavelength buffer can achieve the maximum wavelength conversion efficiency; and the spectroscopic device is provided with an incident surface for outputting the wavelength output by the exit surface of the wavelength converter ( The beta laser light is split into a large portion of the light to output outward and a small portion of the laser light is directed to the second photodetector; the second photodetector is configured to receive a small portion of the light transmitted by the spectroscopic device. Wavelength (3⁄4) of laser light and simultaneously measuring the current of the lightning power (12); ' 25 201001851 Iteration logic circuit, which can perform repeated logic operations according to the parameters provided; 'When the conversion efficiency of the above wavelength converter is reduced due to changes in ambient temperature during use', it can be measured by the above first and second photodetectors The ratio between the two currents (1丨, 12) (12/1丨) is taken as the parameter 'and the above-mentioned repeat logic circuit is used to perform the repeated logic operation' to control the injection current of the above laser ( Injection current) to regulate the wavelength (λ!) of the laser light emitted by the laser to automatically adjust and lock the wavelength of the laser light (λι;) to be equal to the maximum conversion wavelength (Ac) of the wavelength converter, thereby making the micro-photoelectric The wavelength conversion efficiency of the device is achieved and continuously maintained at the maximum wavelength conversion efficiency. 2. The micro wavelength conversion photovoltaic device according to claim 1, wherein the first photodetector is selected from a single wafer and One of the modules having several optoelectronic devices. 3. The micro-wavelength converting optoelectronic device of claim 1, wherein the laser is selected from the group consisting of a semiconductor laser, a diode pumped solid state (DPSS) laser, and a single A multi-section DBR (DFB), a module having several optoelectronic devices. 4. The micro-wavelength converting optoelectronic device of claim 1, wherein the laser further comprises a temperature sensor for detecting the temperature and a temperature controller to control the temperature thereof. 5. The micro-wavelength converting optoelectronic device of claim 1, wherein the wavelength converter is a crystal of a stacked material. 6. The microwavelength converting optoelectronic device of claim 1, wherein the wavelength converter is a waveguide material to receive laser light from an incident surface thereof. 7. The micro-wavelength conversion optoelectronic device 26 201001851 according to claim 1, wherein the wavelength converter is further provided with a temperature sensor for detecting the temperature and a temperature controller to control the temperature thereof. 8. The micro-wavelength converting optoelectronic device of claim 1, wherein the incident surface of the spectroscopic device is a partially reflective material that matches the incident laser light wavelength (λ). 9. Patent Application No. 1 The micro-wavelength-converting photoelectric device of the micro-wavelength-converting photoelectric device can be additionally provided with a partial reflection beam splitter that matches the incident laser light wavelength (^). 10. The micro-wavelength-converted photoelectric device according to claim 1 The device wherein the second photodetector is selected from the group consisting of a single chip and a module having a plurality of optoelectronic devices. 11. The micro wavelength conversion photoelectric device according to claim 1 is in which the A condenser lens can be disposed between the emitter and the wavelength converter. 12. The microwavelength conversion optoelectronic device according to claim 1 or 11 can use a supporting substrate (substrate) The first photodetector, the laser, the lens, the wavelength converter and the second photodetector are disposed by positioning, and the substrate is provided to provide an electrical connection of the laser. The micro-wavelength-converting photovoltaic device according to the first aspect of the patent, wherein the micro-wavelength-converting photovoltaic device can be used in a T〇_ean " TO-can packaging. 14. A miniature as described in the scope of the patent application The wavelength conversion optoelectronic device further utilizes a metal first outer sleeve to positionally assemble the first photodetector and the laser, and utilizes a second outer sleeve of metal to position and assemble the wavelength converter and split the light The device and the second photodetector, and the first outer sleeve and the second outer sleeve can be coaxially repositioned and bonded together in the alignment adjustment. 15. An automatic correction method for the micro wavelength conversion photoelectric device, comprising 27 201001851 Next steps: ^Supply-wavelength conversion optoelectronic device, which contains at least = change = where the laser can emit a known long length, skin (λ!) laser light to enter the incident surface of the wavelength converter The long converter can use its incident surface to receive the two-wave laser light emitted by the laser and convert it by the frequency multiplication principle to generate different waves / ίΐί: the output from i is output to the outside, wherein The wavelength conversion device has a maximum wavelength conversion efficiency relative to the wavelength of the incident laser light and a maximum conversion wavelength when the maximum conversion efficiency is achieved (λ χ 0; 提供一第一光電檢測器及一第二光電檢測器,其中詨 第二光電檢測器係設於上述雷射之另一側面處用以^ 收並可同時量測由該雷射另一側面所發出一小部分已 知波長(λ〇之雷射光功率之電流(1丨);其中該 電檢測器係設於前述波長轉換器之出射面處用以接收 並可同時量測由該波長轉換器之出射面所發出之已轉 換為一波長(λ2)之雷射光之一小部分已知波長α 射光功率之電流(12) ; ^ 長·供至少一重覆邏輯(iteration logic )電路,其可根 據所提供之資料以進行重覆邏輯運算; 其中’當波長轉換器之轉換效率在使用中因環境溫度 變化而降低時,可以第一、二光電檢測器所分別量^ 之兩電流(I! 、ΙΟ之間的比例值(L/L)當作參數, 並藉重覆邏輯電路以進行重覆邏輯運算功能,藉自動 改變雷射之注入電流以自動調控雷射所發出雷射光的 波長(λ〇 ’並自動將雷射光的波長(λι)鎖定等於波長 轉換器之最大轉換波長(Μ)。 28Providing a first photodetector and a second photodetector, wherein the second photodetector is disposed at the other side of the laser for receiving and simultaneously measuring the other side of the laser Generating a small portion of the known wavelength (the current of the laser light of λ〇 (1丨); wherein the electrical detector is disposed at the exit surface of the wavelength converter for receiving and simultaneously measuring by the wavelength converter a small portion of the laser light that has been converted to a wavelength (λ2) emitted by the exit surface by a known wavelength α (a) of the optical power (12); ^ long for at least one iteration logic circuit, which can be based on The information provided is used for repeated logic operations; where 'when the conversion efficiency of the wavelength converter decreases due to changes in ambient temperature during use, the first and second photodetectors can respectively measure the two currents (I! The ratio value (L/L) between ΙΟ is taken as a parameter, and the logic circuit is repeated to perform the function of repeating the logic operation, and the laser injection current is automatically changed to automatically adjust the wavelength of the laser light emitted by the laser (λ〇 'And from The wavelength of the laser light (λι) is locked to be equal to the maximum conversion wavelength (Μ) of the wavelength converter.
TW97123991A 2008-06-26 2008-06-26 A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method TW201001851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97123991A TW201001851A (en) 2008-06-26 2008-06-26 A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97123991A TW201001851A (en) 2008-06-26 2008-06-26 A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method

Publications (2)

Publication Number Publication Date
TW201001851A true TW201001851A (en) 2010-01-01
TWI361533B TWI361533B (en) 2012-04-01

Family

ID=44824985

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97123991A TW201001851A (en) 2008-06-26 2008-06-26 A micro wavelength conversion photonic device with self-calibration function, and its self-calibration method

Country Status (1)

Country Link
TW (1) TW201001851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785825A (en) * 2016-12-20 2017-05-31 深圳市大京大科技有限公司 A kind of diode pumped solid state laser
TWI801321B (en) * 2022-09-28 2023-05-01 財團法人工業技術研究院 Laser automatic compensation control device, laser processing system and laser automatic compensation control method using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733181B (en) * 2019-08-30 2021-07-11 致伸科技股份有限公司 Method and system for calibrating laser power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785825A (en) * 2016-12-20 2017-05-31 深圳市大京大科技有限公司 A kind of diode pumped solid state laser
TWI801321B (en) * 2022-09-28 2023-05-01 財團法人工業技術研究院 Laser automatic compensation control device, laser processing system and laser automatic compensation control method using the same

Also Published As

Publication number Publication date
TWI361533B (en) 2012-04-01

Similar Documents

Publication Publication Date Title
US6567435B1 (en) VCSEL power monitoring system using plastic encapsulation techniques
TW484269B (en) Method for obtaining a light wavelength monitor and device for forming a light wavelength monitor
US7397829B2 (en) Vertical external cavity surface emitting laser
TW201838276A (en) Compact mode-locked laser module
TW200845523A (en) Pulsed laser light source based on frequency conversion
US20060280220A1 (en) Optically-pumped vertical external cavity surface emitting laser
WO2019174384A1 (en) Laser projection module, depth camera, and electronic device
TWI361533B (en)
CN101673919B (en) Micro solid-state laser module
CN101625499B (en) Micro-wavelength converting optical device and autocorrecting method thereof
KR100898129B1 (en) Green laser module package
KR101053169B1 (en) THC parallel light package using SiOW
US11894658B2 (en) Power monitoring approach for VCSELS and VCSEL arrays
Crump et al. Cryogenic ultra-high power infrared diode laser bars
US20230275393A1 (en) Laser Emitting Apparatus, Laser Emitting Method, and Laser Wireless Charging System
US20070176179A1 (en) Vertical external cavity surface emitting laser including second harmonic generation crystal having mirror surface
JP2005101504A (en) Laser apparatus
Crump et al. Progress in high-energy-class diode laser pump sources
JP6593547B1 (en) Optical module
Sumpf et al. Narrow spectral linewidth 785 nm DBR tapered lasers with 7 W output power
Hildenstein et al. High-power, high-beam quality miniaturized laser module for pumping of solid state lasers at 980 nm
TW201012017A (en) A micro solid state laser module
US20160261089A1 (en) Hermetically sealed container for laser device
Hübner et al. High-brightness 1.4 kW 780 nm QCW laser pump module with low-loss coupling into 1 mm fiber up to 50% duty cycle
Steegmueller et al. Progress in ultra-compact green frequency doubled optically pumped surface emitting lasers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees