TW201011923A - Photovoltaic cells of Si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel - Google Patents

Photovoltaic cells of Si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel Download PDF

Info

Publication number
TW201011923A
TW201011923A TW098107027A TW98107027A TW201011923A TW 201011923 A TW201011923 A TW 201011923A TW 098107027 A TW098107027 A TW 098107027A TW 98107027 A TW98107027 A TW 98107027A TW 201011923 A TW201011923 A TW 201011923A
Authority
TW
Taiwan
Prior art keywords
layer
rich
germanium
forming
dielectric layer
Prior art date
Application number
TW098107027A
Other languages
Chinese (zh)
Other versions
TWI462307B (en
Inventor
An-Thung Cho
Chih-Wei Chao
Chia-Tien Peng
Kun-Chih Lin
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/202,647 external-priority patent/US9577137B2/en
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Publication of TW201011923A publication Critical patent/TW201011923A/en
Application granted granted Critical
Publication of TWI462307B publication Critical patent/TWI462307B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

One aspect of the present invention relates to a photovoltaic cell. In one embodiment, the photovoltaic cell includes a first conductive layer, an N-doped semiconductor layer formed on the first conductive layer, a first silicon layer formed on the N-doped semiconductor layer, a nanocrystalline silicon (nc-Si) layer formed on a first silicon layer, a second silicon layer formed on the nc-Si layer, a P-doped semiconductor layer on the second silicon layer, and a second conductive layer formed on the P-doped semiconductor layer, where one of the first silicon layer and the second silicon layer is formed of amorphous silicon, and the other of the first silicon layer and the second silicon layer formed of polycrystalline silicon.

Description

201011923 六、發明說明: 【發明所屬之技術領域】 本發明一般係關於一光電池,尤其係關於具有擁有多重能 : 隙的光電轉換層之光電池,及其在低溫多晶矽薄膜電晶體 ; (LTPS-TFT, Klow temperature polycrystalline silicon thin film transistor”)或非晶碎薄膜電晶體(a-Si TFT, “amorphous silicon thin film transistor”)面板内的應用。 【先前技術】 ® 一太陽能電池或光電池屬於一種利用該光電效應將太陽能 /光能轉換成電能的半導體裝置。一般來說,一太陽能電池配置 成由矽製成的大面積P-N接合(P-N junction),其具有一層N型 (負型)矽和一層與該層N型矽直接接觸的P型(正型)矽。當一 光子撞擊該太陽能電池時,該光子可直接通過該矽(若該光子具 有低光能)或從表面反射,或被該矽吸收(若該光子的光能高於 該矽能隙值)。根據該太陽能電池的頻帶結構,後者產生一電子 電洞配對以及一些熱量。由於該P-N接合的介面電場,所產生 ® 的電洞朝該P型矽層的陽極移動,同時所產生的電子朝該矽太 陽能電池内該N型矽層上的陰極移動,藉此產生電能。 太陽能電池所用的材料包含矽、ΠΙ-V族半導體(例如 GaAs)、II-VI族半導體(例如CdS/CdTe)、有機/聚合物材料以 及其他。在這之中,最常發展的就是包含單晶矽晶圓式太陽能 電池、多晶矽(p〇ly-Si)薄膜式太陽能電池以及非晶矽(a-Si)薄膜 ,式太陽能電池的矽太陽能電池。ΠΙ-V族半導體式太陽能電池形 成於鍺(Ge)基板上並且具有高效率,但是非常昂貴,所以只運 用在衛星與積體光學當中,因為此成本當中有絕大部份用在該 201011923201011923 VI. Description of the Invention: [Technical Field] The present invention relates generally to a photovoltaic cell, and more particularly to a photovoltaic cell having a photoelectric conversion layer having multiple energy gaps, and a low temperature polycrystalline germanium transistor transistor; (LTPS-TFT) , Klow temperature polycrystalline silicon thin film transistor") or amorphous silicon thin film transistor (a-Si TFT, "amorphous silicon thin film transistor") panel application. [Prior Art] ® a solar cell or photovoltaic cell belongs to A semiconductor device that converts solar energy/light energy into electrical energy. In general, a solar cell is configured as a large-area PN junction made of tantalum, which has a layer of N-type (negative) and a layer of The layer N is in direct contact with the P-type (positive type). When a photon strikes the solar cell, the photon can pass directly through the crucible (if the photon has low light energy) or is reflected from the surface, or is Absorption (if the photon's light energy is higher than the 矽 energy gap value). According to the frequency band structure of the solar cell, the latter generates an electric Sub-hole pairing and some heat. Due to the interface electric field of the PN junction, the hole generated is moved toward the anode of the P-type layer, and the generated electrons are directed toward the N-type layer in the germanium solar cell. The cathode moves, thereby generating electrical energy. Materials used for solar cells include germanium, germanium-V semiconductors (such as GaAs), II-VI semiconductors (such as CdS/CdTe), organic/polymer materials, and others. The most commonly developed are solar cells containing single crystal germanium wafer solar cells, polycrystalline germanium (p〇ly-Si) thin film solar cells, and amorphous germanium (a-Si) thin films, solar cells. Group semiconductor solar cells are formed on germanium (Ge) substrates and have high efficiency, but are very expensive, so they are only used in satellite and integrated optics, because most of this cost is used in the 201011923

Ge基板。此外,III-V族和II-VI族半導體式太陽能電池無法輕 易與矽基CMOS以及薄膜電晶體液晶顯示器(TFT-LCD)玻璃面 板和低溫多晶矽(LTPS)處理整合。更進一步,製造III-V和II-VI : 族半導體式太陽能電池時會有嚴重金屬污染的問題。雖然非晶 :矽薄膜太陽能電池的成本不高,不過效率和穩定性也不高。因 此,矽晶圓式太陽能電池成為太陽能電池市場的主力。 太陽能電池屬於能量轉換裝置,因此轉換效率受限於 Camot Limit,這大約是85%。目前為止,市面上的太陽能電池 其達到的最高轉換效率大約是33%。因此,該等太陽能電池效 ®率還有改善的空間。 理論上,能量低於該吸收材料能隙的光子並無法被材料所 吸收而產生一電子電洞配對,如此其能量無法轉換只能穿過該 吸收材料。對於能量高於該能隙的光子而言,只有高於該能隙 的一些能量可以轉換成有用的電子電洞配對輸出。當能量更大 的光子被吸收時,高於該能隙的過多能量會轉換成該載子組合 的動能。這些過多的動能隨著該等載子動能減緩至均衡速度而 透過光子互動轉成熱量。該太陽頻譜接近大約6000 K的黑體頻 ® 譜,大多數到達地球的太陽輻射由能量大於該矽能隙(矽能帶間 隙)的光子所構成。這些較高能量的光子將由該太陽能電池吸 收,但是這些光子與該矽能隙之間的能量差將透過晶格震動(聲 子)轉換成熱量,而非轉換成可用的電能。針對單一接合(單一 能隙)太陽能電池而言,理論上最高轉換效率大約28%。不過, ~ 因為材料無法吸收所有能量高於該能隙的光子之本質限制,並 * 且因為該等材料的自由載子吸收限制了該光子吸收100%轉換 成電子電洞配對,所以市面上單晶矽與多晶矽(p〇ly-Si)太陽能 電池的平均轉換效率只有大約15%。 4 201011923 對於多重接合(或多重能隙)太陽能電池而言,以能隙的遞 減順序堆曼(_接)個別單接合太陽能電池,最頂端電池擷取該 等高能量光子並通過較低能隙電池要吸收的剩餘光子。使用多 : 重能隙(或多接合)可減少該頻帶間能量關係,如此相較於單一 • 接合(單一能隙)太陽能電池,減少產生光子的可能性,藉此減 少熱量產生並改善該光電轉換效率。不過,該等串接的太陽能 電池具有接合知失與晶格誤配的問題。 因此,該技術内至今所要解決的問題就是解決上述缺陷與 不完備。 ^ 【發明内容】 近來,因為具備高光電效率以及奈米結構光吸收的波長可 調整性,所以眾人的注意力都集中在量子點太陽能電池,即第 二代太陽能電池上。對於一運用矽的太陽能電池而言,一種間 接能隙半導體,已經利用奈米結構發展出量子侷限效應 (quantum C〇nfinement effect)。為了獲得小於 5nm 的結晶或非 晶石夕(a-Si)奈米結構,像是量子井、量子線和量子點產生的量子 侷限效應,必須使用能階大於妙能階之材料當成矩阵(材料基底) 或障壁。吾人知道,隨著奈米結構尺寸變小,光的波長變短。 在這二奈米結構之中,量子點結構具有高量子效率的優點。 對於-石夕量子點太陽能電池而言,該等石夕量子點通常内嵌 在-介電矩陣内’像是氧切(Si()x)、氮化邦剛、碳化石夕 (SiCz)等豸等梦量子點可提供—寬廣的多重能隙(大約(I π 至1.2 eV)結構。 纟發明-方面係關於一光電池或太陽能電池。在一個具體 實施例内’該光電池包含一第一導電層;一形成於第一導電層 201011923 上的N型摻雜半導體層;一形成於該n型摻雜半導體層上的第 一矽層;一形成於第一矽層上的奈米結晶矽(nc_Si)層;一形成 於該奈米結晶矽層上的第二矽層;一形成於第二矽層上的p型 摻雜半導體層;以及一形成於該p型摻雜半導體層上的第二導 電層。 在一個具體實施例内,第一矽層與第二矽層兩者其令之一 者由非晶矽(a-Si)形成,並且第一矽層與第二矽層兩者其中的另 一者由多晶矽(poly-Si)所形成。該]^型摻雜半導體層由N型摻 雜矽所形成,並且在此該P型摻雜半導醴層由p型摻雜矽所形 成。 該奈米結晶矽層具有複數個矽奈米晶醴,矽奈米晶體大小 在大約l-20nm的範圍内。 第一導電層和第二導電層兩者當中,至少一者是由一透明 導電材料形成。該透明導電材料可為銦錫氧化物(IT〇)、銦鋅氧 化物(ΙΖΟ)、鋁鋅氧化物(ΑΖ0)、姶氧化物(Hf〇)或這些化合物 的組合。 在另 刀¢3,本發明係關於製造一光電池的方法。在一 體實施例内,該方法包含下列步驟:提供—基板;在該基板 形成-第-導電層’·在第一導電層上形成-N型摻雜半導 層;在該N型摻雜半導體層上形成一第一矽層;在第一矽層 形成-奈米結晶韻;在該奈米結㈣層上形[第二珍層 在第二梦層上形成-P雜雜半導體層;以及在該p型捧雜 導體層上形成一第二導電層。 在-個具體實施例内’形成該奈米結晶矽層的步驟包含 第一石夕層上形成富邦i-祕)介電層,並且雷射退火該富石夕 電層來在其内形成複數個矽奈米晶體。 201011923 在一個具體實施例内,該N型摻雜半導體層由]^型摻雜矽 所形成,並且在此該P型摻雜半導體層由p型摻雜矽所形成。 該奈米結晶矽層具有複數個矽奈米晶體,矽奈米晶體大小在大 : 約l-20nm的範圍内。第一矽層與第二矽層其中之一者由非晶矽 :形成,另一者由多晶矽所形成。 第一導電層和第二導電層兩者當中,至少一者由一透明導 電材料形成。該透明導電材料可為銦錫氧化物(IT〇)、銦辞氧化 物(ΙΖΟ)、鋁鋅氧化物(ΑΖ0)、铪氧化物(Hf0)或這些化合物的 組合。 本發明另一方面係關於一光電池。在一個具體實施例内, 該光電池具有一第一導電層、一第二導電層以及一光電轉換 層,其中該光電轉換層形成在第一導電層與第二導電層之間。 該光電轉換層具有一多重能隙。第一導電層和第二導電層兩者 备中,至少一者由一透明導電材料形成。在一個具體實施例 内,該光電池進一步具有一N型摻雜半導體層和一卩型摻雜半 導體層N型摻雜半導體層形成在第一導電層與該光電轉換層 之間,P型摻雜半導體層形成在第二導電層與該光電轉換層之 間。 在一個具體實施例内,該光電轉換層包含一非晶矽(&_以) 層、一多晶矽(poly-Si)層以及在該非晶矽層與該多晶矽層之間 形成的昌矽介電層。該富矽介電層的組合之材料可為富矽氧 化物、富矽氮化物、富矽氮氧化物、富矽碳化物或這些化合物 的組合。該富矽介電層包含一奈米結晶矽層,奈米結晶矽層具 有複數個矽奈米晶體,其中矽奈米晶體大小在大約丨_2〇11111的範 圍之内。 在另一具體實施例内,該光電轉換層包含在第一導電層上 7 201011923 形成並具有-折射帛nl的一第一富矽介電層,以及在第一富 矽介電層上形成並具有—折射率n2的一第二富矽介電層其 中n2<n1。在一個具體實施例内,該光電轉換層可進一步包含 在第二富石夕介電層與第二導電層之間形成並具有—折射率β 的-第三富矽介電層,其中n3<n2<n卜各第,介電層、 第二富梦介電層和第三富碎介電層的組成材料可為富梦氧化 物、昌石夕氮化物、富錢氧化物、富梦碳化物或這些化合物的 組合。在其他具體實施例内,該光電轉換層也包含一非晶矽層Ge substrate. In addition, III-V and II-VI semiconductor solar cells cannot be easily integrated with germanium-based CMOS and thin film transistor liquid crystal display (TFT-LCD) glass panels and low temperature polysilicon (LTPS) processing. Furthermore, the manufacture of III-V and II-VI: family semiconductor solar cells has serious metal contamination problems. Although the cost of amorphous: tantalum thin film solar cells is not high, efficiency and stability are not high. Therefore, wafer solar cells have become the mainstay of the solar cell market. Solar cells are energy conversion devices, so conversion efficiency is limited by the Camot Limit, which is about 85%. So far, the highest conversion efficiency achieved by solar cells on the market is about 33%. Therefore, there is room for improvement in the efficiency of these solar cells. Theoretically, photons with energies below the energy gap of the absorbing material are not absorbed by the material to create an electron hole pairing so that their energy cannot be converted through the absorbing material. For photons with energies above the energy gap, only some of the energy above the energy gap can be converted into a useful electron hole paired output. When a more energetic photon is absorbed, excess energy above the energy gap is converted into the kinetic energy of the carrier combination. These excessive kinetic energy is converted into heat through photon interaction as the kinetic energy of the carriers slows down to equilibrium speed. The solar spectrum is close to the black body frequency spectrum of approximately 6000 K, and most of the solar radiation reaching the Earth consists of photons with energy greater than the chirp gap (矽 band gap). These higher energy photons will be absorbed by the solar cell, but the energy difference between these photons and the chirp gap will be converted into heat through lattice vibrations (phonons) rather than being converted into usable electrical energy. For a single bonded (single band gap) solar cell, the theoretical maximum conversion efficiency is approximately 28%. However, ~ because the material cannot absorb all the essential limitations of photons whose energy is higher than the energy gap, and * and because the free carrier absorption of these materials limits the photon absorption to 100% conversion into electron hole pairing, the market is single The average conversion efficiency of wafer and polycrystalline germanium (p〇ly-Si) solar cells is only about 15%. 4 201011923 For multi-junction (or multiple-gap) solar cells, the individual single-junction solar cells are stacked in descending order of energy gap, and the top-most cells draw the high-energy photons and pass the lower energy gap. The remaining photons to be absorbed by the battery. Use more: Heavy energy gap (or multi-junction) can reduce the energy relationship between the bands, thus reducing the possibility of generating photons compared to a single (single band gap) solar cell, thereby reducing heat generation and improving the photoelectric Conversion efficiency. However, such tandem solar cells have problems with junction loss and lattice mismatch. Therefore, the problem to be solved in the technology to date is to solve the above defects and incompleteness. [Explanation] Recently, because of the high photoelectric efficiency and the wavelength adjustability of nanostructured light absorption, attention has been focused on quantum dot solar cells, that is, second generation solar cells. For a solar cell using germanium, an indirect gap semiconductor has developed a quantum C〇nfinement effect using a nanostructure. In order to obtain a crystalline or amorphous a-Si nanostructure of less than 5 nm, such as the quantum confinement effect produced by quantum wells, quantum wires and quantum dots, it is necessary to use materials with energy levels greater than the order of magnitude as a matrix (material) Base) or barrier. I know that as the nanostructure size becomes smaller, the wavelength of light becomes shorter. Among these two nanostructures, quantum dot structures have the advantage of high quantum efficiency. For the Shixi quantum dot solar cell, these Shixi quantum dots are usually embedded in the dielectric matrix, such as oxygen cut (Si()x), nitrided carbide, carbonized carbide (SiCz), etc. Dream quantum dots can provide a wide multiple energy gap (approximately (I π to 1.2 eV) structure. The invention - aspects relate to a photovoltaic cell or solar cell. In one embodiment, the photocell includes a first conductive a layer; an N-type doped semiconductor layer formed on the first conductive layer 201011923; a first germanium layer formed on the n-type doped semiconductor layer; and a nanocrystalline germanium formed on the first germanium layer a nc_Si) layer; a second germanium layer formed on the nanocrystalline germanium layer; a p-type doped semiconductor layer formed on the second germanium layer; and a first layer formed on the p-type doped semiconductor layer Two conductive layers. In one embodiment, both the first germanium layer and the second germanium layer are formed of amorphous germanium (a-Si), and both the first germanium layer and the second germanium layer The other of them is formed of poly-Si. The doped semiconductor layer is formed of N-type doped germanium. And wherein the P-type doped semiconducting germanium layer is formed by p-type doped germanium. The nanocrystalline germanium layer has a plurality of germanium crystal germanium, and the germanium crystal size is in the range of about l-20 nm. At least one of the first conductive layer and the second conductive layer is formed of a transparent conductive material, and the transparent conductive material may be indium tin oxide (IT〇), indium zinc oxide (ΙΖΟ), aluminum zinc. Oxide (ΑΖ0), yttrium oxide (Hf〇) or a combination of these compounds. In another embodiment, the present invention relates to a method of fabricating a photovoltaic cell. In an integrated embodiment, the method comprises the steps of: providing a substrate Forming a -first conductive layer on the substrate - forming an -N type doped semiconductor layer on the first conductive layer; forming a first germanium layer on the N type doped semiconductor layer; forming in the first germanium layer - nanocrystalline crystal; formed on the nanojunction (four) layer [the second layer forms a -P hetero semiconductor layer on the second layer; and a second conductive layer is formed on the p-type conductor layer The step of forming the nanocrystalline germanium layer in a specific embodiment comprises on the first layer Into a secret Fubon i-) a dielectric layer, and laser annealing Xi-rich rock layer to form a plurality of silicon nanocrystals therein. 201011923 In a specific embodiment, the N-type doped semiconductor layer is formed of a doped ytterbium, and the P-type doped semiconductor layer is formed of a p-type doped yttrium. The nanocrystalline ruthenium layer has a plurality of ruthenium crystals, and the crystal size of the ruthenium nanocrystal is in the range of about l-20 nm. One of the first tantalum layer and the second tantalum layer is formed of amorphous germanium: and the other is formed of polycrystalline germanium. At least one of the first conductive layer and the second conductive layer is formed of a transparent conductive material. The transparent conductive material may be indium tin oxide (IT〇), indium oxide (ΙΖΟ), aluminum zinc oxide (ΑΖ0), lanthanum oxide (Hf0) or a combination of these compounds. Another aspect of the invention relates to a photovoltaic cell. In a specific embodiment, the photovoltaic cell has a first conductive layer, a second conductive layer, and a photoelectric conversion layer, wherein the photoelectric conversion layer is formed between the first conductive layer and the second conductive layer. The photoelectric conversion layer has a multiple energy gap. At least one of the first conductive layer and the second conductive layer is formed of a transparent conductive material. In a specific embodiment, the photovoltaic cell further has an N-type doped semiconductor layer and a 掺杂-type doped semiconductor layer N-type doped semiconductor layer formed between the first conductive layer and the photoelectric conversion layer, P-type doping A semiconductor layer is formed between the second conductive layer and the photoelectric conversion layer. In a specific embodiment, the photoelectric conversion layer comprises an amorphous germanium layer, a poly-Si layer, and a dielectric layer formed between the amorphous germanium layer and the poly germanium layer. Floor. The material of the combination of the ytterbium-rich dielectric layer may be a cerium-rich oxide, a cerium-rich nitride, a cerium-rich oxynitride, a cerium-rich carbide or a combination of these compounds. The ruthenium-rich dielectric layer comprises a nanocrystalline ruthenium layer having a plurality of ruthenium crystals, wherein the ruthenium crystal size is within a range of about 〇2〇11111. In another embodiment, the photoelectric conversion layer comprises a first ytterbium-rich dielectric layer formed on the first conductive layer 7 201011923 and having a refractive index 帛n1, and formed on the first ytterbium-rich dielectric layer A second ruthenium-rich dielectric layer having a refractive index n2 wherein n2 < n1. In a specific embodiment, the photoelectric conversion layer may further include a third ytterbium-rich dielectric layer formed between the second fluorite dielectric layer and the second conductive layer and having a refractive index β, wherein n3 <N2<nb, the dielectric layer, the second rich dielectric layer and the third rich dielectric layer may be composed of rich dream oxide, Changshixi nitride, rich crystal oxide, rich dream carbonization Or a combination of these compounds. In other embodiments, the photoelectric conversion layer also includes an amorphous germanium layer

和-多晶㈣’第-富料電層與第二富梦介電層形成於該非 晶石夕層與該多晶石夕層之間。 本發明另-方面係關於製造一光電池的方法。在一個具體 實施例内’該方法包含:提供一基板;在該基板上形成一第一 導電層;在第一導電層上形成一光電轉換層,#中該光電轉換 層具有-多重能隙;以及在該光電轉換層上形成一第二導電層 之該等步驟》 此外’該方法也包含在第—導電層與該光電轉換層之間形 成- N型摻雜半導體層’以及在第二導電層與該光電轉換層形 成一P型摻雜半導體層之該等步驟。 在一個具體實施例内,形成該光電轉換層的步驟包含在第 -導電層上形成一第一矽層、在第一矽層上形成一富矽介面層 以及在該富碎介電層上形成一第二矽層。第一矽層與第二砍層 兩者其中之-者包含-非晶㈣,另—者包含—多晶碎層。形 成該富矽介電層的步驟進一步包含雷射退火該富矽介電層以 在其内形成複數個矽奈米晶體。 在另一具體實施例内,形成該光電轉換層的步驟包含在第 導電層上形成並具有一折射率nl的一第一富發介電層,以 8 201011923 及在第一富矽介電層上形成並具有一折射率n2的一第二富矽 介電層。在一個具體實施例内,形成該光電轉換層的步驟進一 步包含在第二富矽介電層與第二導電層之間形成並具有一折 射率n3的一第三富碎介電層,其中n3<n2<nl。 本發明另一方面係關於在操作上可由一液晶顯示驅動器所 驅動並且可由背光照明的液晶顯示面板(LCD panel, “liquid crystal display panel”)。在一個具體實施例内,該液晶顯示面 板具有一顯示區域來顯示相關資訊,以及一光電池,該光電池 置於圍繞該顯示區域的區域内並曝露在一光線下,來將該光線 的光學能量轉換成一電能,該電能供應至該液晶顯示驅動器當 成一驅動電力。該光電池包含一第一導電層、一第二導電層以 及在第一導電層與第二導電層之間形成的一光電轉換層,其中 該光電轉換層具有一多重能隙。在一個具體實施例内,該顯示 區域具有複數個低溫多晶矽薄膜電晶體(LTPS-TFT, “low temperature polycrystalline silicon thin film transistor”)或非晶 石夕薄膜電晶體(a-Si TFT, amorphous silicon thin film transistor” ) ° 在一個具體實施例内,該光電轉換層包含一非晶石夕層、一 多晶矽層以及在該非晶矽層與該多晶矽層之間形成的一富矽 介電層。該富矽介電層由包含富矽氧化物、富矽氮化物、富矽 氮氧化物、富矽碳化物或這些的組合之材料所形成。在一個具 體實施例内,該富矽介電層包含一奈米結晶矽層,奈米結晶矽 層具有複數個矽奈米晶體,矽奈米晶體大小在大約l-20nm的範 圍之内。 在其他具體實施例内,該光電轉換層包含在第一導電層上 形成並具有一折射率nl的一第一富矽介電層,以及在第一富 9 201011923 梦介電層上形成並具有一折射率n2..的一第二富梦介電層,其 中n2<nl。該光電轉換層可進一步具有在第二富矽介電層與第 一導電層之間形成並具有一折射率n3的一第三富發介電層, 其中 n3 < n2 < nl » 本發明一方面係關於製造可由一液晶顯示驅動器所驅動並 且可由背光照明的液晶顯示面板之方法。在一個具體實施例 内該方法包含.提供一基板;在該基板上形成一顯示區域; 以及在該基板上圍繞該顯示區域的一區域内形成一光電池並 曝露在-光線下。如此當接收到光線的光學能量時,該光電池 將該光學能量轉換成-電能,該電能供應至該液晶顯示驅動器 當成-驅動電力。形成該光電池的步驟包含:形成—第一導電 層’形成第一導電層;以及在第一導電層與第二導電層之間 形成-光電轉換層,其中該光電轉換層具有—多重能隙。 在個具趙實施例内,形成該光電轉換層的步称包含在第 -導電層上形成一第一矽層、在第一矽層上形成一富矽介電層 以及在該雷射退火的富料電層上形成—第二㈣。第一梦層 與第二碎層兩者其中之—者包含—非晶㈣,另—者包含一多 晶石夕層。在一個具體實施例内,形成該富梦介電層的步驟進一 =包含雷射退火該0介電層以在其内形成複數㈣奈 體。 在其他具时施例内,形成該光電轉換層的㈣包含仏 導電層上形成並具有一折射率nl的一第一富石夕介電層” =一富!介電層上形成並具有一折射率以的-第二“ 梦介電層舆第二導電層之進-步具有在第二1 富㈣電層,其中n3<rnf折射率Π3的一第: 201011923 本發明另一方面係關於具有複數個以矩陣形式排列的像素 之顯示面板。每一像素包含用於顯示相關資訊的一主動區域、 具有一或多個切換元件的一切換區域以及在該主動區域與該 切換區域之間形成的光電池’其中該光電池具有一擁有一多重 能隙的光電轉換層。 在一個具體實施例内,該光電轉換層包含一非晶矽層、一 多晶矽層以及在該非晶矽層與該多晶矽層之間形成的一富矽 介電層。該富矽介電層包含一奈米結晶矽層,其具有複數個矽 奈米晶體大小在大約l-20nm的範圍之内。 本發明另一方面係關於製造顯示面板的方法。在一個具體 實施例内,該方法包含:提供一基板;並且在該基板上以矩陣 形式形成複數個像素《其中,每一像素包含一光電池,該光電 池具有一擁有一多重能隙的光電轉換層。 在一個具體實施例内,形成該複數個像素的方法包含該等 步驟:(a)形成複數個電耦合至該基板上閘線的閘極,該複數 個閘極在空間上彼此相隔,並且每一對相鄰閘極之間定義一主 動區域、切換區域以及一光電池。;(b)在該複數個閘極以及 該基板的該剩餘區域上形成一閘絕緣層;(c)在該閘絕緣層上 形成一非晶矽層,並覆蓋每一切換區域内每一閘極;(d)在該 非晶矽層上形成一摻雜的非晶矽層;(e)在該摻雜的非晶矽層 上以及該閘絕緣層的剩餘區域上形成一第一導電層;(〇在第 一導電層上放置覆蓋每一光電池區域的一富矽介電層;(g)在 每一切換區域内形成一源極和一汲極,藉此在該基板上形成場 效電晶體的一陣列;(h)在第―導電層上形成一覆蓋該場效電 晶體陣列與該富矽介電層的被動層;(i)通道接觸並且在該切 換區域和該光電池區域内該被動層上;以及(j)在該切換區域 11 201011923 與該光電池區域之間一區域上形成具有一第一部分的一第二 導電層’如此第一部分在每一切換區域内通過該通道接觸該場 效電晶體的汲極’以及接觸該光電池區域内該富矽介電層上一 第二部分。 形成該複數個像素的步驟進一步包含雷射退火該富矽介電 層來在其内形成複數個矽奈米晶艘。 在一個具體實施例内,該閘絕緣層由氧化矽、氮化矽或氮 氧化矽形成。該摻雜的非晶矽層包含n+摻雜的非晶矽或卜摻 雜的非晶矽。形成該被動層的一介電材料可包含氧化矽或氮化 梦。在第一導電層和第二導電層當中,至少一者為透明。在一 個具體實施例内,第二導電層可由銦錫氧化物(IT〇)、銦鋅氧化 物(ΙΖΟ)、鋁鋅氧化物(ΑΖ〇)、铪氧化物(Hf〇)或這些化合物的 組合來形成。 從下歹】較佳具趙實施例結合附圖的說明當甲,將可瞭解本 發明的這些與其城圍,不過在不㈣所公佈創新概念的精神 與範疇之下可進行變化與修改。 【實施方式】 在下列僅供說明的範例中會更詳細說 ::::人士將可瞭解許多修改與變化。在此將詳細說: 同的組件具::=。請參閲圖式,圖式中相同的號碼表示相 用,除非清楚::處: 外,針對此」和該」的意思包含複數。另 非清楚彳Γ㈣及㈣整財料㈣討所使用,除 此=下會的意思包含 對本說明書内使用的某些詞棄有更特殊的定義。 12 201011923 如此處所使用,「大約」或「約略」一般表示在已知值或範 圍的百分之20内’較佳在百分之1〇内,更佳在百分之5内。 其中給予的數量為約略值,表示若未明確表示則可推論為「大 V 約」或「約略」等詞。 . 如此處所使用,本說明書内使用的「太陽能電池」與「光 電池」為同義字,表示利用該光電效應將太陽能/光能轉換成電 力的裝置。 此處使用許多簡稱和縮寫,「nc-Si」就是奈米晶體矽、「a_Si」 φ 為非晶梦、「P〇ly-Si」為多晶梦、「Si-rich」為富石夕、「LTPS」 為低溫多晶矽、「TFT」為薄膜電晶體、r pecvd」為電漿增強 化學汽相沈積、「ELA」為準分子雷射退火、「CLC」為連續波 雷射晶體化。 在此將詳細參考本發明的具體實施例,並結合第1圖至第 14圖來做說明。根據本發明的目的,如此處所具體實施以及廣 泛說明,在一個範圍内,本發明係關於具有多重能隙(多頻帶能 隙,multi-band gap)的矽奈米晶體之光電池及其在一低溫多晶 魯 矽薄膜電晶體(LTPS-TFT)面板内的應用。 請參閱第1圖,在此圖解顯示根據本發明一個具體實施例 的光電池1 00。在此示例性具體實施例内,光電池1 〇〇具有一 個第一導電層110、一個形成於第一導電層110上的富石夕介電 層140以及一個形成於富矽介電層14〇上的第二導電層17〇。 富矽介電層140可用PECVD來沈積。在該富矽介電沈積處理 中,四氫化矽(SiH4)與一氧化二氮(N20)(或氨NH3或氮N2) 氣體的比例經過調整,以獲得所要的折射率範圍。其中,折射 率的範圍表示薄膜内矽的富含程度。利用適當的雷射退火,將 富矽介電層140内多餘的矽原子分離、聚集並且轉成矽奈米晶 13 201011923 體,以形成奈米結晶富矽介電層(奈米結晶矽層)。如此可製造 出具有不同的折射率(1.6_3.7)、不同的厚度(5〇_5〇〇 nm)和不同 大小(1-20 nm)的矽奈米晶體145的富矽介電層。由於不同半導 體材料熔點及其能量吸收效率等級的變化,利用雷射結晶多晶 石夕或非晶石夕薄膜也可形成複數個雷射感應矽奈米晶體。因此, 該雷射結晶處理建構出一種多重能隙光吸收結構,其讓光電池 100可吸收波長範圍大約3〇〇1〇〇〇 nm的光線。 富石夕介電層140由包含富矽氧化物(Si〇x)、富矽氮化物 (SlNy)、富矽氮氧化物(SiOxNy)、富矽碳化物(siCz)或這些的材 料之組合所形成,其中〇<χ<2、〇<y<1 34並且〇<ζ<ι。富矽介 電層140可形成為單層或多層結構。不論是單層或多層結構, 富矽介電層140包含富矽氧化物薄膜、富矽氮化物薄膜以及富 梦氮i氧化物薄膜三者當中至少一者。 第一導電層110和第二導電層170可用金屬、金屬氧化物 或這些材料的任意組合來形成。該材料可為折射材料包含 銅銀、金、欽、翻、鐘、组、敍、鶴、合金、其他或這 二材料的疊層或合金等任意組合。該金屬氧化物可為透明導電 材料,包含銦錫氧化物(ITO)、銦辞氧化物(IZO)、鋁鋅氧化物 (AZO)、銓氧化物(Hf〇)等。該材料可為該等折射材料和該等透 明導電材料的組合。實施上,至少第_導電層與第二導電層之 由透明導電材料製成,像是IT〇、IZ〇、AZ〇、Hf〇等。該透 明導電材料允許周圍光㈣透並到達該富#介電層(感光區 域)。 實際上,在富矽介電層140上形成層間介電層(UHA 層)180。然後’一圖樣製作/遮罩處理套用至uHA層18〇來定 義其内的通道或接觸孔181。第二導電層17〇透過通道或接觸 14 201011923 孔181在富矽介電層140上形成》 相較於具有以能隙遞減順序來堆疊個別單接合光電池的傳 統多接合(串接)光電池,具有一單接合的多重能隙Si奈米晶體 光電池擁有許多優點。在該多接合單元裝置内,該頂端單元擷 取該高能量光子並讓較低能隙單元所要吸收的剩餘光子通 過》不過,該等串接的光電池包含有接合損失與晶格誤配的缺 點,因此降低該光電轉換效率。具有多重能隙吸收材料的光電 池可更有效轉換該太陽光譜。藉由使用多重能隙,該太陽光譜 可分成更小部分’在此熱力學效率對於每一部分的限制更高。 第2圖圖解顯示根據本發明一個具體實施例製造一光電池 200之處理。首先,如第2A圖内所示,在一第一導電層21〇 上形成一富矽介電層240。接下來,將富矽介電層24〇曝露在 雷射292的光束下,以在其内形成複數個矽奈米晶體245,如 第2B圖内所示。然後,第二導電層27〇在富矽介電層24〇上 形成,如第2C圖内所示。 運用一電漿增強化學氣相沉積(PECVD)處理,以大約1托 爾(torr)的低壓,在溫度低於大約400°C的條件下,可在第一導 電層210上形成富矽介電層24〇。在一個具體實施例内,富石夕 介電層240可在大約200它至彳㈧〇c或大約35〇七至々^ 的溫度範圍内’較佳在大約370 〇c的溫度上形成。針對已知的 溫度範圍,大約耗費從13秒至250秒,較佳大約25秒至125 秒,以形成大約50奈米(nm)至大約1000 nm所要厚度的富石夕介 電層240。在形成富矽介電層24〇的處理期間,透過調整含梦 比例SiH4/N20可控制富梦介電層24〇的折射率。在一個具體 實施例内,含矽比树SiH4/N20在大約1:1〇至大約1〇:1的範圍 内調整’導致折射率至少在大約1·47至大約3 7的範圍内,該 15 201011923 含矽比例較佳在大約1:5至大約10:1的範圍内,導致折射率至 少在大約1.7至大約3.7的範圍内。富矽介電層240也可用其 他方法或處理來形成。 例如藉由使用準分子雷射退火(ELA, “ excimer laser annealing”)可完成富矽介電層240的雷射退火。在溫度低於 400 °C時可利用具有可調整頻率並且可調整雷射功率密度的 準分子雷射。在一個具體實施例内,該ELA以大約1大氣壓力 (760托爾)或大約1 xl〇3 Pa的壓力’在低於大約400 °C的溫度 上來執行。在其他具體實施例内’在室溫上執行該ELA,即是 ® 大約20-25 °C。也可用具有對應參數的其他種雷射退火來實施 本發明。 該雷射波長與該雷射功率等級可調整,來產生所要的雷射 感應矽奈米晶體直徑。針對任何雷射種類’像是例如EL A、連 續波雷射結晶(CLC, continuous-wave laser crystallization”)、固態CW綠雷射等,該雷射波長在大約 266-1024 nm的範圍内。所要的雷射感應矽奈米晶體直徑在大 約1-20 nm的範圍内,較佳在大約3-6 nm的範圍内。在一個具 ® 體實施例内,在一波長大約在266-532 nm的範圍内,較佳在大 約308 nm上執行富矽介電層240的ELA。富矽介電層240的 ELA通常在雷射功率強度大約70-440 mJ/cm2的範圍上,較佳 在雷射功率強度大約70-200 mJ/cm2的範圍上執行。在其他具 體實施例内,在一波長例如大約532-1024 nm的範圍上執行富 矽介電層240的CLC。在其他具體實施例内,在一波長例如大 , 約532 nm的範圍上執行富矽介電層240的固態CW綠雷射。 不過,當該雷射功率強度超過大約200 mJ/cm2時,在富矽介電 層240之下的第一導電層會受損或剝離》為了產生具有範圍在 16 201011923 大約4 nm至大約10 nm的較大雷射感應石夕奈米晶體之富梦介 電層240,所以富矽介電層240的準分子雷射退火較佳在雷射 功率強度大約200-440 mJ/cm2的範圍上執行。在另一方面,為 了產生具有範圍在大約2 nm至大約6 nm的較小雷射感應梦奈 米晶體之富矽介電層240,所以富矽介電層240的ELA較佳在 雷射功率強度大約70-200 mJ/cm2的範圍上執行。在富砍介電 層240内雷射感應矽奈米晶體245的密度較佳在大約 Ixl011/cm2至大約Ixl012/cm2的範圍内。 第3圖顯示雷射感應矽奈米晶體的特性:(A)一穿透式電 ^ 子顯微(TEM)影像顯示該等矽奈米晶體的大小,以及(B)具有 直徑大約4 nm尖峰值量的雷射感應矽奈米晶體内奈米晶體大 小之分布》 凊回頭參閱第2C圖,在此具艘實施例内,第二導電層270 透明。當光線295的入射光束通過透明層270並到達具有複數 個雷射感應碎奈米晶體245的富碎介電層240,則會吸收具有 能量等於或大於富矽介電層240的多重能隙之光束光子。因 ❿ 此,在富矽介電層240内會產生電洞(h+)和電子(e_)配對。所產 生的電洞(h+)和電子(e-)分別朝向並通過第二導電層27〇和第 一導電層210。若一負載連接第一導電層21〇與第二導電層 27〇 ’則將有一電流流過該負載《也就是,入射光295的光子 能量利用光電池200轉換成電能。 此外,第一導電層210也可由一透明導電材料製成。 上面公佈的步驟並不需要依照順序執行,而該處理也不是 實施本發明的唯一方法。 例如:利用提供一基板、在該基板上形成第一導電層 '在 第一導電層上形成富矽介電層以及在該富矽介電層上形成一 17 201011923 第二導電層可製造光電池。然後,執行雷射退火該富矽介電層 來形成複數個矽奈米晶體。在一個具體實施例内,利用從第二 導電層頂端將一雷射光束導引至該富矽介電層來執行該雷射 退火。在其他具體實施例内,該基板與第一導電層由透明導電 材料製成’如此利用直接從該基板底部導引一雷射光束至該富 石夕介電層來執行該雷射退火。在替代具體實施例内,從該光電 池頂端和底部將兩雷射光束分別導引至該富矽介電層來執行 該雷射退火。 ^ 請參閱第4圖,在此顯示根據本發明一個具體實施例的光 電池電池400。光電池電池組400包含一光電池4〇1,其用於 將入射至光電池401的光線495之光子能量轉換成電能。光電 池401具有一第一導電層41〇、一第二導電層47〇以及一個形 成於第一導電層410與第二導電層470之間的富矽介電層 4〇畐石夕’丨電層440具有複數個擁有一多重能隙的雷射感應 矽奈米晶體445。更進一步’光電池電池組4〇〇也包含一個可 充電電池組480,其電耦合在第一導電層41〇與第二導電層47〇 φ 之間用於儲存電能。此外,在光電池401與可充電電池480之 間連接一個電流表485。光電池4〇1可由上述處理所製造。 此外’在使用一負載’例如一電阻,取代可充電電池480 之下,如第4圖内所示的配置也可用來當成一光感測器。 請參閱第5圖,曲線51〇為具有Si奈米晶體Si〇x光電轉 換(感光)層的光電池對於白光的入射光束,例如陽光的光譜 反應。該光電池的白光子反應特性(4〇〇_65〇 nm)來自於該光電 池的Si奈米晶體之多重能隙。 第ό圖顯示利用富石夕氧化石夕(Si_rich §i〇x )層上不同的雷 射退火功率強度,一光電池對入射白光的光致發光反應。曲線 201011923 610、620、630 和 640 分別為雷射能量 300 mJ/cm2、350 mJ/cm2、 400 mJ/cm2和440 mJ/cm2的光致發光反應。 請參閱第7圖,在此顯示根據本發明一個具體實施例的光 電池之電流電壓特性。曲線710和720分別為該光電池的暗電 流和光電流。該光電特性指出,在所研發的光電池中可輕易獲 得比傳統P-I-N (正-固有-負)二極體還要高的感度以及可比較 的暗電流等級。 第8圖圖解顯示根據本發明一個具體實施例具有一多重能 隙的光電池之光譜特性。該多重能隙區分成複數個狹窄區域, ® 每一對應至要光電轉換成電能的光波長範圍。 請參閱第9圖,顯示根據本發明一個具體實施例的光電池 900之剖面圖。在一個具體實施例内,一光電池900具有一第 一導電層910、一形成於第一導電層910上的第一半導體層 920、一形成於第一半導體層920上的第一富矽介電層930、一 個形成於第一富矽介電層930上的第二富矽介電層940、一形 成於第二富矽介電層940上的第二半導體層960以及一形成於 第二半導體層960上的第二導電層970。 在一個具體實施例内,第一半導體層920與第二半導體層 960之一為N型摻雜半導體層,並且第一半導體層920與第二 半導體層960另一為P型摻雜半導體層。例如:第一半導體層 920為N型摻雜半導體層,並且第二半導體層960為P型摻雜 半導體層。該N型摻雜半導體層包含N型摻雜矽,並且該P 型摻雜半導體層包含P型摻雜矽。也可使用其他半導體材料來 - 實現本發明。N型摻雜半導體層920和P型掺雜半導體層960 可用一標準處理形成,像是一植入處理、一 PECVD處理。 在其他具體實施例内,第一半導體層920和第二半導體層 201011923And a polycrystalline (tetra)'-rich material layer and a second rich dielectric layer are formed between the aragonite layer and the polycrystalline layer. Another aspect of the invention relates to a method of making a photovoltaic cell. In a specific embodiment, the method includes: providing a substrate; forming a first conductive layer on the substrate; forming a photoelectric conversion layer on the first conductive layer, wherein the photoelectric conversion layer has a multiple energy gap; And the step of forming a second conductive layer on the photoelectric conversion layer. Further, the method further includes forming an -N-type doped semiconductor layer between the first conductive layer and the photoelectric conversion layer and at the second conductive The steps of forming a P-type doped semiconductor layer with the photoelectric conversion layer. In a specific embodiment, the step of forming the photoelectric conversion layer comprises forming a first germanium layer on the first conductive layer, forming a germanium rich interfacial layer on the first germanium layer, and forming on the rich dielectric layer. A second layer of enamel. The first layer and the second layer are both - amorphous (four) and the other - polycrystalline layer. The step of forming the germanium-rich dielectric layer further includes laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals therein. In another embodiment, the step of forming the photoelectric conversion layer comprises forming a first rich dielectric layer on the first conductive layer and having a refractive index n1 to 8 201011923 and in the first rich dielectric layer A second ytterbium-rich dielectric layer is formed thereon and having a refractive index n2. In a specific embodiment, the step of forming the photoelectric conversion layer further includes a third rich dielectric layer formed between the second ruthenium-rich dielectric layer and the second conductive layer and having a refractive index n3, wherein n3<;n2<nl. Another aspect of the invention relates to a liquid crystal display panel (LCD panel) that is operatively operable by a liquid crystal display driver and that can be illuminated by a backlight. In a specific embodiment, the liquid crystal display panel has a display area for displaying related information, and a photocell placed in an area surrounding the display area and exposed to a light to convert the optical energy of the light. The electric energy is supplied to the liquid crystal display driver as a driving power. The photovoltaic cell includes a first conductive layer, a second conductive layer, and a photoelectric conversion layer formed between the first conductive layer and the second conductive layer, wherein the photoelectric conversion layer has a multiple energy gap. In one embodiment, the display region has a plurality of low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) or amorphous silicon thin films (a-Si TFTs). Film transistor" ) ° In one embodiment, the photoelectric conversion layer comprises an amorphous layer, a polysilicon layer, and a germanium-rich dielectric layer formed between the amorphous layer and the polysilicon layer. The germanium dielectric layer is formed of a material comprising a germanium-rich oxide, a germanium-rich nitride, a germanium-rich nitrogen oxide, a germanium-rich carbide, or a combination thereof. In one embodiment, the germanium-rich dielectric layer comprises a The nanocrystalline crystalline layer has a plurality of nanocrystalline crystals having a crystal size ranging from about 1 to 20 nm. In other embodiments, the photoelectric conversion layer is included in the first conductive layer. a first germanium-rich dielectric layer formed on the layer and having a refractive index nl, and a second rich dielectric formed on the first rich layer 9 201011923 dream dielectric layer and having a refractive index n2.. Wherein n2 <nl. The photoelectric conversion layer may further have a third rich dielectric layer formed between the second germanium-rich dielectric layer and the first conductive layer and having a refractive index n3, wherein n3 < n2 < nl » In one aspect, the invention relates to a method of fabricating a liquid crystal display panel that can be driven by a liquid crystal display driver and that can be illuminated by a backlight. In one embodiment, the method includes providing a substrate; forming a display on the substrate And forming a photocell in a region surrounding the display region on the substrate and exposing it to light. When the optical energy of the light is received, the photocell converts the optical energy into electrical energy, and the electrical energy is supplied to The liquid crystal display driver acts as a driving power. The step of forming the photovoltaic cell includes: forming a first conductive layer to form a first conductive layer; and forming a photoelectric conversion layer between the first conductive layer and the second conductive layer, wherein the The photoelectric conversion layer has a multiple energy gap. In the embodiment, the step of forming the photoelectric conversion layer includes forming a first layer on the first conductive layer a germanium layer, a germanium-rich dielectric layer formed on the first germanium layer, and a second (four) formed on the laser-annealed power-rich layer. The first layer and the second layer are both included - amorphous (four), and further comprising a polycrystalline layer. In a specific embodiment, the step of forming the rich dielectric layer further comprises laser annealing the 0 dielectric layer to form a complex number therein (4) In other time-varying embodiments, (4) forming the photoelectric conversion layer comprises a first rich-rich dielectric layer formed on the conductive layer of germanium and having a refractive index n1" = a rich! Forming on the dielectric layer and having a refractive index - the second "dream dielectric layer" of the second conductive layer has a second step in the second (four) electrical layer, wherein n3 <rnf refractive index Π 3 of a: 201011923 Another aspect of the invention relates to a display panel having a plurality of pixels arranged in a matrix. Each pixel includes an active area for displaying related information, a switching area having one or more switching elements, and a a photocell formed between the region and the switching region, wherein the photovoltaic cell has a photoelectric conversion layer having a multiple energy gap. In a specific embodiment, the photoelectric conversion layer comprises an amorphous germanium layer, a poly germanium layer, and a germanium-rich dielectric layer formed between the amorphous germanium layer and the polysilicon layer. The germanium-rich dielectric layer comprises a nanocrystalline germanium layer having a plurality of germanium crystals having a size in the range of about 1-20 nm. Another aspect of the invention relates to a method of fabricating a display panel. In one embodiment, the method includes: providing a substrate; and forming a plurality of pixels in a matrix on the substrate Each of the pixels includes a photovoltaic cell having a photoelectric conversion layer having a plurality of energy gaps. In one embodiment, the method of forming the plurality of pixels includes the steps of: (a) forming a plurality of electrodes a gate coupled to the gate line of the substrate, the plurality of gates are spatially separated from each other, and an active region, a switching region, and a photocell are defined between each pair of adjacent gates; (b) at the plurality Forming a gate insulating layer on the gate and the remaining region of the substrate; (c) forming an amorphous germanium layer on the gate insulating layer and covering each gate in each switching region; (d) in the non- Forming a doped amorphous germanium layer on the germanium layer; (e) forming a first conductive layer on the doped amorphous germanium layer and remaining regions of the gate insulating layer; Depositing a germanium-rich dielectric layer covering each photocell region; (g) forming a source and a drain in each switching region, thereby forming an array of field effect transistors on the substrate; Forming a cover field on the first conductive layer a body array and a passive layer of the ytterbium-rich dielectric layer; (i) a channel in contact with the switching region and the photocell region; and (j) a region between the switching region 11 201011923 and the photocell region Forming a second conductive layer having a first portion on the region such that the first portion contacts the drain of the field effect transistor through the channel in each switching region and contacts the 矽-rich dielectric layer in the photocell region The second part. The step of forming the plurality of pixels further comprises laser annealing the germanium-rich dielectric layer to form a plurality of nano-crystal cells therein. In a specific embodiment, the gate insulating layer is made of yttrium oxide, The germanium nitride or the ytterbium oxynitride layer is formed. The doped amorphous germanium layer comprises an n+ doped amorphous germanium or a doped amorphous germanium. A dielectric material forming the passive layer may comprise germanium oxide or nitride. dream. At least one of the first conductive layer and the second conductive layer is transparent. In a specific embodiment, the second conductive layer may be composed of indium tin oxide (IT〇), indium zinc oxide (ΙΖΟ), aluminum zinc oxide (ΑΖ〇), lanthanum oxide (Hf〇) or a combination of these compounds. To form. From the squats, the preferred embodiment of the invention, in conjunction with the description of the drawings, will be understood as a basis for the present invention, but may be varied and modified without the spirit and scope of the innovative concepts disclosed. [Embodiment] In the following illustrative examples only, :::: Many changes and modifications will be apparent to those skilled in the art. It will be described in detail here: The same component has::=. Referring to the drawings, the same reference numerals are used in the drawings, unless the meaning of ":" is used. It is not clear that (4) and (4) the whole material (4) is used for discussion. Except for this = the meaning of the meeting includes a more specific definition of certain words used in this specification. 12 201011923 As used herein, "about" or "about" generally means within 20 percent of the known value or range, preferably within 1%, more preferably within 5 percent. The quantity given is an approximate value, which means that if it is not clearly indicated, it can be inferred to be a word such as "big V" or "about". As used herein, "solar battery" and "photovoltaic cell" as used in this specification are synonymous with each other, and means a device that converts solar energy/light energy into electricity using the photoelectric effect. Many abbreviations and abbreviations are used here. "nc-Si" is a nanocrystal, "a_Si" φ is an amorphous dream, "P〇ly-Si" is a polycrystalline dream, and "Si-rich" is a rich eve. "LTPS" is low-temperature polysilicon, "TFT" is a thin film transistor, r pecvd" is plasma-enhanced chemical vapor deposition, "ELA" is excimer laser annealing, and "CLC" is continuous-wave laser crystallization. Specific embodiments of the present invention will be described in detail herein with reference to Figures 1 through 14. In accordance with the purpose of the present invention, as embodied and broadly described herein, in one aspect, the present invention is directed to a photovoltaic cell having a multi-band gap and a low-energy gap and its low temperature Applications in polycrystalline ruthenium film transistor (LTPS-TFT) panels. Referring to Figure 1, there is shown a photovoltaic cell 100 in accordance with an embodiment of the present invention. In this exemplary embodiment, the photovoltaic cell 1 has a first conductive layer 110, a rich-rich dielectric layer 140 formed on the first conductive layer 110, and one formed on the germanium-rich dielectric layer 14 The second conductive layer 17〇. The ruthenium rich dielectric layer 140 can be deposited by PECVD. In the ruthenium-rich dielectric deposition process, the ratio of tetrahydrogen hydride (SiH4) to nitrous oxide (N20) (or ammonia NH3 or nitrogen N2) gas is adjusted to obtain a desired refractive index range. Among them, the range of refractive index indicates the degree of enrichment of ruthenium in the film. Using appropriate laser annealing, the excess germanium atoms in the germanium-rich dielectric layer 140 are separated, aggregated and converted into a nanocrystalline crystal 13 201011923 body to form a nanocrystalline crystalline germanium dielectric layer (nanocrystalline germanium layer). . Thus, a germanium-rich dielectric layer of germanium crystals 145 having different refractive indices (1.6_3.7), different thicknesses (5 〇 _5 〇〇 nm), and different sizes (1-20 nm) can be produced. Due to the change of the melting point of different semiconductor materials and the energy absorption efficiency grade, a plurality of laser-induced nanocrystals can be formed by using a laser crystallized polycrystalline or amorphous film. Therefore, the laser crystallization process constructs a multiple energy gap light absorbing structure that allows the photovoltaic cell 100 to absorb light having a wavelength range of about 3 〇〇 1 〇〇〇 nm. The Fu Shi Xi dielectric layer 140 is composed of a combination of materials containing cerium-rich oxide (Si〇x), cerium-rich nitride (SlNy), cerium-rich oxynitride (SiOxNy), cerium-rich carbide (siCz) or the like. Formed, where 〇<χ<2, 〇<y<1 34 and 〇<ζ<ι. The ruthenium-rich dielectric layer 140 can be formed in a single layer or a multilayer structure. The ruthenium-rich dielectric layer 140 includes at least one of a ruthenium-rich oxide film, a ruthenium-rich nitride film, and a dream-rich nitrogen oxide film, whether it is a single layer or a multilayer structure. The first conductive layer 110 and the second conductive layer 170 may be formed of a metal, a metal oxide, or any combination of these materials. The material may be any combination of copper, silver, gold, chin, turn, bell, group, ruthenium, crane, alloy, other or a combination or alloy of the two materials. The metal oxide may be a transparent conductive material, and includes indium tin oxide (ITO), indium oxide (IZO), aluminum zinc oxide (AZO), hafnium oxide (Hf), and the like. The material can be a combination of the refractive materials and the transparent conductive materials. In practice, at least the first conductive layer and the second conductive layer are made of a transparent conductive material such as IT〇, IZ〇, AZ〇, Hf〇 or the like. The transparent conductive material allows ambient light (4) to penetrate and reach the rich dielectric layer (photosensitive region). In effect, an interlayer dielectric layer (UHA layer) 180 is formed over the germanium-rich dielectric layer 140. A patterning/masking process is then applied to the uHA layer 18 to define the channels or contact holes 181 therein. The second conductive layer 17 is formed through the via or contact 14 201011923 via 181 on the germanium-rich dielectric layer 140 compared to a conventional multi-junction (serial) photocell having stacked individual bonded photocells in a decreasing order of energy gap, A single bonded multiple energy gap Si nanocrystalline photovoltaic cell has many advantages. In the multi-junction unit device, the top unit captures the high-energy photons and allows the remaining photons to be absorbed by the lower gap unit to pass through. However, the serially connected photocells have the disadvantages of joint loss and lattice mismatch. Therefore, the photoelectric conversion efficiency is lowered. A photovoltaic cell with multiple energy gap absorbing materials can more efficiently convert the solar spectrum. By using multiple energy gaps, the solar spectrum can be divided into smaller fractions where thermodynamic efficiency is more restrictive for each fraction. Figure 2 illustrates a process for fabricating a photovoltaic cell 200 in accordance with an embodiment of the present invention. First, as shown in Fig. 2A, a germanium-rich dielectric layer 240 is formed on a first conductive layer 21A. Next, the germanium-rich dielectric layer 24 is exposed to the beam of laser 292 to form a plurality of nanocrystals 245 therein, as shown in Figure 2B. Then, a second conductive layer 27 is formed on the germanium-rich dielectric layer 24, as shown in Fig. 2C. Using a plasma enhanced chemical vapor deposition (PECVD) process, a ruthenium-rich dielectric can be formed on the first conductive layer 210 at a low pressure of about 1 torr at a temperature below about 400 °C. Layer 24〇. In one embodiment, the richer dielectric layer 240 can be formed at a temperature in the range of about 200 to 彳(8) 〇c or about 35 〇7 to ’^, preferably at about 370 〇c. For a known temperature range, it takes from about 13 seconds to 250 seconds, preferably from about 25 seconds to 125 seconds, to form a richer dielectric layer 240 having a desired thickness of from about 50 nanometers (nm) to about 1000 nm. During the process of forming the germanium-rich dielectric layer 24, the refractive index of the rich dielectric layer 24〇 can be controlled by adjusting the dream-containing ratio SiH4/N20. In a specific embodiment, the rhodium-containing tree SiH4/N20 is adjusted within a range of from about 1:1 〇 to about 1 〇:1, resulting in a refractive index ranging at least from about 1.47 to about 37, which is 15 The 201011923 ruthenium ratio is preferably in the range of from about 1:5 to about 10:1, resulting in a refractive index ranging from at least about 1.7 to about 3.7. The ruthenium rich dielectric layer 240 can also be formed by other methods or processes. Laser annealing of the germanium-rich dielectric layer 240 can be accomplished, for example, by using excimer laser annealing (ELA). Excimer lasers with adjustable frequencies and adjustable laser power densities can be utilized at temperatures below 400 °C. In a specific embodiment, the ELA is performed at a pressure of about 1 atmosphere (760 Torr) or about 1 x 〇 3 Pa at a temperature below about 400 °C. In other embodiments, the ELA is performed at room temperature, i.e., is about 20-25 °C. The invention may also be practiced with other types of laser annealing having corresponding parameters. The laser wavelength and the laser power level can be adjusted to produce the desired laser induced 矽 nanocrystal diameter. For any laser type 'like EL A, continuous wave laser (LCC), solid state CW green laser, etc., the laser wavelength is in the range of about 266-1024 nm. The laser-induced nanocrystals have a diameter in the range of about 1-20 nm, preferably in the range of about 3-6 nm. In a single embodiment, at a wavelength of about 266-532 nm. In the range, ELA of the germanium-rich dielectric layer 240 is preferably performed at about 308 nm. The ELA of the germanium-rich dielectric layer 240 is typically in the range of laser power intensity of about 70-440 mJ/cm2, preferably laser. The power intensity is performed over a range of about 70-200 mJ/cm 2. In other embodiments, the CLC of the germanium-rich dielectric layer 240 is performed over a range of wavelengths, such as about 532-1024 nm. In other embodiments, The solid state CW green laser of the germanium-rich dielectric layer 240 is performed over a range of wavelengths, for example, about 532 nm. However, when the laser power intensity exceeds about 200 mJ/cm 2 , the germanium-rich dielectric layer 240 The first conductive layer underneath will be damaged or stripped" in order to produce a range of 16 2010 11923 A large laser-induced magneto-ceramic layer 240 of about 4 nm to about 10 nm, so the excimer laser annealing of the germanium-rich dielectric layer 240 is preferably at a laser power intensity of about 200- Executed over a range of 440 mJ/cm2. On the other hand, in order to produce a germanium-rich dielectric layer 240 having a smaller laser-induced Monnae crystal ranging from about 2 nm to about 6 nm, the germanium-rich dielectric layer The ELA of 240 is preferably performed over a range of laser power intensities of about 70-200 mJ/cm 2. The density of the laser-induced nanocrystal 245 in the rich dielectric layer 240 is preferably from about Ixl011/cm2 to about Ixl012. In the range of /cm2. Figure 3 shows the characteristics of the laser-induced nanocrystal: (A) a transmissive electro-microscopic (TEM) image showing the size of the nanocrystals, and (B) The distribution of the nanocrystal size in a laser-induced nanocrystal with a peak tip diameter of about 4 nm. 凊 Referring back to Figure 2C, in this embodiment, the second conductive layer 270 is transparent. When the light 295 is The incident beam passes through the transparent layer 270 and reaches the rich with a plurality of laser-induced broken nanocrystals 245 The electrical layer 240 will absorb beam photons having multiple energy gaps equal to or greater than the energy of the germanium-rich dielectric layer 240. Thus, holes (h+) and electrons (e_) are generated in the germanium-rich dielectric layer 240. Pairing. The generated holes (h+) and electrons (e-) are directed toward and through the second conductive layer 27 and the first conductive layer 210, respectively. If a load connects the first conductive layer 21 and the second conductive layer 27A', a current will flow through the load. That is, the photon energy of the incident light 295 is converted into electrical energy by the photocell 200. Further, the first conductive layer 210 may also be made of a transparent conductive material. The steps disclosed above do not need to be performed in order, and the process is not the only way to implement the invention. For example, a photovoltaic cell can be fabricated by providing a substrate, forming a first conductive layer on the substrate, forming a germanium-rich dielectric layer on the first conductive layer, and forming a 17 201011923 second conductive layer on the germanium-rich dielectric layer. Then, the ruthenium-rich dielectric layer is subjected to laser annealing to form a plurality of ruthenium crystals. In a specific embodiment, the laser annealing is performed by directing a laser beam from the top end of the second conductive layer to the germanium rich dielectric layer. In other embodiments, the substrate and the first conductive layer are made of a transparent conductive material. The laser annealing is performed by directing a laser beam from the bottom of the substrate to the rich dielectric layer. In an alternative embodiment, the laser annealing is performed by directing two laser beams from the top and bottom of the cell to the ytterbium-rich dielectric layer, respectively. ^ Referring to Figure 4, there is shown a photovoltaic cell battery 400 in accordance with an embodiment of the present invention. Photovoltaic cell stack 400 includes a photocell 4〇1 for converting photon energy of light 495 incident on photocell 401 into electrical energy. The photocell 401 has a first conductive layer 41〇, a second conductive layer 47〇, and a germanium-rich dielectric layer 4 formed between the first conductive layer 410 and the second conductive layer 470. The 440 has a plurality of laser-induced nano crystals 445 having a multiple energy gap. Further, the photovoltaic cell stack 4a also includes a rechargeable battery pack 480 electrically coupled between the first conductive layer 41 and the second conductive layer 47 〇 φ for storing electrical energy. Further, an ammeter 485 is connected between the photo cell 401 and the rechargeable battery 480. The photo cell 4〇1 can be manufactured by the above process. Further, in the case of using a load such as a resistor instead of the rechargeable battery 480, the configuration as shown in Fig. 4 can also be used as a light sensor. Referring to Fig. 5, a curve 51 is a spectral response of a photocell having a Si nanocrystal Si?x photoelectric conversion (photosensitive) layer to white light, such as sunlight. The photon photoreaction characteristics of the photovoltaic cell (4 〇〇 _65 〇 nm) are derived from the multiple energy gaps of the Si nanocrystals of the photovoltaic cell. The digraph shows the photoluminescence response of a photocell to incident white light using different laser annealing power intensities on the Si_rich §i〇x layer. Curves 201011923 610, 620, 630, and 640 are photoluminescence reactions of laser energies of 300 mJ/cm2, 350 mJ/cm2, 400 mJ/cm2, and 440 mJ/cm2, respectively. Referring to Figure 7, there is shown the current-voltage characteristics of a photovoltaic cell in accordance with an embodiment of the present invention. Curves 710 and 720 are the dark current and photocurrent of the photovoltaic cell, respectively. This photoelectric characteristic indicates that a higher sensitivity than a conventional P-I-N (positive-inherent-negative) diode and a comparable dark current level can be easily obtained in the developed photocell. Figure 8 illustrates the spectral characteristics of a photovoltaic cell having a multiple energy gap in accordance with an embodiment of the present invention. The multiple energy gaps are divided into a plurality of narrow regions, each of which corresponds to a range of wavelengths of light to be photoelectrically converted into electrical energy. Referring to Figure 9, a cross-sectional view of a photovoltaic cell 900 in accordance with an embodiment of the present invention is shown. In a specific embodiment, a photovoltaic cell 900 has a first conductive layer 910, a first semiconductor layer 920 formed on the first conductive layer 910, and a first fused dielectric formed on the first semiconductor layer 920. a layer 930, a second germanium-rich dielectric layer 940 formed on the first germanium-rich dielectric layer 930, a second semiconductor layer 960 formed on the second germanium-rich dielectric layer 940, and a second semiconductor A second conductive layer 970 on layer 960. In one embodiment, one of the first semiconductor layer 920 and the second semiconductor layer 960 is an N-type doped semiconductor layer, and the first semiconductor layer 920 and the second semiconductor layer 960 are another P-type doped semiconductor layer. For example, the first semiconductor layer 920 is an N-type doped semiconductor layer, and the second semiconductor layer 960 is a P-type doped semiconductor layer. The N-type doped semiconductor layer includes an N-type doped germanium, and the P-type doped semiconductor layer includes a P-type doped germanium. Other semiconductor materials can also be used - to implement the invention. The N-type doped semiconductor layer 920 and the P-type doped semiconductor layer 960 can be formed by a standard process such as an implant process and a PECVD process. In other embodiments, the first semiconductor layer 920 and the second semiconductor layer 201011923

一折射率nl,並且第二富梦介電 2 < nl。第一富矽介電層93〇與 至少一者具有複數個擁有一多重 第一富矽介電層930具有一折 層940具有折射率n2,在此n2 < 第二富矽介電層940兩者當中至少 月b隙的珍奈米晶體。利用如上所述的雷射退火處理或一 cVD 處理可形成複數個石夕奈米晶體。第一富石夕介電層和第二富 發介電層94G的形成材料可為相同的材料或大體上不同的材 料’像是富♦氧化物、富碎氮化物、富錢氧化物等。在一個 具體實施例内,第一富矽介電層93〇和/或第二富矽介電層94〇 為擁有夕重施隙的奈米結晶碎層(奈米結晶富碎介電層)。 第一導電層910和第二導電層97〇可用金羼、金屬氧化物 或這些材料的任意組合來形成。該材料可為折射材料包含 銘、銅、銀、金、鈦、钥、链、组、敍、鶴、合金、其他或這 些材料的任意組合。該金屬氧化物可為透明導電材料,包含 ITO、IZO、AZO、HfO等等。該材料可為折射材料和透明導電 材料的組合。實施上,至少第一導電層與第二導電層之一由透 明導電材料製成,像是ITO、IZO、AZO、HfO等等。在此具體 實施例内,第二導電層970較佳為由一透明導電材料製成的透 明導電材料層。 第10圖顯示根據本發明一個具體實施例的光電池1〇〇〇。 在一個具體實施例内,光電池1000包含一第一導電層1〇1〇、 20 201011923 一形成於第一導電層1010上的]^型摻雜半導體層1020、一形 成於N型摻雜半導體層1〇2〇上的光電轉換層1〇〇1、一位於光 電轉換層1001上的P型摻雜半導體層1〇6〇以及一位於p型摻 雜半導體層1060上的第二導電層丨 N型摻雜半導體層」〇2〇包含^^型摻雜梦,並且 半導體層觀包含P型摻雜^ ##A refractive index nl, and a second rich dream dielectric 2 < nl. The first ytterbium-rich dielectric layer 93 〇 and at least one of the plurality of multiplexed first 矽-rich dielectric layers 930 have a folded layer 940 having a refractive index n2, where n 2 < 2 矽 rich dielectric layer 940 Jane crystals with at least a monthly b-span. A plurality of stone crystals can be formed by laser annealing treatment or a cVD treatment as described above. The material forming the first richer dielectric layer and the second rich dielectric layer 94G may be the same material or substantially different materials 'like rich oxides, rich nitrides, rich oxides, and the like. In a specific embodiment, the first ytterbium-rich dielectric layer 93 〇 and/or the second ytterbium-rich dielectric layer 94 〇 is a nanocrystalline granule layer (nano crystalline rich dielectric layer) having a stagnation gap. . The first conductive layer 910 and the second conductive layer 97 may be formed of gold, a metal oxide, or any combination of these materials. The material may be a refractive material comprising any combination of Ming, copper, silver, gold, titanium, molybdenum, chain, group, ruthenium, crane, alloy, other or such materials. The metal oxide may be a transparent conductive material comprising ITO, IZO, AZO, HfO or the like. The material can be a combination of a refractive material and a transparent conductive material. In practice, at least one of the first conductive layer and the second conductive layer is made of a transparent conductive material such as ITO, IZO, AZO, HfO or the like. In this embodiment, the second conductive layer 970 is preferably a layer of transparent conductive material made of a transparent conductive material. Figure 10 shows a photovoltaic cell 1 according to an embodiment of the present invention. In a specific embodiment, the photovoltaic cell 1000 includes a first conductive layer 1〇1〇, 20 201011923, a doped semiconductor layer 1020 formed on the first conductive layer 1010, and an N-type doped semiconductor layer. a photoelectric conversion layer 1〇〇1 on a 1〇2, a P-type doped semiconductor layer 1〇6〇 on the photoelectric conversion layer 1001, and a second conductive layer 丨N on the p-type doped semiconductor layer 1060 Type doped semiconductor layer 〇2〇 contains ^^ type doping dream, and the semiconductor layer view contains P type doping ^ ##

光電轉換層1001包含複數個擁有一多重能隙的矽奈米晶 體。在一個具體實施例内,光電轉換層1001包含具有該多重 能隙的單層。該單層由具有複數個擁有一多重能隙的矽奈米晶 體之奈米結晶矽所形成。在其他具體實施例内,光電轉換層 1001包含一多層結構,該結構具有至少包含複數個擁有一多重 能隙的矽奈米晶體之一層。 有關該多層結構’在-個具體實施例内,光電轉換層刪 具有形成於N型摻雜半導體層1〇2〇上的第一富矽介電層 _、,形成於第一富矽介電層刪上的第二富石夕介電層ι〇4〇 以及形成於第二富梦介電層购上的第三富砍介電層m 每一第一富石夕介電層1030、第二富發介電層1G4G和第三守石夕 介電層1050都分別具有一對應的折射率ni n2#n3 :此 n3<n2<nl。在替代具體實施例内,第—富發介電層咖和 第:富矽介電’ 1〇5〇可交換。在一個具體實施例内每一第 -富矽介電層1030、第二富矽介電層购和第三富矽介 都包含富錢化物、富錢化物富錢氧化物富梦碳 化物或這些的組合。在形成光電侧職之後 =理可施加於光電轉換層贿來形成具有複數個擁有二 重4的雷射感切奈米晶體之—或多層。在改良的 例内’第一半導體層叫未顯示)可形成❹型推雜半導^層 21 201011923 1020與該多層結構之間,並 _ 第一 +導體層960可形成於多層 ,.σ構與P型摻雜半導體層1〇6〇之間。The photoelectric conversion layer 1001 includes a plurality of ruthenium crystal crystals having a multiple energy gap. In a specific embodiment, the photoelectric conversion layer 1001 includes a single layer having the multiple energy gap. The monolayer is formed of a nanocrystalline ruthenium having a plurality of ruthenium crystals having a multiple energy gap. In other embodiments, the photoelectric conversion layer 1001 includes a multilayer structure having at least one of a plurality of layers of nanocrystals having a multiple energy gap. With respect to the multilayer structure, in a specific embodiment, the photoelectric conversion layer has a first ytterbium-rich dielectric layer formed on the N-type doped semiconductor layer 1〇2〇, formed in the first ytterbium-rich dielectric layer a second richer dielectric layer ι〇4〇 and a third rich dielectric layer m formed on the second rich dielectric layer, each of the first richer dielectric layer 1030, The second rich dielectric layer 1G4G and the third Shoushixi dielectric layer 1050 each have a corresponding refractive index ni n2 #n3 : this n3 < n2 < nl. In an alternative embodiment, the first-rich dielectric layer and the first-rich dielectric layer are interchangeable. In a specific embodiment, each of the first-rich lanthanum dielectric layer 1030, the second ruthenium-rich dielectric layer, and the third ruthenium-rich medium comprise a rich material, a rich-rich sulphur-rich oxide rich dream carbide or these The combination. After forming the photovoltaic side, it is possible to apply to the photoelectric conversion layer to form a plurality of layers of laser-sensing nanocrystals having a double of 4. In the modified example, the first semiconductor layer is not shown, and the 推-type dummy semiconductor layer 21 can be formed between the 201011923 1020 and the multilayer structure, and the first + conductor layer 960 can be formed in a plurality of layers. Between the P-type doped semiconductor layer 1〇6〇.

在其他具體實施例内,光電轉換層1001具有形成於 掺雜半導體層刪上的第一梦子層咖、形成於第一石夕子層 1030上的奈米結晶梦子層购以及形成於奈米結晶料層 !_上的第二料層咖。第―料層刪與第二料層 1050兩者當中’其中一者是由非晶矽形成,並且另一者是由多 晶石夕所形成。因此’光電轉換層!顧具有—多重能隙,a. 奈米晶體/poly-Si分層結構。 第一導電層1010和第二導電層1〇7〇可用金屬、金屬氧化 物或這些材料的任意組合來形成。該材料可為折射材料,包含 鋁、銅、銀、金、欽、鉬、鋰、鈕、鈥、鎢、合纟、其他或這 些材料的任意組合。該金屬氧化物可為透明導電材料,包含 IT0、IZO、AZO、Hf〇等。該材料可為折射材料和透明導電材 料的組合。實施上,第一導電層與第二導電層兩者當中,至少 一者是由一透明導電材料製成,像是ITO、IZ〇、AZO、Hf〇等。 本發明的光電池可在一寬廣的頻譜領域内找到許多應用方 式’像是一光感測器、包含一觸控面板的顯示面板以及一非揮 發性記憶體裝置》 請參閱第11A圖,根據本發明一個具體實施例顯示與一或 多個光電池(感光器)1140整合的顯示面板11〇1。顯示面板1101 包含用於顯示相關資訊的顯示區域1110,以及一或多個放在顯 示區域1110周圍區域内並曝露在光線下的光電池U 4〇。一或 多個光電池1140每一都具有一富矽介電層,該層具有擁有一多 重能隙的矽奈米晶體,並且該單元調適用於將光能轉換成電 能。該光能可接收自背光和/或周圍光線。 22 201011923 顯示面板1101也可包含顧示資訊並接收使用者輸入的顚 示區域1120、偵測光線的光感測器i 13〇以及偵測周圍光線的 周圍光感測器1150»此中每一都至少具有矽奈米晶體的富矽介 : 電層。 : 光感測器1130和周圍光感測器1150可放置在任何角落區 域來偵測周圍光線或其他光線。一或多個光電池114〇可定位在 顯示區域1110周圍,將所接收的光線轉換成電能,來節省顯示 面板1101所消耗的電力。 顯示面板1101可為一觸控面板或一液晶顯示面板。 • 第圖圖解顯示具有一液晶顯示驅動器1160來驅動—液 晶顯示面板1102以及一背光1170用來照明液晶顯示面板 1102。液晶顯示面板1102包含用於顯示相關資訊的顯示區域 1110,以及一或多個放在顯示區域1110周圍區域内並暴露在背 光1170下的光電池1140。一或多個光電池114〇每一都包含一 多層結構,該結構具有矽奈米晶鱧的富矽介電層,並且該單元 調適用於將光能轉換成電能。該光能可接收自背光和/或周圍光 • 線。該電能供應給液晶顯示驅動器1160當成驅動電力。 本發明内所公佈的方法可用於在低溫上使用一高效率雷射 退火,來製造發光裝置的光電層以及/或光感測裝置的感光層。 該介電層内根據本發明具體實施例所製作的雷射感應砍奈米 晶體展現出高密度、相當一致並且均勻的雷射感應矽奈米晶體 为佈’以及一致的雷射感應梦奈米晶體直徑。該等方法運用低 溫準分子雷射退火處理。此處理不需要高溫後置退火並且與生 •產低溫多晶梦薄膜電晶體(Low- Temperature P〇ly-Si .Thin FilmIn other embodiments, the photoelectric conversion layer 1001 has a first dream layer layer formed on the doped semiconductor layer, a nano crystal layer formed on the first layer of the stone layer 1030, and formed on the nano layer. The second layer of the layer of crystal material! One of the first layer and the second layer 1050 is formed of amorphous germanium, and the other is formed by polycrystalline. So 'photoelectric conversion layer! Gu has - multiple energy gap, a. nano crystal / poly-Si layered structure. The first conductive layer 1010 and the second conductive layer 1〇7 may be formed of a metal, a metal oxide, or any combination of these materials. The material can be a refractive material comprising aluminum, copper, silver, gold, chin, molybdenum, lithium, knobs, ruthenium, tungsten, ruthenium, others or any combination of these materials. The metal oxide may be a transparent conductive material, including IT0, IZO, AZO, Hf, and the like. The material can be a combination of a refractive material and a transparent conductive material. In practice, at least one of the first conductive layer and the second conductive layer is made of a transparent conductive material such as ITO, IZ, AZO, Hf, or the like. The photovoltaic cell of the present invention can find many application modes in a wide spectrum field, such as a photo sensor, a display panel including a touch panel, and a non-volatile memory device. Please refer to FIG. 11A, according to the present invention. One embodiment of the invention shows a display panel 11〇1 integrated with one or more photovoltaic cells (photoreceptors) 1140. The display panel 1101 includes a display area 1110 for displaying related information, and one or more photocells U 4 that are placed in the area around the display area 1110 and exposed to light. The one or more photovoltaic cells 1140 each have a germanium-rich dielectric layer having a nanocrystal having a plurality of energy gaps, and the cell is adapted to convert light energy into electrical energy. The light energy can be received from the backlight and/or ambient light. 22 201011923 The display panel 1101 may also include a display area 1120 for detecting information and receiving input by the user, a photo sensor i 13〇 for detecting light, and a surrounding photo sensor 1150 for detecting ambient light. At least they have the richness of the nanocrystals: the electric layer. : Light sensor 1130 and ambient light sensor 1150 can be placed in any corner area to detect ambient or other light. One or more photocells 114A can be positioned around the display area 1110 to convert the received light into electrical energy to conserve power consumed by the display panel 1101. The display panel 1101 can be a touch panel or a liquid crystal display panel. • The diagram illustration shows a liquid crystal display driver 1160 for driving - a liquid crystal display panel 1102 and a backlight 1170 for illuminating the liquid crystal display panel 1102. The liquid crystal display panel 1102 includes a display area 1110 for displaying related information, and one or more photocells 1140 placed in the area around the display area 1110 and exposed to the backlight 1170. The one or more photovoltaic cells 114 each comprise a multilayer structure having a germanium-rich crystalline germanium dielectric layer and the cell is adapted to convert light energy into electrical energy. This light energy can be received from the backlight and/or surrounding light. This electric energy is supplied to the liquid crystal display driver 1160 as driving power. The method disclosed in the present invention can be used to fabricate a photovoltaic layer of a light-emitting device and/or a photosensitive layer of a light sensing device using a high-efficiency laser annealing at a low temperature. The laser-induced chopped nanocrystals fabricated in accordance with embodiments of the present invention within the dielectric layer exhibit high density, fairly uniform and uniform laser-induced nanocrystals for the cloth' and consistent laser-sensing Mona Crystal diameter. These methods use low temperature excimer laser annealing. This treatment does not require high-temperature post-annealing and production of low-temperature polycrystalline dream film (Low-Temperature P〇ly-Si.Thin Film)

Transistors,LTPS-TFT)的傳統處理相容。根據本發明許多具體 實施例製造的具有雷射感應矽奈米晶體之富矽介電層對於太 23 201011923 陽能電池、觸控面板、周圍光感測器、光感測器相當有用,並 且也與一彩色高品質場效電晶體(TFT)面板顯示器整合。根據本 發明許多具鱧實施例製造的雷射感應矽奈米晶體也可用來當 成非揮發性記憶體裝置内的儲存節點,具備較高保留性、較高 耐用性以及較高操作速度。 第12圖圖解顯示根據本發明一個具體實施例與光電池(或 感光器)整合的低溫多晶破(LTP S)面板1200。低溫多晶碎面板 1200可具有複數個矩陣形式排列的像素。在第12圖内,只有 說明一個低溫多晶矽面板1200的像素。在此具體實施例内, 每一像素具有一顯示場效電晶體1221和形成於顯示場效電晶 體1221上的光電池1201。 光電池1201具有一個三層堆疊結構,包含一第一導電層 1230、一第二導電層1270以及一形成於這兩者之間並且具有 複數個矽奈米晶體1245的富矽介電層1240。 顯示場效電晶體1220形成於基板1210上。顯示場效電晶 體1221具有一源極區域1222 (電耦合至光電池12〇1的第一導 電層1230)、一汲極區域1224和一閘極電極1226。汲極區域 1224 (源極區域1222)和閘極電極1226由基板1210上形成的閘 極絕緣層1220所分隔。基板1210可形成為一透明基板,像是 一玻璃基板’或一彈性基板,像是一塑膠基板。 當一顯示面板1200内運用這種光電池12〇1,光電池1201 會配置成面對周圍光線1295。此外,通常使用一背光1296照 明顯示面板1200來顯示其上的資訊。為了避免背光1296偏轉 光電池1201的輸出’運用第一導電層J230來有效阻擋背光 1296。 在一個具體實施例内,光電池1201的富破介電層1240由 24 201011923 富矽氧化物、富矽氮化物、富矽氮氧化物、富矽碳化物等所製 成。該富矽氧化物層較佳具有範圍大約1.7-3.7的折射率,並且 該富矽氣化物層較佳具有範圍大約1.7-3 _7的折射率。至少某些 石夕奈米晶體較佳具有範圍大約2-10 nm的直徑。富;ε夕介電層 1240的厚度在大約50-500 nm的範圍内。雷射感應梦奈米晶體 的密度較佳在大約1x1011-1x1012 /cm2的範圍内。第二導電層 1270較佳由透明導電材料製成,像是ΙΤΟ、IZO、AZO、HfO 等。 如第12圖内所示,矽奈米晶體單元的填充因數遠高於傳統 單元,這是因為形成光電池1201來覆蓋顯示場效電晶體丨221 放置的較大切換區域。更進一步,金屬電極1230可提供有效 的周圍光線與背光分別隔離單元電路與光電池1201,如此電晶 體特性比一 P-I-N單元内的更穩定。 請參閱第13圖’顯示根據本發明一個具體實施例與光電池 (或感光器)整合的低溫多晶梦面板1300。在此具體實施例内, 每一像素具有一場效電晶體1301、一儲存電容器13〇3、一感 φ 光器1305和在基板1310上彼此相鄰形成的主動區域13〇7。感 光器1305包含一第一電極1355、一第二電極1375和其間形成 的富矽介電層1365 »在一個具體實施例内製造非晶矽場效電晶 體(a-Si TFT)面板1300的處理說明於第14圖内。 請參閱第14A圖至第14F圖,根據本發明一個具體實施例 圖解顯示整合光電池(感光器)的非晶矽場效電晶艎面板製造方 法140(^該方法包含下列步驟:首先、提供一第一基板141〇。 ’ 其中,第一基板1410由玻璃等所形成。然後,在第一基板141〇 上形成彼此分開的複數個閘極電極142〇,該些閘極電極142〇 電麵合至一閘極線《其中,形成複數個閘極電極142〇的步驟 25 201011923 $行如下:首先用濺鍍方式在基板1410上沈積金屬層;在適 虽位置上遮蓋金屬層來定義該複數個閘極電極142〇;然後讓未 覆蓋的金屬層剩餘部分曝光;蝕刻掉該金屬層的未覆蓋部分; 以及去除遮罩部分來形成複數個閘極電極142〇。每一對相鄰閘 極電極1420其間定義出切換區域1412和太陽能電池區域 1414。太陽能電池區域1414與切換區域1412相鄰,其中形成 對應的閘極電極1420’如第14A圖内所示。閘極電極142〇由 金屬形成,像是鋁(A1)、鉬(M〇)、鉻(〇)、鈦(Ta)、銅(Cu)或合 金。 • ^ * 在第一基板1410和複數個閘極電極142()上形成一介電層 (閘絕緣薄膜)1430。在一個具體實施例内,閘絕緣薄膜143〇 由氧化石夕、氮化<5夕或氮氧化石夕所形成。 然後,閘絕緣層1430上形成的一非晶矽層1442覆蓋每一 切換區域1412上閘極電極142〇,並且接著在非晶矽層1442上 形成摻雜的非晶矽層1444。摻雜的非晶矽層1444形成於n+摻 雜(η型重摻雜)的非晶矽或p+摻雜(p型重摻雜)的非晶矽上並 φ 且當成一接觸層,如第14B圖内所示。在一個具體實施例内, 非晶矽層1442和接觸層1444以利用PECVD連續沈積非晶矽 和摻雜的非晶矽然後製作圖案的方式來形成。 另外’依序沈積氧化矽或氮化矽的閘絕緣薄膜143〇、非晶 石夕層1442和摻雜的非晶矽層ι444,然後非晶矽層1442和摻雜 的非晶矽層1444經過圖案製作來形成非晶矽層1442和摻雜的 非晶矽層1444,如第14b圖内所示。 之後’在閘絕緣薄膜143〇上形成金屬層1450並且在切換 區域1412内形成接觸層1444。然後,在該金屬層上的每一太 陽能電池區域1414上形成一富矽介電層1460,如第14C圖内 26 201011923 所示。 如第14D圖内所示,遮罩、曝光與蝕刻處理依序施加於金 屬層1450來進一步定義每一切換區域1412内的場效電晶體, ’其中接觸層1444區分成一源極接口 1444&和一汲極接口 , 1444b,並且金屬層1450在每一區換區域1412内也區分成一 第一部分1452和一第二部分1454。第一部分1452連接至源極 接口 1444a和一信號線,並且第二部分1454與第一部分1452 相隔並連接至汲極接口 1444b,如第14D圖内所示。此外,在 每一太陽能電池區域内形成金屬層1450上與第一部分1452和 ® 第二部分1454相隔的第三部分1456,如底下所討論,當成太 陽能電池的第一電極。 如第14E圖内所示,然後形成覆蓋每一切換區域1412内 所有場效電晶體,以及覆蓋每一太陽能電池區域1414内富矽 介電層1460的保護層(薄膜)1470。然後,對保護層1470依序 施加遮罩、曝光和蝕刻處理,以定義用於讓切換元件與該像素 電極耦合(透過汲極電極1454)的通孔1472,並且去除富矽介電 層1460的覆蓋。在此階段上,一雷射退火處理可施加於富矽 ® 介電層1460,形成複數個擁有多重能隙的雷射感應矽奈米晶 體。 如第14F圖内所示,下個步驟為在通孔1472上形成具有一 第一部分1482以及在富矽介電層1460上具有一分開的第二部 分1484的透明金屬層。第一部分1482連接至場效電晶體的汲 ^ 極電極1454,並當成一像素電極。該透明金屬層的第二部分 • 1484、富矽介電層1460和金屬層1450的第三部分1456構成 一太陽能電池。該透明金屬層由一透明、導電的材料形成,包 含銦辞氧化物(IZO)、非晶系銦錫氧化物(amorphous ITO)、 27 201011923 poly-ITO等,厚度大約為〇 丄、 i 乂0 “ m的範圍。 在廷些說明當中本發明公— #雷、β , 種矽奈米晶體、多重能隙的 尤電池及其應用。該光電池且右 , χ、有和用畐峡氧化物層進行後:罾很 火所形成的奈米晶體層。該碎夺 ^ λ , ^ B as 彔水日日體光電池(或感光器)可為 嵌入式液日日顯不面板應用當中穩 虽甲糠定的、有利的、彈性的、可靠 的以及功能性的元件,具有大埴右 畀大屏充因數、完整背光隔離以及可 調整吸收光譜之優點。 上述本發明示例性具體實施例的描述僅供說明,並非用於The traditional processing of Transistors, LTPS-TFT) is compatible. A germanium-rich dielectric layer having a laser-induced nanocrystal fabricated in accordance with many embodiments of the present invention is quite useful for a 23 201011923 solar cell, a touch panel, a peripheral light sensor, a light sensor, and Integrated with a color high quality field effect transistor (TFT) panel display. Laser-induced nanocrystals fabricated in accordance with many embodiments of the present invention can also be used as storage nodes in non-volatile memory devices with high retention, high durability, and high operating speed. Figure 12 illustrates a low temperature polycrystalline break (LTP S) panel 1200 integrated with a photovoltaic cell (or photoreceptor) in accordance with an embodiment of the present invention. The low temperature polycrystalline panel 1200 can have a plurality of pixels arranged in a matrix. In Fig. 12, only the pixels of a low temperature polysilicon panel 1200 are illustrated. In this embodiment, each pixel has a display field effect transistor 1221 and a photocell 1201 formed on the display field effect transistor 1221. Photovoltaic cell 1201 has a three-layer stacked structure comprising a first conductive layer 1230, a second conductive layer 1270, and a germanium-rich dielectric layer 1240 formed between the plurality and having a plurality of nanocrystals 1245. The field effect transistor 1220 is formed on the substrate 1210. The field effect transistor 1221 has a source region 1222 (first conductive layer 1230 electrically coupled to the photocell 12〇1), a drain region 1224, and a gate electrode 1226. The drain region 1224 (source region 1222) and the gate electrode 1226 are separated by a gate insulating layer 1220 formed on the substrate 1210. The substrate 1210 can be formed as a transparent substrate, such as a glass substrate or an elastic substrate, such as a plastic substrate. When such a photocell 12〇1 is used in a display panel 1200, the photocell 1201 is configured to face ambient light 1295. In addition, a backlight 1296 is typically used to illuminate the display panel 1200 to display information thereon. In order to prevent the backlight 1296 from deflecting the output of the photocell 1201, the first conductive layer J230 is used to effectively block the backlight 1296. In one embodiment, the rich dielectric layer 1240 of photovoltaic cell 1201 is formed from 24 201011923 cerium-rich oxide, cerium-rich nitride, cerium-rich oxynitride, cerium-rich carbide, and the like. The cerium-rich oxide layer preferably has a refractive index ranging from about 1.7 to 3.7, and the cerium-rich vapor-containing layer preferably has a refractive index ranging from about 1.7 to about 3.7. At least some of the quartz crystals preferably have a diameter ranging from about 2 to about 10 nm. Rich; the thickness of the dielectric layer 1240 is in the range of about 50-500 nm. The density of the laser-induced Monatom crystal is preferably in the range of about 1 x 1011-1 x 1012 /cm2. The second conductive layer 1270 is preferably made of a transparent conductive material such as germanium, IZO, AZO, HfO or the like. As shown in Fig. 12, the fill factor of the nanocrystal unit is much higher than that of the conventional unit because the photovoltaic cell 1201 is formed to cover a large switching area where the field effect transistor 221 is placed. Further, the metal electrode 1230 can provide effective ambient light and the backlight to separate the unit circuit from the photocell 1201, such that the electro-crystal characteristics are more stable than in a P-I-N unit. Referring to Fig. 13', there is shown a low temperature polycrystalline dream panel 1300 integrated with a photovoltaic cell (or photoreceptor) in accordance with an embodiment of the present invention. In this embodiment, each pixel has a field effect transistor 1301, a storage capacitor 13〇3, a sense φ illuminator 1305, and active regions 13〇7 formed adjacent to each other on the substrate 1310. The photoreceptor 1305 includes a first electrode 1355, a second electrode 1375, and a germanium-rich dielectric layer 1365 formed therebetween. In one embodiment, an amorphous germanium field effect transistor (a-Si TFT) panel 1300 is fabricated. This is illustrated in Figure 14. Referring to FIGS. 14A to 14F, an amorphous germanium field effect transistor panel manufacturing method 140 for displaying an integrated photovoltaic cell (photoreceptor) is illustrated according to an embodiment of the present invention. (The method comprises the following steps: first, providing a The first substrate 141 is formed. The first substrate 1410 is formed of glass or the like. Then, a plurality of gate electrodes 142 are separated from each other on the first substrate 141, and the gate electrodes 142 are electrically connected. To a gate line, wherein the step of forming a plurality of gate electrodes 142 25 25 201011923 $ is as follows: first deposit a metal layer on the substrate 1410 by sputtering; cover the metal layer at a suitable position to define the plurality of a gate electrode 142A; then exposing the remaining portion of the uncovered metal layer; etching away the uncovered portion of the metal layer; and removing the mask portion to form a plurality of gate electrodes 142. Each pair of adjacent gate electrodes 1420 defines a switching region 1412 and a solar cell region 1414. The solar cell region 1414 is adjacent to the switching region 1412, wherein a corresponding gate electrode 1420' is formed as shown in Figure 14A. The electrode 142 is formed of a metal such as aluminum (A1), molybdenum (M〇), chromium (〇), titanium (Ta), copper (Cu) or an alloy. • ^ * on the first substrate 1410 and a plurality of gates A dielectric layer (gate insulating film) 1430 is formed on the electrode 142 (). In one embodiment, the gate insulating film 143 is formed of oxidized stone, nitriding, or arsenic. An amorphous germanium layer 1442 formed on the gate insulating layer 1430 covers the gate electrode 142A of each of the switching regions 1412, and then a doped amorphous germanium layer 1444 is formed on the amorphous germanium layer 1442. Doped non- The germanium layer 1444 is formed on an n+ doped (n-type heavily doped) amorphous germanium or p+ doped (p-type heavily doped) amorphous germanium and is φ and serves as a contact layer, as shown in FIG. 14B. In one embodiment, the amorphous germanium layer 1442 and the contact layer 1444 are formed by successively depositing amorphous germanium and doped amorphous germanium by PECVD and then patterning. In addition, 'deposited tantalum oxide or nitrogen is sequentially deposited. The ruthenium gate insulating film 143 〇, the amorphous iridium layer 1442 and the doped amorphous germanium layer ι444, then the amorphous germanium layer 1442 and the doped The amorphous germanium layer 1444 is patterned to form an amorphous germanium layer 1442 and a doped amorphous germanium layer 1444, as shown in FIG. 14b. Thereafter, a metal layer 1450 is formed on the gate insulating film 143 and in the switching region. A contact layer 1444 is formed in 1412. Then, a ytterbium-rich dielectric layer 1460 is formed on each of the solar cell regions 1414 on the metal layer, as shown in Fig. 14C, 26 201011923. As shown in Fig. 14D, A mask, exposure and etch process is applied to the metal layer 1450 in sequence to further define the field effect transistor in each of the switching regions 1412, 'where the contact layer 1444 is divided into a source interface 1444 & and a drain interface, 1444b, and metal Layer 1450 is also divided into a first portion 1452 and a second portion 1454 within each zone 1412. The first portion 1452 is coupled to the source interface 1444a and a signal line, and the second portion 1454 is spaced apart from the first portion 1452 and to the drain interface 1444b as shown in Figure 14D. In addition, a third portion 1456 of the metal layer 1450 spaced apart from the first portion 1452 and the second portion 1454 is formed in each solar cell region, as discussed below, as the first electrode of the solar cell. As shown in Fig. 14E, a protective layer (film) 1470 covering all of the field effect transistors in each of the switching regions 1412 and covering the germanium-rich dielectric layer 1460 in each of the solar cell regions 1414 is then formed. Then, a protective layer 1470 is sequentially applied with a mask, an exposure, and an etching process to define a via 1472 for coupling the switching element to the pixel electrode (through the drain electrode 1454), and removing the germanium-rich dielectric layer 1460. cover. At this stage, a laser annealing treatment can be applied to the 矽 矽 dielectric layer 1460 to form a plurality of laser-induced 矽 nanocrystals having multiple energy gaps. As shown in Figure 14F, the next step is to form a transparent metal layer having a first portion 1482 on the via 1472 and a separate second portion 1484 on the germanium-rich dielectric layer 1460. The first portion 1482 is coupled to the 汲 electrode 1454 of the field effect transistor and is referred to as a pixel electrode. The second portion of the transparent metal layer • 1484, the germanium-rich dielectric layer 1460, and the third portion 1456 of the metal layer 1450 form a solar cell. The transparent metal layer is formed of a transparent, conductive material, including indium oxide (IZO), amorphous indium tin oxide (amorphous ITO), 27 201011923 poly-ITO, etc., and has a thickness of about 〇丄, i 乂0. "The range of m. In the description of the invention, the present invention - #雷,β, 矽 nanocrystals, multiple energy gaps and their applications. The photovoltaic cell and right, χ, have and use 畐 氧化物 oxide layer After the process: 奈 罾 罾 罾 罾 奈 罾 罾 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The fixed, advantageous, flexible, reliable, and functional components have the advantages of large right and large screen charging factor, complete backlight isolation, and adjustable absorption spectrum. The foregoing description of the exemplary embodiments of the present invention is only for Description, not for

將本發明侷限在所公佈的精確形式卜許多修改與變化都可以 上述為依據。 具體實施例經過選擇與說明來最佳閣述本發明原理,並且 以許多具體實施例讓其他精通此技術的人士對本系統有最佳 瞭解’這些具體實施例都適合特定使用期肖。精通此技術的人 士可瞭解到,在不悖離本發明精神與範疇之下,其他具體實施 例也隸屬於本發明。因此,由申請專利範圍來定義本發明範疇 而非前述說明與其中描述的示例性具體實施例。 【圖式簡單說明】 附圖說明本發明的一或多個具體實施例,並且在搭配内容 說明之後可用來解釋本發明原理。無論在什麼地方,所有圖式 中將使用相同的參考號碼來代表相同或相似的部分,其中: 第1圖圖解顯示根據本發明一個具體實施例的光電池之剖 面圖; 第2圖圖解顯示根據本發明一個具體實施例製造一具有一 富矽介電層,而該富矽介電層具有複數個雷射感應矽奈米晶體 的光電池之處理:(A)在一第一導電層上形成一富矽介電層; 28 201011923 (B)雷射退火該虽碎介電層來形成複數個石夕奈米晶體;以及(c) 在該富矽介電層上形成一第二導電層; 第3圖顯示該等雷射感應的矽奈米晶體的特性:(句一 TEM影像顯不該等矽奈米晶體的大小,以及該等雷射感應 碎奈未晶體内奈米晶體大小的分布; 第4圖圖解顯示根據本發明一個具體實施例的光電池之剖 面圖; 第5圖顯示該光電池對於一入射白光的光電流反應;. φ 第6圖顯示利用不同的雷射退火功率強度製成的富矽氡 化矽層,該光電池對一入射白光的光致發光反應; 第7圖顯示根據本發明一個具體實施例的光電池之電流電 壓特性; 第8圖圖解顯示根據本發明一個具體實施例具有一多重能 隙的光電池之光譜特性,其中該多重能隙分成複數個狹窄區 域; 第9圖圖解顯示根據本發明一個具體實施例的光電池之剖 φ 面圖; 第10圖圖解顯示根據本發明其他具體實施例的光電池之 剖面圖; 第11A圖和第11B圖圖解顯示根據本發明具體實施例整合 一俩或多個石夕奈米晶體光電池之顯示面板; 第12圖圖解顯示根據本發明一個具體實施例整合複數個 石夕奈米晶體光電池的低溫多晶矽面板之剖面圖; 第13圖圖解顯示根據本發明其他具體實施例整合複數個 硬奈米晶體光電池的低溫多晶矽面扳之剖面圖;以及 第14A圖至第14F圖圖解顯示根據本發明一個具體實施例 29 201011923 用於製造整合複數個矽奈米晶體光電池的低溫多晶矽面板之 處理。 【主要元件符號說明】The invention is limited to the precise forms disclosed, and many modifications and variations can be made. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been chosen and described in terms of the preferred embodiments of the invention Those skilled in the art will appreciate that other specific embodiments are also within the scope of the invention. Therefore, the scope of the invention is defined by the scope of the claims, rather than the foregoing description and the exemplary embodiments described herein. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate one or more embodiments of the invention Wherever, the same reference numerals will be used in the drawings to refer to the same or similar parts, in which: FIG. 1 illustrates a cross-sectional view of a photovoltaic cell in accordance with an embodiment of the present invention; DETAILED DESCRIPTION OF THE INVENTION One embodiment of the invention produces a photovoltaic cell having a germanium-rich dielectric layer having a plurality of laser-induced nanocrystals: (A) forming a rich layer on a first conductive layer矽 dielectric layer; 28 201011923 (B) laser annealing the dielectric layer to form a plurality of quartz crystals; and (c) forming a second conductive layer on the ytterbium-rich dielectric layer; The figure shows the characteristics of the laser-induced nanocrystals: (Sentence TEM image shows the size of the nanocrystals, and the distribution of nanocrystals in the laser-induced nanocrystals; The figure shows a cross-sectional view of a photovoltaic cell in accordance with an embodiment of the present invention; Figure 5 shows the photocurrent response of the photovoltaic cell to an incident white light; φ Figure 6 shows a rich 制成 made using different laser annealing power intensities a photoluminescence reaction of the photovoltaic cell to an incident white light; FIG. 7 is a graph showing current-voltage characteristics of a photovoltaic cell according to an embodiment of the present invention; and FIG. 8 is a view showing a plurality of embodiments according to the present invention having a plurality of A spectral characteristic of a photocell having a heavy energy gap, wherein the multiple energy gap is divided into a plurality of narrow regions; FIG. 9 is a cross-sectional view showing a photocell according to an embodiment of the present invention; and FIG. 10 is a view showing other specifics according to the present invention. A cross-sectional view of a photovoltaic cell of an embodiment; FIGS. 11A and 11B are diagrams showing a display panel incorporating one or more Shihs Nanocrystalline photovoltaic cells in accordance with an embodiment of the present invention; FIG. 12 is a diagram showing an embodiment in accordance with the present invention. A cross-sectional view of a low temperature polycrystalline germanium panel incorporating a plurality of Shihlin nanocrystalline photovoltaic cells; FIG. 13 is a cross-sectional view showing a low temperature polycrystalline germanium panel incorporating a plurality of hard nanocrystalline photovoltaic cells in accordance with other embodiments of the present invention; and a 14A Figures to Figure 14F are diagrammatically shown in accordance with an embodiment of the present invention 29 201011923 for manufacturing Processing of low temperature polycrystalline germanium panels of a plurality of nanocrystalline crystal cells. [Main component symbol description]

100光電池 140富矽介電層 170第二導電層 181接觸孔 210第一導電層 245矽奈米晶體 292雷射 400光電池電池組 410第一導電層 445矽奈米晶體 480可充電電池組 495光線 900光電池 920第一半導體層 940第二富矽介電層 970第二導電層 1001光電轉換層 1020 N型摻雜半導體層 1040第二富矽介電層 1060 P型摻雜半導體層 1101顯示面板 1110顯示區域 110第一導電層 145矽奈米晶體 180介電層 200光電池 240富矽介電層 270第二導電層 295光線 401光電池 440富矽介電層 470第二導電層 485電流表 510-720 曲線 910第一導電層 930第一富矽介電層 960第二半導體層 1000光電池 1010第一導電層 1030第一富矽介電層 1050第三富矽介電層 1070第二導電層 1102液晶顯示面板 1120顯示區域 201011923 1130光感測器 1150周圍光感測器 1200低溫多晶矽面板 1210基板 > 1222源極區域 1226閘極電極 1240富矽介電層 1270第二導電層 1296背光 ® 1301場效電晶體 Π05感光器 1310基板 1365富矽介電層 1400方法 1412切換區域 1420閘極電極 1442非晶矽層 1444a源極接口 1450金屬層 1454第二部分 1460富矽介電層 1472通孔 ^ 1484第二部分 1140光電池 1160液晶顯示驅動器 1201光電池 1221顯不場效電晶體 1224汲極區域 1230第一導電層 1245矽奈米晶體 1295周圍光線 1300低溫多晶矽面板 1303儲存電容器 1307主動區域 1355第一電極 1375第二電極 1410第一基板 1414太陽能電池區域 1430介電層 1444摻雜的非晶矽層 1444b汲極接口 1452第一部分 1456第三部分 1470保護層 1482第一部分 31100 photocell 140 矽 rich dielectric layer 170 second conductive layer 181 contact hole 210 first conductive layer 245 矽 nano crystal 292 laser 400 photo battery battery 410 first conductive layer 445 矽 nano crystal 480 rechargeable battery 495 light 900 photocell 920 first semiconductor layer 940 second germanium-rich dielectric layer 970 second conductive layer 1001 photoelectric conversion layer 1020 N-type doped semiconductor layer 1040 second germanium-rich dielectric layer 1060 P-type doped semiconductor layer 1101 display panel 1110 Display area 110 first conductive layer 145 nano crystal 180 dielectric layer 200 photocell 240 rich dielectric layer 270 second conductive layer 295 light 401 photo cell 440 rich dielectric layer 470 second conductive layer 485 ammeter 510-720 curve 910 first conductive layer 930 first germanium-rich dielectric layer 960 second semiconductor layer 1000 photovoltaic cell 1010 first conductive layer 1030 first germanium-rich dielectric layer 1050 third germanium-rich dielectric layer 1070 second conductive layer 1102 liquid crystal display panel 1120 display area 201011923 1130 light sensor 1150 ambient light sensor 1200 low temperature polysilicon germanium panel 1210 substrate> 1222 source region 1226 gate electrode 1240 germanium rich dielectric layer 1270 second conductive layer 1296 backlight 1301 Field Effect Transistor Π05 Photoreceptor 1310 Substrate 1365 Rich Dielectric Layer 1400 Method 1412 Switching Area 1420 Gate Electrode 1442 Amorphous Layer 1444a Source Interface 1450 Metal Layer 1454 Second Part 1460 Rich 矽 Dielectric Layer 1472 Through Hole ^ 1484 second part 1140 photocell 1160 liquid crystal display driver 1201 photocell 1221 display field effect transistor 1224 drain region 1230 first conductive layer 1245 矽 nano crystal 1295 ambient light 1300 low temperature polysilicon 矽 panel 1303 storage capacitor 1307 active area 1355 first Electrode 1375 second electrode 1410 first substrate 1414 solar cell region 1430 dielectric layer 1444 doped amorphous germanium layer 1444b drain interface 1452 first portion 1456 third portion 1470 protective layer 1482 first portion 31

Claims (1)

201011923 ‘七、申請專利範圍: 1- 一種光電池,包含: (a) 一第一導電層; (b) —N型摻雜半導體層形成於該第一導電層上; (c) 一第一矽層形成於該N型摻雜半導體層上; () 奈米結晶矽(nc-Si)層形成於該第一珍層上; (e) 一第二矽層形成於該奈米結晶矽層上; (0 p型摻雜半導體層形成於該第二砍層上;以及 φ (g) 一第二導電層形成於該P型摻雜半導體層上。 2. 如申請專利範圍第1項所述之光電池,其中該第一矽層 與該第二矽層其中之一者的材質為非晶矽(a-Si),並且該第一 石夕層與該第二發層其中之另一者的材質為多晶發㈣叫。 3. 如申請專利範圍第1項所述之光電池,其中該牟 梦層包含複數個梦奈米晶雄,每一财奈米晶親的== 約1奈米到20奈米之間。 ❹ 4·如申請專利範圍第1項所述之光電池,其中該第一導電 層和該第二導電層兩者之中至少一者的材質為一透明導電 材料。 5·如申請專利範圍第4項所述之光電池,纟中該透明導電 材料為銦錫氧化物(ITO)、銦鋅氧化物(IZ〇)、鋁鋅氧化物 (AZO)、給氧化物(Hf〇)或這些的組合。 32 201011923 6.如申請專利範圍帛μ所述之光電池,其中❹型接雜 半導趙層的材質為Ν型摻雜梦,並且其中該ρ型換雜半導體 層的材質為Ρ型摻雜矽。 7· 一種製造一光電池之方法,包含步驟: (a) 提供一基板L (b) 在該基板上形成一第一導電層; (c) 在該第一導電層上形成一 n型摻雜半導體層; (d) 在該N型摻雜半導體層上形成一第一矽層; (e) 在該第一矽層上形成一奈米結晶矽(ncSi)層; (f) 在該奈米結晶矽層上形成一第二矽層; (g) 在該第二矽層上形成一 ρ型摻雜半導體層;以及 (h) 在該P型摻雜半導體層上形成一第二導電層。 8_如申請專利範圍第7項所述之方法,其中形成該奈米結 晶矽層的步驟包含: (i) 在該第一矽層上形成一富矽(Si_rieh)介電層;以及 (ii)雷射退火該富矽介電層來形成複數個矽奈米晶體。 9. 一種光電池,包含: ⑷一第一導電層; (b) —第二導電層;以及 (c) 一光電轉換層,形成於該第一導電層與該第二導電層 之間,其中該光電轉換層具有一多重能隙。 10. 如申請專利範圍第9項所述之光電池,其中該光電轉換 33 201011923 層包含: (〇 —非晶矽(a-Si)層; (U)—多晶矽(poly-Si)層;以及 (ui) —富矽(Si-rich)介電層形成在該非晶矽層和該多晶 矽層之間。 η·如申請專利範圍第1〇項所述之光電池,其中該富石夕介電 層的材質包含一富矽氧化物、一富矽氮化物、一富矽氮氧化 物、一富矽碳化物或這些的組合。 12.如申請專利範圍第1〇項所述之光電池其中該富珍介電 層包含一奈米晶體矽(nc-Si)層,該奈米晶體矽層具有複數個 矽奈米晶體,每一該矽奈米晶體的大小介於約1奈米到約2〇 奈米之間。 U·如申請專利範圍第9項所述之光電池,其中該光 層包含: (0 一第一富矽(Si_rich)介電層,形成於該第一導電層上並且 具有一折射率nl ;以及 (π) —第二富矽(Si_rich)介電層,形成於該第一富矽介電層上 並且具有一折射率n2,其中n2 < ni。 14.如申請專利範圍第13項所述之光電池,其中該光電轉換 層更包含-第三富矽介電層形成在該第二富矽介電層與該 第二導電層之間’該第三富梦介電層具有―折射率心,其中Λ 34 201011923 15. 如申請專利範圍第14項所述之光電池,其中每一該第一 畐梦介電層、第二富矽介電層和第三富矽介電層的材質包含 一备矽氡化物、一富矽氮化物、一富矽氮氧化物、一富矽碳 化物或這些的組合。 16. 如申請專利範圍第13項所述之光電池,其中該光電轉換 層更包含: ⑴―非晶矽(a-Si)層;以及 (ϋ) 一 多晶矽(poly-Si)層, 其中該第一富矽介電層和該第二富矽介電層形成在該非 晶矽層和該多晶矽層之間。 17. 如申請專利範圍第9項所述之光電池,進一步包含: (1) 一 N型摻雜半導體層形成在該第一導電層與該光電 轉換層之間;以及 ⑴)-P型摻雜半導體層形成在該第二導電層與該光電 轉換層之間。 I如申請專利範圍第9項所述之光電池,其中該第一和第 -導電層其中之至少一者的材質為一透明導電材料。 19. 一種製造一光電池之方法,包含步驟: (a) 提供一基板; (b) 形成-第-導電層在該基板上; ⑷形成一光電轉換層在該第一導電層上,其中該光電轉 35 201011923 換層具有一多重能隙(multi-band gap);以及 (d)形成一第二導電層在該光電轉換層上。 20.如申請專利範圍第19項所述之方法,其中形成該光電轉 換層的步驟包含步驟: (i)形成一第一矽層在該第一導電層上; (Π)形成一富矽(Si-rich)介電層在該第一矽層上;以及 (Hi)形成一第二碎層在該富發介電層上,其中該第一梦 層與該第二矽層其中之一者包含一非晶矽(aSi)層, 並且該第一矽層與該第二矽層其中之另一者包含一 多晶石夕(poly-Si)層。 21. 如申請專利範圍第2〇項所述之方法,其中形成該富矽介 電層的步驟進一步包含: 雷射退火該富矽介電層來形成複數個矽奈米晶體。 22. 如申請專利範圍第19項所述之方法,其中形成該光電轉 換層的步驟包含: ⑴形成-第-富WSi_Heh)介電層於該第―導電層上, 該第一富石夕介電層具有一折射率ni;以及 (11)形成-第二富矽(Si_rich)介電層於該第一富矽介電層 上,該第二富矽介電層具有—折射率以,其中U < nl。 22項所述之方法,其中形成該光電轉 23·如申請專利範圍第 換層的步驟進一步包含 36 201011923 形成一第三富矽介電層在該第二富矽介電層與該第二導電 層之間,該第三富石夕介電層具有一折射率n3,其中n3<n2< nl 〇 24·如申請專利範圍帛19項所述之方&,該方法進一步包 含: (i)形成一 N型摻雜半導體層在該第一導電層與該光電 轉換層之間;以及 (ϋ)形成一 P型摻雜半導體層在該第二導電層與該光電 轉換層之間。 25·種液晶顯示面板’係利用一液晶顯示驅動器來驅動操 作並且利用一背光來照明,該液晶顯示面板包含: (a) —顯示區域’用於顯示相關資訊;以及 (b) —光電池’該光電池置於圍繞該顯示區域的一區域内 並曝露在一光線下,來將該光線的光學能量轉換成一 電能’該電能供應至該液晶顯示驅動器當成一驅動電 力,其中該先電池包含: (i) 一第一導電層; (ii) 一第二導電層;以及 (iii) 一光電轉換層,形成於該第一導電層與該第二導 電層之間,其中該先電轉換層具有一多重能隙。 26.如申请專利範圍第25項所述之液晶顯示面板,其中該光 電轉換層進一步包含: (1) 一非晶矽(a-Si)層; 37 201011923 ⑴)一多晶石夕(poly-Si)層;以及 (u〇 —富矽(Si-rich)介電層形成在該非晶矽層和該多晶 矽層之間。 % 27_如申請專利範圍第26項所述之液晶顯示面板其辛該富 石夕介電層的材質包含一富石夕氧化物、一富梦氮化物、一富石夕 氮氧化物、一富矽碳化物或這些的組合。 ❿ 28·如申請專利範圍第27項所述之液晶顯示面板,其中該富 梦介電層包含一奈米晶體矽(nc_Si)層,該奈米晶體矽層具有 複數個發奈米晶體’每一該矽奈米晶體的大小介於約1奈米 到約20奈米之間。 29’如申請專利範圍第乃項所述之液晶顯示面板其中該光 電轉換層包含: (I) 一第一富矽(Si-rich)介電層,形成於該第一導電層上 φ 並且具有一折射率nl ;以及 (II) 一第二富矽(Si_rich)介電層,形成於該第一富矽介電 層上並且具有一折射率n2,其中n2<nl。 30·如申請專利範圍第29項所述之液晶顯示面板,其中該光 =轉換層進一步包含一第三富矽介電層形成在該第二富矽 ;|電層與該第二導電層之間,該第三富矽介電層具有一折射 率 n3’ 其中 η3<η2<η1β 申吻專利範圍第25項所述之液晶顯示面板,其中該顯 38 201011923 示區域具有複數個低溫多晶矽薄膜電晶體(LTPS-TFT, “ low temperature polycrystalline silicon thin film transistor”)。 32. —種用於製造一液晶顯示(LCD)面板之方法,該液晶顯 示面板德利用一液晶顯示驅動器來驅動操作並且利用一背 光來照明,該方法包含: (a) 提供一基板; (b) 形成一顯示區域在該基板上;以及 • 0)形成一光電池在圍繞該顯示區域的一區域内之該基 板上,並曝露在光線下,當該光電池將光能轉換成一 電能,該電能供應至該液晶顯示驅動器當成一驅動電 力,其中形成該光電池的步驟包含步驟: (i)形成一第一導電層; (Π)形成一第二導電層;以及 (iii)形成一光電轉換層在該第一導電層與該第二導電 φ 層之間’其中該光電轉換層具有一多重能隙。 33. 如申請專利範圍第32項所述之方法,其中形成該光電轉 換層的步驟包含: ⑴形成一第一矽層在該第一導電層上; (ii) 形成一富矽(Si-rich)介電層在該第一矽層上;以及 (iii) 形成一第二碎層在完成雷射退火的該富;ς夕介電層上, ' 其中該第一矽層與該第二矽層其中之一者包含—非晶石夕 (a-Si)層,並且該第一矽層與該第二矽層其中之另一者包 含一多晶石夕(poly_Si)層。 39 201011923 3電4層請專利範圍第33項所述之方法,其中形成該富梦介 電層的步驟進一步包含: 雷射退火該富普電層來形成複數個發奈米晶體。 L5思如中請專利範圍第32項料之枝,其中形成該光電轉 換層的步驟包含: ()形成一第一富矽(Si-rich)介電層於該第一導電層上, 該第一富矽介電層具有一折射率nl;以及 (11)形成一第二富矽(Si_rich)介電層於該第一富矽介電層 上,該第一富矽介電層具有一折射率n2,其中β2 < nl » 36·如申請專利範圍第35項所述之方法,其中形成該光電轉 換層的步驟更包含: 形成一第三富矽介電層在該第二富矽介電層與該第二導電 層之間’該第三富矽介電層具有一折射率η3,其中η3<η2< nl。 37· 一種顯示面板,包含: 複數個矩陣形式排列的像素,每一像素包含: (a) —主動區域,用於顯示相關資訊; (b) —切換區域’具有至少一切換元件;以及 (c) 一光電池,形成於該主動區域與該切換區域之間, 其中該光電池具有一光電轉換層,該光電轉換層包含一 多重能隙。 201011923 38.如申請專利範圍第37項所述之顯示面板,其中該光電轉 換層包含: ⑴一非晶矽(a-Si)層; (H) —多晶矽(poly-Si)層;以及 (⑴)一富矽(Si-rich)介電層形成在該非晶矽層和該多晶 矽層之間。 39.如申請專利範圍第38項所述之顯示面板,其中該富矽介 電層包含一奈'米晶體矽(nc_Si)層,該奈米晶體矽層具有複數 個矽奈米晶體,每一該矽奈米晶體大小介於約1奈米到約20 奈米之間。 40· 一種製造一顯示面板之方法,包含: (a) 提供一基板;以及 (b) 在該基板上以矩陣形式形成複數個像素,其中每一像 素包含一光電池,其中該光電池具有一光電轉換層, 該光電轉換層包含一多重能隙。 41.如申請專利範圍第4〇項所述之方法,其中形成該些像素 的步驟包含: (〇形成複數個閘極電耦合至該基板上的複數個閘線,其 中該些閘極在空間上彼此相隔,並且其中每一對相鄰 該些閘極定義一主動區域、一切換區域以及一先電 池’該切換區域中形成該閘極,該光電池位於位於該 主動區域和該切換區域之間; 201011923 (ϋ)在該些閘極以及該基板的剩餘區域上形成一閘絕緣 層; (in)形成一非晶矽(a_si)層在該閘絕緣層上覆蓋每一切換 區域内的該些閘極; (iv) 在該非晶矽層上形成一摻雜非晶矽層; (v) 在該摻雜非晶矽層上以及該閘絕緣層的剩餘區域上 形成一第一導電層; (VI)在該第一導電層上形成覆蓋每一光電池區域的一富 矽(Si-rich)介電層; (vii) 在每一切換區域内形成一源極和一汲極,藉此在該 基板上形成具有一場效電晶體陣列; (viii) 形成一被動層在第一導電層上覆蓋該場效電晶體陣 列與該富矽介電層; (ix) 在該切換區域和該光電池區域内該被動層上形成通 孔接觸;以及 (X)在該切換區域與該光電池區域之間一區域上形成具 有一第一部分的一第二導電層,如此該第一部分在每 一切換區域内通過該通孔與該場效電晶髏的該汲極 接觸’以及接觸該光電池區域内該富梦介電層上一第 二部分。 42.如申請專利範圍第41項所述之方法,其中形成該複數個 像素的步驟進一步包含雷射退火該富矽介電層來在其内形 成複數個矽奈米晶體。 42201011923 'VII. Patent application scope: 1- A photovoltaic cell comprising: (a) a first conductive layer; (b) an N-type doped semiconductor layer formed on the first conductive layer; (c) a first germanium a layer is formed on the N-type doped semiconductor layer; () a nanocrystalline germanium (nc-Si) layer is formed on the first layer; (e) a second layer is formed on the nanocrystalline layer (0 p-type doped semiconductor layer is formed on the second chopped layer; and φ (g) a second conductive layer is formed on the p-type doped semiconductor layer. 2. As described in claim 1 a photocell, wherein one of the first layer and the second layer is made of amorphous germanium (a-Si), and the first layer and the second layer are The material is a polycrystalline hair (4). 3. The photocell according to claim 1, wherein the nightmare layer comprises a plurality of Monaime crystal males, each of the Cainan crystal pro == about 1 nm to The photovoltaic cell of claim 1, wherein at least one of the first conductive layer and the second conductive layer is at least one of the first conductive layer and the second conductive layer The material is a transparent conductive material. 5. The photovoltaic cell according to claim 4, wherein the transparent conductive material is indium tin oxide (ITO), indium zinc oxide (IZ〇), aluminum zinc oxide. (AZO), an oxide (Hf〇) or a combination of these. 32 201011923 6. The photocell according to the patent application scope, wherein the material of the ❹-type semiconductor layer is a 掺杂-type doping dream, and The material of the p-type semiconductor layer is Ρ-type doped 矽. 7. A method for manufacturing a photovoltaic cell, comprising the steps of: (a) providing a substrate L (b) forming a first conductive layer on the substrate; (c) forming an n-type doped semiconductor layer on the first conductive layer; (d) forming a first germanium layer on the N-type doped semiconductor layer; (e) forming a first germanium layer a nanocrystalline 矽 (ncSi) layer; (f) forming a second ruthenium layer on the nano crystallization layer; (g) forming a p-type doped semiconductor layer on the second ruthenium layer; and (h) Forming a second conductive layer on the P-type doped semiconductor layer. The method of claim 7, wherein the method of claim 7 The step of forming the nanocrystalline germanium layer comprises: (i) forming a germanium-rich (Si_rieh) dielectric layer on the first germanium layer; and (ii) laser annealing the germanium-rich dielectric layer to form a plurality of germanium layers Nanocrystalline crystal. 9. A photovoltaic cell comprising: (4) a first conductive layer; (b) a second conductive layer; and (c) a photoelectric conversion layer formed on the first conductive layer and the second conductive layer The photovoltaic cell of claim 9, wherein the photoelectric conversion 33 201011923 layer comprises: (a-Si-A layer); (U) - a poly-Si layer; and (ui) - a Si-rich dielectric layer is formed between the amorphous layer and the polysilicon layer. The photovoltaic cell of claim 1, wherein the material of the rich-rich dielectric layer comprises a cerium-rich oxide, a cerium-rich nitride, a cerium-rich oxynitride, and a cerium-rich carbide. Or a combination of these. 12. The photovoltaic cell of claim 1, wherein the rich dielectric layer comprises a nanocrystalline crystalline germanium (nc-Si) layer, the nanocrystalline crystalline layer having a plurality of nanocrystals, each The size of the nanocrystals is between about 1 nanometer and about 2 nanometers. The photocell of claim 9, wherein the optical layer comprises: (0) a first germanium-rich (Si_rich) dielectric layer formed on the first conductive layer and having a refractive index nl; (π) - a second germanium-rich (Si_rich) dielectric layer formed on the first germanium-rich dielectric layer and having a refractive index n2, wherein n2 < ni. 14. as described in claim 13 a photovoltaic cell, wherein the photoelectric conversion layer further comprises a third ruthenium-rich dielectric layer formed between the second ruthenium-rich dielectric layer and the second conductive layer The photocell of claim 14, wherein the material of each of the first nightmare dielectric layer, the second germanium-rich dielectric layer, and the third germanium-rich dielectric layer comprises a photocell. A cerium compound, a cerium-rich cerium oxide, a cerium-rich oxynitride, a cerium-rich carbide, or a combination thereof. The photovoltaic cell according to claim 13, wherein the photoelectric conversion layer further comprises: (1) an amorphous germanium (a-Si) layer; and a (ϋ) polycrystalline poly (poly-Si) layer, wherein The first ruthenium-rich dielectric layer and the second ruthenium-rich dielectric layer are formed between the amorphous ruthenium layer and the polysilicon layer. 17. The photovoltaic cell of claim 9, further comprising: (1) An N-type doped semiconductor layer is formed between the first conductive layer and the photoelectric conversion layer; and a (1)-P-type doped semiconductor layer is formed between the second conductive layer and the photoelectric conversion layer. The photovoltaic cell of claim 9, wherein at least one of the first and first conductive layers is made of a transparent conductive material. 19. A method of fabricating a photovoltaic cell comprising the steps of: (a) providing a substrate; (b) forming a -first conductive layer on the substrate; (4) forming a photoelectric conversion layer on the first conductive layer, wherein the photovoltaic Turn 35 201011923 The layer has a multi-band gap; and (d) forms a second conductive layer on the photoelectric conversion layer. 20. The method of claim 19, wherein the step of forming the photoelectric conversion layer comprises the steps of: (i) forming a first layer of germanium on the first layer; (Π) forming a germanium ( a Si-rich dielectric layer on the first germanium layer; and (Hi) a second ground layer on the rich dielectric layer, wherein the first dream layer and the second germanium layer are one of An amorphous germanium (aSi) layer is included, and the other of the first germanium layer and the second germanium layer comprises a poly-Si layer. 21. The method of claim 2, wherein the step of forming the germanium-rich dielectric layer further comprises: laser annealing the germanium-rich dielectric layer to form a plurality of germanium crystals. 22. The method of claim 19, wherein the step of forming the photoelectric conversion layer comprises: (1) forming a -first-rich WSi_Heh dielectric layer on the first conductive layer, the first Fu Shi Xi Jie The electrical layer has a refractive index ni; and (11) forms a second fused (Si_rich) dielectric layer on the first ytterbium-rich dielectric layer, the second ytterbium-rich dielectric layer having a refractive index, wherein U < nl. The method of claim 22, wherein the step of forming the phototransfer 23· as in the patent application range further comprises 36 201011923 forming a third germanium-rich dielectric layer in the second germanium-rich dielectric layer and the second conductive layer Between the layers, the third rich-rich dielectric layer has a refractive index n3, wherein n3 <n2<nl 〇24·, as described in claim 19, the method further comprises: (i) Forming an N-type doped semiconductor layer between the first conductive layer and the photoelectric conversion layer; and (?) forming a P-type doped semiconductor layer between the second conductive layer and the photoelectric conversion layer. A liquid crystal display panel is driven by a liquid crystal display driver and illuminated by a backlight, the liquid crystal display panel comprising: (a) a display area 'for displaying related information; and (b) a photocell The photocell is placed in an area surrounding the display area and exposed to a light to convert the optical energy of the light into an electrical energy. The electrical energy is supplied to the liquid crystal display driver as a driving power, wherein the first battery comprises: a first conductive layer; (ii) a second conductive layer; and (iii) a photoelectric conversion layer formed between the first conductive layer and the second conductive layer, wherein the first electrical conversion layer has a plurality Heavy energy gap. The liquid crystal display panel of claim 25, wherein the photoelectric conversion layer further comprises: (1) an amorphous germanium (a-Si) layer; 37 201011923 (1)) a polycrystalline stone (poly- a Si-rich dielectric layer is formed between the amorphous germanium layer and the polysilicon layer. The liquid crystal display panel according to claim 26 of the patent application The material of the Fu Shi Xi dielectric layer comprises a rich shi xi oxide, a rich dream nitride, a rich shi oxynitride, a ruthenium rich carbide or a combination thereof. ❿ 28 · as claimed in the scope of the 27th The liquid crystal display panel, wherein the rich dream dielectric layer comprises a nano crystal 矽 (nc_Si) layer having a plurality of nanocrystals of 'the size of each of the nanocrystals The liquid crystal display panel of claim 1, wherein the photoelectric conversion layer comprises: (I) a first Si-rich dielectric a layer formed on the first conductive layer φ and having a refractive index nl; and (II) a second rich a (Si_rich) dielectric layer formed on the first ytterbium-rich dielectric layer and having a refractive index n2, wherein n2 <nl. 30. The liquid crystal display panel of claim 29, wherein the light = The conversion layer further includes a third germanium-rich dielectric layer formed between the second germanium-rich layer and the second conductive layer, the third germanium-rich dielectric layer having a refractive index n3' wherein η3<η2< The liquid crystal display panel of claim 25, wherein the display region has a plurality of low temperature polycrystalline silicon thin film transistors (LTPS-TFT, "low temperature polycrystalline silicon thin film transistor". A method for manufacturing a liquid crystal display (LCD) panel, the liquid crystal display panel is driven by a liquid crystal display driver and illuminated by a backlight, the method comprising: (a) providing a substrate; (b) forming a a display area on the substrate; and • 0) forming a photocell on the substrate surrounding an area of the display area and exposing it to light, when the photocell is capable of light energy Switching to an electrical energy, the electrical energy being supplied to the liquid crystal display driver as a driving power, wherein the step of forming the photovoltaic cell comprises the steps of: (i) forming a first conductive layer; (Π) forming a second conductive layer; and (iii Forming a photoelectric conversion layer between the first conductive layer and the second conductive φ layer, wherein the photoelectric conversion layer has a multiple energy gap. 33. The method of claim 32, wherein the step of forming the photoelectric conversion layer comprises: (1) forming a first germanium layer on the first conductive layer; (ii) forming a germanium rich (Si-rich) a dielectric layer on the first layer; and (iii) forming a second layer on the rich laser-annealed layer; 'where the first layer and the second layer One of the layers comprises an amorphous a-Si layer, and the other of the first and second layers comprises a poly-Si layer. 39. The method of claim 33, wherein the step of forming the rich dielectric layer further comprises: laser annealing the Fupu electrical layer to form a plurality of nanocrystals. L5 is the branch of the 32nd item of the patent scope, wherein the step of forming the photoelectric conversion layer comprises: () forming a first silicon-rich (Si-rich) dielectric layer on the first conductive layer, the first a first germanium-rich dielectric layer having a refractive index n1; and (11) forming a second germanium-rich (Si_rich) dielectric layer on the first germanium-rich dielectric layer, the first germanium-rich dielectric layer having a refraction The method of claim 35, wherein the step of forming the photoelectric conversion layer further comprises: forming a third germanium-rich dielectric layer in the second rich layer The third germanium-rich dielectric layer between the electrical layer and the second conductive layer has a refractive index η3, where η3 < η2 < nl. 37. A display panel comprising: a plurality of pixels arranged in a matrix form, each pixel comprising: (a) an active area for displaying related information; (b) a switching area having at least one switching element; and (c) A photocell is formed between the active region and the switching region, wherein the photovoltaic cell has a photoelectric conversion layer, and the photoelectric conversion layer includes a multiple energy gap. The display panel of claim 37, wherein the photoelectric conversion layer comprises: (1) an amorphous germanium (a-Si) layer; (H) a polycrystalline silicon (poly-Si) layer; and ((1) A Si-rich dielectric layer is formed between the amorphous germanium layer and the polysilicon layer. 39. The display panel of claim 38, wherein the ytterbium-rich dielectric layer comprises a nano-crystal 矽 (nc_Si) layer, the nano-crystal 矽 layer having a plurality of 矽 nanocrystals, each The nanocrystal size ranges from about 1 nanometer to about 20 nanometers. 40. A method of fabricating a display panel, comprising: (a) providing a substrate; and (b) forming a plurality of pixels in a matrix on the substrate, wherein each pixel comprises a photovoltaic cell, wherein the photovoltaic cell has a photoelectric conversion The layer, the photoelectric conversion layer comprises a multiple energy gap. 41. The method of claim 4, wherein the forming the pixels comprises: (〇 forming a plurality of gates electrically coupled to the plurality of gate lines on the substrate, wherein the gates are in space Separating from each other, and each pair of adjacent ones of the gates defines an active area, a switching area, and a first battery forming the gate in the switching area, the photovoltaic cell being located between the active area and the switching area 201011923 (ϋ) forming a gate insulating layer on the gates and the remaining regions of the substrate; (in) forming an amorphous germanium (a_si) layer over the gate insulating layer covering the respective regions of the switching region a gate electrode; (iv) forming a doped amorphous germanium layer on the amorphous germanium layer; (v) forming a first conductive layer on the doped amorphous germanium layer and remaining regions of the gate insulating layer; VI) forming a Si-rich dielectric layer covering each photocell region on the first conductive layer; (vii) forming a source and a drain in each switching region, thereby Forming a field effect transistor array on the substrate; (viii) Forming a passive layer over the first conductive layer over the field effect transistor array and the germanium rich dielectric layer; (ix) forming a via contact on the passive layer in the switching region and the photocell region; and (X) Forming a second conductive layer having a first portion on a region between the switching region and the photovoltaic cell region, such that the first portion contacts the drain of the field effect transistor through the via hole in each switching region And contacting the second portion of the photopolymer cell region. The method of claim 41, wherein the step of forming the plurality of pixels further comprises laser annealing The electric layer forms a plurality of nano crystals therein.
TW098107027A 2008-09-02 2009-03-04 Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel TWI462307B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/202,647 US9577137B2 (en) 2007-01-25 2008-09-02 Photovoltaic cells with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel

Publications (2)

Publication Number Publication Date
TW201011923A true TW201011923A (en) 2010-03-16
TWI462307B TWI462307B (en) 2014-11-21

Family

ID=41039972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107027A TWI462307B (en) 2008-09-02 2009-03-04 Photovoltaic cells of si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel

Country Status (3)

Country Link
JP (1) JP5131993B2 (en)
CN (1) CN101515608B (en)
TW (1) TWI462307B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339823A (en) * 2011-08-01 2012-02-01 友达光电股份有限公司 Photoelectric module and light emitting method thereof
CN103681774A (en) * 2013-12-31 2014-03-26 北京维信诺科技有限公司 OLED (Organic Light Emitting Diode) display device for integrating solar batteries
US9734780B2 (en) 2010-07-01 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253547B (en) * 2010-05-21 2015-03-11 北京京东方光电科技有限公司 Array substrate and manufacturing method thereof as well as liquid crystal display
CA2810371C (en) * 2010-09-09 2016-08-30 Electricite De France An optoelectronic device comprising nanostructures of hexagonal type crystals
US9337369B2 (en) * 2014-03-28 2016-05-10 Sunpower Corporation Solar cells with tunnel dielectrics
US9559245B2 (en) * 2015-03-23 2017-01-31 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
CN107272235A (en) * 2017-05-12 2017-10-20 惠科股份有限公司 Display device and its active matrix switch substrate
CN108596134B (en) * 2018-04-28 2020-08-11 京东方科技集团股份有限公司 Touch panel or grain recognition panel and manufacturing method and device
CN110098489B (en) * 2019-05-16 2021-07-20 哈尔滨工业大学 Adjustable ultra-narrow-band absorber based on four nano-column coupled vibrators
CN112135502A (en) * 2019-06-24 2020-12-25 禾达材料科技股份有限公司 Electromagnetic wave shield and transmission line assembly using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698115B2 (en) * 1988-09-20 1998-01-19 三洋電機株式会社 Method for manufacturing photovoltaic device
JP2717583B2 (en) * 1988-11-04 1998-02-18 キヤノン株式会社 Stacked photovoltaic element
JP2740284B2 (en) * 1989-08-09 1998-04-15 三洋電機株式会社 Photovoltaic element
US6830817B2 (en) * 2001-12-21 2004-12-14 Guardian Industries Corp. Low-e coating with high visible transmission
US7667133B2 (en) * 2003-10-29 2010-02-23 The University Of Toledo Hybrid window layer for photovoltaic cells
WO2005106966A1 (en) * 2004-04-30 2005-11-10 Unisearch Limited Artificial amorphous semiconductors and applications to solar cells
US20070166916A1 (en) * 2006-01-14 2007-07-19 Sunvolt Nanosystems, Inc. Nanostructures-based optoelectronics device
US20080179762A1 (en) * 2007-01-25 2008-07-31 Au Optronics Corporation Layered structure with laser-induced aggregation silicon nano-dots in a silicon-rich dielectric layer, and applications of the same
US7857907B2 (en) * 2007-01-25 2010-12-28 Au Optronics Corporation Methods of forming silicon nanocrystals by laser annealing
CN101237000A (en) * 2007-01-29 2008-08-06 北京行者多媒体科技有限公司 Nano crystal silicon and non crystal germanium mixed absorption layer for multi-node light voltage part based on film silicon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9734780B2 (en) 2010-07-01 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US10008169B2 (en) 2010-07-01 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
CN102339823A (en) * 2011-08-01 2012-02-01 友达光电股份有限公司 Photoelectric module and light emitting method thereof
CN102339823B (en) * 2011-08-01 2015-07-08 友达光电股份有限公司 photoelectric module and light emitting method thereof
CN103681774A (en) * 2013-12-31 2014-03-26 北京维信诺科技有限公司 OLED (Organic Light Emitting Diode) display device for integrating solar batteries
CN103681774B (en) * 2013-12-31 2018-11-23 北京维信诺科技有限公司 A kind of OLED display of integrated solar cell

Also Published As

Publication number Publication date
JP2010062539A (en) 2010-03-18
TWI462307B (en) 2014-11-21
CN101515608A (en) 2009-08-26
CN101515608B (en) 2014-03-26
JP5131993B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
TW201011923A (en) Photovoltaic cells of Si-nanocrystals with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel
US9577137B2 (en) Photovoltaic cells with multi-band gap and applications in a low temperature polycrystalline silicon thin film transistor panel
TWI397111B (en) Layered structure with silicon nanocrystals, solar cell, nonvolatile memory element, photo sensitive element and fabrications thereof, and method for forming silicon nanocrystals
US9159793B2 (en) P-type semiconductor material and semiconductor device
TWI464887B (en) Photo-voltaic cell device and display panel
JP3490964B2 (en) Photovoltaic device
TWI395034B (en) Thin film transistor array substrate, display panel, liquid crystal display apparatus and manufacturing method thereof
US9105787B2 (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
FR2464565A1 (en) Laser treatment of semiconductor material - uses low and high power dosages to crystallise or anneal controlled thickness of amorphous structure, grown on non-crystalline substrate
US20120181503A1 (en) Method of Fabricating Silicon Quantum Dot Layer and Device Manufactured Using the Same
JP2011513962A (en) Photovoltaic devices using high aspect ratio nanostructures and methods for making the same
WO2021248565A1 (en) Pin photosensitive device, manufacturing method therefor, and display panel
US8836070B2 (en) Photo diode, method of manufacturing the photo-diode, and photo sensor including the photo diode
WO2018205320A1 (en) Display device and active array switch substrate thereof
WO2016021267A1 (en) Photoelectric conversion element
TW200933908A (en) A silicon-based thin film solar-cell
JP2004335734A (en) Thin film solar cell
JP2004335733A (en) Thin film solar cell
Fırat Polycrystalline Silicon Passivating Contacts for High-Efficiency Silicon Solar Cells
US20120280232A1 (en) Photoelectric conversion device
JP2010034124A (en) Solar battery apparatus and production process therefor
KR20090126736A (en) Solar cell module and method for driving the same
TW201248885A (en) Solar cell
JPS63318170A (en) Semiconductor multilayered thin film element