TW201007744A - Non-volatile memory with adaptive setting of state voltage levels and the method therefor - Google Patents

Non-volatile memory with adaptive setting of state voltage levels and the method therefor Download PDF

Info

Publication number
TW201007744A
TW201007744A TW98113899A TW98113899A TW201007744A TW 201007744 A TW201007744 A TW 201007744A TW 98113899 A TW98113899 A TW 98113899A TW 98113899 A TW98113899 A TW 98113899A TW 201007744 A TW201007744 A TW 201007744A
Authority
TW
Taiwan
Prior art keywords
volatile storage
storage elements
voltage
voltages
volatile
Prior art date
Application number
TW98113899A
Other languages
Chinese (zh)
Other versions
TWI410975B (en
Inventor
Mark Murin
Menahem Lasser
Original Assignee
Sandisk Il Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/111,748 external-priority patent/US7808836B2/en
Priority claimed from US12/111,729 external-priority patent/US7808819B2/en
Application filed by Sandisk Il Ltd filed Critical Sandisk Il Ltd
Publication of TW201007744A publication Critical patent/TW201007744A/en
Application granted granted Critical
Publication of TWI410975B publication Critical patent/TWI410975B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/021Detection or location of defective auxiliary circuits, e.g. defective refresh counters in voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/50Marginal testing, e.g. race, voltage or current testing
    • G11C29/50004Marginal testing, e.g. race, voltage or current testing of threshold voltage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

A non-volatile memory device is accessed using voltages which are customized to the device, and/or to portions of the device, such as blocks or word lines of non-volatile storage elements. The accessing can include programming, verifying or reading. By customizing the voltages, performance can be optimized, including addressing changes in threshold voltage which are caused by program disturb. In one approach, different sets of storage elements in a memory device are programmed with random test data. A threshold voltage distribution is determined for the different sets of storage elements. A set of voltages is determined based on the threshold voltage distribution, and stored in a non-volatile storage location for subsequent use in accessing the different sets of storage elements. The set of voltages may be determined at the time of manufacture for subsequent use in accessing data by the end user.

Description

201007744 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種記憶體裝置。 本申請案與同其一起申請之同在申請中之共同受讓的名 為「Method for Adaptive Setting of State Voltage Levels in201007744 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a memory device. The name of this application and the co-transfer in the application together with the application is "Method for Adaptive Setting of State Voltage Levels in

Non-Volatile Memory」的美國專利申請案______(檔案號 碼SAND-01301US0)有關,其以引用的方式併入本文中。 【先前技術】 在各種電子裝置中使用半導體記憶體已變得曰益風行。 舉例而言,非揮發性半導體記憶體用於蜂巢式電話、數位 相機、個人數位助理、行動計算裝置、非行動計算裝置及 其他裝置中。電可抹除可程式化唯讀記憶體(EEPROM)及 快閃記憶體在最風行之非揮發性半導體記憶體當中。與傳 統之全特徵化EEPROM對比,在快閃記憶體(亦為一種類型 之EEPROM)的情況下,可在一個步驟中抹除整個記憶體陣 列之内容或記憶體之一部分的内容。 傳統EEPROM及快閃記憶體兩者利用浮動閘極,該浮動 閘極定位於半導體基板中之一通道區域上方且與該通道區 域絕緣。浮動閘極定位於源極區域與汲極區域之間。控制 閘極提供於浮動閘極上方且與浮動閘極絕緣。由此所形成 之電晶體的臨限電壓(VTH)受保留於浮動閘極上之電荷的 量控制。亦即,在接通電晶體之前必須施加至控制閘極以 准許電晶體之源極與汲極之間的傳導之電壓的最小量受浮 動閘極上之電荷含量控制。 139679.doc 201007744 一些EEPROM及快閃記憶體裝置具有用以儲存兩個電荷 範圍之浮動閘極,且因此,記憶體元件可在兩個狀態(例 如,抹除狀態及程式化狀態)之間程式化/抹除。因為每一 記憶體元件可儲存一個資料位元,所以有時將此快閃記憶 體裝置稱作二進位快閃記憶體裝置。 按照慣例,將每單元儲存一個位元之記憶體稱作「單級 . 單元」(SLC)記憶體’且將每單元儲存一個以上位元之記 0 憶體稱作「多級單元」(MLC)記憶體。舉例而言,當每一 MLC s己憶體元件可置放在對應於四個相異臨限電壓範圍之 四個離散電荷帶中之-者中時,該記憶體元件可儲存兩個 資料位元。 通常’在程式化操作期間施加至控制閘極之程式化電壓 VPGM作為量值隨時間增大的一系列脈衝而施加。在一可能 的方法中,脈衝之量值隨著每一連續脈衝按預定步長(例 如,0.2 V至0.4 V)而增大。VPGM可施加至快閃記憶體元件 • 之控制閘極。在程式化脈衝之間的週期中,進行驗證操 作。亦即,在連續程式化脈衝之間讀取並行地經程式化之 元件群組中之每-元件的程式化位準,以判定其是等於 ' 逛是大於元件經程式化所至的驗證位準。對於多狀態快閃 • 言己憶體元件之陣列而言’可對於元件之每一狀態執行驗證 步驟,以判定該元件是否已達到其資料相關聯驗證位準。 舉例而δ,忐夠在四個狀態中儲存資料之多狀態記憶體元 件可此需要對三個比較點執行驗證操作。 此外,當程式化EEPROM或快閃記憶體裝置(諸如,反及 139679.doc 201007744 串中之反及快閃記憶體裝置)時,通常將vPGM施加至控制 閘極且使位元線接地,從而使得將來自一單元或記憶體元 件(例如,儲存元件)之通道的電子注入至浮動閘極中。當 電子在浮動閘極t累積時,浮動閘極變得帶負電荷且記憶 體元件的臨限電壓得以升高以使得認為記憶體元件處於程 式化狀態中。可在名為「Source Side Self Boosting Technique for Non-Volatile Memory」之美國專利第 6,859,397號及名為「Detecting Over Programmed Memory」 之美國專利申請公開案第2005/0024939號(2005年2月3曰公 開)中找到關於此程式化的更多資訊;該等案之全部内容 皆以引用的方式併入本文中。 此外,在讀取操作期間’將讀取參考電壓施加至待讀取 之儲存元件的一集合’且做出關於哪一讀取參考電壓使得 儲存元件變得導電的判定。讀取參考電壓經設定以允許區 分儲存元件之資料狀態。 然而,在程式化、驗證及讀取期間使用之電壓通常為固 定的且不說明臨限電壓分佈可變化之事實。舉例而言’臨 限電壓分佈可歸因於諸如程式化干擾(Pr〇gram disturb)之 問題而變化。結果’固定之程式化、驗證及讀取電壓之使 用導致非最佳化效能。 【發明内容】 本發明提供一種設定(諸如)用於寫入、讀取及驗證操作 之電壓位準以最佳化效能的非揮發性儲存系統。 在一實施例中,一種儲存系統包括:為多級儲存元件之 139679.doc 201007744 非揮發性儲存元件之各別集合;一非揮發性儲存位置;及 至乂控制電路。該至少一控制電路:a)量測非 =之各別集合的各別臨限電壓分佈,b)基於各別臨限 塗刀佈來判定非揮發性儲存元件之每—各別集合之電壓 土各别集σ纟中電壓之各別集合係對於非揮發性儲存元 件的各別集合而經客製化,c)在非揮發性儲存位置中儲存 —集合’叫在儲存之後,自非揮發性儲存位置 ❿ ❿ !:電壓之各別集合中的至少-者,及使用電壓之各別集 «的該至少-者來執行一涉及非揮發性儲存元件之各別 集合中的至少一者的寫入操作。 另實施例中,一種儲存系統包括:為多級儲存元件 之非揮發{·生儲存疋件之各別集合;一非揮發性儲存位置; 及至=g制電路。該至少—控制電路:a)量測非揮發性 儲存το件之各別集合的各別臨限電壓分佈,其中量測包括 將資料寫人至非揮發性儲存元件之各別集合,b)基於 臨限電好佈來衫非揮發性儲存元件之每-各別集合之 電壓的各別集合’其中電壓之各別集合係對於非揮發性儲 存7L件的各別集合而經客製化,在非揮發性健存位置中 儲存電壓之每一隼人,+ 集口及d)在儲存之後,自非揮發性儲存 位置獲得電壓之各別集合中的至少一者,及使用電壓之各 別集合中的該至少一者來存取非揮發性儲存元件之各別 合中的至少一者。 〃 另一實施例包括獨立記憶體裝置之一集合。每一各別記 憶體裝置包括:非揮發性储存S件之—或多個各別集合, 139679.doc 201007744 :::ΓΓ存元件為多級儲存元件;-各別非揮發性 ==體控制電路。該至少-控制電路:⑷量 w t非揮發性儲存π件之該-或多個各別 = 別臨限電麗分佈,(b)基於各別臨瞻 判定非揮發性儲存元件之每—各㈣合之電壓的各 各別非揮發性儲存元件之每一各別集合之電壓的 儲存於各別非揮發性健存位置中’及⑷在儲存之 η 揮發性儲存位置獲得電壓之各別集合中的至 一者,及使用電壓之各別集合中的該至少一者來執行一 :及::發性儲存元件之該-或多個各別集合=操 &gt; t壓之各別集合針對非揮發性儲存元件之每一 各別集合而經客製化,且在獨立記憶體裝置當中變化。 憶包括獨立記憶體裝置之一集合。每-各別記 D、 非揮發性儲存元件之—或多個各別集合, 儲/1發性儲存疋件為多級儲存元件;—各別非揮發性 置,及至少一控制電路。該至少-控制電路··⑷量 己憶趙裝置中之非揮發性儲存元件之該一或多個各別 :::-或多個各別臨限電-分佈,量測包括將資料寫入 揮發性儲存元件之該 臨限㈣佈來判定非揮發性儲存元件之每一各別集合之 電壓的各別集合’⑷將非揮發性儲存元件之每一各別集合 之電壓的各別集合儲存於各別非揮發性儲存位置中,及⑷ 在儲存之後’自各別非揮發性健存位置獲得電壓之各別集 σ中的至者,及使用電壓之各別集合令的該至少一者 139679.doc 201007744 2取非揮發性儲存元件之該-或多個各別集合。此外, =之各別集合針對非揮發性儲存元件之每一各別集合而 、,生客1化,且在獨立記憶體裝置當中變化。 =供用於執行本文巾所提供之方法的㈣方法、系統及 電腦或處理器可讀儲存裝置。 【實施方式】Non-Volatile Memory, U.S. Patent Application Serial No. </RTI> (file number SAND-01301US0), which is incorporated herein by reference. [Prior Art] The use of semiconductor memory in various electronic devices has become popular. For example, non-volatile semiconductor memory is used in cellular telephones, digital cameras, personal digital assistants, mobile computing devices, inactive computing devices, and other devices. Electrically erasable programmable read-only memory (EEPROM) and flash memory are among the most popular non-volatile semiconductor memories. In contrast to conventional full-featured EEPROMs, in the case of flash memory (also a type of EEPROM), the contents of the entire memory array or the contents of a portion of the memory can be erased in one step. Both conventional EEPROM and flash memory utilize a floating gate that is positioned above and insulated from one of the channel regions of the semiconductor substrate. The floating gate is positioned between the source region and the drain region. The control gate is provided above the floating gate and insulated from the floating gate. The threshold voltage (VTH) of the thus formed transistor is controlled by the amount of charge remaining on the floating gate. That is, the minimum amount of voltage that must be applied to the control gate to permit conduction between the source and the drain of the transistor before the transistor is turned on is controlled by the charge level on the floating gate. 139679.doc 201007744 Some EEPROM and flash memory devices have floating gates for storing two charge ranges, and therefore, the memory device can be programmed between two states (eg, erased state and stylized state). / erase. Since each memory element can store a data bit, this flash memory device is sometimes referred to as a binary flash memory device. By convention, a memory that stores one bit per cell is called a "single-level. cell" (SLC) memory and stores more than one bit per cell. The memory is called a "multi-level cell" (MLC). )Memory. For example, when each MLC s memory element can be placed in four discrete charge bands corresponding to four distinct threshold voltage ranges, the memory element can store two data bits. yuan. Typically, the stylized voltage VPGM applied to the control gate during the stylization operation is applied as a series of pulses whose magnitude increases with time. In one possible approach, the magnitude of the pulse increases with each successive pulse by a predetermined step size (e.g., 0.2 V to 0.4 V). The VPGM can be applied to the control gate of the flash memory component. The verification operation is performed during the period between the stylized pulses. That is, the stylized level of each component in the group of parallelly programmed components is read between successive stylized pulses to determine that it is equal to 'the wandering is greater than the verify bit of the component being stylized. quasi. For multi-state flashing, the array of elements can be verified by performing a verification step for each state of the component to determine if the component has reached its data-associated verification level. For example, δ, a multi-state memory element that stores data in four states may require verification operations on three comparison points. In addition, when staging a EEPROM or flash memory device (such as, in contrast, the reverse flash memory device in the 139679.doc 201007744 string), the vPGM is typically applied to the control gate and the bit line is grounded, thereby Electrons from a channel of a cell or memory element (eg, a storage element) are caused to be injected into the floating gate. When electrons accumulate at the floating gate t, the floating gate becomes negatively charged and the threshold voltage of the memory element is raised to cause the memory element to be considered to be in a programmed state. U.S. Patent No. 6,859,397, entitled "Source Side Self Boosting Technique for Non-Volatile Memory", and U.S. Patent Application Publication No. 2005/0024939, entitled "Detecting Over Programmed Memory" (issued February 3, 2005) Find out more about this stylization; the entire contents of these are incorporated herein by reference. Further, a read reference voltage is applied to a set of storage elements to be read during a read operation and a determination is made as to which read reference voltage causes the storage element to become conductive. The read reference voltage is set to allow for the storage of the data status of the component. However, the voltages used during stylization, verification, and reading are typically fixed and do not account for the fact that the threshold voltage distribution can vary. For example, the threshold voltage distribution can be varied due to problems such as Pr〇gram disturb. The result of 'fixed stylization, verification and read voltages results in non-optimal performance. SUMMARY OF THE INVENTION The present invention provides a non-volatile storage system that sets, for example, voltage levels for writing, reading, and verifying operations to optimize performance. In one embodiment, a storage system includes: a plurality of storage elements 139679.doc 201007744 respective collections of non-volatile storage elements; a non-volatile storage location; and a control circuit. The at least one control circuit: a) measuring the respective threshold voltage distributions of the respective sets of non-=, and b) determining the voltage soil of each of the non-volatile storage elements based on the respective threshold coating cloth The individual collections of voltages in the respective sets σ纟 are customized for individual collections of non-volatile storage elements, c) stored in non-volatile storage locations—the collections are called non-volatile after storage. Storage location ❿ ❿ !: at least one of the respective sets of voltages, and the at least one of the respective sets of voltages « perform at least one of the respective sets of non-volatile storage elements Into the operation. In another embodiment, a storage system includes: a non-volatile collection of non-volatile storage elements; a non-volatile storage location; and a circuit of =g. The at least-control circuit: a) measuring respective threshold voltage distributions of respective sets of non-volatile storage τ, wherein the measuring comprises writing the data to respective sets of non-volatile storage elements, b) based on A separate collection of voltages for each of the individual collections of the non-volatile storage elements of the cloth. The individual collections of voltages are customized for the respective collection of non-volatile storage of 7L pieces. Each of the stored voltages in the non-volatile storage location, + collection port and d), after storage, at least one of the respective sets of voltages obtained from the non-volatile storage locations, and the respective sets of voltages used The at least one of the ones accesses at least one of a respective one of the non-volatile storage elements. Another embodiment includes a collection of independent memory devices. Each of the individual memory devices includes: non-volatile storage S-- or a plurality of individual collections, 139679.doc 201007744::: the storage component is a multi-level storage component; - each non-volatile == body control Circuit. The at least-control circuit: (4) the amount of wt non-volatile storage π pieces of the - or more of the individual = other limited power distribution, (b) based on individual perspective determination of non-volatile storage elements - each (four) The respective voltages of the respective non-volatile storage elements of the combined voltage are stored in respective non-volatile storage locations' and (4) in the respective sets of voltages obtained at the stored η volatile storage locations And the at least one of the respective sets of voltages is used to perform one: and:: the one or more individual sets of the volatility storage element = the operation of the t Each individual collection of volatile storage elements is customized and varies among independent memory devices. Memories include a collection of independent memory devices. Each-different D, non-volatile storage elements - or multiple individual collections, storage / 1 storage storage elements are multi-level storage elements; - each non-volatile, and at least one control circuit. The at least-control circuit (4) the one or more of the non-volatile storage elements in the device:::- or a plurality of respective power-limiting distributions, including measuring data The threshold (4) of the volatile storage element determines a respective set of voltages for each respective set of non-volatile storage elements' (4) stores respective sets of voltages for each respective set of non-volatile storage elements. Among the respective non-volatile storage locations, and (4) the ones of the respective sets of voltages obtained from the respective non-volatile storage locations after storage, and the at least one of the respective sets of voltages used 139679 .doc 201007744 2 Take the one or more individual collections of non-volatile storage elements. In addition, the respective sets of = are for each individual set of non-volatile storage elements, are morphological, and vary among independent memory devices. = (4) methods, systems, and computer or processor readable storage devices for performing the methods provided herein. [Embodiment]

本發明提供-種設定(諸如)用於寫入、讀取及驗證操作 之電壓位準以最佳化效能的非揮發性儲存系統。 ^一適用於實施本發明之記憶體系統之—實例使用反及快 閃記憶體結構,其包括在兩個選擇開極之間串聯配置多個 電晶體。串聯之電晶體及選擇閘極被稱作反及串。圖丄為 展示一反及_之俯視圖。圖2為其等效電路。圖丨及圖2中 所描繪之反及串包括串聯及夾於第一選擇閘極12〇與第二 選擇閘極122之間的四個電晶體1〇〇、1〇2、1〇4及1〇6。選 擇閘極120閘控至位元線126之反及串連接。選擇閘極122 閘控至源極線128之反及串連接。藉由將適當電壓施加至 控制閘極120CG來控制選擇閘極120。藉由將適當電壓施 加至控制閘極122CG來控制選擇閘極122。電晶體1〇〇、 102、1〇4及106中之每一者具有一控制閘極及一浮動閘 極。電晶體100具有控制閘極100CG及浮動閘極ioofg。電 晶體102包括控制閘極l〇2CG及浮動閘極102FG。電晶體 包括控制閘極i〇4CG及浮動閘極i〇4FG。電晶體106包 括控制閘極106CG及浮動閘極i〇6FG。控制閘極l〇〇CG連 接至字線WL3,控制閘極102CG連接至字線WL2,控制閘 139679.doc 201007744 極104CG連接至字線WL1,且控制閘極1〇6cg連接至字線 WL0。亦可將控制閘極提供作為字線之部分。在一實施例 中,電晶體100、102、104及106各自為儲存元件,其亦被 稱作記憶體單元。在其他實施例中,儲存元件可包括多個 電晶體或可不同於圖丨及圖2中所描繪之彼儲存元件。選擇 閘極120連接至選擇線sgd(汲極選擇閘極)。選擇閘極丨22 連接至選擇線SGS(源極選擇閘極)。 圖3為描繪三個反及串之電路圖。使用反及結構之快閃 記憶體系統的典型架構將包括若干反及串。舉例而言,在 具有許多反及串之記憶體陣列中展示三個反及_32〇、34〇 及360。反及串中之每一者包括兩個選擇閘極及四個儲存 疋件。儘管為簡單起見說明四個儲存元件,但(例如)現代 反及串可具有達至三十二或六十四個儲存元件。 舉例而言,反及串320包括選擇閘極322及327以及儲存 兀件323至326,反及串340包括選擇閘極342及347以及儲 存兀件343至346,反及串360包括選擇閘極362及367以及 儲存元件363至366。每一反及串藉由其選擇閘極(例如, 選擇閘極327、347或367)而連接至源極線。選擇線SGS用 以控制源極側選擇閘極。各種反及串32〇、34〇及36〇藉由 選擇閘極322、342、362等中之選擇電晶體而連接至各別 位凡線321、341及361。汲極選擇線Sgd控制此等選擇電 晶體。在其他實施例中,在反及_當中,選擇線未必需要 為共同的,亦即,可為不同反及串提供不同選擇線。字線 WL3連接至儲存元件323、343及363之控制閘極。字線 139679.doc 201007744The present invention provides a non-volatile storage system that sets, for example, voltage levels for writing, reading, and verifying operations to optimize performance. An example of a memory system suitable for use in the practice of the present invention uses an inverse flash memory structure that includes a plurality of transistors arranged in series between two selected open electrodes. The series connected transistor and the selected gate are referred to as inverse and string. Figure 丄 is a top view showing the opposite. Figure 2 is its equivalent circuit. FIG. 2 and the reverse series depicted in FIG. 2 include four transistors 1〇〇, 1〇2, 1〇4 connected in series and sandwiched between the first selection gate 12〇 and the second selection gate 122, and 1〇6. The gate 120 is gated to the bit line 126 and the string connection is selected. The gate 122 is gated to the source line 128 and connected in series. The selection gate 120 is controlled by applying an appropriate voltage to the control gate 120CG. The selection gate 122 is controlled by applying an appropriate voltage to the control gate 122CG. Each of the transistors 1 〇〇, 102, 1 〇 4 and 106 has a control gate and a floating gate. The transistor 100 has a control gate 100CG and a floating gate ioofg. The transistor 102 includes a control gate 102C and a floating gate 102FG. The transistor includes a control gate i〇4CG and a floating gate i〇4FG. The transistor 106 includes a control gate 106CG and a floating gate i〇6FG. The control gate l〇〇CG is connected to the word line WL3, the control gate 102CG is connected to the word line WL2, the control gate 139679.doc 201007744 is connected to the word line WL1, and the control gate 1〇6cg is connected to the word line WL0. The control gate can also be provided as part of the word line. In one embodiment, transistors 100, 102, 104, and 106 are each a storage element, which is also referred to as a memory unit. In other embodiments, the storage element can comprise a plurality of transistors or can be different from the storage elements depicted in Figures 2 and 2 . The gate 120 is selected to be connected to the select line sgd (dip gate selection gate). Select gate 丨22 to connect to select line SGS (source select gate). Figure 3 is a circuit diagram depicting three inverses and strings. A typical architecture using a reverse flash memory system will include several inverses and strings. For example, three inverses _32〇, 34〇, and 360 are shown in an array of memories with many inverse strings. Each of the strings includes two selection gates and four storage elements. Although four storage elements are illustrated for simplicity, for example, modern reverse strings can have up to thirty-two or sixty-four storage elements. For example, the reverse string 320 includes select gates 322 and 327 and storage elements 323 to 326. The reverse string 340 includes select gates 342 and 347 and storage elements 343 to 346. The reverse string 360 includes a select gate. 362 and 367 and storage elements 363 to 366. Each of the inverse strings is connected to the source line by its selection gate (eg, select gate 327, 347, or 367). The selection line SGS is used to control the source side selection gate. The various reverse strings 32 〇, 34 〇 and 36 连接 are connected to the respective bit lines 321, 341 and 361 by selecting the selection transistors of the gates 322, 342, 362 and the like. The drain selection line Sgd controls these selection transistors. In other embodiments, the selection lines do not necessarily need to be common in the opposite, i.e., different selection lines may be provided for different inverse strings. Word line WL3 is coupled to the control gates of storage elements 323, 343 and 363. Word line 139679.doc 201007744

WL2連接至儲存元件324、344及364之控制閘極。字線 WL1連接至儲存元件325、345及365之控制閘極。字線 WL〇連接至儲存元件326、346及366之控制閘極。如可 見’每一位元線及各別反及串包含儲存元件之陣列或集合 的行。字線(WL3、WL2、WL1及WL0)包含該陣列或集合 之列。每一字線連接列中之每一儲存元件的控制閘極。或 者,控制閘極可由字線自身提供。舉例而言,字線WL2提 供儲存元件324、344及364之控制閘極。實務上,在一字 線上可存在數千個儲存元件。 每一儲存元件可儲存資料。舉例而言,當儲存一個位元 之數位資料時,將儲存元件之可能臨限電壓的範圍 劃分成兩個範圍,對該兩個範圍指派邏輯資料「丨」及 「〇」。在反及類型快閃記憶體之一實例中,Vth在抹除儲 存元件之後為負,且經界定為邏輯ri」。Vth在程式化操 作之後為正,且經界定為邏輯「Q」。當Vth為負且嘗試讀 取時,儲存7L件將接通以指示正儲存邏輯「丨」。當Vth為 正且嘗試讀取射時,赫元件將不接通,此⑸儲存邏 輯「〇」。儲存元件亦可畴多個位準之資訊,例如多個位 疋之數位資料。在此狀況下,將Vth值之範圍劃分為資料 位準之數目。舉例而言,若料四個料之資訊,則將存 在經指派至資料值「…、「〜、「…及厂心的四個 VTH範圍。在反及類型記憶體之—實例中,、在抹除操作 之後為負且經界定為「U」。正Vth值用於「ι〇」、「〇ι '、及 「⑽」之狀態。經程式化至儲存元件中之資料與該元;牛之 I39679.doc •11· 201007744 臨限電壓範圍之間的特定關係視對於儲存元件所採用的資 料編碼方案而定。舉例而言’美國專利第6,222,762號及美 國專利第7,237,074號描述用於多狀態快閃儲存元件之各種 資料編碼方案,該等專利之全部内容皆以引用的方式併入 本文中。 於美國專利第5,386,422號、第5,57〇,315號、第mow 號、第M4M35號、第6,456,528號及第M22,則號中提供 參 反及類型快閃記憶體及其操作之相關實例,該等專利中之 每一者以引用的方式併入本文中。 ❹ 當程式化㈣儲存元件時’將程式化電壓施加至儲存元 件之控制閘極’且使與儲存元件相關聯之位元線接地。將 來自通道之電子注入至浮動閑極中。當電子累積於浮動閘 極中時,浮動_變得帶負電荷,且儲存元件之Vth升 间。為了將程式化電壓施加至正經程式化之儲存元件的控 制閘極,將彼程式化電壓施加於適當字線上。如上文所論 述反及串中之每一者中之一儲存元件共用同一字線。舉 例而言,當程式化圖3之儲存元件324時,程式化電壓亦將 施加至儲存疋件344及364之控制閘極。未選定之儲存元件 344及364經受程式化干擾。程式化干擾在歸因於對選定字 線施加相對高的程式化電壓而疏忽地程式化同一字線上的 未選定儲存元件作為選定儲存元件時出現。 圖4描繪形成於基板上之反及串的橫截面圖。該視圖為 簡化的且未按比例繪製。反及串400包括形成於基板49〇上 之源極側選擇閘極4〇6、汲極側選擇閘極424及八個儲存元 139679.doc •12- 201007744 件 408、410、412、414、416、418、420及422 ° 許多源極 /汲極區域(其之一實例為源極/汲極區域430)提供於每一儲 存元件及選擇閘極406及424之任一側上。在一方法中,基 板490使用三重井技術,其包括η井區域494内之p井區域 492,η井區域494又處於ρ型基板區域496内。反及串及其 非揮發性儲存元件可至少部分地形成於ρ井區域上。除具 ' 有VBL之電位的位元線426之外,還提供具有V SOURCE之電 位的源極供應線404。電壓亦可經由端子402施加至ρ井區 域492,且經由端子403施加至η井區域494 ° 在讀取操作期間,在選定字線(在此實例中為WL3)上提 供控制閘極電壓VCG,WL3與儲存元件414及未圖示之其他 儲存元件相關聯。此外,記起儲存元件之控制閘極可作為 字線之一部分而提供。舉例而言,WL0、WL1、WL2、 WL3、WL4、WL5、WL6及WL7可分別經由儲存元件408、 4 10、412、4 14、416、41 8、420 及 422 之控制閘極延伸。 φ 在一可能方案中,將讀取導通電壓VREAD施加至與反及串 400相關聯之剩餘字線。分別將VsGS及VsGD施加至選擇閘 極406及424 。 - 圖5描繪儲存元件之區塊。在一實例實施中,可將反及 快閃EEPROM分割成1,024個區塊。可同時抹除儲存於每一 區塊中之資料。在一實施例中,區塊為同時抹除之儲存元 件的最小單位。在此實例中,在每一區塊中,存在對應於 位元線BL0、BL1、…、BL4255之4,256個行。在一被稱作 全位元線(ABL)架構之實施例中,可在讀取及程式化操作 139679.doc -13 - 201007744 = 擇一區塊之所有位元線,且可同時程式化沿丑 同子線且連接至任何位元線之儲存元件。 ,、 ^所提供之實财儲存元件經㈣連接 ^串,且存在人個資料字線_至饥7。反及串亦可= 虛設儲存元件及相關聯字線。在其他實施例中,反 =有八個以上或以下㈣储存元件。資料記_單元可儲 存使用者或系統資料。虛設記情 用者或系統資料。 ⑽體μ通常W存使 Φ 母反及串之-端子經由沒極選擇閑極(連接至選擇 ;=夠連接至相應位元線,且另一端子經由源極 選擇閘極(連接至選擇閘極源極線SGS)連接至共同源極 5〇5。因此,共同源極5〇5耦接至每—反及串。 φ 在一被稱作奇偶架構之實施例中,將位元線劃分成偶數 位兀線(BLe)及奇數位元線(BL〇)。在此狀況下在一時間 程式化沿共同字線且連接至奇數位元線之儲存元件,而在 另一時間程式化沿共同字線且連接至偶數位元線之儲存元 件。在每-區塊中’將行劃分成偶數行及奇數行。 在讀取及程式化操作之一組態期間,同時選擇Μ%個 儲存元件。選定之儲存元件具有同一字線且由此為共同實 體頁之部分。因此’可同時讀取或程式化亦形成一邏輯頁 之532個位元組的資料,且記憶體之_區塊可儲存至少八 個邏輯頁。在此實例中,實體頁與邏輯頁為相同的,但大 體而言此並非所要求的。舉例而言,實體頁可包括多個邏 輯頁。邏輯頁通常為同時寫人(程式化)之儲存元件的最小 139679.doc -14- 201007744 集合。對於多狀態儲存元件,當每一儲存元件儲存兩個資 料位兀(其中此等兩個位元中之每一者儲存於不同頁” 時,一個區塊儲存十六個邏輯頁。亦可使用其他大小的區 塊及頁。 • 對於狐或奇偶架構,可藉由將p井升高至抹除電壓(例 如,20 V)且使選定區塊之字線接地而抹除儲存元件。源 極線及位元線為浮動的。可每一次對一區塊執行抹除,或 • H㈣記憶體裝置中每-次對數個區塊執行抹除。 電子自儲存元件之浮動閘極傳送至P井區域,以使得儲存 元件之Vth變為負。 在讀取及驗證操作中,選擇閘極(SGD及SGS)連接至在 2.5 V至4.5 V範圍中之職’且未選定字線升高至讀取導 通電壓vREAD(通常為在4 5 乂至6 v範圍中之電壓),以使電 晶體作為導通閘極而操作。選定字線連接至一電壓,對於 每一讀取及驗證操作指定該電壓之位準以定相關儲存元 • 彳之VTH是高於還是低於此位準。舉例而言,在兩位準儲 存疋件之讀取操作中,可使選定字線接地,以使得偵測到 Vth疋否尚於0 V。在兩位準儲存元件之驗證操作中,舉例 - 而5,選定字線連接至V,以使得驗證VTH是否已達到 • 至少〇.8 V。源極及P井處於0 V。將選定位元線預充電至 (例如)0.7 V之位準。若Vth高於字線上之讀取或驗證位 準’則與所關注之儲存元件相關聯之位元線的電位位準由 於非導電儲存元件而維持高位準。另一方面,若Vth低於 讀取或驗證位準’則相關位元線之電位位準減小至低位準 139679.doc -15· 201007744 (例如,小於0.5 v) ’因為導電儲存元件使位元線放電。藉 此,在一可能實施中,連接至位元線之電壓比較器感測放 大器可偵測儲存元件之狀態。如同程式化一樣,可基於每 頁而執行讀取操作。 根據此項技術中已知之技術來執行上文所描述之抹除、 讀取及驗證操作的許多細節。因&amp;,熟習此項技術者可使 所解釋之細節中的許多變化。亦可使用此項技術中已知之 其他抹除、讀取及驗證技術。 圖6a至圖&amp;係關於程式化干擾可如何改變非揮發性儲存 元件之-集合的臨限電Μ分佈,且係關於-種用於解決此 問題之程序。圖6a描繪非揮發性儲存元件之一集合的初始 臨限電壓分佈與相應驗證及讀取電壓。儲存元件之臨限電 壓為在施加至儲存元件之控制閘極時將通道狀態自非導電 狀態改變至導電狀態的最低電壓。浮動閘極中所截獲之負 電荷的量影響此電壓:電荷愈多,單元之臨限電壓愈高: 最常見種類之多級單元(MLC)類型裝置在浮動閘極中使 用四個電荷量(包括零電荷),因此四個電壓位準可表示狀 態,由此MLC儲存元件儲存兩個資料位元。大體而士,。 使用2&quot;個電壓位準來表示每儲存元件糊位元。預期較新 的裝置使用八個或八個以上電壓位準。每儲存元件使用大 量位元允許以高資料密度產生快閃裝置且由此降低每快閃 裝置的總成本。注意,多級資料儲存器與(諸如)用於一此 NROM裝置中之多位元資料儲存器有 ' 二 乃匕々彳 此多位元資料 儲存器涉及各自對應於0或1之電荷位準。舉例而Α ^ 0 ’當 139679.doc •16- 201007744 MLC儲存元件儲存兩個資料位元時,多級資料儲存器涉及 對應於00、01、10及11之電荷位準的範圍。 具有四個狀態之MLC裝置中的讀取操作使用三個參考電 壓位準,具有八個狀態之MLC裝置使用七個參考電壓位 準,且大體而言,每單元儲存#個位元(其由y個狀態表 示)之裝置對於讀取操作使用個參考電壓位準。 在圖6a中,曲線圖包括表示臨限電壓之χ軸及表示儲存 元件之數目的y轴。實例MLC裝置包括八個狀態(狀態〇至 狀態7)、相關聯驗證電壓乂^至^7,及相關聯讀取電壓 VRjVR7。隨著每一儲存元件經程式化至所要電壓群組, 每一狀態之分佈為相對窄的。此外,用於讀取儲存元件之 相應參考電壓(例如,▽以至%7)處於電壓群組之間,通常 恰好在先前分佈上方’例如,Vri處於狀態。與狀態【之 間,恰好在狀態0之分佈上方,Yu處於狀態丨與狀態2之 間,恰好在狀態1之分佈上方,以此類推。 ▲如所提及’程式化干擾可引起臨限電壓分佈的顯著改 變程式化干擾在歸因於對選定字線施加相對高的程式化 電壓而疏忽地程式化同— 予線上的未選疋儲存7C件作為選 :子7L日出現。程式化干擾由此傾向於升高錯存元 一限電壓A外,最低狀態(例如,抹除狀態)傾向於升 高至最大且因此可用作儲存元件之—集合中已經歷之程 化:擾之量的最差狀況指示符。對快閃記憶體裝置所執; 之置測展讀式化干擾之量在不同記憶體裝置之間 -裝置内之不同區塊之間,及甚至在同一區塊内之不= 139679.doc -17- 201007744 線之間顯著變化。為了確保所有記憶體裝置在可靠性(例 如,最小數目之錯誤)方面的最佳效能,需要對於所有裝 置將程式化干擾保持在類似位準或將電壓位準(例如,驗 證及/或讀取)調適至特定裝置、區塊及/或字線中之程式化 干擾的實際值。本文中提供一種用於控制程式化干擾及用 於將程式化干擾與驗證及/或讀取電壓位準匹配的技術。 更大體而言,該技術客製化用於存取儲存元件之一集合的 驗證及/或讀取電壓位準。 圖6 b描繪經歷程式化干擾之非揮發性儲存元件之一集合 的臨限電壓分佈。所描繪之讀取參考電壓vRl至Vr7與圖6a 中之讀取參考電壓相同。此處,較低狀態之臨限電壓分佈 與圖6a中所展示之分佈相比歸因於程式化干擾而為較寬的 且向上移位。程式化干擾對於低電壓狀態通常為顯著的, 而上態大體不因程式化干擾而受損害。注意,在一些狀況 下’鄰近資料狀態之分佈亦可重疊。此處,可見,若圖6a 之相同§賣取電壓用以讀取圖6b中所表示之資料狀態,則讀 取錯誤(在此實例中,至少對於讀取電壓vR1至vR5)可產 生。較低臨限電壓分佈重疊讀取電壓Vri至vR5中之每一 者。對比而言,在此實例中,較低臨限電壓分佈不重疊讀 取電壓Vr6及VR7。 此外’程式化干擾之效應對於儲存元件之不同集合可不 同。舉例而言,儲存元件之不同集合的臨限電壓分佈可 (諸如)在裝置、區塊及/或字線位準上變化。因此,若使用 讀取電壓之同一、固定的集合,則此情形可導致非最佳結 139679.doc 201007744 穷猫1如在讀取操作期間引起錯誤。此外,諸如溫度改變 —/化/抹除循環之數目的其他因素,及區塊中之儲存 -、(諸如)基於儲存元件對反及串之源極或汲極之 的相對位置可影響程式化干擾。 近 ^6c描_6b之臨限電壓分佈的量測及相應讀取電壓的 设定。 «則實際臨限分佈之程序涉及在獨立讀取操作中讀取記 隱體裝置,其中讀取操作之數目係基於分佈量測之所要解 析度:若(例如)記憶體裝置使用八個狀態,其表示每儲存 兀件一個位疋,且每狀態需要十個點的解析度,則對於七 十九^壓臨限位準中之每—者執行讀取操作。在圖^ 中Y母一點表示一讀取點,且實線與圖6b中之實線相同。 可提供直方圖’其中每一柱(bin)之高度指示臨限電塵處於 由該柱所指定之範圍中的儲存元件的數目。可將儲存元件 之給定集合的最適當讀取位準判定(例如)為鄰近狀態之間 的最小值。當存在最小值之範圍時,兩個資料狀態之間的 最適當讀取位準可恰好在該兩個狀態中之較低者的分佈上 方。此處’已將讀取位準Wr5移位至相對於圖化之 位準的最佳位準’而Vr6及Vr7未改變^若使用圖6b之讀取 位準,則實質讀取錯誤將產生。大體而言,需要將讀取位 準儘可能置於靠近先前位準處以亦允許最大資料保留移 位0 大體而言,獲得儲存元件之一集合的「臨限電壓分佈」 涉及將儲存元件之臨限電壓的範圍劃分成多個子範圍,及 139679.doc -19- 201007744 接著對每子&amp;圍中之儲存元件之出現的各別數目進行計 數有可月匕對儲存元件之該集合中的儲存元件之全部或僅 °P刀的出現進行計數。亦有可能對子範圍之僅-部分 W^ &lt;多個子範圍)的出現進行計數,且將結果外插 至其他子範圍。 在方法中,提供當前裝置、區塊及/或字線之程式化 干擾的線上評估及經評估之程式化干擾之電壓位準設定的 調&amp; 、可(例如)基於逐區塊量測每一製成記憶體裝置的實 際程式化干擾’且可在電壓位準設^(不同資料狀態之讀 取及驗差電壓)與為彼區塊所量測之程式化干擾之間進行 匹配。、此等「每區塊匹配」《電壓位準設^可接著用於後 續程式化及讀取操作。冑了處置程式化干擾,必須修改驗 證電壓或讀取電壓或兩者。 可將程式化干擾之值界定為所有資料狀態存在之一頁中 的抹除狀n之臨限電壓分佈的寬度。料,録式化至該 頁之資料包括所有可能資料狀態的表示。根據咖校正能 力’可認為臨限電壓分佈達至單元之特定百分位數。可藉 由將貝料(例如)隨機地程式化至記憶體裝置,接著讀取所 有資料狀態之臨限電壓分佈及考慮抹除狀態之寬度而獲得 程式化干擾值。預設電壓位準設定可用於此程式化。 一旦獲得抹除位準臨限電壓分佈之寬度,便可判定剩餘 資料狀態之電壓位準設i可存在用於電壓位準之計算的 兩種方法,即「固定短式芥Π U疋枉忒化干擾」及「固定電壓窗」方 法。兩種方法具有同一原理。 139679.doc -20· 201007744 第-’識別對於除抹除狀態以外的所有資料狀態可用的 電壓窗。可將可用電壓窗界定為抹除狀態t「末端」(最 右侧)電塵(例#,程式化干擾值)與最高可 」2 證電塵(其在存在八個資料狀態時為Vv7)之間的距離 • 將:壓窗界定為在抹除狀態之最低(最左側)電壓處開始。 . 第二,將資料狀態之間的此窗與此等狀態之相對資料保 留移位成比例劃分。對於區塊之特定條件(例如,寫入/抹 • 除循環)之儲存元件的資料保留移位及給定保留時間視儲 存元件臨限電壓而定-臨限電壓愈高,移位愈大。此依賴 ,之量化特性為技術特^的且可(例如)由測試及/或理論計 算獲得。資料狀態之間的可用電壓窗的劃分可根據此等特 性。 第二,基於以上内容判定每一狀態之讀取位準及驗證位 準。兩種上述方法之間的差異如下。在固定程式化干擾方 法中,藉由修改電壓窗(例如,藉由修改最高資料狀態之 • ㉟也電壓位準)而將程式化干擾值調諧至預定的固定值。 由一應力引起程式化干擾現象,該應力由在程式化期間施 加至字線之高程式化電壓在抹除狀態中之儲存元件上誘 發。此外,當施加至字線之程式化電壓較高時(諸如,當 • 正將選定儲存元件程式化至最高資料狀態時),程式化干 擾較同此意δ胃,可藉由改變最高資料狀態之驗證位準來 控制程式化干擾。可實施迭代程序以獲得所要程式化干擾 值。舉例而έ,若程式化干擾過高,則可降低最高資料狀 I之驗也位準。接著,(例如)藉由判定臨限電壓分佈而再 139679.doc 201007744 次判定程式化干擾,以判定其是否靠近所要位準。若程式 化干擾仍過尚,則可再次降低最高資料狀態之驗證位準。 注意,所有狀態之驗證位準可藉由一為線性或非線性之 已知功能而彼此相關且與可用電壓窗相關。舉例而言歸 因於較高狀態之較高資料保留丟失,通常設定驗證位準以 為較高狀態比為較低狀態提供相對多的間隔。因此 整個電壓窗為已知的’便可計算讀取電壓或驗證電壓 在固定電壓窗方法中’最高資料狀態之驗證位準在預設 值處保持固定,從而導致如所量測之程式化干擾,其可在 字線之間、區塊之間及/或裝置之間不同。可變程式化干 擾值可導致資料狀態之剩餘部分的可變狀態寬度。 在實例方法中,可在記憶體裝置之製造階段或在記憶體 •C置已運輸至最終使用者之後執行調整電遷位準設定的程 序。此外’若需要’則可在不同時間重複該調整。或可 對於圮憶體裝置之壽命僅執行該調整一次。事實上,隨著 ❿ :憶體裝置經受額外程式化_抹除循環,減輕程式化干 擾,以使得可能不需要後續調整。 r二&quot;而° ’一旦將裝置運輸至最終使用者,不同事件 (邊如,溫度改變、通過許多 μ. ^ m .. #式化循環、自最後寫入資 的,提供二量之時間等等)便可觸發該調整。為了此目 -種追蹤组件及/或程序。在—方法中,可使用 絲處的儲存)程二法(二^ 於記憶體裝置t。、當區塊正鬼:經調整之㈣值儲存 疋址以用於程式化或讀取 139679.doc 22· 201007744 時’此等區塊特定值可進—步經摘取及用於記憶體裝置之 正常操作中。 m 口此在方法中,(諸如)在製造時,可對於記憶體裝 置中之儲存兀件的一集合判定讀取及/或驗證 • 冑化集合-次。每當執行讀取或程式化操作時,電壓= . 纟可儲存於記憶體裝置中之非揮發性儲存位置中且隨後被 存取。對於其他細節,參見圖9a至圖9e及圖U)。 ❿ 圖7⑽程式化電壓及驗證電壓之脈衝串7⑻。程式化電 壓之純以逐步方式增大,例如,在具有VPGM1之振幅的 程式㈣衝705處開始’後面跟著具有VPGM2之振幅的程式 化脈衝710,具有VpGM3之振幅的程式化脈衝715等等。在 母-程式化脈衝之後,施加—系列驗證電壓Vvi至〜,如 由波形720、725及730所描緣。此等驗證電壓可針對儲存 元件之m合而經客製化,如結合圖6a至圖&amp;所論 述。 豢 以電壓亦可料非揮魏料元件之不_合而經客 製化。圖8a描綠可在程式化期間使用之一系列寫入或程式 化電壓。為了清楚起見,省略中間驗證電壓。如所提及, 寫入電壓大體在初始位準Vpgm•而處開始,且根據步長 振幅增大’直至已將所有儲存元件程式化至其相應狀離 或達到最終電壓VPGM-FINAL(兩者中之最早者)為止。在—方 法中或多個寫入電壓參數可對於儲存元件之_特定集 口而經客製化。舉例而言,若具有較低狀態之儲存元件之 一集合的臨限電壓分佈指示此等狀態之臨限電壓主要在預 139679.doc •23· 201007744 期值上方’或臨限分佈之寬度比預期寬度高,則可推斷程 式化效應比平均效應強。在此等狀況下,由降低 VPGM-1NITIAL及/或步長來降低寫入電壓。在一些狀況下, 可重複在最大可允許vpgm_final處或在較低位準處之脈 衝。若程式化效應對於儲存元件之一集合比平均效應弱, 例如’在於已將所有儲存元件程式化至其相應狀態之前達 到狀況下,可進行類似調整。此等調整可包 括增大VPGM-_AL、步長及/或最大可允許VpGMF崎。應 注意’步長直接影響分佈狀態之寬度,以使得若每一分佈 之寬度比平均寬度寬,則可降低步長,且若每一分佈之寬 度比平均寬度窄,則可辦士 j 化 X乍則』增大步長(例如)以達成更快程式 圖8b描繪包括對於非揮發性儲存元件之不同集合所客製 化之寫入、驗證及讀取電壓的資料。如所提及,寫入、驗 證及/或讀取電壓可對於儲存元件之不同集合而瘦客f 化。儲存元件之每-集合的最佳電壓可經判定及儲存以用 於後續使用。舉例而言,特定記憶體裝置、區塊字線及/ 或該記憶體裝置中之字線之群組的電壓可儲存於該記憶體 裝置之非揮發性儲存位置令。 &quot; 之第-隹幻h T ^ V_丨表不儲存元件 之第集“集合1)的寫入電壓,Vv Φ厥,Β Λ, V2」寻表不驗證 干以下各者等表示讀取電壓。此外U表 …备者中之一或多者:集合步長及 一AL。此等三個變數中之每-者可針對儲存元件之 不同集合而經修整⑽。r)。類似地,W2(例如 139679.doc 201007744 下各者中之—或多者:集合&amp;VpGM.贿ial、步長d雇. FINAL)表示儲存元件之第二集合(集合2)的寫入電壓,WL2 is coupled to the control gates of storage elements 324, 344, and 364. Word line WL1 is coupled to the control gates of storage elements 325, 345, and 365. Word line WL〇 is coupled to the control gates of storage elements 326, 346, and 366. As can be seen, 'each bit line and each of the other columns and rows containing the array or set of storage elements. The word lines (WL3, WL2, WL1, and WL0) contain the array or set of columns. Each word line connects the control gate of each of the storage elements in the column. Alternatively, the control gate can be provided by the word line itself. For example, word line WL2 provides control gates for storage elements 324, 344, and 364. In practice, there can be thousands of storage elements on a word line. Each storage element can store data. For example, when storing a bit of digital data, the range of possible threshold voltages of the storage elements is divided into two ranges, and logical data "丨" and "〇" are assigned to the two ranges. In one example of a reverse type flash memory, Vth is negative after erasing the storage element and is defined as a logical ri". Vth is positive after the stylized operation and is defined as a logical "Q". When Vth is negative and an attempt is made to read, storing 7L will turn "on" to indicate that the logic "丨" is being stored. When Vth is positive and an attempt is made to read, the Her element will not be turned on, and (5) will store the logic "〇". The storage element can also have multiple levels of information, such as multiple digits of digits. In this case, the range of the Vth value is divided into the number of data levels. For example, if information on four materials is available, there will be four VTH ranges assigned to the data values "..., "~, "... and the factory core. In the case of the inverse type memory - in the instance, The erase operation is negative and is defined as "U". The positive Vth value is used for the states of "ι〇", "〇ι", and "(10)". The material that is programmed into the storage element and the element; the specific relationship between the threshold voltage range of the cattle I39679.doc •11· 201007744 depends on the information coding scheme used for the storage element. Various data encoding schemes for multi-state flash storage elements are described, for example, in U.S. Patent No. 6,222,762, and U.S. Patent No. 7,237,074, the disclosure of each of each of Examples of reciprocal and type flash memory and their operation are provided in U.S. Patent Nos. 5,386,422, 5,57,315, 315, M4M35, 6,456,528 and M22. Each of these patents is incorporated herein by reference. ❹ When stylizing (4) the storage element, 'apply a staging voltage to the control gate of the storage element' and ground the bit line associated with the storage element. The electrons from the channel are injected into the floating idler. When electrons accumulate in the floating gate, the floating_ becomes negatively charged and the Vth of the storage element rises. To apply a programmed voltage to the control gate of the program element being programmed, the stylized voltage is applied to the appropriate word line. As described above, one of the storage elements of each of the strings shares the same word line. For example, when the storage element 324 of Figure 3 is programmed, the programmed voltage will also be applied to the control gates of the storage elements 344 and 364. Unselected storage elements 344 and 364 are subject to stylized interference. Stylized interference occurs when an unselected storage element on the same word line is inadvertently programmed as a selected storage element due to the relatively high stylized voltage applied to the selected word line. Figure 4 depicts a cross-sectional view of a reversed string formed on a substrate. This view is simplified and not drawn to scale. The reverse string 400 includes a source side selection gate 4〇6, a drain side selection gate 424, and eight storage elements 139679.doc • 12-201007744 pieces 408, 410, 412, 414 formed on the substrate 49A. 416, 418, 420, and 422 ° A number of source/drain regions (one of which is source/drain region 430) are provided on either side of each storage element and select gates 406 and 424. In one method, the substrate 490 uses a triple well technique that includes a p-well region 492 within the n-well region 494, which in turn is within the p-type substrate region 496. The reverse string and its non-volatile storage elements can be formed at least partially on the ρ well region. In addition to the bit line 426 having the potential of VBL, a source supply line 404 having a potential of V SOURCE is also provided. Voltage may also be applied to the p-well region 492 via terminal 402 and to the n-well region 494° via terminal 403. During the read operation, a control gate voltage VCG is provided on the selected word line (WL3 in this example), WL3 is associated with storage element 414 and other storage elements not shown. In addition, the control gate that remembers the storage element can be provided as part of the word line. For example, WL0, WL1, WL2, WL3, WL4, WL5, WL6, and WL7 may extend via control gates of storage elements 408, 4 10, 412, 4 14 , 416 , 41 8 , 420 , and 422 , respectively. φ In a possible arrangement, the read turn-on voltage VREAD is applied to the remaining word lines associated with the inverse string 400. VsGS and VsGD are applied to select gates 406 and 424, respectively. - Figure 5 depicts a block of storage elements. In an example implementation, the inverse flash EEPROM can be partitioned into 1,024 blocks. The data stored in each block can be erased at the same time. In one embodiment, the block is the smallest unit of the storage element that is simultaneously erased. In this example, in each block, there are 4,256 rows corresponding to the bit lines BL0, BL1, ..., BL4255. In an embodiment called the All-Band Line (ABL) architecture, it is possible to read and program operations 139679.doc -13 - 201007744 = select all the bit lines of a block and simultaneously program the edges Ugly as a sub-line and connected to the storage element of any bit line. , , ^ The real wealth storage component provided by (4) is connected to the string, and there is a data word line _ to hungry 7. The reverse string can also be a dummy storage element and associated word line. In other embodiments, there are eight or more (four) storage elements. The data record unit can store user or system data. Virtually remember the user or system data. (10) The body μ is normally stored such that the Φ mother and the string-terminal are connected to the selection via the no-pole (connected to the selection; = connected to the corresponding bit line, and the other terminal is connected to the gate via the source (connected to the select gate) The pole source line SGS) is connected to the common source 5〇5. Therefore, the common source 5〇5 is coupled to each-reverse and string. φ In an embodiment called a parity structure, bit lines are divided An even-numbered bit line (BLe) and an odd bit line (BL〇). In this case, the storage elements along the common word line and connected to the odd bit lines are programmed at one time, while stylized along another time. Common word lines and connected to storage elements of even bit lines. In each block, 'divide the lines into even lines and odd lines. During configuration of one of the read and program operations, select Μ% of the storage at the same time. The selected storage element has the same word line and is thus part of the common entity page. Therefore, 'the 532-bit data of a logical page can be simultaneously read or programmed, and the memory block is _block Stores at least eight logical pages. In this example, the physical page and the logical page are In the same way, but in general this is not required. For example, a physical page can include multiple logical pages. A logical page is usually a minimum of 139679.doc -14- 201007744 collection of simultaneously written (stylized) storage elements. For multi-state storage elements, when each storage element stores two data bits (where each of these two bits is stored on a different page), one block stores sixteen logical pages. Use blocks and pages of other sizes. • For fox or parity architectures, the storage element can be erased by raising the p-well to the erase voltage (for example, 20 V) and grounding the word line of the selected block. The polar and bit lines are floating. Each time a block can be erased, or • H (four) memory device is erased every time a number of blocks. The floating gate of the electronic self-storage component is transferred to P Well area to make the Vth of the storage element negative. In the read and verify operation, select the gate (SGD and SGS) to connect to the 2.5V to 4.5 V range and the unselected word line rises to Read the turn-on voltage vREAD (usually at 4 5 乂 to 6 v van Medium voltage) to operate the transistor as a turn-on gate. The selected word line is connected to a voltage, and the level of the voltage is specified for each read and verify operation to determine the associated memory cell. Still below this level. For example, in the read operation of two quasi-storage components, the selected word line can be grounded so that Vth is detected to be still 0 V. In the verification operation, for example - and 5, the selected word line is connected to V to verify that VTH has reached • at least 88 V. The source and P wells are at 0 V. Pre-charge the selected positioning line to (eg A level of 0.7 V. If Vth is higher than the read or verify level on the word line, the potential level of the bit line associated with the storage element of interest maintains a high level due to the non-conductive storage element. On the other hand, if Vth is lower than the read or verify level' then the potential level of the associated bit line is reduced to a low level 139679.doc -15· 201007744 (eg, less than 0.5 v) 'because the conductive storage element makes place Yuan line discharge. Thus, in a possible implementation, the voltage comparator sense amplifier connected to the bit line can detect the state of the storage element. As with stylization, read operations can be performed on a per-page basis. Many details of the erase, read, and verify operations described above are performed in accordance with techniques known in the art. Because of &amp;, those skilled in the art can make many variations in the details explained. Other erase, read and verify techniques known in the art can also be used. Figures 6a through & are related to how the stylized interference can change the threshold distribution of the non-volatile storage elements - and is a procedure for solving this problem. Figure 6a depicts the initial threshold voltage distribution and corresponding verify and read voltages for a set of non-volatile storage elements. The threshold voltage of the storage element is the lowest voltage that changes the channel state from the non-conductive state to the conductive state when applied to the control gate of the storage element. The amount of negative charge trapped in the floating gate affects this voltage: the more charge, the higher the threshold voltage of the cell: The most common type of multi-level cell (MLC) type device uses four charge levels in the floating gate ( Including zero charge), so the four voltage levels can represent the state, whereby the MLC storage element stores two data bits. Generally, he is. Use 2&quot; voltage levels to represent each stored component paste. Newer devices are expected to use eight or more voltage levels. The use of a large number of bits per storage element allows the flash device to be generated at high data densities and thereby reduce the overall cost per flash device. Note that the multi-level data storage and the multi-bit data storage for use in a NROM device, for example, have a multi-bit data storage device that respectively corresponds to a charge level corresponding to 0 or 1. . For example, Α ^ 0 ’ 139679.doc • 16- 201007744 When the MLC storage element stores two data bits, the multi-level data storage relates to the range of charge levels corresponding to 00, 01, 10 and 11. A read operation in an MLC device with four states uses three reference voltage levels, an MLC device with eight states uses seven reference voltage levels, and, in general, stores # bits per cell (its The device of the y state representation uses a reference voltage level for the read operation. In Figure 6a, the graph includes a x-axis representing the threshold voltage and a y-axis representing the number of storage elements. The example MLC device includes eight states (state 〇 to state 7), associated verify voltages 至^ to ^7, and associated read voltages VRjVR7. As each storage element is programmed to the desired voltage group, the distribution of each state is relatively narrow. In addition, the respective reference voltage (e.g., ▽ to %7) used to read the storage element is between the voltage groups, typically just above the previous distribution&apos;, e.g., Vri is in a state. Between the state and the state, just above the distribution of state 0, Yu is between state 丨 and state 2, just above the distribution of state 1, and so on. ▲ As mentioned, 'programmed interference can cause significant changes in the threshold voltage distribution. Stylized interference is inadvertently programmed to be unselected on the line due to the relatively high stylized voltage applied to the selected word line. 7C pieces are selected as: 7L days appear. Stylized interference thus tends to raise the limit voltage A outside, and the lowest state (eg, erase state) tends to rise to the maximum and can therefore be used as a storage element - the process that has been experienced in the set: The worst-case indicator of the amount of disturbance. For the flash memory device; the amount of the read-and-write interference is between different memory devices - between different blocks within the device, and even within the same block = 139679.doc - 17- 201007744 Significant changes between lines. In order to ensure optimal performance of all memory devices in terms of reliability (eg, a minimum number of errors), it is necessary to maintain stylized interference at similar levels or voltage levels (eg, verify and/or read) for all devices. The actual value of the stylized interference that is adapted to a particular device, block, and/or word line. A technique for controlling stylized interference and for matching stylized interference to verify and/or read voltage levels is provided herein. More specifically, the technique customizes the verification and/or read voltage levels used to access a collection of storage elements. Figure 6b depicts the threshold voltage distribution of a set of non-volatile storage elements undergoing stylized interference. The read reference voltages vR1 through Vr7 are depicted to be the same as the read reference voltage in Figure 6a. Here, the lower state threshold voltage distribution is wider and upshifted due to stylized interference than the distribution shown in Figure 6a. Stylized interference is usually significant for low voltage states, while the upper state is generally not compromised by stylized interference. Note that the distribution of adjacent data states may also overlap under some conditions. Here, it can be seen that if the same § selling voltage of Fig. 6a is used to read the data state represented in Fig. 6b, a read error (in this example, at least for the read voltages vR1 to vR5) can be generated. The lower threshold voltage distribution overlaps each of the read voltages Vri through vR5. In contrast, in this example, the lower threshold voltage distribution does not overlap the read voltages Vr6 and VR7. In addition, the effect of stylized interference can be different for different sets of storage elements. For example, the threshold voltage distribution of different sets of storage elements can vary, such as at device, block, and/or word line levels. Therefore, if the same, fixed set of read voltages is used, this situation can result in a non-optimal junction 139679.doc 201007744 Poor Cat 1 causes an error during a read operation. In addition, other factors such as the number of temperature changes - / / erase cycles, and the storage in the block - such as based on the relative position of the storage element pair and the source or the drain of the string can affect the stylization interference. The measurement of the threshold voltage distribution of the near ^6c _6b and the setting of the corresponding read voltage. «The actual threshold distribution procedure involves reading the hidden device in an independent read operation, wherein the number of read operations is based on the resolution of the distribution measurement: if, for example, the memory device uses eight states, It means that for every bit of storage, and each state requires a resolution of ten points, a read operation is performed for each of the seventy-nine threshold levels. In Fig. ^, the Y mother point represents a read point, and the solid line is the same as the solid line in Fig. 6b. A histogram may be provided 'where the height of each bin indicates the number of storage elements in which the threshold dust is in the range specified by the column. The most appropriate read level for a given set of storage elements can be determined, for example, as the minimum between adjacent states. When there is a range of minimum values, the most appropriate read level between the two data states may be just above the distribution of the lower of the two states. Here 'the read level Wr5 has been shifted to the best level relative to the level of the map' and Vr6 and Vr7 have not changed. ^ If the read level of Figure 6b is used, a substantial read error will result. . In general, it is necessary to place the read level as close as possible to the previous level to allow the maximum data retention shift. In general, the "predicted voltage distribution" of a set of storage elements is involved in the storage element. The range of the voltage limit is divided into a plurality of sub-ranges, and 139679.doc -19- 201007744 then the respective number of occurrences of the storage elements in each sub-amp; surrounds the storage in the set of storage elements All or only the appearance of the °P knife is counted. It is also possible to count only the occurrences of the sub-ranges - part W^ &lt; multiple sub-ranges, and extrapolate the results to other sub-ranges. In the method, an on-line evaluation of the programmatic interference of the current device, the block and/or the word line, and a voltage level setting of the evaluated stylized interference are provided, and may be, for example, based on block-by-block measurement. The actual stylized interference that is made into the memory device can be matched between the voltage level setting (the reading and checking voltage of different data states) and the stylized interference measured for the block. These "match per block" voltage level settings can then be used for subsequent stylization and read operations. In order to deal with stylized interference, the verification voltage or the read voltage or both must be modified. The value of the stylized interference can be defined as the width of the threshold voltage distribution of the erased n in one of the pages of all data states. The material recorded to this page includes a representation of all possible data statuses. According to the coffee correction ability, the threshold voltage distribution can be considered to reach a specific percentile of the unit. The stylized interference value can be obtained by randomly staging the batting material, for example, to the memory device, then reading the threshold voltage distribution of all data states and considering the width of the erased state. The preset voltage level setting can be used for this stylization. Once the width of the erased threshold voltage distribution is obtained, it can be determined that the voltage level of the remaining data state is set to exist. There are two methods for calculating the voltage level, that is, "fixed short mustard U疋枉忒"Interference" and "fixed voltage window" methods. Both methods have the same principle. 139679.doc -20· 201007744 Section -' identifies the voltage window available for all data states except the erase state. The available voltage window can be defined as the erasing state t "end" (the rightmost) electric dust (example #, stylized interference value) and the highest can be 2" proof dust (which is Vv7 when there are eight data states) Distance between • • The press window is defined as starting at the lowest (leftmost) voltage of the erased state. Second, the window between the data states is proportional to the relative data retention shift of these states. The data retention shift for a particular component of a block (eg, write/erase cycle) and the given retention time depend on the threshold voltage of the storage component. The higher the threshold voltage, the greater the shift. This dependence, the quantitative characteristics are technical and can be obtained, for example, by testing and/or theoretical calculations. The division of the available voltage window between data states can be based on these characteristics. Second, based on the above, the read level and the verify level of each state are determined. The difference between the two above methods is as follows. In the fixed stylized interference method, the stylized interference value is tuned to a predetermined fixed value by modifying the voltage window (e.g., by modifying the highest data state of the voltage level). Stylized interference is caused by a stress that is induced by the high stylized voltage applied to the word line during stylization on the storage element in the erased state. In addition, when the stylized voltage applied to the word line is high (such as when • the selected storage element is being programmed to the highest data state), the stylized interference is more like this, by changing the highest data state. The verification level controls the stylized interference. An iterative procedure can be implemented to obtain the desired stylized interference value. For example, if the stylized interference is too high, the highest data type I can be lowered. Next, stylized interference is determined, for example, by determining the threshold voltage distribution to determine if it is close to the desired level. If the stylized interference is still too high, the verification level of the highest data status can be lowered again. Note that the verify levels for all states can be related to each other and to the available voltage window by a known function that is linear or non-linear. For example, due to the higher data retention loss of the higher state, the verification level is usually set such that the higher state provides a relatively larger interval than the lower state. Therefore, the entire voltage window is known to calculate the read voltage or verify the voltage. In the fixed voltage window method, the verification level of the highest data state remains fixed at the preset value, resulting in stylized interference as measured. It may vary between word lines, between blocks, and/or between devices. The variable stylized interference value can result in a variable state width for the remainder of the data state. In the example method, the process of adjusting the electromigration level setting may be performed at the manufacturing stage of the memory device or after the memory has been transported to the end user. In addition, the adjustment can be repeated at different times if needed. Or this adjustment can only be performed once for the life of the memory device. In fact, as the ❿:memory device undergoes an additional stylized_erase cycle, the stylized interference is mitigated so that subsequent adjustments may not be needed. r two &quot; and ° 'once the device is transported to the end user, different events (such as temperature changes, through many μ. ^ m .. #化化循环, from the last written capital, provide two quantities of time Etc.) This trigger can be triggered. For this purpose - a tracking component and / or program. In the method, you can use the storage method at the wire. (2) The memory device t. When the block is a ghost: the adjusted (4) value is stored in the address for stylization or reading 139679.doc 22· 201007744 'These block specific values can be advanced—stepped for extraction and used in normal operation of the memory device. m port is in the method, such as at the time of manufacture, can be stored in the memory device. A set of pieces determines read and/or verify • Degenerate set-times. Each time a read or program operation is performed, voltage = . 纟 can be stored in a non-volatile storage location in the memory device and subsequently Access. For other details, see Figures 9a-9e and U). ❿ Figure 7 (10) Burst 7 (8) of the programmed voltage and verify voltage. The pureness of the stylized voltage is increased in a stepwise manner, for example, starting with a program having a amplitude of VPGM1 (four) 705, followed by a programmed pulse 710 having an amplitude of VPGM2, a stylized pulse 715 having an amplitude of VpGM3, and the like. After the mother-stylized pulse, a series of verify voltages Vvi through ~ are applied, as depicted by waveforms 720, 725, and 730. Such verification voltages can be customized for the m-components of the storage elements, as discussed in connection with Figures 6a through &amp;豢 The voltage can also be customized without the use of non-swing components. Figure 8a depicts green using a series of write or program voltages during stylization. For the sake of clarity, the intermediate verify voltage is omitted. As mentioned, the write voltage generally begins at the initial level Vpgm• and increases in amplitude according to the step size until all the storage elements have been programmed to their respective states or reach the final voltage VPGM-FINAL (both The earliest of them). In the method or multiple write voltage parameters can be customized for the particular set of storage elements. For example, if the threshold voltage distribution of one of the storage elements with a lower state indicates that the threshold voltage of these states is mainly above the value of the pre-139679.doc • 23· 201007744 period, or the width of the threshold distribution is larger than expected A high width can be inferred that the stylized effect is stronger than the average effect. Under these conditions, the write voltage is reduced by lowering VPGM-1NITIAL and/or step size. In some cases, the pulse at the maximum allowable vpgm_final or at a lower level may be repeated. A similar adjustment can be made if the stylized effect is weaker than the average effect on one of the set of storage elements, e.g., as all storage elements are programmed to their respective states. Such adjustments may include increasing VPGM-_AL, step size, and/or maximum allowable VpGMF. It should be noted that the step size directly affects the width of the distribution state, so that if the width of each distribution is wider than the average width, the step size can be reduced, and if the width of each distribution is narrower than the average width, then the controller can be X Increasing the step size (for example) to achieve a faster program. Figure 8b depicts data including write, verify, and read voltages that are customized for different sets of non-volatile storage elements. As mentioned, the write, verify, and/or read voltages can be thinned out for different sets of storage elements. The optimum voltage for each set of storage elements can be determined and stored for subsequent use. For example, the voltages of a particular memory device, a block word line, and/or a group of word lines in the memory device can be stored in a non-volatile storage location of the memory device. &quot; The first - 隹 h h T ^ V 丨 不 不 不 不 不 不 不 不 不 不 不 不 不 不 不 T 不 T T T T T T T T T T T T T T T T T T T T T T T T T T T T Voltage. In addition, one or more of the U tables are: the set step size and an AL. Each of these three variables can be tailored (10) for different sets of storage elements. r). Similarly, W2 (eg, among 139679.doc 201007744 - or more: Set &amp; VpGM. Bribe, step d employment. FINAL) represents the write voltage of the second set of storage elements (set 2) ,

Vn-2等表示儲存元件之第二集合的驗證電壓,且 VR2-2等表示讀取電壓。大體而言,VpGMi(例如,表示R1 以2下 各者中之一或多者·•集合i之vpgm._al、步長及VPGM_ FINAL)等表示儲存元件之第i集合(集合i)的程式化電壓,而 VV1-i、Vvu等表示儲存元件之第丨集合的驗證電壓,且%i.i、 Vju-i等表示讀取電壓。 圖9a描繪一用於判定非揮發性儲存元件之—集合之電壓 的程序。步驟900包括開始-程序以獲得非揮魏儲存元 件之一集合之電壓的一集合(例如,讀取、驗證及/或寫入 電壓)。該集合可表示(例如)與具有多個字線之區塊中之一 或多個特定字線相關聯的儲存元件,與具有多個區塊之記 憶體裝置中之特定區塊相關聯的健存元件’或與整個特定 記憶體裴置相關聯的儲存元件。步驟9〇2包括在一方法令 藉由隨機測試資料來程式化非揮發性儲存元件的該集合。 測試資料應包括所有資料狀態。舉例而言,當記憶體:置 在運輸之前於製造場所處經受測試時,此測試資料可為可 用的。在已運輸記憶體裝置之後1無測試資料可用:則 可替代地程式化現有使用者資料。亦可缝使用者資料、, 以使仔其相對均句地表示所有資料狀態。舉例而士 於記憶體裝置之一位置(諸如,給定區塊)中的❹者資子 可複製至另一位置,諸如包括儲存元件之特定集合(對於 其,讀取/驗證電壓將被判定)的另—區塊。 、 139679.doc •25- 201007744 在步驟9〇2之後’可沿兩個路徑中之一者而行。在第— 路徑中,步驟904包括(例如)藉由以不同遞增電壓臨限位準 來執行讀取操作(如圖6c中所描繪)而判定儲存元件之 合的臨限電壓分佈。大體而言,此可涉及判定所有資料狀 ,之臨限電麼分佈。步驟906包括基於臨限電廢分佈來判 定電壓之一集合。舉例而言,可基於臨限電壓分佈之最小 值來判定讀取電壓的一集合,如圖6。中所描㈣ 壓窗來判定驗證電壓的一集合。舉例而言,可自臨限電壓 分佈來判定電麼窗,且自在整個電塵窗之約束内的驗證電 壓之間提供所要相對間隔的功能來判定驗證電壓。步驟 W2包括將識別電壓之該集合的資料儲存於非揮發性储存 位置中。舉例而言,電壓之該集合的資料可儲存於記憶體 裝置中之獲得臨限電M分佈所自的儲存元件t。舉例而 言’此等儲存元件可為不儲存使用者資料之儲存元件。在 -方法中’資料儲存於區塊之獲得臨限電壓分佈所自的儲 存兀件中。在另一方法中,資料儲存於字線之獲得臨限電 塵分佈所自的儲存元株Φ。# __ y^ 仔疋件中或,可使用記憶體裝置之控制 器所使用的非揮發性儲存位置。亦可使用其他位置。 在第中’步驟908包括判定對於比所有資料狀態 少之資料狀態的儲存元件之該集合的臨限電壓分佈。舉例 而言,可判定抹除狀態之臨限電麼分佈。如所提及,抹除 狀態之臨限電壓分佈的上部邊緣可用以量測程式化干擾的 位準’因為此狀態最容易受程式化干擾影響。可基於此上 部邊緣來判定狀態m最佳讀取位準,且可基於該等狀態 139679.doc •26- 201007744 之讀取位準之間的已知關係來判定剩餘狀態的最佳讀取位 準。亦即’可使用使狀態i(i&gt;2)之最佳讀取位準與狀態1之 最佳讀取位準相關的公式。亦有可能判定對於多個資料狀 態(諸如,對於狀態丨及狀態2)之儲存元件之該集合的臨限 電壓刀佈’且使此專狀態與其他狀態相關。舉例而言,可 使用使狀態i(i&gt;3)之最佳讀取位準與狀態1及狀態2之最佳 β賣取位準相關的公式。可自理論關係及/或實驗測試結果 獲得此等公式。步驟91 〇由此包括基於比所有資料狀態少 之資料狀態之臨限電壓分佈來判定電壓的一集合。 此外’可以任何方式表示電壓之該集合的資料。先前所 論述之圖8b提供一可能實例。在一些狀況下,亦可使用儲 存元件之該集合的識別符,如所描繪(例如,集合1、 2、…、i)。舉例而言,控制器可具有一儲存位置,該儲存 位置儲存相應裝置中之每一區塊之電廢的不同集合,或裝 置中的區塊之群組之電壓的不同集合。在此狀況下,儲存 元件之該集合的識別符可與電壓之每一集合相關聯。在其 他狀況下’電壓之該集合的位置用作電壓所施加至之儲存 元件的識別’例如’儲存於區塊中之電壓的一集合可施加 至彼區塊’或儲存於字線中之電壓的一集合可施加至彼字 線。在另一實例中’不同區塊之電壓的若干集合儲存於一 區塊中’在此狀況下,可能需要識別符以使區塊與其電壓 之相應集合相關聯。在一些狀況下,可儲存電壓之若干集 合,以使得其在儲存位置中之相對位置識別電壓所施加至 的儲存元件。舉例而言,儲存位置中之第一位置可對應於 139679.doc •27- 201007744 第區塊’而儲存位置中之第二位置可對應於第二區塊, 、匕類推或,儲存位置可處於區塊中,其中儲存位置中 第位置可對應於第一字線或該區土兔中之字線的集合, 而儲存位置中之第二位置對應於第二字線或該區塊中之字 線的集合,以此類推。 可儲存電壓之絕對值,或可儲存表示自值之一參考 集合或自單一&amp; 〃号值之偏移的偏移值。或,可使用用於直 接控制電麼電路之資料’諸如輸人至數位類比轉換器之二 進位碼字。在任何狀況下,將此資料理解為表示電壓之集 文中所提供之技術有利地不需要使用為額外儲存元利 之參考儲存元件,該等額外儲存元件為了追蹤裝置已經遷 之L限電麼改變之目的而錯存非使用者資料。參考儲存天 件超越儲存使用者資料之儲存元件而消耗記憶體裝置中於 額外空間‘。通常「即時」讀取參考儲存元件,以使得每當 讀取-頁資料時,調整發生。在此狀況下不存在儲存非 揮發性儲存位置中之電壓的_集合用於後續使用。此外, 通常參考儲存元件不涉及量測臨限電壓分佈。藉由參 存疋件’對儲存元件m(例如,參考儲存元件 量測以用於狀儲存元件之第二非重4集合的電壓。對吐 2儲:=中所提供之技術’對於使用電壓而隨心 取之儲存讀的同—集合,進行量測且判定該等電麗。 圖9bH用於使用由圖9a之程序所判定的默電壓市 存取非揮發㈣存元狀1合的使用者資料的程序。 139679.doc -28. 201007744 方法中,在已將記憶體裝置運輸至使用者之後,亦即, 在已裝每出裝置且裝置已安裝於使用者所使用之主機系統 中之後’存取可發生。步驟92〇包括開始非揮發性儲存元 件之一集合的操作(例如,程式化、驗證或讀取卜步驟Μ] 匕括自非揮發性儲存位置獲得電壓的集合。步驟924包括 . &amp;用電&amp;之集合來存取非揮發性儲存ϋ件之集合的使用者 資料。此存取可包括程式化/驗證或讀取。 籲 圖9(;描、、會一用於判定非揮發性儲存元件之多個集合之電 壓的程序。如所提及,電壓可對於包括於單一記憶體裝置 内及不同記憶體裝置當中的儲存元件之不同集合而經客製 化步驟中之許多類似於圖9a中之彼等步驟。步驟93〇包 括選擇記憶體裝置中之非揮發性儲存元件的一或多個集 合。步驟932包括開始該程序以獲得電壓之一相應集合。 步驟934包括藉由隨機測試資料來程式化非揮發性儲存元 件的該集合。步驟936包括判定非揮發性儲存元件之該一 • 或多個集合的臨限電壓分佈。步驟938包括基於臨限電壓 分佈來判定電壓之一集合❶步驟94〇包括將非揮發性儲存 凡件之當前選定一或多個集合之電壓的相應集合儲存於非 ' 揮發性儲存位置中。在決策步驟942處,若記憶體裝置中 , 存在儲存元件的下一集合,則程序在步驟930處繼續,選 擇非揮發性儲存元件之下一或多個集合。若記憶體裝置中 不存在儲存元件的下一集合,則程序在決策步驟946處繼 續。若(諸如)在分析多個記憶體裝置之製造環境中,存在 將判定電壓之下一記憶體裝置,則程序在步驟93〇處繼 139679.doc -29· 201007744 續。若在步驟946處不存在下一記憶體裝置,則程序在步 驟948處結束。 舉例而言,每一遍次通過該程序可涉及獲得儲存元件之 字線、字線之一集合、區塊,或區塊之一集合的電壓的一 集合。舉例而言,電壓之一給定集合可施加至個別字線或 字線之一集合的儲存元件,或施加至個別區塊或區塊之一 集合。此外,注意,當判定(例如)用於寫入、驗證及/或讀 取之電壓的多個集合時,每一集合可施加至儲存元件之不 同群組。舉例而言,可對於整個記憶體裝置獲得驗證電壓 的集0,而對於記憶體裝置中之不同區塊獲得讀取電壓 的不同集合。可串行或同時執行多遍次通過該程序。 圖10描繪一用於使用由圖9c之程序所判定的預定電壓存 取非揮發性健存it件之多個集合的使用者資料的程序。步 驟蘭包括選擇記憶體裝置中之非揮發性儲存元件的一或 多個集合。步驟1002至1006大體分別對應於圖9b之步驟 920至924。步驟1002包括開始非揮發性儲存元件之該一或 多個集合的操作(例如’程式化、驗證或讀取)。步驟· 包括自非揮發性儲存位置獲得電壓的相應集合。步驟腦 包括使用電壓之相應集合來存取非揮發性儲存元件之該一 或多個集合的使用者資料。此存取可包括程式化/驗證或 讀取_。在決策步驟咖處,若記憶體裝置中存在待存取之 儲存兀件的下一集合’則程序在步驟1000處繼續,其中選 擇記憶體裝置中之非揮發性储存元件之下_或多個集合。 在決策步驟】_處,若記憶體裝置中不存在待存取之儲存 139679.doc 201007744 兀件的下一集合,則程序在步驟1010處結束。 如先前,每一遍次通過該程序可涉及獲得儲存元件之字 線、字線之-集合、區塊,或區塊之—集合的電壓的一集 合,及存取相應倚存元件。電壓之一給定集合可施加至個 料線或字線之—集合的儲存元件,或施加至個別區塊或 . 區塊之—集合。可串行或同時執行多遍次通過該程序。 ® 11為諸如圖1及圖2中所展示之彼等反及快閃儲存元件 • t反及快閃储存元件之陣列的方塊圖。沿每-行,位元線 耦接至相關聯反及串之没極選擇閘極的没極端子。舉例而 言,位元線1106耦接至反及串115〇之汲極選擇閉極的没極 端子1126。沿反及串之每一列,源極線11〇4可連接反及串 之源極選擇開極的所有源極端子1128。在美國專利第 5’570,315號、第5,774,397號及第6,〇46,935號中找到反及 架構陣列及其作為記憶體系統之部分之操作的一實例。 將儲存元件之陣列劃分為大量儲存元件區塊。如對於快 • 閃EEPR〇M系統為常見的,區塊為抹除之單位。亦即,每 -區塊含有-起經抹除的最小數目之儲存元件。通常將每 -區塊劃分為許多頁。頁為程式化之單位。—或多個資料 - 1通常儲存於儲存元件之—列中。-頁可儲存—或多個區 _ @。區段包括使用者資料及附加項資料。附加項資料通常 包括已自區段之使用者資料計算出的錯誤校正碼⑽ 當資料正經程式化至陣列中時,控制器(下文描述)之一部 分計算咖,且當正自陣列讀取資料時,控制器亦檢查 ECC。或者,將ECC及/或其他附加項資料儲存於與其所屬 139679.doc -31- 201007744 之使用者資料不同的頁或甚至不同的區塊中。 使用者資料之一區段通常為512個位元組,此對應於磁 碟驅動器中之區段的大小。附加項資料通常為額外的16至 20個位元組。大量頁自8個頁(例如)達至32、64、128或更 多頁中之任意頁形成一區塊。在一些實施例中,反及串之 一列包含一區塊。 - 圖12描繪儲存系統中之主機控制器及記憶體裝置的綜 - 述。記憶體裝置單獨亦可被認為是儲存系統。儲存元件 1205可提供於記憶體裝置12〇〇中,記憶體裝置1200具有其 馨 用於執行諸如程式化/驗證及讀取之操作的自身控制器 1210。記憶體裝置可形成於(例如)經插入至諸如膝上型電 腦、數位相機、個人數位助理(PDA)、數位音訊播放器或 行動電話之主機裝置中的抽取式記憶卡或USB快閃驅動器 上。主機裝置可具有其用於與記憶體裝置相互作用(諸 如,讀取或寫入使用者資料)之自身控制器1225。舉例而 °曰瀆取資料時,主機控制器可將命令發送至記憶體裝 置’指示待擷取之使用者資料的位址。記憶體裝置控制器 將此等命令轉換成記憶體裝置中之控制電路可解譯並執行 的命令信號。控制器〗210亦可含有用於儲存電壓之若干集 合的非揮發性儲存位置⑵5(如先前所論述)及用於臨㈣ 存正寫入至記憶體陣列或自記憶體陣列讀取之使用者資料 的緩衝記億體測。可認為主機控制器為處於記憶體裝置 外或外部的實體。舉例而言,記憶體裝置可包括一或多個 記憶體晶粒’且主機控制器可處於該一或多個記憶體晶粒 瞻恤 -32. 201007744 外,結合圖13而論述。 =裝:藉由自儲存元件讀取資料且使其Vn-2 or the like represents a verification voltage of the second set of storage elements, and VR2-2 or the like represents a read voltage. In general, VpGMi (for example, a program indicating that R1 is one or more of each of two), a vpgm._al of a set i, a step size, and a VPGM_ FINAL, and the like, represents a program that stores the ith set (set i) of the component. The voltage is VV1-i, Vvu, etc., which represent the verification voltage of the third set of storage elements, and %ii, Vju-i, etc. represent the read voltage. Figure 9a depicts a procedure for determining the voltage of a set of non-volatile storage elements. Step 900 includes a start-program to obtain a set of voltages (e.g., read, verify, and/or write voltages) of a set of non-volatile storage elements. The set may represent, for example, a storage element associated with one or more particular word lines in a block having a plurality of word lines, associated with a particular block in a memory device having a plurality of blocks The storage element's or the storage element associated with the entire particular memory device. Step 9.2 includes a method for staging the set of non-volatile storage elements by random test data. Test data should include all data status. For example, this test data may be available when the memory: is subjected to testing at the manufacturing site prior to shipping. After the memory device has been transported, 1 no test data is available: the existing user data can be alternatively programmed. User data can also be sewn so that it can indicate the status of all data in a relatively uniform manner. For example, a child in a location of a memory device (such as a given block) may be copied to another location, such as including a particular set of storage elements for which the read/verify voltage will be determined Another part of the block. , 139679.doc •25- 201007744 After step 9〇2, you can follow one of the two paths. In the first path, step 904 includes determining the threshold voltage distribution of the storage elements, for example, by performing a read operation (as depicted in Figure 6c) with different incremental voltage threshold levels. In general, this can involve determining all data types and limiting their distribution. Step 906 includes determining a set of voltages based on the threshold electrical waste distribution. For example, a set of read voltages can be determined based on the minimum value of the threshold voltage distribution, as in Figure 6. (4) The window is pressed to determine a set of verification voltages. For example, the power window can be determined from the threshold voltage distribution and the function of the desired relative spacing is provided between the verify voltages within the constraints of the entire dust window to determine the verify voltage. Step W2 includes storing the set of identification voltages in a non-volatile storage location. For example, the data of the set of voltages can be stored in the memory device to obtain the storage element t from which the power limiting M is distributed. By way of example, such storage elements may be storage elements that do not store user data. In the - method, the data is stored in the storage element from which the block's threshold voltage distribution is obtained. In another method, the data is stored in the word line to obtain the storage element Φ from which the distribution of the dust is limited. # __ y^ In the case of the device, the non-volatile storage location used by the controller of the memory device can be used. Other locations are also available. In the 'Step 908' section, a threshold voltage distribution is determined for the set of storage elements for a data state that is less than all data states. For example, it is possible to determine the distribution of the erased state. As mentioned, the upper edge of the threshold voltage distribution of the erased state can be used to measure the level of stylized interference' because this state is most susceptible to stylized interference. The state m optimal read level can be determined based on the upper edge, and the optimal read bit of the remaining state can be determined based on the known relationship between the read levels of the states 139679.doc • 26-201007744 quasi. That is, the formula for correlating the optimal read level of state i (i &gt; 2) with the best read level of state 1 can be used. It is also possible to determine the threshold voltage knife&apos; for the set of storage elements for a plurality of data states (e.g., for state and state 2) and to associate this state with other states. For example, a formula that correlates the best read level of state i (i &gt; 3) to the best beta sell level of state 1 and state 2 can be used. These formulas can be obtained from theoretical relationships and/or experimental test results. Step 91 〇 thus includes determining a set of voltages based on a threshold voltage distribution of data states that are less than all data states. Further, the material of the set of voltages can be expressed in any manner. Figure 8b, previously discussed, provides a possible example. In some cases, the identifier of the set of storage elements can also be used, as depicted (e.g., set 1, 2, ..., i). For example, the controller can have a storage location that stores a different set of electrical waste for each of the respective devices, or a different set of voltages for the groups of blocks in the device. In this case, the identifier of the set of storage elements can be associated with each set of voltages. In other cases, the location of the set of voltages is used as the identification of the storage element to which the voltage is applied. For example, a set of voltages stored in the block may be applied to the block or voltage stored in the word line. A set of can be applied to the word line. In another example, several sets of voltages of different blocks are stored in a block. In this case, an identifier may be required to associate the block with its corresponding set of voltages. In some cases, several sets of voltages may be stored such that their relative position in the storage location identifies the storage element to which the voltage is applied. For example, the first position in the storage location may correspond to 139679.doc • 27- 201007744, the first block, and the second position in the storage location may correspond to the second block, 匕, or the storage location may be at In the block, wherein the first location in the storage location may correspond to a first word line or a set of word lines in the rabbit, and the second location in the storage location corresponds to the second word line or a word in the block A collection of lines, and so on. The absolute value of the voltage can be stored, or an offset value representing one of the self-valued reference sets or the offset from the single &amp; apostrophe value can be stored. Alternatively, data for directly controlling the circuit can be used, such as binary code words for input to digital analog converters. In any event, this technique is understood to mean that the techniques provided in the set of voltages advantageously do not require the use of reference storage elements for additional storage elements that are changed in order to track the device's already shifted L limit. The purpose is to store non-user data. The reference storage item exceeds the storage element of the stored user data and consumes additional space in the memory device. The reference storage element is usually read "on the fly" so that the adjustment occurs whenever the -page data is read. In this case there is no _ set of stored voltages in the non-volatile storage locations for subsequent use. In addition, the reference storage element generally does not involve measuring the threshold voltage distribution. By using the storage element 'for the storage element m (for example, referring to the storage element to measure the voltage of the second non-heavy 4 set of the storage element), the technique provided in the spit storage: = for the use voltage And the same set of stored readings is taken, the measurement is performed and the electric sensation is determined. Fig. 9bH is used for the user who uses the silent voltage to determine the non-volatile (four) memory element determined by the program of Fig. 9a. Procedure for data. 139679.doc -28. 201007744 In the method, after the memory device has been transported to the user, that is, after each device has been installed and the device has been installed in the host system used by the user' Access may occur. Step 92 includes an operation to initiate a set of non-volatile storage elements (eg, stylize, verify, or read a step Μ) to include a set of voltages obtained from a non-volatile storage location. Step 924 includes &amp; A collection of power &amp; access to the user data of the collection of non-volatile storage components. This access may include stylization/verification or reading. Figure 9 (; Determining multiple non-volatile storage elements a process of combining voltages. As mentioned, the voltage can be different for a different set of storage elements included in a single memory device and among different memory devices, similar to those in Figure 9a. Step 93 includes selecting one or more sets of non-volatile storage elements in the memory device. Step 932 includes initiating the program to obtain a corresponding set of voltages. Step 934 includes programming the non-random test data. The set of volatile storage elements. Step 936 includes determining a threshold voltage distribution of the one or more sets of non-volatile storage elements. Step 938 includes determining a set of voltages based on the threshold voltage distribution, step 94, including Storing a respective set of voltages of the currently selected one or more sets of non-volatile storage items in a non-volatile storage location. At decision step 942, if there is a next set of storage elements in the memory device, The program then continues at step 930 to select one or more sets below the non-volatile storage element. If no storage element is present in the memory device The next set, the program continues at decision step 946. If, for example, in a manufacturing environment in which a plurality of memory devices are analyzed, there is a memory device below the decision voltage, then the program proceeds at step 93 at step 139679. .doc -29 - 201007744 continued. If there is no next memory device at step 946, the program ends at step 948. For example, each pass through the program may involve obtaining a word line, word line of the storage element. a collection of blocks, blocks, or a collection of voltages of one of the blocks. For example, a given set of voltages can be applied to a storage element of a set of individual word lines or word lines, or to a particular area. A collection of blocks or blocks. Furthermore, it is noted that when determining, for example, multiple sets of voltages for writing, verifying, and/or reading, each set can be applied to a different group of storage elements. For example, a set of zeros of verify voltages can be obtained for the entire memory device, while different sets of read voltages are obtained for different blocks in the memory device. Multiple passes can be performed serially or simultaneously through the program. Figure 10 depicts a procedure for accessing a plurality of sets of user profiles of non-volatile health care entities using predetermined voltages determined by the process of Figure 9c. The step blue includes selecting one or more sets of non-volatile storage elements in the memory device. Steps 1002 through 1006 generally correspond to steps 920 through 924 of Figure 9b, respectively. Step 1002 includes initiating an operation (e.g., 'programming, verifying, or reading) the one or more sets of non-volatile storage elements. Step · Includes obtaining a corresponding set of voltages from non-volatile storage locations. The step brain includes accessing the user profile of the one or more sets of non-volatile storage elements using a respective set of voltages. This access can include stylization/verification or read_. At the decision step, if there is a next set of storage elements to be accessed in the memory device, then the program continues at step 1000, wherein _ or more of the non-volatile storage elements in the memory device are selected set. At decision step _, if there is no next set of storage 139679.doc 201007744 files to be accessed in the memory device, the program ends at step 1010. As before, each pass through the program may involve obtaining a collection of voltages, word lines, sets, blocks, or blocks of storage elements, and accessing the corresponding dependent elements. A given set of voltages can be applied to a collection of storage elements of a line or word line, or to a collection of individual blocks or blocks. Multiple passes can be performed serially or simultaneously through the program. The ® 11 is a block diagram of an array of counter-flash storage elements, such as those shown in Figures 1 and 2, which are opposite to the flash storage elements. Along each line, the bit line is coupled to the terminal of the associated reverse and the gateless select gate. For example, bit line 1106 is coupled to a non-polar terminal 1126 that is opposite to the drain select 115 of the drain. Along the opposite column, the source line 11〇4 can be connected to all of the source terminals 1128 of the source select open of the string. An example of the operation of the inverse array and its operation as part of a memory system is found in U.S. Patent Nos. 5,570,315, 5,774,397, and 6,46,935. The array of storage elements is divided into a number of storage element blocks. For the fast flash EEPR〇M system is common, the block is the unit of erasing. That is, each block contains - the smallest number of storage elements that have been erased. Each block is usually divided into a number of pages. The page is a stylized unit. - or multiple data - 1 is usually stored in the column of storage elements. - The page can be stored - or multiple zones _ @. The section includes user data and additional item information. The additional item data usually includes an error correction code calculated from the user data of the segment (10). When the data is being programmatically programmed into the array, one of the controllers (described below) calculates the coffee and when the data is being read from the array. The controller also checks the ECC. Alternatively, the ECC and/or other additional items may be stored in a different page or even a different block from the user profile of 139679.doc -31- 201007744. One of the sections of user data is typically 512 bytes, which corresponds to the size of the extent in the disk drive. The additional item data is usually an additional 16 to 20 bytes. A large number of pages form a block from 8 pages (for example) up to any of 32, 64, 128 or more pages. In some embodiments, a column of the inverse string contains a block. - Figure 12 depicts a summary of the host controller and memory devices in the storage system. The memory device alone can also be considered a storage system. The storage element 1205 can be provided in a memory device 12, which has its own controller 1210 for performing operations such as stylization/verification and reading. The memory device can be formed, for example, on a removable memory card or USB flash drive that is inserted into a host device such as a laptop, digital camera, personal digital assistant (PDA), digital audio player, or mobile phone. . The host device can have its own controller 1225 for interacting with the memory device (e. g., reading or writing user data). For example, when the data is retrieved, the host controller can send a command to the memory device' to indicate the address of the user data to be retrieved. The memory device controller converts these commands into command signals that can be interpreted and executed by the control circuitry in the memory device. The controller 210 can also include non-volatile storage locations (2) 5 for storing a plurality of sets of voltages (as previously discussed) and for users to read (4) writes to or read from the memory array. The buffer of the data is recorded. The host controller can be considered to be an entity that is external or external to the memory device. For example, the memory device can include one or more memory dies and the host controller can be in the one or more memory dies - 32. 201007744, discussed in connection with FIG. = loading: reading data from the storage element and making it

取命令。在—可能方法中,記憶體裝置 衝器划中且告知主機控制器何時可 另一命1/主機控制11藉由自緩衝11讀取資料而回應且將 ::命7發送至記憶體裝置以自另-位址讀取資料。舉例 —° ’可逐1讀取資料。主機控制ϋ可處理讀取資料以判 疋記憶體裝置之儲存元件的臨限電壓分佈。在另一方法 中。己隐體裝置之控制電路判定臨限電塵分佈。下文提供 記憶體裝置之實例實施例的其他細節。 八 、型冗憶體系統包括:—積體電路晶片,其包括控制器 1210’及—或多個積體電路晶片,其各自含有-記憶體陣 列及相關聯的控制、輸人/輸出及狀態機電路。記憶體裝 置可作為主機系統之部分而嵌埋或可包括於記憶卡中,該 隐卡可以抽取方式插入至主機系統之配合插口中。此卡 可包括整個記憶體裝置,或具有相關聯周邊電路之控制器 及記憶體陣列可提供於獨立卡令。 圖13為使用單列/行解碼器及讀取/寫入電路之非揮發性 記憶體系統的方塊圖。該圖根據本發明之—實施例說明記 憶體裝置1396,其具有用於並行讀取及程式化一頁儲存元 件的讀取/寫入電路。記憶體裝置1396可包括一或多個記 憶體晶粒1398。記憶體晶粒1398包括二維儲存元件陣列 1400、控制電路131〇及讀取/寫入電路。“。在一些實施 例中,儲存元件之陣列可為三維的。記憶體陣列14〇〇可藉 139679.doc -33- 201007744 由字線經由列解碼器1330及藉由位元線經由行解碼器1360 而定址。讀取/寫入電路1365包括多個感測區塊丨3〇〇且允 許並行讀取或程式化一頁儲存元件。通常,控制器135〇與 該一或多個記憶體晶粒1398包括於同一記憶體裝置 1396(例如’抽取式儲存卡)中。命令及資料經由線路132〇 傳送於主機與控制器135〇之間且經由線路1321傳送於控制 器與該一或多個記憶體晶粒1398之間。Take the command. In the possible method, the memory device is stroked and informs the host controller when another life/host control 11 responds by reading data from the buffer 11 and sends:: 7 to the memory device. Read data from another address. Example —° ’ can read data one by one. The host control can process the read data to determine the threshold voltage distribution of the storage elements of the memory device. In another method. The control circuit of the hidden device determines the distribution of the dust. Additional details of example embodiments of memory devices are provided below. 8. A redundant memory system comprising: an integrated circuit chip comprising a controller 1210' and/or a plurality of integrated circuit chips each comprising a memory array and associated control, input/output and status Machine circuit. The memory device can be embedded as part of the host system or can be included in a memory card that can be inserted into the mating socket of the host system in a decimate manner. The card may include the entire memory device, or a controller with associated peripheral circuitry and a memory array may be provided for the individual card. Figure 13 is a block diagram of a non-volatile memory system using a single column/row decoder and a read/write circuit. The figure illustrates a memory device 1396 having read/write circuits for reading and programming a page of memory elements in parallel, in accordance with an embodiment of the present invention. Memory device 1396 can include one or more memory die 1398. The memory die 1398 includes a two-dimensional array of storage elements 1400, a control circuit 131A, and a read/write circuit. "In some embodiments, the array of storage elements can be three-dimensional. The memory array 14 can be borrowed from the word line via the column decoder 1330 and the bit line via the row decoder by 139679.doc -33 - 201007744 The addressing/writing circuit 1365 includes a plurality of sensing blocks 〇〇3〇〇 and allows for parallel reading or programming of a page of storage elements. Typically, the controller 135 is coupled to the one or more memory cells. The granules 1398 are included in the same memory device 1396 (eg, a 'removable memory card). Commands and data are transmitted between the host and the controller 135A via line 132 and transmitted to the controller and the one or more via line 1321. Memory die between 1398.

控制電路1310與讀取/寫入電路1365合作以對記憶體陣 列1100執行記憶體操作。控制電路1310包括狀態機1312、Control circuit 1310 cooperates with read/write circuit 1365 to perform a memory operation on memory array 1100. Control circuit 1310 includes state machine 1312

b曰片上位址解碼器丨3丨4及功率控制模組丨3丨6。狀態機丨3 i 2 提供圮憶體操作之晶片級控制。晶片上位址解碼器1314在 由主機或6己憶體控制器所使用之位址與由解碼器丨3 3 〇及 所使用的硬體位址之間提供位址介面。功率控制模組 13 16在記憶體操作期間控制供應至字線及位元線之功率及 電壓。舉例而言,功率控制模組13 16可將控制閘極讀取電 壓提供至選定字線,且將讀取導通電壓提供至未選定字 線,以用於在讀取操作期間使用及用於判定儲存元件之一 集合的臨限電壓分佈。功率控制模組⑶㈣可將電壓掃描 (age sweep)提供至選定字線。功率控制模組1316可包 括⑽如)用於此目的之一或多個數位類比轉換器。在此狀 況下’控制電路可在不需要外部測試設備(例如,在記憶 體曰曰粒1398外)之情況下產生電壓掃描。此情形為有利 的’因為其允許在任何時間(包括在製造記憶體裝置之 後,當最終使用者已佔有記憶體裝置時)產生電壓掃描。 139679.doc -34- 201007744 此外z it體裝置1396可包括用於判定儲存元件之臨限電 壓刀佈的电路,以使得可在不需要外部測試設備或外部主 機之If況下在。己憶體晶粒J398内在内部執行此程序。此情 开/為有利的目為其允許在無外部^備之情況下在任何時 間判定臨限電壓分佈。 . 在一些實施中,可組合圖13之組件中的一些。在各種設 十。中可將,、且件中除儲存元件陣列11 〇〇之外的一或多者 • (單獨或組合)視為管理或控制電路。舉例而言,-或多個 官理或控制電路可包括控制電路1310、狀態機1312、解瑪 器1314/136G、功率控制1316、感測區塊i则、讀取,寫入 電路1365 '控制器135〇、主機控制器1399等中之任一者或 組合。 儲存於記憶體陣列中之資料由行解碼器]36〇讀出且經由 資料I/O線及資料輸入/輸出緩衝器i352而輸出至外部卯 線。待儲存於記憶體陣财之程式化f料經由外部ι/〇線 •而輸入至資料輸入/輸出緩衝器⑽。將用於控制記憶體 裝置之命令資料輸入至控制器1350。命令資料告知快問記 憶體請求何種操作。將輸入命令傳送至控制電路1310。狀 態機1312可輸出記憶體裝置之狀態,諸如就绪〜碌或通 過/失敗。當記憶體裝置忙碌時,其不能接收新的讀取或 寫入命令。 湞似於圖12之儲存位置丨21 5的資料儲存位置1354亦可結 合控制器1350而提供。 在另—可能組態中,非揮發性記憶體系統可使用雙列/ 139679.doc •35· 201007744 打解碼器及讀取/寫入電路。在此狀況下,在記憶體陣列 之相對侧上以對稱型式實施藉由各種周邊電路對該陣列的 存取,以使得每一側上之存取線路及電路的密度減半。 已出於說明及描述之目的而呈現本發明之前述實施方 式。其並不意欲為詳盡的或將本發明限於所揭示之精確形 式。依據以上教示,許多修改及變化為可能的。選擇所描 述之實施例以最佳地解釋本發明及其實際應用之原理,= 藉此使其他熟習此項技術者能夠在各種實施例中且以如適 合於所涵蓋之特定使用的各種修改來最佳地利用本發明。 本發明之範疇意欲由附加至此之申請專利範圍界定。 【圖式簡單說明】 圖1為反及串之俯視圖; 圖2為圖1之反及串的等效電路圖; 圖3為反及快閃儲存元件之陣列的方塊圖; 圖4描繪形成於基板上之反及串的橫截面圖; 圖5描繪儲存元件之區塊; 圖以描繪非揮發性儲存元件之—集合的初始臨限電壓分 佈與相應驗證及讀取電壓; 圖6b描繪經歷程式化干擾之非揮發性儲存元件之一集合 的臨限電壓分佈; 圖6c描繪圖6b之臨限電壓分佈的量測及相應讀取電壓的 設定。 圖7描繪程式化電壓及驗證電壓之脈衝串; 圖8&amp;描綠可在程式化期間使用之'系列寫人或程式化電 139679.doc •36- 201007744b曰 On-chip address decoder 丨3丨4 and power control module 丨3丨6. The state machine i3 i 2 provides wafer level control of the memory operation. The on-chip address decoder 1314 provides an address interface between the address used by the host or the 6-replica controller and the hardware address used by the decoder 丨3 3 . Power control module 13 16 controls the power and voltage supplied to the word lines and bit lines during memory operation. For example, power control module 13 16 can provide a control gate read voltage to a selected word line and provide a read turn-on voltage to an unselected word line for use during a read operation and for use in determining A threshold voltage distribution of a collection of storage elements. The power control module (3) (4) provides a voltage sweep to the selected word line. Power control module 1316 can include (10) such as one or more digital analog converters for this purpose. In this case, the control circuit can generate a voltage sweep without the need for an external test device (e.g., outside of the memory cell 1398). This situation is advantageous 'because it allows a voltage sweep to be generated at any time, including when the memory device is manufactured, when the end user has occupied the memory device. 139679.doc -34- 201007744 In addition, the body device 1396 can include circuitry for determining the threshold voltage of the storage element so that it can be used without the need for an external test device or an external host. This procedure is performed internally within the body grain J398. This situation is / for the benefit of the purpose of allowing the threshold voltage distribution to be determined at any time without external preparation. In some implementations, some of the components of Figure 13 can be combined. Set in various categories. One or more of the components except the storage element array 11 • can be considered as management or control circuits. For example, - or a plurality of government or control circuits may include control circuit 1310, state machine 1312, damper 1314/136G, power control 1316, sense block i, read, write circuit 1365' control Either or a combination of the device 135A, the host controller 1399, and the like. The data stored in the memory array is read by the row decoder 〇 36 且 and output to the external 经由 line via the data I/O line and the data input/output buffer i352. The stylized material to be stored in the memory array is input to the data input/output buffer (10) via the external ι/〇 line. The command data for controlling the memory device is input to the controller 1350. The command data tells the quick message what kind of operation is requested. The input command is transmitted to the control circuit 1310. The state machine 1312 can output the status of the memory device, such as ready to go or pass/fail. When the memory device is busy, it cannot receive new read or write commands. A data storage location 1354, similar to the storage location 丨 21 5 of Figure 12, may also be provided in conjunction with the controller 1350. In another-possible configuration, the non-volatile memory system can use dual-column / 139679.doc • 35· 201007744 to play decoders and read/write circuits. In this case, access to the array by various peripheral circuits is performed symmetrically on opposite sides of the memory array such that the density of access lines and circuitry on each side is halved. The foregoing embodiments of the present invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teachings. The embodiments described are chosen to best explain the principles of the invention and its application, and thus, The invention is utilized optimally. The scope of the invention is intended to be defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view of a reverse and a string; FIG. 2 is an equivalent circuit diagram of the reverse and string of FIG. 1; FIG. 3 is a block diagram of an array of inverse flash memory elements; Figure 5 depicts a block of storage elements; Figure 1 depicts the initial threshold voltage distribution of the non-volatile storage elements and the corresponding verification and read voltages; Figure 6b depicts the stylization The threshold voltage distribution of one of the non-volatile storage elements of the interference; Figure 6c depicts the measurement of the threshold voltage distribution of Figure 6b and the setting of the corresponding read voltage. Figure 7 depicts a burst of stylized voltage and verify voltage; Figure 8 &amp; Green can be used during stylization of the 'series of writing or stylized electricity 139679.doc •36- 201007744

圖9b描繪一Figure 9b depicts a

圖8 b描緣包括對於 化之寫人、㈣及讀取電H 不㈣合所客裂 的程圈:描緣一用於判定非揮發性健存元件之-集合之電* .^ b 使用由圖%之程序所判定的預定電壓而 存取非揮發性館存元件之-集合之使用者資料的程序; _描繪非揮發性料元 壓的程序; ,丨回呆口之電 存==一用於使用由圖9C之程序所判定的預定電壓而 存^非揮發性儲存元件之多個集合之使用者資料的程心 圖U為反及快閃儲存元件之陣列的方塊圖; 圖12描繪主機控制器及記憶體裝置的综述丨及 ^為使用單列/行解碼器及讀取/寫入電路 記憶體系統的方塊圖。 皁贫性 【主要元件符號說明】 too 電晶體 100CG 控制閘極 100FG 浮動閘極 102 電晶體 !〇2CG 控制問極 102FG 洋動閘極 104 電晶體 104CG 控制閘極 139679.doc -37- 201007744 104FG 浮動閘極 106 電晶體 106CG 控制閘極 106FG 浮動閘極 120 第一選擇閘極 120CG 控制閘極 122 第二選擇閘極 122CG 控制閘極 126 位元線 128 源極線 320 反及串 321 位元線 322 選擇閘極 323 儲存元件 324 儲存元件 325 儲存元件 326 儲存元件 327 選擇閘極 340 反及串 341 位元線 342 選擇閘極 343 儲存元件 344 儲存元件 345 儲存元件 139679.doc 38- 201007744 φ 346 儲存元件 347 選擇閘極 360 反及串 361 位元線 362 選擇閘極 363 儲存元件 364 儲存元件 365 儲存元件 366 儲存元件 367 選擇閘極 400 反及串 402 端子 403 端子 404 源極供應線 406 源極側選擇閘極 408 儲存元件 410 儲存元件 412 儲存元件 414 儲存元件 416 儲存元件 418 儲存元件 420 儲存元件 422 儲存元件 424 汲極側選擇閘極 139679.doc •39. 201007744 426 位元線 430 源極/没極區域 490 基板 492 P井區域 494 η井區域 496 ρ型基板區域 505 共同源極 700 脈衝串 705 程式化脈衝 710 程式化脈衝 715 程式化脈衝 720 波形 725 波形 730 波形 1100 儲存元件陣列/記憶體陣列 1104 源極線 1106 位元線 1126 汲極端子 1128 源極端子 1150 反及串 1200 記憶體裝置 1205 儲存元件/非揮發性儲存元件 1210 控制器 1215 非揮發性儲存位置/儲存位置 139679.doc -40- 201007744 1220 緩衝記憶體/緩衝器 1225 控制器 1300 感測區塊 1310 控制電路 1312 狀態機 1314 晶片上位址解碼器 * 1316 功率控制模組/功率控制 1320 線路 1321 線路 1330 列解碼器 1350 控制器/控制電路 1352 資料輸入/輸出緩衝器 1354 資料儲存位置/非揮發性儲存位置 1360 行解碼器 1365 讀取/寫入電路 φ 1396 記憶體裝置 1398 記憶體晶粒 1399 主機控制器 . BLO 位元線 BL1 位元線 BL2 位元線 BL3 位元線 BL4 位元線 BL5 位元線 139679.doc -41 - 201007744 BL6 位元線 BL7 位元線 BL4252 位元線 BL4253 位元線 BL4254 位元線 BL4255 位元線 SGD 選擇線/汲極選擇閘極/選擇閘極沒 極線/汲極選擇線/選擇閘極 SGS 選擇線/源極選擇閘極/選擇閘極源 極線/選擇閘極 Vbl 位元線之電位 VcG 控制閘極電壓 V pgm-i 儲存元件之集合1之寫入電壓 V PGM-2 儲存元件之集合2之寫入電壓 VpGM-i 儲存元件之集合i之程式化電壓 V PGMl 振幅 VpGM2 振幅 V PGM3 振幅 V pgm-final 最終電壓 VpgM-INITIAL 初始位準 VR] 讀取電壓/讀取參考電壓 Vri-i 讀取電壓 Vri-2 讀取電壓 VR1.i 讀取電壓 139679.doc -42- 201007744 VR2 讀取電壓/讀取參考電壓 Vr2-1 讀取電壓 V R2-2 讀取電壓 V R2-i 讀取電壓 VR3 讀取電壓/讀取參考電壓 V R4 讀取電壓/讀取參考電壓 ' VR5 讀取電壓/讀取參考電壓 癱 VR6 讀取電壓/讀取參考電壓 Vr7 讀取電壓/讀取參考電壓 V read 讀取導通電壓 V SOURCE 源極供應線之電位 V TH 臨限電壓 Vvi 驗證電壓 Vvi-1 驗證電壓 Vvi-2 驗證電壓 參 Vv l -i 驗證電壓 V V2 驗證電壓 v V2-1 驗證電壓 V V2-2 驗證電壓 . Vv2-i 驗證電壓 Vv3 驗證電壓 VY4 驗證電壓 VV5 驗證電壓 VV6 驗證電壓 139679.doc -43- 201007744Figure 8 b depicts the circle of the person who writes, (4), and reads the electric H. (4): The trace is used to determine the set of non-volatile storage components. a program for accessing a user data of a non-volatile library element by a predetermined voltage determined by the program of FIG. %; a program for depicting a non-volatile material cell pressure; A block diagram U for storing user data of a plurality of sets of non-volatile storage elements using a predetermined voltage determined by the routine of FIG. 9C is a block diagram of an array of inverse flash storage elements; FIG. 12 depicts a host A summary of the controller and memory devices is a block diagram of a single column/row decoder and a read/write circuit memory system. Soap depletion [main component symbol description] too transistor 100CG control gate 100FG floating gate 102 transistor! 〇 2CG control pole 102FG ocean gate 104 transistor 104CG control gate 139679.doc -37- 201007744 104FG floating Gate 106 transistor 106CG control gate 106FG floating gate 120 first selection gate 120CG control gate 122 second selection gate 122CG control gate 126 bit line 128 source line 320 opposite string 321 bit line 322 Select Gate 323 Storage Element 324 Storage Element 325 Storage Element 326 Storage Element 327 Select Gate 340 Reverse String 341 Bit Line 342 Select Gate 343 Storage Element 344 Storage Element 345 Storage Element 139679.doc 38- 201007744 φ 346 Storage Element 347 Select gate 360 and string 361 bit line 362 Select gate 363 Storage element 364 Storage element 365 Storage element 366 Storage element 367 Select gate 400 Reverse string 402 Terminal 403 Terminal 404 Source supply line 406 Source side selection Gate 408 storage element 410 storage element 412 storage element 414 storage Element 416 storage element 418 storage element 420 storage element 422 storage element 424 drain side selection gate 139679.doc • 39. 201007744 426 bit line 430 source/nothing area 490 substrate 492 P well area 494 η well area 496 ρ Substrate Area 505 Common Source 700 Burst 705 Stylized Pulse 710 Stylized Pulse 715 Stylized Pulse 720 Waveform 725 Waveform 730 Waveform 1100 Storage Element Array / Memory Array 1104 Source Line 1106 Bit Line 1126 汲 Extreme 1128 Source Extreme 1150 anti-string 1200 memory device 1205 storage element / non-volatile storage element 1210 controller 1215 non-volatile storage location / storage location 139679.doc -40- 201007744 1220 buffer memory / buffer 1225 controller 1300 sense Block 1310 Control Circuit 1312 State Machine 1314 On-Chip Address Decoder * 1316 Power Control Module / Power Control 1320 Line 1321 Line 1330 Column Decoder 1350 Controller / Control Circuit 1352 Data Input / Output Buffer 1354 Data Storage Location / Non-volatile storage location 1360 lines of decoding 1365 Read/write circuit φ 1396 Memory device 1398 Memory die 1399 Host controller. BLO bit line BL1 Bit line BL2 Bit line BL3 Bit line BL4 Bit line BL5 Bit line 139679.doc - 41 - 201007744 BL6 bit line BL7 bit line BL4252 bit line BL4253 bit line BL4254 bit line BL4255 bit line SGD select line / drain select gate / select gate immersion line / drain select line / select Gate SGS Select Line/Source Select Gate/Select Gate Source Line/Select Gate Vbl Bit Line Potential VcG Control Gate Voltage V pgm-i Storage Element Set 1 Write Voltage V PGM-2 The write voltage of the set of storage elements 2 VpGM-i The set voltage of the set of storage elements i V PGMl amplitude VpGM2 amplitude V PGM3 amplitude V pgm-final final voltage VpgM-INITIAL initial level VR] read voltage / read reference Voltage Vri-i Read voltage Vri-2 Read voltage VR1.i Read voltage 139679.doc -42- 201007744 VR2 Read voltage/read reference voltage Vr2-1 Read voltage V R2-2 Read voltage V R2 -i read voltage VR3 read voltage / Read reference voltage V R4 Read voltage / Read reference voltage ' VR5 Read voltage / Read reference voltage 瘫 VR6 Read voltage / Read reference voltage Vr7 Read voltage / Read reference voltage V read Read turn-on voltage V SOURCE source supply line potential V TH threshold voltage Vvi verify voltage Vvi-1 verify voltage Vvi-2 verify voltage reference Vv l -i verify voltage V V2 verify voltage v V2-1 verify voltage V V2-2 verify voltage. Vv2-i verification voltage Vv3 verification voltage VY4 verification voltage VV5 verification voltage VV6 verification voltage 139679.doc -43- 201007744

Vv7 驗證電壓 V'ri 讀取位準 V'r2 讀取位準 V'R3 讀取位準 V'r4 讀取位準 V'R5 讀取位準 WLO 字線/資料字線 WL1 字線/資料字線 WL2 字線/資料字線 WL3 字線/資料字線 WL4 字線/資料字線 WL5 字線/資料字線 WL6 字線/資料字線 WL7 字線/資料字線 139679.doc -44-Vv7 verify voltage V'ri read level V'r2 read level V'R3 read level V'r4 read level V'R5 read level WLO word line / data word line WL1 word line / data Word Line WL2 Word Line/Data Word Line WL3 Word Line/Data Word Line WL4 Word Line/Data Word Line WL5 Word Line/Data Word Line WL6 Word Line/Data Word Line WL7 Word Line/Data Word Line 139679.doc -44-

Claims (1)

201007744 七、申請專利範圍: 1· -種用於缸態一記憶體裝置之方法,i包含· $測該記憶體裝置令之非揮發性儲存元件⑽ 臨……等非—件: 一基:該各別臨限電虔分佈來判定非揮發性儲存元件之 母^各別集合之電墨(Vpg⑹、Vvi_』)的一各別集合, Φ 之-亥各別集合係對於非揮發性儲存元件之該 經客製化丨果σ而 在-非揮發性料位置(1354)巾料電壓之每 合;及 /、 在該儲存之後,自該非揮發性儲存位置獲得電壓之$ 等各別集合中的至少一者,及使用電塵之該等各別集= 中的該至少-者來執行一涉及非揮發性儲存元件之該等 各別集合中的至少一者的寫入操作。 2.如請求項1之方法,其令: ^該量測、該判定及該儲存在將該記憶體裝置運輸至一 最、、使用者之别發生在—製造場所處且該獲得及該執 行該寫入操作在將該裝置運輸至該最終使用者之後發 生。 3.如請求項1或2之方法,其中: 電壓(VpGM.i、之不同集合係對於該記憶體裝置中 之非揮發性儲存元件的不同區塊而得以判定,非揮發性 儲存元件之每一區塊獨立於非揮發性儲存元件之其他區 139679.doc 201007744 塊而為可抹除的。 4.如請求項1或2之方法,其中: 電壓之不同集合係對於該記憶體裝置中之非揮發性儲 存疋件之區塊的不同群組而得關定,非揮發性儲存元 件:每-區塊獨立於非揮發性儲存元件之其他區塊而為 I除的’每—群組包含—或多個區塊,且-群組中之 每一區塊使用電壓之同一集合。 5 ·如請求項1或2之方法,其中: 電壓之不同集合㈣於該記憶體裝置中之非揮發性储 子疋件之字線的不同群組而得以骸,每—群組包含一 或多個字線。 6·如晴求項1之方法,其中: 該量测、该判定、該儲存、兮媒媒β —必 此卜⑽ 該獲得及該執行該寫入操 作在將該記憶體裝置自一 且曰 Ik場所運輪至一最铢佶 之後發生。 取〜使用者 7. 如凊求項1或2之方法,其中·· 涉及非揮發性儲存元件 换你怂执 等各別集合的複數個寫入 ㈣係使用電麼之該等各別集合而得以執行。 8. 如睛求項1或2之方法,其中: 料該:非揮發性料元件在每—次該量測時儲存測試資 資:等非揮發性館存元件在該寫入操作之後儲存使用者 9·如請求項1或2之方法,其令: 139679.doc 201007744 該等電壓包含驗證參考電壓。 1〇,如請求項1或2之方法,其中: 該等電壓包含寫入電壓。 11.如凊求項1或2之方法,其中: 该非揮發性儲存位置係在該記憶體裝置中。 12· 一種儲存系統,其包含: 非揮發性儲存元件(1205)之各別集合,該等非揮發性 儲存元件為多級儲存元件; 一非揮發性儲存位置(1354);及 至少-控制電路⑽0),該至少一控制電路: 2揮發性儲存元件之該等各別集合的各別臨限電麼分 :於該各別臨限電壓分佈來判定非揮發性儲存元 牛之母-各別集合之電印咖、D的—各別集人, 之該各別集合係對於非揮發性儲存元件的該各:集 ^而經客製化’ θ在該非揮發性錯存位置中儲存電Μ 每一集合,及d)在該儲存之後, 獲得電塵之該等各別集合中的至少:者發性儲存位置 該等各別集合令的該至少一者^及使用電屋之 存元件之該等各別集合中的至少—二宫步及非揮發性储 13.如請求項12之儲存系統,其尹:、,·入操作。 該至少-控制電路判定 元件之不同區塊之電屋的統中的非揮發性儲存 之每-區境獨立於非揮發性储存:件非揮發性儲存元件 抹除的。 什之其他區塊而為可 139679.doc 201007744 14. 15. 如請求項12之儲存系統,其中: 該至少一控制電路判定該儲存系統中之非揮發性儲存 兀件的區塊之不同群組之電壓的不同集合,非揮發性儲 存το件之每—區塊獨立於非揮發性儲存元件之其他區塊 而為可抹除的,每一群組包含一或多個區塊,且一群組 中之每一區塊使用電壓之同一集合。 如請求項12之儲存系統,其中: 該至少一控制電路判定該儲存系統中之非揮發性儲存 疋件的字線之不同群組之電壓的不同集合,每一群組包 含一或多個字線。201007744 VII. Patent application scope: 1. A method for a cylinder-based memory device, i includes · $ Measure the memory device to make the non-volatile storage component (10) Pro... etc. Non-piece: One base: The respective thresholds are used to determine a respective set of inks (Vpg(6), Vvi_") of the respective sets of non-volatile storage elements, and the respective sets of Φ-Heil are for non-volatile storage elements. The customized result σ is in the -non-volatile material position (1354) of the blanket voltage; and /, after the storage, the voltage is obtained from the non-volatile storage location, etc. At least one of the respective sets of the respective subsets of the electric dust are used to perform a write operation involving at least one of the respective sets of non-volatile storage elements. 2. The method of claim 1, wherein: the measurement, the determination, and the storing are performed by transporting the memory device to a maximum, the user's occurrence at the manufacturing site, and the obtaining and the performing This write operation occurs after the device is shipped to the end user. 3. The method of claim 1 or 2, wherein: the voltage (VpGM.i, the different sets are determined for different blocks of the non-volatile storage element in the memory device, each of the non-volatile storage elements A block is erasable independently of the other regions of the non-volatile storage element 139679.doc 201007744. 4. The method of claim 1 or 2, wherein: the different sets of voltages are for the memory device Non-volatile storage elements are determined by different groups of non-volatile storage elements: non-volatile storage elements: each-block is independent of other blocks of non-volatile storage elements and is divided by I's per-group - or a plurality of blocks, and - each block in the group uses the same set of voltages. 5 - The method of claim 1 or 2, wherein: the different sets of voltages (4) are non-volatile in the memory device The different groups of word lines of the shackle are smashed, each group contains one or more word lines. 6. The method of claim 1, wherein: the measurement, the determination, the storage,兮Media β —必必卜(10) The acquisition and the execution of the The operation takes place after the memory device is transported from one location to the last. The user is removed. The method of claim 1 or 2, wherein the non-volatile storage element is involved You can execute a plurality of writes of the respective collections (4) by using the respective sets of electricity. 8. If you want to use the method of item 1 or 2, where: The material: the non-volatile material components are Each time the measurement is stored, the test capital is stored: the non-volatile library component stores the user after the write operation. 9. The method of claim 1 or 2, which: 139679.doc 201007744 The voltages include The method of claim 1 or 2, wherein: the voltages comprise a write voltage. 11. The method of claim 1 or 2, wherein: the non-volatile storage location is in the memory In a body device. 12. A storage system comprising: a respective collection of non-volatile storage elements (1205), the non-volatile storage elements being multi-level storage elements; a non-volatile storage location (1354); At least - control circuit (10) 0), the at least one control Circuit: 2 each of the respective sets of volatile storage components: the non-volatile storage element of the mother of the non-volatile storage elements - the respective set of electro-printed coffee, D Each of the individual collections, for each of the non-volatile storage elements, is customized[ θ stored in the non-volatile storage location, each set, and d) After the storing, obtaining at least one of the respective sets of the electric dust, the at least one of the individual collection orders, and the respective sets of the storage elements of the electric house At least - the second step and the non-volatile storage 13. As in the storage system of claim 12, the Yin:,,, and the operation. The at least - control circuit determines that the non-volatile storage of the electrical house of the different blocks of the component is independent of the non-volatile storage: the non-volatile storage component is erased. 15. The storage system of claim 12, wherein: the at least one control circuit determines a different group of blocks of the non-volatile storage element in the storage system. Different sets of voltages, non-volatile storage, each block is erasable independently of other blocks of the non-volatile storage element, each group containing one or more blocks, and a group Each block in the group uses the same set of voltages. The storage system of claim 12, wherein: the at least one control circuit determines a different set of voltages of different groups of word lines of the non-volatile storage element in the storage system, each group comprising one or more words line. 139679.doc -4-139679.doc -4-
TW98113899A 2008-04-29 2009-04-27 Non-volatile memory with adaptive setting of state voltage levels and the method therefor TWI410975B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/111,748 US7808836B2 (en) 2008-04-29 2008-04-29 Non-volatile memory with adaptive setting of state voltage levels
US12/111,729 US7808819B2 (en) 2008-04-29 2008-04-29 Method for adaptive setting of state voltage levels in non-volatile memory

Publications (2)

Publication Number Publication Date
TW201007744A true TW201007744A (en) 2010-02-16
TWI410975B TWI410975B (en) 2013-10-01

Family

ID=40929666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98113899A TWI410975B (en) 2008-04-29 2009-04-27 Non-volatile memory with adaptive setting of state voltage levels and the method therefor

Country Status (6)

Country Link
EP (1) EP2274746A1 (en)
JP (1) JP5410507B2 (en)
KR (1) KR101606168B1 (en)
CN (1) CN102027548B (en)
TW (1) TWI410975B (en)
WO (1) WO2009133553A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676842B2 (en) * 2008-05-30 2015-02-25 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor device
JP5828762B2 (en) * 2008-07-21 2015-12-09 プロビオドルグ エージー Diagnostic antibody assays
US8223556B2 (en) * 2009-11-25 2012-07-17 Sandisk Technologies Inc. Programming non-volatile memory with a reduced number of verify operations
CN102163461A (en) * 2011-05-03 2011-08-24 苏州聚元微电子有限公司 Method for improving yield and reading reliability of electrically erasable programmable read-only memory (EEPROM)
JP2013143155A (en) * 2012-01-06 2013-07-22 Powerchip Technology Corp Nonvolatile semiconductor memory device and write-in method thereof
KR102069864B1 (en) * 2012-11-05 2020-01-23 에스케이하이닉스 주식회사 Semiconductor memory device and operating method thereof
CN104217761B (en) * 2013-05-31 2018-12-14 慧荣科技股份有限公司 Data storage device and error correction method thereof
KR102210961B1 (en) * 2013-06-12 2021-02-03 삼성전자주식회사 Memory system including nonvolatile memory device and dynamic access method thereof
JP6262063B2 (en) * 2014-03-18 2018-01-17 東芝メモリ株式会社 Nonvolatile memory and writing method
JP5784788B2 (en) * 2014-04-16 2015-09-24 力晶科技股▲ふん▼有限公司 Nonvolatile semiconductor memory device and writing method thereof
JP6365457B2 (en) * 2015-08-05 2018-08-01 株式会社デンソー Semiconductor memory device and writing method thereof
US10332593B2 (en) * 2015-09-14 2019-06-25 Toshiba Memory Corporation Semiconductor memory device configured to sense memory cell threshold voltages in ascending order
US9875811B2 (en) 2016-01-13 2018-01-23 Macronix International Co., Ltd. Method and device for reading a memory
TWI621125B (en) * 2016-01-26 2018-04-11 旺宏電子股份有限公司 Method and device for reading a memory
CN108733305B (en) * 2017-04-13 2021-09-03 旺宏电子股份有限公司 Memory device, system and operation method thereof
US10347344B2 (en) * 2017-08-29 2019-07-09 Micron Technology, Inc. Read voltage calibration based on host IO operations
JP6929171B2 (en) * 2017-09-05 2021-09-01 ローム株式会社 Non-volatile semiconductor storage device
KR102395196B1 (en) * 2017-10-17 2022-05-06 삼성전자주식회사 Storage device having parameter calibration function and method of operating the storage device
JP2019153366A (en) * 2018-03-06 2019-09-12 東芝メモリ株式会社 Memory system, reading method, program and memory controller
US10930355B2 (en) * 2019-06-05 2021-02-23 SanDiskTechnologies LLC Row dependent sensing in nonvolatile memory
CN110619919B (en) * 2019-09-23 2021-08-13 上海华力微电子有限公司 Method for testing endurance performance of Flash device
KR20210110382A (en) 2019-10-29 2021-09-07 양쯔 메모리 테크놀로지스 씨오., 엘티디. How to program a memory device
CN111341375B (en) * 2020-02-19 2020-12-01 哈尔滨工业大学 Threshold voltage obtaining method for TLC type NAND Flash
US11133062B1 (en) * 2020-05-07 2021-09-28 Micron Technology, Inc. Two memory cells sensed to determine one data value
CN114705973B (en) * 2022-06-01 2022-11-11 北京航空航天大学杭州创新研究院 Non-invasive complex environment integrated circuit aging monitoring method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278633B1 (en) * 1999-11-05 2001-08-21 Multi Level Memory Technology High bandwidth flash memory that selects programming parameters according to measurements of previous programming operations
JP2002288988A (en) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp Non-volatile semiconductor memory
US6813194B2 (en) * 2002-01-10 2004-11-02 Silicon Storage Technology, Inc. Bias distribution network for digital multilevel nonvolatile flash memory
JP4068863B2 (en) * 2002-03-08 2008-03-26 富士通株式会社 Nonvolatile multilevel semiconductor memory
JP4086583B2 (en) * 2002-08-08 2008-05-14 シャープ株式会社 Nonvolatile semiconductor memory device and data write control method
JP3889699B2 (en) * 2002-11-29 2007-03-07 株式会社東芝 Nonvolatile semiconductor memory device and data writing method thereof
US7177199B2 (en) * 2003-10-20 2007-02-13 Sandisk Corporation Behavior based programming of non-volatile memory
US7092290B2 (en) * 2004-11-16 2006-08-15 Sandisk Corporation High speed programming system with reduced over programming
US7254071B2 (en) * 2006-01-12 2007-08-07 Sandisk Corporation Flash memory devices with trimmed analog voltages
US7457178B2 (en) 2006-01-12 2008-11-25 Sandisk Corporation Trimming of analog voltages in flash memory devices
JP2007250133A (en) * 2006-03-17 2007-09-27 Sharp Corp Method for testing nonvolatile semiconductor storage device

Also Published As

Publication number Publication date
EP2274746A1 (en) 2011-01-19
CN102027548B (en) 2014-01-01
KR20110018336A (en) 2011-02-23
WO2009133553A1 (en) 2009-11-05
KR101606168B1 (en) 2016-03-24
JP5410507B2 (en) 2014-02-05
CN102027548A (en) 2011-04-20
TWI410975B (en) 2013-10-01
JP2011519110A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
TW201007744A (en) Non-volatile memory with adaptive setting of state voltage levels and the method therefor
KR101564399B1 (en) Read disturb mitigation in non-volatile memory
US8009472B2 (en) Method for adaptive setting of state voltage levels in non-volatile memory
JP5250117B2 (en) Adaptive erase and soft programming for memory
JP5575244B2 (en) Selective memory cell program and erase
KR101041595B1 (en) Programming defferently sized margins and sensing with compensations at select states for improved read operations in non-volatile memory
KR101569862B1 (en) Erase-verification process for non-volatile storage
US7808836B2 (en) Non-volatile memory with adaptive setting of state voltage levels
EP2078303B1 (en) Reading of a nonvolatile memory cell by taking account of the stored state of a neighboring memory cell
TW201027539A (en) Data state-based temperature compensation during sensing in non-volatile memory
TW200949844A (en) Sensing in non-volatile storage using pull down to regulated source voltage to remove system noise
TW200951963A (en) Compensating non-volatile storage using different pass voltages during program-verify and read
JP5067645B2 (en) Segmented bit scan for programming verification
TW200910352A (en) Apparatus and method of reducing power consumption during read operations in non-volatile storage
JP2009516318A (en) Reverse coupling effect by timing information
WO2008083136A2 (en) Resistance sensing and compensation for non-volatile storage

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees