WO2016021267A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2016021267A1
WO2016021267A1 PCT/JP2015/064280 JP2015064280W WO2016021267A1 WO 2016021267 A1 WO2016021267 A1 WO 2016021267A1 JP 2015064280 W JP2015064280 W JP 2015064280W WO 2016021267 A1 WO2016021267 A1 WO 2016021267A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
amorphous silicon
semiconductor substrate
silicon film
photoelectric conversion
Prior art date
Application number
PCT/JP2015/064280
Other languages
French (fr)
Japanese (ja)
Inventor
健 稗田
田所 宏之
親扶 岡本
利人 菅沼
賢治 木本
敏彦 酒井
督章 國吉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016021267A1 publication Critical patent/WO2016021267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion element.
  • the most manufactured and sold solar cells have a structure in which electrodes are formed on a light receiving surface that is a surface on which sunlight is incident and a back surface that is opposite to the light receiving surface, respectively.
  • FIG. 20 shows a schematic enlarged cross-sectional view of the light-receiving surface of the solar cell described in Patent Document 1.
  • the light receiving surface of the solar cell described in Patent Document 1 is formed on an i-type amorphous semiconductor layer 102 and a substrate 101 having the same conductivity type on a substrate 101 made of an n-type or p-type semiconductor.
  • the amorphous semiconductor layer 103 and the protective layer 104 are stacked in this order.
  • Embodiments disclosed herein include an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous silicon film. And an insulating film that can have a positive fixed charge.
  • an embodiment disclosed herein includes an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and amorphous silicon.
  • An insulating film on the film, and the insulating film is a photoelectric conversion element including at least one of a silicon nitride film and a silicon oxynitride film.
  • the embodiment disclosed herein includes a p-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and amorphous silicon. It is a photoelectric conversion element provided with the insulating film which can have a negative fixed charge on a film
  • a photoelectric conversion element capable of improving characteristics can be provided.
  • FIG. 3 is a schematic cross-sectional view of the heterojunction back contact cell of Embodiment 1.
  • FIG. 3 is a schematic enlarged cross-sectional view illustrating the operational effect of the heterojunction back contact cell of Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment.
  • 4 is an enlarged photograph of an example of a crystalline silicon portion between a light receiving surface of a semiconductor substrate and an amorphous silicon film on the light receiving surface of a heterojunction back contact cell according to Embodiment 1.
  • 6 is a schematic cross-sectional view of a heterojunction back contact cell of Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view of a heterojunction back contact cell of Embodiment 4.
  • FIG. FIG. 6 is a schematic enlarged cross-sectional view illustrating the operational effects of the heterojunction back contact cell of Embodiment 4.
  • 2 is a schematic enlarged cross-sectional view of a
  • FIG. 1 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 1, which is an example of the photoelectric conversion element according to Embodiment 1.
  • FIG. The heterojunction back contact cell according to the first embodiment includes a semiconductor substrate 1 which is an n-type single crystal silicon substrate, and a crystalline silicon portion 6a on the unevenness 1a of one main surface (hereinafter referred to as “light receiving surface”) of the semiconductor substrate 1. And an amorphous silicon film 6b, and an insulating film 7 on the laminate 6.
  • the stacked body 6 includes a crystalline silicon portion 6 a in contact with the unevenness 1 a of the semiconductor substrate 1 and an amorphous silicon film 6 b in contact with the crystalline silicon portion 6 a in this order. That is, the crystalline silicon portion 6a is provided between the semiconductor substrate 1 and the amorphous silicon film 6b.
  • the insulating film 7 is provided in contact with the amorphous silicon film 6b.
  • the crystalline silicon portion 6a is i-type polycrystalline silicon
  • the amorphous silicon film 6b is an i-type amorphous silicon film.
  • the insulating film 7 is a silicon nitride (SiN x ) film that can have a positive fixed charge.
  • i-type means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ (Less than 10 15 / cm 3 ) is meant to include n-type or p-type impurities.
  • n-type means a state where the n-type impurity concentration is 1 ⁇ 10 15 / cm 3 or more
  • p-type means that the p-type impurity concentration is 1 ⁇ 10 15 / cm 3 or more. Means the state.
  • amorphous silicon includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon such as hydrogenated amorphous silicon. Also included are those in which dangling bonds of atoms are terminated with hydrogen.
  • the semiconductor substrate 1 includes a first i-type amorphous semiconductor film 2 and a second i-type amorphous semiconductor film 4 which are in contact with the back surface which is the other main surface.
  • each of the first i-type amorphous semiconductor film 2 and the second i-type amorphous semiconductor film 4 is an i-type amorphous silicon film.
  • a first conductivity type amorphous silicon film 3 made of p-type amorphous silicon is provided in contact with the first i-type amorphous semiconductor film 2.
  • a second conductivity type amorphous silicon film 5 made of n-type amorphous silicon is in contact with the second i-type amorphous semiconductor film 4.
  • the first electrode 11 is provided on the first conductivity type amorphous silicon film 3.
  • a second electrode 12 is provided on the second conductivity type amorphous silicon film 5.
  • the end of the stacked body of the second i-type amorphous semiconductor film 4 and the second conductivity-type amorphous silicon film 5 is the first i-type amorphous semiconductor film 2 and the first conductivity-type amorphous.
  • the edge part of the laminated body with the silicon film 3 is covered. Therefore, the end of the second i-type amorphous semiconductor film 4 is located between the first conductive type amorphous silicon film 3 and the second conductive type amorphous silicon film 5.
  • the end of the second i-type amorphous semiconductor film 4 is in contact with both the first conductivity type amorphous silicon film 3 and the second conductivity type amorphous silicon film 5. Thereby, the first conductivity type amorphous silicon film 3 and the second conductivity type amorphous silicon film 5 are separated by the second i-type amorphous semiconductor film 4.
  • an amorphous silicon film is used as a passivation film for suppressing carrier recombination on the light receiving surface of the semiconductor substrate of the solar cell.
  • the polycrystalline silicon film formed by the plasma CVD (Chemical Vapor Deposition) method is used as the passivation film, the interface between the amorphous silicon film and the polycrystalline silicon film increases. Because the interface contains many crystal defects, minority carriers in the semiconductor substrate generated by the incidence of light are captured by these crystal defects, and sufficient characteristics are not exhibited. It is.
  • the amorphous silicon film absorbs more light in the short wavelength region than the polycrystalline silicon film. Therefore, when an amorphous silicon film is used as the passivation film on the light receiving surface, the amount of light incident on the semiconductor substrate in the short wavelength region is reduced, so that sufficient characteristics cannot be obtained.
  • the heterojunction back contact cell of Embodiment 1 by providing the crystalline silicon portion 6a on the semiconductor substrate 1, the amount of light incident on the semiconductor substrate 1 in the short wavelength region (wavelength of 300 nm or more and 600 nm or less) is reduced. Become more.
  • the interface between the crystalline silicon portion 6a and the amorphous silicon film 6b is increased by the crystalline silicon portion 6a, and the adverse effect of minority carrier trapping due to crystal defects at the interface.
  • an insulating film 7 capable of having a positive fixed charge is provided on the crystalline silicon portion 6a via an amorphous silicon film 6b.
  • the hole 23 is moved away from the crystalline silicon portion 6 a by the repulsive force due to the energy level barrier formed by the positive fixed charge 22 of the insulating film 7, it is difficult to be captured by the crystal defect 21. Then, the holes 23 are extracted from the first electrode 11 through the first i-type amorphous semiconductor film 2 and the first conductive amorphous silicon film 3, and the electrons 24 are extracted from the second i-type amorphous semiconductor film. It is taken out from the second electrode 12 through the semiconductor film 4 and the second conductivity type amorphous silicon film 5.
  • the amount of light generated in the short wavelength region is increased by the crystalline silicon portion 6a, thereby increasing the amount of carriers generated in the semiconductor substrate 1, Furthermore, since minority carriers generated inside the semiconductor substrate 1 by the insulating film 7 are less likely to be captured by the crystal defects 21, a photoelectric conversion element having better characteristics than the conventional one can be obtained.
  • the crystalline silicon portion 6a is formed on the entire surface of the unevenness 1a of the light receiving surface of the semiconductor substrate 1 has been described. 6a may be formed.
  • the crystalline silicon portion 6 a is easily formed in the concave portion of the concave and convex portion 1 a on the light receiving surface of the semiconductor substrate 1.
  • the formation region of the crystalline silicon portion 6 a on the unevenness 1 a of the light receiving surface of the semiconductor substrate 1 is wide.
  • the presence of the crystalline silicon portion 6a between the semiconductor substrate 1 and the amorphous silicon film 6b in the heterojunction back contact cell of Embodiment 1 can be confirmed by, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the thickness t of the crystalline silicon portion 6a is preferably 1/5 or more of the thickness T of the stacked body 6 of the crystalline silicon portion 6a and the amorphous silicon film 6b. In this case, the amount of light in the short wavelength region incident on the semiconductor substrate 1 can be further increased.
  • the unevenness 1a on the light receiving surface of the semiconductor substrate 1 can be formed, for example, by texture-etching the light receiving surface of the semiconductor substrate 1 after forming a texture mask on the entire back surface of the semiconductor substrate 1.
  • silicon nitride or silicon oxide can be used as the texture mask.
  • an etchant used for texture etching for example, an alkaline solution capable of dissolving silicon can be used.
  • an n-type single crystal silicon substrate can be suitably used, but is not limited to an n-type single crystal silicon substrate, and for example, a conventionally known n-type semiconductor substrate can be used as appropriate.
  • a crystalline silicon portion 6 a is formed on the unevenness 1 a of the light receiving surface of the semiconductor substrate 1.
  • the crystalline silicon portion 6a can be formed by, for example, a plasma CVD method.
  • Hydrogen (H 2 ) gas is allowed to flow during formation of the crystalline silicon portion 6a by the plasma CVD method, whereby silicon dangling bonds between the interface between the semiconductor substrate 1 and the crystalline silicon portion 6a and between the crystalline silicon portions 6a.
  • Hydrogen (H 2 ) gas is allowed to flow during formation of the crystalline silicon portion 6a by the plasma CVD method, whereby silicon dangling bonds between the interface between the semiconductor substrate 1 and the crystalline silicon portion 6a and between the crystalline silicon portions 6a.
  • an amorphous silicon film 6b is formed on the crystalline silicon portion 6a.
  • the amorphous silicon film 6b can be formed by, for example, a plasma CVD method.
  • the formation conditions for forming the crystalline silicon portion 6a and the amorphous silicon film 6b by the plasma CVD method are particularly limited as long as the crystalline silicon portion 6a and the amorphous silicon film 6b can be formed, respectively.
  • the plasma power when the crystalline silicon portion 6a is formed is higher than the plasma power when the amorphous silicon film 6b is formed, and H 2 against silane (SiH 4 ) gas when the crystalline silicon portion 6a is formed.
  • the crystalline silicon portion 6a and the amorphous silicon film 6b can be formed by the plasma CVD method, respectively. it can.
  • an insulating film 7 which is a SiN x film is formed on the amorphous silicon film 6b.
  • the insulating film 7 can be formed by, for example, a plasma CVD method.
  • the composition ratio of Si and N in the insulating film 7 that is a SiN x film can be set relatively freely.
  • the insulating film 7 can be formed by setting the composition ratio of Si and N so as to have a fixed charge of 5%.
  • a first i-type amorphous semiconductor film 2 is formed on the entire back surface of the semiconductor substrate 1.
  • the method for forming the first i-type amorphous semiconductor film 2 is not particularly limited, and for example, a plasma CVD method can be used.
  • an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film.
  • a quality semiconductor film can also be used.
  • a first conductivity type amorphous silicon film 3 is formed on the back surface of the semiconductor substrate 1.
  • the formation method of the 1st conductivity type amorphous silicon film 3 is not specifically limited, For example, plasma CVD method can be used.
  • a p-type amorphous silicon film can be suitably used, but is not limited to a p-type amorphous silicon film, and for example, a conventionally known p-type amorphous silicon film is used.
  • a semiconductor film can also be used.
  • the p-type impurity contained in the p-type amorphous silicon film constituting the first conductivity type amorphous silicon film for example, boron can be used.
  • an etching mask 31 such as a photoresist having an opening at a location where the semiconductor substrate 1 is etched in the thickness direction is formed on the first conductive type amorphous silicon film 3.
  • the stacked body 51 of the first i-type amorphous semiconductor film 2 and the first conductive type amorphous silicon film 3 is etched in the thickness direction using the etching mask 31 as a mask. As a result, a part of the semiconductor substrate 1 is exposed.
  • a second i-type amorphous semiconductor film 4 is formed so as to cover the exposed surface of the semiconductor substrate 1 and the first conductive type amorphous silicon film 3.
  • the method for forming the second i-type amorphous semiconductor film 4 is not particularly limited, and for example, a plasma CVD method can be used.
  • an i-type amorphous silicon film can be suitably used, but is not limited to an i-type amorphous silicon film.
  • a conventionally known i-type amorphous silicon film is used.
  • a quality semiconductor film can also be used.
  • a second conductivity type amorphous silicon film 5 is formed on the second i-type amorphous semiconductor film 4.
  • the method for forming the second conductivity type amorphous silicon film 5 is not particularly limited, but for example, a plasma CVD method can be used.
  • an n-type amorphous silicon film can be suitably used, but is not limited to an n-type amorphous silicon film.
  • a conventionally known n-type amorphous silicon film is used.
  • a semiconductor film can also be used.
  • the n-type impurity contained in the n-type amorphous silicon film constituting the second conductivity type amorphous silicon film 5 for example, phosphorus can be used.
  • the photoresist is applied only to the portion where the stacked body of the second i-type amorphous semiconductor film 4 and the second conductive amorphous silicon film 5 is left on the back surface of the semiconductor substrate 1.
  • Etching mask 32 is formed.
  • etching a part of the stacked body 52 of the second i-type amorphous semiconductor film 4 and the second conductive amorphous silicon film 5 in the thickness direction using the etching mask 32 as a mask As shown in FIG. 14, a part of the first conductivity type amorphous silicon film 3 is exposed. Thereafter, as shown in FIG. 15, the etching mask 32 is completely removed.
  • the first electrode 11 is formed so as to contact the first conductivity type amorphous silicon film 3, and the second electrode 12 is formed so as to contact the second conductivity type amorphous silicon film 5.
  • the formation method of the first electrode 11 and the second electrode 12 is not particularly limited, but for example, an evaporation method or the like can be used.
  • FIG. 16 shows an example of the crystalline silicon portion 6a between the light-receiving surface of the semiconductor substrate 1 and the amorphous silicon film 6b of the light-receiving surface of the heterojunction back contact cell of Embodiment 1 manufactured as described above. An enlarged photograph is shown. As shown in FIG. 16, in the light receiving surface of the heterojunction back contact cell of Embodiment 1, the presence of the crystalline silicon portion 6a can be confirmed between the semiconductor substrate 1 and the amorphous silicon film 6b. .
  • FIG. 17 is a schematic cross-sectional view of the heterojunction back contact cell of Embodiment 2, which is an example of the photoelectric conversion element of Embodiment 2.
  • the heterojunction back contact cell of Embodiment 2 is characterized by using an insulating film 7a which is a silicon oxynitride film (SiO x N y film).
  • the composition ratio of Si, O, and N in the insulating film 7a can be set relatively freely.
  • the insulating film 7a can be formed by setting the composition ratio of Si, O, and N so that has a positive fixed charge.
  • the composite film of the SiO x N y film and the SiN x film for example, a film in which the SiO x N y film and the SiN x film are laminated in this order from the amorphous silicon film 6b side, an amorphous silicon film
  • the composition of the film in which the SiN x film and the SiO x N y film are laminated in this order from the 6b side, and the composition of the SiO x N y film laminated on the amorphous silicon film 6b are from the amorphous silicon film 6b side.
  • a film whose thickness gradually changes in the thickness direction and whose outermost surface is SiN can be exemplified.
  • the composite film of the SiO x N y film and the SiN x film can be formed by, for example, a plasma CVD method as in the first and second embodiments.
  • the composition of the SiO x N y film can be changed by, for example, adjusting the composition ratio of Si, O, and N relatively freely by adjusting the flow rate ratio of the material gas introduced into the plasma CVD apparatus. Can do.
  • the composition ratio of Si, O, and N can be changed, for example, during a series of film forming processes in one reaction chamber of the plasma CVD apparatus, the Si and O of the insulating film in the third embodiment can be changed.
  • the composition ratio of N to N can be changed stepwise or can be changed continuously. For example, during a series of film formation processes in one reaction chamber of the plasma CVD apparatus by changing the composition ratio of Si, O, and N of the insulating film in Embodiment 3 stepwise or continuously.
  • a composite film of the SiO x N y film and the SiN x film exemplified above can be produced.
  • FIG. 18 is a schematic cross-sectional view of a heterojunction back contact cell of Embodiment 4 which is an example of the photoelectric conversion element of Embodiment 4.
  • the heterojunction back contact cell of Embodiment 4 uses a semiconductor substrate 1b which is a p-type single crystal silicon substrate, and an insulating film 7b which is an aluminum oxide (AlO x ) film capable of having a negative fixed charge. It is characterized by having.
  • the composition ratio of Al and O in the insulating film 7b can be set, so that the insulating film 7b has a negative fixed charge.
  • the insulating film 7b can be formed by setting the composition ratio of Al and O.
  • An embodiment disclosed herein includes an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous A photoelectric conversion element including an insulating film capable of having a positive fixed charge on a silicon film. The energy level formed by the insulating film that can have a positive fixed charge by increasing the incident amount of light in the short wavelength region to the semiconductor substrate due to the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film.
  • An embodiment disclosed herein includes an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous An insulating film on the silicon film, and the insulating film is a photoelectric conversion element including at least one of a silicon nitride film and a silicon oxynitride film.
  • the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film increases the amount of light incident on the semiconductor substrate in the short wavelength region, and in this case as well, the insulating film can have a positive fixed charge.
  • the repulsive force due to the energy level barrier formed by the insulating film causes the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and between the semiconductor substrate and the crystalline silicon portion. Since it can be suppressed that minority carriers are captured by crystal defects present at the interface, the characteristics of the photoelectric conversion element can be improved.
  • An embodiment disclosed herein includes a p-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous A photoelectric conversion element including an insulating film capable of having a negative fixed charge on a silicon film.
  • the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film increases the amount of light incident on the semiconductor substrate in the short wavelength region, and the insulating film that can have a negative fixed charge allows the crystalline silicon portion to Minority carriers can be prevented from being trapped by crystal defects existing at the interface with the crystalline silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and the interface between the semiconductor substrate and the crystalline silicon portion.
  • the characteristics of the photoelectric conversion element can be improved.
  • the insulating film preferably includes an aluminum oxide film. Also in this case, since the insulating film can have a negative fixed charge, due to the repulsive force of the insulating film, the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, In addition, minority carriers can be suppressed from being captured by crystal defects present at the interface between the semiconductor substrate and the crystalline silicon portion.
  • the semiconductor substrate has at least one unevenness, and at least one of the unevennesses has a crystalline silicon portion. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the semiconductor substrate and the crystalline silicon portion are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the crystalline silicon portion and the amorphous silicon film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the thickness of the crystalline silicon part is preferably 1/5 or more of the thickness of the stacked body of the crystalline silicon part and the amorphous silicon film. In this case, the amount of light in the short wavelength region incident on the semiconductor substrate can be further increased.
  • the amorphous silicon film and the insulating film are preferably in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the amorphous silicon film preferably contains i-type amorphous silicon. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the crystalline silicon portion preferably includes i-type polycrystalline silicon. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the semiconductor substrate preferably contains silicon. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • a first conductive type amorphous silicon film and a second conductive type amorphous silicon film provided on the opposite side of the amorphous silicon film on the semiconductor substrate It is preferable that a first electrode on the first conductivity type amorphous silicon film and a second electrode on the second conductivity type amorphous silicon film are provided. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • a first i-type amorphous semiconductor film between a semiconductor substrate and a first conductive type amorphous silicon film, a semiconductor substrate, and a second conductive type amorphous It is preferable to further include a second i-type amorphous semiconductor film between the silicon film. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the semiconductor substrate and the first i-type amorphous semiconductor film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the semiconductor substrate and the second i-type amorphous semiconductor film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the first i-type amorphous semiconductor film and the first conductive amorphous silicon film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the second i-type amorphous semiconductor film and the second conductivity-type amorphous silicon film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • the end of the second i-type amorphous semiconductor film is between the first conductive type amorphous silicon film and the second conductive type amorphous silicon film. Preferably it is located. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • end portions of the second i-type amorphous semiconductor film are respectively connected to the first conductive type amorphous silicon film and the second conductive type amorphous silicon film. It is preferable to contact. Also in this case, the characteristics of the photoelectric conversion element can be improved.
  • An embodiment disclosed herein includes a step of forming a crystalline silicon portion on an n-type semiconductor substrate, a step of forming an amorphous silicon film on the crystalline silicon portion, and an amorphous silicon film And a step of forming an insulating film capable of having a positive fixed charge.
  • the energy level formed by the insulating film that can have a positive fixed charge by increasing the incident amount of light in the short wavelength region to the semiconductor substrate due to the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film.
  • An embodiment disclosed herein includes a step of forming a crystalline silicon portion on an n-type semiconductor substrate, a step of forming an amorphous silicon film on the crystalline silicon portion, and an amorphous silicon film And a step of forming at least one of a silicon nitride film and a silicon oxynitride film.
  • the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film increases the amount of light incident on the semiconductor substrate in the short wavelength region, and in this case as well, the insulating film can have a positive fixed charge.
  • the repulsive force due to the energy level barrier formed by the insulating film causes the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and between the semiconductor substrate and the crystalline silicon portion. Since minority carriers can be prevented from being captured by crystal defects present at the interface, a photoelectric conversion element with improved characteristics can be manufactured.
  • An embodiment disclosed herein includes a step of forming a crystalline silicon portion on a p-type semiconductor substrate, a step of forming an amorphous silicon film on the crystalline silicon portion, and an amorphous silicon film And a step of forming an insulating film capable of having a negative fixed charge.
  • the energy level formed by the insulating film that can have a negative fixed charge by increasing the incident amount of light in the short wavelength region to the semiconductor substrate due to the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film.
  • the step of forming the crystalline silicon portion and the step of forming the amorphous silicon film are each performed by a plasma CVD method. Also in this case, a photoelectric conversion element with improved characteristics can be manufactured.
  • the plasma power when forming the crystalline silicon portion is higher than the plasma power when forming the amorphous silicon film.
  • the crystalline silicon portion and the amorphous silicon film can be formed separately.
  • the flow ratio of H 2 gas for SiH 4 gas during the formation of the crystalline silicon portion, the flow rate of H 2 gas for SiH 4 gas during formation of the amorphous silicon film It is preferable that the ratio is larger than the flow rate ratio. Also in this case, the crystalline silicon portion and the amorphous silicon film can be formed separately.
  • the photoelectric conversion element and the method for manufacturing a photoelectric conversion element of the embodiment disclosed herein can be suitably used for a solar cell and a method for manufacturing a solar cell.
  • the photoelectric conversion element and the method for manufacturing the photoelectric conversion element of the embodiment disclosed herein can be suitably used for a heterojunction back contact cell and a method for manufacturing a heterojunction back contact cell.

Abstract

 A photoelectric conversion element is provided with: an n-type semiconductor substrate (1); an amorphous silicon film (6b) on the semiconductor substrate; a crystal silicon part (6a) between the semiconductor substrate (1) and the amorphous silicon film (6b); and an insulating film (7) on the amorphous silicon film (6b), the insulating film being capable of having a positive fixed charge (22).

Description

光電変換素子Photoelectric conversion element
 本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.
 太陽光エネルギを電気エネルギに直接変換する太陽電池は、近年、特に、地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。太陽電池には、化合物半導体または有機材料を用いたものなど様々な種類のものがあるが、現在、主流となっているのは、シリコン結晶を用いたものである。 In recent years, expectations for solar cells that directly convert solar energy into electrical energy have increased rapidly, especially from the viewpoint of global environmental problems. There are various types of solar cells, such as those using compound semiconductors or organic materials, but the mainstream is currently using silicon crystals.
 現在、最も多く製造および販売されている太陽電池は、太陽光が入射する側の面である受光面と、受光面の反対側である裏面とにそれぞれ電極が形成された構造のものである。 Currently, the most manufactured and sold solar cells have a structure in which electrodes are formed on a light receiving surface that is a surface on which sunlight is incident and a back surface that is opposite to the light receiving surface, respectively.
 しかしながら、受光面に電極を形成した場合には、電極における太陽光の反射および吸収があることから、電極の面積分だけ入射する太陽光の量が減少する。そのため、裏面のみに電極を形成した太陽電池の開発が進められている(たとえば特許文献1参照)。 However, when an electrode is formed on the light receiving surface, sunlight is reflected and absorbed by the electrode, so that the amount of incident sunlight is reduced by the area of the electrode. For this reason, development of solar cells in which electrodes are formed only on the back surface is being promoted (see, for example, Patent Document 1).
 図20に、特許文献1に記載の太陽電池の受光面の模式的な拡大断面図を示す。図20に示すように、特許文献1に記載の太陽電池の受光面は、n型又はp型の半導体からなる基板101上に、i型非晶質半導体層102、基板101と同じ導電型の非晶質半導体層103および保護層104がこの順に積層された構造を有している。 FIG. 20 shows a schematic enlarged cross-sectional view of the light-receiving surface of the solar cell described in Patent Document 1. As shown in FIG. 20, the light receiving surface of the solar cell described in Patent Document 1 is formed on an i-type amorphous semiconductor layer 102 and a substrate 101 having the same conductivity type on a substrate 101 made of an n-type or p-type semiconductor. The amorphous semiconductor layer 103 and the protective layer 104 are stacked in this order.
特開2010-258043号公報JP 2010-258043 A
 しかしながら、特許文献1に記載の太陽電池においては、太陽電池の受光面に入射した光のうち、短波長領域の光がi型非晶質半導体層102および非晶質半導体層103で吸収されてしまうため、十分な特性が得られないという課題があった。 However, in the solar cell described in Patent Document 1, light in the short wavelength region out of the light incident on the light receiving surface of the solar cell is absorbed by the i-type amorphous semiconductor layer 102 and the amorphous semiconductor layer 103. Therefore, there is a problem that sufficient characteristics cannot be obtained.
 ここで開示された実施形態は、n型の半導体基板と、半導体基板上の非晶質シリコン膜と、半導体基板と非晶質シリコン膜との間の結晶シリコン部と、非晶質シリコン膜上の正の固定電荷を有することができる絶縁膜とを備えた光電変換素子である。 Embodiments disclosed herein include an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous silicon film. And an insulating film that can have a positive fixed charge.
 また、ここで開示された実施形態は、n型の半導体基板と、半導体基板上の非晶質シリコン膜と、半導体基板と非晶質シリコン膜との間の結晶シリコン部と、非晶質シリコン膜上の絶縁膜とを備え、絶縁膜は、窒化シリコン膜および酸窒化シリコン膜の少なくとも一方を含む光電変換素子である。 In addition, an embodiment disclosed herein includes an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and amorphous silicon. An insulating film on the film, and the insulating film is a photoelectric conversion element including at least one of a silicon nitride film and a silicon oxynitride film.
 また、ここで開示された実施形態は、p型の半導体基板と、半導体基板上の非晶質シリコン膜と、半導体基板と非晶質シリコン膜との間の結晶シリコン部と、非晶質シリコン膜上の負の固定電荷を有することができる絶縁膜とを備えた光電変換素子である。 In addition, the embodiment disclosed herein includes a p-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and amorphous silicon. It is a photoelectric conversion element provided with the insulating film which can have a negative fixed charge on a film | membrane.
 ここで開示された実施形態によれば、特性を向上することができる光電変換素子を提供することができる。 According to the embodiment disclosed herein, a photoelectric conversion element capable of improving characteristics can be provided.
実施形態1のヘテロ接合型バックコンタクトセルの模式的な断面図である。FIG. 3 is a schematic cross-sectional view of the heterojunction back contact cell of Embodiment 1. 実施形態1のヘテロ接合型バックコンタクトセルの作用効果を図解する模式的な拡大断面図である。FIG. 3 is a schematic enlarged cross-sectional view illustrating the operational effect of the heterojunction back contact cell of Embodiment 1. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例の製造工程の一部を図解する模式的な断面図である。FIG. 3 is a schematic cross-sectional view illustrating a part of the manufacturing process of the example of the method for manufacturing the heterojunction back contact cell according to the first embodiment. 実施形態1のヘテロ接合型バックコンタクトセルの受光面の半導体基板の受光面と非晶質シリコン膜との間の結晶シリコン部の一例の拡大写真である。4 is an enlarged photograph of an example of a crystalline silicon portion between a light receiving surface of a semiconductor substrate and an amorphous silicon film on the light receiving surface of a heterojunction back contact cell according to Embodiment 1. 実施形態2のヘテロ接合型バックコンタクトセルの模式的な断面図である。6 is a schematic cross-sectional view of a heterojunction back contact cell of Embodiment 2. FIG. 実施形態4のヘテロ接合型バックコンタクトセルの模式的な断面図である。6 is a schematic cross-sectional view of a heterojunction back contact cell of Embodiment 4. FIG. 実施形態4のヘテロ接合型バックコンタクトセルの作用効果を図解する模式的な拡大断面図である。FIG. 6 is a schematic enlarged cross-sectional view illustrating the operational effects of the heterojunction back contact cell of Embodiment 4. 特許文献1に記載の太陽電池の受光面の模式的な拡大断面図である。2 is a schematic enlarged cross-sectional view of a light receiving surface of a solar cell described in Patent Document 1. FIG.
 以下、実施形態について説明する。なお、実施形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Hereinafter, embodiments will be described. In the drawings used to describe the embodiments, the same reference numerals represent the same or corresponding parts.
 [実施形態1]
 <光電変換素子の構成>
 図1に、実施形態1の光電変換素子の一例である実施形態1のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。実施形態1のヘテロ接合型バックコンタクトセルはn型単結晶シリコン基板である半導体基板1と、半導体基板1の一方の主面(以下、「受光面」という)の凹凸1a上の結晶シリコン部6aと非晶質シリコン膜6bとの積層体6と、積層体6上の絶縁膜7とを備えている。ここで、積層体6は、半導体基板1の凹凸1aに接する結晶シリコン部6aと、結晶シリコン部6aに接する非晶質シリコン膜6bとをこの順に備えている。すなわち、半導体基板1と非晶質シリコン膜6bとの間には結晶シリコン部6aが設けられている。また、絶縁膜7は、非晶質シリコン膜6bに接するようにして設けられている。
[Embodiment 1]
<Configuration of photoelectric conversion element>
FIG. 1 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 1, which is an example of the photoelectric conversion element according to Embodiment 1. FIG. The heterojunction back contact cell according to the first embodiment includes a semiconductor substrate 1 which is an n-type single crystal silicon substrate, and a crystalline silicon portion 6a on the unevenness 1a of one main surface (hereinafter referred to as “light receiving surface”) of the semiconductor substrate 1. And an amorphous silicon film 6b, and an insulating film 7 on the laminate 6. Here, the stacked body 6 includes a crystalline silicon portion 6 a in contact with the unevenness 1 a of the semiconductor substrate 1 and an amorphous silicon film 6 b in contact with the crystalline silicon portion 6 a in this order. That is, the crystalline silicon portion 6a is provided between the semiconductor substrate 1 and the amorphous silicon film 6b. The insulating film 7 is provided in contact with the amorphous silicon film 6b.
 実施形態1において、結晶シリコン部6aはi型多結晶シリコンであり、非晶質シリコン膜6bはi型非晶質シリコン膜である。また、絶縁膜7は正の固定電荷を有することができる窒化シリコン(SiNx)膜である。 In the first embodiment, the crystalline silicon portion 6a is i-type polycrystalline silicon, and the amorphous silicon film 6b is an i-type amorphous silicon film. The insulating film 7 is a silicon nitride (SiN x ) film that can have a positive fixed charge.
 なお、本明細書において「i型」とは、完全な真性の状態だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm3未満、かつp型不純物濃度が1×1015個/cm3未満)であればn型またはp型の不純物が混入された状態のものも含む意味である。また、本明細書において「n型」はn型不純物濃度が1×1015個/cm3以上の状態を意味し、「p型」はp型不純物濃度が1×1015個/cm3以上の状態を意味する。 In the present specification, “i-type” means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 × 10 15 / cm 3 and the p-type impurity concentration is 1 × (Less than 10 15 / cm 3 ) is meant to include n-type or p-type impurities. In this specification, “n-type” means a state where the n-type impurity concentration is 1 × 10 15 / cm 3 or more, and “p-type” means that the p-type impurity concentration is 1 × 10 15 / cm 3 or more. Means the state.
 また、本明細書において「非晶質シリコン」には、シリコン原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質シリコンだけでなく、水素化非晶質シリコンなどのシリコン原子の未結合手が水素で終端されたものも含まれるものとする。 In this specification, “amorphous silicon” includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon such as hydrogenated amorphous silicon. Also included are those in which dangling bonds of atoms are terminated with hydrogen.
 半導体基板1の他方の主面である裏面に接する第1のi型非晶質半導体膜2と第2のi型非晶質半導体膜4とを有している。実施形態1においては、第1のi型非晶質半導体膜2および第2のi型非晶質半導体膜4は、それぞれ、i型非晶質シリコン膜である。 The semiconductor substrate 1 includes a first i-type amorphous semiconductor film 2 and a second i-type amorphous semiconductor film 4 which are in contact with the back surface which is the other main surface. In the first embodiment, each of the first i-type amorphous semiconductor film 2 and the second i-type amorphous semiconductor film 4 is an i-type amorphous silicon film.
 第1のi型非晶質半導体膜2上には、第1のi型非晶質半導体膜2に接するp型の非晶質シリコンからなる第1導電型非晶質シリコン膜3が設けられている。また、第2のi型非晶質半導体膜4上には、第2のi型非晶質半導体膜4に接するn型の非晶質シリコンからなる第2導電型非晶質シリコン膜5が設けられている。 On the first i-type amorphous semiconductor film 2, a first conductivity type amorphous silicon film 3 made of p-type amorphous silicon is provided in contact with the first i-type amorphous semiconductor film 2. ing. On the second i-type amorphous semiconductor film 4, a second conductivity type amorphous silicon film 5 made of n-type amorphous silicon is in contact with the second i-type amorphous semiconductor film 4. Is provided.
 第1導電型非晶質シリコン膜3上には第1電極11が設けられている。また、第2導電型非晶質シリコン膜5上には第2電極12が設けられている。 The first electrode 11 is provided on the first conductivity type amorphous silicon film 3. A second electrode 12 is provided on the second conductivity type amorphous silicon film 5.
 第2のi型非晶質半導体膜4と第2導電型非晶質シリコン膜5との積層体の端部は、第1のi型非晶質半導体膜2と第1導電型非晶質シリコン膜3との積層体の端部を覆っている。そのため、第1導電型非晶質シリコン膜3と第2導電型非晶質シリコン膜5との間には第2のi型非晶質半導体膜4の端部が位置している。第2のi型非晶質半導体膜4の端部は、第1導電型非晶質シリコン膜3および第2導電型非晶質シリコン膜5の両方と接している。これにより、第1導電型非晶質シリコン膜3と第2導電型非晶質シリコン膜5とは第2のi型非晶質半導体膜4によって分離されている。 The end of the stacked body of the second i-type amorphous semiconductor film 4 and the second conductivity-type amorphous silicon film 5 is the first i-type amorphous semiconductor film 2 and the first conductivity-type amorphous. The edge part of the laminated body with the silicon film 3 is covered. Therefore, the end of the second i-type amorphous semiconductor film 4 is located between the first conductive type amorphous silicon film 3 and the second conductive type amorphous silicon film 5. The end of the second i-type amorphous semiconductor film 4 is in contact with both the first conductivity type amorphous silicon film 3 and the second conductivity type amorphous silicon film 5. Thereby, the first conductivity type amorphous silicon film 3 and the second conductivity type amorphous silicon film 5 are separated by the second i-type amorphous semiconductor film 4.
 <作用効果>
 裏面のみに電極を形成した従来の太陽電池においては、太陽電池の半導体基板の受光面におけるキャリアの再結合を抑制するためのパッシベーション膜として、非晶質シリコン膜を用いていた。これは、パッシベーション膜としてプラズマCVD(Chemical Vapor Deposition)法で形成した多結晶シリコン膜を用いた場合には非晶質シリコン膜と多結晶シリコン膜との界面が増えることになる。当該界面には多くの結晶欠陥が含まれていることから、これらの結晶欠陥に光の入射により発生した半導体基板中の少数キャリアが捕捉されてしまい、十分な特性を発現しなかったことによるものである。
<Effect>
In a conventional solar cell in which an electrode is formed only on the back surface, an amorphous silicon film is used as a passivation film for suppressing carrier recombination on the light receiving surface of the semiconductor substrate of the solar cell. This is because when the polycrystalline silicon film formed by the plasma CVD (Chemical Vapor Deposition) method is used as the passivation film, the interface between the amorphous silicon film and the polycrystalline silicon film increases. Because the interface contains many crystal defects, minority carriers in the semiconductor substrate generated by the incidence of light are captured by these crystal defects, and sufficient characteristics are not exhibited. It is.
 しかしながら、非晶質シリコン膜は、多結晶シリコン膜と比べて、短波長領域の光をより多く吸収する。そのため、受光面のパッシベーション膜として非晶質シリコン膜を用いた場合には、半導体基板への短波長領域の光の入射量が減少してしまうため、十分な特性が得られなかった。 However, the amorphous silicon film absorbs more light in the short wavelength region than the polycrystalline silicon film. Therefore, when an amorphous silicon film is used as the passivation film on the light receiving surface, the amount of light incident on the semiconductor substrate in the short wavelength region is reduced, so that sufficient characteristics cannot be obtained.
 そこで、実施形態1のヘテロ接合型バックコンタクトセルにおいては、半導体基板1上に結晶シリコン部6aを設けることによって、半導体基板1への短波長領域(波長300nm以上600nm以下)の光の入射量が多くなる。 Therefore, in the heterojunction back contact cell of Embodiment 1, by providing the crystalline silicon portion 6a on the semiconductor substrate 1, the amount of light incident on the semiconductor substrate 1 in the short wavelength region (wavelength of 300 nm or more and 600 nm or less) is reduced. Become more.
 また、実施形態1のヘテロ接合型バックコンタクトセルにおいては、結晶シリコン部6aにより結晶シリコン部6aと非晶質シリコン膜6bとの界面が増加し、当該界面の結晶欠陥による少数キャリアの捕捉の弊害を回避するため、結晶シリコン部6a上に、非晶質シリコン膜6bを介して、正の固定電荷を有することができる絶縁膜7が設けられている。これにより、図2の模式的拡大断面図に示すように、半導体基板1に光が入射することによって半導体基板1の内部に発生したキャリア(正孔23および電子24)のうち少数キャリアである正孔23は、絶縁膜7の正の固定電荷22により形成されたエネルギ準位の障壁による斥力によって、結晶シリコン部6aから遠ざけられるため、結晶欠陥21に捕捉されにくくなる。そして、正孔23は、第1のi型非晶質半導体膜2および第1導電型非晶質シリコン膜3を通して第1電極11から取り出され、電子24は、第2のi型非晶質半導体膜4および第2導電型非晶質シリコン膜5を通して第2電極12から取り出される。 Further, in the heterojunction back contact cell of Embodiment 1, the interface between the crystalline silicon portion 6a and the amorphous silicon film 6b is increased by the crystalline silicon portion 6a, and the adverse effect of minority carrier trapping due to crystal defects at the interface. In order to avoid this, an insulating film 7 capable of having a positive fixed charge is provided on the crystalline silicon portion 6a via an amorphous silicon film 6b. As a result, as shown in the schematic enlarged cross-sectional view of FIG. 2, positive carriers that are minority carriers among the carriers (holes 23 and electrons 24) generated inside the semiconductor substrate 1 when light enters the semiconductor substrate 1. Since the hole 23 is moved away from the crystalline silicon portion 6 a by the repulsive force due to the energy level barrier formed by the positive fixed charge 22 of the insulating film 7, it is difficult to be captured by the crystal defect 21. Then, the holes 23 are extracted from the first electrode 11 through the first i-type amorphous semiconductor film 2 and the first conductive amorphous silicon film 3, and the electrons 24 are extracted from the second i-type amorphous semiconductor film. It is taken out from the second electrode 12 through the semiconductor film 4 and the second conductivity type amorphous silicon film 5.
 以上の理由により、実施形態1のヘテロ接合型バックコンタクトセルにおいては、結晶シリコン部6aによって短波長領域の光の入射量が増加することによって半導体基板1の内部におけるキャリアの発生量が増加し、さらには絶縁膜7によって半導体基板1の内部に発生した少数キャリアが結晶欠陥21に捕捉されにくくなるため、従来よりも特性の優れた光電変換素子とすることができる。 For the above reasons, in the heterojunction back contact cell of Embodiment 1, the amount of light generated in the short wavelength region is increased by the crystalline silicon portion 6a, thereby increasing the amount of carriers generated in the semiconductor substrate 1, Furthermore, since minority carriers generated inside the semiconductor substrate 1 by the insulating film 7 are less likely to be captured by the crystal defects 21, a photoelectric conversion element having better characteristics than the conventional one can be obtained.
 なお、上記においては、半導体基板1の受光面の凹凸1aの全面に結晶シリコン部6aが形成されている場合について説明したが、半導体基板1の受光面の凹凸1aの一部のみに結晶シリコン部6aが形成されていてもよい。特に、結晶シリコン部6aは、半導体基板1の受光面の凹凸1aの凹部に形成されやすい。ただ、短波長領域の光をより多く半導体基板1に入射させる観点からは、半導体基板1の受光面の凹凸1a上の結晶シリコン部6aの形成領域は広い方が好ましい。 In the above description, the case where the crystalline silicon portion 6a is formed on the entire surface of the unevenness 1a of the light receiving surface of the semiconductor substrate 1 has been described. 6a may be formed. In particular, the crystalline silicon portion 6 a is easily formed in the concave portion of the concave and convex portion 1 a on the light receiving surface of the semiconductor substrate 1. However, from the viewpoint of making more light in the short wavelength region incident on the semiconductor substrate 1, it is preferable that the formation region of the crystalline silicon portion 6 a on the unevenness 1 a of the light receiving surface of the semiconductor substrate 1 is wide.
 また、実施形態1のヘテロ接合型バックコンタクトセルにおける半導体基板1と非晶質シリコン膜6bとの間の結晶シリコン部6aの存在は、たとえば透過型電子顕微鏡(TEM)により確認することができる。 Also, the presence of the crystalline silicon portion 6a between the semiconductor substrate 1 and the amorphous silicon film 6b in the heterojunction back contact cell of Embodiment 1 can be confirmed by, for example, a transmission electron microscope (TEM).
 また、結晶シリコン部6aの厚さtは、結晶シリコン部6aと非晶質シリコン膜6bとの積層体6の厚さTの1/5以上であることが好ましい。この場合には、半導体基板1に入射する短波長領域の光の量をさらに増大させることができる。 The thickness t of the crystalline silicon portion 6a is preferably 1/5 or more of the thickness T of the stacked body 6 of the crystalline silicon portion 6a and the amorphous silicon film 6b. In this case, the amount of light in the short wavelength region incident on the semiconductor substrate 1 can be further increased.
 <光電変換素子の製造方法>
 以下、図3~図15の模式的断面図を参照して、実施形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について説明する。まず、図3に示すように、半導体基板1の受光面に凹凸1aを形成する。
<Method for producing photoelectric conversion element>
Hereinafter, an example of a method for manufacturing the heterojunction back contact cell of Embodiment 1 will be described with reference to schematic cross-sectional views of FIGS. First, as shown in FIG. 3, the unevenness 1 a is formed on the light receiving surface of the semiconductor substrate 1.
 ここで、半導体基板1の受光面の凹凸1aは、たとえば、半導体基板1の裏面の全面にテクスチャマスクを形成した後に、半導体基板1の受光面をテクスチャエッチングすることにより形成することができる。テクスチャマスクとしては、たとえば、窒化シリコンまたは酸化シリコンを用いることができる。また、テクスチャエッチングに用いられるエッチャントとしては、たとえば、シリコンを溶解可能なアルカリ溶液を用いることができる。 Here, the unevenness 1a on the light receiving surface of the semiconductor substrate 1 can be formed, for example, by texture-etching the light receiving surface of the semiconductor substrate 1 after forming a texture mask on the entire back surface of the semiconductor substrate 1. For example, silicon nitride or silicon oxide can be used as the texture mask. Moreover, as an etchant used for texture etching, for example, an alkaline solution capable of dissolving silicon can be used.
 半導体基板1としては、n型単結晶シリコン基板を好適に用いることができるがn型単結晶シリコン基板に限定されず、たとえば従来から公知のn型半導体基板を適宜用いることもできる。 As the semiconductor substrate 1, an n-type single crystal silicon substrate can be suitably used, but is not limited to an n-type single crystal silicon substrate, and for example, a conventionally known n-type semiconductor substrate can be used as appropriate.
 次に、図4に示すように、半導体基板1の受光面の凹凸1a上に、結晶シリコン部6aを形成する。ここで、結晶シリコン部6aは、たとえばプラズマCVD法により形成することができる。プラズマCVD法による結晶シリコン部6aの形成時に水素(H2)ガスを流すことにより、半導体基板1と結晶シリコン部6aとの界面、および結晶シリコン部6a同士の界面の間のシリコンの未結合手に水素原子が付着することにより、結晶欠陥を低減することができる。 Next, as shown in FIG. 4, a crystalline silicon portion 6 a is formed on the unevenness 1 a of the light receiving surface of the semiconductor substrate 1. Here, the crystalline silicon portion 6a can be formed by, for example, a plasma CVD method. Hydrogen (H 2 ) gas is allowed to flow during formation of the crystalline silicon portion 6a by the plasma CVD method, whereby silicon dangling bonds between the interface between the semiconductor substrate 1 and the crystalline silicon portion 6a and between the crystalline silicon portions 6a. By attaching hydrogen atoms to the crystal, crystal defects can be reduced.
 次に、図5に示すように、結晶シリコン部6a上に非晶質シリコン膜6bを形成する。ここで、非晶質シリコン膜6bは、たとえばプラズマCVD法により形成することができる。 Next, as shown in FIG. 5, an amorphous silicon film 6b is formed on the crystalline silicon portion 6a. Here, the amorphous silicon film 6b can be formed by, for example, a plasma CVD method.
 なお、結晶シリコン部6aおよび非晶質シリコン膜6bをプラズマCVD法により形成するときの形成条件は、結晶シリコン部6aおよび非晶質シリコン膜6bをそれぞれ形成することができるものであれば特に限定されないが、たとえば、結晶シリコン部6aの形成時のプラズマパワーが非晶質シリコン膜6bの形成時のプラズマパワーよりも高い条件、結晶シリコン部6aの形成時のシラン(SiH4)ガスに対するH2ガスの流量比((H2ガスの流量)/(SiH4ガス流量))が、非晶質シリコン膜の形成時のSiH4ガスに対するH2ガスの流量比よりも大きい条件、またはこれらの条件を組み合わせた条件を採用することにより、結晶シリコン部6aおよび非晶質シリコン膜6bをそれぞれプラズマCVD法により形成することができる。 The formation conditions for forming the crystalline silicon portion 6a and the amorphous silicon film 6b by the plasma CVD method are particularly limited as long as the crystalline silicon portion 6a and the amorphous silicon film 6b can be formed, respectively. However, for example, the plasma power when the crystalline silicon portion 6a is formed is higher than the plasma power when the amorphous silicon film 6b is formed, and H 2 against silane (SiH 4 ) gas when the crystalline silicon portion 6a is formed. Conditions under which the gas flow rate ratio ((H 2 gas flow rate) / (SiH 4 gas flow rate)) is larger than the flow rate ratio of H 2 gas to SiH 4 gas during formation of the amorphous silicon film, or these conditions By adopting a combination of the conditions, the crystalline silicon portion 6a and the amorphous silicon film 6b can be formed by the plasma CVD method, respectively. it can.
 次に、図6に示すように、非晶質シリコン膜6b上にSiNx膜である絶縁膜7を形成する。ここで、絶縁膜7は、たとえばプラズマCVD法により形成することができる。 Next, as shown in FIG. 6, an insulating film 7 which is a SiN x film is formed on the amorphous silicon film 6b. Here, the insulating film 7 can be formed by, for example, a plasma CVD method.
 なお、絶縁膜7をプラズマCVD法によって形成する場合には、SiNx膜である絶縁膜7中におけるSiとNとの組成比を比較的自由に設定することができるため、絶縁膜7が正の固定電荷を有するようにSiとNとの組成比を設定して絶縁膜7を形成することができる。 When the insulating film 7 is formed by plasma CVD, the composition ratio of Si and N in the insulating film 7 that is a SiN x film can be set relatively freely. The insulating film 7 can be formed by setting the composition ratio of Si and N so as to have a fixed charge of 5%.
 次に、図7に示すように、半導体基板1の裏面の全面に第1のi型非晶質半導体膜2を形成する。第1のi型非晶質半導体膜2の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。 Next, as shown in FIG. 7, a first i-type amorphous semiconductor film 2 is formed on the entire back surface of the semiconductor substrate 1. The method for forming the first i-type amorphous semiconductor film 2 is not particularly limited, and for example, a plasma CVD method can be used.
 第1のi型非晶質半導体膜2としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型非晶質半導体膜を用いることもできる。 As the first i-type amorphous semiconductor film 2, an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film. A quality semiconductor film can also be used.
 次に、図8に示すように、半導体基板1の裏面上に第1導電型非晶質シリコン膜3を形成する。第1導電型非晶質シリコン膜3の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。 Next, as shown in FIG. 8, a first conductivity type amorphous silicon film 3 is formed on the back surface of the semiconductor substrate 1. Although the formation method of the 1st conductivity type amorphous silicon film 3 is not specifically limited, For example, plasma CVD method can be used.
 第1導電型非晶質シリコン膜3としては、p型非晶質シリコン膜を好適に用いることができるがp型非晶質シリコン膜に限定されず、たとえば従来から公知のp型非晶質半導体膜を用いることもできる。なお、第1導電型非晶質シリコン膜3を構成するp型非晶質シリコン膜に含まれるp型不純物としては、たとえばボロンを用いることができる。 As the first conductive type amorphous silicon film 3, a p-type amorphous silicon film can be suitably used, but is not limited to a p-type amorphous silicon film, and for example, a conventionally known p-type amorphous silicon film is used. A semiconductor film can also be used. As the p-type impurity contained in the p-type amorphous silicon film constituting the first conductivity type amorphous silicon film 3, for example, boron can be used.
 次に、図9に示すように、第1導電型非晶質シリコン膜3上に、半導体基板1を厚さ方向にエッチングする箇所に開口部を有するフォトレジスト等のエッチングマスク31を形成する。 Next, as shown in FIG. 9, an etching mask 31 such as a photoresist having an opening at a location where the semiconductor substrate 1 is etched in the thickness direction is formed on the first conductive type amorphous silicon film 3.
 次に、図10に示すように、エッチングマスク31をマスクとして、第1のi型非晶質半導体膜2と第1導電型非晶質シリコン膜3との積層体51を厚さ方向にエッチングすることによって、半導体基板1の一部を露出させる。 Next, as shown in FIG. 10, the stacked body 51 of the first i-type amorphous semiconductor film 2 and the first conductive type amorphous silicon film 3 is etched in the thickness direction using the etching mask 31 as a mask. As a result, a part of the semiconductor substrate 1 is exposed.
 次に、図11に示すように、半導体基板1の露出面および第1導電型非晶質シリコン膜3を覆うようにして第2のi型非晶質半導体膜4を形成する。第2のi型非晶質半導体膜4の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。 Next, as shown in FIG. 11, a second i-type amorphous semiconductor film 4 is formed so as to cover the exposed surface of the semiconductor substrate 1 and the first conductive type amorphous silicon film 3. The method for forming the second i-type amorphous semiconductor film 4 is not particularly limited, and for example, a plasma CVD method can be used.
 第2のi型非晶質半導体膜4としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型非晶質半導体膜を用いることもできる。 As the second i-type amorphous semiconductor film 4, an i-type amorphous silicon film can be suitably used, but is not limited to an i-type amorphous silicon film. For example, a conventionally known i-type amorphous silicon film is used. A quality semiconductor film can also be used.
 次に、図12に示すように、第2のi型非晶質半導体膜4上に第2導電型非晶質シリコン膜5を形成する。第2導電型非晶質シリコン膜5の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。 Next, as shown in FIG. 12, a second conductivity type amorphous silicon film 5 is formed on the second i-type amorphous semiconductor film 4. The method for forming the second conductivity type amorphous silicon film 5 is not particularly limited, but for example, a plasma CVD method can be used.
 第2導電型非晶質シリコン膜5としては、n型非晶質シリコン膜を好適に用いることができるがn型非晶質シリコン膜に限定されず、たとえば従来から公知のn型非晶質半導体膜を用いることもできる。なお、第2導電型非晶質シリコン膜5を構成するn型非晶質シリコン膜に含まれるn型不純物としては、たとえばリンを用いることができる。 As the second conductive type amorphous silicon film 5, an n-type amorphous silicon film can be suitably used, but is not limited to an n-type amorphous silicon film. For example, a conventionally known n-type amorphous silicon film is used. A semiconductor film can also be used. As the n-type impurity contained in the n-type amorphous silicon film constituting the second conductivity type amorphous silicon film 5, for example, phosphorus can be used.
 次に、図13に示すように、半導体基板1の裏面上の第2のi型非晶質半導体膜4と第2導電型非晶質シリコン膜5との積層体を残す部分にのみフォトレジスト等のエッチングマスク32を形成する。 Next, as shown in FIG. 13, the photoresist is applied only to the portion where the stacked body of the second i-type amorphous semiconductor film 4 and the second conductive amorphous silicon film 5 is left on the back surface of the semiconductor substrate 1. Etching mask 32 is formed.
 次に、エッチングマスク32をマスクとして、第2のi型非晶質半導体膜4と第2導電型非晶質シリコン膜5との積層体52の一部を厚さ方向にエッチングすることによって、図14に示すように、第1導電型非晶質シリコン膜3の一部を露出させる。その後、図15に示すように、エッチングマスク32を完全に除去する。 Next, by etching a part of the stacked body 52 of the second i-type amorphous semiconductor film 4 and the second conductive amorphous silicon film 5 in the thickness direction using the etching mask 32 as a mask, As shown in FIG. 14, a part of the first conductivity type amorphous silicon film 3 is exposed. Thereafter, as shown in FIG. 15, the etching mask 32 is completely removed.
 次に、図1に示すように、第1導電型非晶質シリコン膜3に接するように第1電極11を形成し、第2導電型非晶質シリコン膜5に接するように第2電極12を形成する。ここで、第1電極11および第2電極12の形成方法も特に限定されないが、たとえば蒸着法などを用いることができる。 Next, as shown in FIG. 1, the first electrode 11 is formed so as to contact the first conductivity type amorphous silicon film 3, and the second electrode 12 is formed so as to contact the second conductivity type amorphous silicon film 5. Form. Here, the formation method of the first electrode 11 and the second electrode 12 is not particularly limited, but for example, an evaporation method or the like can be used.
 以上により、図1に示す構成の実施形態1のヘテロ接合型バックコンタクトセルが完成する。 Thus, the heterojunction back contact cell according to the first embodiment having the configuration shown in FIG. 1 is completed.
 図16に、上記のようにして作製された実施形態1のヘテロ接合型バックコンタクトセルの受光面の半導体基板1の受光面と非晶質シリコン膜6bとの間の結晶シリコン部6aの一例の拡大写真を示す。図16に示すように、実施形態1のヘテロ接合型バックコンタクトセルの受光面においては、半導体基板1と非晶質シリコン膜6bとの間に、結晶シリコン部6aの存在を確認することができる。 FIG. 16 shows an example of the crystalline silicon portion 6a between the light-receiving surface of the semiconductor substrate 1 and the amorphous silicon film 6b of the light-receiving surface of the heterojunction back contact cell of Embodiment 1 manufactured as described above. An enlarged photograph is shown. As shown in FIG. 16, in the light receiving surface of the heterojunction back contact cell of Embodiment 1, the presence of the crystalline silicon portion 6a can be confirmed between the semiconductor substrate 1 and the amorphous silicon film 6b. .
 [実施形態2]
 図17に、実施形態2の光電変換素子の一例である実施形態2のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。実施形態2のヘテロ接合型バックコンタクトセルは、酸窒化シリコン膜(SiOxy膜)である絶縁膜7aを用いていることを特徴としている。
[Embodiment 2]
FIG. 17 is a schematic cross-sectional view of the heterojunction back contact cell of Embodiment 2, which is an example of the photoelectric conversion element of Embodiment 2. The heterojunction back contact cell of Embodiment 2 is characterized by using an insulating film 7a which is a silicon oxynitride film (SiO x N y film).
 SiOyz膜である絶縁膜7aをプラズマCVD法によって形成する場合にも、絶縁膜7a中におけるSiとOとNとの組成比を比較的自由に設定することができるため、絶縁膜7aが正の固定電荷を有するようにSiとOとNとの組成比を設定して絶縁膜7aを形成することができる。 Even when the insulating film 7a, which is a SiO y N z film, is formed by the plasma CVD method, the composition ratio of Si, O, and N in the insulating film 7a can be set relatively freely. The insulating film 7a can be formed by setting the composition ratio of Si, O, and N so that has a positive fixed charge.
 実施形態2における上記以外の説明は実施形態1と同様であるため、その説明については繰り返さない。 Since the description other than the above in the second embodiment is the same as that in the first embodiment, the description thereof will not be repeated.
 [実施形態3]
 実施形態3におけるヘテロ接合型バックコンタクトセルは、実施形態1の絶縁膜7および実施形態2の絶縁膜7aに代えて、酸窒化シリコン膜(SiOxy膜)と窒化シリコン膜(SiNx膜)との複合膜を用いていることを特徴としている。
[Embodiment 3]
In the heterojunction back contact cell according to the third embodiment, a silicon oxynitride film (SiO x N y film) and a silicon nitride film (SiN x film) are used instead of the insulating film 7 of the first embodiment and the insulating film 7a of the second embodiment. ) And a composite membrane.
 SiOxy膜とSiNx膜との複合膜としては、たとえば、非晶質シリコン膜6b側からSiOxy膜とSiNx膜とがこの順序で積層された膜、非晶質シリコン膜6b側からSiNx膜とSiOxy膜とがこの順序で積層された膜、および非晶質シリコン膜6b上に積層されたSiOxy膜の組成が非晶質シリコン膜6b側からその厚さ方向に徐々に変化していき、最表面がSiNとなる膜などを挙げることができる。 As the composite film of the SiO x N y film and the SiN x film, for example, a film in which the SiO x N y film and the SiN x film are laminated in this order from the amorphous silicon film 6b side, an amorphous silicon film The composition of the film in which the SiN x film and the SiO x N y film are laminated in this order from the 6b side, and the composition of the SiO x N y film laminated on the amorphous silicon film 6b are from the amorphous silicon film 6b side. A film whose thickness gradually changes in the thickness direction and whose outermost surface is SiN can be exemplified.
 SiOxy膜とSiNx膜との複合膜は、実施形態1および実施形態2と同様に、たとえばプラズマCVD法により形成することができる。また、SiOxy膜の組成の変更は、たとえば、プラズマCVD装置内に導入される材料ガスの流量比の調整等によって、SiとOとNとの組成比を比較的自由に設定することができる。 The composite film of the SiO x N y film and the SiN x film can be formed by, for example, a plasma CVD method as in the first and second embodiments. The composition of the SiO x N y film can be changed by, for example, adjusting the composition ratio of Si, O, and N relatively freely by adjusting the flow rate ratio of the material gas introduced into the plasma CVD apparatus. Can do.
 さらに、SiとOとNとの組成比の設定は、たとえば、プラズマCVD装置の一反応室内における一連の成膜プロセス中での変更が可能であるため、実施形態3における絶縁膜のSiとOとNとの組成比は、段階的に変化させることができ、または連続的に変化させることもできる。たとえば、実施形態3における絶縁膜のSiとOとNとの組成比を段階的に変化させること、または連続的に変化させることによって、プラズマCVD装置の一反応室内における一連の成膜プロセス中で、上記に例示されたSiOxy膜とSiNx膜との複合膜を作製することができる。 Furthermore, since the composition ratio of Si, O, and N can be changed, for example, during a series of film forming processes in one reaction chamber of the plasma CVD apparatus, the Si and O of the insulating film in the third embodiment can be changed. The composition ratio of N to N can be changed stepwise or can be changed continuously. For example, during a series of film formation processes in one reaction chamber of the plasma CVD apparatus by changing the composition ratio of Si, O, and N of the insulating film in Embodiment 3 stepwise or continuously. A composite film of the SiO x N y film and the SiN x film exemplified above can be produced.
 実施形態3における上記以外の説明は実施形態1および実施形態2と同様であるため、その説明については繰り返さない。 Since the description other than the above in the third embodiment is the same as that in the first and second embodiments, the description thereof will not be repeated.
 [実施形態4]
 図18に、実施形態4の光電変換素子の一例である実施形態4のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。実施形態4のヘテロ接合型バックコンタクトセルは、p型単結晶シリコン基板である半導体基板1bを用いるとともに、負の固定電荷を有することができる酸化アルミニウム(AlOx)膜である絶縁膜7bを用いていることを特徴としている。
[Embodiment 4]
FIG. 18 is a schematic cross-sectional view of a heterojunction back contact cell of Embodiment 4 which is an example of the photoelectric conversion element of Embodiment 4. The heterojunction back contact cell of Embodiment 4 uses a semiconductor substrate 1b which is a p-type single crystal silicon substrate, and an insulating film 7b which is an aluminum oxide (AlO x ) film capable of having a negative fixed charge. It is characterized by having.
 AlOx膜である絶縁膜7bをプラズマCVD法によって形成する場合にも、絶縁膜7b中におけるAlとOとの組成比を設定することができるため、絶縁膜7bが負の固定電荷を有するようにAlとOとの組成比を設定して絶縁膜7bを形成することができる。 Even when the insulating film 7b, which is an AlO x film, is formed by the plasma CVD method, the composition ratio of Al and O in the insulating film 7b can be set, so that the insulating film 7b has a negative fixed charge. The insulating film 7b can be formed by setting the composition ratio of Al and O.
 また、実施形態4のヘテロ接合型バックコンタクトセルにおいては、図19の模式的拡大断面図に示すように、半導体基板1bに光が入射することによって半導体基板1bの内部に発生したキャリア(正孔23および電子24)のうち少数キャリアである電子23は絶縁膜7bの負の固定電荷25により形成されたエネルギ準位の障壁による斥力によって結晶シリコン部6aから遠ざけられるため、結晶欠陥21に捕捉されにくくなる。そして正孔23は、第1のi型非晶質半導体膜2および第1導電型非晶質シリコン膜3を通して第1電極11から取り出され、電子24は、第2のi型非晶質半導体膜4および第2導電型非晶質シリコン膜5を通して第2電極12から取り出される。 Further, in the heterojunction back contact cell of Embodiment 4, as shown in the schematic enlarged cross-sectional view of FIG. 19, carriers (holes) generated inside the semiconductor substrate 1b when light enters the semiconductor substrate 1b. 23 and electrons 24), which are minority carriers, are trapped by the crystal defects 21 because they are moved away from the crystalline silicon portion 6a by the repulsive force caused by the energy level barrier formed by the negative fixed charge 25 of the insulating film 7b. It becomes difficult. The holes 23 are taken out from the first electrode 11 through the first i-type amorphous semiconductor film 2 and the first conductive amorphous silicon film 3, and the electrons 24 are extracted from the second i-type amorphous semiconductor. The film is taken out from the second electrode 12 through the film 4 and the second conductivity type amorphous silicon film 5.
 実施形態4における上記以外の説明は実施形態1~3と同様であるため、その説明については繰り返さない。 Since the description other than the above in the fourth embodiment is the same as that in the first to third embodiments, the description thereof will not be repeated.
 [付記]
 (1)ここで開示された実施形態は、n型の半導体基板と、半導体基板上の非晶質シリコン膜と、半導体基板と非晶質シリコン膜との間の結晶シリコン部と、非晶質シリコン膜上の正の固定電荷を有することができる絶縁膜とを備えた光電変換素子である。半導体基板と非晶質シリコン膜との間の結晶シリコン部により半導体基板への短波長領域の光の入射量が増加し、正の固定電荷を有することができる絶縁膜により形成されたエネルギ準位の障壁による斥力により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができるため、光電変換素子の特性を向上させることができる。
[Appendix]
(1) An embodiment disclosed herein includes an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous A photoelectric conversion element including an insulating film capable of having a positive fixed charge on a silicon film. The energy level formed by the insulating film that can have a positive fixed charge by increasing the incident amount of light in the short wavelength region to the semiconductor substrate due to the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film. Due to the repulsive force of the barrier, minority carriers are generated due to crystal defects present at the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and the interface between the semiconductor substrate and the crystalline silicon portion. Since the trapping can be suppressed, the characteristics of the photoelectric conversion element can be improved.
 (2)ここで開示された実施形態は、n型の半導体基板と、半導体基板上の非晶質シリコン膜と、半導体基板と非晶質シリコン膜との間の結晶シリコン部と、非晶質シリコン膜上の絶縁膜とを備え、絶縁膜は、窒化シリコン膜および酸窒化シリコン膜の少なくとも一方を含む光電変換素子である。半導体基板と非晶質シリコン膜との間の結晶シリコン部により半導体基板への短波長領域の光の入射量が増加し、この場合にも、絶縁膜が正の固定電荷を有することができるため、絶縁膜により形成されたエネルギ準位の障壁による斥力により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができるため、光電変換素子の特性を向上させることができる。 (2) An embodiment disclosed herein includes an n-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous An insulating film on the silicon film, and the insulating film is a photoelectric conversion element including at least one of a silicon nitride film and a silicon oxynitride film. The crystalline silicon portion between the semiconductor substrate and the amorphous silicon film increases the amount of light incident on the semiconductor substrate in the short wavelength region, and in this case as well, the insulating film can have a positive fixed charge. The repulsive force due to the energy level barrier formed by the insulating film causes the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and between the semiconductor substrate and the crystalline silicon portion. Since it can be suppressed that minority carriers are captured by crystal defects present at the interface, the characteristics of the photoelectric conversion element can be improved.
 (3)ここで開示された実施形態は、p型の半導体基板と、半導体基板上の非晶質シリコン膜と、半導体基板と非晶質シリコン膜との間の結晶シリコン部と、非晶質シリコン膜上の負の固定電荷を有することができる絶縁膜とを備えた光電変換素子である。半導体基板と非晶質シリコン膜との間の結晶シリコン部により半導体基板への短波長領域の光の入射量が増加し、負の固定電荷を有することができる絶縁膜により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができるため、光電変換素子の特性を向上させることができる。 (3) An embodiment disclosed herein includes a p-type semiconductor substrate, an amorphous silicon film on the semiconductor substrate, a crystalline silicon portion between the semiconductor substrate and the amorphous silicon film, and an amorphous A photoelectric conversion element including an insulating film capable of having a negative fixed charge on a silicon film. The crystalline silicon portion between the semiconductor substrate and the amorphous silicon film increases the amount of light incident on the semiconductor substrate in the short wavelength region, and the insulating film that can have a negative fixed charge allows the crystalline silicon portion to Minority carriers can be prevented from being trapped by crystal defects existing at the interface with the crystalline silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and the interface between the semiconductor substrate and the crystalline silicon portion. The characteristics of the photoelectric conversion element can be improved.
 (4)ここで開示された実施形態において、絶縁膜は、酸化アルミニウム膜を含むことが好ましい。この場合にも、絶縁膜が負の固定電荷を有することができるため、絶縁膜の斥力により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができる。 (4) In the embodiment disclosed herein, the insulating film preferably includes an aluminum oxide film. Also in this case, since the insulating film can have a negative fixed charge, due to the repulsive force of the insulating film, the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, In addition, minority carriers can be suppressed from being captured by crystal defects present at the interface between the semiconductor substrate and the crystalline silicon portion.
 (5)ここで開示された実施形態において、半導体基板は少なくとも1つの凹凸を有しており、凹凸の凹部の少なくとも1つに結晶シリコン部を有することが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (5) In the embodiment disclosed herein, it is preferable that the semiconductor substrate has at least one unevenness, and at least one of the unevennesses has a crystalline silicon portion. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (6)ここで開示された実施形態において、半導体基板と結晶シリコン部とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (6) In the embodiment disclosed herein, it is preferable that the semiconductor substrate and the crystalline silicon portion are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (7)ここで開示された実施形態において、結晶シリコン部と非晶質シリコン膜とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (7) In the embodiment disclosed herein, it is preferable that the crystalline silicon portion and the amorphous silicon film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (8)ここで開示された実施形態において、結晶シリコン部の厚さは、結晶シリコン部と非晶質シリコン膜との積層体の厚さの1/5以上であることが好ましい。この場合には半導体基板に入射する短波長領域の光の量をさらに増大させることができる。 (8) In the embodiment disclosed herein, the thickness of the crystalline silicon part is preferably 1/5 or more of the thickness of the stacked body of the crystalline silicon part and the amorphous silicon film. In this case, the amount of light in the short wavelength region incident on the semiconductor substrate can be further increased.
 (9)ここで開示された実施形態においては、非晶質シリコン膜と絶縁膜とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (9) In the embodiment disclosed herein, the amorphous silicon film and the insulating film are preferably in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (10)ここで開示された実施形態において、非晶質シリコン膜は、i型非晶質シリコンを含むことが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (10) In the embodiment disclosed herein, the amorphous silicon film preferably contains i-type amorphous silicon. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (11)ここで開示された実施形態において、結晶シリコン部は、i型の多結晶シリコンを含むことが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (11) In the embodiment disclosed herein, the crystalline silicon portion preferably includes i-type polycrystalline silicon. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (12)ここで開示された実施形態において、半導体基板は、シリコンを含むことが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (12) In the embodiment disclosed herein, the semiconductor substrate preferably contains silicon. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (13)ここで開示された実施形態は、半導体基板上の非晶質シリコン膜と反対側に設けられた第1導電型非晶質シリコン膜と第2導電型非晶質シリコン膜と、第1導電型非晶質シリコン膜上の第1電極と、第2導電型非晶質シリコン膜上の第2電極とを備えていることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (13) In the embodiment disclosed herein, a first conductive type amorphous silicon film and a second conductive type amorphous silicon film provided on the opposite side of the amorphous silicon film on the semiconductor substrate, It is preferable that a first electrode on the first conductivity type amorphous silicon film and a second electrode on the second conductivity type amorphous silicon film are provided. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (14)ここで開示された実施形態は、半導体基板と第1導電型非晶質シリコン膜との間の第1のi型非晶質半導体膜と、半導体基板と第2導電型非晶質シリコン膜との間の第2のi型非晶質半導体膜とをさらに含むことが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (14) In the embodiment disclosed herein, a first i-type amorphous semiconductor film between a semiconductor substrate and a first conductive type amorphous silicon film, a semiconductor substrate, and a second conductive type amorphous It is preferable to further include a second i-type amorphous semiconductor film between the silicon film. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (15)ここで開示された実施形態においては、半導体基板と第1のi型非晶質半導体膜とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (15) In the embodiment disclosed herein, it is preferable that the semiconductor substrate and the first i-type amorphous semiconductor film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (16)ここで開示された実施形態においては、半導体基板と第2のi型非晶質半導体膜とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (16) In the embodiment disclosed herein, it is preferable that the semiconductor substrate and the second i-type amorphous semiconductor film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (17)ここで開示された実施形態においては、第1のi型非晶質半導体膜と第1導電型非晶質シリコン膜とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (17) In the embodiment disclosed herein, it is preferable that the first i-type amorphous semiconductor film and the first conductive amorphous silicon film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (18)ここで開示された実施形態においては、第2のi型非晶質半導体膜と第2導電型非晶質シリコン膜とが接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (18) In the embodiment disclosed herein, it is preferable that the second i-type amorphous semiconductor film and the second conductivity-type amorphous silicon film are in contact with each other. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (19)ここで開示された実施形態においては、第1導電型非晶質シリコン膜と第2導電型非晶質シリコン膜との間に第2のi型非晶質半導体膜の端部が位置していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (19) In the embodiment disclosed herein, the end of the second i-type amorphous semiconductor film is between the first conductive type amorphous silicon film and the second conductive type amorphous silicon film. Preferably it is located. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (20)ここで開示された実施形態においては、第2のi型非晶質半導体膜の端部が、第1導電型非晶質シリコン膜および第2導電型非晶質シリコン膜のそれぞれと接していることが好ましい。この場合にも、光電変換素子の特性を向上することができる。 (20) In the embodiment disclosed herein, end portions of the second i-type amorphous semiconductor film are respectively connected to the first conductive type amorphous silicon film and the second conductive type amorphous silicon film. It is preferable to contact. Also in this case, the characteristics of the photoelectric conversion element can be improved.
 (21)ここで開示された実施形態は、n型の半導体基板上に結晶シリコン部を形成する工程と、結晶シリコン部上に非晶質シリコン膜を形成する工程と、非晶質シリコン膜上に正の固定電荷を有することができる絶縁膜を形成する工程とを含む光電変換素子の製造方法である。半導体基板と非晶質シリコン膜との間の結晶シリコン部により半導体基板への短波長領域の光の入射量が増加し、正の固定電荷を有することができる絶縁膜により形成されたエネルギ準位の障壁による斥力により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができるため、特性が向上した光電変換素子を製造することができる。 (21) An embodiment disclosed herein includes a step of forming a crystalline silicon portion on an n-type semiconductor substrate, a step of forming an amorphous silicon film on the crystalline silicon portion, and an amorphous silicon film And a step of forming an insulating film capable of having a positive fixed charge. The energy level formed by the insulating film that can have a positive fixed charge by increasing the incident amount of light in the short wavelength region to the semiconductor substrate due to the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film. Due to the repulsive force of the barrier, minority carriers are generated due to crystal defects present at the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and the interface between the semiconductor substrate and the crystalline silicon portion. Since the trapping can be suppressed, a photoelectric conversion element with improved characteristics can be manufactured.
 (22)ここで開示された実施形態は、n型の半導体基板上に結晶シリコン部を形成する工程と、結晶シリコン部上に非晶質シリコン膜を形成する工程と、非晶質シリコン膜上に窒化シリコン膜および酸窒化シリコン膜の少なくとも一方を形成する工程とを含む光電変換素子の製造方法である。半導体基板と非晶質シリコン膜との間の結晶シリコン部により半導体基板への短波長領域の光の入射量が増加し、この場合にも、絶縁膜が正の固定電荷を有することができるため、絶縁膜により形成されたエネルギ準位の障壁による斥力により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができるため、特性が向上した光電変換素子を製造することができる。 (22) An embodiment disclosed herein includes a step of forming a crystalline silicon portion on an n-type semiconductor substrate, a step of forming an amorphous silicon film on the crystalline silicon portion, and an amorphous silicon film And a step of forming at least one of a silicon nitride film and a silicon oxynitride film. The crystalline silicon portion between the semiconductor substrate and the amorphous silicon film increases the amount of light incident on the semiconductor substrate in the short wavelength region, and in this case as well, the insulating film can have a positive fixed charge. The repulsive force due to the energy level barrier formed by the insulating film causes the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and between the semiconductor substrate and the crystalline silicon portion. Since minority carriers can be prevented from being captured by crystal defects present at the interface, a photoelectric conversion element with improved characteristics can be manufactured.
 (23)ここで開示された実施形態は、p型の半導体基板上に結晶シリコン部を形成する工程と、結晶シリコン部上に非晶質シリコン膜を形成する工程と、非晶質シリコン膜上に負の固定電荷を有することができる絶縁膜を形成する工程とを含む光電変換素子の製造方法である。半導体基板と非晶質シリコン膜との間の結晶シリコン部により半導体基板への短波長領域の光の入射量が増加し、負の固定電荷を有することができる絶縁膜により形成されたエネルギ準位の障壁による斥力により、結晶シリコン部と非晶質シリコン膜との界面、半導体基板と非晶質シリコン膜との界面、および半導体基板と結晶シリコン部との界面に存在する結晶欠陥によって少数キャリアが捕捉されるのを抑制することができるため、特性が向上した光電変換素子を製造することができる。 (23) An embodiment disclosed herein includes a step of forming a crystalline silicon portion on a p-type semiconductor substrate, a step of forming an amorphous silicon film on the crystalline silicon portion, and an amorphous silicon film And a step of forming an insulating film capable of having a negative fixed charge. The energy level formed by the insulating film that can have a negative fixed charge by increasing the incident amount of light in the short wavelength region to the semiconductor substrate due to the crystalline silicon portion between the semiconductor substrate and the amorphous silicon film. Due to the repulsive force of the barrier, minority carriers are generated due to crystal defects present at the interface between the crystalline silicon portion and the amorphous silicon film, the interface between the semiconductor substrate and the amorphous silicon film, and the interface between the semiconductor substrate and the crystalline silicon portion. Since the trapping can be suppressed, a photoelectric conversion element with improved characteristics can be manufactured.
 (24)ここで開示された実施形態においては、結晶シリコン部を形成する工程および非晶質シリコン膜を形成する工程はそれぞれプラズマCVD法により行われることが好ましい。この場合にも、特性が向上した光電変換素子を製造することができる。 (24) In the embodiment disclosed herein, it is preferable that the step of forming the crystalline silicon portion and the step of forming the amorphous silicon film are each performed by a plasma CVD method. Also in this case, a photoelectric conversion element with improved characteristics can be manufactured.
 (25)ここで開示された実施形態においては、結晶シリコン部の形成時のプラズマパワーが、非晶質シリコン膜の形成時のプラズマパワーよりも高いことが好ましい。この場合には、結晶シリコン部と非晶質シリコン膜とを作り分けることができる。 (25) In the embodiment disclosed herein, it is preferable that the plasma power when forming the crystalline silicon portion is higher than the plasma power when forming the amorphous silicon film. In this case, the crystalline silicon portion and the amorphous silicon film can be formed separately.
 (26)ここで開示された実施形態においては、結晶シリコン部の形成時のSiH4ガスに対するH2ガスの流量比が、非晶質シリコン膜の形成時のSiH4ガスに対するH2ガスの流量比の流量比よりも大きいことが好ましい。この場合にも、結晶シリコン部と非晶質シリコン膜とを作り分けることができる。 (26) In the embodiment disclosed herein, the flow ratio of H 2 gas for SiH 4 gas during the formation of the crystalline silicon portion, the flow rate of H 2 gas for SiH 4 gas during formation of the amorphous silicon film It is preferable that the ratio is larger than the flow rate ratio. Also in this case, the crystalline silicon portion and the amorphous silicon film can be formed separately.
 以上のように本発明の実施形態について説明を行なったが、上述の各実施形態の構成を適宜組み合わせることも当初から予定している。 As described above, the embodiments of the present invention have been described, but it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 ここで開示された実施形態の光電変換素子および光電変換素子の製造方法は、太陽電池および太陽電池の製造方法に好適に利用することができる。また、ここで開示された実施形態の光電変換素子および光電変換素子の製造方法は、ヘテロ接合型バックコンタクトセルおよびヘテロ接合型バックコンタクトセルの製造方法に好適に利用することができる。 The photoelectric conversion element and the method for manufacturing a photoelectric conversion element of the embodiment disclosed herein can be suitably used for a solar cell and a method for manufacturing a solar cell. In addition, the photoelectric conversion element and the method for manufacturing the photoelectric conversion element of the embodiment disclosed herein can be suitably used for a heterojunction back contact cell and a method for manufacturing a heterojunction back contact cell.
 1,1b 半導体基板、1a 凹凸、2 第1のi型非晶質半導体膜、3 第1導電型非晶質シリコン膜、4 第2のi型非晶質半導体膜、5 第2導電型非晶質シリコン膜、6,51,52 積層体、6a 結晶化シリコン部、6b 非晶質シリコン膜、7,7a,7b 絶縁膜、11 第1電極、12 第2電極、21 結晶欠陥、22 正の固定電荷、23 正孔、24 電子、25 負の固定電荷。 1, 1b semiconductor substrate, 1a unevenness, 1st i-type amorphous semiconductor film, 3rd first conductivity type amorphous silicon film, 4th second i-type amorphous semiconductor film, 5th second conductivity type non- Crystalline silicon film, 6, 51, 52 laminate, 6a crystallized silicon part, 6b amorphous silicon film, 7, 7a, 7b insulating film, 11 first electrode, 12 second electrode, 21 crystal defect, 22 positive Fixed charge, 23 holes, 24 electrons, 25 negative fixed charges.

Claims (5)

  1.  n型の半導体基板と、
     前記半導体基板上の非晶質シリコン膜と、
     前記半導体基板と前記非晶質シリコン膜との間の結晶シリコン部と、
     前記非晶質シリコン膜上の正の固定電荷を有することができる絶縁膜とを備えた、光電変換素子。
    an n-type semiconductor substrate;
    An amorphous silicon film on the semiconductor substrate;
    A crystalline silicon portion between the semiconductor substrate and the amorphous silicon film;
    A photoelectric conversion element comprising: an insulating film capable of having a positive fixed charge on the amorphous silicon film.
  2.  n型の半導体基板と、
     前記半導体基板上の非晶質シリコン膜と、
     前記半導体基板と前記非晶質シリコン膜との間の結晶シリコン部と、
     前記非晶質シリコン膜上の絶縁膜とを備え、
     前記絶縁膜は、窒化シリコン膜および酸窒化シリコン膜の少なくとも一方を含む、光電変換素子。
    an n-type semiconductor substrate;
    An amorphous silicon film on the semiconductor substrate;
    A crystalline silicon portion between the semiconductor substrate and the amorphous silicon film;
    An insulating film on the amorphous silicon film,
    The photoelectric conversion element, wherein the insulating film includes at least one of a silicon nitride film and a silicon oxynitride film.
  3.  p型の半導体基板と、
     前記半導体基板上の非晶質シリコン膜と、
     前記半導体基板と前記非晶質シリコン膜との間の結晶シリコン部と、
     前記非晶質シリコン膜上の負の固定電荷を有することができる絶縁膜とを備えた、光電変換素子。
    a p-type semiconductor substrate;
    An amorphous silicon film on the semiconductor substrate;
    A crystalline silicon portion between the semiconductor substrate and the amorphous silicon film;
    A photoelectric conversion element comprising: an insulating film capable of having a negative fixed charge on the amorphous silicon film.
  4.  前記絶縁膜は、酸化アルミニウム膜を含む、請求項3に記載の光電変換素子。 The photoelectric conversion element according to claim 3, wherein the insulating film includes an aluminum oxide film.
  5.  前記半導体基板は少なくとも1つの凹凸を有しており、
     前記凹凸の凹部の少なくとも1つに前記結晶シリコン部を有する、請求項1~請求項4のいずれか1項に記載の光電変換素子。
    The semiconductor substrate has at least one unevenness;
    The photoelectric conversion element according to any one of claims 1 to 4, wherein the crystalline silicon portion is provided in at least one of the concave and convex portions.
PCT/JP2015/064280 2014-08-07 2015-05-19 Photoelectric conversion element WO2016021267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-161433 2014-08-07
JP2014161433A JP2016039246A (en) 2014-08-07 2014-08-07 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2016021267A1 true WO2016021267A1 (en) 2016-02-11

Family

ID=55263546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064280 WO2016021267A1 (en) 2014-08-07 2015-05-19 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2016039246A (en)
WO (1) WO2016021267A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759097B (en) 2020-12-29 2022-10-18 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
WO2023190303A1 (en) * 2022-03-29 2023-10-05 株式会社カネカ Solar cell and method for producing solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519375A (en) * 2009-09-14 2012-08-23 エルジー エレクトロニクス インコーポレイティド Solar cell
JP2014072209A (en) * 2012-09-27 2014-04-21 Sharp Corp Photoelectric conversion element and photoelectric conversion element manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519375A (en) * 2009-09-14 2012-08-23 エルジー エレクトロニクス インコーポレイティド Solar cell
JP2014072209A (en) * 2012-09-27 2014-04-21 Sharp Corp Photoelectric conversion element and photoelectric conversion element manufacturing method

Also Published As

Publication number Publication date
JP2016039246A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US11605750B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US10707368B2 (en) Solar cell having a plurality of absorbers connected to one another by means of charge-carrier-selective contacts
JP5383792B2 (en) Solar cell
KR101539047B1 (en) Photoelectric conversion device and Manufacturing method thereof
JP6106403B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
US9257284B2 (en) Silicon heterojunction solar cells
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
JP6722117B2 (en) Passivation of light receiving surface of solar cell using crystalline silicon
KR101768907B1 (en) Method of fabricating Solar Cell
TW201611312A (en) Relative dopant concentration levels in solar cells
US20120264253A1 (en) Method of fabricating solar cell
US20140014169A1 (en) Nanostring mats, multi-junction devices, and methods for making same
WO2016021267A1 (en) Photoelectric conversion element
TWI675490B (en) Method of fabricating solar cells
JP5224470B2 (en) Photoelectric conversion member
WO2016140309A1 (en) Photoelectric conversion element and method for manufacturing same
WO2015141338A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP5446022B2 (en) Photoelectric conversion member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830107

Country of ref document: EP

Kind code of ref document: A1