TWM349032U - Micro solid state laser module - Google Patents

Micro solid state laser module Download PDF

Info

Publication number
TWM349032U
TWM349032U TW97215976U TW97215976U TWM349032U TW M349032 U TWM349032 U TW M349032U TW 97215976 U TW97215976 U TW 97215976U TW 97215976 U TW97215976 U TW 97215976U TW M349032 U TWM349032 U TW M349032U
Authority
TW
Taiwan
Prior art keywords
solid
state laser
micro
wavelength
light
Prior art date
Application number
TW97215976U
Other languages
Chinese (zh)
Inventor
Zhi-xiao CHEN
Guo-Ren Chen
Ming-Hua Wen
Original Assignee
Alvis Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alvis Technologies Corp filed Critical Alvis Technologies Corp
Priority to TW97215976U priority Critical patent/TWM349032U/en
Publication of TWM349032U publication Critical patent/TWM349032U/en

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

M349032 出射端22 分光面31 載板50 底座60 入射端21 分光裝置30 光檢測器(PD ) 40 平面51 溫度控制器61 八、新型說明: 【新型所屬之技術領域】M349032 Exit end 22 Splitting surface 31 Carrier plate 50 Base 60 Incident end 21 Splitter 30 Photodetector (PD) 40 Plane 51 Temperature controller 61 Eight, new description: [New technical field]

本創作係有關一種料刑 一八#驻娶Λ技媒… t固態雷射模組’尤指一種利用 射:分:兩二= =方以將轉換後之雷 ,另第二道光束可穿過分光裝 至-先檢測器上,以使所有元件可封裝在平面上處理,= 終的輸出域又可垂直射出,且又可透過級測器直接摘 測到經過非線性晶體的光源以進行補償修正者。 【先前技術】 固癌雷射模組(solid state laser module )為常見的一 種光電 I 置(Photo-electronic/ Photonic Device),其係利用 波長轉換器(wavelength conversion device,或稱波長轉換 晶體)以倍頻原理將一已知波長之雷射光轉換成不同波長 (λ2)之雷射光如藍光、綠光等供可隨不同的需要而選擇 使用;因此光電裝置或雷射模組一般通稱為波長轉換光電 裝置(Wavelength Conversion Photonic Device)。 一光電裝置如本案所指之固態雷射模組’其可選擇使 用不同的結構設計之波長轉換器,而基本上每一種波長轉 3 M349032 換器在轉換前雷射光(波長λ!)及轉換後雷射光(波長 入2 )之間存在波長轉換效率(wavelength conversion efficiency from to λ2) ’且當轉換前雷射光之波長必 須匹配或吻合(coincident with)某一特定波長時(該特定波 長即稱為最大轉換波長maximum conversion wavelength λ。)’其波長轉換效率才可達到最大值,也就是達成最 大波長轉換效率(maximum wavelength conversionThis creation is related to a kind of material penalty. #特娶Λ技技... t solid laser module' especially refers to a kind of use: minute: two two = = square to convert the thunder, and the second beam can be worn The over-optical light is mounted on the first detector so that all components can be packaged on a flat surface, and the final output field can be emitted vertically, and the light source passing through the nonlinear crystal can be directly measured by the level detector. Compensation corrector. [Previous Technology] A solid state laser module is a common photo-electronic/photonic device, which uses a wavelength conversion device (or a wavelength conversion device). The principle of frequency doubling converts a laser of a known wavelength into laser light of different wavelengths (λ2) such as blue light, green light, etc., which can be selected according to different needs; therefore, the photoelectric device or the laser module is generally called wavelength conversion. Optoelectronic device (Wavelength Conversion Photonic Device). An optoelectronic device, such as the solid-state laser module referred to in the present invention, can select a wavelength converter that uses different structural designs, and basically each wavelength is converted to 3 M349032 converter before conversion laser light (wavelength λ!) and conversion There is a wavelength conversion efficiency from to λ2 between the rear laser light (wavelength into 2) and when the wavelength of the laser light before the conversion must match or coincide with a specific wavelength (the specific wavelength is called It is the maximum conversion wavelength maximum conversion wavelength λ.) 'The wavelength conversion efficiency can reach the maximum value, that is, the maximum wavelength conversion efficiency is achieved (maximum wavelength conversion efficiency)

efficiency )之最佳運作狀態’而當轉換前雷射光之波長 λ!未匹配或吻合(c〇incident with)其最大轉換波長心 時,如小於或大於該最大轉換波長(、),其波長轉換效 率即降低;然而,一雷射光之轉換前之波長(λι)或一波 長轉換器之最大轉換波長(、)皆是隨其雷射裝置或波長Efficiency) the wavelength of the laser light before the conversion λ! does not match or match (c〇incident with) its maximum conversion wavelength, such as less than or greater than the maximum conversion wavelength (,), its wavelength conversion The efficiency is reduced; however, the wavelength before the conversion of a laser light (λι) or the maximum conversion wavelength of a wavelength converter (,) is related to its laser device or wavelength.

轉換器之溫度改變而變化,而環境溫度又常會改變該雷射 裝置及波長轉換器之溫度,而且雷射光轉換前之波長 (λ!)及波長轉換器之最大轉換波長(、)相對於溫度每 度的溫度改變率(changing rate 〇f temperature per temperature)是不同的,如假設在某一特定環境溫度下一 雷射光之轉換前波長(M)剛好相同於一波長轉換器之最 大,換波長Ue),*當環境溫度改變時如改變(一般是 昇高)至另-溫度’上述雷射光之轉換前波長(Μ)與波 長轉換器之最大轉換波長因不同變化程度(即不 同改變率)而不再相同’即波長轉換效率會降低 _遍),使波長轉換光電裝置如本案之固態雷射模組 向外投射之雷射光,即轉換後雷射光( 預期之亮度;因此,針對一波長韓2 ',,、/達成 T対波長轉換先電裝置如本案之固 4 M349032 態雷射模組之使用而言,當環境溫度改變致波長轉換效率 相對降低時,此時調控固態雷射模組以達成並維持在最大 波長轉換效率,也就是回饋監控以增進固態雷射模組向外 投射之雷射光的亮度,是有其需要性及必要性的。 傳統式的固態雷射包含各種不同的結構設計,如二極 體泵固態(diode pumped solid state,簡稱 DPSS)雷射,但 大都有體積大(bulky)、須加外部聲光調變器(externai acoustic optical modulator )、低轉換效率(low conversion efficiency)、無溫度補償機制(no temperature compensation mechanism)及高能量耗損(large energy consumption)的缺點,如:US 4,731,795係採用同軸式的 方式來做組裝,其整組雷射模組之體積相當大,且構裝方 式較不易利用類式半導體封裝方式大量生產,且採用該方 式無法做直接回饋監控,故該固態雷射模組對於輸出功率 的穩定性較低。USM40,574與上述US4J31795類式之 間的差別在於構裝的結構有些不同,且不同點在於雷射到 非線性晶體的耦合鏡片上之的差異。US 5,187,714係須配 合特殊的封裝外殼,在平面構裝完成後只能從侧面發光 無法垂直射出,且無法做直接回饋監控,對於輸出功率的 穩定性較低。US 6,778,582揭示利用面射型雷射(VCSEy 並疊上非線性晶體(nonlinear crystal)最後再疊上一個反射 鏡’而上述結構係放置在一散熱基座(heat sink)上,其封 裝結構係採用垂直方向的堆疊技術,而其架構原理是利用 近紅外的面射型雷射,如l〇64nm的波長的光,經過邦綠 性晶體(倍頻晶體)轉換產生532nm的綠光,再經過外部 5 M349032 的反射鏡及面射型雷射的頂面共振放大以產生綠光。 pub. No. US 2008 / 0002745 A1揭示利用非投影區來做轉 換後光源波長補償,即利用非投影區地方來監控輸出光 (轉換後光源)功率的穩定性,其補償架構係利用經過波 長轉換器(wavelength converter)之後的光再利用分光鏡將 部分的光擷取到檢測器(detector),而利用檢測器所檢測的 電流值來判斷DBR雷射的中心波長及非線性晶體中心波長 是否有匹配,當檢測器所檢測的電流值變小時表示DBR雷 Φ 射的中心波長及非線性晶體中心波長沒有匹配,此時回饋 電路將會啟動(利用非投影區動作)調整DBR雷射phase section的電流值進而調整DBR雷射之中心波長,以達到輸 出光(轉換後光源)功率的穩定效果。美國康寧公司 (Corning Inc.)的論文「Wavelength Matching and Tuning in Green Laser Packaging using Second Harmonic Generation」係利用近紅外雷射二極體(DBR laser)發出波 長1064nm雷射光,並利用聚光鏡片將雷射光射入非線性 • 晶體(波長轉換器)中以使l〇64nm雷射光轉換成532nm 的綠光,其架構係分別在雷射二極體〇)BR laser)及非線性 晶體(波長轉換器)下方設置一溫度控制器及溫度感測 器,然此架構無法即時去做雷射二極體(DBR laser)及非線 性晶體(波長轉換器)中心波長的最佳化匹配,只能利用 量測所得的溫度去做假設雷射二極體(DBR laser)及非線性 晶體(波長轉換器)兩個中心波長的匹配,即調整雷射二 極體(DBR laser)及非線性晶體(波長轉換器)的溫度,以 讓個別的中心波長移動’因此會產生失真的情況,也就是 M349032 轉換後之輸出光的功率將隨外在溫度而產生變化。 目前固態雷射模組之應用範圍相當廣泛,包含:科學 研究方面如材料特性量測、科學用激發光源、太空遙測與 資源探測等;國防工業方面如雷射測距儀、雷射追蹤掃描 系統、雷射防衛武器等;工業與民生方面如材料處理(如 微機電系統MEMS加工、電阻裝飾、晶片標記)、水下攝 影及海底探測、非破壞性檢測、半導體晶圓檢測等;醫療 用途方面如眼科治療、皮膚治療、牙齒治療、牙科手術 籲等。目前固態雷射的產值已位居所有雷射模組排行的第四 位,已經深入到一般人的生活周遭。又目前固態雷射都是 以產生綠光及藍光為主。 目前固態雷射模組中常使用之波長轉換器可以是週期 性極化铌酸鐘晶體(peri〇dicaiiy p〇ie(j Lithium Niobate, 簡稱為PPLN )、釩酸鉀晶體(KTi0P04,簡稱為 KTP)、130、3丑0、入〇?等晶體,其中,沖1^具有較 高的波長轉換效率(可達到約50%);相對之下,ΚΤΙ>的 •轉換效率就低了許多(約5%〜10%),但因ΚΤΡ之轉換效率 對於外界溫度變化較不敏感,且元件價格相對ppLN低許 多’故若採用KTP為固態雷射模組的波長轉換器,將對於 性能要求不高的低價市場極具競爭力;又KTP為堆叠 、 (Bulk)的型態,其光耦合口徑較大,易於雷射光的輕 合;因此,本創作乃在此提出一種簡化的微型固態雷射模 組架構如一微型固態綠光雷射模組,而其封裝仍採用 T0_can封裝(TO-can packaging)模式,相較傳統的固態 (綠光)雷射模組,可望於模組之體積、性能、產能與& 7 M349032 格上,有壓倒性的競爭力。 【新型内容】 本創作主要目的乃在於提供一種微型固態雷射模組 (compact solid state laser module ),其係利用一分光裝置 如稜鏡(Prism)安排在波長轉換器之後方用以將射入之轉 換後雷射光分成兩道光束,一道光束垂直射出為主要輸出 光源,另一道光束穿過分光裝置如棱鏡並入射至一光檢測 器(PD)上,以使固態雷射、波長轉換器(非線性晶體)、 • 分光裝置如一稜鏡及光檢測器等所有元件可封裝在一平面 上處理而利於封裝在一較小的TO-can封襄(T〇_can packaging)中,且最終的輸出光源又可垂直向外射出;進 一步並可透過光檢測器直接偵測經過波長轉換器之轉換後 的雷射光以對輸出光源進行回饋補償及修正,藉以增進雷 射模組之使用效率且優於傳統固態雷射模組。 本創作再一目的乃在於提供一種微型固態雷射模組, 該雷射模組係透過光檢測器直接偵測經該波長轉換器之轉 Φ 換後雷射光以進行補償修正,如利用邏輯電路以控制提升 或降低固態雷射的驅動電流,或通知固態雷射所附設的溫 度控制器以進行溫度控制’藉以達成直接式監測效果,以 有效降低回饋補償之誤差,而優於傳統式的回饋補償方 式。 本創作又一目的乃在於提供一種微型固態雷射模組, 該雷射模組進一步可間接採用額外的微光學元件(mier〇 optics )以完成光粞合的需求,如採用光耦合鏡片 (coupling lens )或準直鏡片配合聚焦鏡片(c〇ilimator 8 M349032 lens + focusing lens )的間接光耦合方式,以取代原來的 直接光耦合方式’藉以大幅加大組裴定位精度的公差而有 利於量產化,且對於光能量的衰減相當小(小於2%), 不至於影響輸光雷射光之功率,藉以避免因直接光耦合方 式需要極高的組裝定位精度(約lum)致會挑戰組裝用機 台的極限而相對降低組裝作業效率。 本創作另一目的乃在於提供一種微型固態雷射模組, 該雷射模組進一步可配合利用一直角稜鏡(right angle pnsm )以回折由固態雷射至分光裴置之間的光路,使本 創作微型固態雷射模組之主要元件及相配合使用之微光學 疋件可排列形成二平行直列,藉以有效縮小本創作雷射模 之各置空間,以有利於封裝在一較小的TO-can封裝 中。 為達成上述目的’本創作之微型固態雷射模組主要利 用一固態雷射(8〇1丨(1伽把1&361')、一波長轉換器(或稱波 長轉換晶體 ’ wavelength conversion device )、一分光裝 置 (Prism )、及一光檢測器(photo detector,饈 i$L ΡΉ Λ >/τ 因能、4主要元件而依序設在一平面上構成,其中,該 ς、雷射係用以發射雷射光並人射至波長轉換器;該波長 係以倍頻原理將前述固態雷射所發射之雷射光的波 耪於.、成不同波長之雷射光如綠光並人射至分光裝置如-將:入,光裝置如一棱鏡係安排在波長轉換器後方用以 係it轉換後雷射光分成兩道光束,其中之第一道光束 源,2可垂直該設置平面而向外射出以成為主要輸出光 、令之第二道光束係穿過分S裝置如—棱鏡而入射至 9 M349032 光檢測器,該光檢測器係用以檢測第二道光束之光功率; 其中,利用該分光裝置如稜鏡之安排使所有元件可封裝在 一平面上處理,且有利於封裝在一較小的T〇_can型式之 封裝(T0-Can packaging )中,可有效減縮雷射模組之體 積、增進使用效率並簡化組裝結構,使本創作之微型固態 雷射模組在體積、性能、產能方面均優於傳統固態雷射模 組。 本創作進一步透過該光檢測器(PD )以直接偵測經 »亥波長轉換器轉換後之雷射光,並藉以做為回饋補償及修 正的依據’如利用邏輯電路以控制提升或降低固態雷射的 驅動電流,或通知其附加的溫度控制器如致冷器 (TE-c〇〇ler )以對固態雷射進行降溫的控制(因雷射模 組在使料魏度-般會昇高),藉以使所進行回饋補償 之誤差為最小而遠優於傳統式的回饋方式。 本創作微型固態雷射模組係利用前述之固態雷射、波 長轉換器、分光裝置如一稜鏡及光檢測器等主要元件依序 没在一平面上構成,其中,該等主要元件可在平面上以直 接光耦合方式排列形成一直列,以使其排列方式最為精簡 且所占空間亦為最小,以可容納在τ〇_5的構裝中。 又馨於上述之直接光耦合方式需要極高的組裝定位精 ,(約lum) ’致會挑戰組裝用機台的極限而相對降低組 裝作業致率,因此本創作之雷射模組進一步可間接採用額 外的彳政光學元件(micro optics )以取代原來的直接光耦 5方式’如採用光輕合鏡片(coupling lens )的光輕合方 式或準直鏡片配合聚焦鏡片(c〇Uimat〇r lens + focusing M349032 lens )的間接光耦合方式,藉以大幅加大組裝a 公差而有利於量產化,且對於光能量的衰減也精度的 於2% )’不至影響輸光雷射光之功率。 目虽小(小The temperature of the converter changes, and the ambient temperature often changes the temperature of the laser device and the wavelength converter, and the wavelength before the laser light conversion (λ!) and the maximum conversion wavelength of the wavelength converter (,) relative to the temperature The change rate 〇f temperature per temperature is different, as the wavelength (M) of the laser light is exactly the same as the maximum of a wavelength converter at a certain ambient temperature. Ue), * When the ambient temperature changes, such as changing (generally rising) to another temperature - the wavelength of the pre-conversion wavelength of the above-mentioned laser light (Μ) and the maximum conversion wavelength of the wavelength converter vary (ie, different rates of change) And no longer the same 'that is, the wavelength conversion efficiency will be reduced _ times, so that the wavelength conversion optoelectronic device, such as the solid-state laser module of the present case, projects the laser light outward, that is, the converted laser light (the expected brightness; therefore, for a wavelength Han 2 ',,, / achieve T 対 wavelength conversion power-on device, such as the use of the solid 4 M349032 state laser module in this case, when the ambient temperature changes cause wavelength conversion efficiency When it is relatively low, it is necessary and necessary to control the solid-state laser module to achieve and maintain the maximum wavelength conversion efficiency, that is, feedback monitoring to improve the brightness of the laser light projected from the solid-state laser module. Traditional solid-state lasers contain a variety of structural designs, such as diode pumped solid state (DPSS) lasers, but most of them are bulky, with external acousto-optic modulators ( Externai acoustic optical modulator ), low conversion efficiency, no temperature compensation mechanism, and large energy consumption. For example, US 4,731,795 uses a coaxial method. As for assembly, the entire group of laser modules is quite large, and the mounting method is not easy to mass-produce by the type semiconductor package, and the direct feedback monitoring cannot be performed by this method, so the solid-state laser module is for output power. The stability is low. The difference between USM40,574 and the above US4J31795 is that the structure of the structure is somewhat different. The difference lies in the difference between the laser and the coupled lens of the nonlinear crystal. US 5,187,714 must be matched with a special package casing. After the planar structure is completed, it can only be emitted from the side without vertical emission, and can not be directly feedback monitoring. The stability of the output power is low. US 6,778,582 discloses the use of a surface-emitting laser (VCSEy and a non-linear crystal stacked on top of a mirror) and the above structure is placed on a heat sink ( On the heat sink, the package structure adopts the vertical stacking technology, and the architecture principle is to use the near-infrared surface-emitting laser, such as the wavelength of l〇64nm, through the state green crystal (double frequency crystal) The conversion produces 532 nm of green light, which is then amplified by the external 5 M349032 mirror and the top surface of the surface-emitting laser to produce green light. Pub. No. US 2008 / 0002745 A1 discloses the use of non-projection areas for wavelength compensation of the source after conversion, that is, the use of non-projection areas to monitor the stability of the output light (converted light source) power, the compensation architecture utilizes wavelength conversion The light after the wavelength converter then uses a beam splitter to extract part of the light to the detector, and the current value detected by the detector is used to determine whether the center wavelength of the DBR laser and the center wavelength of the nonlinear crystal have Matching, when the current value detected by the detector becomes small, the center wavelength of the DBR lightning Φ and the center wavelength of the nonlinear crystal do not match. At this time, the feedback circuit will start (using the non-projection area action) to adjust the DBR laser phase section. The current value further adjusts the center wavelength of the DBR laser to achieve a stable effect of the output light (converted light source) power. Corning Inc.'s paper "Wavelength Matching and Tuning in Green Laser Packaging using Second Harmonic Generation" uses a near-infrared laser diode (DBR laser) to emit laser light with a wavelength of 1064 nm, and uses a condenser lens to emit laser light. Injection nonlinearity • Crystal (wavelength converter) to convert l〇64nm laser light into 532nm green light, the structure is in the laser diode (BR laser) and nonlinear crystal (wavelength converter) A temperature controller and a temperature sensor are arranged below, but the architecture can not immediately perform the optimal matching of the center wavelength of the laser diode (DBR laser) and the nonlinear crystal (wavelength converter), and can only use the measurement. The resulting temperature is used to match the two center wavelengths of a laser diode (DBR laser) and a nonlinear crystal (wavelength converter), that is, to adjust a laser diode (DBR laser) and a nonlinear crystal (wavelength converter). The temperature of the individual center wavelengths is shifted 'so as to cause distortion, that is, the power of the output light after the M349032 conversion will vary with the external temperature. At present, the application range of solid-state laser modules is quite extensive, including: scientific research such as material property measurement, scientific excitation light source, space telemetry and resource detection, etc.; defense industry such as laser range finder, laser tracking scanning system , laser defense weapons, etc.; industrial and people's livelihood such as material processing (such as MEMS processing, resistance decoration, wafer marking), underwater photography and seabed detection, non-destructive testing, semiconductor wafer testing, etc.; Such as ophthalmic treatment, skin treatment, dental treatment, dental surgery and so on. At present, the output value of solid-state lasers ranks fourth among all laser modules, and has penetrated into the lives of ordinary people. At present, solid-state lasers are mainly produced by producing green light and blue light. At present, the wavelength converter commonly used in solid-state laser modules can be a periodically polarized cesium clock crystal (peri〇dicaiiy p〇ie (j Lithium Niobate, abbreviated as PPLN), potassium vanadate crystal (KTi0P04, abbreviated as KTP). , 130, 3 ugly 0, into the 〇? and other crystals, in which rush 1 ^ has a higher wavelength conversion efficiency (up to about 50%); in contrast, ΚΤΙ > conversion efficiency is much lower (about 5 %~10%), but because the conversion efficiency is less sensitive to external temperature changes, and the component price is much lower than ppLN. Therefore, if KTP is used as the wavelength converter of the solid-state laser module, the performance requirements will be low. The low-priced market is very competitive; the KTP is a stacked, (Bulk) type, which has a large optical coupling diameter and is easy to lightly match the laser light; therefore, this creation proposes a simplified miniature solid-state laser mode. The group architecture is a miniature solid-state green laser module, and its package is still in the TO-can packaging mode. Compared with the traditional solid-state (green) laser module, the module is expected to have the volume and performance. , capacity and & 7 M349032 The new purpose of this creation is to provide a compact solid state laser module, which is arranged after the wavelength converter by using a spectroscopic device such as Prism. The beam is used to split the converted laser light into two beams, one beam is vertically emitted as the main output source, and the other beam is passed through a beam splitting device such as a prism and incident on a photodetector (PD) to make the solid state lightning. Shots, wavelength converters (non-linear crystals), • Spectroscopic devices such as a germanium and photodetector can be packaged on a single surface to facilitate packaging in a small TO-can package (T〇_can packaging And the final output light source can be emitted vertically outward; further, the converted laser light passing through the wavelength converter can be directly detected by the photodetector to compensate and correct the feedback of the output light source, thereby enhancing the laser mode The use efficiency of the group is superior to that of the conventional solid state laser module. Another object of the present invention is to provide a miniature solid state laser module, which is transmitted through the light. The detector directly detects the converted laser light after the conversion of the wavelength converter to perform compensation correction, such as using a logic circuit to control the driving current for raising or lowering the solid-state laser, or notifying the temperature controller attached to the solid-state laser to Temperature control 'to achieve direct monitoring effect, to effectively reduce the error of feedback compensation, and better than the traditional feedback compensation method. Another object of the present invention is to provide a miniature solid state laser module, the laser module Further indirect use of additional micro-optical elements (mier〇optics) to achieve photo-coupling requirements, such as using a coupling lens or a collimating lens with a focusing lens (c〇ilimator 8 M349032 lens + focusing lens) The indirect optical coupling method replaces the original direct optical coupling method to greatly increase the tolerance of the positioning accuracy of the group, which is beneficial to mass production, and the attenuation of the light energy is relatively small (less than 2%), which does not affect the light transmission. The power of laser light, in order to avoid the need for extremely high assembly positioning accuracy (about lum) due to direct optical coupling, which will challenge assembly Limit station assembly work efficiency is lowered relatively. Another object of the present invention is to provide a miniature solid state laser module, which can further cooperate with a right angle pnsm to fold back the optical path between the solid state laser and the spectroscopic device. The main components of the micro-solid-state laser module and the micro-optical components used in combination can be arranged to form two parallel in-line columns, thereby effectively reducing the space of the created laser mode to facilitate packaging in a smaller TO. -can package. In order to achieve the above objectives, the miniature solid-state laser module of the present invention mainly utilizes a solid-state laser (8〇1丨(1 gamma 1&361'), a wavelength converter (or wavelength conversion device). a light splitting device (Prism), and a photo detector (photo detector, 馐i$L ΡΉ Λ > / τ due to energy, 4 main components are sequentially arranged on a plane, wherein the ς, laser It is used to emit laser light and human to the wavelength converter; the wavelength is based on the frequency doubling principle to illuminate the laser light emitted by the solid-state laser to a different wavelength of laser light, such as green light, and to human The light splitting device, for example, enters, and the light device, such as a prism system, is arranged behind the wavelength converter for converting the laser light into two beams, wherein the first beam source, 2 can be perpendicular to the set plane and emitted outward. In order to become the main output light, the second beam is incident on the 9 M349032 photodetector through a sub-S device such as a prism, and the photodetector is used to detect the optical power of the second beam; wherein, the spectroscopic light is utilized Device arrangement All components can be packaged on a single surface and packaged in a small T-can package (T0-Can packaging), which effectively reduces the size of the laser module, improves efficiency and simplifies assembly. The structure makes the miniature solid-state laser module of this creation superior to the traditional solid-state laser module in terms of volume, performance and productivity. The creation further directly detects the through-wavelength converter through the photodetector (PD) The converted laser light is used as a basis for feedback compensation and correction 'such as using logic to control the drive current to boost or lower the solid state laser, or to inform its additional temperature controller such as a chiller (TE-c〇 〇ler) Controls the cooling of the solid-state laser (because the laser module will increase in the degree of the material), so that the error of the feedback compensation is minimized and far superior to the traditional feedback method. The micro-solid-state laser module of the present invention utilizes the above-mentioned solid-state laser, wavelength converter, and spectroscopic device, such as a sputum and a photodetector, to form a main component in a plane, wherein these main The components can be arranged in a direct optical coupling manner on the plane to form a straight line, so that the arrangement is the most compact and the space is also minimized, so as to be accommodated in the structure of τ〇_5. The coupling method requires a very high assembly and positioning precision. (About lum) 'I will challenge the limit of the assembly machine and reduce the assembly work rate. Therefore, the laser module of this creation can further indirectly use additional optics. (micro optics) to replace the original direct optocoupler 5 way 'such as the use of light coupling lens (coupling lens) light light combination or collimating lens with focusing lens (c〇Uimat〇r lens + focusing M349032 lens) indirect The optical coupling method is advantageous for mass production by greatly increasing the assembly tolerance, and the attenuation of the light energy is also 2% accurate. 'It does not affect the power of the transmitted laser light. Small but small

又#於一 TO-Can的構裝方式中其内部可供办 的空間相當有限,如以T0-5而言其内部可容/、谷玫元件 積約為,本創作之雷射模組進一兀件的面 用一直角稜鏡(right angle prism )以回折由固能可配合利 光裝置之間的光路,如使用一光耦合鏡片與一=、雷射至分 微光學元件(micro optics ),使固態雷射該角棱鏡等 射光先射入一光耦合鏡片再入射至一直角稜^以,射之雷 度回折,再射入一光耦合鏡片及後續之波長=生以0 裝置’使本創作微型固態雷射模組之主要元件、器及分光 用之微光學元件可排列形成二平行直列,藉以相配合使 創作雷射模組之容置空間,以有利於封裝效縮小本 TO-can封裝。 ’的 本創作微型固態雷射模組之固態雷射進一步可< 具 溫度控制器(temperature control device)如電阻式致熱 (thermal resistor)或致冷器(TE_C00ler)用以控制固^ j射 之溫度,當該光檢測器(PD )直接偵測經該波長^換器 轉換後之雷射光並欲進行回饋補償及修正時,即可通知該 溫度控制器進行溫度控制,並利用改變固態雷射之溫度的 方法以改變其所發射之雷射光波長,藉以將雷射光之波長 調整至等於或趨近波長轉換器之最佳轉換波長,以提昇雷 射模組之波長轉換效率(conversion efficiency )而增進其 使用效率。至於本創作微型固態雷射模組之波長轉換器則 11 M349032 選擇對於外界溫度變化較不敏感之晶體如釩酸鉀晶體 (ΚΉΟΡΟ4,簡稱為κτρ),藉以使波長轉換器之最佳轉 換波長維持於在固定值而不隨外界溫度變化而相對變化, 藉以可在對於性能要求不高的低價市場中具有競爭力。 【實施方式】 為使本創作更加明確詳實,茲列舉較佳實施例並配合 下列圖示’將本創作之結構及其技術特徵詳述如後: 參照圖1、2所示,其分別係本創作微型固態雷射模 組之基本架構示意圖及其上視示意圖。本創作係一種微型 固態雷射模組(solid state laser module ) 1,其由雷射光 光源至最終向外投射之輸出雷射光依序包含下列主要元 件:一固態雷射(solid state laser ) 10、一波長轉換器 (或稱波長轉換晶體,wavelength conversion device ) 、一分光裝置30如稜鏡(Prism )、及一光檢測器 (photo detector,簡稱PD ) 40,而上述該等主要元件係 依序設在一平面上,如設在一矽載板(Si substrate) 50之 上表平面51上,或導熱良好之載板的表平面上。 該固態雷射10可為一半導體雷射(semiconductor laser) 或二極體固態(diode pumped solid state ,DPSS)雷射, 且可為單晶片雷射(DFB,multi-section DBR laser)或一 具有數個光電裝置之模組(如一半導體雷射發出波長λ〇之 光並經一固態晶體而產生波長人〗之雷射光),如使用808 雷射二極體晶片(808 LDchip ’即可發射波長8〇8nm之 雷射光),其係用以發射雷射光並入射至波長轉換器20之 入射端21 ;又固態雷射10可利用提升或降低其驅動電流以 12 M349032 控制改變其所發射之雷射光的波長;又固態雷射ίο進一步 可設置在一底座(sub-mount ) 60上,且該底座60上可設 具一溫度控制器61如電阻式致熱器(thermal resistor)或致 冷器(TE-cooler)用以控制固態雷射10之溫度,供可利用改 變固態雷射10之溫度的方法以改變固態雷射10所發射之雷 射光的波長。 該波長轉換器20可利用一非線性晶體20a與一倍頻晶 體20b組成,該非線性晶體20a可為鈥釔石榴石晶體(簡 鲁 稱Nd:YAG ’其中:Nd為敍-Neodymium,Y為在乙 -Yttrium,A 為銘 Al-Aluminium,G 為石榴石-Garnet ),該倍頻晶體20b可為釩酸鉀晶體(KTiOP〇4, 簡稱KTP);波長轉換器20之主要作用係使固態雷射1〇所 發射之雷射光由入射端21射入,並以倍頻原理將前述固態 雷射10所發射之雷射光的波長轉換成不同波長之雷射光如 綠光,再由出射端22射出並入射至分光裝置30如一稜鏡; 而由於本創作之波長轉換器係選擇使用對於外界溫度變化 • 較不敏感之晶體如鈥釔石榴石晶體(簡稱Nd:YAG )與釩 酸鉀晶體(KTiOP〇4,簡稱KTP),因此本創作之波長轉 換器之最佳轉換波長(maximuin c〇nVersion wavelength ) 可維持於在固定值而不隨外界溫度變化而相對變化。 5亥分光裝置30如一稜鏡可為一具有一 45度分光面31之 分光裝置’其係安排在波長轉換器2〇之後方,當由波長轉 換器20之出射端22射出之雷射光11入射至分光裝置30之45 度分光面31時,該轉換後之雷射光11可分成兩道光束,其 中之第一道光束12係主光束可垂直該設置平面51而向外射 13 M349032 出以成為本創作微型固態雷射模組1之主要輪出光源,其 中之第一道光束13係穿過分光裝置30之45度分光面31 (即 一稜鏡面)而入射至光檢測器40。因此該分光裝置3〇如一 稜鏡之主要作用係使該轉換後之雷射光11分成一大一小兩 部分’其中之大部分雷射光即第一道光束12向外輸出以形 成本創作微型固態雷射模組1之主要輸出光源,而其中之 小部分雷射光即第二道光束13則射至(輸入)光檢測器 ’使分光裝置30之分光面31當作雷射光11的部分反射 • 面,使雷射光11之大部分雷射光即第一道光束12入射在分 光裝置30之分光面31上時會被反射’只有小部分雷射光即 第二道光束13會穿透分光裝置30之分光面31 (稜鏡面)31 而被光檢測器40接收;又分光裝置30之分光面31可為配合 雷射光11波長之部分反射材料,或可增設一配合雷射光Η 波長之部分反射分光鏡。 該光檢測器40係用以檢測第二道光束13之光功率並藉 以控制固態雷射1〇所發射之雷射光的波長,以使本創作微 鲁型固態雷射模組1可透過該光檢測器4〇直接偵測轉換後雷 射光之第一道光束13以進行補償修正,如利用邏輯電路以 才二制k升或降低固態雷射10的驅動電流,或通知固態雷射 10之底座60上所附設之溫度控制器61以進行溫度控制,藉 以將固態雷射10所發射之雷射光的波長控制並調整至等於 或趨近於波長轉換器20之最佳轉換波長,以提昇雷射模組 之波長轉換效率而增進其光功率,達成直接式監測效果以 有效降低回饋補償之誤差。至於在上述利用邏輯電路以自 動控制提升或降低固態雷射10的驅動電流或通知固態雷射 14 M349032 10之底座60上所附設之溫度控制器61以進行溫度控制中, 所述之邏輯電路的設計及其以自動控制功能可藉習知電路 設計而達成,故在此不另詳述該邏輯電路的線路設計。 藉由該分光裝置30如一稜鏡之安排,使本創作微型固 態雷射模組1所設具之主要元件包含固態雷射10、波長轉 換器20、分光裝置30如一稜鏡及光檢測器4〇,可封裝在一 平面上處理如設在矽載板50之上表平面51上,故有利於封 裝在一較小的TO-can封裝型式(TO-can packaging )之 • 組裝結構中如圖7、8、9所示,可有效減縮微型固態雷 射模組1之體積,並增進微型固態雷射模組1之使用效率 及簡化其組裝結構,使本創作之微型固態雷射模組丨簡在 體積、性能、產能方面均優於傳統固態雷射模組。 又藉由光檢測器40之安排,使本創作微型固態雷射模 組1可透過該光檢測器40直接偵測轉換後雷射光之第二道 光束13以進行補償修正,達成直接式監測效果以有效降低 回饋補償之誤差,藉以使所進行回饋補償之誤差為最小,"" Φ 而遠優於傳統式的回饋方式。 本創作微型固態雷射模組1具有上述之基本架構,即 包含一固態雷射10、一波長轉換器20、一分光裝置3〇如一 稜鏡及一光檢測器(PD ) 40等主要元件,且係依序設在 一平面上如設在一矽載板50之上表平面51上如圖丨、'^所 示;然,該等主要元件在平面上的光耦合方式並不限制, 如可在平面上以直接光耦合方式排列形成一直列, 接採用額外的微光學元件(micro optics )以取代直接光 耦合方式,如採用光耦合鏡片的光耦合方式或準直鏡片配 15 M349032 合聚焦鏡片的間接光耦合方式或排列方式並不限制;又該 等主要元件在平面上的排列方式並不限制,如進一步巧配 合利用一直角稜鏡(right angle prism)以回折由固態雷射 至分光袭置之間的光路,使該等主要元件及相配合使用之 微光學元件可排列形成二平行直列,藉以有效縮小本創作 雷射模組之容置空間。玆以較佳實施例分別說明如下: <第一實施例>In the construction method of the TO-Can in the TO-Can, the space available for the interior is quite limited. For example, in the case of T0-5, the internal capacity can be accommodated, and the component of the valley element is approximately. The laser module of the creation is further The surface of the element is rounded by a right angle prism to be folded back by the solid energy to match the optical path between the light-emitting devices, such as using an optical coupling lens and a laser to micro optics. The solid-state laser, such as the angular prism, is first incident on an optical coupling lens and then incident on the right-angled prism, and the lightning strikes back, and then enters an optical coupling lens and the subsequent wavelength = the original device is 0. The main components of the micro-solid-state laser module and the micro-optical components for splitting can be arranged to form two parallel in-line columns, so as to cooperate to create a housing space for the laser module, thereby facilitating the package effect to reduce the TO-can Package. 'The solid-state laser of the miniature solid-state laser module of the present invention can further be controlled by a temperature control device such as a thermal resistor or a refrigerator (TE_C00ler) for controlling the solid-state radiation. The temperature, when the photodetector (PD) directly detects the laser light converted by the wavelength converter and wants to perform feedback compensation and correction, the temperature controller can be notified to perform temperature control, and the solid state lightning is utilized The method of detecting the temperature of the laser light to change the wavelength of the laser light emitted thereby, thereby adjusting the wavelength of the laser light to be equal to or approaching the optimum conversion wavelength of the wavelength converter to improve the wavelength conversion efficiency of the laser module. And improve its efficiency. As for the wavelength converter of the micro-solid-state laser module, 11 M349032 selects a crystal that is less sensitive to external temperature changes, such as potassium vanadate crystal (ΚΉΟΡΟ4, abbreviated as κτρ), so that the optimal conversion wavelength of the wavelength converter is maintained. It is relatively variable at a fixed value and does not change with the external temperature, so that it can be competitive in a low-price market that does not require high performance. [Embodiment] In order to make the creation more clear and detailed, the preferred embodiment is illustrated with the following illustrations. The structure and technical features of the present invention are described in detail as follows: Referring to Figures 1 and 2, respectively, A schematic diagram of the basic architecture of the micro-solid-state laser module and its top view. The present invention is a solid state laser module 1. The output laser light from the laser light source to the final outward projection sequentially comprises the following main components: a solid state laser 10 . a wavelength converter (or wavelength conversion device), a light splitting device 30 such as Prism, and a photo detector (PD) 40, and the above main components are sequentially It is disposed on a plane, such as on the surface 51 of the substrate above the Si substrate 50, or on the surface of the carrier plate with good heat conduction. The solid state laser 10 can be a semiconductor laser or a diode pumped solid state (DPSS) laser, and can be a single-chip laser (DFB) or a single-wafer (DFB) Modules of several optoelectronic devices (such as a semiconductor laser emitting light of wavelength λ〇 and generating a wavelength of laser light through a solid crystal), such as using 808 laser diode chip (808 LDchip ' can emit wavelength 8 〇 8 nm of laser light), which is used to emit laser light and incident on the incident end 21 of the wavelength converter 20; and the solid-state laser 10 can change its driving current by 12 M349032 to change the thunder emitted by it. The wavelength of the light; the solid state laser ίο can further be disposed on a sub-mount 60, and the base 60 can be provided with a temperature controller 61 such as a thermal resistor or a refrigerator. (TE-cooler) is used to control the temperature of the solid-state laser 10 for varying the wavelength of the solid-state laser 10 to change the wavelength of the laser light emitted by the solid-state laser 10. The wavelength converter 20 can be composed of a nonlinear crystal 20a and a frequency doubling crystal 20b. The nonlinear crystal 20a can be a garnet crystal (simply called Nd:YAG 'where: Nd is a Syrian-Neodymium, Y is in B-Yttrium, A is Al-Aluminium, and G is Garnet-Garnet. The frequency-doubled crystal 20b can be potassium vanadate crystal (KTiOP〇4, KTP for short); the main function of the wavelength converter 20 is to make the solid-state mine. The laser light emitted by the first shot is incident from the incident end 21, and the wavelength of the laser light emitted by the solid-state laser 10 is converted into laser light of different wavelengths such as green light by a frequency doubling principle, and then emitted from the exit end 22 And incident on the spectroscopic device 30 as a 稜鏡; and because the wavelength converter of the present invention chooses to use a crystal that is less sensitive to external temperature changes, such as yttrium garnet crystal (Nd:YAG) and potassium vanadate crystal (KTiOP) 〇4, abbreviated as KTP), so the optimal conversion wavelength (maximuin c〇nVersion wavelength) of the wavelength converter of the present invention can be maintained at a fixed value without relatively changing with the external temperature. The 5th light splitting device 30 can be a light splitting device having a 45 degree splitting surface 31, which is arranged behind the wavelength converter 2A, when the laser light 11 emitted from the exit end 22 of the wavelength converter 20 is incident. When the splitting surface 31 of the splitting device 30 is 45 degrees, the converted laser light 11 can be divided into two light beams, wherein the first light beam 12 is the main light beam which can be perpendicular to the setting plane 51 and is outwardly emitted 13 M349032 to become The primary light source of the miniature solid-state laser module 1 is formed, and the first light beam 13 is incident on the photodetector 40 through the 45-degree spectroscopic surface 31 (ie, one surface) of the spectroscopic device 30. Therefore, the main function of the spectroscopic device 3 is to divide the converted laser light 11 into one large and one small parts. The majority of the laser light, that is, the first light beam 12, is output outward to form the micro-solid state of the present invention. The main output light source of the laser module 1, and a small portion of the laser light, that is, the second light beam 13, is incident on the (input) photodetector', so that the spectroscopic surface 31 of the spectroscopic device 30 is reflected as part of the laser light 11 The surface of the laser beam 11 is reflected when the first beam 12 is incident on the spectroscopic surface 31 of the spectroscopic device 30. Only a small portion of the laser beam, that is, the second beam 13 will penetrate the spectroscopic device 30. The light splitting surface 31 (the surface) 31 is received by the photodetector 40; the splitting surface 31 of the spectroscopic device 30 may be a part of the reflective material matching the wavelength of the laser light 11, or a partial reflection beam splitter matching the wavelength of the laser beam may be added. . The photodetector 40 is configured to detect the optical power of the second light beam 13 and control the wavelength of the laser light emitted by the solid-state laser light to enable the creative micro-type solid-state laser module 1 to transmit the light. The detector 4 directly detects the first beam 13 of the converted laser light for compensation correction, such as using a logic circuit to k or reduce the driving current of the solid laser 10, or notifying the base of the solid laser 10 The temperature controller 61 attached to 60 is used for temperature control to control and adjust the wavelength of the laser light emitted by the solid-state laser 10 to be equal to or close to the optimum conversion wavelength of the wavelength converter 20 to enhance the laser. The wavelength conversion efficiency of the module increases its optical power, achieving a direct monitoring effect to effectively reduce the error of feedback compensation. As for the above-mentioned logic circuit 61 for automatically controlling the driving current to raise or lower the solid-state laser 10 or to notify the temperature controller 61 attached to the base 60 of the solid-state laser 14 M349032 10 for temperature control, the logic circuit described above The design and its automatic control function can be achieved by the conventional circuit design, so the circuit design of the logic circuit will not be detailed here. By the arrangement of the spectroscopic device 30, the main components of the micro-solid-state laser module 1 of the present invention include a solid-state laser 10, a wavelength converter 20, a spectroscopic device 30 such as a chirp and a photodetector 4. The package can be packaged on a flat surface, such as on the surface 51 of the carrier board 50, so that it can be packaged in a smaller TO-can packaging assembly structure. As shown in 7, 8, and 9, the volume of the micro solid state laser module 1 can be effectively reduced, and the use efficiency of the micro solid state laser module 1 is improved and the assembly structure is simplified, so that the micro solid state laser module of the present invention is Jane is superior to traditional solid-state laser modules in terms of size, performance and productivity. The micro-solid-state laser module 1 of the present invention can directly detect the second beam 13 of the converted laser light through the photodetector 40 to perform compensation correction, thereby achieving direct monitoring effect. In order to effectively reduce the error of feedback compensation, the error of feedback compensation is minimized, and "" Φ is far superior to the traditional feedback method. The micro-solid-state laser module 1 of the present invention has the above-mentioned basic structure, that is, a main component including a solid-state laser 10, a wavelength converter 20, a light splitting device 3, such as a light detector (PD) 40, And is arranged on a plane, as shown on the surface 51 of the carrier 50, as shown in FIG. ', '^; however, the optical coupling of the main components on the plane is not limited, such as It can be arranged in a direct optical coupling manner on a flat surface, and additional micro optics can be used instead of direct optical coupling, such as optical coupling with optical coupling lenses or collimating lenses with 15 M349032 The indirect optical coupling mode or arrangement of the lenses is not limited; the arrangement of the main components on the plane is not limited, such as further utilizing the right angle prism to fold back from the solid state laser to the beam splitting. The optical path between the devices is such that the main components and the micro-optical components used in combination can be arranged to form two parallel in-line columns, thereby effectively reducing the accommodation space of the laser module. The following is explained in the preferred embodiment as follows: <First Embodiment>

參照圖1、2所示,其分別係本創作微型固態雷射模 組之基本架構(可視為第一實施例)示意圖及其上祝示意 圖。本實施例之微型固態雷射模組1係採用直接光耦合的 方式,即本實施例使用8〇8雷射二極體晶片(8〇8LD chip)以發射波長8〇8nm之雷射光,並在極短的距離内約 2〜3um ’入射至波長轉換器2〇之非線性晶體2〇a與倍頻晶 體20b中,再由波長轉換器2〇 (倍頻晶體2〇b )之出射端 22射出,經由具45度分光面31之分光裝置3〇,使其中之第 一道光束12可以與原入射角度呈9〇度的方向出射,即垂直 該設置平面51而向外射出,以成為本創作微型i態雷射模 組1之主要輸出光源。而本實施例制之直接光輕合的方 式如圖2所示’是以直接光耦合的方式排列,㈣ 10與波長轉換器20形成一直列排列,如此之排列方 精簡,所占空間亦最小,可容納在T〇_5 ( T〇_Can ) ‘、、、 封裝結構中,但相對需要極高的組裝定位精度(約 lum) ’在進行組裝定位作業時,將會挑戰 限而相對降低組裝作業效率。 % U…位 16 M349032 <第二實施例> 參照圖3所示,其係本創作微型固態雷射模組之第二 實施例立體示意圖。本實施例之微型固態雷射模組2進— 步採用間接光耦合的方式以取代第一實施例的直接光輪合 方式,也就是另外採用額外的微光學元件(Micro 〇ptics)70來完成間接光耦合的需求,該微光學元件 Optics)70可為一光耦合鏡片(coupling lens)(圖未 示)’或如圖3所示由一準直鏡片(collimator lens ) 71 φ 配合一聚焦鏡片(focusing lens ) 72組合形成(即準直鏡 片 collimator lens + 聚焦鏡片 focusing lens ),藉此不作 可大幅加大組裝定位精度的公差而有利於量產化,而且對 於光能量的衰減也相當小(小於2% ),不至影響輸光雷 射光之功率。 <第三實施例> 參照圖4、5、6所示,其分別係一 TO-Can封展会士 φ 構之内部尺寸參考圖及本創作微型固態雷射模組之第三實 施例之二不同上視示意圖。由於一 TO-Can的封裝結構中 其内部可供容放元件的空間相當有限,如以T0-5而言如 圖4所示,其内部可容放元件的面積約為5mmX5mni, 因此若要在如此有限的面積擺置本創作微型固態雷射模組 之固態雷射10及其底座(Sub-mount ) 60、波長轉換琴2〇 如非線性晶體20a與倍頻晶體2〇b(如Nd:YAG與KTP)、 及其他微光學元件(MicroOptics)70如圖3所示之準直鏡 片(collimator lens ) 71與聚焦鏡片(f〇cusinglens )及 17 M349032 分光裝置30如一稜鏡及光檢測器40等元件’可能會有置放 空間不足的疑慮。 本實施例之微型固態雷射模組3所示進一步配合利用 一直角稜鏡(right angle prism) 80以回折由固態雷射1〇至 分光裝置30之間的光路’如使用一微光學元件(光輕合鏡 片)70與一直角稜鏡80,其中該微光學元件70可為—光# 合鏡片(coupling lens )如圊5所示,使固態雷射ι〇該所 發射之雷射光先射入一微光學元件(光耦合鏡片)70再人 • 射至直角稜鏡80以產生180度回折,再射入後續之波長轉 換器20、分光裝置30如一棱鏡及光檢測器40 ;或該微 元件70可由一準直鏡片(collimator lens ) 71與一聚焦鏡 片(focusing lens ) 72組合形成(即準直鏡片+聚焦、鏡 片)如圖6所示,使固態雷射10該所發射之雷射光先射入 一準直鏡片71再入射至直角稜鏡80以產生180度回折,再 射入聚焦鏡片72,再射入後續之波長轉換器2〇、分光装置 30及光檢測器40 ’使本實施例之微型固態雷射模組3之主 • 要元件(1〇、20、30、40)及相配合使用之微光學元件 (70)可排列形成二平行直列如圖5、6所示,藉以有效 縮小微型固態雷射模組3之容置空間,以有利於封裝在一 較小的TO-can封裝。 參照圊7、8、9所示,其分別是本創作一微型固態 雷射模組實施例實際封裝至TO-Can封裝結構中的立體$ 意圖及上視、側視(附尺寸)示意圖,其中,如圖3所: 本實施例之微型固態雷射模組2設在一 T〇_can封裝結^ 90内,而該TO-can封裴結構90基本上包含一 τ〇_^ησ鏡 M349032 片(TO-can lens)91、一 TO-can 蓋(TO-can cap)92、一 TO-can 承座(TO-canheader)93 及 TO-can 電性連結部 (electronic connection of TO-can)94 ;而由圖 7、8、9 所 示’本創作之微型固態雷射模組確實可封裝至T0_Can封 裝結構中,以達成一微型固態雷射模組之使用狀態。 以上所述僅為本訢型的優選實施例,對本訢型而言僅 是說明性的,而非限制性的;本專業技術領域具通常知識 人員理解,在本創作權利要求所限定的精神和範圍内可對Referring to Figures 1 and 2, respectively, it is a schematic diagram of the basic architecture (which can be regarded as the first embodiment) of the present miniature solid-state laser module and a schematic diagram thereof. The micro solid state laser module 1 of the embodiment adopts a direct optical coupling mode, that is, the present embodiment uses an 8〇8 laser diode chip (8〇8LD chip) to emit laser light having a wavelength of 8〇8 nm, and In a very short distance, about 2~3um 'incident into the nonlinear crystal 2〇a of the wavelength converter 2〇 and the frequency doubling crystal 20b, and then the output end of the wavelength converter 2〇 (double frequency crystal 2〇b) 22 is emitted, through the light splitting device 3〇 having a 45-degree splitting surface 31, such that the first light beam 12 can be emitted in a direction of 9 degrees from the original incident angle, that is, perpendicular to the set plane 51 and emitted outward to become The main output light source of the miniature i-state laser module 1 is created. The direct light-lighting method of the present embodiment is as shown in FIG. 2, which is arranged in a direct optical coupling manner, and (4) 10 and the wavelength converter 20 are arranged in a row, so that the arrangement is simplified and the space occupied is the smallest. Can be accommodated in T〇_5 (T〇_Can) ',,, and package structure, but relatively high assembly positioning accuracy (about lum) is required. 'When performing assembly and positioning work, it will be limited and relatively reduced. Assembly work efficiency. % U... Bit 16 M349032 <Second Embodiment> Referring to Figure 3, there is shown a perspective view of a second embodiment of the present miniature solid state laser module. The micro solid state laser module 2 of the present embodiment further adopts an indirect optical coupling method instead of the direct optical rotation mode of the first embodiment, that is, an additional micro optical component (Micro 〇ptics) 70 is used to complete the indirect. For the optical coupling requirement, the micro-optical element Optics 70 can be a coupling lens (not shown) or a collimator lens 71 φ fits a focusing lens as shown in FIG. 3 . The focusing lens 72 is formed in combination (ie, collimator lens + focusing lens), thereby facilitating mass production without greatly increasing the tolerance of assembly positioning accuracy, and the attenuation of light energy is also relatively small (less than 2%), does not affect the power of the transmitted light. <Third Embodiment> Referring to Figs. 4, 5, and 6, respectively, it is a TO-Can seal exhibition φ structure internal size reference map and the third embodiment of the present miniature solid state laser module Two different top view schematics. Since the space of the inside of the package structure of a TO-Can is quite limited, as shown in FIG. 4, the area of the internal accommodating component is about 5 mm×5 mni, so Such a limited area is placed on the solid-state laser 10 of the creation of the miniature solid-state laser module and its sub-mount 60, the wavelength conversion piano 2 such as the nonlinear crystal 20a and the frequency doubling crystal 2〇b (such as Nd: YAG and KTP), and other MicroOptics 70, as shown in FIG. 3, collimator lens 71 and focusing lens, and 17 M349032 spectroscopic device 30, such as a light detector 40. Such components may have doubts about insufficient space. The micro solid state laser module 3 of the present embodiment is further configured to utilize a right angle prism 80 to fold back the optical path between the solid state laser and the beam splitting device 30 as if using a micro-optical element ( Light-and-light lens 70 and a right angle 稜鏡80, wherein the micro-optical element 70 can be a light-collecting lens such as 圊5, so that the solid-state laser 先 〇 the emitted laser light first Inserting a micro-optical element (optical coupling lens) 70 into the right angle 稜鏡 80 to generate a 180 degree fold back, and then into the subsequent wavelength converter 20, the beam splitting device 30 such as a prism and photodetector 40; or the micro The element 70 can be formed by a combination of a collimator lens 71 and a focusing lens 72 (ie, collimating lens + focusing, lens) as shown in FIG. 6 to cause the solid laser 10 to emit the laser light. First, a collimating lens 71 is incident on the right angle 稜鏡 80 to generate a 180 degree fold, and then incident on the focusing lens 72, and then incident on the subsequent wavelength converter 2, the beam splitting device 30, and the photodetector 40' The main body of the miniature solid state laser module 3 of the embodiment • The components (1〇, 20, 30, 40) and the micro-optical components (70) used in combination can be arranged to form two parallel in-line as shown in Figures 5 and 6, thereby effectively reducing the capacity of the miniature solid-state laser module 3. Space is provided to facilitate packaging in a smaller TO-can package. Referring to FIGS. 7, 8, and 9, respectively, the three-dimensional $ intent and the top view and the side view (with size) of the embodiment of a miniature solid-state laser module are actually packaged into a TO-Can package structure, wherein As shown in FIG. 3, the micro solid state laser module 2 of the embodiment is disposed in a T〇_can package junction 90, and the TO-can sealing structure 90 basically includes a τ〇_^ησ mirror M349032. TO-can lens 91, TO-can cap 92, TO-canheader 93 and TO-can electronic connection of TO-can 94; and the micro-solid laser module of the present invention shown in Figures 7, 8, and 9 can be packaged into the T0_Can package structure to achieve the state of use of a miniature solid state laser module. The above description is only a preferred embodiment of the present invention, and is merely illustrative and not limiting; it is understood by those skilled in the art that the spirit and scope defined by the present invention claims Within the scope

其進行許多改變,修改,甚至等效變更,但都將落入本 型的保護範圍内。 B 【圖式簡單說明】 圖1 .係本創作微型固態雷射模組之基本架構(第一 例)示意圖。 圖2 :係圖1之上視示意圖。 圖3 :係本創作微型固態雷射模組之第二實施例立 圖。 愚 圖4 :係一 TO-Can封裝結構之内部尺寸參考圖。 圖5 :係本創作微型固態雷射模組之第三實施例之一上視 示意圖。 圖6 :係本創作微型固態雷射模組之第三實施例之 視示意圖。 圖7 :係本創作一微型固態雷射模組實施例實際封裝至 TO-Can封裝結構中的立體示意圖。 圖8 :係圓7之上視示意圖。 圖9 :係圓7之側視(附尺寸)示意圖。 19 M349032 【主要元件符號說明】 微型固態雷射模組1、2、3 固態雷射10 雷射光11 第一道光束12 第二道光束13 波長轉換器20 非線性晶體20a 倍頻晶體20b 入射端21 出射端22 分光裝置30 分光面31 光檢測器(PD ) 40 載板50 平面51 底座60 溫度控制器61 微光學元件70 準直鏡片71 聚焦鏡片72 直角稜鏡80TO-can 封裝結構90 TO-can 鏡片 91 TO-can 蓋 92 TO-can 承座 93 TO-can電性連結部94Many changes, modifications, and even equivalent changes are made, but they fall within the scope of this type of protection. B [Simple description of the diagram] Figure 1. Schematic diagram of the basic architecture (first example) of the micro-solid-state laser module. Figure 2: A top view of Figure 1. Figure 3 is a perspective view of a second embodiment of the present miniature micro-solid laser module. Figure 4: A reference to the internal dimensions of a TO-Can package. Figure 5 is a top plan view of a third embodiment of the present miniature solid state laser module. Figure 6 is a schematic view showing a third embodiment of the present miniature solid state laser module. FIG. 7 is a perspective view showing the actual packaging of a miniature solid-state laser module embodiment into a TO-Can package structure. Figure 8: A top view of the circle 7 . Figure 9: Schematic view of the side view (with dimensions) of the circle 7. 19 M349032 [Key component symbol description] Micro solid state laser module 1, 2, 3 solid state laser 10 laser light 11 first beam 12 second beam 13 wavelength converter 20 nonlinear crystal 20a frequency doubling crystal 20b incident end 21 Exit 22 Splitter 30 Splitter 31 Photodetector (PD) 40 Carrier 50 Plane 51 Base 60 Temperature Controller 61 Micro-optical components 70 Collimating lenses 71 Focusing lenses 72 Right-angled 稜鏡 80TO-can Encapsulated structure 90 TO- Can lens 91 TO-can cover 92 TO-can socket 93 TO-can electrical connection 94

2020

Claims (1)

M349032 九、申請專利範圍: 1、 一種微型固態雷射模組,包含一固態雷射、一波長轉 換器、一分光裝置及一光檢測器等主要元件,其中; 固態雷射,係可發射雷射光並入射至波長轉換器; 波長轉換器,係以倍頻原理將前述固態雷射所發射之 雷射光的波長轉換成不同波長之雷射光,並入射至分 光裝置; 分光裝置,係安排在波長轉換器後方用以將射入之轉 換後雷射光分成第一及第二兩道光束,其中第一道光 束係向外射出以成為主要輸出光源,其中第二道光束 係穿過分光裝置而入射至光檢測器; 光檢測器,係用以接收並檢測經過分光裝置之第二道 光束之光功率; 其中,利用該分光裝置之安排以使固態雷射、波長轉 換器、分光裝置及光檢測器等主要元件可封裝設置在 一平面上處理; 其中,透過該光檢測器偵測第二道光束之光功率,以 對第一道光束進行光功率之回饋補償及修正。 2、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射、波長轉換器、分光裝置及光檢測器等 主要元件係封裝在一石夕載板(Si substrate )之表平面 上。 3、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射、波長轉換器、分光裝置及光檢測器等 主要元件係封裝在一導熱良好之載板的表平面上。 21 M349032 4、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射係選自一半導體雷射、二極體固態、 (diode pumped solid state,DPSS)雷射、單晶片雷射 (dfb,multi_sectionDBRlaser)及一具有數個光電 裝置之模組中的一種。 5、 如申請專利範圍第1或4項所述之微型固態雷射模M349032 IX. Patent application scope: 1. A miniature solid-state laser module, comprising a solid-state laser, a wavelength converter, a spectroscopic device and a photodetector, among which: a solid-state laser can emit a thunder The light is incident on the wavelength converter; the wavelength converter converts the wavelength of the laser light emitted by the solid-state laser into laser light of different wavelengths by the frequency doubling principle, and is incident on the light splitting device; the light splitting device is arranged at the wavelength The rear of the converter is used to split the converted laser light into the first and second beams, wherein the first beam is emitted outward to become the main output source, wherein the second beam is incident through the beam splitting device. a photodetector for receiving and detecting optical power of a second beam passing through the spectroscopic device; wherein the spectroscopic device is arranged to enable solid-state laser, wavelength converter, spectroscopic device and photodetection The main components such as the device can be packaged and disposed on a plane; wherein the optical power of the second beam is detected by the photodetector to be the first Feedback compensation and correction for the beam optical power. 2. The micro solid state laser module according to claim 1, wherein the main components such as the solid laser, the wavelength converter, the spectroscopic device and the photodetector are packaged on a Si substrate. On the table plane. 3. The micro-solid-state laser module according to claim 1, wherein the main components such as the solid-state laser, the wavelength converter, the spectroscopic device and the photodetector are packaged on a surface of a heat-conducting carrier board. on. The M.sub.1. A single-chip laser (dfb, multi_section DBRlaser) and one of a module having several optoelectronic devices. 5. Micro-solid laser mode as described in claim 1 or 4 of the patent application 組,其中該固態雷射係使用一 8〇8雷射二極體晶片而 可發射波長808nm之雷射光。 6、 如申請專利範圍第丨項所述之微型固態雷射模組,其 中該固態雷射進一步可設具一溫度控制器以控制固態 雷射之溫度。 ^ 如申睛專利範圍第6項所述之微型固態雷射模組,其 中該,皿度控制器至少包含電阻式致熱器(齡㈣ resistor)或致冷器(TE-cooler)中一種。 8 H請專利範㈣丨項所述之微翻態雷射模組,其 錢長轉換器係利用一非線性晶體與一倍頻晶體組 成0 $明專利範圍第8項所述之微型固態雷射模組,其 ίο “ ΐ非線性晶體可為敛紀石榴石晶體(Nd:YAG )。 π專利$&amp;圍第8項所述之微型固態雷射模組,其 頻晶體可為1 凡酸鉀晶體(KTi〇p〇4,簡稱 專利1&amp;圍第1項所述之微型111態雷射模組,其 12、波長轉換器轉換後之雷射光為綠光。 明專利fc圍第1項所述之微型固態雷射模組,其 22 M349032 H光裝置係-具有45度分光面之稜鏡。 專㈣圍第12項所述之微型固態雷射模組,其 遠分光裝置之分光面係配合人射之f射光波長之部 分反射材料。 如申明專利範圍第i項所述之微型固態雷射模組,其 中4第-道光束係為大部分雷射光並以垂直該設置用 ”的方向而向外射出以成為主要輸出光源。The group, wherein the solid state laser emits a laser light having a wavelength of 808 nm using an 8 〇 8 laser diode wafer. 6. The micro solid state laser module of claim 2, wherein the solid state laser further comprises a temperature controller to control the temperature of the solid state laser. ^ The micro solid state laser module of claim 6, wherein the degree controller comprises at least one of a resistive heater (a resistor) or a refrigerator (TE-cooler). 8 H Please refer to the micro-flip laser module described in the patent specification (4). The money-long converter is composed of a nonlinear crystal and a octave crystal. The micro-solid thunder described in item 8 of the patent scope is disclosed. Shooting module, its ίο " ΐ nonlinear crystal can be a garnet crystal (Nd: YAG). π patent $ &amp; surrounding the micro solid state laser module described in Item 8, the frequency crystal can be 1 Potassium acid crystal (KTi〇p〇4, referred to as patent 1 &amp; the miniature 111-state laser module described in item 1 above, 12, the laser light after conversion by the wavelength converter is green light. Ming patent fc circumference 1 The micro-solid-state laser module described in the item, the 22 M349032 H optical device system has a 45-degree spectroscopic surface. The micro-solid-state laser module described in Item 12 of the fourth section, the spectroscopic device of the far splitting device The surface is matched with a part of the reflective material of the wavelength of the light emitted by the human. For example, the micro solid state laser module described in the scope of claim ii, wherein the 4th beam is the majority of the laser light and is used vertically. The direction is emitted outward to become the main output source. '明專錄圍第1項所述之微型ID態雷射模組,其 中為第一道光束係為小部分雷射光並穿過分光裝置而 入射至光檢測器。 16 如申請專利範圍第1項所述之微型固態雷射模組,其 中當該光檢測器㈣測第二道光束之光功率不足時, 可利用邏輯電路以控制提升或降低固態雷射的驅動電 ’爪’以對第-道光束進行光功率之回饋補償及修正。 17、如中請專利範㈣i或6項所述之微型固態雷射模 組,其中當該光檢測器在制第二道光束之光功率不 足時’可利用邏輯電路通知固態雷射之溫度控制器以 對固態雷射進行溫度控制,藉以將固態雷射所發 雷射光的波長控制並調整至等於或趨近 之最佳轉換波長,以對第一道光 ^吳益 ^亥固也雷射所發射之雷射光係採用直接戈 在極短的距__合人射至波長轉換〜,使固= 射與波長轉換器形成一直列排列。 〜田 23 18 M349032 19、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射與波長轉換器之間進一步可設置微光學 元件,使固態雷射所發射之雷射光採用間接光耦合方 式先經過微光學元件再耦合入射至波長轉換器中。 20、 如申請專利範圍第19項所述之微型固態雷射模組,其 中§亥微光學元件係一光耦合鏡片(coupling lens )。 21、 如申請專利範圍第19項所述之微型固態雷射模組,其 中該微光學元件係由一準直鏡片(collimator lens ) 0 配合一聚焦鏡片(focusing lens )組合形成。 22、 如申請專利範圍第1項所述之微型固態雷射模組,其 中該固態雷射與波長轉換器之間進一步可配合設置一 直角稜鏡(right angle prism ),使固態雷射所發射之 雷射光經該直角稜鏡產生180度回折後再射入後續之 波長轉換器,使固態雷射與波長轉換器之間形成二平 行直列排列。 23、 如申請專利範圍第1項所述之微型固態雷射模組,其 • 中該微型固態雷射模組係設在一 TO-can封裝結構 内。 24The miniature ID state laser module described in Item 1 of the Ming Dynasty Record, wherein the first beam is a small portion of the laser light and passes through the spectroscopic device to be incident on the photodetector. [16] The micro-solid-state laser module of claim 1, wherein when the photodetector (4) measures the optical power of the second beam, the logic circuit can be used to control the driving of the solid-state laser to increase or decrease. The electric 'claw' compensates and corrects the feedback of the optical power of the first beam. 17. The micro-solid-state laser module according to the patent specification (4), i or 6, wherein the photodetector can notify the temperature control of the solid-state laser when the optical power of the second beam is insufficient. The temperature control of the solid-state laser is used to control and adjust the wavelength of the laser light emitted by the solid-state laser to an optimum conversion wavelength equal to or close to the first light ^ Wu Yi ^ Hai Gu also laser The laser light emitted by the direct light is used in a very short distance __ combined to the wavelength conversion ~, so that the solid-fire and the wavelength converter form a column arrangement. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The illuminating light is first coupled to the wavelength converter through the micro-optical element by indirect optical coupling. 20. The micro solid state laser module of claim 19, wherein the § hai micro optical component is a coupling lens. 21. The micro solid state laser module of claim 19, wherein the micro-optical element is formed by a combination of a collimator lens 0 and a focusing lens. 22. The micro-solid-state laser module according to claim 1, wherein the solid-state laser and the wavelength converter are further configured to have a right angle prism to be emitted by the solid-state laser. The laser light is 180 degrees folded back through the right angle 后 and then injected into the subsequent wavelength converter to form a parallel parallel arrangement between the solid state laser and the wavelength converter. 23. The micro solid state laser module of claim 1, wherein the micro solid state laser module is disposed in a TO-can package structure. twenty four
TW97215976U 2008-09-04 2008-09-04 Micro solid state laser module TWM349032U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97215976U TWM349032U (en) 2008-09-04 2008-09-04 Micro solid state laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97215976U TWM349032U (en) 2008-09-04 2008-09-04 Micro solid state laser module

Publications (1)

Publication Number Publication Date
TWM349032U true TWM349032U (en) 2009-01-11

Family

ID=44371886

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97215976U TWM349032U (en) 2008-09-04 2008-09-04 Micro solid state laser module

Country Status (1)

Country Link
TW (1) TWM349032U (en)

Similar Documents

Publication Publication Date Title
CN102346366B (en) Projector
TWI685678B (en) Laser projection module , depth camera and electronic device
CN101673919B (en) Micro solid-state laser module
Riva et al. High brightness 100 W-50 um delivery blue laser diode module
KR100898129B1 (en) Green laser module package
TW200832851A (en) Package structure for horizontal cavity surface-emitting laser diode with light monitoring function
US8385377B2 (en) Semiconductor laser device
Kruschke et al. Beam combining techniques for high-power high-brightness diode lasers
KR100950277B1 (en) Green laser generation device, and portable electronic machine having laser projection display using the said device
JP5156015B2 (en) Compact multicolor light source
TWI361533B (en)
CN101625499B (en) Micro-wavelength converting optical device and autocorrecting method thereof
CN203455547U (en) Multipath merging coupled system of fiber laser
JP2011108961A (en) Laser light source device
TWM349032U (en) Micro solid state laser module
Crump et al. Progress in high-energy-class diode laser pump sources
JP6593547B1 (en) Optical module
Primerov et al. Ultracompact RGB laser diode module for near-to-eye displays
TW201012017A (en) A micro solid state laser module
Platz et al. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers
Hildenstein et al. High-power, high-beam quality miniaturized laser module for pumping of solid state lasers at 980 nm
Hoefer et al. High-performance at low cost: the challenge manufacturing frequency doubled green semiconductor lasers for mass markets
Crawford et al. Advancements of ultra-high peak power laser diode arrays
Steegmueller et al. Progress in ultra-compact green frequency doubled optically pumped surface emitting lasers
CN216450929U (en) Self-frequency-doubling white light module

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees