TW201007992A - Light emitting device with magntic field - Google Patents

Light emitting device with magntic field Download PDF

Info

Publication number
TW201007992A
TW201007992A TW98121407A TW98121407A TW201007992A TW 201007992 A TW201007992 A TW 201007992A TW 98121407 A TW98121407 A TW 98121407A TW 98121407 A TW98121407 A TW 98121407A TW 201007992 A TW201007992 A TW 201007992A
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
light
electrode
source layer
Prior art date
Application number
TW98121407A
Other languages
Chinese (zh)
Other versions
TWI464901B (en
Inventor
Rong Xuan
Chih-Hao Hsu
Jenq-Dar Tsay
Mu-Tao Chu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/146,422 external-priority patent/US7989818B2/en
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW201007992A publication Critical patent/TW201007992A/en
Application granted granted Critical
Publication of TWI464901B publication Critical patent/TWI464901B/en

Links

Abstract

A light emitting device with magnetic field includes a light-emitting structure and a first magnetic-source layer. The light-emitting structure includes a first doped structural layer, a second doped structural layer, an active layer between the two doped structural layers, a first electrode, and a second electrode. The first magnetic-source layer is integrated with the light-emitting structure to produce a magnetic field in the light-emitting structure. The magnetic field transversely shifts a driving current of the light-emitting structure to redistribute in the light-emitting structure.

Description

201007992 P51970058TW 28130twf.doc/d 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光裝置,且特別是有關於一種 磁性發光裝置。 、 【先前技術】 例如發光二極體(Light Emitting Diode,LED)的發光 裝置可依據驅動電子流穿過LED的活性層而據以發光。然 而,若是分佈於整個發光區域的電流密度均勻,則發光的 均勻性會降低。更進—步而言’在傳統設計上,不透光的 頂部電極通常被配置於發光區域財央輯。根據上述, 在頂部電極下方的電流密度纽其他輯且可 ί光! 部電極是不透光,於是在頂部電極下“ 發由光於,led的頂部電極遮蓋位於中央區 问強度發先,導致輸出的亮光減少。 須目咖_上,改善咖發繼效率仍 【發明内容】 電極效;用霍_以安排 包括 構 料之範實施例提供—種衡棒光參置, 層、第二半導⑼懸先、'、〇構包括第一半導體結 導體、、.°構層、活性層、第1極與第二電極, 201007992 P51970058TW 28130twf.doc/d ^ Ϊ性層介於第—轉體結_與第二^導體結構層之 ,。苐-顧層整合於發絲翻以在㈣結射產生磁 場。 本發明之-示範實施例提供一種磁性發光裝置,包括 構:透光磁源層、第—電極與第二電極。發光結構 匕括弟一半導體結構層、第二半導體結構層,以及介於第 -半導體結構層與第二半導體結構層之間的活性層。透光 磁源層配置於第-半導體結構層,產生—磁場。第一電極 配置於透光麵層。第二電極配置於第二半導體結構層且 位於第一電極之相反側。 根據本發明之多個示範實施例’磁源層整合於發光裝 置的結構。換句話說,磁場可於單一晶片分別自我供應。 單一發光裝置易於封裝於單一晶片。 前述的總體說明與後述的詳細說明為示範性說明,並 提供本發明更進一步解釋。 本說明書所包括的伴隨圖式用以讓本發明更明顯易 懂’且整合與作成本說明書。圖式解釋本發明多個示範實 施例’並配合說明書據以解釋本發明之原理。 【實施方式】 本發明提出一種整合磁源層的發光裝置據以增加光 輸出效率。許多示範實施例用以說明本發明,然而本發明 並不限疋於多個示範實施例。更進一步而言,各種示範實 201007992 P51970058TW 28130twf.d〇c/d 施例的結合可據以形成其他示範實施例。 _ 象中’霍爾效應(Hal1 effect)為當電流流過 V線且k向絲磁場時,_如為電子流的綠路徑會基 於F=q*v*B的磁場Lwenz力而橫向偏移。本發明根據霍 爾效應的原理而將霍爾效應結合於LED。201007992 P51970058TW 28130twf.doc/d VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting device, and more particularly to a magnetic light-emitting device. [Prior Art] A light-emitting device such as a Light Emitting Diode (LED) can emit light depending on the driving electron flow through the active layer of the LED. However, if the current density distributed throughout the light-emitting region is uniform, the uniformity of light emission is lowered. Further, in the conventional design, the opaque top electrode is usually disposed in the illuminating area. According to the above, the current density under the top electrode is different and can be lighted! The electrode is opaque, so under the top electrode, the light is emitted, and the top electrode of the led is located in the central area. The output of the light is reduced. It is necessary to improve the efficiency of the coffee. [Inventive content] Electrode effect; provided with the embodiment of the composition including the structure of the material, the layer, the second half The lead (9) is suspended, and the structure includes a first semiconductor junction conductor, a .structor layer, an active layer, a first pole and a second electrode, 201007992 P51970058TW 28130twf.doc/d ^ an inert layer is interposed between the first and the second And the second-conductor structure layer is integrated with the hairline to generate a magnetic field at (4). The exemplary embodiment of the present invention provides a magnetic light-emitting device comprising: a light-transmitting magnetic source layer a first electrode and a second electrode, the light emitting structure comprises a semiconductor structure layer, a second semiconductor structure layer, and an active layer interposed between the first semiconductor structure layer and the second semiconductor structure layer. Disposed on the first semiconductor structure layer, The first electrode is disposed on the light transmissive surface layer. The second electrode is disposed on the second semiconductor structure layer and on the opposite side of the first electrode. According to various exemplary embodiments of the present invention, the magnetic source layer is integrated into the light emitting device. In other words, the magnetic field can be self-supplied on a single wafer. A single illuminating device is easy to package on a single wafer. The foregoing general description and the detailed description that follows are exemplary and provide further explanation of the present invention. The accompanying drawings are included to provide a further understanding of the embodiments of the present invention A light-emitting device incorporating a magnetic source layer is proposed to increase light output efficiency. Many exemplary embodiments are used to illustrate the present invention, but the present invention is not limited to a plurality of exemplary embodiments. Further, various exemplary embodiments 201007992 P51970058TW The combination of the 28130twf.d〇c/d examples can be used to form other exemplary embodiments. _ In the image of the 'Hall effect' Hal1 effect) is that when a current flows through the V line and k is directed to the magnetic field, the green path, such as the electron flow, is laterally offset based on the magnetic field Lwenz force of F = q * v * B. The present invention is based on the Hall effect The principle is to incorporate the Hall effect into the LED.

圖1繪示依照本發明之一示範實施例之磁性led結 構之横切面。圖1中以LED為例。舉例來說,LED包^ 底部電極100 ’發光結構搬,以及頂部電極綱,而發光 結構102包括第—半導體結構層搬a,活性層i〇2b,▲另 一半導體結構層l〇2c’其中第一半導體結構層伽例如p 型摻雜半導體結構層,用以發光的活性層難為電子與電 洞組合,而另一半導體結構層1〇2c例如為N型摻雜層。 頂部電極104可不配置於發光區域1〇8的中央。 當進行運作時,電流從底部電極1〇〇流至頂部電極 104_。然而。若是於一個方向施加磁場,例如磁場方向1〇6 所示,則會產生L〇renz力以偏移電流。據此,電流橫向偏 移有效率地流經活性層1〇2b,但不直接移動至頂部電極 104。基於此,驅動電流可以更有效率地使活性層1〇沘發 光。 根據圖1所示的物理過程,磁場須要增加。本發明提 出=種發光裝置,並特別於實施上整合磁源。據此,每個 發光裝置可以在磁場環境下分別運作。 圖2至5繪示依照本發明之多個示範實施例之利用封 裝以整合磁源層之發光裝置結構之橫切面。請參照圖2, 201007992 P51970058TW 28130twf.d〇c/d 舉例來說,摻雜半導體結構層2〇2被配置於基底2〇〇之上。 活性層204形成於摻雜半導體結構層2〇2之上。另一個摻 雜半導體結構層206形成於活性層204之上。於此,摻雜 半導體結構層根據設計結構可以為單一層或堆疊層。然 而,本發明並不特別限定於半導體結構層。更進一步而言,' 舉例來說透明導電層(tranSparent c〇n(juctive,TCL) 可進一步形成於半導體結構層202之上。如同習知技術, TCL 208接觸電極212以便增加發光效率。更進一步而言, 一個反射體可以根據發光方向而據以實施。在本例中,"電 極210被配置於半導體結構層2〇2。另—電極212被配】 於TCL層208。-般來說此結構部分為胃知LED範例。 本發明不須限定於特定非磁性LED。 在一示範實施例中,為了實施磁源層, 磁源層於發光裝置,其中封裝結構例如; 隹m曰曰片(fllpchip)封裝。磁源層218可形成於封裝基板 = 上。磁源層218例如為具有所須磁化 鐵磁層。形成鐵磁層的材料例如包括鐵、銘、婷、 錢等專。更進—步而言,除了人造磁 磁 上的方式據以使用。然而磁二 田女排。接考利用銲接結構214與216將led盥 218封裝於封褒基板22〇,其中鲜接結構=二 =凸塊或直接銲接(請參照圖5)。據此:磁源== 218的磁力方向為《平面抑“ 201007992 P51970058TW 28130twf.doc/d 場方向106產生磁場。配置於封裝基板22〇的磁源層 與LED配置可分別使用,其中預設磁場可於單一晶片自我 供應。 請參照圖3,本示範實施例相似於圖2所示的示範實 施例,而另一磁源層224可以進一步形成於基底2〇〇的^ .部表面,其中磁性薄膜222例如為薄膜金屬的磁性材料。 來自於磁源層224的效果是相同的。據此,LED中的磁場 玎進一步改善或區域性調整。 .. 參 在圖4中’相較於圖3 ’當磁源層224直接形成於摻 雜半導體結構層202之上時,結構可利用移除基底2〇〇作 - 進一步修改。因為兩電極210與212在LED的相同—側, 摻雜半導體結構層202仍可透過電極21〇施予工作電壓。 前述舉例的封裝結構為根據焊接結構214與216。然 而此非唯-封裝方式。舉例來說,另一封裳方法可參照圖 5。圖5中電極212’與210’可利用如電鑛方式形成。電極 212’與210’接著封裝於封裝基板226。換句話說,封裝磁 Φ 源層於封裝基板可以採用任何適當的封裝製程。 圖6緣示依照本發明之一示範實施例之整合條狀磁源 層之發光裝置結構之横切面。請參照圖6,磁性層2幻可 根據蠢晶侧向成長法(Epitaxial Lateral 〇vergrowth,ELOG) 據以形成於基底200與LED 233之間。在一示範實施例 中:磁性層232可以形成於基底2〇〇且依照預設圖案成形。 接著LED 234的較低半導體層可利用EL〇G製程成長。 圖7至8緣示依照本發明之多個示範實施例之整合磁 201007992 P51970058TW 28130twf.doc/d 源層之各種發光裝置結構之橫切面。根據相同觀點,磁源 層可利用各種方式整合於LED以作為發光裝置。後述多個 示範例為本發明部分示範實施例,但本發明並非限制於此。 在圖9所示的可選擇結構中,另—示範實施例的LED 結構包括摻雜半導體結構層2〇2、活性層2〇4與另一摻雜 半導體結構層2G6。更進-步而言,TCL 亦可包括於 其中。此LK)結構用以實施磁源層,並於後述示範實施例 中作為示範例。底部電極層234形成於摻雜半導體結構層 202的一侧’㈣一電極層236於底部電極層234的相反 $形成於TCL 208。發光區域240預計形成。在此依此結 構為基礎’舉例來說’磁源層238可形成於電極層236之 上,而較佳的情況為僅形成於電極層236之上。LED可產 生例如具有方向242的磁場。在圖8所示進一步改良物中, 另—磁源層244可形成於電極層234之上。 圖9與10 !會示依照本發明之多個示範實施例之圖7 ⑽^結構之透視面。在圖9與10中電極層236與磁源層 “。_^依圖案成开’於一些區域’例如條狀圖案’據以 以:磁場。㈣賴’具有磁場_部電極可根據用 光輪出效率的磁場如何產生,據以配置於單一小 ^竦或於一些小區域。 ~ S更進—步較良,磁源層可以採用其他方式據以 =源】上==發_個示範實施例之整 極 、么先裝置…構之杈切面。在圖11中底部電 "可以配置於摻雜半導體結構層202的底部表面。 201007992 P51970058TW 28130twf.d〇c/d 然而於此不範實施例中,磁源層25〇可配置於LED與電極 層254之間。以較佳的方式而言,磁源層25〇可配置kTcl 208與電極層254之間。而以另一較佳的方式而言,磁源 層250進一步可為可透光,且因此隨著TCL 208表面而延 展。在此根據物理特性而言,金屬通常不透光。然而當金 屬的厚度足夠薄時則可為透光。另一方面,若是發光方向 朝向電極252,則磁源層MO不必須可透光。在本示範實 ❿施例中’磁源層250例如為薄膜金屬的鐵磁材料,或為於 其^條件下可透光的鐵磁材料。本結構可以更有效率地產 生橫向磁場。在圖12中,除了圖n的結構外,另一磁源 層256可形成於發光裝置的底部,例如形成於電極層252。 磁源層256無須可透光。 在圖13的另—示範實施例中,磁源層258可配置於 發光裝置钓頂部。舉例來說,磁源層258可覆蓋於TCL208 與电極254之上。相同地根據發光方向,磁源層258可為 透光或不透光。在圖Η中,更進一步額外形成磁源層26〇 於底部。磁源層260可視為用以反射光的反射層。 一在圖14中,更進一步比較圖13,磁源層262可為僅 覆蓋部分的發光區域且不覆蓋於電極254。在圖16中,更 進—步額外形成磁源層264於底部。磁源層264可視為用 以反射光的反射層。 在圖17中,若是發光方向朝向電極252 ,電極亦可為 TCL。接著反射層266可形成於具有電極254的一侧。繼 之’磁源層268例如可覆蓋形成於反射層266與電極254。 201007992 P51970058TW 28130twf.doc/d 更進一步而言,類似於其他示聋 依所需而配置於電極層252。^ ’可透光磁源層可 可以-小區域。 #者,如圖18所示電極252 另-方面’在多個示範實施财,當咖被設計為 =兩電極於同-側時’磁源層則可以被整合於哪中。1 illustrates a cross-section of a magnetic led structure in accordance with an exemplary embodiment of the present invention. In Fig. 1, an LED is taken as an example. For example, the LED package ^ bottom electrode 100 'light-emitting structure, and the top electrode, and the light-emitting structure 102 includes a first semiconductor structure layer a, an active layer i 〇 2b, ▲ another semiconductor structure layer l 〇 2c' The first semiconductor structure layer is, for example, a p-type doped semiconductor structure layer, the active layer for emitting light is difficult to combine electrons with holes, and the other semiconductor structure layer 1〇2c is, for example, an N-type doped layer. The top electrode 104 may not be disposed in the center of the light emitting region 1〇8. When operating, current flows from the bottom electrode 1 to the top electrode 104_. however. If a magnetic field is applied in one direction, such as the direction of the magnetic field 1〇6, an L〇renz force is generated to offset the current. Accordingly, the lateral bias of the current flows efficiently through the active layer 1〇2b, but does not directly move to the top electrode 104. Based on this, the driving current can more efficiently cause the active layer 1 to emit light. According to the physical process shown in Figure 1, the magnetic field needs to be increased. The present invention proposes a light-emitting device and integrates the magnetic source in particular for implementation. Accordingly, each of the light-emitting devices can operate separately in a magnetic field environment. 2 through 5 illustrate cross-sections of a light emitting device structure utilizing a package to integrate a magnetic source layer in accordance with various exemplary embodiments of the present invention. Referring to FIG. 2, 201007992 P51970058TW 28130twf.d〇c/d For example, the doped semiconductor structure layer 2〇2 is disposed on the substrate 2〇〇. The active layer 204 is formed over the doped semiconductor structure layer 2〇2. Another doped semiconductor structure layer 206 is formed over the active layer 204. Here, the doped semiconductor structure layer may be a single layer or a stacked layer according to the design structure. However, the present invention is not particularly limited to the semiconductor structure layer. Further, 'for example, a transparent conductive layer (trancrent, TCL) may be further formed on the semiconductor structure layer 202. As in the prior art, the TCL 208 contacts the electrode 212 to increase luminous efficiency. In other words, a reflector can be implemented according to the direction of light emission. In this example, the "electrode 210 is disposed on the semiconductor structure layer 2〇2. The other electrode 212 is disposed on the TCL layer 208. This structure is an example of a gastric LED. The invention is not necessarily limited to a specific non-magnetic LED. In an exemplary embodiment, in order to implement a magnetic source layer, the magnetic source layer is in a light-emitting device, wherein the package structure is, for example, (fllpchip) package. The magnetic source layer 218 can be formed on the package substrate =. The magnetic source layer 218 is, for example, a magnetized ferromagnetic layer. The material forming the ferromagnetic layer includes, for example, iron, Ming, Ting, Qian, etc. In terms of advancement, in addition to the method of artificial magnetic magnetism, the magnetic second field women's volleyball. The soldering structure 214 and 216 are used to package the LED 盥218 on the sealing substrate 22〇, wherein the fresh joint structure=two= Bump or direct soldering Connected (please refer to Figure 5). According to this: the magnetic direction of the magnetic source == 218 is "plane" 201007992 P51970058TW 28130twf.doc/d The field direction 106 generates a magnetic field. The magnetic source layer and LED configuration are arranged on the package substrate 22〇 It can be used separately, wherein the preset magnetic field can be self-supplied on a single wafer. Referring to Figure 3, the exemplary embodiment is similar to the exemplary embodiment shown in Figure 2, and another magnetic source layer 224 can be further formed on the substrate 2 The surface of the magnetic film 222 is, for example, a magnetic material of a thin film metal. The effect from the magnetic source layer 224 is the same. Accordingly, the magnetic field in the LED is further improved or regionally adjusted. 4] Compared to FIG. 3 'When the magnetic source layer 224 is directly formed on the doped semiconductor structure layer 202, the structure can be modified by using the substrate 2 - further modified because the two electrodes 210 and 212 are in the LED The same side, the doped semiconductor structure layer 202 can still be applied with an operating voltage through the electrode 21. The package structure of the foregoing example is based on the solder structures 214 and 216. However, this non-only package method. For example, another skirt Method can Figure 5. The electrodes 212' and 210' of Figure 5 can be formed by electro-minening. The electrodes 212' and 210' are then packaged on the package substrate 226. In other words, the packaged magnetic Φ source layer can be applied to the package substrate in any suitable manner. Figure 6 illustrates a cross-sectional view of a structure of a light-emitting device incorporating a strip-shaped magnetic source layer in accordance with an exemplary embodiment of the present invention. Referring to Figure 6, the magnetic layer 2 may be extended according to a staggered lateral growth method (Epitaxial). Lateral 〇vergrowth, ELOG) is formed between the substrate 200 and the LED 233. In an exemplary embodiment, the magnetic layer 232 may be formed on the substrate 2 and shaped in accordance with a predetermined pattern. The lower semiconductor layer of LED 234 can then be grown using the EL〇G process. 7 through 8 illustrate cross-sections of various illuminant structures of the integrated magnetic layer 201007992 P51970058TW 28130 twf.doc/d source layer in accordance with various exemplary embodiments of the present invention. According to the same point of view, the magnetic source layer can be integrated into the LED in various ways as a light-emitting device. The plurality of exemplary embodiments described later are some exemplary embodiments of the present invention, but the present invention is not limited thereto. In the alternative configuration shown in Figure 9, the LED structure of another exemplary embodiment includes a doped semiconductor structure layer 2, an active layer 2"4 and another doped semiconductor structure layer 2G6. For further steps, TCL can also be included. This LK) structure is used to implement the magnetic source layer and is exemplified in the exemplary embodiment to be described later. The bottom electrode layer 234 is formed on one side of the doped semiconductor structure layer 202. The opposite of the electrode layer 236 to the bottom electrode layer 234 is formed on the TCL 208. The illuminating region 240 is expected to be formed. Based on this structure, for example, the magnetic source layer 238 may be formed over the electrode layer 236, and is preferably formed only over the electrode layer 236. The LED can produce, for example, a magnetic field having a direction 242. In a further improvement shown in FIG. 8, another magnetic source layer 244 may be formed over the electrode layer 234. Figures 9 and 10 show a perspective view of the structure of Figure 7 (10) in accordance with various exemplary embodiments of the present invention. In FIGS. 9 and 10, the electrode layer 236 and the magnetic source layer ". _ ^ according to the pattern is opened in some areas 'such as a strip pattern' according to the magnetic field. (4) 赖 'has a magnetic field _ part of the electrode can be rotated according to the use of light How the efficiency of the magnetic field is generated, according to the configuration of a single small ^ or in some small areas. ~ S more advanced step, the magnetic source layer can be used in other ways according to = source] = = send _ an exemplary embodiment The bottom electrode of the device can be disposed on the bottom surface of the doped semiconductor structure layer 202. 201007992 P51970058TW 28130twf.d〇c/d However, this embodiment is not shown here. The magnetic source layer 25A may be disposed between the LED and the electrode layer 254. In a preferred manner, the magnetic source layer 25A may be disposed between the kTcl 208 and the electrode layer 254. In another preferred manner In other words, the magnetic source layer 250 may further be permeable to light and thus extend along the surface of the TCL 208. Here, the metal is generally opaque depending on physical properties. However, when the thickness of the metal is sufficiently thin, it may be transparent. On the other hand, if the light emitting direction is toward the electrode 252, the magnetic source layer MO It must be permeable to light. In the present embodiment, the magnetic source layer 250 is, for example, a ferromagnetic material of a thin film metal, or a ferromagnetic material which is permeable to light under the conditions. The structure can be produced more efficiently. Transverse magnetic field. In Fig. 12, in addition to the structure of Fig. n, another magnetic source layer 256 may be formed at the bottom of the light emitting device, for example, formed on the electrode layer 252. The magnetic source layer 256 need not be permeable to light. In the exemplary embodiment, the magnetic source layer 258 can be disposed on the top of the light-emitting device. For example, the magnetic source layer 258 can be overlaid on the TCL 208 and the electrode 254. Similarly, the magnetic source layer 258 can be transparent according to the direction of illumination. Light or opaque. In the figure, the magnetic source layer 26 is further formed to be further attached to the bottom. The magnetic source layer 260 can be regarded as a reflective layer for reflecting light. In Fig. 14, the graph is further compared with FIG. The source layer 262 may be a portion only covering the light emitting region and not covering the electrode 254. In Fig. 16, the magnetic source layer 264 is additionally formed at the bottom. The magnetic source layer 264 may be regarded as a reflective layer for reflecting light. In FIG. 17, if the light emitting direction is toward the electrode 252, the electrode may be TCL. The reflective layer 266 can then be formed on the side having the electrode 254. The magnetic source layer 268 can then be formed over the reflective layer 266 and the electrode 254, for example. 201007992 P51970058TW 28130twf.doc/d Further, similar to other聋 聋 配置 配置 配置 配置 配置 配置 配置 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Designed to be = where the two electrodes are on the same side - where the magnetic source layer can be integrated.

根,17的結構’圖19中電板234可形成於摻雜半導體 'M冓層202的延伸區,但與電栖236位於同一側。磁源層 238可形成於電極236之上。圖2G中所示的結構以圖8所 示的結構為基礎。電極234形成於摻雜半導體結構層2〇2 的延伸區。磁源層244可直接配置於摻雜半導體結構層2〇2 之上。 圖21中所示的結構以圖u所示的結構為基礎。電極 252配置於摻雜半導體結構層2〇2的延伸區。相同地,圖 22至27所示的電極結構以圖12至17所示的結構為基礎。 然而在22至27所示的電極結構中,當磁源層重新安排後, 電極則配置於摻雜半導體結構層202的延伸區。The structure of the root 17 is formed in the extension of the doped semiconductor 'M layer 202, but on the same side as the electric 234. A magnetic source layer 238 can be formed over the electrode 236. The structure shown in Fig. 2G is based on the structure shown in Fig. 8. The electrode 234 is formed in an extension of the doped semiconductor structure layer 2〇2. The magnetic source layer 244 can be disposed directly on the doped semiconductor structure layer 2〇2. The structure shown in Fig. 21 is based on the structure shown in Fig. u. The electrode 252 is disposed in an extension of the doped semiconductor structure layer 2〇2. Similarly, the electrode structures shown in Figs. 22 to 27 are based on the structures shown in Figs. However, in the electrode structure shown in 22 to 27, after the magnetic source layer is rearranged, the electrode is disposed in the extended region of the doped semiconductor structure layer 202.

換句話說’磁源層可以整合於LED.以作為具有磁場 的發光裝置。實際實施方式可以根據不同方式據以實施。 例如多個示範實施例及其個別的組合。 關於各種選擇方面,舉例來說’發光表面可以某種程 度的粗糙,據以增加發光品質。圖6所示的ELOG技術可 以使用磁性層作為半導體基底上的遮罩。接著利用例如金 屬有機化學氣相沈積(Metal Organic Chemical Vapor Deposition,MOCVD)或分子束蠢晶成長(Molecular Beam 10 201007992 P51970058TW 28130twf.doc/dIn other words, the magnetic source layer can be integrated into the LED as a light-emitting device having a magnetic field. The actual implementation can be implemented according to different methods. For example, a plurality of exemplary embodiments and individual combinations thereof. Regarding various options, for example, the luminescent surface may be somewhat rough to increase the illuminating quality. The ELOG technique shown in Figure 6 can use a magnetic layer as a mask on a semiconductor substrate. Then, for example, Metal Organic Chemical Vapor Deposition (MOCVD) or molecular beam growth (Molecular Beam 10 201007992 P51970058TW 28130twf.doc/d)

Epitaxy ’ MBE)的製程據以成長半導體層。據此,磁性層 内嵌於發光裝置。 S 更進一步而言,形成P-N接面光學元件可以無機或有 機材料。舉例來說,無機半導體材料包括GaAs、Inp、QaN、The process of Epitaxy ' MBE) is based on growing a semiconductor layer. Accordingly, the magnetic layer is embedded in the light emitting device. Further, the P-N junction optical element can be formed of an inorganic or organic material. For example, inorganic semiconductor materials include GaAs, Inp, QaN,

GaP、A1P、AlAs、InAs、GaSb、InSb、Cds、CdSe、ZnS 與ZnSe等等。有機半導體材料包括聚合物或習知有機材 料。銲接方法可例如為晶粒結合(die bonding)、倒装晶 ❹ 片銲接(mP chip bonding)、金屬輝接(metal b〇nding) 與晶圓銲接(wafer bonding)等等。銲接材料可例如為銀 膠(Silver Glue )、金錫合金(Goldtin )、金凸塊(Au bump ), 與金屬凸塊(metal bump )等等。 另一方面,反射層可以為反射體或介電反射層,例 如分布布拉格反射層(Distributed Bragg Reflector,DBR) 結構’其中介電材料可包括例如Ti〇2、Ta05、Si02、Mb205、GaP, A1P, AlAs, InAs, GaSb, InSb, Cds, CdSe, ZnS and ZnSe, and the like. Organic semiconductor materials include polymers or conventional organic materials. The soldering method may be, for example, die bonding, mP chip bonding, metal b〇nding, wafer bonding, or the like. The solder material may be, for example, silver Glue, gold tin alloy, gold bump (Au bump), metal bump, and the like. Alternatively, the reflective layer can be a reflector or a dielectric reflective layer, such as a Distributed Bragg Reflector (DBR) structure, wherein the dielectric material can include, for example, Ti〇2, Ta05, SiO2, Mb205,

Se02、ZnS、ZnO或MgF2。基底可包括例如si、sic、GaN、 I GaP、GaAs、sapphire、Zno或AIN。軟磁性材料可包括例 如Fe、Co、Ni、Tb、A1或上述組合。磁性薄膜例如可包括Se02, ZnS, ZnO or MgF2. The substrate can include, for example, si, sic, GaN, I GaP, GaAs, sapphire, Zno, or AIN. The soft magnetic material may include, for example, Fe, Co, Ni, Tb, A1 or a combination thereof. The magnetic film can include, for example

Pt、Co、Sm、Fe、Ni、Cu、Cr、或 Tb ’ 以塗布製程形成。 除此之外’磁性材料可包括例如Nd、Fe、Pg、Co、 Ni、Μη、Cr或Rb的磁鐵材料’或是例如Mn〇x、FeOx、Pt, Co, Sm, Fe, Ni, Cu, Cr, or Tb' is formed by a coating process. Other than this, the magnetic material may include a magnet material such as Nd, Fe, Pg, Co, Ni, Mn, Cr or Rb or Mn〇x, FeOx, for example.

CoO、CuO、VxOx、Cr2〇3、CrS、MnS、MnSe、MnTe、CoO, CuO, VxOx, Cr2〇3, CrS, MnS, MnSe, MnTe,

MnFx、FeFx、CoFx、NiFx、VC1X、CrClx、FeClx、C〇Clx、 NiClx、CuClx、CuBrx、CrSb、MnAs、MnBi、Cr、α-Mn、 11 201007992 P51970058TW 28130twf.d〇c/dMnFx, FeFx, CoFx, NiFx, VC1X, CrClx, FeClx, C〇Clx, NiClx, CuClx, CuBrx, CrSb, MnAs, MnBi, Cr, α-Mn, 11 201007992 P51970058TW 28130twf.d〇c/d

MnCl2.4H20 ' MnBr2.4H20、CuQ 2H O、 灿〇4)xa為〇、FeCG3、或 F 2他 2 陶瓷材料。 寻幻 在不脫離本發明特徵上,上述元 ㈣料^ 構可以作些許更動。 丁』何针次孑、,'田的、口 雖然本發明已以示範實施例揭露如上,缺 參 之Γ所屬細域中具有物:識者,在不 所教導^露t和誕當可根據上述之示範實施例 B㈣護當發 【圖式簡單說明】 疋依…、本發明之一示範實施例之磁性LED結構 之板切面。 ,2至5疋依照本發明之多個示範實施例之利用封裝 以整合磁,層之發光裝置結構之橫切面。 益^ #是依、?、本發明之一示範實施例之整合條狀磁源層 之發光V置結構之橫切面。 ,7至8是依照本發明之多個示範實施例之整合磁源 層之各種發光裝置結構之橫切面。 圖9與1G是依照本發明之多個示範實施例之圖7與8 之結構之透視面。 圖11至27是依照本發明之多個示範實施例之整合磁 源層之各種發光裝置結構之橫切面。 12 201007992 P51970058TW 28130twf.d〇c/d 【主要元件符號說明】 1〇〇 :底部電極 102 :發光結構 102a、102c :半導體結構層 102b、204 :活性層 104 :頂部電極 106 :磁場方向 、240 :發光區域 200 :基底 208 :透明導電層 202、206 :半導體結構層 φ 210、212、210’、212’ :電極 214、216 :銲接結構 220、226 :封裝基板 218、224、238、244、250、256、258、260、262、 264、268 :磁源層 222 :磁性薄膜 233、234 :發光二極體 232 :磁性層 236、252、254 ··電極層 266 ··反射層 13MnCl2.4H20 'MnBr2.4H20, CuQ 2H O, and Chanzanium 4)xa are bismuth, FeCG3, or F 2 other 2 ceramic materials. Fantasy Without departing from the features of the present invention, the above-described element (four) material structure can make some changes. Ding 』 针 针 孑 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Exemplary Embodiment B (4) Protecting the hair [Simplified Description of the Drawings] The board cutting surface of the magnetic LED structure according to an exemplary embodiment of the present invention. 2 to 5, in accordance with various exemplary embodiments of the present invention, utilize a package to integrate the cross-section of the magnetic, layered light-emitting device structure.益^# is a cross-section of the illuminating V-shaped structure of the integrated strip-shaped magnetic source layer according to an exemplary embodiment of the present invention. 7 through 8 are cross-sections of various illuminant structures incorporating integrated magnetic source layers in accordance with various exemplary embodiments of the present invention. Figures 9 and 1G are perspective views of the structure of Figures 7 and 8 in accordance with various exemplary embodiments of the present invention. 11 through 27 are cross-sectional views of various light emitting device structures incorporating a magnetic source layer in accordance with various exemplary embodiments of the present invention. 12 201007992 P51970058TW 28130twf.d〇c/d [Description of main component symbols] 1〇〇: bottom electrode 102: light-emitting structure 102a, 102c: semiconductor structure layer 102b, 204: active layer 104: top electrode 106: magnetic field direction, 240: Light-emitting region 200: substrate 208: transparent conductive layer 202, 206: semiconductor structure layer φ 210, 212, 210', 212': electrodes 214, 216: solder structure 220, 226: package substrate 218, 224, 238, 244, 250 256, 258, 260, 262, 264, 268: magnetic source layer 222: magnetic film 233, 234: light-emitting diode 232: magnetic layer 236, 252, 254 · electrode layer 266 · reflective layer 13

Claims (1)

201007992 P51970058TW 28130twf.doc/d 七、申請專利範圍: 1. 一種磁性發光裝置包括: 一發光結構,包括: 一第一半導體結構層; 一第二半導體結構層; —活性層,介於該第一半導體結構層盥該 導體結構層之間; 二半 一第一電極;以及 —第二電極;以及 一第一磁源層,整合於該發光結構用 中產生一磁場。 以在該發光結構 專利範圍帛1項所述之磁性發光裝置,其中 该磁油向偏移該發光結構之電流以 動電流於树絲構。 ”佈該驅 1磁n申請圍第1項所述之雜發光裝置,其中 忒磁源層為一透光磁源層。 γ 該第^^1專括贿㈣1項所狀雖發先裝置, 一封裝基板層;以及 -磁性薄膜,配置於該封裝基板層; 同一 t中該第—電極與該第二電極配置於該發光結構的 其中201007992 P51970058TW 28130twf.doc/d 7. Patent application scope: 1. A magnetic light-emitting device comprising: a light-emitting structure comprising: a first semiconductor structure layer; a second semiconductor structure layer; an active layer, between the first a semiconductor structure layer between the conductor structure layers; a two-half first electrode; and a second electrode; and a first magnetic source layer integrated in the light-emitting structure to generate a magnetic field. The magnetic illuminating device of claim 1, wherein the magnetic oil shifts current to the illuminating structure to illuminate the tree structure. "The cloth is driven by a magnetic n application to the hybrid light-emitting device of the first item, wherein the germanium magnetic source layer is a light-transmissive magnetic source layer. γ The first ^11 special bribe (four) is a device, a package substrate layer; and a magnetic film disposed on the package substrate layer; wherein the first electrode and the second electrode are disposed in the light emitting structure in the same t 該第; 14The number; 14 201007992 P51970058TW 28130twf.doc/d 構。 6:如申請專利範圍第4項所述之磁性發光裝置,更包 括一第二磁源層,形成於該發光裝置的相反側,用以配人 該第一磁源層以產生該磁場。 7. 如申#專利範圍苐6項所述之磁性發光裝置,发 該發光結構包括-基底料包括縣絲適應該第二ς源 層。 8. 如申請專利範圍第i項所述之磁性發光袭置, 該第-磁源層包括於該第一半導體結構層上的一磁:薄 9.如申請專利範圍第i項所述之磁性發光裝置, 該發光結構更包括—反射層,配置於該第 ^ 層,且該第-磁源層包括於反射層上的—磁性^體-構 10·如申請專概圍第丨項所述之 中該發光結構配置於—基底之上,該第一磁源 結構之間。 料频層錄底與該發光 中今1销叙雖發光裝置,其 苐$極與該第二電極分別配置於該發光結構的相對 如申„月專利範圍第u項所述之磁性發光复 :該弟—麵、層僅配置於„電極與該第二電極二料 13·如中料利範㈣12項所述之雖發光裝置,更 15 201007992 P51970058TW 28130twf.doc/d 包括-第二磁源層’僅配置於該第—電極盘 者另一。 — 14·如申μ專利範圍第13項所述之磁性發光 中該第-磁源層包括分佈於該發光結構的至少—置’其 以配合該第二磁源層以產生該磁場。 、,用 如中請”範圍第丨項所述之磁性發光裝置,复 中該第-磁源層覆蓋於該發光結構與該第—電極。- 16.如申請專利_第15項所述之磁性發光裝置 包括一第二磁源層,配置於該第二電極之上。 更 Π.如申請專利範圍帛ls項所述之磁性發光裝置 包括-反射層’介於該第—磁源層與該第_半導體 之間。 冉尽 18. 如申請專利範圍第u項所述之磁性發光裝置,其 中該第-磁源層覆蓋在該第—電極料之—部分該發光結 構。 ❹ 19. 如申請專利範圍第18項所述之磁性發光裝置,更 包括一第二磁源層,配置於該第二電極之上。 20. 如申請專利範圍第u項所述之磁性發光裝置,其 中該弟一'半導體結構層包括: 一透明導電層,接觸該第一電極。 21. —種磁性發光裝置包括: 一發光結構,包括: 一第一半導體結構層; 一第二半導體結構層;以及 16 201007992 F3iy/uu38TW 28130twf.doc/d 一活性層,介於該第一半導體結構層與該第二半 導體結構層之間; 一透光磁源層,配置於該第一半導體結構層,產生一 磁场, 一第一電極’配置於該透光磁源層;以及 一第二電極,配置於該第二半導體結構層且位於該第 一電極之相反侧。 22. 如申睛專利範圍第21項所述之磁性發光裝置,其 ® 中該磁場横向偏移該發光結構之一驅動電流以重新合佑丄 驅動電流於該發光結構。 23. 如申晴專利範圍第21項所述之磁性發光裝置,更 包括一磁源層,配置於該第二電極之上。 17201007992 P51970058TW 28130twf.doc/d. The magnetic illuminating device of claim 4, further comprising a second magnetic source layer formed on the opposite side of the illuminating device for accommodating the first magnetic source layer to generate the magnetic field. 7. The magnetic illuminating device of claim 6, wherein the illuminating structure comprises - the substrate comprises a county wire adapted to the second bismuth source layer. 8. The magnetic illuminating device according to claim i, wherein the first magnetic source layer comprises a magnetic layer on the first semiconductor structural layer: thin 9. The magnetic property as described in claim i a light emitting device, the light emitting structure further comprising a reflective layer disposed on the second layer, and the first magnetic source layer is included on the reflective layer - the magnetic body - the structure 10 is as described in the application The light emitting structure is disposed on the substrate between the first magnetic source structures. The material layer of the material layer and the light-emitting device of the present invention are characterized in that the light-emitting device has a light-emitting device, and the second electrode and the second electrode are respectively disposed on the light-emitting structure, such as the magnetic light-emitting complex described in the U.S. patent scope: The younger-face and the layer are only disposed on the electrode and the second electrode. The light-emitting device is as described in item 12 of the material (4). Further, 2010 201007992 P51970058TW 28130twf.doc/d includes - the second magnetic source layer Only one of the first electrode pads is disposed. The magneto-optical layer of claim 13, wherein the first magnetic source layer comprises at least a portion disposed on the light-emitting structure to cooperate with the second magnetic source layer to generate the magnetic field. The magnetic light-emitting device according to the above-mentioned item, wherein the first-magnetic source layer covers the light-emitting structure and the first electrode. - 16. As claimed in claim 15 The magnetic illuminating device includes a second magnetic source layer disposed on the second electrode. Further, the magnetic illuminating device according to the patent application 帛 ls includes a reflective layer Between the first magnetic source layer and The magnetic illuminating device of claim 5, wherein the first magnetic source layer covers a part of the illuminating structure of the first electrode material. The magnetic illuminating device of claim 18, further comprising a second magnetic source layer disposed on the second electrode. 20. The magnetic illuminating device according to claim 5, wherein the brother A 'semiconductor structure layer includes: a transparent conductive layer contacting the first electrode. 21. A magnetic light-emitting device comprising: a light-emitting structure comprising: a first semiconductor structure layer; a second semiconductor structure layer; and 16 201007992 F3iy/uu38T W 28130 twf.doc / d an active layer between the first semiconductor structure layer and the second semiconductor structure layer; a light-transmissive magnetic source layer, disposed in the first semiconductor structure layer, generating a magnetic field, a An electrode 'disposed on the light-transmitting magnetic source layer; and a second electrode disposed on the second semiconductor structure layer and located on the opposite side of the first electrode. 22. Magnetics as claimed in claim 21 In the illuminating device, the magnetic field laterally shifts one of the driving structures to drive current to re-energize the driving current in the illuminating structure. 23. The magnetic illuminating device according to claim 21, further comprising a a magnetic source layer disposed on the second electrode. 17
TW098121407A 2008-06-25 2009-06-25 Light emitting device with magntic field TWI464901B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/146,422 US7989818B2 (en) 2008-01-11 2008-06-25 Light emitting device with magnetic field

Publications (2)

Publication Number Publication Date
TW201007992A true TW201007992A (en) 2010-02-16
TWI464901B TWI464901B (en) 2014-12-11

Family

ID=44838175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098121407A TWI464901B (en) 2008-06-25 2009-06-25 Light emitting device with magntic field

Country Status (1)

Country Link
TW (1) TWI464901B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479893A (en) * 2010-11-26 2012-05-30 奇力光电科技股份有限公司 Optoelectronic component
CN103187502A (en) * 2011-12-29 2013-07-03 财团法人工业技术研究院 Nitride semiconductor light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874749A (en) * 1993-06-29 1999-02-23 The United States Of America As Represented By The Secretary Of The Navy Polarized optical emission due to decay or recombination of spin-polarized injected carriers
US7440479B2 (en) * 2001-09-06 2008-10-21 Brown University Magneto-optoelectronic switch and sensor
TW517403B (en) * 2002-01-10 2003-01-11 Epitech Technology Corp Nitride light emitting diode and manufacturing method for the same
US7208775B2 (en) * 2005-02-18 2007-04-24 Hewlett-Packard Development Company, L.P. Polarized radiation source using spin extraction/injection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479893A (en) * 2010-11-26 2012-05-30 奇力光电科技股份有限公司 Optoelectronic component
CN103187502A (en) * 2011-12-29 2013-07-03 财团法人工业技术研究院 Nitride semiconductor light emitting device
CN103187502B (en) * 2011-12-29 2016-07-06 财团法人工业技术研究院 Nitride semiconductor light emitting device

Also Published As

Publication number Publication date
TWI464901B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US7989818B2 (en) Light emitting device with magnetic field
US9590137B2 (en) Light-emitting diode
TWI282182B (en) Thin-film LED with an electric current expansion structure
CN100359707C (en) Ga Nitride Light emitting device
US8552455B2 (en) Semiconductor light-emitting diode and a production method therefor
KR101662202B1 (en) Light emitting device
TWI313073B (en) Light-emitting diode and method for fabrication thereof
KR101064006B1 (en) Light emitting element
WO2013161208A1 (en) Light-emitting element
JP2009543372A (en) Luminescent crystal structure
WO2004008551A1 (en) Gallium nitride-based compound semiconductor device
WO2010003386A2 (en) Light-emitting device and packaging structure thereof
JP5044394B2 (en) Method for forming regions of reduced conductivity in semiconductor layers and optoelectronic semiconductor devices
KR101100684B1 (en) Iii nitride semiconductor light emitting device
TWI493747B (en) Light emitting diodes and manufacture thereof
KR20100122998A (en) Light emitting device and method for fabricating the same
JP6745361B2 (en) Method for forming p-type layer of light emitting device
TW201007992A (en) Light emitting device with magntic field
WO2005060013A1 (en) Semiconductor light-emitting device and method for manufacturing same
WO2014041719A1 (en) Semiconductor ultraviolet light-emitting element
JP5454303B2 (en) Semiconductor light emitting device array
KR102008349B1 (en) Light emitting device and light emitting device package
KR20130022085A (en) Light emitting device and method for manufacturing the same
US11764330B2 (en) Optoelectronic semiconductor component having a semiconductor contact layer and method for producing the optoelectronic semiconductor component
CN110168752A (en) Method for growing luminescent device under ultraviolet irradiation