TW201007891A - Dielectric layer above floating gate for reducing leakage current and method of forming the same - Google Patents
Dielectric layer above floating gate for reducing leakage current and method of forming the same Download PDFInfo
- Publication number
- TW201007891A TW201007891A TW098123248A TW98123248A TW201007891A TW 201007891 A TW201007891 A TW 201007891A TW 098123248 A TW098123248 A TW 098123248A TW 98123248 A TW98123248 A TW 98123248A TW 201007891 A TW201007891 A TW 201007891A
- Authority
- TW
- Taiwan
- Prior art keywords
- floating gate
- gate
- dielectric
- forming
- floating
- Prior art date
Links
- 238000007667 floating Methods 0.000 title claims abstract description 195
- 238000000034 method Methods 0.000 title claims description 94
- 230000005684 electric field Effects 0.000 claims abstract description 44
- 238000003860 storage Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 87
- 239000001301 oxygen Substances 0.000 claims description 33
- 229910052760 oxygen Inorganic materials 0.000 claims description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 19
- 229920005591 polysilicon Polymers 0.000 claims description 19
- 238000002955 isolation Methods 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 11
- 239000007943 implant Substances 0.000 claims description 11
- 238000002513 implantation Methods 0.000 claims description 9
- 239000003989 dielectric material Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 206010036790 Productive cough Diseases 0.000 claims 1
- 210000003802 sputum Anatomy 0.000 claims 1
- 208000024794 sputum Diseases 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- 230000015654 memory Effects 0.000 abstract description 150
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 56
- 239000010410 layer Substances 0.000 description 49
- 239000000758 substrate Substances 0.000 description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 150000004767 nitrides Chemical class 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000000137 annealing Methods 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000004151 rapid thermal annealing Methods 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- -1 oxygen ions Chemical class 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- MWRJCEDXZKNABM-UHFFFAOYSA-N germanium tungsten Chemical compound [Ge].[W] MWRJCEDXZKNABM-UHFFFAOYSA-N 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
- H01L29/4011—Multistep manufacturing processes for data storage electrodes
- H01L29/40114—Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42324—Gate electrodes for transistors with a floating gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66825—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
201007891 六、發明說明: 【發明所屬之技術領域】 本發明係關於非揮發性記憶體裝置。 交又參考以下申請案且將其全文以引用方式併入本文 中:201007891 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a non-volatile memory device. Reference is also made to the following application and is incorporated herein by reference in its entirety:
James Kai等人的名為「METHOD OF FORMING DIELECTRIC LAYER ABOVE FLOATING GATE FOR REDUCING LEAKAGE CURRENT」之美國專利申請案第_號[代 Ο 理人檔案號碼SAND-01336US0],本案在同一天申請。 【先前技術】 半導體記憶體裝置愈來愈普遍地用於各種電子裝置中。 舉例而言,非揮發性半導體記憶體可用在蜂巢式電話、數 位相機、個人數位助理、行動計算裝置、非行動計算裝置 及其他裝置中。電可擦除可程式化唯讀記憶體(EEPROM) 及快閃記憶體即係最受歡迎之非揮發性半導體記憶體。 典型之EEPROM及快閃記憶體利用具有一浮動閘極之記 ® 憶體單元’該浮動閘極提供於一半導體基板中之一通道區 之上。該淨動閘極藉由一介電區與通道區分離。舉例而 言,該通道區位於源極區與没極區之間的一 p -井中。一控 制閘極藉由另一介電區(閘極間或多晶石夕間電介質)與该浮 動閘極分離。記憶體單元之臨限電壓受浮動閘極上所保留 之電荷量控制。亦即,浮動閘極上之電荷位準確定在記憶 體單元導通以容許其源極與汲極之間導電之前必須施加至 控制閘極之最小電壓量。 141462.doc 201007891 -些EEPRQM及快pg記憶體裝置具有用於儲存兩個電荷 範圍之-浮動閘極’且因此可在兩種狀態之間程式化/抹 除該記憶體單元(例如,—二進制記憶體單元)。—多位元 或多狀態快閃記憶體單元係藉由在—裝置内識別多個不同 之£»限電壓範圍來實施。每—不同臨限電壓範圍皆對應於 該組資料位元之歡值。為達成多狀態單元之正確㈣儲 :,該等多個臨限電璧位準範圍之間應彼此分離充分之裕 董,以便可以清楚之方式來讀取、程式化或抹除記憶體單 元之位準。 當程式化典型之快閃記憶體裝置時’將一程式化電壓施 加至控制閘極並將位元線接地4於控制閘極與浮動開極 之間的電容_合,因此控制閘極上之程式化電壓麵合至 夺動閘極’從而致使—浮動閘極電壓。該浮動閘極電壓致 使電子自通道注人至浮動閘極中。#電子累積於浮動開極 中時’浮動閘極會變成帶負電且自控制閘極檢測出之記憶 體單元δ»限電壓升尚。為保持記憶體單元之經程式化狀 態,需要隨時維持浮動閘極上之電荷。然而,電荷可透過 多晶矽間電介質自浮動閘極洩露至控制閘⑮,此稱作洩露 電流。 / 在最新之快閃記憶體技術中,短的程式化/擦除時間及 低作業電壓魏克服以實現高速度及密度以及低電力作業 之主要障礙。因此,增加記憶體單元之浮動閘極與控制閘 極之間的電容性耦合,同時抑制電子自浮動閘極逃逸至控 制閘極變得越來越必要。影響耦合比率之控制閘極與浮動 14I462.doc 201007891 閘極之間的電容相依於兩個閘極之間的多晶矽間電介質 (IPD)之厚度及ipd之相對電容率或介電常數κ。用以達成 一高耦合比率之一個技術係使用一薄IPD。然而,若IPD太 薄’洩露電流可變得不期望大。 隨著非揮發性記憶體結構變得越來越小,洩露電流正變 成越來越困難之問題。洩露電流問題之一個原因係當將一 電壓施加至控制閘極時發生於IPD各個部分中之電場之強 度。特定而言’在IPD之某些區中電場係增強的,從而導 致較大洩露電流。參考圖1A,電場在IPD 106中靠近浮動 閘極102與控制閘極1〇4之尖角處最強。在靠近!!^ 106之 成圓形之隅角之區中’電場之量值與1/A成比例,其中a係 浮動閘極102之隅角之曲率半徑。應注意,一尖角對應於 一極小的曲率半徑,且因此一強電場。 為減少浮動閘極102之隅角處IPD 106中之電場強度,可 增加浮動閘極102之頂部之曲率半徑,如圖1B中所繪示。 應注意此亦改變控制閘極1〇4之曲率。藉由減少電場強 度’減少沒露電流。然而’為繼續按比例縮小裝置結構之 大小,需要使浮動閘極102之寬度變窄,如圖1 c中所繪 示。應注意,修圓多晶矽浮動閘極1〇2完全橫跨圖IC之浮 動閘極102之頂部延伸。浮動閘極丨〇2之可能修圓量受浮動 閘極102之寬度限制《亦即,最大可能曲率半徑(A)限於浮 動閘極102之寬度之一半。應注意,若浮動閘極ι〇2之寬度 (2A)進一步減少’則最大可能曲率半徑亦進一步減少。因 此’隨著記憶體單元之特徵大小繼續減少,IPD 1 〇6尹之 141462.doc 201007891 電場及因此洩露電流亦變得更加難處理。 • 用以減少電場之一個技術係用具有一高介電常數之一薄 膜形成IPD 106。然而,此薄物難以使用且因此係不合意 的。舉例而言,順電材料具有通常高於二氧化矽至少兩個 量值之介電常數,但若干問題限制其用作閘極電介質。一 個此問題是氧擴散。在與半導體製造相關聯之高溫製程期 間,氧自IPD 106擴散至IPD 1〇6與夾著IPD 106之浮動閘極 102及控制閘極1 04之間的介面,因此形成一不期望之降低 介電系統之總電容性之氧化物層。因此,減少高介電常數 順電材料之效應。 亦提議金屬氧化物作為用於快閃記憶體裝置之高艮材 料。金屬氧化物(特定而言氧化銘(Al2〇3))具有一低茂露電 流。而且,金屬氧化物具有高溫度耐久性以用於製程整 合。然而’由於該等沈積之高介電金屬氧化物具有非化學 計量組成’因此其等傾向於在大部分電介質中及在電介質 /半導體介面處形成大的電缺陷或㈣。該等缺陷或㈣ 增強透過電介質之導電且減少電介質之崩潰強度。 用以減少IPD中之雷媒夕 €牙之另一技術係增加IPD 106之厚 度。然而’增加IPD 1〇6之歷疮分 > 上, 之厚度在彺減少浮動閘極102與控 制閘極106之間的電容性無人 , 谷性耦合,出於先前所論述之理由, 此係不期望的。一般而言,去 田曲率半徑小於IPD 106之厚 度或當IPD 106之厚度接近 _ 处A隐體早兀之尺寸(「特徵大 小」)時,增加IPD 106厚度往往失敗。 【發明内容】 141462.doc 201007891 根據本揭示内容之實施例大約而言係關於一種非揮發性 »己it體單元及用於製造該記憶體單元之技術。該記憶體單 元在浮動閘極上具有一介電罩蓋。在一項實施例中,該介 電罩蓋駐存於該浮動閘極與一保形IPD層之間。該介電罩 蓋減少該浮動閘極與一控制閘極之間的洩露電流。該介電 罩蓋藉由減少該浮動閘極頂部處之電場之強度來達成洩漏 電流減少,在無用於具有一窄芯柱之一浮動閘極之該介電 罩蓋之情形下,該浮動閘極頂部處係該電場將係為最強之 罾處。 另一實施例係一種用於製造一非揮發性儲存元件之方 法。*玄方法包含形成具有一頂部及至少兩個側之一浮勤閘 極。於該浮動閘極之頂部處形成一介電罩蓋。在該浮勤閘 極之至少兩個側周圍及在該介電罩蓋之頂部上方形成一閘 極間介電層。在該浮動閘極之頂部上方形成-控制閘極, 該閘極間介電層將控制閘極與浮動閘極分離。 • 在一個態樣中,形成該介電罩蓋包含將氧植入浮動閘極 之頂部中且加熱該浮動閘極以自所植入氧及由其形成字動 閘極之矽形成介電罩蓋。 根據以下其中結合圖式闡釋之各種實施例之闡述,该等 及其他目標及優點將更清晰。 【實施方式】 一快閃記憶體系統之一個實例使用NAND結構,其包含 在兩個選擇閘極之間串聯配置之多個浮動閘極電晶體。^ 等串聯電晶體及該等選擇閘極稱作一 NAND串。吏用 141462.doc 201007891 NAND結構之一快閃記憶體系統之典型架構將包含數個 NAND串。舉例而言,圖2顯示具有更多個NAND串之一記 憶體陣列之三個NAND串202、204及206。圖2之NAND串 中之每一者皆包含兩個選擇電晶體及四個記憶體單元。舉 例而言,NAND串202包含選擇電晶體220及230與記憶體單 元222、224、226及228。NAND串204包含選擇電晶體240 及25 0與記憶體單元242、244、246及248。每一NAND串皆 藉由其選擇電晶體(例如,選擇電晶體230及選擇電晶體 250)連接至源極線。一源極線SGS用於控制源極側選擇閘 極。各種NAND串皆藉由受選擇線SGD控制之選擇電晶體 220、240等而連接至相應位元線。於其他實施例中,選擇 線並不必需為共同。字線WL3連接至記憶體單元222及記 憶體單元242之控制閘極。字線WL2連接至記憶體單元 224、記憶體單元244及記憶體單元252之控制閘極。字線 WL1連接至記憶體單元226及記憶體單元246之控制閘極。 字線WL0連接至記憶體單元228及記憶體單元248之控制閘 極。由此可見,每一位元線及相應之NAND串包括記憶體 單元陣列之若干行。字線(WL3、WL2、WL1及WL0)包括 所述陣列之若干列。 圖3係NAND快閃記憶體單元陣列之一部分之俯視圖。該 陣列包含位元線350及字線352。應注意,圖3未顯示快閃 記憶體單元之其他細節之全部。 應注意,一 NAND串可具有比圖2及3中所闡述之記憶體 單元更少或更多之記憶體單元。舉例而言,一些NAND串 141462.doc 201007891 將包含8個記憶體單元、16個記憶體單元、32個記憶體單 元、64個記憶體單元、128個記憶體單元等。本文中之論 述並非將一 NAND串中之記憶體單元侷限於任何特定數 目。此外,一字線可具有比圖2及3中所闡述之記憶體單元 更多或更少之記憶體單元。舉例而言,一字線可包含數千 個或數萬個記憶體單元。本文中之討論並非將一字線中之 記憶體單元侷限於任何特定數目。U.S. Patent Application No. _ [Summary File No. SAND-01336US0] of James Kai et al., entitled "METHOD OF FORMING DIELECTRIC LAYER ABOVE FLOATING GATE FOR REDUCING LEAKAGE CURRENT", was filed on the same day. [Prior Art] Semiconductor memory devices are increasingly used in various electronic devices. For example, non-volatile semiconductor memory can be used in cellular phones, digital cameras, personal digital assistants, mobile computing devices, inactive computing devices, and other devices. Electrically erasable programmable read only memory (EEPROM) and flash memory are the most popular non-volatile semiconductor memories. A typical EEPROM and flash memory utilizes a memory cell having a floating gate. The floating gate is provided over a channel region in a semiconductor substrate. The net moving gate is separated from the channel region by a dielectric region. For example, the channel region is located in a p-well between the source region and the non-polar region. A control gate is separated from the floating gate by another dielectric region (inter-gate or polycrystalline inter-lithium dielectric). The threshold voltage of the memory cell is controlled by the amount of charge remaining on the floating gate. That is, the charge level on the floating gate determines the minimum amount of voltage that must be applied to the control gate before the memory cell conducts to allow conduction between its source and drain. 141462.doc 201007891 - Some EEPRQM and fast pg memory devices have a floating gate for storing two charge ranges and thus can be programmed/erased between the two states (eg, - binary) Memory unit). - Multi-bit or multi-state flash memory cells are implemented by identifying a plurality of different voltage ranges within the device. Each of the different threshold voltage ranges corresponds to the value of the data bits of the group. In order to achieve the correct (four) storage of the multi-state unit: the plurality of thresholds must be separated from each other so that the memory unit can be read, programmed or erased in a clear manner. Level. When stylizing a typical flash memory device, 'apply a stylized voltage to the control gate and ground the bit line 4 to the capacitance between the control gate and the floating open, thus controlling the program on the gate The voltage is combined to the gate of the gate' to cause a floating gate voltage. This floating gate voltage causes electrons to be injected from the channel into the floating gate. #电子 accumulates in the floating open pole. The floating gate becomes a negatively charged and the memory unit δ» limit voltage rises from the control gate. In order to maintain the programmed state of the memory cell, it is necessary to maintain the charge on the floating gate at any time. However, charge can leak through the polysilicon dielectric from the floating gate to the control gate 15, which is referred to as the leakage current. / In the latest flash memory technology, short stylization/erasing times and low operating voltages overcome the main obstacles to achieving high speed and density and low power operation. Therefore, it is increasingly necessary to increase the capacitive coupling between the floating gate of the memory cell and the control gate while suppressing the escape of the electronic self-floating gate to the control gate. Control gate and floating that affect the coupling ratio 14I462.doc 201007891 The capacitance between the gates depends on the thickness of the polysilicon dielectric (IPD) between the two gates and the relative permittivity or dielectric constant κ of ipd. One technology used to achieve a high coupling ratio uses a thin IPD. However, if the IPD is too thin, the leakage current can become undesirably large. As non-volatile memory structures become smaller and smaller, leakage currents are becoming more and more difficult. One cause of leakage current problems is the strength of the electric field that occurs in various parts of the IPD when a voltage is applied to the control gate. In particular, the electric field is enhanced in certain regions of the IPD, resulting in a large leakage current. Referring to Figure 1A, the electric field is strongest in the IPD 106 near the sharp corners of the floating gate 102 and the control gate 1〇4. Being close! !^ 106 The area of the rounded corner is the ratio of the electric field to 1/A, where a is the radius of curvature of the corner of the floating gate 102. It should be noted that a sharp angle corresponds to a very small radius of curvature and thus a strong electric field. To reduce the electric field strength in the IPD 106 at the corners of the floating gate 102, the radius of curvature of the top of the floating gate 102 can be increased, as depicted in Figure 1B. It should be noted that this also changes the curvature of the control gate 1〇4. The current is reduced by reducing the electric field strength. However, in order to continue to scale down the size of the device structure, the width of the floating gate 102 needs to be narrowed, as depicted in Figure 1c. It should be noted that the spheronized polysilicon floating gate 1 〇 2 extends completely across the top of the floating gate 102 of the Figure IC. The possible rounding amount of the floating gate 丨〇2 is limited by the width of the floating gate 102. That is, the maximum possible radius of curvature (A) is limited to one half of the width of the floating gate 102. It should be noted that if the width (2A) of the floating gate ι is further reduced, the maximum possible radius of curvature is further reduced. Therefore, as the size of the memory cell continues to decrease, IPD 1 〇6 Yinzhi 141462.doc 201007891 The electric field and therefore the leakage current also become more difficult to handle. • One technique for reducing the electric field forms the IPD 106 with a thin film having a high dielectric constant. However, this thin article is difficult to use and therefore undesirable. For example, a paraelectric material has a dielectric constant that is generally higher than at least two values of ceria, but several problems limit its use as a gate dielectric. One such problem is oxygen diffusion. During the high temperature process associated with semiconductor fabrication, oxygen diffuses from the IPD 106 to the interface between the IPD 1〇6 and the floating gate 102 and the control gate 104 that sandwiches the IPD 106, thus creating an undesirable degradation. The total capacitive oxide layer of the electrical system. Therefore, the effect of high dielectric constant paraelectric materials is reduced. Metal oxides are also proposed as sorghum materials for flash memory devices. Metal oxides (specifically, Oxide (Al2〇3)) have a low dew current. Moreover, metal oxides have high temperature durability for process integration. However, since such deposited high dielectric metal oxides have a non-stoichiometric composition, they tend to form large electrical defects or (d) in most dielectrics and at dielectric/semiconductor interfaces. These defects or (d) enhance the conduction through the dielectric and reduce the breakdown strength of the dielectric. Another technique used to reduce the amount of IPD 106 in the IPD of the IPD is to increase the thickness of the IPD 106. However, the increase in the thickness of the IPD 1〇6 is greater in thickness, and the capacitive coupling between the floating gate 102 and the control gate 106 is reduced, and the valley coupling, for the reasons previously discussed, unexpected. In general, increasing the thickness of the IPD 106 when the curvature radius of the field is less than the thickness of the IPD 106 or when the thickness of the IPD 106 is close to the size of the A hidden body ("feature size") often fails. SUMMARY OF THE INVENTION 141462.doc 201007891 Embodiments in accordance with the present disclosure are generally related to a non-volatile <RTI ID=0.0>> The memory cell has a dielectric cover on the floating gate. In one embodiment, the dielectric cover resides between the floating gate and a conformal IPD layer. The dielectric cover reduces leakage current between the floating gate and a control gate. The dielectric cover achieves leakage current reduction by reducing the intensity of the electric field at the top of the floating gate, in the absence of the dielectric cover for a floating gate having a narrow stem, the floating gate At the top of the pole, the electric field will be the strongest. Another embodiment is a method for making a non-volatile storage element. The mysterious method includes forming a floating gate having a top and at least two sides. A dielectric cover is formed at the top of the floating gate. An inter-gate dielectric layer is formed around at least two sides of the floating gate and over the top of the dielectric cover. A control gate is formed over the top of the floating gate, the inter-gate dielectric separating the control gate from the floating gate. • In one aspect, forming the dielectric cap includes implanting oxygen into the top of the floating gate and heating the floating gate to form a dielectric cap from the implanted oxygen and the word-forming gate formed therefrom cover. These and other objects and advantages will be more apparent from the following description of the various embodiments illustrated herein. [Embodiment] An example of a flash memory system uses a NAND structure including a plurality of floating gate transistors arranged in series between two select gates. ^ The series transistor and the selected gate are called a NAND string. 141 141462.doc 201007891 A typical architecture for a flash memory system in a NAND architecture will contain several NAND strings. For example, Figure 2 shows three NAND strings 202, 204, and 206 having one memory array of more NAND strings. Each of the NAND strings of Figure 2 includes two select transistors and four memory cells. For example, NAND string 202 includes select transistors 220 and 230 and memory cells 222, 224, 226, and 228. NAND string 204 includes select transistors 240 and 250 and memory cells 242, 244, 246, and 248. Each NAND string is connected to the source line by its selection transistor (e.g., select transistor 230 and select transistor 250). A source line SGS is used to control the source side selection gate. The various NAND strings are connected to respective bit lines by select transistors 220, 240, etc., controlled by selected line SGD. In other embodiments, the selection lines do not have to be common. Word line WL3 is coupled to the control gates of memory unit 222 and memory unit 242. Word line WL2 is coupled to control gates of memory unit 224, memory unit 244, and memory unit 252. Word line WL1 is coupled to the control gates of memory unit 226 and memory unit 246. Word line WL0 is coupled to the control gates of memory unit 228 and memory unit 248. Thus, each bit line and corresponding NAND string includes a number of rows of a memory cell array. Word lines (WL3, WL2, WL1, and WL0) include a number of columns of the array. Figure 3 is a top plan view of a portion of a NAND flash memory cell array. The array includes bit line 350 and word line 352. It should be noted that Figure 3 does not show all of the other details of the flash memory unit. It should be noted that a NAND string can have fewer or more memory cells than the memory cells illustrated in Figures 2 and 3. For example, some NAND strings 141462.doc 201007891 will contain 8 memory cells, 16 memory cells, 32 memory cells, 64 memory cells, 128 memory cells, and the like. The discussion herein does not limit the memory cells in a NAND string to any particular number. In addition, a word line can have more or fewer memory cells than the memory cells illustrated in Figures 2 and 3. For example, a word line can contain thousands or tens of thousands of memory cells. The discussion herein does not limit the memory cells in a word line to any particular number.
每一記憶體單元皆能儲存模擬資料或數位資料。當鍺存 一個數位資料位元時,將記憶體單元之可能臨限電壓範圍 劃分成兩個範圍,為這兩個範圍指派邏輯資料「丨」及 「〇」。在一 NAND型快閃記憶體之一個實例中,在擦除記 憶體單元之後臨限電壓為負並定義為邏輯「丨」。在程式 化之後臨限電壓為正衫義為邏輯「Q」。當臨限電Μ 負並藉由向控制間極施加〇伏來嘗試一讀取時,記憶體單 兀將導通以指示正儲存邏輯卜而當臨限電遷為正且藉由 向控制閘極施加0伏來嘗試一讀取作業時,記憶體單元將 不會導通’此指示儲存邏輯〇。Each memory unit can store analog data or digital data. When a digital data bit is stored, the possible threshold voltage range of the memory cell is divided into two ranges, and logical data "丨" and "〇" are assigned to the two ranges. In one example of a NAND flash memory, the threshold voltage is negative after the erase of the memory cell and is defined as a logical "丨". After the stylization, the threshold voltage is the logical "Q". When the threshold power is negative and a read is attempted by applying a stagnation to the control pole, the memory unit will be turned on to indicate that the logic is being stored and when the threshold is positive and by the control gate When a 0 volt is applied to attempt a read job, the memory unit will not turn on 'this indication stores the logic 〇.
於儲存多.個資料位準之情況下,此γ A 月下將可能臨限電壓範圍劃 为成育料位準之數目。舉例而 ° 右儲存四個資訊位準 (兩個貨料位元),則將存在四個 回破扣派給貧料值「1 1 、 10」 〇1」及^〇〇」之臨限電壓|$|=| , 憶體之-個實例中,在-棒除作業壓11圍。在NA卿記 定義為「U」。正臨限電壓用於^後_電壓為負/被 14I462.doc 201007891 個資料位元),則將存在八個指派給資料值「〇〇〇 「001」、「010」、「〇11」、「1〇〇」、「1〇1 「110」及「111」之臨限電壓範圍。 程式化至記憶體單元中之資料與該記憶體單元之臨限電 壓位準之間的具體關係相依於針對該等單元所採用之資料 編碼方案。舉例而言,美國專利第6,222,762號及美國專利 申請公開案第2004/0255090號(此二者之全文皆以引用方式 併入本文中)闡述了用於多狀態快閃記憶體單元之各種^ 料編碼方案ϋ實施例中,使用—格雷碼指派方案將 資料值指派給該等臨限電壓範圍,以使得若一浮動閘極之 臨限電壓錯誤地移位至其相鄰物理狀態,則僅一個位元將 觉到影響。在某些實施例巾,資料編碼方案可針對不同字 線改變,資料編碼方案可隨時間改變,或者隨機字線之資 料位元可被反轉或否則隨機化以減少資料型樣靈敏度及甚 至對記憶體單元之磨損。 在下列美國專利/專利申請案中提供有NAND型快閃記憶 體及其作業之相關實例,所有該等美國專利/專利申請案 皆以引用的方式併人本文中:美國專利第5,57(),315號;美 國專利第5,774,397號;美國專利第6,046,935號;美國專利 第ό,456,528號;及美國專利公開案第US2〇〇3/〇〇〇2348號。 本文中之淪述亦可適用於除NAND之外之其他類型快閃記 憶體以及其他類型之非揮發性記憶體。舉例而言,下列專 利闡述NOR型快閃記憶體,且其全文以引用方式併入本文 中.美國專利第5,〇95,344號;第5,172,338號;第5,890,192 141462.doc -10 - 201007891 號;及第6,151,248號。 圖4A及圖4B係一非揮發性儲存元件陣列之一部分之一 項實施例之二維方塊圖。圖4八繪示沿圖3之切線之記 憶體陣列之橫截面(沿字線之橫截面)。圖4B繪示沿圖^之 切線B-B之記憶體陣列之一橫截面(沿位元線之橫截面)。 圖4A及圖4B之記憶體單元包含一種三重井(在圖中未繪 示),該三重井包括—P基板、一Ν·井及一p-井。在p井内 ❹係若干用作源極/沒極之N+擴散區444。N+擴散區州係被 標記為源極區還是汲極區在一定程度上係任意的;因此, 可將源極/汲極區444視為源極區、汲極區、或二者。在一 NAND串中,一源極/汲極區444擔當一個記憶體單元之一 源極’同時用作一毗鄰記憶體單元之一汲極。 在源極/汲極區444之間的係通道446。在通道446上的係 一第一介電區域410,另外稱作一閘極氧化物。在一項實 施例中,介電層410由Si〇2製成。亦可使用其他介電材 φ 料。在介電層410上的係浮動閘極412。在與讀取或旁路作 業相關聯之低電壓運作狀況下,浮動閑極藉由介電層41〇 與通道446電絕緣/隔離。浮動閘極412通常係由摻雜有^^型 摻雜劑之多晶矽製成;然而,亦可使用其他導電材料,例 如金屬。浮動閘極412上的係一介電罩蓋408。在浮動閘極 412頂部上及浮動閘極412之側之周圍係一第二介電層 406,其亦稱作一 IPD 4〇6。在IPD 4〇6上係多晶矽控制閘 極404。控制閘極4〇4可包含矽化鎢(WSi)層及氮化矽⑶叫 層之額外層。一 wsi層係一較低電阻層,而一SiN層擔當 141462.doc -11 - 201007891 一絕緣體。 介電層410、浮動閘極412、介電罩蓋408、IPD 406及控 制閘極404構成一浮動閘極堆疊。一記憶體單元陣列將具 有許多此等浮動閘極堆疊。在另一實施例中’一浮動閘極 .堆疊可具有比圖4八及4B中所繪示之組件更多或更少之組 件’然而,一浮動閘極堆疊如此命名係由於其包含一浮動 閘極以及其他組件。 參考圖4A,淺渠溝隔離(STI)結構407在記憶體單元串之 間提供電絕緣。特定而言,一STI 4〇7分離一個NAND串與 下一個NAND串之源極區/汲極區(圖4A中未繪示)。在一項 實施例中’ STI 407填充有Si〇2。 在圖4A及4B中,浮動閘極具有一「倒τ」形狀。亦即, 浮動閘極具有一基底412b及一芯柱412a。倒Τ形狀幫助增 加與控制閘極404重合之浮動閘極412之若干部分之區域同 時允許浮動閘極412緊密間隔在一起。在此實例中,沿字 線截取之浮動閘極之一橫截面具有一倒τ形狀。在另一實 施例中’沿一沿位元線截取之橫截面發生倒Τ形狀。舉例 而言,圖4Β中之浮動閘極將具有一倒τ形狀。然而,不要 求浮動閘極具有一倒τ形狀。一般而言,藉由一 IPD與一控 制閘極分離之具有一頂部及若干側之任何浮動閘極可得益 於位於該浮動閘極頂部上方之一介電罩蓋。然而,在至少 一個方向上具有一相對薄之寬度之浮動閘極可更易受 中之高電場問題之影響,且因此可自一介電罩蓋接收一更 大益處。 141462.doc •12· 201007891 不要求浮動間極412之芯柱412a具有如圖4八中所繪示之 一相對均句寬度。在-#代實施例中,浮動閘極之忠柱 412a在介電罩蓋彻附近比靠近浮動間極之基底他之底 部處更狹窄。 本文中揭示用於減少IPD 406之某些區中電場強度之技 術。浮動閘極412中之一者具有標記為「頂部場」之一箭 頭,其係指浮動閘極412之頂部上IpD 4〇6中之電場。標記 為「隅角場」之箭頭係指靠近浮動閘極412之頂部隅角處 IPD 406中之電場。在一些實施例中’浮動閘極412之頂部 處電場強度藉由介電罩蓋408減少以使得其小於(或至少不 大於)浮動閘極412之隅角處之電場強度。然而,不要求浮 動閘極412之頂部處之電場弱於浮動閘極412之隅角處之電 場。舉例而言,介電罩蓋4〇8可用於在一定程度上弱化浮 動閘極412之頂部處之電場,但非必須弱化該電場以使得 該電場弱於浮動閘極412之隅角處之電場。減少浮動問極 之頂部處之電場強度可減少總洩露電流而不顯著影響總效 能。 圖5係闡述用於製作圖4A及4B之記憶體單元之製程之一 部分之一項實施例之一流程圖。圖6A-6J繪示處於該製程 之各種階段之記憶體單元。相關於來自圖4A及化及圖6A_ 6J之參考編號闡述圖5之製程。圖6A-6J闡述圖3中沿線八_八 之一橫截面。在此實例中,當以一沿字線截取之—橫幾面 觀看時一浮動閘極係相對狹窄。然而,應注意,本文令所 論述之原理適用於當以沿位元線或字線及位元線兩者幾取 141462.doc -13- 201007891 之一橫截面觀看時係狹窄之浮動閘極。 此流程圖未閣述所有植入步驟、浮動閘極堆叠之間的經 蝕刻容積之間隙填充、或形成觸點、金屬化、通孔及純化 以及此項技術中已知之製作製程之其他部分。存在諸多用 於製作根據本發明之記憶體之方法’且因此,發明者預期 可使用除藉由圖5所述之方法之外之各種方法。當_快閃 記憶體晶片將包含核心記憶體及周邊電路時,圖5之製程 步驟僅意欲籠統地闡述用於製造核心記憶體陣列之一個可 能製程配方。 圖5之步驟502包含在一矽基板6〇2頂部上生長隧道氧化 物層604。該隧道氧化物層6〇4將用來形成閘極介電層 410。在步驟504中,使用CVD、PVD、ALD或另一適合方 法將用來形成浮動閘極412之一多晶矽層606沈積在氧化物 層604上方。在步驟505中,在多晶矽6〇6頂部上生長—第 二氧化物層608。此第二氧化物層6〇8將用來形成介電罩蓋 408。在步驟506中,將一 SiN層沈積在第二氧化物層6〇8上 方。可藉由(例如)CVD來沈積SiN。在步驟508中,添加一 光阻劑。舉例而言’使用一間隔件製程來界定一非晶形矽 圖案612。在步驟5 08中’將矽圖案612傳送至氮化物硬遮 罩61 0。步驟5 10包含使用各向異性電漿蝕刻來蝕刻氮化物 硬遮罩610(亦即’反應離子蝕刻)。步驟502-510之結果繪 示於圖6A中,該圖顯示矽基板402、第一氧化物層604、多 晶石夕層606、第二氧化物層608 '钮刻之後剩餘之氮化物硬 遮罩610及非晶形矽圖案612。 141462.doc • 14· 201007891 在姓刻硬遮罩層610之後’在步驟512中剝離光阻劑612 且硬遮罩層610可用作用於蝕刻下伏層之遮罩。步驟514包 含蝕刻穿過第二氧化物層6〇8及多晶矽606之一部分以形成 浮動閘極412之芯柱412a。對於所遭遇之每一平面層,可 使用在物理蝕刻與化學蝕刻之間具有適當平衡之各向異性 電漿蝕刻來執行該蝕刻。第二氧化物層6〇8在蝕刻之後剩 餘之部分將形成介電罩蓋4〇8。此項技術中已知用於在適 當深度處停止蝕刻多晶矽606之技術。用於停止蝕刻多晶 矽之實例技術可發現於以下美國專利申請案中:2〇〇7年12 月 19 日提出申請、名稱為「Enhanced Endp〇int Detecti〇n in Non-Volatile Memory Array Fabrication」之美國專利申 請案ll/96〇,485及2〇〇7年12月19日提出申請、名稱為 「Composite Charge Storage Structure F〇rmati〇n 化 N〇n_In the case of storing more than one data level, this γ A month will be able to divide the threshold voltage range into the number of breeding levels. For example, while storing four information levels (two stock levels) on the right, there will be four thresholds for the lean value of "1 1 , 10" 〇 1" and ^ 〇〇 |$|=| , Recalling the body - in an example, in the - bar except the work pressure 11 circumference. It is defined as "U" in NA Qingji. If the positive threshold voltage is used for ^ after _ voltage is negative / is 14I462.doc 201007891 data bits), there will be eight assigned data values "〇〇〇"001", "010", "〇11", The threshold voltage range of "1", "1"1, "110" and "111". The specific relationship between the data stylized into the memory unit and the threshold voltage level of the memory unit depends on the data encoding scheme employed for the units. For example, U.S. Patent No. 6,222,762 and U.S. Patent Application Publication No. 2004/0255090, the entireties of each of each of each of each of each Encoding Scheme In an embodiment, a data value is assigned to the threshold voltage ranges using a Gray code assignment scheme such that if the threshold voltage of a floating gate is erroneously shifted to its neighboring physical state, only one The bit will be affected. In some embodiments, the data encoding scheme may be changed for different word lines, the data encoding scheme may change over time, or the data bits of the random word line may be inverted or otherwise randomized to reduce data sensitivity and even Wear of the memory unit. NAND-type flash memory and related examples of operations are provided in the following U.S. patents/patent applications, all of which are incorporated herein by reference: U.S. Patent No. 5,57 No. 315; U.S. Patent No. 5,774,397; U.S. Patent No. 6,046,935; U.S. Patent No. 456,528; and U.S. Patent Publication No. US Pat. No. 2/3,348. The descriptions herein may also apply to other types of flash memory other than NAND, as well as other types of non-volatile memory. For example, the following patents describe NOR-type flash memories, and are incorporated herein by reference in their entirety. U.S. Patent No. 5, 〇95,344; 5,172,338; 5,890,192 141462.doc -10 - 201007891 ; and 6, 151, 248. 4A and 4B are two-dimensional block diagrams of one embodiment of a non-volatile storage element array. Figure 4 shows a cross section (cross section along the word line) of the memory array along the tangent to Figure 3. Figure 4B shows a cross section (cross section along the bit line) of one of the memory arrays along the tangent line B-B. The memory cell of Figures 4A and 4B includes a triple well (not shown) including a -P substrate, a well and a p-well. In the p-well, a number of N+ diffusion regions 444 are used as source/depolarization. Whether the N+ diffusion region is marked as a source region or a drain region is arbitrary to some extent; therefore, the source/drain region 444 can be regarded as a source region, a drain region, or both. In a NAND string, a source/drain region 444 acts as one of the memory cells and serves as one of the adjacent memory cells. A channel 446 between the source/drain regions 444. A first dielectric region 410 on channel 446 is otherwise referred to as a gate oxide. In one embodiment, the dielectric layer 410 is made of Si〇2. Other dielectric materials can also be used. On the dielectric layer 410 is a floating gate 412. The floating idler is electrically isolated/isolated from the via 446 by the dielectric layer 41A under low voltage operation associated with a read or bypass operation. The floating gate 412 is typically made of polysilicon doped with a dopant of the type; however, other conductive materials such as metals may also be used. A dielectric cover 408 is attached to the floating gate 412. A second dielectric layer 406, also referred to as an IPD 4〇6, is placed on top of the floating gate 412 and on the side of the floating gate 412. A polysilicon control gate 404 is provided on IPD 4〇6. The control gate 4〇4 may comprise an additional layer of a tungsten germanium (WSi) layer and a tantalum nitride (3) layer. A wsi layer is a lower resistance layer, and a SiN layer acts as an insulator of 141462.doc -11 - 201007891. Dielectric layer 410, floating gate 412, dielectric cap 408, IPD 406, and control gate 404 form a floating gate stack. A memory cell array will have many of these floating gate stacks. In another embodiment, a floating gate may have more or fewer components than those illustrated in Figures 4 and 4B. However, a floating gate stack is named because it contains a float. Gate and other components. Referring to Figure 4A, a shallow trench isolation (STI) structure 407 provides electrical isolation between strings of memory cells. In particular, an STI 4〇7 separates the source/drain regions of one NAND string from the next NAND string (not shown in Figure 4A). In one embodiment, 'STI 407 is filled with Si〇2. In FIGS. 4A and 4B, the floating gate has an "inverted τ" shape. That is, the floating gate has a base 412b and a stem 412a. The inverted shape helps to increase the area of portions of the floating gate 412 that coincide with the control gate 404 while allowing the floating gates 412 to be closely spaced together. In this example, one of the floating gates taken along the word line has an inverted τ shape. In another embodiment, the cross-section taken along a bit line follows a collapsed shape. For example, the floating gate in Figure 4Β will have an inverted τ shape. However, do not require the floating gate to have an inverted τ shape. In general, any floating gate having a top and sides separated by an IPD from a control gate may benefit from a dielectric cover located above the top of the floating gate. However, a floating gate having a relatively thin width in at least one direction can be more susceptible to the high electric field problem and thus can receive a greater benefit from a dielectric cover. 141462.doc •12· 201007891 The stem 412a of the floating interpole 412 is not required to have a relative mean width as illustrated in FIG. In the -# embodiment, the floating gate loyalty 412a is narrower near the bottom of the dielectric cover than the bottom of the base of the floating junction. Techniques for reducing the electric field strength in certain regions of IPD 406 are disclosed herein. One of the floating gates 412 has an arrow labeled "Top Field" which refers to the electric field in IpD 4〇6 on top of the floating gate 412. The arrow labeled "corner field" refers to the electric field in IPD 406 near the top corner of floating gate 412. In some embodiments, the electric field strength at the top of the floating gate 412 is reduced by the dielectric cap 408 such that it is less than (or at least not greater than) the electric field strength at the corners of the floating gate 412. However, the electric field at the top of the floating gate 412 is not required to be weaker than the electric field at the corner of the floating gate 412. For example, the dielectric cover 4〇8 can be used to weaken the electric field at the top of the floating gate 412 to some extent, but it is not necessary to weaken the electric field such that the electric field is weaker than the electric field at the corner of the floating gate 412. . Reducing the electric field strength at the top of the floating pole reduces the total leakage current without significantly affecting the overall efficiency. Figure 5 is a flow diagram illustrating one embodiment of a process for fabricating the memory cells of Figures 4A and 4B. Figures 6A-6J illustrate memory cells at various stages of the process. The process of Figure 5 is illustrated in relation to the reference numbers from Figure 4A and Figure 6A-6J. Figures 6A-6J illustrate a cross section along line -8 of Figure 3. In this example, a floating gate is relatively narrow when viewed in a lateral direction taken along a word line. It should be noted, however, that the principles discussed herein apply to a narrow floating gate when viewed in a cross section along the bit line or word line and bit line 141462.doc -13 - 201007891. This flow chart does not describe all implantation steps, gap filling of the etched volume between floating gate stacks, or formation of contacts, metallization, vias, and purification, as well as other portions of the fabrication process known in the art. There are many methods for fabricating a memory according to the present invention' and thus the inventors expect to use various methods other than those described by Figure 5. When the _flash memory chip will contain core memory and peripheral circuitry, the process steps of Figure 5 are intended only to describe in general terms one possible process recipe for fabricating a core memory array. Step 502 of Figure 5 includes growing a tunnel oxide layer 604 on top of a substrate 6〇2. The tunnel oxide layer 6〇4 will be used to form the gate dielectric layer 410. In step 504, a polysilicon layer 606 for forming a floating gate 412 is deposited over the oxide layer 604 using CVD, PVD, ALD, or another suitable method. In step 505, a second oxide layer 608 is grown on top of the polysilicon 6〇6. This second oxide layer 6〇8 will be used to form the dielectric cap 408. In step 506, a SiN layer is deposited over the second oxide layer 6A8. SiN can be deposited by, for example, CVD. In step 508, a photoresist is added. For example, a spacer process is used to define an amorphous germanium pattern 612. The 矽 pattern 612 is transferred to the nitride hard mask 610 in step 508. Step 5 10 includes etching the nitride hard mask 610 using an anisotropic plasma etch (i.e., 'reactive ion etching). The results of steps 502-510 are illustrated in FIG. 6A, which shows the nitride hard mask remaining after the germanium substrate 402, the first oxide layer 604, the polycrystalline layer 606, and the second oxide layer 608' Cover 610 and amorphous 矽 pattern 612. 141462.doc • 14· 201007891 After the hard mask layer 610 is pasted, the photoresist 612 is stripped in step 512 and the hard mask layer 610 can be used as a mask for etching the underlying layer. Step 514 includes etching through a portion of the second oxide layer 6〇8 and the polysilicon 606 to form a stem 412a of the floating gate 412. For each planar layer encountered, the etching can be performed using an anisotropic plasma etch with an appropriate balance between physical and chemical etching. The remaining portion of the second oxide layer 6〇8 after etching will form the dielectric cap 4〇8. Techniques for stopping etching polysilicon 606 at a suitable depth are known in the art. An example technique for stopping the etching of polysilicon can be found in the following U.S. Patent Application: U.S. Patent Application entitled "Enhanced Endp〇int Detecti〇n in Non-Volatile Memory Array Fabrication", December 19, 2007 Patent application ll/96〇, 485 and December 19, 2007, the application was named “Composite Charge Storage Structure F〇rmati〇n N〇n_
Volatile Memory Using Etch Stop Technologies」之美國專 利申請案1 1/960,498,此兩個專利申請案皆以引用方式併 ❿入本文中。步驟512-514之結果繪示於圖沾中,該圖縯示 其上具有介電罩蓋408之洋動閘極芯柱412a之形成。 在步驟516中,生長一基於氧化物之間隔件7〇8,例如原 矽酸四乙醋(TE0S)。在一項實施例中,使用一各向同性沈 積製程。在步驟518中,蝕刻氧化物間隔件7〇8以使得自水 平表面而非自垂直表面移除氧化物間隔件7〇8。 一 你碉貫 施例中,使用一各向異性蝕刻製程形成側壁氧化物間隔件 7〇8。結果繪示於圖60中,在該圖讀示氧化物間隔件咖 沿浮動閘極412之芯柱412a及介電罩蓋4〇8之側。 141462.doc 15- 201007891 在步驟516-518期間或該等步驟之後,可氧化浮動間極 芯柱412a之頂端以在浮動閘極多晶矽之頂部上形成一「鳥 嗓」。氧化該浮動閘極多晶碎用來對浮動開極芯柱4仏頂 部處之隅角進行修圓.改變氧化時間及化學反應可較大程 度地或較小程度地使浮動閘極芯柱412a之頂部彎曲。圖W 繪示其頂部由浮動閘極412頂部上之「鳥喙」712修圓之浮 動閘極。由於鳥喙712包括二氧化石夕,因此其可傾向於擔 當-電介質。因此,在一個實施方案巾,可認為鳥喙η; 係=電罩蓋之-部分。應注意,鳥嗓m可對浮動開極之 總高度及芯柱寬度具有一影響。因此,應在該流程中之早 期預補償此等效應。 接下來,在氧化物間隔件708在原位置之情形下,形成 淺渠溝隔離渠溝。在步驟520中,在氧化物間隔件7〇8在原 位置之情形下’蝕刻多晶矽606之下部分、第—氧化物層 604及矽基板602之頂部。結果繪示於圖61)中。在一項實 施例中,钱刻係至基板602中大約.2微米,以在NAND串之 間形成淺渠溝隔離(STI)區域,其中渠溝之底部在p_井之頂 部内側。 在步驟522中,使用CVD、快速ALD或另一方法用隔離 材料407(例如部分穩定之氧化锆(PSZ)、Si〇2(或另一適入 材料))填充STI渠溝達到硬遮罩610之頂部。在步驟524中, 使用化學機械拋光(CMP)或另一適合製程來將隔離材料々ο? 拋光為扁平直至到達SiN 610。步驟522-524之結果綠示於 圖6E中。 141462.doc -16 - 201007891 步驟526係回姓STI隔離材料407及氧化物間隔件708。步 驟5 2 7係移除氮化物硬遮罩610。可以任一次序執行該等步 驟,如流程圖中選項A及選項B所繪示。首先將論述選項 A。在步驟526中,回蝕STI隔離材料407及氧化物間隔件 708係為沈積多晶矽間電介質(IPD)做準備。步驟526之結 果繪示於圖6F中。 在步驟527中,剝離SiN層610。選項A之此步驟之結果 繪示於圖6G中。若在回蝕之後移除氮化物硬遮罩61〇,則 介電罩蓋408將具有一相對扁平頂部。 在選項B中,在回蝕STI材料407及氧化物間隔件708(步 驟526)之前移除氮化物遮罩610(步驟527)。執行選項B之結 果繪示於圖6H中。若在回蝕之前移除氮化物硬遮罩61〇, 則介電罩蓋408將具有一相對圓的頂部。當使用選項b時, 該蝕刻可具有一小的水平分量且稍微蝕刻氧化物罩蓋4〇8 及形成洋動閘極芯柱412a之多晶梦兩者。因此,在該製程 之早期’應將浮動閘極芯柱412a界定為寬於最後所需目標 寬度。 在步驟528中’生長或沈積多晶矽間電介質(例如,電介 質406)。IPD可包含氧化物及氮化物之交替保形層。舉例 而言’使用氧化物-氮化物-氧化物(ΟΝΟ)多晶;5夕間電介 質。在一項實施例中’ IPD包括氮化物-氧化物-氮化物·氧 化物-氮化物。步驟528之結果繪示於圖61中。應注意,在 圖61中將介電罩蓋408繪示為具有曲率,儘管並不要衣該 曲率。 141462.doc •17· 201007891 在步驟530中,沈積控制閘極(字線)。步驟53〇可包含沈 積—多晶矽層、一層矽化鎢(WSi)層及一層氮化矽(siN) 層。當形成控制閘極時,使用光微影來形成垂直於NAND 鏈之條帶圖案,以形成彼此隔離之字線。在步驟〇中, 使用電漿蝕刻、離子研磨、純粹係物理蝕刻之離子蝕刻、 或另種適合製程來執行蝕刻,以蝕刻各種層並形成單個 字線。 在步驟532中,執行一植入製程來形成N+源極/汲極區 444。可使用砷或鱗植入。在一項實施例中,亦使用一暈 圈植入。在一些實施例中,執行一退火製程,例如一快速 熱退火(RTA)。用於RTA之實例參數係加熱至1〇〇〇攝氏度 持續10秒鐘。 圖4A繪示當使用選項8來致使在介電罩蓋4〇8頂部上修 圓時步驟532後沿圖3之切線A_A之記憶體陣列之一橫截 面。圖4B繪示當使用選項B時步驟532之後沿圖3之切線& B之記憶體陣列之一橫截面。 上述結構及製程有許多種替代結構及製程,該等替代結 構及製程仍歸屬於本發明之精神内。如同在現有NAND實 施例中,一種替代方法係自PMOS裝置製造記憶體單元, 其中與現有NMOS實施方案相比,對各種作業使用相反之 極性偏壓狀況。在以上實例中,基板係由矽製成。然而, 亦可使用此項技術中已知之其他材料,例如珅化鎵等。 圖7係圖解說明針對非揮發性儲存元件之各種組態電場 隨浮動閘極芯柱寬度變化之一圖表。曲線7〇2表示在不使 14I462.doc -18- 201007891 用一介電單蓋408用於類似於圖lc中所繪示之浮動間極之 浮動閘極之情形下在浮動閘極頂部正上之IPD 406中之 電場。該電場係基於一模擬確定的且表示圖⑴中標記為 「A」之箭頭之頂端上之IpD中之一點。應注意,隨著浮 動閘極心柱之寬度製作得越來越狹窄,電場之強度變得越 來越強而且,當芯柱寬度減少低於200 A時,電場強度 極大地增加。 曲線704表示在不使用一介電罩蓋4〇8用於類似於圖π中 所繪不之浮動閘極之一浮動閘極之情形下,該浮動閘極頂 部隅角處IPD中之電場。該電場係基於一模擬確定的且表 不圖1C中標記為「2A」之雙箭頭之左邊或者右邊之ipD中 之一點。應注意,對於一既定浮動閘極芯柱寬度,電場之 強度在芯柱之頂端處(曲線7〇2)比在隅角處(曲線7〇4)大。 點706表示在類似於圖4A中所繪示之非揮發性儲存元件 使用一半球形介電罩蓋4〇8之情形下浮動閘極412之芯柱 參 412a之頂部隅角處之IPD 4〇6中之電場(圖4八中標記為「隅 角場」)。浮動閘極412具有一 1〇〇 A之寬度。 點708表示在類似於圖4A中所繪示之非揮發性儲存元件 使用一介電罩蓋408之情形下浮動閘極412之芯柱412a之頂 部處之IPD 406中之電場(在圖4A中標記為「頂部場」)。 應注意’浮動閘極頂端處之電場強度(點7〇8)小於浮動閘極 隅角處之電場強度(點706)。而且,由於芯柱412a之頂部處 電場強度較小,因此該區中洩露電流量減少。 減少浮動閘極頂部處之電場強度可大致減少總洩露電流 141462.doc •19· 201007891 而不顯著地影響總效能。應注意,當一些介電材料添加到 IPD中時’電介質之總量不會增加太多。因此,浮動閑極 與控制閘極之間的耦合不會受到嚴重影響。而且,在茂露 電流係最大問題之一區中洩露電流已減少。 圖8A係闌述用於製作圖4A及4B之記憶體單元之製程之 一部分之一項實施例之一流程圖。圖9A_9E根據圖8A之製 程繪示形成之各種階段。圖9八-叩繪示沿圖3中之線a_a之 一橫截面。在此實例中,當以沿字線截取之一橫截面觀看 時,該浮動閘極係相對狹窄。然而,應注意,本文中所論 述之原理適用於當以沿位元線或字線及位元線兩者截取之 一橫截面觀看時係狹窄之浮動閘極。 在圖8A之製程中,藉由以下步驟形成介電罩蓋4〇8 :在 浮動閘極412之頂部處植入一材料(例如,氧)且藉由一製程 (例如,退火)處理該浮動閘極412以致使由所植入氧及浮動 閘極412之多晶石夕來形成介電罩蓋彻。不要求氧為所植入 材料。在一個實施方案中,植入氮。 圖8A之流程圖並未繪示用於形成浮動閘極412之初始步 驟。此外,該流程圖並未繪示大多數植入步驟、堆叠之間 的經钮刻容積之間隙填充、或形成觸點、金屬〖、通孔及 鈍化,卩及此項技術中已知製作製程之其他部A。存在用 於製作根據本揭示内容之記憶體之諸多方法且,因此發明 者預期可使用除圖8A所闡述之方法之外之各種方法。當— 快閃記憶體晶片將包含核心記憶體及周邊電路時,圖8A之 製程步驟僅意欲籠統地闡述製造核心'記憶體陣列之一個可 141462.doc -20- 201007891 能製程配方。 步驟902係形成浮動閘極及沈積用於STI結構之材料。圖 9A顯示處於已在浮動閘極412周圍沈積STI材料4〇7之後之 一階段之兩個s己憶體單元。具體而言,圖9A繪示形成於一 基板402上之兩個浮動閘極412。一閘極氧化物41〇形成在 浮動閘極412與基板402之間。氮化物遮罩91〇仍在浮動閘 極芯柱412a上之位置處。將用於STI材料4〇7之一渠溝蝕刻 至基板402中,其中STI材料407填充該渠溝且亦延伸至氮 化物遮罩610之頂部。用於形成達到圖9八中所繪示之點之 s己憶體單元之技術眾所周知且因此將不進行詳細論述。 步驟904係將一材料植入浮動閘極412之頂部表面中以用 作晶種材料以隨後形成介電罩蓋4〇8之步驟。在此實施例 中,透過氮化物遮罩910植入該材料。圖9B繪示晶種材料 908已植入浮動閘極芯柱412&之頂部中(其中氮化物遮罩 910仍在原位置)之後之記憶體單元。該製程中以後,將處 理晶種材料908(例如,藉由加熱)以形成介電罩蓋4〇8。在 一項實施例中,晶種材料9〇8為氧。該氧可藉由類似於藉 由所植入氧分離之一技術進行植入。SIM〇x係一種用於藉 由植入高劑量氧,後跟高溫退火來製造矽上絕緣體結搆及 基板之技術舉例而言,SIM0X製程藉由選擇植入離子所藉 以之旎置將氧離子植入一矽基板中一所需深度處。在離子 植入之後,執行退火以將氧離子連同基板中之矽一起轉換 成二氧化矽。使用SIM〇x,形成經小心控制之二氧化石夕 層,其隱埋在矽基板中。然而,雖然SIMOX通常用來在一 141462.doc -21- 201007891 基板中某一深度處形成二氧化矽之隱埋層,但本技術在一 浮動閘極412之頂部處形成介電罩蓋4〇8。 應注意,可藉由對植入製程之適當控制透過SiN 91〇植 入晶種材料908 ^該深度及濃度可藉由氧之能量及劑量進 行控制。植入離子所藉以之能量控制該深度。晶種材料 908之濃度在垂直方向上可為不均勻的。舉例而言,分佈 可係大約為高斯分佈。藉由適當選擇用於植入材料之能 量,可在極靠近浮動閘極芯柱412a之表面處建立高斯分佈 之峰值。Volatile Memory Using Etch Stop Technologies, U.S. Patent Application Serial No. 1 1/960,498, the disclosure of which is incorporated herein by reference. The results of steps 512-514 are shown in the figure, which illustrates the formation of an oceanic gate stub 412a having a dielectric cover 408 thereon. In step 516, an oxide-based spacer 7〇8, such as tetraethyl vinegar (TEOS), is grown. In one embodiment, an isotropic deposition process is used. In step 518, the oxide spacers 7〇8 are etched such that the oxide spacers 7〇8 are removed from the horizontal surface rather than from the vertical surface. In one example, an anisotropic etch process is used to form sidewall oxide spacers 7〇8. The results are shown in Figure 60, which shows the side of the oxide spacer along the stem 412a of the floating gate 412 and the dielectric cover 4A8. 141462.doc 15-201007891 During or after steps 516-518, the top end of the floating interpole post 412a can be oxidized to form a "bird" on top of the floating gate polysilicon. Oxidizing the floating gate polycrystal is used to round the corner of the floating open pole 4 仏. The oxidation time and chemical reaction can change the floating gate 412a to a greater or lesser extent. The top is curved. Figure W shows the floating gate at the top of which is rounded by the "Bird" 712 on the top of the floating gate 412. Since guanine 712 includes dioxide, it can tend to act as a dielectric. Thus, in one embodiment, the bird can be considered to be a part of the electric cover. It should be noted that the bird's eye m has an effect on the total height of the floating opening and the width of the stem. Therefore, these effects should be pre-compensated early in the process. Next, in the case where the oxide spacer 708 is in the home position, a shallow trench isolation trench is formed. In step 520, the lower portion of the polysilicon 606, the first oxide layer 604, and the top of the germanium substrate 602 are etched while the oxide spacers 7〇8 are in the home position. The results are shown in Figure 61). In one embodiment, the money is etched into the substrate 602 by about .2 microns to form a shallow trench isolation (STI) region between the NAND strings, with the bottom of the trench being inside the top of the p-well. In step 522, the STI trench is filled with a spacer material 407 (eg, partially stabilized zirconia (PSZ), Si〇2 (or another suitable material)) using CVD, rapid ALD, or another method to achieve a hard mask 610. The top. In step 524, chemical mechanical polishing (CMP) or another suitable process is used to polish the spacer material 扁平ο? until it reaches the SiN 610. The green results of steps 522-524 are shown in Figure 6E. 141462.doc -16 - 201007891 Step 526 is to return the last name STI isolation material 407 and oxide spacer 708. Step 5 2 7 removes the nitride hard mask 610. These steps can be performed in either order, as illustrated by option A and option B in the flowchart. Option A will be discussed first. In step 526, the etch back STI isolation material 407 and oxide spacer 708 are prepared to deposit a polycrystalline inter-turn dielectric (IPD). The result of step 526 is shown in Figure 6F. In step 527, the SiN layer 610 is stripped. The result of this step of option A is shown in Figure 6G. If the nitride hard mask 61 is removed after etch back, the dielectric cover 408 will have a relatively flat top. In option B, nitride mask 610 is removed (step 527) prior to etch back STI material 407 and oxide spacer 708 (step 526). The result of executing option B is shown in Figure 6H. If the nitride hard mask 61 is removed prior to etch back, the dielectric cover 408 will have a relatively round top. When option b is used, the etch can have a small horizontal component and slightly etch both the oxide cap 4〇8 and the polycrystalline dream that forms the oceanic gate stub 412a. Therefore, the floating gate stem 412a should be defined wider than the last desired target width early in the process. A polycrystalline inter-turn dielectric (e.g., dielectric 406) is grown or deposited in step 528. The IPD can comprise alternating conformal layers of oxide and nitride. For example, 'oxide-nitride-oxide (ΟΝΟ) polycrystals; 5 eve dielectrics are used. In one embodiment 'IPD includes nitride-oxide-nitride oxide-nitride. The result of step 528 is shown in FIG. It should be noted that the dielectric cover 408 is depicted in Fig. 61 as having a curvature, although the curvature is not desired. 141462.doc •17· 201007891 In step 530, a control gate (word line) is deposited. Step 53 may comprise a deposition-polysilicon layer, a layer of tungsten germanium (WSi) layer and a layer of tantalum nitride (siN). When the control gate is formed, photolithography is used to form a strip pattern perpendicular to the NAND chain to form word lines that are isolated from each other. In the step 蚀刻, etching is performed using plasma etching, ion milling, ion etching by pure physical etching, or another suitable process to etch various layers and form a single word line. In step 532, an implant process is performed to form an N+ source/drain region 444. Arsenic or scale implants can be used. In one embodiment, a halo implant is also used. In some embodiments, an annealing process, such as a rapid thermal annealing (RTA), is performed. The example parameters for RTA are heated to 1 〇〇〇 Celsius for 10 seconds. 4A illustrates a cross-section of one of the memory arrays along the tangent AA of FIG. 3 after step 532 is used when option 8 is used to cause rounding on top of dielectric cover 4〇8. 4B illustrates a cross section of the memory array along the tangent & B of FIG. 3 after step 532 when option B is used. There are many alternative structures and processes for the above structures and processes, and such alternative structures and processes are still within the spirit of the invention. As in the prior NAND embodiments, an alternative method is to fabricate a memory cell from a PMOS device in which the opposite polarity bias conditions are used for various jobs as compared to existing NMOS implementations. In the above examples, the substrate is made of tantalum. However, other materials known in the art, such as gallium antimonide or the like, may also be used. Figure 7 is a graph illustrating the variation of various configuration electric fields for floating gate pole widths for non-volatile storage elements. Curve 7〇2 indicates that 14I462.doc -18- 201007891 is not used on the top of the floating gate with a dielectric single cover 408 for a floating gate similar to the floating pole depicted in Figure lc. The electric field in IPD 406. The electric field is based on a simulation and represents one of the IpDs on the tip of the arrow labeled "A" in Figure (1). It should be noted that as the width of the floating gate pole is made narrower and narrower, the strength of the electric field becomes stronger and stronger, and when the stem width is reduced by less than 200 A, the electric field strength is greatly increased. Curve 704 represents the electric field in the IPD at the top corner of the floating gate without the use of a dielectric cover 4〇8 for a floating gate similar to one of the floating gates depicted in Figure π. The electric field is based on a simulation and represents one of the left or right ipDs of the double arrow labeled "2A" in Figure 1C. It should be noted that for a given floating gate stem width, the strength of the electric field is greater at the tip of the stem (curve 7〇2) than at the corner (curve 7〇4). Point 706 represents IPD 4〇6 at the top corner of the stem post 412a of the floating gate 412 in a situation similar to the non-volatile storage element depicted in FIG. 4A using a half-spherical dielectric cover 4〇8. The electric field in the middle (marked as "corner field" in Figure 4). The floating gate 412 has a width of 1 〇〇 A. Point 708 represents the electric field in the IPD 406 at the top of the stem 412a of the floating gate 412 in the case of a non-volatile storage element similar to that depicted in Figure 4A (in Figure 4A). Marked as "top field"). It should be noted that the electric field strength at the top of the floating gate (point 7〇8) is less than the electric field strength at the corner of the floating gate (point 706). Moreover, since the electric field strength at the top of the stem 412a is small, the amount of leakage current in the region is reduced. Reducing the electric field strength at the top of the floating gate can substantially reduce the total leakage current 141462.doc •19· 201007891 without significantly affecting overall performance. It should be noted that the amount of dielectric does not increase too much when some dielectric material is added to the IPD. Therefore, the coupling between the floating idler and the control gate is not seriously affected. Moreover, the leakage current has been reduced in one of the biggest problems of the current system. Figure 8A is a flow diagram of an embodiment of a portion of a process for fabricating the memory cells of Figures 4A and 4B. Figures 9A-9E illustrate various stages of formation in accordance with the process of Figure 8A. Fig. 9 is a cross section along line a_a in Fig. 3. In this example, the floating gate is relatively narrow when viewed in cross section taken along the word line. It should be noted, however, that the principles discussed herein are applicable to a floating gate that is narrow when viewed in a cross-section taken along either a bit line or both a word line and a bit line. In the process of FIG. 8A, a dielectric cap 4〇8 is formed by implanting a material (eg, oxygen) at the top of the floating gate 412 and processing the float by a process (eg, annealing) The gate 412 is such that a dielectric cap is formed by the implanted oxygen and the polycrystalline spine of the floating gate 412. Oxygen is not required to be implanted. In one embodiment, nitrogen is implanted. The initial flow of the floating gate 412 is not illustrated in the flow chart of Figure 8A. In addition, the flow chart does not depict most implantation steps, gap filling of the buttoned volume between stacks, or formation of contacts, metal, vias, and passivation, and processes known in the art. The other part A. There are many methods for fabricating memory in accordance with the present disclosure, and thus the inventors expect that various methods other than those illustrated in Figure 8A can be used. When the flash memory chip will contain the core memory and peripheral circuitry, the process steps of Figure 8A are only intended to provide a general description of the process recipe for the fabrication of the core 'memory array 141462.doc -20- 201007891. Step 902 forms a floating gate and deposits material for the STI structure. Figure 9A shows two s-resonance units at a stage after the STI material 4〇7 has been deposited around the floating gate 412. Specifically, FIG. 9A illustrates two floating gates 412 formed on a substrate 402. A gate oxide 41 is formed between the floating gate 412 and the substrate 402. The nitride mask 91 is still at the position on the floating gate post 412a. A trench for the STI material 4?7 is etched into the substrate 402, wherein the STI material 407 fills the trench and also extends to the top of the nitride mask 610. Techniques for forming s-resonance units that reach the point depicted in Figure 9 are well known and will therefore not be discussed in detail. Step 904 is a step of implanting a material into the top surface of floating gate 412 for use as a seed material to subsequently form dielectric cap 4〇8. In this embodiment, the material is implanted through a nitride mask 910. Figure 9B illustrates the memory cell after seed material 908 has been implanted in the top of floating gate post 412 & wherein nitride mask 910 is still in place. Subsequent to the process, the seed material 908 will be treated (e.g., by heating) to form the dielectric cover 4〇8. In one embodiment, the seed material 9〇8 is oxygen. The oxygen can be implanted by a technique similar to that by means of implanted oxygen separation. SIM〇x is a technique for fabricating an upper insulator structure and a substrate by implanting a high dose of oxygen followed by high temperature annealing. For example, the SIM0X process uses oxygen ions to implant ions by selecting implanted ions. Enter a desired depth in the substrate. After the ion implantation, annealing is performed to convert the oxygen ions together with the ruthenium in the substrate into ruthenium dioxide. Using SIM〇x, a carefully controlled dioxide layer is formed which is buried in the germanium substrate. However, although SIMOX is typically used to form a buried layer of germanium dioxide at a certain depth in a substrate of 141462.doc -21 - 201007891, the present technology forms a dielectric cap 4 at the top of a floating gate 412. 8. It should be noted that the seed material 908 can be implanted through the SiN 91 by appropriate control of the implantation process. The depth and concentration can be controlled by the energy and dose of oxygen. The energy by which the ions are implanted controls the depth. The concentration of the seed material 908 may be non-uniform in the vertical direction. For example, the distribution can be approximately Gaussian. By appropriately selecting the energy for the implant material, a peak of the Gaussian distribution can be established at a surface very close to the floating gate stem 412a.
一個或多個後跟將離子植入基板4〇2中以形成源極/汲極 區之隨後製程步驟(例如退火)具有將氧轉換成二氧化矽之 副效應。應注意,不必添加轉換晶種材料9〇8之一步驟, 但若需要可執行一額外步驟。 不要求晶種材料908為氧。在另一實施例中,晶種材料 908為氮。在該情況下,介電罩蓋4〇8將為“Μ。在一項實Subsequent processing steps (e.g., annealing) of implanting ions into the substrate 4?2 to form a source/drain region with one or more heels have a side effect of converting oxygen to cerium oxide. It should be noted that it is not necessary to add one step of converting the seed material 9〇8, but an additional step can be performed if necessary. The seed material 908 is not required to be oxygen. In another embodiment, the seed material 908 is nitrogen. In this case, the dielectric cover 4〇8 will be “Μ. In a real
施例中,晶種材料908包含氧及氮兩者。還可使用其他晶 種材料。 在一個實施方案中,除晶種材料9〇8之外,植入一控制 材料以控制如何形成介電罩蓋4〇8。控制材料可控制退火 期間介電罩蓋彻形成之速率。舉例而言,可植入氬連同 氧以控制自晶種材料908形成二氧化矽之速率。氬可增加 形成二氧化矽之速率。在一個實施方案中,在例如退:之 步驟期間驅散氬以使得剩餘一點或不剩餘氬。然而,在一 些實施方案中’形成記憶體單元之後可剩餘—些氬。 141462.doc •22- 201007891 在步驟906中,剝離SiN遮罩910。結果繪示於圖9Ct。 在步驟908中,回蝕STI材料407。結果繪示於圖9D中,該 圖顯示將STI材料407回蝕至閘極電介質410之位準。 在步驟91 〇中,生長或沈積多晶矽間電介質(例如,電介 質406)。舉例而言,使用氧化物_氮化物·氧化物(〇N〇)多 晶石夕間電介質。沈積IPD可用來加熱浮動閘極412中之材料 至一充分高溫度以至少部分地形成介電罩蓋4〇8 ^舉例而 _ 5 ’二氧化梦可開始自所植入氧及由其形成浮動閘極412 之矽形成。應注意,形成IPD 406之後一些所植入氧可剩 餘在浮動閘極412中。以後之熱製程步驟可將此氧轉換成 二氧化石夕。圖9E顯示步驟910之後之結果。在步驟41〇之 後’眾所周知之步驟可用來形成記憶體單元之控制閘極、 源極/汲極區及其他態樣。 在步驟912中,處理晶種材料908以自晶種材料9〇8及浮 動閘極芯柱412a頂部處之多晶矽形成介電罩蓋4〇8。在其 參 中晶種材料係氧之一實施例中,藉由一製程步驟達成對晶 種材料908之處理,該製程步驟加熱晶種材料908至一充分 尚溫度以自所植入氧及浮動閘極412之多晶矽形成si〇2。 應注意,一個或多個製程步驟可達成此所需效應。如先前 所論述,形成IPD 406可至少部分地達成對晶種材料鏡之 處理。 當形成源極區/没極區時所執行之退火係處理晶種㈣ 908之-製程步驟之—個實例。因此,用於另—目的之將 執打之一製程步驟亦用於處理晶種材料以形成介電罩蓋 141462.doc •23- 201007891 408。典型地,源極區/沒極區係藉由植入基板一例如坤或 磷等材料來形成。在植入之後,執行一退火製程(例如, 快速熱退火(RTA))。用於RTA之實例參數係加熱至t刚攝 氏度持續十秒鐘。此—RTA可用來將晶種材料(例如,氧) 之大部分轉換為Si〇2。然而,可殘留一些晶種材料9⑽。 可藉由一不同製程步驟處理此殘留晶種材料9〇8。舉例而 ° 侧差氧化製程步驟可處理晶種材料908以至少部分 地形成介電罩蓋408。為達成侧壁氧化,將裝置置於一高 溫及具有某—分數百分比之周圍氧氣之爐中,以使曝露: 面氧化’從而提供-保護層。㈣氧化亦可用於修圓浮動 閘極及控制閘極之邊緣。應注意’可在形成源極區/汲極 區之前執行側壁氧化。 圖8B係闡述用於製作圖4八及佔之記憶體單元之製程之 一部分之一項實施例之流程圖。圖8B之製程係圖8a之製 程之一替代製程。圖卯_9(}係沿圖3中線A_A之一橫截面, 其根據圖8B之製程中所述之初始步驟繪示各個形成階段。 圖9D-9E(在肖圖8A之製程之論述中已進行闡述)緣示以後 的形成階段。在此實例中,當以沿字線截取之一橫截面觀 看時浮動閘極係相對狹窄。然而,應注意,本文中所論述 之原理適用於當以沿位元線或字線及位元線兩者截取之一 橫截面觀看時係狹窄之浮動閘極。 圖8B之製程以步驟902中之形成浮動閘極及sti材料術 開始,此已相關於圖8A進行了論述。然後,在步驟9〇4中 剝離SiN遮罩910。圖9F繪示圖8B之製程之步驟9〇4之後記 141462.doc -24- 201007891 憶體單元形成。 在步驟926中,將用於介電罩蓋408之晶種材料植入浮動 閘極芯柱412a頂部中。圖9G繪示步驟926之後之結果。步 驟926可類似於圖8A之植入步驟904。然而,由於晶種材料 908直接植入至浮動閘極412之多晶矽中代替透過SiN遮罩 910 ’因此在步驟926中可使用一較低植入能量。在一項實 施例中’晶種材料係氧。在另一實施例中,晶種材料係 氮。在一項實施例中,亦植入一控制材料(例如,氬)。 ® 步驟908係回蝕STI材料407,結果已繪示於圖9D中。步 驟910係沈積IPD材料406,結果已繪示於圖卯中。在步驟 912中’處理晶種材料908以自晶種材料9〇8及浮動閘極芯 柱412a頂部處之多晶石夕形成介電罩蓋4〇8。已相關於圊8A 論述了步驟912。 圖8C係闡述用於製作圖4A及仙之記憶體單元之製程之 一部分之一項實施例之一流程圖。圖8C之製程係圖从及 ❿ 8B之製程之一替代製程。圖9H-9I係沿圖3中線A-A之一橫 截面,其根據圖8C之製程中所闡述之初始步驟繪示各個形 成階段。圖9D-9E(已在對圖8A之製程之論述中進行闡述) 繪不以後的形成階段。在此實例中,當以沿字線截取之一 橫截面觀看時,浮動閘極係相對狹窄。然而,應注意,本 文中所論述之原理適用於當以沿位元線或字線及位元線兩 者截取之一橫截面觀看時係狹窄之浮動閘極。In the embodiment, the seed material 908 comprises both oxygen and nitrogen. Other seed materials can also be used. In one embodiment, in addition to the seed material 9A8, a control material is implanted to control how the dielectric cover 4A8 is formed. The control material controls the rate at which the dielectric cap is formed during annealing. For example, argon can be implanted along with oxygen to control the rate at which ceria is formed from the seed material 908. Argon can increase the rate at which cerium oxide is formed. In one embodiment, the argon is dissipated during the step of, for example, retreating to leave little or no argon remaining. However, in some embodiments, some argon may remain after the formation of the memory cell. 141462.doc • 22- 201007891 In step 906, the SiN mask 910 is stripped. The results are shown in Figure 9Ct. In step 908, the STI material 407 is etched back. The results are shown in Figure 9D, which shows the level of etchback of STI material 407 to gate dielectric 410. In step 91, a polycrystalline inter-turn dielectric (e.g., dielectric 406) is grown or deposited. For example, an oxide-nitride-oxide (〇N〇) polycrystalline intergranular dielectric is used. The deposited IPD can be used to heat the material in the floating gate 412 to a sufficiently high temperature to at least partially form the dielectric cap 4〇8. For example, the _ 5 ' dioxide dream can begin to form and float from the implanted oxygen. The gate 412 is formed. It should be noted that some of the implanted oxygen may remain in the floating gate 412 after the IPD 406 is formed. The subsequent thermal process steps convert this oxygen to dioxide dioxide. Figure 9E shows the results after step 910. After step 41, the well-known steps can be used to form the control gate, source/drain regions and other aspects of the memory cell. In step 912, the seed material 908 is processed to form a dielectric cap 4〇8 from the seed material 9〇8 and the polysilicon at the top of the floating gate post 412a. In one embodiment of the seed crystal material oxygen, the processing of the seed material 908 is achieved by a process step that heats the seed material 908 to a temperature sufficient to implant oxygen and float. The polysilicon of the gate 412 forms si〇2. It should be noted that one or more process steps can achieve this desired effect. As previously discussed, forming the IPD 406 can at least partially achieve processing of the seed material mirror. The annealing process performed when the source/drain region is formed is an example of the process of seeding (4) 908-process. Therefore, one of the processing steps for another purpose is also used to process the seed material to form a dielectric cover 141462.doc • 23- 201007891 408. Typically, the source/drain regions are formed by implanting a substrate such as a material such as kun or phosphor. After implantation, an annealing process (eg, rapid thermal annealing (RTA)) is performed. The example parameters for RTA are heated to t just for ten seconds. This - RTA can be used to convert a majority of the seed material (eg, oxygen) to Si〇2. However, some seed material 9 (10) may remain. This residual seed material 9〇8 can be processed by a different process step. For example, the side difference oxidation process step can process the seed material 908 to at least partially form the dielectric cap 408. To achieve sidewall oxidation, the apparatus is placed in a furnace at a high temperature and with a fractional percentage of ambient oxygen to expose the surface to provide a protective layer. (4) Oxidation can also be used to round the floating gate and control the edge of the gate. It should be noted that sidewall oxidation can be performed before the formation of the source/drain regions. Figure 8B is a flow diagram illustrating one embodiment of a process for making Figure 8 and a portion of a memory cell. The process of Figure 8B is an alternative to the process of Figure 8a. Figure _9(} is a cross-section along line A_A of Figure 3, which depicts the various stages of formation in accordance with the initial steps described in the process of Figure 8B. Figure 9D-9E (in the discussion of the process of Figure 8A) It has been explained that the formation phase is later. In this example, the floating gate is relatively narrow when viewed in cross section along the word line. However, it should be noted that the principles discussed herein apply to A narrow gate floating gate is viewed along a bit line or a word line and a bit line. The process of Figure 8B begins with the formation of a floating gate and sti material in step 902, which is related to This is discussed in Figure 8A. Then, the SiN mask 910 is stripped in step 9〇4. Figure 9F illustrates the formation of the memory cell in step 〇14.doc -24-201007891 after step 9〇4 of the process of Figure 8B. The seed material for the dielectric cap 408 is implanted into the top of the floating gate stem 412a. Figure 9G depicts the result after step 926. Step 926 can be similar to implant step 904 of Figure 8A. Since the seed material 908 is directly implanted into the polysilicon of the floating gate 412 instead of passing through the S The iN mask 910 'and thus a lower implant energy can be used in step 926. In one embodiment the 'seed material is oxygen. In another embodiment, the seed material is nitrogen. In one embodiment A control material (e.g., argon) is also implanted. Step 908 is an etch back of the STI material 407. The results are shown in Figure 9D. Step 910 is the deposition of the IPD material 406 and the results are shown in Figure 。. The seed material 908 is processed in step 912 to form a dielectric cap 4〇8 from the polycrystalline spine at the top of the seed material 9〇8 and the floating gate stem 412a. Step 912 has been discussed in relation to 圊8A Figure 8C is a flow chart illustrating one embodiment of a process for fabricating the memory cell of Figure 4A and Figure 4. The process diagram of Figure 8C is substituted for one of the processes of ❿ 8B. Figure 9H- 9I is a cross-section along line AA of Figure 3, which depicts the various stages of formation in accordance with the initial steps set forth in the process of Figure 8C. Figures 9D-9E (described in the discussion of the process of Figure 8A) No later formation phase. In this example, when viewed in a cross section taken along the word line, float The gate is relatively narrow. However, it should be noted that the principles discussed herein are applicable to a floating gate that is narrow when viewed in a cross-section along either a bit line or a word line and a bit line.
圖8C之製程以步驟902中形成浮動閘極412及5;丁1材料407 開始,其已相關於圖8A進行了論述。在步驟9〇4,剝離SiN 141462.doc -25- 201007891 遮罩910。 接下來,在步驟944中,回蝕STI材料407至中途。步驟 944之結果繪示於圖9H中,其顯示向下蝕刻一STI材料407 以曝露浮動閘極芯柱412a之一部分。然而,浮動閘極芯柱 412a之下部及浮動閘極基底412b仍被STI材料407覆蓋。回 蝕STI材料407所至之精確深度並不重要。在一個實施方案 中,在到達浮動閘極基底412b之前之一點處停止蝕刻以使 得當添加晶種材料時,其並不到達浮動閘極基底412b。應 注意,在此實施例中,植入氧所藉以之能量可保持為相對 低,此乃因浮動閘極芯柱412a之頂部曝露且僅將氧植入至 一極淺深度。 在步驟946中,將晶種材料908植入至浮動閘極芯柱412a 之頂部中,其中回蝕STI材料407以曝露頂部浮動閘極芯柱 412a之側。在一項實施例中,材料為氧。在另一實施例 中,材料為氮。在一項實施例中,亦植入例如氬之一控制 材料。圖91繪示步驟946之後之結果。應注意,在此實施 方案中,在植入步驟之前,執行回餘STI之大部分。 在步驟948中,進一步回蝕STI材料407。應注意,當在 步驟948中進一步回蝕STI材料407時,將移除可已植入STI 材料407之上部分中之任何晶種材料。圖9D繪示步驟948之 後之結果。在步驟910中,沈積IPD層406。圖9E繪示沈積 IPD層406之後之結果。 在步驟912中,處理晶種材料908以自晶種材料908及浮 動閘極芯柱412a頂部處之多晶矽形成介電罩蓋408。已相 141462.doc -26- 201007891 關於圖8 A論述了步驟912。 圖ίο圖解說明可包含一個或多個記憶體晶粒或晶片1〇12 之一非揮發性儲存裝置1010。記憶體晶粒1012包含一記憶 體單元陣列1000(二維或三維)、控制電路1〇2〇及讀取/寫入 電路1030A及1030B ^在一項實施例中,各種周邊電路對 記憶體陣列10 0 〇之存取係以一對稱形式在該陣列之相對側 上實施,以便將每侧上之存取線及電路之密度減半。讀取/ 寫入電路1030A及1030B包含多個感測區塊3⑼,該等感測 區塊允許並行讀取或程式化一記憶體單元頁。記憶體陣列 100可由予線經由列解碼器1〇4〇八及1〇4〇8定址且可由位元 線經由行解碼器1042八及1042B定址。在一典型實施例 中,一控制器1044與一個或多個記憶體晶粒丨〇丨2包含於同 一記憶體裝置1〇1〇(例如,一可抽換儲存卡或包)中。命令 及貧料經由線1032在主機與控制器1〇44之間及經由線丨〇34 在控制器與一個或多個記憶體晶粒1〇12之間傳送。一個實 施方案可包含多個晶片1〇12。 控制電路1020與讀取/寫入電路1〇3〇八及1〇3〇8協作以對 記憶體陣列1〇〇〇執行記憶作業。控制電路1〇2〇包含一狀態 機1022、一晶片上位址解碼器1〇24及一電力控制模組 1 026。狀態機i 022提供對記憶作業之晶片級控制。晶片上 位址解碼器1〇24提供一位址介面以在主機或一記憶體控制 器所使用之位址與解碼器1〇4〇A、1〇4〇b、1〇42A及i〇42B 所使用之硬體位址之間進行轉換。電力控制模組1〇26控制 記憶作業期間向字線及位元線供應之電力及電壓。在一項 141462.doc •27· 201007891 實施例中,電力控制模組刪包含—個或多個能產生大於 供應電壓之電壓之電荷幫浦。 在一項實施射,控制電路1020、電力控制電路脳、 解碼器電路1G24、狀態機電路1G22、解碼器電路1〇42A、 解碼器電路1042B、解碼器電路1G4GA、解碼器電路 B °賣取/寫入電路1030A、讀取/寫入電路1〇3〇6及/或 控制益1044之-組合或任何組合可稱為—個或多個管理電 路。The process of Figure 8C begins with the formation of floating gates 412 and 5 in step 902; material 1 407, which has been discussed in relation to Figure 8A. At step 9〇4, the SiN 141462.doc -25-201007891 mask 910 is stripped. Next, in step 944, the STI material 407 is etched back to the middle. The result of step 944 is illustrated in Figure 9H, which shows that an STI material 407 is etched down to expose a portion of the floating gate stem 412a. However, the lower portion of the floating gate stub 412a and the floating gate substrate 412b are still covered by the STI material 407. The exact depth to which the STI material 407 is etched back is not critical. In one embodiment, the etch is stopped at a point prior to reaching the floating gate substrate 412b so that it does not reach the floating gate substrate 412b when the seed material is added. It should be noted that in this embodiment, the energy from which oxygen is implanted can be kept relatively low due to the exposure of the top of the floating gate stem 412a and the implantation of oxygen only to a very shallow depth. In step 946, seed material 908 is implanted into the top of floating gate stub 412a, wherein STI material 407 is etched back to expose the side of top floating gate stem 412a. In one embodiment, the material is oxygen. In another embodiment, the material is nitrogen. In one embodiment, a material such as argon is also implanted. Figure 91 depicts the results after step 946. It should be noted that in this embodiment, a majority of the back-sliding STI is performed prior to the implantation step. In step 948, the STI material 407 is further etched back. It should be noted that when the STI material 407 is further etched back in step 948, any seed material that may have been implanted in the upper portion of the STI material 407 will be removed. Figure 9D illustrates the results after step 948. In step 910, an IPD layer 406 is deposited. Figure 9E depicts the results after deposition of the IPD layer 406. In step 912, the seed material 908 is processed to form a dielectric cap 408 from the seed material 908 and the polysilicon at the top of the floating gate post 412a. Phase 141462.doc -26- 201007891 Step 912 is discussed with respect to Figure 8A. FIG. 1 illustrates a non-volatile storage device 1010 that may include one or more memory dies or wafers 〇12. The memory die 1012 includes a memory cell array 1000 (two-dimensional or three-dimensional), control circuit 1〇2〇, and read/write circuits 1030A and 1030B. In one embodiment, various peripheral circuit-to-memory arrays The accesses of 100 〇 are implemented in a symmetrical form on opposite sides of the array to halve the density of access lines and circuits on each side. The read/write circuits 1030A and 1030B include a plurality of sensing blocks 3 (9) that allow parallel reading or programming of a memory unit page. The memory array 100 can be addressed by the prewire via the column decoders 1〇8 and 1〇4〇8 and can be addressed by the bit lines via the row decoders 1042 and 1042B. In an exemplary embodiment, a controller 1044 and one or more memory die 2 are included in the same memory device 1 (e.g., a removable memory card or package). The command and lean material are transferred between the host and controller 110 via line 1032 and between the controller and one or more memory dies 1 〇 12 via line 丨〇 34. One embodiment may include a plurality of wafers 1〇12. The control circuit 1020 cooperates with the read/write circuits 1 〇 3 及 and 1 〇 3 〇 8 to perform a memory job on the memory array 1 。. The control circuit 1 〇 2 〇 includes a state machine 1022, an on-chip address decoder 1 〇 24, and a power control module 1 026. State machine i 022 provides wafer level control of the memory job. The on-chip address decoders 1 to 24 provide an address interface for the address and decoders used by the host or a memory controller, and the decoders 1〇4〇A, 1〇4〇b, 1〇42A, and i〇42B. Convert between the hardware addresses used. The power control module 1 26 controls the power and voltage supplied to the word lines and bit lines during the memory operation. In an embodiment of 141462.doc • 27· 201007891, the power control module includes one or more charge pumps capable of generating a voltage greater than the supply voltage. In one implementation, the control circuit 1020, the power control circuit 脳, the decoder circuit 1G24, the state machine circuit 1G22, the decoder circuit 1A42A, the decoder circuit 1042B, the decoder circuit 1G4GA, and the decoder circuit B° are sold/ The combination or combination of write circuit 1030A, read/write circuits 1〇3〇6, and/or control benefit 1044 may be referred to as one or more management circuits.
圖11繪示記憶體單元陣列麵之一實例性結構。在一項 實施例中,將se*憶體單元陣列劃分為Μ個記憶體單元區 塊。對於快閃EEPRQM系統係常見的,區塊即為擦除單 位:亦即,每―區塊皆含有可—起擦除之最小數目之記憶 體=元I ϋ塊通常被劃分為若干個頁。一頁係一程式 化早位。在—行記憶體單元中通常儲存-個或多個資料 頁能儲存4固或多個區段。一區段包括使用者資料 :附加項資料。附加項資料通常包含已自該區段之使用者Figure 11 illustrates an exemplary structure of a memory cell array face. In one embodiment, the se* memory cell array is divided into one memory cell block. For flash EEPRQM systems, the block is the erase unit: that is, each block contains the smallest number of memories that can be erased = the element I block is usually divided into pages. One page is a stylized early position. One or more data pages are typically stored in the line memory unit to store 4 solids or multiple segments. One section includes user data: additional items. Additional item data usually contains users who have been from that section
資料6十算出之-錯誤校正碼(ECC)。控制器之一部分(以下 所閣述)在資料正被程式化至陣列t時計算ECC,且亦在正 車歹】讀取資料時檢查ECC。另-選擇為’將ECC及/或其 他附加項資料館存在與其所從屬之使用者資料不同之頁或 甚至不同之區换6 鬼中。一使用者資料區段通常為512個字 ’對應於磁碟驅動器内一區段之大小。大量頁形成一區 塊例如自8個頁(舉例而言)至多達32個、64個、128個或 ^頁不等°亦可使用不同大小區塊及配置。 一 141462.doc •28· 201007891 在另一實施例中,將位元線劃分為奇數位元線及偶數位 元線。於一奇數/偶數位元線架構中,在一個時間程式化 沿一共同字線且連接至奇數位元線之記憶體單元,而在另 一時間程式化沿一共同字線且連接至偶數位元線之記憶體 一 早70。 圖11顯示記憶體陣列1000之區塊i之更多詳細内容。區 塊i包含X+1個位元線及X+1個NAND串。區塊i亦包含64個 資料字線(WL0-WL63)、2個虛擬字線(WL d0及WL dl)、 一汲極側選擇線(SGD)及一源極側選擇線(Sgs)。每一 NAND串之一個端子經由一汲極選擇閘極(連接至選擇線 SGD)連接至一對應位元線,且另一端子經由一源極選擇 閘極(連接至選擇線SGS)連接至源極線。由於存在64個資 料子線及兩個虛擬字線,故每一 NAND串包含64個資料記 憶體單元及兩個虛擬記憶體單元。在其他實施例七, NAND丰可具有多於或少於64個資料記憶體單元及兩個虛 參 擬記憶體單兀。資料記憶體單元可儲存使用者或系统資 料。虛.擬s己憶體單元通常不用來儲存使用者或系統資料。 某些實施例不包含虛擬記憶體單元。 圖12係分割為一核心部分(稱為一感測模組128〇)及一共 同。Ρ为1290之個別感測區塊3 00之—方塊圖。於一項實施 例中,將存在用於每一位元線之一單獨感測模組128〇,及 用於一組多個感測模組1280之一個共同部分129〇。於一個 實例中,-感測區塊將包含-個共同部分129〇及八個感測 模組1280。一群組中之感測模組中之每一者將經由一資料 141462.doc -29- 201007891 匯流排12 7 2與相關聯共同部分通信。更多詳細内容,參考 美國專利申請公開案2006/0140007,該公開案之全文以引 用方式併入本文中。 感測模組1280包括感測電路1270,該感測電路確定一所 連接位元線中之一傳導電流係高於還是低於一預定臨限位 準。在一些實施例中,感測模組1280包含一電路,其通常 稱為一感測放大器。感測模組1280亦包含一位元線鎖存器 1282 ’該位元線鎖存器用於設定所連接位元線上之一電壓 狀況。舉例而言’鎖存在位元線鎖存器1282中之—預定狀 態會導致把所連接位元線拉至一指定程式禁止之狀態(例 如,Vdd)。 共同部分1290包括一處理器丨292、一組資料鎖存器1294 及一耗合於該組資料鎖存器1294與資料匯流排122〇之間的 I/O介面U96。處理器1292執行計算。舉例而言,其功能 之一係媒定儲存於所感測記憶體單元中之資料並將所確定 之寅料儲存在該組資料鎖存器中。該組資料鎖存器丨294用 於儲存在一讀取作業期間處理器1292所確定之資料位元。 其亦用於儲存在一程式化作業期間自資料匯流排1220匯入 之資料位元。所匯入之資料位元表示意欲程式化至記憶體 中之寫入資料。I/O介面1296在資料鎖存器1294與資料匯 排12 2 0之間提供一介面。 在讀取或感測期間,該系統在狀態機丨〇22控制下運作, 狀態機1 022控制向經定址單元供應不同之控制閘極電壓。 在感測模組1280步進穿過對應於記憶體所支援之各種記憶 141462.doc 201007891 體狀態之各種預定義控制閘極電壓時,其可在此等電壓中 之一者處跳脫且經由匯流排1272將一輸出自感測模組128〇 提供至處理器1292。此時’處理器1292藉由考量感測模組 之跳脫事件及關於經由輸入線1293自狀態機施加之控制閘 極電壓之資訊來確定所得記憶體狀態。然後處理器1292計 算用於該記憶體狀態之一二進制編碼並將所得資料位元儲 存至資料鎖存器1294中。在該核心部分之另一實施例中, ❹ 位元線鎖存器1282有兩個用途:既作為用於鎖存感測模組 1280之輸出之一鎖存器亦作為如上文所述之一位元線鎖存 器。 預期一些實施方案將包含多個處理器丨292。在一項實施 例中,每一處理器1292將包含一輸出線(在圖12中未繪示) 以使所述輸出線中之每一者線或(wired_〇R)連接在一起。 在-些實施例中,該等輸出線在連接至線「或」線之前被 反轉。此組態使得能夠在程式驗證過程期間快速確定程式 ❹化過程何時完成,此乃因接收線「或」線之狀態機可確定 正被程式化之所有位元何時達到所需位準。舉例而言,當 每一位^達到其所需位準時,將向線「或」線發送該位元 之-邏輯零(或經反轉,係一資料一)當所有位元輸出一資 料〇(經反轉,係一資料一)時,則狀態機知曉要終止程式化 過程。在其中每一處理器皆與八個感測模組通信之實施例 I ’狀態機可(在一些實施例中)需要讀取線「或」線八 人或者向處理器1292添加邏輯以累積相關聯位元線之结 果以使得該狀態機僅需讀取該線「或」線一次。 141462.doc -31- 201007891The data is calculated in sixty-one error correction code (ECC). One part of the controller (described below) calculates the ECC when the data is being programmed into the array t, and also checks the ECC when reading the data. Alternatively - choose to have the ECC and/or other additional libraries in a different page than the user's profile or even a different zone. A user data section typically has a size of 512 words corresponding to a sector within the disk drive. A large number of pages form a block, for example, from 8 pages (for example) to as many as 32, 64, 128 or ^pages. Different size blocks and configurations can also be used. A 141462.doc • 28· 201007891 In another embodiment, the bit line is divided into odd bit lines and even bit lines. In an odd/even bit line architecture, memory cells along a common word line and connected to odd bit lines are programmed at one time, while stylized along a common word line and connected to even bits at another time. The memory of the Yuan line is 70 in the morning. Figure 11 shows more details of block i of memory array 1000. Block i contains X+1 bit lines and X+1 NAND strings. Block i also includes 64 data word lines (WL0-WL63), two dummy word lines (WL d0 and WL dl), a drain side select line (SGD), and a source side select line (Sgs). One terminal of each NAND string is connected to a corresponding bit line via a drain select gate (connected to select line SGD), and the other terminal is connected to the source via a source select gate (connected to select line SGS) Polar line. Since there are 64 data sub-lines and two virtual word lines, each NAND string contains 64 data memory cells and two virtual memory cells. In other embodiments, NAND can have more or less than 64 data memory cells and two virtual memory cells. The data memory unit stores user or system data. Virtual. 拟 己 体 体 unit is usually not used to store user or system data. Some embodiments do not include a virtual memory unit. Figure 12 is divided into a core portion (referred to as a sensing module 128A) and a common one. Ρ is the individual sensing block of 1290 - block diagram. In one embodiment, there will be a separate sensing module 128A for each bit line, and a common portion 129A for a plurality of sensing modules 1280. In one example, the sensing block will include a common portion 129A and eight sensing modules 1280. Each of the sensing modules in a group will communicate with the associated common portion via a data 141462.doc -29- 201007891 bus 12 7 2 . For further details, reference is made to U.S. Patent Application Publication No. 2006/014, the entire disclosure of which is incorporated herein by reference. The sensing module 1280 includes a sensing circuit 1270 that determines whether one of the connected bit lines is conducting current above or below a predetermined threshold level. In some embodiments, sensing module 1280 includes a circuit, which is commonly referred to as a sense amplifier. Sensing module 1280 also includes a bit line latch 1282' which is used to set a voltage condition on a connected bit line. For example, the latching in the bit line latch 1282 - the predetermined state causes the connected bit line to be pulled to a state in which the specified program is disabled (e.g., Vdd). The common portion 1290 includes a processor 292, a set of data latches 1294, and an I/O interface U96 that is interposed between the set of data latches 1294 and the data bus 122. The processor 1292 performs calculations. For example, one of its functions is to store the data stored in the sensed memory unit and store the determined data in the set of data latches. The set of data latches 294 is used to store the data bits determined by the processor 1292 during a read operation. It is also used to store data bits imported from the data bus 1220 during a stylized job. The data bits that are imported represent the data that is intended to be programmed into the memory. I/O interface 1296 provides an interface between data latch 1294 and data sink 12 2 0. During reading or sensing, the system operates under the control of state machine 22, which controls the supply of different control gate voltages to the addressed unit. When the sensing module 1280 steps through various predefined control gate voltages corresponding to the various memory states supported by the memory 141462.doc 201007891, it can trip at one of the voltages and via The bus 1272 provides an output from the sensing module 128 to the processor 1292. At this time, the processor 1292 determines the resulting memory state by considering the tripping event of the sensing module and the information about the control gate voltage applied from the state machine via the input line 1293. Processor 1292 then computes one of the binary codes for the memory state and stores the resulting data bits in data latch 1294. In another embodiment of the core portion, the ❹ bit line latch 1282 serves two purposes: as one of the outputs for latching the sense module 1280, as well as one of the above. Bit line latch. It is contemplated that some embodiments will include multiple processors 292. In one embodiment, each processor 1292 will include an output line (not shown in Figure 12) to connect each of the output lines or (wired_〇R) together. In some embodiments, the output lines are inverted before being connected to the line "or" line. This configuration enables a quick determination of when the programization process is completed during the program verification process because the state machine of the receive line OR line determines when all of the bits being programmed have reached the desired level. For example, when each bit reaches its desired level, it will send a logical zero (or reversed, one data one) to the line "or" line. When all bits output a data〇 (After reversal, a data one), the state machine knows to terminate the stylization process. Embodiment 1 'State machine in which each processor is in communication with eight sensing modules may (in some embodiments) need to read a line "or" line eight or add logic to processor 1292 to accumulate correlation The result of the joint line is such that the state machine only needs to read the line "or" line once. 141462.doc -31- 201007891
在程式化或驗證期間,將欲程式化之資料自資料匯流排 1220儲存於該組資料鎖存器1294中。在狀態機控制下之程 式化作業包括將一系列程式化電壓脈衝(具有增加之量值) 施加至所定址記憶體單元之控制閘極。每一程式化脈衝後 跟一驗證過程以確定該記憶體單元是否已程式化為所需狀 態。處理器1292相對於所需記憶體狀態來監視被驗證之記 憶體狀態。當二者一致時,處理器1292設定位元線鎖存器 1282,以致使該位元線被拉至一指定程式抑制之狀態。此 禁止耦合至該位元線之單元進一步程式化,即使在其經歷 程式化脈衝施加在其控制閘極上時亦如此。於其他實施例 中,該處理器首先載入位元線鎖存器1282且感測電路在驗 證過程期間將其設定為一禁止值。During stylization or verification, the data to be stylized is stored in the set of data latches 1294 from the data bus 1212. The programming operation under state machine control includes applying a series of stylized voltage pulses (with an increased magnitude) to the control gates of the addressed memory cells. Each stylized pulse is followed by a verification process to determine if the memory cell has been programmed to the desired state. Processor 1292 monitors the verified memory state relative to the desired memory state. When the two match, the processor 1292 sets the bit line latch 1282 to cause the bit line to be pulled to a specified program suppressed state. This prohibits the unit coupled to the bit line from being further programmed, even when it is subjected to a programmed pulse applied to its control gate. In other embodiments, the processor first loads the bit line latch 1282 and the sensing circuit sets it to a disable value during the verification process.
貧料鎖存器堆疊1294含有對應於該感測模組之一資料驾 存器堆叠。在―項實施例中’每個感測模組128〇存在3 或另-數目)個資料鎖存器。在—項實施例中,該等鎖存 器各自為一個位元。於一些實施方案中(但並不要求),將 該等資料鎖存器實施為-移位暫存器以使得儲存於其中之 並行資料轉換成用於資料匯流排1220之串行資料,且反 一較佳實施例中,可將對應於-個記憶體單2 絲/寫人區塊之所有資料鎖存器鏈接在-起以 塊移位暫存器,以使得一資 品 或輸出^… 藉由串行傳送來輪入 -輸出特疋而吕,對讀取/寫入模組庫進行 得其貢料鎖存H組中之每—者將 Η 吏 料匯流排,仿鮮^貝科移人或移出資 佛其係用於整個讀取/寫入區塊之-移位暫 J41462.doc •32· 201007891 存器之一部分。 可在以下專利中發現關於讀取作業及感測放大器之額外 資訊:(1)名稱為「Non-Volatile Memory And Method With Reduced Source Line Bias Errors」之美國專利 7,196,93 1 ; (2)名稱為「Non-Volatile Memory And Method with Improved Sensing」之美國專利 7,023,736 ; (3)第 2005/0169082號美國專利申請公開案;(4)名稱為 「Compensating for Coupling During Read Operations of -春 Non-Volatile Memory」之美國專利 7,196,928 ;及(5)2006 年7月20日公佈、名稱為「非揮發性記憶體之參考感測放 大器(Reference Sense Amplifier For Non-Volatile Memory)」 之第2006/0158947號美國專利申請公開案。剛才以上所列 所有五個專利文檔之全文皆以引用之方式併入本文中。 出於圖解說明及闡述之目的,上文已對本發明實施例進 行了詳細闡述。並非意欲包羅無遺或將本發明限定於所揭 A 示之精確形式。依據上述教示内容,可做諸多修改及改 參 ,變。所述實施例之選取旨在最佳地解釋本發明實施例之原 理及其實際應用,藉以使其他熟習此項技術者能夠以各種 實施例形式及適合於所構想具體使用之各種修改來最佳地 利用本發明。本發明之範疇意欲由隨附申請專利範圍來界 定。 【圖式簡單說明】 圖1A、圖1B及圖1C繪示不同浮動閘極/控制閘極介面之 結構; 141462.doc -33- 201007891 圖2係繪示三個NAND串之一電路圖. 圖3緣示一非揮發性記憶體裝置之結構· 圖4A及4B係一記憶體單元陣列之一 ^ 分之平面圖; 圖5係一流程圖,其闡述一種用 ^ 表作一非揮發性記憶 體早兀陣列之製程之一項實施例; 非揮 圖6Α-6增示處於圖5中所述之製程之各種階段之 發性記憶體單元陣列之一部分; 圖7係圖解說明非揮發性儲存元件之各種組態 一圖表,· 圖8Α係一流程圖,其闌述一種用於製作一 體單元陣列之製程之一項實施例; 非揮發性記憶The lean latch stack 1294 contains a stack of data drivers corresponding to one of the sensing modules. In the "item embodiment", there are 3 or another number of data latches per sensing module 128. In the embodiment, the latches are each a bit. In some embodiments (but not required), the data latches are implemented as a shift register to cause parallel data stored therein to be converted into serial data for the data bus 1220, and In a preferred embodiment, all data latches corresponding to a single memory/write block can be linked in a block shift register to make a resource or output ^... By serial transmission to the wheel-input specials, the read/write module library is arbitrarily latched in each of the H groups, and the 汇 汇 汇 ^ ^ ^ ^ Transfer or transfer of funds for the entire read/write block - shift temporary J41462.doc • 32 · 201007891 one part of the register. Additional information regarding read operations and sense amplifiers can be found in the following patents: (1) US Patent 7,196,93 1 entitled "Non-Volatile Memory And Method With Reduced Source Line Bias Errors"; (2) U.S. Patent No. 7,023,736 to "Non-Volatile Memory And Method with Improved Sensing"; (3) US Patent Application Publication No. 2005/0169082; (4) entitled "Compensating for Coupling During Read Operations of - Spring Non-Volatile Memory" US Patent No. 7,196,928; and (5) US Patent Application No. 2006/0158947, entitled "Reference Sense Amplifier For Non-Volatile Memory", issued July 20, 2006 Open case. All of the above five patent documents listed above are hereby incorporated by reference. The embodiments of the present invention have been described in detail above for the purposes of illustration and illustration. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. According to the above teachings, many modifications and changes can be made. The embodiments were chosen to best explain the principles of the embodiments of the present invention and the application of the embodiments of the embodiments of the invention. The present invention is utilized. The scope of the invention is intended to be defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A, FIG. 1B and FIG. 1C illustrate the structure of different floating gate/control gate interfaces; 141462.doc -33- 201007891 FIG. 2 is a circuit diagram of three NAND strings. The structure of a non-volatile memory device is shown in FIG. 4A and FIG. 4B as a plan view of a memory cell array. FIG. 5 is a flow chart illustrating a non-volatile memory used as a non-volatile memory. An embodiment of a process for 兀 arrays; non-swipe 6 -6 shows a portion of an array of memory cells at various stages of the process described in FIG. 5; FIG. 7 illustrates a non-volatile storage element Various configurations and a chart, FIG. 8 is a flow chart illustrating an embodiment of a process for fabricating an integrated cell array; non-volatile memory
圖8Β係一流程圖,其闡述—藉 w M丹w XL禋用於製作一非揮發性記憶 體單元陣列之製程之一項實施例; ”圖8C係-流程圖,其闡述一種用於製作一非揮發性記憶 體單元陣列之製程之一項實施例;Figure 8 is a flow chart illustrating an embodiment of a process for fabricating a non-volatile memory cell array by W M Dan w XL ;; Figure 8C is a flow diagram illustrating a process for making An embodiment of a process for a non-volatile memory cell array;
圖9A、圖9B、圖9C、圖9D及圖9E圖解說明處於圖8八之 製造製程之各中階段中之非揮發性儲存元件; 圖9F及圖9G圖解說明處於圖犯之製造製程之一階段中 之非揮發性儲存元件; 圖9H及圖91圖解說明處於圖8c之製造製程之各種階段中 之非揮發性儲存元件; 圖1 〇係一非揮發性記憶體系統之一方塊圖; 圖11係繪示一記憶體陣列之一項實施例之一方塊圖;及 圖12係緣示—感測區塊之一項實施例之一方塊圖。 】41462.doc -34· 201007891 ❹ 【主要元件符號說明】 102 浮動閘極 104 控制閘極 106 IPD 202 NAND 串 204 NAND 串 206 NAND 串 220 電晶體 222 記憶體單元 224 記憶體單元 226 記憶體單元 228 記憶體單元 230 電晶體 240 電晶體 242 記憶體單元 244 記憶體單元 246 記憶體單元 248 記憶體單元 250 電晶體 252 記憶體單元 300 感測區塊 350 位元線 352 字線 402 矽基板 141462.doc •35_ 201007891 404 406 407 408 410 412 412a 412b 444 446 602 604 606 610 708 712 908 910 1000 1010 1012 1020 1022 1024 控制閘極 第二介電層(IPD) 隔離材料 介電罩蓋 介電層 浮動閘極 浮動間極芯柱 浮動閘極基底 源極區/及極區 通道 矽基板 隧道氧化物層 多晶碎層 氮化物硬遮罩 氧化物間隔件 「鳥喙」 晶種材料 氮化物遮罩 記憶體陣列 非揮發性儲存裝置 記憶體晶粒 控制電路 狀態機 晶片上位址解碼器 141462.doc -36- 2010078919A, 9B, 9C, 9D, and 9E illustrate the non-volatile storage elements in the various stages of the manufacturing process of FIG. 8; FIG. 9F and FIG. 9G illustrate one of the manufacturing processes in the drawings. Non-volatile storage elements in the stage; Figures 9H and 91 illustrate the non-volatile storage elements in various stages of the manufacturing process of Figure 8c; Figure 1 is a block diagram of a non-volatile memory system; 11 is a block diagram showing an embodiment of a memory array; and FIG. 12 is a block diagram showing an embodiment of a sensing block. 41462.doc -34· 201007891 ❹ [Main component symbol description] 102 Floating gate 104 Control gate 106 IPD 202 NAND string 204 NAND string 206 NAND string 220 transistor 222 memory unit 224 memory unit 226 memory unit 228 Memory unit 230 transistor 240 transistor 242 memory unit 244 memory unit 246 memory unit 248 memory unit 250 transistor 252 memory unit 300 sensing block 350 bit line 352 word line 402 矽 substrate 141462.doc • 35_ 201007891 404 406 407 408 410 412 412a 412b 444 446 602 604 606 610 708 712 908 910 1000 1010 1012 1020 1022 1024 Control Gate Second Dielectric Layer (IPD) Isolation Material Dielectric Cover Dielectric Layer Floating Gate Floating interpole pole floating gate base source region/and pole region channel 矽 substrate tunnel oxide layer polycrystalline layer nitride nitride hard mask oxide spacer "Bird" seed material nitride mask memory array Non-volatile storage device memory die control circuit state machine on-chip address decoder 141462.doc -36- 201007891
1026 電力控制模組 1030A 讀取/寫入電路 1030B 讀取/寫入電路 1032 線 1034 線 1040A 列解碼器 1040B 列解碼器 1042A 行解碼器 1042B 行解碼器 1044 控制器 1220 資料匯流排 1270 感測電路 1272 匯流排 1280 核心部分(感測模組) 1282 位元線鎖存器 1290 共同部分 1292 處理器 1293 輸入線 1294 資料鎖存器 1296 I/O介面 141462.doc -37-1026 Power Control Module 1030A Read/Write Circuit 1030B Read/Write Circuit 1032 Line 1034 Line 1040A Column Decoder 1040B Column Decoder 1042A Line Decoder 1042B Line Decoder 1044 Controller 1220 Data Bus 1270 Sensing Circuit 1272 Bus 1280 Core (Sense Module) 1282 Bit Line Latch 1290 Common Part 1292 Processor 1293 Input Line 1294 Data Latch 1296 I/O Interface 141462.doc -37-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/170,321 US7915124B2 (en) | 2008-07-09 | 2008-07-09 | Method of forming dielectric layer above floating gate for reducing leakage current |
US12/170,327 US7919809B2 (en) | 2008-07-09 | 2008-07-09 | Dielectric layer above floating gate for reducing leakage current |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201007891A true TW201007891A (en) | 2010-02-16 |
TWI424537B TWI424537B (en) | 2014-01-21 |
Family
ID=40999859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098123248A TWI424537B (en) | 2008-07-09 | 2009-07-09 | Dielectric layer above floating gate for reducing leakage current and method of forming the same |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2308080A1 (en) |
JP (1) | JP5558464B2 (en) |
KR (1) | KR101587198B1 (en) |
CN (1) | CN102084463B (en) |
TW (1) | TWI424537B (en) |
WO (1) | WO2010005878A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101539404B1 (en) * | 2010-01-08 | 2015-07-27 | 삼성전자주식회사 | Non-volatile memory devices and method of forming the same |
US8455939B2 (en) | 2010-12-21 | 2013-06-04 | Sandisk Technologies Inc. | Stacked metal fin cell |
JP5331141B2 (en) * | 2011-02-25 | 2013-10-30 | 株式会社東芝 | Method for manufacturing nonvolatile semiconductor memory device |
US8829588B2 (en) * | 2011-07-26 | 2014-09-09 | Synopsys, Inc. | NVM bitcell with a replacement control gate and additional floating gate |
US8994089B2 (en) * | 2011-11-11 | 2015-03-31 | Applied Materials, Inc. | Interlayer polysilicon dielectric cap and method of forming thereof |
CN103441075A (en) * | 2013-08-02 | 2013-12-11 | 上海华力微电子有限公司 | Method for manufacturing floating gate MOS transistor |
US9442662B2 (en) * | 2013-10-18 | 2016-09-13 | Sandisk Technologies Llc | Device and method for managing die groups |
US10192753B2 (en) | 2014-09-15 | 2019-01-29 | Toshiba Memory Corporation | Nonvolatile semiconductor memory device and method of manufacturing the same |
CN105575969B (en) * | 2014-10-17 | 2020-06-09 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device, manufacturing method thereof and electronic device |
US20160343722A1 (en) * | 2015-05-21 | 2016-11-24 | Sandisk Technologies Inc. | Nonvolatile storage with gap in inter-gate dielectric |
US11502093B2 (en) | 2020-08-07 | 2022-11-15 | Winbond Electronics Corp. | Memory structure and method of manufacturing the same |
US20230163129A1 (en) * | 2021-11-22 | 2023-05-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Transistor Gate Structures and Methods of Forming the Same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5104819A (en) * | 1989-08-07 | 1992-04-14 | Intel Corporation | Fabrication of interpoly dielctric for EPROM-related technologies |
JPH0371674U (en) * | 1989-11-16 | 1991-07-19 | ||
KR0179163B1 (en) * | 1995-12-26 | 1999-03-20 | 문정환 | Method of manufacturing non-volatile memory cell |
JPH09219460A (en) * | 1996-02-07 | 1997-08-19 | Ricoh Co Ltd | Nonvolatile semiconductor memory device and manufacture thereof |
JPH11111710A (en) * | 1997-10-01 | 1999-04-23 | Nec Corp | Semiconductor device and its manufacture |
US6093607A (en) * | 1998-01-09 | 2000-07-25 | Taiwan Semiconductor Manufacturing Company | Method of forming sharp beak of poly by oxygen/fluorine implant to improve erase speed for split-gate flash |
JP2000114402A (en) * | 1998-10-02 | 2000-04-21 | Mitsubishi Electric Corp | Semiconductor device and its manufacture |
US6362045B1 (en) * | 2000-05-09 | 2002-03-26 | Chartered Semiconductor Manufacturing Ltd. | Method to form non-volatile memory cells |
JP3973616B2 (en) * | 2003-10-30 | 2007-09-12 | 沖電気工業株式会社 | Method for manufacturing nonvolatile semiconductor memory device |
JP2006310687A (en) * | 2005-05-02 | 2006-11-09 | Renesas Technology Corp | Nonvolatile semiconductor memory and manufacturing method thereof |
JP5061480B2 (en) * | 2006-03-22 | 2012-10-31 | 富士通株式会社 | Semiconductor memory device and method for manufacturing semiconductor memory device |
JP2007299975A (en) * | 2006-05-01 | 2007-11-15 | Renesas Technology Corp | Semiconductor device, and its manufacturing method |
US7253470B1 (en) * | 2006-08-10 | 2007-08-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Floating gate with unique profile by means of undercutting for split-gate flash memory device |
JP2009239156A (en) * | 2008-03-28 | 2009-10-15 | Toshiba Corp | Manufacturing method of non-volatile semiconductor storage |
-
2009
- 2009-07-02 KR KR1020117003097A patent/KR101587198B1/en not_active IP Right Cessation
- 2009-07-02 CN CN2009801263209A patent/CN102084463B/en active Active
- 2009-07-02 EP EP09790062A patent/EP2308080A1/en not_active Withdrawn
- 2009-07-02 JP JP2011517495A patent/JP5558464B2/en not_active Expired - Fee Related
- 2009-07-02 WO PCT/US2009/049620 patent/WO2010005878A1/en active Application Filing
- 2009-07-09 TW TW098123248A patent/TWI424537B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN102084463B (en) | 2013-10-16 |
CN102084463A (en) | 2011-06-01 |
KR20110031491A (en) | 2011-03-28 |
JP5558464B2 (en) | 2014-07-23 |
JP2011527833A (en) | 2011-11-04 |
KR101587198B1 (en) | 2016-01-20 |
TWI424537B (en) | 2014-01-21 |
EP2308080A1 (en) | 2011-04-13 |
WO2010005878A1 (en) | 2010-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI424537B (en) | Dielectric layer above floating gate for reducing leakage current and method of forming the same | |
US7154779B2 (en) | Non-volatile memory cell using high-k material inter-gate programming | |
US7807533B2 (en) | Method for forming non-volatile memory with shield plate for limiting cross coupling between floating gates | |
US9123577B2 (en) | Air gap isolation in non-volatile memory using sacrificial films | |
US7919809B2 (en) | Dielectric layer above floating gate for reducing leakage current | |
US7799637B2 (en) | Scaled dielectric enabled by stack sidewall process | |
US8207036B2 (en) | Method for forming self-aligned dielectric cap above floating gate | |
US7915124B2 (en) | Method of forming dielectric layer above floating gate for reducing leakage current | |
TW201201258A (en) | P-type control gate in non-volatile storage and methods for forming same | |
US8503229B2 (en) | P-/Metal floating gate non-volatile storage element | |
US20140106525A1 (en) | Method of forming pn floating gate non-volatile storage elements and transistor having n+ gate | |
TW200929448A (en) | Non-volatile storage with substrate cut-out and process of fabricating | |
US8765552B2 (en) | Non-volatile storage having a connected source and well | |
WO2013096564A1 (en) | Non-volatile storage system with three layer floating gate | |
US8530297B2 (en) | Process for fabricating non-volatile storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |