TWI464901B - Light emitting device with magntic field - Google Patents
Light emitting device with magntic field Download PDFInfo
- Publication number
- TWI464901B TWI464901B TW098121407A TW98121407A TWI464901B TW I464901 B TWI464901 B TW I464901B TW 098121407 A TW098121407 A TW 098121407A TW 98121407 A TW98121407 A TW 98121407A TW I464901 B TWI464901 B TW I464901B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- magnetic
- electrode layer
- light
- semiconductor structure
- Prior art date
Links
Landscapes
- Led Devices (AREA)
- Led Device Packages (AREA)
Description
本發明是有關於一種發光裝置,且特別是有關於一種磁性發光裝置。The present invention relates to a light emitting device, and more particularly to a magnetic light emitting device.
例如發光二極體(Light Emitting Diode,LED)的發光裝置可依據驅動電子流穿過LED的活性層而據以發光。然而,若是分佈於整個發光區域的電流密度均勻,則發光的均勻性會降低。更進一步而言,在傳統設計上,不透光的頂部電極通常被配置於發光區域的中央區域。根據上述,在頂部電極下方的電流密度大於其他區域且可以發出更多光。然而基於頂部電極是不透光,於是在頂部電極下方的發光會被遮蓋。由於傳統LED的頂部電極遮蓋位於中央區域的最高強度發光,導致輸出的亮光減少。A light emitting device such as a Light Emitting Diode (LED) can emit light depending on the driving electron flow through the active layer of the LED. However, if the current density distributed throughout the light-emitting region is uniform, the uniformity of light emission is lowered. Still further, in conventional designs, the opaque top electrode is typically disposed in a central region of the illuminating region. According to the above, the current density under the top electrode is larger than other regions and more light can be emitted. However, based on the top electrode being opaque, the illumination below the top electrode is covered. Since the top electrode of a conventional LED covers the highest intensity illumination in the central region, the output brightness is reduced.
據此,在相關技術領域上,改善LED發光輸出效率仍須進一步開發。Accordingly, in the related art, improvement of LED light-emitting output efficiency still needs further development.
本發明提供一種磁性發光裝置,採用霍爾效應以安排電極層位置,據以使得增加發光輸出效率。The present invention provides a magnetic light-emitting device that employs a Hall effect to arrange electrode layer positions so as to increase luminous output efficiency.
本發明之一示範實施例提供一種磁性發光裝置,包括發光結構與第一磁源層。發光結構包括第一半導體結構層、第二半導體結構層、活性層、第一電極層與第二電極 層,其中活性層介於第一半導體結構層與第二半導體結構層之間。第一磁源層整合於發光結構用以在發光結構中產生磁場。An exemplary embodiment of the present invention provides a magnetic light emitting device including a light emitting structure and a first magnetic source layer. The light emitting structure includes a first semiconductor structure layer, a second semiconductor structure layer, an active layer, a first electrode layer and a second electrode a layer, wherein the active layer is interposed between the first semiconductor structure layer and the second semiconductor structure layer. The first magnetic source layer is integrated into the light emitting structure for generating a magnetic field in the light emitting structure.
本發明之一示範實施例提供一種磁性發光裝置,包括發光結構、透光磁源層、第一電極層與第二電極層。發光結構包括第一半導體結構層、第二半導體結構層,以及介於第一半導體結構層與第二半導體結構層之間的活性層。透光磁源層配置於第一半導體結構層,產生一磁場。第一電極層配置於透光磁源層。第二電極層配置於第二半導體結構層且位於第一電極層之相反側。An exemplary embodiment of the present invention provides a magnetic light emitting device including a light emitting structure, a light transmitting magnetic source layer, a first electrode layer, and a second electrode layer. The light emitting structure includes a first semiconductor structure layer, a second semiconductor structure layer, and an active layer interposed between the first semiconductor structure layer and the second semiconductor structure layer. The light transmissive magnetic source layer is disposed on the first semiconductor structure layer to generate a magnetic field. The first electrode layer is disposed on the light transmitting magnetic source layer. The second electrode layer is disposed on the second semiconductor structure layer and on the opposite side of the first electrode layer.
根據本發明之多個示範實施例,磁源層整合於發光裝置的結構。換句話說,磁場可於單一晶片分別自我供應。單一發光裝置易於封裝於單一晶片。According to various exemplary embodiments of the present invention, the magnetic source layer is integrated into the structure of the light emitting device. In other words, the magnetic field can be self-supplied on a single wafer. A single illuminator is easy to package in a single wafer.
前述的總體說明與後述的詳細說明為示範性說明,並提供本發明更進一步解釋。The foregoing general description and the following detailed description are exemplary and are in the
本說明書所包括的伴隨圖式用以讓本發明更明顯易懂,且整合與作成本說明書。圖式解釋本發明多個示範實施例,並配合說明書據以解釋本發明之原理。The accompanying drawings included in the present specification are intended to provide a more obvious understanding of the invention and The drawings illustrate various exemplary embodiments of the invention, and are in accordance
本發明提出一種整合磁源層的發光裝置據以增加光輸出效率。許多示範實施例用以說明本發明,然而本發明並不限定於多個示範實施例。更進一步而言,各種示範實 施例的結合可據以形成其他示範實施例。The present invention proposes a light-emitting device incorporating a magnetic source layer to increase light output efficiency. Many exemplary embodiments are described to illustrate the invention, but the invention is not limited to a plurality of exemplary embodiments. Further, various demonstrations Combinations of the embodiments can be used to form other exemplary embodiments.
在物理現象中,霍爾效應(Hall effect)為當電流流過導線且橫向施加磁場時,則例如為電子流的電流路徑會基於F=q*v*B的磁場Lorenz力而橫向偏移。本發明根據霍爾效應的原理而將霍爾效應結合於LED。In the physical phenomenon, the Hall effect is that when a current flows through the wire and a magnetic field is applied laterally, then, for example, the current path of the electron current is laterally shifted based on the magnetic field Lorenz force of F=q*v*B. The present invention incorporates a Hall effect into an LED in accordance with the principles of the Hall effect.
圖1繪示依照本發明之一示範實施例之磁性LED結構之橫切面。圖1中以LED為例。舉例來說,LED包括底部電極層100,發光結構102,以及頂部電極層104,而發光結構102包括第一半導體結構層102a,活性層102b,與另一半導體結構層102c,其中第一半導體結構層102a例如P型摻雜半導體結構層,用以發光的活性層102b為電子與電洞組合,而另一半導體結構層102c例如為N型摻雜層。頂部電極層104可不配置於發光區域108的中央。1 illustrates a cross-section of a magnetic LED structure in accordance with an exemplary embodiment of the present invention. In Fig. 1, an LED is taken as an example. For example, the LED includes a bottom electrode layer 100, a light emitting structure 102, and a top electrode layer 104, and the light emitting structure 102 includes a first semiconductor structure layer 102a, an active layer 102b, and another semiconductor structure layer 102c, wherein the first semiconductor structure The layer 102a is, for example, a P-type doped semiconductor structure layer, the active layer 102b for emitting light is a combination of electrons and holes, and the other semiconductor structure layer 102c is, for example, an N-type doped layer. The top electrode layer 104 may not be disposed in the center of the light emitting region 108.
當進行運作時,電流從底部電極層100流至頂部電極層104。然而。若是於一個方向施加磁場,例如磁場方向106所示,則會產生Lorenz力以偏移電流。據此,電流橫向偏移有效率地流經活性層102b,但不直接移動至頂部電極層104。基於此,驅動電流可以更有效率地使活性層102b發光。When operating, current flows from the bottom electrode layer 100 to the top electrode layer 104. however. If a magnetic field is applied in one direction, such as the direction of the magnetic field 106, a Lorenz force is generated to offset the current. Accordingly, the lateral shift of the current flows efficiently through the active layer 102b, but does not directly move to the top electrode layer 104. Based on this, the driving current can more efficiently illuminate the active layer 102b.
根據圖1所示的物理過程,磁場須要增加。本發明提出一種發光裝置,並特別於實施上整合磁源。據此,每個發光裝置可以在磁場環境下分別運作。According to the physical process shown in Figure 1, the magnetic field needs to be increased. The invention proposes a lighting device and integrates the magnetic source in particular for implementation. Accordingly, each of the light-emitting devices can operate separately in a magnetic field environment.
圖2至5繪示依照本發明之多個示範實施例之利用封裝以整合磁源層之發光裝置結構之橫切面。請參照圖2, 舉例來說,摻雜半導體結構層202被配置於基底200之上。活性層204形成於摻雜半導體結構層202之上。另一個摻雜半導體結構層206形成於活性層204之上。於此,摻雜半導體結構層根據設計結構可以為單一層或堆疊層。然而,本發明並不特別限定於半導體結構層。更進一步而言,舉例來說透明導電層(transparent conductive,TCL)208可進一步形成於半導體結構層202之上。如同習知技術,TCL 208接觸電極層212以便增加發光效率。更進一步而言,一個反射體可以根據發光方向而據以實施。在本例中,電極層210被配置於半導體結構層202。另一電極層212被配置於TCL層208。一般來說此結構部分為習知LED範例。本發明就不包含磁源層的基本LED結構是不須限定於特定的LED。2 through 5 illustrate cross-sections of a light emitting device structure utilizing a package to integrate a magnetic source layer in accordance with various exemplary embodiments of the present invention. Please refer to Figure 2, For example, the doped semiconductor structure layer 202 is disposed over the substrate 200. The active layer 204 is formed over the doped semiconductor structure layer 202. Another doped semiconductor structure layer 206 is formed over the active layer 204. Here, the doped semiconductor structure layer may be a single layer or a stacked layer according to the design structure. However, the invention is not particularly limited to the semiconductor structure layer. Still further, for example, a transparent conductive (TCL) 208 may be further formed over the semiconductor structure layer 202. As in the prior art, TCL 208 contacts electrode layer 212 to increase luminous efficiency. Further, a reflector can be implemented depending on the direction of light emission. In this example, the electrode layer 210 is disposed on the semiconductor structure layer 202. Another electrode layer 212 is disposed on the TCL layer 208. Generally speaking, this structural part is a conventional LED example. The basic LED structure of the present invention that does not include a magnetic source layer is not necessarily limited to a particular LED.
在一示範實施例中,為了實施磁源層,可以採用封裝結構據以以整合磁源層於發光裝置,其中封裝結構例如為倒裝晶片(flip chip)封裝。磁源層218可形成於封裝基板(submount)220之上。磁源層218例如為具有所須磁化方向的鐵磁層。形成鐵磁層的材料例如包括鐵、鈷、鎳、鋱等等。更進一步而言,除了人造磁性材料外,天然磁鐵亦可採用接著其上的方式據以使用。然而磁場方線應當適當安排。接著利用銲接結構214與216將LED與磁源層218封裝於封裝基板220,其中銲接結構214與216例如為銲接凸塊或直接銲接,其又例如圖5所示也當作電極層210’與電極層212’之用。據此,磁源層218可於LED中產 生磁場。在一示範實施例中,若是磁源層218的磁力方向為此圖平面傳出的方向,則可於圖1中磁場方向106產生磁場。配置於封裝基板220的磁源層218與LED配置可分別使用,其中預設磁場可於單一晶片自我供應。In an exemplary embodiment, in order to implement the magnetic source layer, a package structure may be employed to integrate the magnetic source layer to the light emitting device, wherein the package structure is, for example, a flip chip package. The magnetic source layer 218 may be formed over a submount 220. The magnetic source layer 218 is, for example, a ferromagnetic layer having a magnetization direction. The material forming the ferromagnetic layer includes, for example, iron, cobalt, nickel, rhodium, and the like. Furthermore, in addition to the artificial magnetic material, the natural magnet can be used in the manner in which it is applied. However, the magnetic field square should be properly arranged. The LED and magnetic source layer 218 are then packaged on the package substrate 220 by solder structures 214 and 216, wherein the solder structures 214 and 216 are, for example, solder bumps or directly soldered, which in turn, as shown in FIG. 5, also serves as the electrode layer 210'. Used for electrode layer 212'. Accordingly, the magnetic source layer 218 can be produced in the LED Magnetic field. In an exemplary embodiment, if the magnetic direction of the magnetic source layer 218 is the direction of the plane of the drawing, a magnetic field can be generated in the magnetic field direction 106 of FIG. The magnetic source layer 218 and the LED configuration disposed on the package substrate 220 can be used separately, wherein the preset magnetic field can be self-supplied on a single wafer.
請參照圖3,本示範實施例相似於圖2所示的示範實施例,而另一磁源層224可以進一步形成於基底200的底部表面,其中磁性薄膜222例如為薄膜金屬的磁性材料。來自於磁源層224的效果是相同的。據此,LED中的磁場可進一步改善或區域性調整。Referring to FIG. 3, the exemplary embodiment is similar to the exemplary embodiment shown in FIG. 2, and another magnetic source layer 224 may be further formed on the bottom surface of the substrate 200, wherein the magnetic film 222 is, for example, a thin film metal magnetic material. The effect from the magnetic source layer 224 is the same. Accordingly, the magnetic field in the LED can be further improved or regionally adjusted.
在圖4中,相較於圖3,當磁源層224直接形成於摻雜半導體結構層202之上時,結構可利用移除基底200作進一步修改。因為兩電極層210與212在LED的相同一側,摻雜半導體結構層202仍可透過電極層210施予工作電壓。In FIG. 4, when the magnetic source layer 224 is formed directly over the doped semiconductor structure layer 202, the structure can be further modified with the removal substrate 200, as compared to FIG. Since the two electrode layers 210 and 212 are on the same side of the LED, the doped semiconductor structure layer 202 can still apply an operating voltage through the electrode layer 210.
前述舉例的封裝結構為根據焊接結構214與216。然而此非唯一封裝方式。舉例來說,另一封裝方法可參照圖5。圖5中電極層212’與210’可利用如電鍍方式形成。電極層212’與210’接著封裝於封裝基板226。換句話說,封裝磁源層於封裝基板可以採用任何適當的封裝製程。The foregoing exemplary package structure is based on solder structures 214 and 216. However, this is not the only way to package. For example, another packaging method can refer to FIG. 5. The electrode layers 212' and 210' in Fig. 5 can be formed by, for example, electroplating. The electrode layers 212' and 210' are then packaged on a package substrate 226. In other words, encapsulating the magnetic source layer on the package substrate can employ any suitable packaging process.
圖6繪示依照本發明之一示範實施例之整合條狀磁源層之發光裝置結構之橫切面。請參照圖6,磁性層232可根據磊晶側向成長法(Epitaxial Lateral Overgrowth,ELOG)據以形成於基底200與LED 233之間。在一示範實施例中,磁性層232可以形成於基底200且依照預設圖案成形。 接著LED 233的較低半導體層可利用ELOG製程成長。6 is a cross-sectional view showing the structure of a light-emitting device incorporating a strip-shaped magnetic source layer in accordance with an exemplary embodiment of the present invention. Referring to FIG. 6 , the magnetic layer 232 may be formed between the substrate 200 and the LED 233 according to an Epitaxial Lateral Overgrowth (ELOG) method. In an exemplary embodiment, the magnetic layer 232 may be formed on the substrate 200 and shaped in accordance with a predetermined pattern. The lower semiconductor layer of LED 233 can then be grown using the ELOG process.
圖7至8繪示依照本發明之多個示範實施例之整合磁源層之各種發光裝置結構之橫切面。根據相同觀點,磁源層可利用各種方式整合於LED以作為發光裝置。後述多個示範例為本發明部分示範實施例,但本發明並非限制於此。7 through 8 illustrate cross-sections of various light emitting device structures incorporating an integrated magnetic source layer in accordance with various exemplary embodiments of the present invention. According to the same point of view, the magnetic source layer can be integrated into the LED as a light-emitting device in various ways. The various exemplary embodiments described below are some exemplary embodiments of the present invention, but the present invention is not limited thereto.
在圖8所示的可選擇結構中,另一示範實施例的LED結構包括摻雜半導體結構層202、活性層204與另一摻雜半導體結構層206。更進一步而言,TCL 208亦可包括於其中。此LED結構用以實施磁源層,並於後述示範實施例中作為示範例。底部電極層234形成於摻雜半導體結構層202的一側,而另一電極層236於底部電極層234的相反側形成於TCL 208。TCL 208上沒有被電極層236覆蓋的區域是預計要被形成的發光區域240。在此依此結構為基礎,舉例來說,磁源層238可形成於電極層236之上,而較佳的情況為僅形成於電極層236之上。產生在LED的磁場例如是圖1所示的磁場方向106。在圖8所示進一步改良物中,另一磁源層244可形成於電極層234之上。In the alternative configuration shown in FIG. 8, the LED structure of another exemplary embodiment includes a doped semiconductor structure layer 202, an active layer 204, and another doped semiconductor structure layer 206. Further, TCL 208 can also be included therein. This LED structure is used to implement a magnetic source layer and is exemplified in the exemplary embodiments described later. The bottom electrode layer 234 is formed on one side of the doped semiconductor structure layer 202, and the other electrode layer 236 is formed on the opposite side of the bottom electrode layer 234 on the TCL 208. The area of the TCL 208 that is not covered by the electrode layer 236 is the light-emitting area 240 that is expected to be formed. Based on this structure, for example, the magnetic source layer 238 may be formed over the electrode layer 236, and is preferably formed only over the electrode layer 236. The magnetic field generated at the LED is, for example, the magnetic field direction 106 shown in FIG. In a further improvement shown in FIG. 8, another magnetic source layer 244 may be formed over the electrode layer 234.
圖9與10繪示依照本發明之多個示範實施例之圖7與8之結構之透視面。在圖9與10中電極層236與磁源層238可以依照圖案成形於一些區域,例如條狀圖案,據以產生預設磁場。換句話說,具有磁場的頂部電極層可根據用以增加發光輸出效率的磁場如何產生,據以配置於單一小區域或於一些小區域。9 and 10 illustrate perspective views of the structures of Figs. 7 and 8 in accordance with various exemplary embodiments of the present invention. In Figures 9 and 10, the electrode layer 236 and the magnetic source layer 238 may be formed in a pattern, such as a strip pattern, in accordance with a pattern to thereby generate a predetermined magnetic field. In other words, the top electrode layer having a magnetic field can be generated according to a magnetic field for increasing the efficiency of the light-emitting output, thereby being arranged in a single small area or in some small areas.
為了更進一步的改良,磁源層可以採用其他方式據以 實施。圖11至27繪示依照本發明之多個示範實施例之整合磁源層之各種發光裝置結構之橫切面。在圖11中底部電極層252可以配置於摻雜半導體結構層202的底部表面。然而於此示範實施例中,磁源層250可配置於LED與電極層254之間。以較佳的方式而言,磁源層250可配置於TCL 208與電極層254之間。而以另一較佳的方式而言,磁源層250進一步可為可透光,且因此隨著TCL 208表面而延展。在此根據物理特性而言,金屬通常不透光。然而當金屬的厚度足夠薄時則可為透光。另一方面,若是發光方向朝向電極層252,則磁源層250不必須可透光。在本示範實施例中,磁源層250例如為薄膜金屬的鐵磁材料,或為於其他條件下可透光的鐵磁材料。本結構可以更有效率地產生橫向磁場。在圖12中,除了圖11的結構外,另一磁源層256可形成於發光裝置的底部,例如形成於電極層252。磁源層256無須可透光。For further improvement, the magnetic source layer can be used in other ways. Implementation. 11 through 27 illustrate cross-sectional views of various light emitting device structures incorporating an integrated magnetic source layer in accordance with various exemplary embodiments of the present invention. The bottom electrode layer 252 may be disposed on the bottom surface of the doped semiconductor structure layer 202 in FIG. However, in this exemplary embodiment, the magnetic source layer 250 may be disposed between the LED and the electrode layer 254. In a preferred manner, the magnetic source layer 250 can be disposed between the TCL 208 and the electrode layer 254. In another preferred manner, the magnetic source layer 250 can further be permeable to light and thus extend with the surface of the TCL 208. Here, the metal is usually opaque in terms of physical properties. However, when the thickness of the metal is sufficiently thin, it can be light transmitted. On the other hand, if the light emitting direction faces the electrode layer 252, the magnetic source layer 250 does not have to be transparent. In the exemplary embodiment, the magnetic source layer 250 is, for example, a ferromagnetic material of thin film metal or a ferromagnetic material that is transparent to light under other conditions. This structure can generate a transverse magnetic field more efficiently. In FIG. 12, in addition to the structure of FIG. 11, another magnetic source layer 256 may be formed at the bottom of the light emitting device, for example, formed on the electrode layer 252. The magnetic source layer 256 does not need to be transparent.
在圖13的另一示範實施例中,磁源層258可配置於發光裝置的頂部。舉例來說,磁源層258可覆蓋於TCL 208與電極層254之上。相同地根據發光方向,磁源層258可為透光或不透光。在圖14中,更進一步額外形成磁源層260於底部。磁源層260可視為用以反射光的反射層。In another exemplary embodiment of FIG. 13, magnetic source layer 258 can be disposed on top of the light emitting device. For example, the magnetic source layer 258 can overlie the TCL 208 and the electrode layer 254. Similarly, the magnetic source layer 258 may be light transmissive or opaque depending on the direction of illumination. In FIG. 14, the magnetic source layer 260 is additionally formed at the bottom. The magnetic source layer 260 can be considered as a reflective layer for reflecting light.
在圖15中,更進一步比較圖13,磁源層262可為僅覆蓋部分的發光區域且不覆蓋於電極層254。在圖16中,更進一步額外形成磁源層264於底部。磁源層264可視為用以反射光的反射層。In FIG. 15, comparing FIG. 13 further, the magnetic source layer 262 may be a light-emitting region covering only a portion and not covering the electrode layer 254. In Fig. 16, the magnetic source layer 264 is additionally formed at the bottom. Magnetic source layer 264 can be viewed as a reflective layer for reflecting light.
在圖17中,若是發光方向朝向電極層252,電極層亦可為TCL。接著反射層266可形成於具有電極層254的一側。繼之,磁源層268例如可覆蓋形成於反射層266與電極層254。更進一步而言,類似於其他示範實施例,可透光磁源層可依所需而配置於電極層252。再者,如圖18所示的電極層252,其可以僅覆蓋在摻雜半導體結構層202的一小區域。In FIG. 17, if the light emitting direction is toward the electrode layer 252, the electrode layer may be TCL. A reflective layer 266 can then be formed on one side having the electrode layer 254. Then, the magnetic source layer 268 can be formed, for example, on the reflective layer 266 and the electrode layer 254. Still further, similar to other exemplary embodiments, the permeable magnetic source layer can be disposed on the electrode layer 252 as desired. Furthermore, the electrode layer 252 as shown in FIG. 18 may cover only a small area of the doped semiconductor structure layer 202.
另一方面,在多個示範實施例中,當LED被設計為安排兩電極層於同一側時,磁源層則可以被整合於LED中。根據圖17的結構,圖19中電極層234可形成於摻雜半導體結構層202的延伸區,但與電極層236位於同一側。磁源層238可形成於電極層236之上。圖20中所示的結構以圖8所示的結構為基礎。電極層234形成於摻雜半導體結構層202的延伸區。磁源層244可直接配置於摻雜半導體結構層202之上。On the other hand, in various exemplary embodiments, when the LEDs are designed to arrange the two electrode layers on the same side, the magnetic source layer can be integrated into the LED. According to the structure of FIG. 17, the electrode layer 234 in FIG. 19 may be formed on the extension of the doped semiconductor structure layer 202, but on the same side as the electrode layer 236. A magnetic source layer 238 may be formed over the electrode layer 236. The structure shown in Fig. 20 is based on the structure shown in Fig. 8. Electrode layer 234 is formed in an extension of doped semiconductor structure layer 202. The magnetic source layer 244 can be disposed directly over the doped semiconductor structure layer 202.
圖21中所示的結構以圖11所示的結構為基礎。電極層252配置於摻雜半導體結構層202的延伸區。相同地,圖22至27所示的電極層結構以圖12至17所示的結構為基礎。然而在22至27所示的電極層結構中,當磁源層重新安排後,電極層則配置於摻雜半導體結構層202的延伸區。The structure shown in Fig. 21 is based on the structure shown in Fig. 11. The electrode layer 252 is disposed in an extension of the doped semiconductor structure layer 202. Similarly, the electrode layer structures shown in Figs. 22 to 27 are based on the structures shown in Figs. However, in the electrode layer structure shown in 22 to 27, when the magnetic source layer is rearranged, the electrode layer is disposed in the extended region of the doped semiconductor structure layer 202.
換句話說,磁源層可以整合於LED以作為具有磁場的發光裝置。實際實施方式可以根據不同方式據以實施。例如多個示範實施例及其個別的組合。In other words, the magnetic source layer can be integrated into the LED as a light-emitting device having a magnetic field. The actual implementation can be implemented according to different methods. For example, a plurality of exemplary embodiments and individual combinations thereof.
關於各種選擇方面,舉例來說,發光表面可以某種程度的粗糙,據以增加發光品質。圖6所示的ELOG技術可以使用磁性層作為半導體基底上的遮罩。接著利用例如金屬有機化學氣相沈積(Metal Organic Chemical Vapor Deposition,MOCVD)或分子束磊晶成長(Molecular Beam Epitaxy,MBE)的製程據以成長半導體層。據此,磁性層內嵌於發光裝置。Regarding various options, for example, the luminescent surface may be somewhat roughened to increase the illuminating quality. The ELOG technique shown in Figure 6 can use a magnetic layer as a mask on a semiconductor substrate. The semiconductor layer is then grown by a process such as Metal Organic Chemical Vapor Deposition (MOCVD) or Molecular Beam Epitaxy (MBE). Accordingly, the magnetic layer is embedded in the light emitting device.
更進一步而言,形成P-N接面光學元件可以無機或有機材料。舉例來說,無機半導體材料包括GaAs、InP、GaN、GaP、AlP、AlAs、InAs、GaSb、InSb、Cds、CdSe、ZnS與ZnSe等等。有機半導體材料包括聚合物或習知有機材料。銲接方法可例如為晶粒結合(die bonding)、倒裝晶片銲接(flip chip bonding)、金屬銲接(metal bonding)與晶圓銲接(wafer bonding)等等。銲接材料可例如為銀膠(Silver Glue)、金錫合金(Goldtin)、金凸塊(Au bump),與金屬凸塊(metal bump)等等。Still further, the P-N junction optical element can be formed of an inorganic or organic material. For example, inorganic semiconductor materials include GaAs, InP, GaN, GaP, AlP, AlAs, InAs, GaSb, InSb, Cds, CdSe, ZnS, and ZnSe, and the like. Organic semiconductor materials include polymers or conventional organic materials. The soldering method may be, for example, die bonding, flip chip bonding, metal bonding, wafer bonding, or the like. The solder material may be, for example, Silver Glue, Goldtin, Au bump, metal bump, and the like.
另一方面,反射層可以為反射體或介電反射層,例如分布布拉格反射層(Distributed Bragg Reflector,DBR)結構,其中介電材料可包括例如TiO2 、TaO5 、SiO2 、Mb2 O5 、SeO2 、ZnS、ZnO或MgF2 。基底可包括例如Si、Sic、GaN、GaP、GaAs、sapphire、Zno或AlN。軟磁性材料可包括例如Fe、Co、Ni、Tb、Al或上述組合。磁性薄膜例如可包括Pt、Co、Sm、Fe、Ni、Cu、Cr、或Tb,以塗布製程形成。In another aspect, the reflective layer can be a reflector or a dielectric reflective layer, such as a Distributed Bragg Reflector (DBR) structure, wherein the dielectric material can include, for example, TiO 2 , TaO 5 , SiO 2 , Mb 2 O 5 . , SeO 2 , ZnS, ZnO or MgF 2 . The substrate can include, for example, Si, Sic, GaN, GaP, GaAs, sapphire, Zno, or AlN. The soft magnetic material may include, for example, Fe, Co, Ni, Tb, Al, or a combination thereof. The magnetic film may include, for example, Pt, Co, Sm, Fe, Ni, Cu, Cr, or Tb, formed by a coating process.
除此之外,磁性材料可包括例如Nd、Fe、Pg、Co、Ni、Mn、Cr或Rb的磁鐵材料,或是例如MnOx 、FeOx 、CoO、CuO、Vx Ox 、Cr2 O3 、CrS、MnS、MnSe、MnTe、MnFx 、FeFx 、CoFx 、NiFx 、VClx 、CrClx 、FeClx 、CoClx 、NiClx 、CuClx 、CuBrx 、CrSb、MnAs、MnBi、Cr、α-Mn、MnCl2 .4H2 O、MnBr2 .4H2 O、CuCl2 .2H2 O、Co(NH4 )x (SO4 )x Cl2 .6H2 O、FeCo3 、或FeCo3 .2MgCO3 等的陶瓷材料。In addition to this, the magnetic material may include a magnet material such as Nd, Fe, Pg, Co, Ni, Mn, Cr or Rb, or for example MnO x , FeO x , CoO, CuO, V x O x , Cr 2 O 3 , CrS, MnS, MnSe, MnTe, MnF x , FeF x , CoF x , NiF x , VCl x , CrCl x , FeCl x , CoCl x , NiCl x , CuCl x , CuBr x , CrSb, MnAs, MnBi, Cr , α-Mn, MnCl 2 .4H 2 O, MnBr 2 .4H 2 O, CuCl 2 .2H 2 O, Co(NH 4 ) x (SO 4 ) x Cl 2 .6H 2 O, FeCo 3 , or FeCo 3 .2MgCO 3 and other ceramic materials.
在不脫離本發明特徵上,上述元件的材料或詳細的結構可以作些許更動。The material or detailed structure of the above elements may be modified somewhat without departing from the features of the invention.
雖然本發明已以示範實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可根據上述之示範實施例所教導、揭露或暗示的內容作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above by way of exemplary embodiments, it is not intended to limit the invention, and it is to be understood by those skilled in the art without departing from the spirit and scope of the invention. The teachings, disclosures, or stipulations of the invention are subject to a few changes and modifications, and the scope of the invention is defined by the scope of the appended claims.
100‧‧‧底部電極層100‧‧‧ bottom electrode layer
102‧‧‧發光結構102‧‧‧Lighting structure
102a、102c‧‧‧半導體結構層102a, 102c‧‧‧ semiconductor structural layer
102b、204‧‧‧活性層102b, 204‧‧‧ active layer
104‧‧‧頂部電極層104‧‧‧Top electrode layer
106‧‧‧磁場方向106‧‧‧Magnetic direction
108、240‧‧‧發光區域108, 240‧‧‧Lighting area
200‧‧‧基底200‧‧‧Base
208‧‧‧透明導電層208‧‧‧Transparent conductive layer
202、206‧‧‧半導體結構層202, 206‧‧‧ semiconductor structural layer
210、212、210’、212’‧‧‧電極層210, 212, 210', 212'‧‧‧ electrode layers
214、216‧‧‧銲接結構214, 216‧‧‧ welded structure
220、226‧‧‧封裝基板220, 226‧‧‧ package substrate
218、224、238、244、250、256、258、260、262、264、268‧‧‧磁源層218, 224, 238, 244, 250, 256, 258, 260, 262, 264, 268‧‧ ‧ magnetic source layer
222‧‧‧磁性薄膜222‧‧‧ Magnetic film
233、234‧‧‧發光二極體233, 234‧‧‧Lighting diodes
232‧‧‧磁性層232‧‧‧Magnetic layer
236、252、254‧‧‧電極層236, 252, 254‧‧ ‧ electrode layer
266‧‧‧反射層266‧‧‧reflective layer
圖1是依照本發明之一示範實施例之磁性LED結構之橫切面。1 is a cross-sectional view of a magnetic LED structure in accordance with an exemplary embodiment of the present invention.
圖2至5是依照本發明之多個示範實施例之利用封裝以整合磁源層之發光裝置結構之橫切面。2 through 5 are cross-sectional views of a light emitting device structure utilizing a package to integrate a magnetic source layer in accordance with various exemplary embodiments of the present invention.
圖6是依照本發明之一示範實施例之整合條狀磁源層之發光裝置結構之橫切面。Figure 6 is a cross-sectional view showing the structure of a light-emitting device incorporating a strip-shaped magnetic source layer in accordance with an exemplary embodiment of the present invention.
圖7至8是依照本發明之多個示範實施例之整合磁源 層之各種發光裝置結構之橫切面。7 through 8 are integrated magnetic sources in accordance with various exemplary embodiments of the present invention A cross section of the structure of the various illuminators of the layer.
圖9與10是依照本發明之多個示範實施例之圖7與8之結構之透視面。9 and 10 are perspective views of the structure of Figs. 7 and 8 in accordance with various exemplary embodiments of the present invention.
圖11至27是依照本發明之多個示範實施例之整合磁源層之各種發光裝置結構之橫切面。11 through 27 are cross-sectional views of various light emitting device structures incorporating an integrated magnetic source layer in accordance with various exemplary embodiments of the present invention.
200‧‧‧基底200‧‧‧Base
204‧‧‧活性層204‧‧‧Active layer
202、206‧‧‧半導體結構層202, 206‧‧‧ semiconductor structural layer
208‧‧‧透明導電層208‧‧‧Transparent conductive layer
210、212‧‧‧電極層210, 212‧‧‧ electrode layer
214、216‧‧‧銲接結構214, 216‧‧‧ welded structure
218‧‧‧磁源層218‧‧‧magnetic source layer
220‧‧‧封裝基板220‧‧‧Package substrate
Claims (19)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/146,422 US7989818B2 (en) | 2008-01-11 | 2008-06-25 | Light emitting device with magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201007992A TW201007992A (en) | 2010-02-16 |
TWI464901B true TWI464901B (en) | 2014-12-11 |
Family
ID=44838175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098121407A TWI464901B (en) | 2008-06-25 | 2009-06-25 | Light emitting device with magntic field |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI464901B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201222876A (en) * | 2010-11-26 | 2012-06-01 | Chi Mei Lighting Tech Corp | Photoelectric device |
CN103187502B (en) * | 2011-12-29 | 2016-07-06 | 财团法人工业技术研究院 | Nitride semiconductor light emitting device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874749A (en) * | 1993-06-29 | 1999-02-23 | The United States Of America As Represented By The Secretary Of The Navy | Polarized optical emission due to decay or recombination of spin-polarized injected carriers |
US20050018725A1 (en) * | 2001-09-06 | 2005-01-27 | Nurmikko Arto V | Magneto-optoelectronic switch and sensor |
US6858866B2 (en) * | 2002-01-10 | 2005-02-22 | Epitech Corporation, Ltd. | III-nitride light emitting diode |
US20060186432A1 (en) * | 2005-02-18 | 2006-08-24 | Osipov Viatcheslav V | Polarized radiation source using spin extraction/injection |
-
2009
- 2009-06-25 TW TW098121407A patent/TWI464901B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874749A (en) * | 1993-06-29 | 1999-02-23 | The United States Of America As Represented By The Secretary Of The Navy | Polarized optical emission due to decay or recombination of spin-polarized injected carriers |
US20050018725A1 (en) * | 2001-09-06 | 2005-01-27 | Nurmikko Arto V | Magneto-optoelectronic switch and sensor |
US6858866B2 (en) * | 2002-01-10 | 2005-02-22 | Epitech Corporation, Ltd. | III-nitride light emitting diode |
US20060186432A1 (en) * | 2005-02-18 | 2006-08-24 | Osipov Viatcheslav V | Polarized radiation source using spin extraction/injection |
Also Published As
Publication number | Publication date |
---|---|
TW201007992A (en) | 2010-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7989818B2 (en) | Light emitting device with magnetic field | |
TWI505508B (en) | Led package with increased feature sizes | |
US9159878B2 (en) | Semiconductor light emitting device | |
TWI389355B (en) | Light emitting semiconductor apparatus | |
TWI479687B (en) | Light emitting device, light emitting device package and lighting system including the same | |
CN105576108B (en) | Light emitting device | |
CN110676367B (en) | Light emitting diode | |
JP2007019467A (en) | Light emitting diode, manufacturing method thereof, back-light thereof, lighting system thereof, and display thereof and electronic equipment | |
WO2013161208A1 (en) | Light-emitting element | |
JP2009519604A (en) | AC driven light emitting diode with improved transparent electrode structure | |
WO2010003386A2 (en) | Light-emitting device and packaging structure thereof | |
US20090101933A1 (en) | Semiconductor light emitting device and fabrication method of the semiconductor light emitting device | |
US7928463B2 (en) | Light emitting device | |
TWI464901B (en) | Light emitting device with magntic field | |
JP2014529200A (en) | Light emitting diode package | |
KR20200083894A (en) | Multi-wavelength light-emitting diode epitaxial structure | |
US8502259B2 (en) | Light emitting device | |
US9190566B2 (en) | Light emitting device | |
KR101125416B1 (en) | Light emitting device, method for fabricating the light emitting device and light emitting device package | |
KR20050047695A (en) | A high luminiscent light emitting diode and method for fabricating thereof | |
KR101593215B1 (en) | Ultra violet light emitting diode with a aluminum reflection structure and fabrication method of the same | |
KR102332219B1 (en) | Lens and light emitting device module including the same | |
TWI478374B (en) | Light emitting device | |
JP2013135185A (en) | Semiconductor light-emitting element and method of manufacturing the same | |
TWI393268B (en) | Light emitting device |