TW201008364A - Hollow heating source - Google Patents

Hollow heating source Download PDF

Info

Publication number
TW201008364A
TW201008364A TW97129314A TW97129314A TW201008364A TW 201008364 A TW201008364 A TW 201008364A TW 97129314 A TW97129314 A TW 97129314A TW 97129314 A TW97129314 A TW 97129314A TW 201008364 A TW201008364 A TW 201008364A
Authority
TW
Taiwan
Prior art keywords
hollow
layer
heat source
heating layer
disposed
Prior art date
Application number
TW97129314A
Other languages
Chinese (zh)
Other versions
TWI466585B (en
Inventor
Ding Wang
Kai Liu
Chen Feng
Kai-Li Jiang
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097129314A priority Critical patent/TWI466585B/en
Publication of TW201008364A publication Critical patent/TW201008364A/en
Application granted granted Critical
Publication of TWI466585B publication Critical patent/TWI466585B/en

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

The present invention relates to a hollow heating source. The hollow heating source includes a hollow substrate, a heating layer, and at least two electrodes. The heating layer is disposed on a surface of the hollow substrate. The two electrodes are electrically connected with the heating layer. The heating layer includes a carbon nanotube layer.

Description

201008364 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種空心熱源’尤其涉及一種基於奈米碳 管的空心熱源。 【先前技術】 熱源在人們的生產、生活、科研中起著重要的作用。 空心熱源係熱源的一種,其特點為空心熱源具有一空心結 構,將待加熱物體設置於該空心結構的空心中對物體進行 ❺加熱,故,空心熱源可對待加熱物體的各個部位同時加熱, 加熱面廣、加熱均勻且效率較高。空心熱源已成功用於工 業領域、科研領域或生活領域等,如工廠管道、實驗室加 熱爐或廚具電烤箱等。 ^空心熱源的基本結構通常包括基底和設置在基底上的 =熱層,通過在電熱層中通入電流產生焦耳熱使電熱層的 溫度升高進而加熱物體。先前的空心熱源的電熱層^常採201008364 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a hollow heat source', and more particularly to a hollow heat source based on a carbon nanotube. [Prior Art] Heat sources play an important role in people's production, life, and research. One type of hollow heat source heat source is characterized in that the hollow heat source has a hollow structure, and the object to be heated is disposed in the hollow of the hollow structure to heat the object, so that the hollow heat source can simultaneously heat and heat the various parts of the object to be heated. Wide surface, uniform heating and high efficiency. Hollow heat sources have been successfully used in industrial, scientific or life areas such as factory pipes, laboratory furnaces or kitchen ovens. The basic structure of the hollow heat source usually comprises a substrate and a = thermal layer disposed on the substrate, and the temperature of the electrothermal layer is raised to increase the temperature by generating a Joule heat in the electrothermal layer to heat the object. The electric heating layer of the previous hollow heat source

用金屬絲,如鉻鎳合金絲、銅絲、鉬絲或鎢絲等通過鋪設 或纏繞的方式形成。然而,採用金屬絲作 下缺點:其―’金屬絲表面容易被氧化,導致局' :’從而被燒斷,故使用壽命短;其二,金屬絲為灰體‘ 二,故,熱輻射效率低,輻射距離短,且輻射不均 1 三,金屬絲密度較大,重量大,使用不便。 ,八 ,解決金屬絲作為電熱層存在的問題,碳纖 ===黑體輻射性能,密度小等優點成為電熱層材料 式ΐ/ Τ纖維作為電熱層時,通常以碳纖維紙的形 "子。所述碳纖維紙包括紙基材和雜亂分佈於該紙基材 201008364 中的遞青基碳纖維。其中’紙基材包括纖維素纖維和樹脂 等的混合物’瀝青基碳纖維的直徑為3〜6毫米,長度為5〜20 微米。 ^而’採用碳纖維紙作為加熱層具有以下缺點:其一, 碳纖維紙厚度較大,一般為幾十微米,使空心熱源不易做 成微型結構,無法應用於微型器件的加熱。其二,由於該 碳纖維紙中包含了紙基材,故該碳纖維紙的密度較大,重 ϊ大’使知採用該碳纖維紙的空心熱源使用不便。其三, 由於該碳纖維紙中的瀝青基碳纖維雜亂分佈,故該碳纖維 紙的強度較小,柔性較差,容易破裂,限制了其應有範圍。 其四,碳纖維紙的電熱轉換效率較低,不利於節能環保。 有鑒於此,提供一種加熱效率高、強度韌性大、壽命 長、成本較低、可應用於宏觀和微觀器件,實際應用性能 好的空心熱源實為必要。 【發明内容】It is formed by laying or winding a wire such as a chrome-nickel wire, a copper wire, a molybdenum wire or a tungsten wire. However, the use of wire as a disadvantage: its 'wire surface is easily oxidized, causing the ':' to be blown, so the service life is short; second, the wire is gray', so the heat radiation efficiency Low, short radiation distance, and uneven radiation. The wire density is large, the weight is large, and the use is inconvenient. 8. Solving the problem of the wire as the electric heating layer, carbon fiber === black body radiation performance, low density and other advantages become the electric heating layer material. When the ΐ/Τ fiber is used as the electric heating layer, it is usually in the form of carbon fiber paper. The carbon fiber paper includes a paper substrate and a pitch-forming carbon fiber that is disorderly distributed in the paper substrate 201008364. Wherein the 'paper substrate comprises a mixture of cellulose fibers and resin, etc.' The pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm. The use of carbon fiber paper as the heating layer has the following disadvantages: First, the thickness of the carbon fiber paper is large, generally several tens of micrometers, making the hollow heat source difficult to be a micro structure and cannot be applied to the heating of micro devices. Second, since the carbon fiber paper contains a paper substrate, the density of the carbon fiber paper is large and the weight is large, which makes it inconvenient to use the hollow heat source using the carbon fiber paper. Third, since the pitch-based carbon fibers in the carbon fiber paper are disorderly distributed, the carbon fiber paper has low strength, poor flexibility, and is easily broken, which limits its proper range. Fourth, carbon fiber paper has low electrothermal conversion efficiency, which is not conducive to energy conservation and environmental protection. In view of this, it is necessary to provide a hollow heat source with high heating efficiency, high strength and toughness, long life, low cost, and can be applied to macroscopic and microscopic devices, and has good practical application performance. [Summary of the Invention]

一種空心熱源,其包括:一空心基底;一加埶層,該 加熱層設置於空心基底的表面;以及至少兩個電極,且所 述至少兩個電極間隔設置,並分別與該加熱層電連接,其 中,所述之加熱層包括一奈米碳管層。 、 相較與先前技術,所述之空心熱源具有以下優點.第 一 ’奈米碳管可方便地製成任意尺寸的奈米碳管層·’,既可 應用於宏觀領域也可應用於微觀領域。第二,奈米碳管比 碳纖維具有更小的密度,故,採用奈米碳管層的空心二源 具有更輕的重量,使用方便。第二,太丰 文弗—不水石反官層的電熱韓 換效率高,熱阻率低,故該空心熱源具有升溫迅速、敎 後小、熱交換速度快的特點。 / 8 201008364 【實施方式】 以下將結合附圖詳細說明本技術方案空心熱源。 清參閱圖1及圖2,本技術方案第一實施例提供—種 ' 空心熱源100,該空心熱源100包括一空心基底102 ;— 加熱層104,該加熱層104設置於該空心基底1〇2的内表 面;一反射層108 ’該反射層108位於加熱層1〇4的外圍, 設置於該空心基底102的外表面;一第一電極11〇及—第 二電極112’第一電極11〇和第二電極112間隔設置於加 ❹熱層104的表面,並分別與加熱層1〇4電連接;—絕緣 保護層106,該絕緣保護層106設置於加熱層1〇4的内表 面。 所述空心基底102的材料不限’用於支撐加熱層 104 ’可為硬性材料’如:陶竟、玻璃、樹脂、石英、塑 膠等。空心基底102亦可選擇柔性材料,如:樹脂、橡 膝、塑膠或柔性纖維等。當空心基底1〇2為柔性材料時, 該空心熱源100在使用時可根據需要彎折成任意形狀。 ❺所述空心基底102的形狀大小不限,其具有一空心結構 即可,可為管狀、球狀、長方體狀等,可為全封閉結^, 也可為半封閉結構,其具體可根據實際需要進行改變。 空心基底102的橫截面的形狀亦不限,可為圓形、弧形、 長方形等。本實施例中,空心基底1〇2為一空心陶瓷管, 其橫截面為一圓形。 所述加熱層104設置於空心基底102的内表面,用於 向空心基底102的内部空間加熱。所述加熱層1〇4包括 一奈米碳管層,該奈米碳管層本身具有一定的粘性,可 利用本身的㈣設置於空心基底1G2的表面,也可通過 9 201008364 枯結劑設置於空心基底1G2的表面。所述 谬。該奈米碳管層的長度、寬度和厚度不限,可:二夕 際需要選擇。本技術方案提供的奈米碳管層的長度 1〜10厘米,寬度為1〜10厘米,厚度為〇 〇1微米〜2毫^-、、、 奈米碳管層的熱回應速度與其厚度有關。在相同面積 情況下,奈来碳管層的厚度越大,熱回應速度越慢 之,奈米奴官層的厚度越小,熱回應速度越快。 所述奈米碳管層包括複數個均勻分佈的奈米碳管。 ❹該奈米碳管層中的奈米碳管有序排列或無序排列。該夺 米碳管層十的奈米碳管包括單壁奈米碳管、雙壁奈米碳 管及多壁奈米竣管t的-種或多種。所述單壁奈米碳管 的直控為0.5奈米〜10奈米,雙壁奈米碳管的直徑為工〇 奈米〜15奈米,多壁奈米碳管的直徑為15奈米〜5〇奈米。 所述奈米碳管的長度大於50微米。本實施例中,該奈米 碳管的長度優選為200〜900微米。由於該奈米碳管層中 的奈米碳管之間通過凡德瓦爾力連接,使得該奈米碳管 ,層具有很好的柔韌性,可彎曲折疊成任意形狀而不破 裂’使空心熱源100具有較長的使用壽命。 本實施例中,加熱層104採用厚度為1〇〇微米的奈 米峡g層。该奈米碳管層的長度為5厘米,奈米碳管層 的寬度為3厘米。利用奈米碳管層本身的粘性,將該奈 米碳管層設置於空心基底102的内表面。 所述第一電極110和第二電極112間隔設置且分別與 加熱層104電連接’可設置在加熱層1〇4的同一表面上 也可設置在加熱層104的不同表面上。所述第一電極n〇 和第一電極112可通過奈米碳管層的枯性或導電枯結劑 201008364 (圖未示)設置於該加熱層104的表面上。導電粘結劑在银 .現第一電極110和第二電極112與奈米碳管層電接觸的^ 時’還可將第一電極110和第二電極112更好地固定於奈 米碳管層的表面上。通過該第一電極110和第二電極 可對加熱層104施加電壓。其中,第一電極11〇和第二電 極112之間相隔設置,以使採用奈米碳管層的加熱層工〇4 通電發熱時接入一定的阻值避免短路現象產生”。優選 地,第一電極110和第二電極112間隔設置於空心基= ❹102的兩端,並環繞設置於加熱層104的表面。 _ 所述第一電極110和第二電極112為導電薄膜、金屬 片或者金屬引線。該導電薄膜的材料可為金屬、合金、 銦錫氧化物(ITO)、銻錫氧化物(AT〇)、導電銀;、導 ,聚合物等。該導電薄膜可通過物理氣相沈積法、化學 氣相沈積法或其他方法形成於加熱層1〇4表面。該金屬 片或者金屬引線的材料可為銅片或鋁片等。該金屬"片可 通過導電粘結劑固定於加熱層1〇4表面。 〇 所述第一電極ηο和第二電極112還可為一奈米碳管 結構。該奈米碳管結構設置於加熱層104的外表面。該 奈米碳管結構可通過其自身的粘性或導電粘結劑固定於 加熱層104的外表面。該奈米碳管結構包括定向排列且 均句分佈的金属性奈米碳管。具體地,該奈米碳管結構 包括至少一有序奈米碳管薄膜或至少一奈米碳管長線。 本實施例中,優選地,將兩個有序奈米碳管薄膜分別 没,於沿空心基底1〇2長度方向的兩端作為第一電極11〇 和第一電極H2。該兩個有序奈米碳管薄膜環繞於加熱層 104的外表面,並通過導電枯結劑與加熱層1 之間形成 11 *1 201008364 電接觸。所述導電粘結劑優選為銀膠。由於本實施例中 的加熱層1〇4也採用奈米碳管層,故第一電極no和第二 電極112與加熱層104之間具有較小的歐姆接觸電阻,可 提高空心熱源1〇〇對電能的利用率。 所述反射層108用於反射加熱層104所發出的熱量, 使其有效地對空心基底102内部空間加熱。反射層1〇8 位於加熱層1〇4外圍,本實施例中,反射層ι〇8設置於 空心基底102的外表面。反射層1〇8的材料為一白色絕 ❹緣材料,如:金屬氧化物、金屬鹽或陶瓷等。反射層1〇8 通過濺射或塗敷的方法設置於空心基底1〇2的外表面。 本實施例中,反射層1〇8的材料優選為三氧化二鋁,其 厚度為100微米〜0.5毫米。該反射層108通過錢射的方 法沈積於該空心基底102外表面。可以理解,該反射層 108為一可選擇結構’當空心熱源100未包括反射層時, 該空心熱源1〇〇也可用於對外加熱。 所述絕緣保護層106用來防止該空心熱源1〇〇在使用 ❷時與外界形成電接觸,同時還可防止加熱層1〇4中的奈 米碳管層吸附外界雜質。本實施例中,絕緣保護層 s又置於加熱層1〇4的内表面。所述絕緣保護層1〇6的材 料為一絕緣材料,如:橡膠、樹脂等。所述絕緣保護層 厚度不限,可根據實際情況選擇。優選地,該絕緣保 邊層106的厚度為〇.5〜2毫米。該絕緣保護層1〇6可通過 塗敷或濺射的方法形成於加熱層1〇4的表面。可以理解, 所述絕緣保護層1〇6為一可選擇結構。 本貫施例所提供的空心熱源1〇〇在應用時具體包括 以下步驟:提供一待加熱的物體;將待加熱的物體設置 12 201008364 於該空心熱源100的中心;將空心熱源100通過第一電 極110與第二電極112連接導線接入1伏_2〇伏的電源電 壓後,加熱功率為1瓦〜40瓦時,該空心熱源可輻射出波 長較長的電磁波。通過溫度測量儀紅外測溫儀AZ8859測 置發現β亥空心熱源1〇〇的加熱層104表面的溫度為50 °C 〜500°C,加熱待加熱物體。可見,該奈米碳管層具有較 尚的電熱轉換效率。由於加熱層104表面的熱量以熱輕 射的形式傳遞給待加熱物體,加熱效果不會因為待加熱 ❹物體中各個部分因為距離空心熱源的不同而產生較 大的不同’可實現對待加熱物體的均勻加熱。對於具有 黑體結構的物體來說’其所對應的溫度為2〇〇°c〜45〇°c時 就能發出人眼看不見的熱輻射(紅外線),此時的熱輻射 最穩定、效率最高’所產生的熱輻射熱量最大。 該空心熱源100在使用時,可將其與待加熱的物體表 面直接接觸或將其與被加熱的物體間隔設置,利用其熱輻 射即可進行加熱。該空心熱源100可廣泛應用於如工廠管 道、實驗室加熱爐或廚具電烤箱等。 本實施例中所提供的空心熱源1〇〇具有以下優點:其 一,加熱層104為一奈米碳管層,奈米碳管具有強的抗腐 蝕性,使其可在酸性環境中工作;其二,奈米碳管比同體 積的鋼強度高100倍,重量卻只有其1/6,故,採用奈米 碳管的空心熱源具有更高的強度和更輕的重量;其三,奈 米碳管可方便地製成任意尺寸的奈米碳管層,既可應用於 宏觀領域也可應用於微觀領域;其四,奈米碳管層的電熱 轉換效率高,熱阻率低,故該空心熱源具有升溫迅速、熱 滯後小、熱交換速度快的特點。 13 201008364 請參見圖5及圖6,本技術方案第二實施例提供一種 空心熱源200,該空心熱源200包括一空心基底202 ; — ' 加熱層204,該加熱層204設置於該空心基底202的内表 — 面;一反射層208,該反射層208位於加熱層204的外圍; 一第一電極210及一第二電極212,第一電極210和第二 電極212間隔設置於加熱層204的表面,並分別與加熱 層204電連接;一絕緣保護層206,該絕緣保護層206設 置於加熱層104的内表面。第二實施例中所提供的空心 @ 熱源200與第一實施例所提供的空心熱源100的結構基 本相同,其區別在於反射層208設置於空心基底202與 加熱層204之間,位於加熱層104的外表面。所述空心 基底202、加熱層204、反射層208、第一電極210及第 二電極212的結構和材料與第一實施例相同。 請參見圖7及圖8,本技術方案第三實施例提供一種 空心熱源300,該空心熱源300包括一空心基底302 ; — 加熱層304 ; —反射層208 ; —第一電極210及一第二電 極212,第一電極210和第二電極212間隔設置於加熱層 _ 204的表面,並分別與加熱層204電連接。第三實施例中 的空心熱源300和第一實施例中的空心熱源100的結構 基本相同,其區別在於,該加熱層304設置於該空心基 底202的外表面,該反射層208設置於加熱層304的外 表面,由於加熱層304設置於空心基底302和反射層208 之間,故,無需絕緣保護層,且加熱層304與反射層308 的位置不同。第三實施例中的所述空心基底302、加熱層 304、反射層308的結構和材料與第一實施例相同。 綜上所述,本發明確已符合發明專利之要件,遂依 14 201008364 法提出專利申請。惟,以上所述者僅為本發明之較佳實 施例,自不能以此限制本案之申請專利範圍。舉凡習知 本案技藝之人士援依本發明之精神所作之等效修飾或變 化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案第一實施例所提供的空心熱源的結 構示意圖。 圖2為圖1沿II-II線的剖面示意圖。 圖3為本技術方案第二實施例所提供的空心熱源的結 構示意圖。 圖4為圖3的沿IV-IV線的剖面示意圖。 圖5為本技術方案第三實施例所提供的空心熱源的結 構示意圖。 圖6為圖5沿VI-VI線的剖面示意圖。 【主要元件符號說明】 空心熱源 空心基底 加熱層 絕緣保護層A hollow heat source comprising: a hollow substrate; a twisted layer disposed on a surface of the hollow substrate; and at least two electrodes, and the at least two electrodes are spaced apart and electrically connected to the heating layer respectively Wherein the heating layer comprises a carbon nanotube layer. Compared with the prior art, the hollow heat source has the following advantages: the first 'carbon nanotube can be conveniently fabricated into a carbon nanotube layer of any size, 'can be applied to both macroscopic and microscopic field. Second, the carbon nanotubes have a smaller density than the carbon fibers. Therefore, the hollow carbon source using the carbon nanotube layer has a lighter weight and is convenient to use. Secondly, Taifeng Wenfu—the non-water stone anti-ancient layer has a high heat exchange efficiency and a low thermal resistance rate. Therefore, the hollow heat source has the characteristics of rapid temperature rise, small afterglow, and fast heat exchange rate. / 8 201008364 [Embodiment] Hereinafter, a hollow heat source of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, the first embodiment of the present technical solution provides an 'hollow heat source 100, which includes a hollow substrate 102; a heating layer 104, and the heating layer 104 is disposed on the hollow substrate 1〇2. The inner surface; a reflective layer 108' is located on the outer periphery of the heating layer 1?4, and is disposed on the outer surface of the hollow substrate 102; a first electrode 11'' and a second electrode 112'' first electrode 11' The second electrode 112 is spaced apart from the surface of the heat-treating layer 104 and electrically connected to the heating layer 1〇4, respectively. The insulating protective layer 106 is disposed on the inner surface of the heating layer 1〇4. The material of the hollow substrate 102 is not limited to the supporting heating layer 104' may be a hard material such as ceramic, glass, resin, quartz, plastic or the like. The hollow substrate 102 can also be selected from flexible materials such as resins, rubber knees, plastic or flexible fibers. When the hollow substrate 1 2 is a flexible material, the hollow heat source 100 can be bent into any shape as needed during use. The shape of the hollow substrate 102 is not limited, and it has a hollow structure, and may be a tubular shape, a spherical shape, a rectangular parallelepiped shape, or the like, and may be a fully enclosed structure or a semi-closed structure, which may be specifically according to actual conditions. Need to change. The shape of the cross section of the hollow substrate 102 is not limited, and may be circular, curved, rectangular, or the like. In this embodiment, the hollow substrate 1〇2 is a hollow ceramic tube having a circular cross section. The heating layer 104 is disposed on an inner surface of the hollow substrate 102 for heating the inner space of the hollow substrate 102. The heating layer 1〇4 includes a carbon nanotube layer, which has a certain viscosity, and can be disposed on the surface of the hollow substrate 1G2 by using (4) itself, or can be disposed on the surface of the hollow substrate 1G2 through 9 201008364 The surface of the hollow substrate 1G2. Said 谬. The length, width and thickness of the carbon nanotube layer are not limited, but it is necessary to choose between the two. The carbon nanotube layer provided by the technical solution has a length of 1 to 10 cm, a width of 1 to 10 cm, and a thickness of 〇〇1 μm to 2 millimeters, and the thermal response speed of the carbon nanotube layer is related to its thickness. . In the case of the same area, the greater the thickness of the carbon nanotube layer, the slower the heat response rate, and the smaller the thickness of the nanolayer layer, the faster the heat response speed. The carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes.奈 The carbon nanotubes in the carbon nanotube layer are ordered or disorderly arranged. The carbon nanotubes of the carbon nanotube layer include one or more types of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled nanotubes t. The single-walled carbon nanotubes have a direct control of 0.5 nm to 10 nm, the double-walled carbon nanotubes have a diameter of 15 nm, and the multi-walled carbon nanotubes have a diameter of 15 nm. ~5〇 nano. The carbon nanotubes have a length greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm. Since the carbon nanotubes in the carbon nanotube layer are connected by van der Waals force, the carbon nanotubes have a good flexibility and can be bent and folded into any shape without breaking the hollow heat source. 100 has a long service life. In the present embodiment, the heating layer 104 is a nano-g g layer having a thickness of 1 μm. The carbon nanotube layer has a length of 5 cm and the carbon nanotube layer has a width of 3 cm. The carbon nanotube layer is placed on the inner surface of the hollow substrate 102 by the viscosity of the carbon nanotube layer itself. The first electrode 110 and the second electrode 112 are spaced apart and electrically connected to the heating layer 104, respectively, and may be disposed on the same surface of the heating layer 1〇4 or on different surfaces of the heating layer 104. The first electrode n 〇 and the first electrode 112 may be disposed on the surface of the heating layer 104 through a dry or conductive drying agent 201008364 (not shown) of the carbon nanotube layer. The conductive binder is in silver. The first electrode 110 and the second electrode 112 are in electrical contact with the carbon nanotube layer. The first electrode 110 and the second electrode 112 can also be better fixed to the carbon nanotube. On the surface of the layer. A voltage can be applied to the heating layer 104 through the first electrode 110 and the second electrode. Wherein, the first electrode 11A and the second electrode 112 are spaced apart from each other so as to connect a certain resistance value when the heating layer process 4 using the carbon nanotube layer is energized to prevent short-circuit phenomenon." An electrode 110 and a second electrode 112 are spaced apart from each other at the two ends of the hollow substrate=❹102, and are disposed around the surface of the heating layer 104. The first electrode 110 and the second electrode 112 are conductive films, metal sheets or metal leads. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (AT〇), conductive silver; conductive, polymer, etc. The conductive film can be physically vapor deposited, A chemical vapor deposition method or the like is formed on the surface of the heating layer 1 . The material of the metal sheet or the metal lead may be a copper sheet or an aluminum sheet, etc. The metal sheet may be fixed to the heating layer 1 by a conductive adhesive. The first electrode ηο and the second electrode 112 may also be a carbon nanotube structure. The carbon nanotube structure is disposed on the outer surface of the heating layer 104. The carbon nanotube structure may pass through Own adhesive or conductive adhesive Fixed to the outer surface of the heating layer 104. The carbon nanotube structure comprises a metal carbon nanotube oriented and uniformly distributed. Specifically, the carbon nanotube structure comprises at least one ordered carbon nanotube film or At least one nanometer carbon tube long line. In this embodiment, preferably, two ordered carbon nanotube films are respectively absent, and both ends along the length direction of the hollow substrate 1〇2 are used as the first electrode 11〇 and the first Electrode H2. The two ordered carbon nanotube films surround the outer surface of the heating layer 104 and are electrically contacted with the heating layer 1 by 11*1 201008364. The conductive adhesive is preferably Silver gel. Since the heating layer 1〇4 in this embodiment also adopts a carbon nanotube layer, the first electrode no and the second electrode 112 have a small ohmic contact resistance with the heating layer 104, which can improve the hollow heat source. The utilization of the electric energy is used to reflect the heat generated by the heating layer 104 to effectively heat the inner space of the hollow substrate 102. The reflective layer 1〇8 is located on the periphery of the heating layer 1〇4. In this embodiment, the reflective layer ι 8 is disposed in the empty The outer surface of the substrate 102. The material of the reflective layer 1〇8 is a white insulating material such as metal oxide, metal salt or ceramic, etc. The reflective layer 1〇8 is disposed on the hollow substrate by sputtering or coating. The outer surface of the layer 1. In this embodiment, the material of the reflective layer 1 8 is preferably aluminum oxide having a thickness of 100 μm to 0.5 mm. The reflective layer 108 is deposited on the hollow substrate 102 by means of a vacuum. The outer surface. It can be understood that the reflective layer 108 is an optional structure. When the hollow heat source 100 does not include a reflective layer, the hollow heat source 1 can also be used for external heating. The insulating protective layer 106 is used to prevent the hollow heat source. 1〇〇 Electrical contact is made with the outside when using ruthenium, and at the same time, the carbon nanotube layer in the heating layer 1〇4 is prevented from adsorbing external impurities. In this embodiment, the insulating protective layer s is again placed on the inner surface of the heating layer 1〇4. The material of the insulating protective layer 1〇6 is an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer is not limited and can be selected according to actual conditions. Preferably, the insulating edge layer 106 has a thickness of 〇. 5 〜 2 mm. The insulating protective layer 1〇6 can be formed on the surface of the heating layer 1〇4 by coating or sputtering. It can be understood that the insulating protective layer 1〇6 is an optional structure. The hollow heat source 1 provided by the present embodiment specifically includes the following steps: providing an object to be heated; setting an object to be heated 12 201008364 to the center of the hollow heat source 100; passing the hollow heat source 100 through the first After the electrode 110 and the second electrode 112 are connected to the power supply voltage of 1 volt and 2 volts, the heating power is 1 watt to 40 watts, and the hollow heat source can radiate electromagnetic waves having a long wavelength. Through the temperature measuring instrument infrared thermometer AZ8859, it was found that the temperature of the surface of the heating layer 104 of the β-Hair Hollow Heat Source was 50 ° C to 500 ° C, and the object to be heated was heated. It can be seen that the carbon nanotube layer has a relatively high electrothermal conversion efficiency. Since the heat on the surface of the heating layer 104 is transferred to the object to be heated in the form of heat and light, the heating effect is not caused by the fact that the various parts of the object to be heated are greatly different due to the difference from the hollow heat source. Heat evenly. For an object with a black body structure, the corresponding temperature is 2〇〇°c~45〇°c, which can emit heat radiation (infrared rays) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient. The heat generated by the heat is the largest. The hollow heat source 100, when in use, can be brought into direct contact with the surface of the object to be heated or spaced from the object to be heated, and can be heated by its heat radiation. The hollow heat source 100 can be widely applied to, for example, a factory pipe, a laboratory furnace or a kitchen oven. The hollow heat source 1〇〇 provided in this embodiment has the following advantages: First, the heating layer 104 is a carbon nanotube layer, and the carbon nanotube has strong corrosion resistance, so that it can work in an acidic environment; Second, the carbon nanotubes are 100 times stronger than the same volume of steel, but the weight is only 1/6. Therefore, the hollow heat source using carbon nanotubes has higher strength and lighter weight; The carbon nanotube can be conveniently fabricated into a carbon nanotube layer of any size, which can be applied to both macroscopic and microscopic fields. Fourth, the carbon nanotube layer has high electrothermal conversion efficiency and low thermal resistance. The hollow heat source has the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate. 13 201008364 Referring to FIG. 5 and FIG. 6 , a second embodiment of the present technical solution provides a hollow heat source 200 including a hollow substrate 202 , a heating layer 204 , and the heating layer 204 is disposed on the hollow substrate 202 . The inner surface of the surface of the heating layer 204 is disposed on the surface of the heating layer 204. The first electrode 210 and the second electrode 212 are spaced apart from each other. And electrically connected to the heating layer 204, respectively; an insulating protective layer 206 disposed on the inner surface of the heating layer 104. The hollow heat source 200 provided in the second embodiment has substantially the same structure as the hollow heat source 100 provided in the first embodiment, except that the reflective layer 208 is disposed between the hollow substrate 202 and the heating layer 204, and is located at the heating layer 104. The outer surface. The structures and materials of the hollow substrate 202, the heating layer 204, the reflective layer 208, the first electrode 210, and the second electrode 212 are the same as those of the first embodiment. Referring to FIG. 7 and FIG. 8 , a third embodiment of the present technical solution provides a hollow heat source 300. The hollow heat source 300 includes a hollow substrate 302, a heating layer 304, a reflective layer 208, a first electrode 210, and a second. The electrode 212, the first electrode 210 and the second electrode 212 are spaced apart from each other on the surface of the heating layer 204, and are electrically connected to the heating layer 204, respectively. The hollow heat source 300 in the third embodiment has substantially the same structure as the hollow heat source 100 in the first embodiment, except that the heating layer 304 is disposed on the outer surface of the hollow substrate 202, and the reflective layer 208 is disposed on the heating layer. The outer surface of 304, since the heating layer 304 is disposed between the hollow substrate 302 and the reflective layer 208, does not require an insulating protective layer, and the positions of the heating layer 304 and the reflective layer 308 are different. The structure and material of the hollow substrate 302, the heating layer 304, and the reflective layer 308 in the third embodiment are the same as those of the first embodiment. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to the law of 2010201008364. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a hollow heat source provided by a first embodiment of the present technical solution. Figure 2 is a cross-sectional view taken along line II-II of Figure 1. FIG. 3 is a schematic structural view of a hollow heat source according to a second embodiment of the present technical solution. Figure 4 is a cross-sectional view taken along line IV-IV of Figure 3. Fig. 5 is a schematic view showing the structure of a hollow heat source according to a third embodiment of the present technical solution. Figure 6 is a cross-sectional view taken along line VI-VI of Figure 5. [Main component symbol description] Hollow heat source Hollow base Heating layer Insulation protective layer

反射層 第一電極 第二電極 100, 200, 300 102, 202, 302 104, 204, 304 106, 206 108, 208, 308 110. 210, 310 112, 212, 312 15Reflective layer first electrode second electrode 100, 200, 300 102, 202, 302 104, 204, 304 106, 206 108, 208, 308 110. 210, 310 112, 212, 312 15

Claims (1)

201008364 十、申請專利範圍 1 · 一種空心熱源,其包括: 一空心基底; 一加熱層’該加熱層設置於空心基底的表面;以及 至少兩個電極間隔設置且分別與加熱層電連接,其改良 在於: 所述之加熱層包括一奈米碳管層。 2. 如申請專利範圍第1項所述之空心熱源,其中,所述之 ❹ 空心熱源進一步包括一反射層,所述反射層設置於加熱 層的外圍。 3. 如申請專利範圍第2項所述之空心熱源,其中,所述之 空心熱源進一步包括一絕緣保護層,該絕緣保護層設置 於加熱層的表面。 4. 如申請專利範圍第3項所述之空心熱源,其中,所述之 加熱層设置於空心基底的外表面,所述之反射層設置於 加熱層的外表面’加熱層位於空心基底與反射層之間。 ❾5.如申請專利範圍第3項所述之空心熱源,其中,所述之 加熱層设置於空心基底的内表面,所述之反射層設置於 空心基底的外表面,所述之絕緣保護層設置於加熱層的 内表面。 6. 如申請專利範圍第3項所述之空心熱源,其中,所述之 加熱層设置於空心基底的内表面,所述之反射層設置於 加熱層與空心基底之間,所述之絕緣保護層設置於加熱 層的内表面。 7. 如申請專利範圍第2項所述之空心熱源,其中,所述之 16 201008364 反射層的材料為金屬氧化物、金屬鹽或陶 1 100微米-0.5毫米。 又為 8. 如申明專利範圍第1項所述之空心熱源,其中,所述奈 米碳管層包括複數個均勻分佈的奈米碳管。 9. 如申請專利範圍帛8項所述之空心熱源,J:中,所述齐 管複數個有序排列或無序排列的奈米碳, .如申岣專利範圍第8項所述之空心熱源,其中, 11 米碳管的長度大於5〇微米,直徑小於50奈米。L ==1項所述之空心熱源,其中二述 之不未石反管層的厚度為〇〇1微米〜2毫米。 U利ϋ第!項所叙以熱源 至少兩個電極設置在加埶層 八r所逑 认如中姓直财㈤杜 的同一表面或不同表面。 至少兩個電極的材料為金屬、t f源,其中,所述 銀膠、導電聚人Jit 銦錫氧化物、導電 m 導電聚合物或金屬性奈米碳管。 •如申請專利範圍第!項所述之空 心基底的材料為柔性材料或其中,所述空 為塑膠或柔性纖維,所述4硬\硬^^所述柔性材料 石英。 材科為陶瓷、玻璃、樹脂、 17201008364 X. Patent Application No. 1 · A hollow heat source comprising: a hollow substrate; a heating layer 'the heating layer is disposed on the surface of the hollow substrate; and at least two electrodes are spaced apart and electrically connected to the heating layer respectively, the improvement Wherein: the heating layer comprises a carbon nanotube layer. 2. The hollow heat source of claim 1, wherein the hollow heat source further comprises a reflective layer disposed on a periphery of the heating layer. 3. The hollow heat source of claim 2, wherein the hollow heat source further comprises an insulating protective layer disposed on a surface of the heating layer. 4. The hollow heat source according to claim 3, wherein the heating layer is disposed on an outer surface of the hollow substrate, and the reflective layer is disposed on an outer surface of the heating layer. The heating layer is located on the hollow substrate and reflected Between the layers. The hollow heat source of claim 3, wherein the heating layer is disposed on an inner surface of the hollow substrate, the reflective layer is disposed on an outer surface of the hollow substrate, and the insulating protective layer is disposed On the inner surface of the heating layer. 6. The hollow heat source of claim 3, wherein the heating layer is disposed on an inner surface of the hollow substrate, and the reflective layer is disposed between the heating layer and the hollow substrate, wherein the insulation protection The layer is disposed on the inner surface of the heating layer. 7. The hollow heat source according to claim 2, wherein the material of the reflective layer is metal oxide, metal salt or ceramic 1 100 micrometers to 0.5 millimeters. 8. The hollow heat source of claim 1, wherein the carbon nanotube layer comprises a plurality of uniformly distributed carbon nanotubes. 9. In the case of the hollow heat source described in claim 8 of the patent application, in J:, the plurality of ordered carbon nanotubes in an ordered or disordered arrangement, as described in claim 8 of the patent scope The heat source, wherein the 11 m carbon tube has a length greater than 5 〇 micrometers and a diameter less than 50 nanometers. The hollow heat source of L = = 1, wherein the thickness of the two non-stone back pipe layers is 〇〇 1 μm to 2 mm. U Leo! The heat source mentioned in the item is at least two electrodes placed on the same surface or different surfaces of the 埶 直 八 八 八 八. The material of the at least two electrodes is a metal, tf source, wherein the silver paste, conductive poly Jit indium tin oxide, conductive m conductive polymer or metallic carbon nanotube. • If you apply for a patent range! The material of the hollow substrate described in the item is a flexible material or wherein the space is a plastic or a flexible fiber, and the flexible material is quartz. Materials are ceramics, glass, resin, 17
TW097129314A 2008-08-01 2008-08-01 Hollow heating source TWI466585B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097129314A TWI466585B (en) 2008-08-01 2008-08-01 Hollow heating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097129314A TWI466585B (en) 2008-08-01 2008-08-01 Hollow heating source

Publications (2)

Publication Number Publication Date
TW201008364A true TW201008364A (en) 2010-02-16
TWI466585B TWI466585B (en) 2014-12-21

Family

ID=44827422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129314A TWI466585B (en) 2008-08-01 2008-08-01 Hollow heating source

Country Status (1)

Country Link
TW (1) TWI466585B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563572A (en) * 1984-08-01 1986-01-07 Armstrong World Industries, Inc. High-efficiency task heater
JP2003339540A (en) * 2002-05-30 2003-12-02 Thermos Kk Electric heating and heat insulating container
TWI343359B (en) * 2006-06-16 2011-06-11 Hon Hai Prec Ind Co Ltd Flexible nano electrothermal material and heating apparatus having the same

Also Published As

Publication number Publication date
TWI466585B (en) 2014-12-21

Similar Documents

Publication Publication Date Title
TWI486090B (en) Hollow heating source
CN101616513B (en) Linear heat source
CN101610613B (en) Line heat source
CN101636001B (en) Cubic heat source
TWI462627B (en) Hollow heating source
TW201008364A (en) Hollow heating source
TWI465145B (en) Hollow heating source
TWI473524B (en) Hollow heating source
TWI427027B (en) Hollow heating source
CN101636004A (en) Plane heat source
TWI462630B (en) Planar heating source
TWI386363B (en) Linear heater
CN101636011B (en) Hollow heat source
TWI380729B (en) Linear heater
TWI513357B (en) Three-dimensional heat source
TWI448417B (en) Linear heater
CN101626642B (en) Hollow heat source
TWI380728B (en) Linear heater
TW201000395A (en) Linear heater
TWI501687B (en) Three-dimensional heat source
TWI380733B (en) Planar heating source
TWI380730B (en) Planar heating source
TWI360521B (en) Planar heat source
TWI462628B (en) Planar heating source
TWI380734B (en) Linear heater