TW201006783A - Low temperature co-firing microwave dielectric ceramic material and preparation method thereof - Google Patents

Low temperature co-firing microwave dielectric ceramic material and preparation method thereof Download PDF

Info

Publication number
TW201006783A
TW201006783A TW97129995A TW97129995A TW201006783A TW 201006783 A TW201006783 A TW 201006783A TW 97129995 A TW97129995 A TW 97129995A TW 97129995 A TW97129995 A TW 97129995A TW 201006783 A TW201006783 A TW 201006783A
Authority
TW
Taiwan
Prior art keywords
sub
temperature
oxide
microwave dielectric
low
Prior art date
Application number
TW97129995A
Other languages
Chinese (zh)
Other versions
TWI461385B (en
Inventor
Hong Wang
huan-fu Zhou
Xi Yao
Rui-Zong Zhang
hui-ru Chen
Zhong-Kai Wen
Original Assignee
Walsin Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walsin Technology Corp filed Critical Walsin Technology Corp
Priority to TW097129995A priority Critical patent/TWI461385B/en
Publication of TW201006783A publication Critical patent/TW201006783A/en
Application granted granted Critical
Publication of TWI461385B publication Critical patent/TWI461385B/en

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to a low temperature co-firing microwave dielectric ceramic material and its preparation method, wherein the mixing proportion of the material is (1-x)Ba.sub.5+y(Nb.sub.1-kMn.sub.k).sub.4O .sub.15-xBa.sub.1+zNb.sub.2O.sub .6, and a combustion improver that occupies, in percents by weights, of from about 0.3 to about 2.8 of the whole material is added. The combustion improver is boron oxide (B.sub.2O.sub.3), boron oxide-zinc oxide (B.sub.2O.sub.3-ZnO), boron oxide-cupric oxide (B.sub.2O.sub.3-CuO), boron oxide-barium oxide (B.sub.2O.sub.3-BaO) or barium oxide-boron oxide-cupric oxide (BaO-B.sub.2O.sub.3-CuO), wherein 0 ≤ x < 1, 0 < y ≤ 0.3, 0 ≤ z ≤ 0.3, and 0 ≤ k ≤ 0.1. The sintering temperature of the invention can be reduced to about 900 degrees Celsius by adding Ba.sub.1+zNb.sub.2O.sub.6 and trace oxides with low melting point. The excellent microwave dielectric properties can be further obtained, wherein the dielectric constant (εr) is between 39 and 42, and the microwave characteristic (Q*f) is greater than 15000, and the resonant frequency temperature coefficient (τf) is about 30. Accordingly, the material can be applied in manufacturing microwave devices such as the low temperature co-firing ceramic system, the multilayer dielectric resonator, the microwave antenna and the filter and so on.

Description

201006783 九、發明說明: 【發明所屬之技術領域】 本發明係一種低溫共燒微波介電陶瓷材料及其製備方 法,尤指一種利用添加低熔點的氧化物,降低材料間之共 晶點’促使介電材料之燒結溫度大幅降低,但仍保持其優 越之微波特性的微波介電陶瓷材料及其製備方法。 【先前技術】 ic積體化技術進步日新月異,促成無線通訊所採用之 主動元件已成功進行整合,而被動元件卻仍以單一功能方 式應用於線路中,.使得兩者在電路板上元件數目差距越來 越大以行動電話為例’被動元件佔成本7 0 %,體積比例 更南達8 0 %以上。為了達成通訊元件小型化、輕量化的目 標’需先將被動元件積體化’但所使用的介電陶究材料燒 結溫度都很高(&gt; 1 30(TC ) ’無法使用銀或銅來當内電極,必 須使用成本較南之白金或銀把合金當電極,並不符合成本 效益。 因此,現今許多廠商積極開發出可與銀共燒且具備良 好微波介電特性之陶瓷材料,此即所謂的低溫共燒陶免 (Low Temperature Co-fired Ceramic; LTCC)材料,而目 前投入低溫共燒陶瓷内埋式高頻介電材料技術開發的廠商 有: 美國的杜邦(DuPont)、沙諾夫(Sarnoff)、摩托羅拉 (Motorola)、雷神(Raytheon)、美國國家半導體(Nati〇na| 201006783201006783 IX. Description of the Invention: [Technical Field] The present invention relates to a low-temperature co-fired microwave dielectric ceramic material and a preparation method thereof, and more particularly to a method for reducing the eutectic point between materials by adding an oxide having a low melting point A microwave dielectric ceramic material whose sintering temperature of a dielectric material is greatly reduced, but which still maintains its superior microwave characteristics, and a preparation method thereof. [Prior Art] The advancement of ic integrated technology is changing with each passing day, which has led to the successful integration of the active components used in wireless communication, while the passive components are still applied to the line in a single function, which makes the difference in the number of components on the circuit board. Increasingly, mobile phones are used as examples. 'Passive components account for 70% of the cost, and the volume ratio is more than 80%. In order to achieve the goal of miniaturization and weight reduction of communication components, 'passive components must be integrated first', but the dielectric ceramic materials used are sintered at a high temperature (&gt; 1 30(TC ) 'cannot use silver or copper When the internal electrodes must be alloyed with platinum or silver, it is not cost-effective. Therefore, many manufacturers today actively develop ceramic materials that can be co-fired with silver and have good microwave dielectric properties. The so-called Low Temperature Co-fired Ceramic (LTCC) materials, and the current development of low-temperature co-fired ceramic embedded high-frequency dielectric materials technology manufacturers: DuPont (DuPont), Shanov (Sarnoff), Motorola, Raytheon, National Semiconductor (Nati〇na| 201006783

Semiconductor Corporation)以及日本松下(Masushita)、 京瓷(Kyocera)、村田(Murata)、東京電氣化學工業(TDK)、 曰本電氣株式會社(NEC)、富士通(Fujitsu)…等;而該低溫 共燒陶瓷技術因具有:可在低溫(彳oocrc以下)燒結、能 與低阻抗及低介電損失之Ag、Au、Cu等金屬共燒、製作 *時無層數之限制、·介質厚度容易控制、能將電阻電容及電 •感埋入元組件中等的優點,再加上低溫共燒陶瓷之熱膨脹 ❿係數與吸水率小,因此非常適合應用在高頻通訊元組件之 製作上。 但於1960至.2007年間,所發表的低溫共燒陶瓷相關 專利150餘篇中,其中大部分皆為曰本專利,而又依其材 料之組成,大致上可分為:Ba0_Tj〇2_Re2〇3、日丨2〇3、Semiconductor Corporation) and Japan's Matsushita, Kyocera, Murata, Tokyo Electric Chemical Industry (TDK), Sakamoto Electric Co., Ltd. (NEC), Fujitsu (Fujitsu), etc.; and the low temperature co-fired ceramics The technology has the following advantages: it can be sintered at low temperature (below 彳oocrc), can be co-fired with metals such as Ag, Au, and Cu with low impedance and low dielectric loss, and has no layer limit. The advantages of embedding resistors and capacitors and electrical inductance into the components are combined with the low thermal expansion coefficient and low water absorption of the low-temperature co-fired ceramics, making them ideal for use in the fabrication of high-frequency communication components. However, between 1960 and 2007, most of the more than 150 patents related to low-temperature co-fired ceramics were published in this patent, and according to the composition of their materials, they can be roughly divided into: Ba0_Tj〇2_Re2〇3 , 日丨2〇3,

Ba0_Ti02、Mg(Ca/Zn)0-Ti02、Zn-Sn02-Ti〇2、BaO- WCVCuO與CU〇.-Zr〇2為其主體成分,若依其燒結助劑種 類.、添加方式與燒結溫度加以筛選,在先前技術中絕大部 Φ 分皆是利用添加玻璃相增加其熱傳速率,以降低燒結溫 度。 但由於一般放璃相的微波及介電特性相當差,所以經 過添加玻璃相後的微波陶瓷材料雖然可於較低溫下燒結完 成’但會大幅損失原有主體材料的微波介電特性。 【發明内容】 因此’本發明係提供一種低溫共燒微波介電陶瓷材料 及其製備方法,該材料除了可於較低溫下燒結完成外,且 .201006783 不會大幅降低原有材料的微波介電特性。 為達上述之目的,本發明低溫共燒微波介電陶瓷材料 係包括: 利用非化學計量比調整原料配方比例,使其化合物的 配方比例為(l-WBas+yCNbuMnkhOwxBai+zNfc^Oe,其中 * 0&lt;x&lt;1 ’ 〇&lt;ys〇_3,0SZS0.3,oskso.1。通過採用非化學計 量比微量調整配方中Ba含量’有利於在固相反應過程中 ❿ 純晶相(Pure phase )的形成並使燒結瓷體達到最優緻密 度’影響材料的晶胞參數及顯微結構,獲得最佳的結構與 性能關係’從而達到優化材料微波介電性能的目的。 此外,本發明另相關於一種低溫共燒微波介電陶瓷材 料的製備方法係包括: (a) 利用混合氧化物之固態反應法製備微波介電陶曼 Bas+y(Nbi-kMnk&gt;4〇15 主體粉體,然後於 135CTC 〜145CTC 進 行燒結’並維持持溫2〜4小時,以形成純相Ba5+y(Nbi ❿ kMnk)4015 粉末,其中 〇&lt;ys0 3,0sks0」; (b) 將Bai+zNb2〇6粉體進行煆燒,以形成純相 Ba1+zNb206粉末,其中〇szg〇 3 ;以及 (c) 將 Ba5+y(Nb1.kMnk)4〇15&amp; Ba1+zNb2〇6 粉體按分子 式(l-xJBas+^NbuMnkhOu-xBapzNt^Oe 的配方比例加入 一種以上的助燒劑進行低溫燒結,其中〇^χ&lt;1且該助燒劑 佔整體材料之0.3〜2.8wt% » 較佳地’該助燒劑係選自於由氧化硼(BeOS)、氧化鋇 (BaO)、氧化鋅(ZnO)、氧化裡(u2〇)和氧化銅(Cu〇)所板 201006783 成之群組。 較佳地 ’ X : y : z =〇.16 : 0,03 : 〇」。 更佳地,該助燒劑係為氧化硼(b2〇3)和氧化鋇(Ba〇卜 更佳地,該氧化硼(H)和氡化鋇(Ba〇)的添加比例 係分別佔整體低溫共燒微波介電陶瓷材料的〇 3wt%和 2.5wt%。 本發明係藉由調整原料配方比例,發明出一種具有優 • 異微波性能和低燒結溫度(約9001左右)的微波介電陶瓷 材料,該材料可與Ag等金屬電極共燒的需求。 本發明微波介電陶瓷材料具有以下特點: (1.)利用非化學計量比調整原料配方,使得主體材料 Ba5+y(Nbi-kMnk)4〇i5的固有微波性能得到了大大的改善; 可用於發展如GPS、天線等電子裝置。 (2) 添加微量的低熔點氧化物Ba〇、b2〇3、ZnO、Li20、 CuO,其燒結溫度可以降至9〇〇&lt;t左右,同時保持優異的 ® 微波性能;同時加入一定比例的Ba1+zNb206,可以使其错 振頻率溫度係數趨近於零。 (3) 能與銀電極共燒,且化學組成和製程簡單。 (4) 可應用於|_TCC系統,發展如微波天線、濾波器等 微波裝置。 . 本發明中主要利用共晶相之固溶體特性來製成微波介電陶 究材料’其所利用的液相燒結方式結果和前述專利中的材料及 方法並不相同’本發明藉由該製程可以達到更低溫度的燒結條 件(&lt;900°C)和更佳.微波介電特性。 201006783 【實施方式】 除非另有界定,所有被使用於本文中技術性與科學性 術語係於本發明所屬技術領域中具有通常知識者所能瞭解 的意義。 所謂「液相燒結」係指在原料粉體中添加液相燒結劑, 使其與主成份產生第二相,此相在燒結溫度時呈現液相, % 加速顆粒間的結合速率以及消除顆粒間之空隙,使其容易 在較低的燒結溫度獲得尚密度且性能優異的燒結體; 而成功的液相燒結要件有:1.適量的液態相;2•固相 在液相内有適當的溶解度;3_液相必須能充份潤濕固相, 這些條件能讓液相’分散而降低固、氣相。 本發明提供一種低溫共燒微波介電陶瓷材料的製備方 法’其具體步驟如下: (a)純相Bas+^NbuMrikhOu粉末之製作 ® 將工業級粉 BaC03(99.9%),Nb205(99_7%), Μη〇2(99·5%)以非化學劑量比按分子式Ba5+y(Nbi kMnk)4〇15配製’其中0&lt;yS0_3,〇sks〇.1,將配製後的粉 末加入去離子水及YTZ(Yttrium Toughened Zirconia)磨球 進行球磨混合24小時’於120°C烘乾磨碎後,置於氧化鋁 掛堝内,以5°C/min的升溫速率升至115CTC持溫2h,進 行煅燒。並經X光繞射(XRD ; X-ray diffraction)晶相分析, 確定具有Ba5Nb4015晶相之粉體後,依比例加入去離子水 及YTZ磨球進行24小時的二次球磨,於120°C烘乾後, 201006783 進行研磨、過篩、造粒,並以1 ton的單柏壓力壓片成高 5mm、直徑1 〇mm的生坯,於1 35CTC ~1450°C進行燒結(持 溫2〜4小時),並分析材料性質。 (b)純相 Ba1+zNb2〇6(OSzS〇.3&gt;粉末之製作 如上述製程,將工業級粉 BaC03(99.9%), Nb2〇5(99.7%) ’以非化學劑量比按分子式Ba1+zNb206配 製’其中0QS0.3,將配製後的粉末加入去離子水及YTZ φ 磨球進行球磨混合24小時,於120°C烘乾磨碎後,置於氧 化銘坩堝内’以5°C /min的升溫速率升至11 5CTC持溫2h, 進行煆燒。並經X光繞射(XRD ;X-ray diffraction)晶相分 析’確定具有BaNb206晶相之粉體後,依比例加入去離子 水及YTZ磨球進行24小時的二次球磨,於120°C烘乾後, 進行研磨、過篩’作為添加粉體使用。 (cMlWBas+^NbuMnkhOu-xBahzNhOe 低溫共燒陶 究材料的製作 ❹ 將二次球磨後的Bas+^NbuMn山015及Ba1+zNb206 粉體以非化學劑量按分子式(1_x)Ba5+y(Nbi kMnk)4〇i5_ xBai+zNb2〇e加入微量的氧化硼(B203)、氧化硼氧化辞 (Β2〇3·Ζη〇)、氧化硼-氧化銅(B203-Cu0)、氧化硼-氧化鋇 (B203-Ba0)或氧化鋇_氧化硼_氧化銅(Ba〇-B2〇3_Cu〇)助燒 劑,依比例加入去離子水及YT2磨球進行混合8小時,於 C火、乾後進行研磨、過篩、造粒並以11〇η的單轴壓 力壓片成阿5|^巾,直徑1〇mm的生坯,於86〇〇c〜95〇 C進行k、-σ (持溫2小時),進行下列材料性質分析。 201006783 1. 粒徑分析: 利用動態光散射儀(DLS) 該動態光散射儀的測量條件為折射率(partjc|e R丨) 設定為1.96;而其吸收係數(Abs〇rpti〇n)設定為1;藉 此測定其粒徑大小,根據半古典的光散射理論與光照射 在物質上時’光的電場會引起分子中電子偏振振盈。此 分子就像是第二個光源而散射出光。頻率的改變、角度 ❿ 的分佈、偏振、散射光強度都由散射物質的大小、形狀、 和分子交互作用來決定,所以從一個系統的光散射特 性,並加上電動力學和時間有關的統計力學理論,可 以得到有關散射介質的結構和分子力學資訊。 2. 密度分析: 燒結體則以阿基米德法測密度,首先將試片置於去離 子水中,再一起放入真空瓶内以機械幫浦抽真空約半小 時,然後以電子天平測出含水重(Wb)與水中重(Wc),將 Ο 川共it*職ί (Wa) ’ 可得密度 D=Wa/(Wb -Wc),再 除以理論密度(Ba5Nb4015=6.29gw/cm3),則可得到理論密 度百分比(Percent of Theoretic Density ; T.D.%)。 3. XRD晶體結構分析: 以連續方法(CS method)進行(/-&gt; 2qr掃描,掃描角(2分) 由20度至60度’速率為每分鐘4度,每0_02度做強度 記錄,所得之X-ray繞射強度圖形以JCPDS(Joint Committee on Powder Diffraction Standards)卡的資料做 比對,以確定結晶相的種類。 11 201006783 4_掃描式電子顯微鏡(SEM)微結構觀察: 本實驗之微觀結構分析乃以Joe丨JSM 636〇 子顯微鏡邮_察,將試片研磨、拋光,超音波^之 後放入電氣爐進行熱㈣’熱腐㈣件為燒結溫度以下 5〇~1〇〇C,〇·5〜2小時左右,之後將試片以賤鍍法鍍金, 即了針對繞結試片表面作微觀結構之形態觀察。 5_微波特性量測: ❹ 利用圓 柱型共振腔(cavity)法量測陶瓷圓柱型塊材之品 質因子(Q*f)及燒結體介電常數(κ),並利用網路分析儀 (8722ES)進行分析。並搭配溫度控制箱(ks〇n labteSter),量測在 〇°C、25°C、5CTC 至 85°C 之各溫度下 共振頻率隨溫度之飄移情形’計算得到平均斜率f/T,再 以室溫共振頻率值.f25為基準求得,其使用公式如下. τ/·=丄 I ·Ba0_Ti02, Mg(Ca/Zn)0-Ti02, Zn-Sn02-Ti〇2, BaO-WCVCuO and CU〇.-Zr〇2 are the main components, depending on the type of sintering aid, the addition method and the sintering temperature. In the prior art, most of the Φ points are increased by the addition of a glass phase to increase the heat transfer rate to lower the sintering temperature. However, since the microwave and dielectric properties of the general glass phase are rather poor, the microwave ceramic material after the addition of the glass phase can be sintered at a lower temperature, but the microwave dielectric properties of the original host material are greatly lost. SUMMARY OF THE INVENTION Accordingly, the present invention provides a low temperature co-fired microwave dielectric ceramic material and a preparation method thereof, which can be sintered at a lower temperature, and .201006783 does not significantly reduce the microwave dielectric of the original material. characteristic. For the above purposes, the low temperature co-fired microwave dielectric ceramic material of the present invention comprises: adjusting the proportion of the raw material formulation by using a non-stoichiometric ratio, and formulating the ratio of the compound to be (l-WBas+yCNbuMnkhOwxBai+zNfc^Oe, wherein *0&lt;;x&lt;1 ' 〇&lt;ys〇_3,0SZS0.3,oskso.1. Adjusting the Ba content in the formulation by using a non-stoichiometric ratio to facilitate the pure phase in the solid phase reaction (Pure phase) The formation of the sintered ceramic body to achieve the optimal density 'affects the unit cell parameters and microstructure of the material, to obtain the best structure and performance relationship' to achieve the purpose of optimizing the microwave dielectric properties of the material. In addition, the present invention is related The preparation method of a low-temperature co-fired microwave dielectric ceramic material comprises: (a) preparing a microwave dielectric Taman Bas+y (Nbi-kMnk>4〇15 main body powder by a solid state reaction method using mixed oxide, and then 135CTC ~ 145CTC for sintering 'and maintain temperature for 2 to 4 hours to form pure phase Ba5 + y (Nbi ❿ kMnk) 4015 powder, where 〇 &lt;ys0 3,0sks0"; (b) Bai+zNb2〇6 powder The body is simmered to form pure Ba1+zNb206 powder, wherein 〇szg〇3; and (c) Ba5+y(Nb1.kMnk)4〇15& Ba1+zNb2〇6 powder according to the formula (l-xJBas+^NbuMnkhOu-xBapzNt^Oe) Adding more than one sintering aid to low-temperature sintering, wherein 〇^χ&lt;1 and the sintering aid accounts for 0.3 to 2.8 wt% of the whole material. » Preferably, the sintering aid is selected from boron oxide (BeOS). , group of cerium oxide (BaO), zinc oxide (ZnO), oxidized lanthanum (u2 〇), and copper oxide (Cu 〇) board 201006783. Preferably 'X: y: z = 〇.16: 0, 03: 〇". More preferably, the sintering aid is boron oxide (b2〇3) and cerium oxide (Ba 〇b better, the addition ratio of the boron oxide (H) and bismuth telluride (Ba 〇) The invention accounts for wt3wt% and 2.5wt% of the total low-temperature co-fired microwave dielectric ceramic material, respectively. The invention invents a superior microwave performance and a low sintering temperature (about 9001 or so) by adjusting the ratio of the raw material formulation. Microwave dielectric ceramic material, which can be co-fired with metal electrodes such as Ag. The microwave dielectric ceramic material of the invention has the following characteristics: (1.) utilizing non-chemistry The metering ratio adjusts the raw material formula, so that the inherent microwave properties of the host material Ba5+y(Nbi-kMnk)4〇i5 are greatly improved; it can be used to develop electronic devices such as GPS and antenna. (2) Adding a small amount of low melting point oxides Ba〇, b2〇3, ZnO, Li20, CuO, the sintering temperature can be reduced to about 9〇〇&lt;t while maintaining excellent ® microwave performance; Ba1+zNb206 can make the temperature coefficient of the vibration loss frequency close to zero. (3) It can be co-fired with silver electrode, and its chemical composition and process are simple. (4) It can be applied to the |_TCC system to develop microwave devices such as microwave antennas and filters. The present invention mainly utilizes the solid solution characteristics of the eutectic phase to form a microwave dielectric ceramic material, and the result of the liquid phase sintering method utilized is different from the materials and methods in the aforementioned patents. The process can achieve lower temperature sintering conditions (&lt;900 °C) and better microwave dielectric properties. 201006783 [Embodiment] All of the technical and scientific terms used herein are to be understood by those of ordinary skill in the art to which the present invention pertains, unless otherwise defined. The term "liquid phase sintering" refers to the addition of a liquid phase sintering agent to the raw material powder to produce a second phase with the main component, which phase exhibits a liquid phase at the sintering temperature, and accelerates the bonding rate between the particles and eliminates the interparticles. The gap makes it easy to obtain a sintered body with good density and excellent performance at a lower sintering temperature; and the successful liquid phase sintering requirements are: 1. an appropriate amount of liquid phase; 2 • solid phase has appropriate solubility in the liquid phase The liquid phase must be able to fully wet the solid phase. These conditions can cause the liquid phase to 'disperse and lower the solid and gas phases. The invention provides a preparation method of a low-temperature co-fired microwave dielectric ceramic material, and the specific steps thereof are as follows: (a) Production of pure phase Bas+^NbuMrikhOu powder® Industrial grade powder BaC03 (99.9%), Nb205 (99_7%), Μη 〇2 (99.5%) was prepared in a non-stoichiometric ratio according to the formula Ba5+y(Nbi kMnk)4〇15 where 0 0&lt;yS0_3, 〇sks〇.1, and the prepared powder was added to deionized water and YTZ ( Yttrium Toughened Zirconia) Grinding ball was ball milled for 24 hours. After being ground and ground at 120 ° C, it was placed in an alumina hanging crucible and raised to 115 CTC for 2 h at a heating rate of 5 ° C/min for calcination. X-ray diffraction (XRD; X-ray diffraction) crystal phase analysis, after determining the powder with Ba5Nb4015 crystal phase, the deionized water and YTZ grinding ball were added in proportion to the second ball milling for 24 hours at 120 °C. After drying, 201006783 is ground, sieved, granulated, and pressed into a green body with a height of 5 mm and a diameter of 1 〇mm by a single ton of 1 ton, and sintered at 1 35 CTC ~ 1450 ° C (temperature 2~) 4 hours) and analyze the material properties. (b) Pure phase Ba1+zNb2〇6 (OSzS〇.3> powder is prepared as in the above process, industrial grade powder BaC03 (99.9%), Nb2〇5 (99.7%) ' in a non-chemical dose ratio according to the formula Ba1+ zNb206 was prepared with '0QS0.3, and the prepared powder was added to deionized water and YTZ φ grinding ball for ball milling and mixing for 24 hours. After drying at 120 °C, it was placed in an oxidation chamber at 5 °C / The heating rate of min was raised to 11 5 CTC for 2 h, and calcination was carried out. After X-ray diffraction (XRD) crystal phase analysis was carried out to determine the powder with BaNb206 crystal phase, deionized water was added in proportion. And YTZ grinding ball for 24 hours of secondary ball milling, drying at 120 ° C, grinding and sieving 'use as added powder. (cMlWBas + ^ NbuMnkhOu-xBahzNhOe low temperature co-fired ceramic material production ❹ will be twice The ball-milled Bas+^NbuMnshan 015 and Ba1+zNb206 powders were added with a small amount of boron oxide (B203) and boron oxide by a non-chemical dosage according to the formula (1_x) Ba5+y(Nbi kMnk)4〇i5_ xBai+zNb2〇e (Β2〇3·Ζη〇), boron oxide-copper oxide (B203-Cu0), boron oxide-yttria (B203-Ba0) or yttrium oxide_boron oxide_ Copper (Ba〇-B2〇3_Cu〇) sintering aid, mixing deionized water and YT2 grinding ball in proportion for 8 hours, grinding, sieving, granulating and 11 〇 after C fire, dry The uniaxial pressure was compressed into a 5|^ towel, a green body having a diameter of 1 mm, and subjected to k, -σ (temperature for 2 hours) at 86 ° c to 95 ° C, and the following material properties were analyzed. Particle size analysis: Using dynamic light scattering instrument (DLS) The dynamic light scattering instrument is measured with a refractive index (partjc|e R丨) set to 1.96; and its absorption coefficient (Abs〇rpti〇n) is set to 1; The particle size is determined by the semi-classical light scattering theory and the light's electric field causes the polarization of the electrons in the molecule. The molecule acts like a second source and scatters light. Frequency changes The angle ❿ distribution, polarization, and scattered light intensity are all determined by the size, shape, and molecular interaction of the scattering material, so from the light scattering characteristics of a system, plus the dynamics and time-related statistical mechanics theory, Get structural and molecular mechanics related to scattering media 2. Density analysis: The sintered body is measured by the Archimedes method. First, the test piece is placed in deionized water, and then placed in a vacuum bottle, and the mechanical pump is evacuated for about half an hour, and then the electronic balance is used. The water content weight (Wb) and the water weight (Wc) were measured, and the total density of D*Wa/(Wb -Wc) was divided by the theoretical density (Ba5Nb4015=6.29gw/ Cm3), the theoretical density percentage (Percent of Theoretic Density; TD%) is obtained. 3. XRD crystal structure analysis: by continuous method (CS method) (/-> 2qr scan, scan angle (2 points) from 20 degrees to 60 degrees' rate of 4 degrees per minute, every 0_02 degrees for intensity recording, The obtained X-ray diffraction intensity pattern is compared with the data of the JCPDS (Joint Committee on Powder Diffraction Standards) card to determine the type of the crystal phase. 11 201006783 4_Scanning Electron Microscope (SEM) Microstructure Observation: This experiment The microstructure analysis was carried out by Joe 丨JSM 636 〇子microscope. The test piece was ground and polished, and the ultrasonic wave was placed in an electric furnace for heat. (4) The hot rot (four) pieces were below the sintering temperature of 5〇~1〇〇. C, 〇·5~2 hours, after which the test piece is plated with gold by ruthenium plating, that is, the morphology of the surface of the wound test piece is observed. 5_Microwave characteristic measurement: ❹ Using cylindrical cavity (cavity) The mass factor (Q*f) of the ceramic cylindrical block and the dielectric constant (κ) of the sintered body were measured by a network analyzer (8722ES) and matched with a temperature control box (ks〇n labteSter). , measured at 〇 ° C, 25 ° C, 5 CTC to 85 ° C A resonance frequency at each temperature with the temperature drift scenario 'calculated average slope f / T, and then at room temperature for a resonance frequency value as a reference .f25 determined, using the following equation. Τ / · = I · Shang

f f2s6T φ 將燒結後陶瓷塊材之的緻密度、微波介電特性和共振 頻率溫度係數等性質整理後,具有如下列之關係並配合下 列各表說明,亦即: 1.緻密度(T_D_%)方面:由文獻得知,Ba5Nb4015純相 之理論密度為6.29g/cm3 ;經由上述阿基米德原理量測燒 結體密度可得其瑾論密度百分比,在各項研究結果中發 現’添加低熔點氧化物’可使材料在較低燒結溫度下達到 較兩燒結緻密度’但BaNb206第二相的添加對緻密度的提 升影響不大。 12 201006783 2•微波特性(Q*f&gt;方面:在主成分方面,如表所示,Μ 含量的增加能有效提冑的值,在配比為Ba5D3Nb4〇150f 的達到最高值(Q*f=42195)。而Ba〇_B2〇3_Cu〇等助燒劑 的添加’材料微波特性可在較低燒結溫度(9〇〇。。)下達到較 佳特性(Q*f =20592)。但日亀2〇6第二相的添加,使得f f2s6T φ After finishing the properties of the sintered ceramic block, such as density, microwave dielectric properties and temperature coefficient of resonance frequency, it has the following relationship and is described in the following table, namely: 1. Density (T_D_%) Aspect: It is known from the literature that the theoretical density of Ba5Nb4015 pure phase is 6.29g/cm3; the density of the sintered body can be measured by the above-mentioned Archimedes principle, and the percentage of its density is obtained. The melting point oxide' allows the material to achieve a lower sintering density at lower sintering temperatures' but the addition of the second phase of BaNb206 has little effect on the increase in density. 12 201006783 2•Microwave characteristics (Q*f> aspect: In terms of principal component, as shown in the table, the increase in Μ content can effectively raise the value, and the highest value is obtained in the ratio of Ba5D3Nb4〇150f (Q*f= 42195). The addition of the sintering agent such as Ba〇_B2〇3_Cu〇' material microwave characteristics can achieve better characteristics (Q*f = 20592) at a lower sintering temperature (9〇〇.). 2〇6 addition of the second phase, making

B2〇3-Cu〇二元助劑的加入讓Q*f值惡化的非常厲害,故 只能採用BaO-B2〇3來降低燒结温度。其中以添加 2.5Wt〇/oBa0_0.3wt%B2〇3 具有最佳的 Q*f 值(Q*f =3388〇)。 3·介電係數(K)方面:κ值主要是受緻密度的影響, Ba0-B203-Cu0等助燒劑的添加,能使Ba5〇3Nb4〇i5在較 低燒結溫度(900°C )下達到較佳的緻密度,故對κ值的影 響不大,仍維持在40以上。但BaNb206第二相的添加, 因使得燒結溫度上升,故需在較高的燒結溫度(925π)下才 能獲得較佳的Κ值(39.5)。 4.共振頻率溫度係數(τ〖)方面:BaNb2〇6第二相的添加 能有效降低〜值’.Ba^Nb2。6的添加較BaNb206更能有效 降低〜值’當添加量為〇· 16mole%時,值達到最小值 (〜25)〇 〈實施例一 &gt; 首先’利用混合氧化物之固態反應法製備微波介電陶 瓷Ba5+y(Nbl-kMnk)4〇15主體粉體,依不同的原料配比於 1350°C〜1450°C進行燒結(持溫2〜4小時),進行材料性質 分析,其特性如下表所示: __表一 :Ba^yNb^O,5陶早的微波介電特性The addition of the B2〇3-Cu〇 binary additive makes the Q*f value worse, so only BaO-B2〇3 can be used to lower the sintering temperature. Among them, adding 2.5Wt〇/oBa0_0.3wt%B2〇3 has the best Q*f value (Q*f = 3388〇). 3. Dielectric coefficient (K): The κ value is mainly affected by the density. The addition of Ba0-B203-Cu0 and other sintering aids can make Ba5〇3Nb4〇i5 at a lower sintering temperature (900 °C). Achieving a better density, so the effect on the κ value is not large, still maintained at 40 or more. However, the addition of the second phase of BaNb206 results in a better enthalpy (39.5) at a higher sintering temperature (925π) due to an increase in the sintering temperature. 4. Resonance frequency temperature coefficient (τ 〖): BaNb2 〇 6 second phase addition can effectively reduce ~ value '. Ba ^ Nb 2. 6 addition is more effective than BaNb206 to reduce ~ value ' when the amount is 〇 · 16mole When %, the value reaches the minimum value (~25) 〇 <Example 1> First, the microwave dielectric ceramic Ba5+y(Nbl-kMnk)4〇15 host powder is prepared by solid state reaction method using mixed oxide. The raw material ratio is sintered at 1350 ° C to 1450 ° C (with a temperature of 2 to 4 hours), and the properties of the material are analyzed. The characteristics are as follows: __Table 1: Ba^yNb^O, 5 pottery Microwave dielectric properties

Ba5+yNb40I5T^T | S.T |蚤度| 微波介電性# 13 201006783 煆燒溫度 燒結溫度 (Density ) (Microwave dielectric properties) £ F Q*/ Υ=0.01 1150°C /2h 1425〇C /2h 5.79 38 5.45 21822 37.6 Υ=0.02 1150°C. /2h 1425〇C /2h 5.83 40 5.05 39708 52.1 Υ=0.03 1150。。 /2h 1425〇C /2h 6.06 40.5 5.08 42195 60.9 Υ=0.04 1150°C /2h 1425〇C /2h 5.92 39.5 5.08 38115 48.5 Υ=0.05 1150°C /2h 1425〇C /2h 6.08 40.5 5.09 30000 66.9 Υ=0.1 1150°C /2h 1425〇C /2h 5.98 39.1 4.92 28723 66 表二· 陶究的微波介電特性Ba5+yNb40I5T^T | ST |蚤 | Microwave Dielectric # 13 201006783 Microwave dielectric properties £ FQ*/ Υ=0.01 1150°C /2h 1425〇C /2h 5.79 38 5.45 21822 37.6 Υ=0.02 1150°C. /2h 1425〇C /2h 5.83 40 5.05 39708 52.1 Υ=0.03 1150. . /2h 1425〇C /2h 6.06 40.5 5.08 42195 60.9 Υ=0.04 1150°C /2h 1425〇C /2h 5.92 39.5 5.08 38115 48.5 Υ=0.05 1150°C /2h 1425〇C /2h 6.08 40.5 5.09 30000 66.9 Υ= 0.1 1150°C /2h 1425〇C /2h 5.98 39.1 4.92 28723 66 Table 2 · Microwave Dielectric Properties of Ceramics

Ba5(Nb1.AMnA)4015 C.T 煆燒溫度 S.T 燒結溫度 密度 (Density) 微波介電性質 (Microwave dielectric properties) ε Q*f τ{ K=0 1150〇C/2h 1425〇C/2h 5.94 38 23650 78 k=0.002 1150〇C/2h 1425〇C/2h 5.79 32 34250 51 k=0.005 1150〇C/2h 1425〇C/2h 5.83 37 33462 65 k=0.01 1150〇C/2h 1425〇C/2h 6.06 35.5 22506 45 k=0.02 1150〇C/2h 1425〇C/2h 5.92 31 6273 42 由上述結果顯示出,該陶瓷之密度和電性均隨著Ba 含量增加而上升,當y = 0.03,燒結溫度為1425°c,持溫 2小時,密度和電性均達到最高值;陶瓷體緻密度可達95% 理論密度(T.D_〇/〇)以上,K=40〜41 ’ Q*f &gt;40000,τ,=60ρριη/ t:;而Μη的添加對材料特性並無明顯的改善,雖能些微 14 201006783 調降0,但整體緻體密度和κ,Q*f值均有明顯的下降。 因此因此Ba5.〇3Nt&gt;4〇15為最佳的配比條件。 〈實施例二〉Ba5Q3Nb4〇15之低溫燒結 一般用來降低燒結溫度的助結劑分為兩種,一為低熔 點的玻璃,二為低炫點的金屬氧化物,添加玻璃雖能降低 燒結溫度,但也會降低材料的介電特性,因此需添加一些 ❿低熔點的氧化物來降低燒結溫度,同時維持優良的介電特 性。 叙常用來降低燒結溫度的金屬氧化物有、 ^ 2 3Ba5(Nb1.AMnA)4015 CT Sintering temperature ST Sintering temperature density (Density) Microwave dielectric properties ε Q*f τ{ K=0 1150〇C/2h 1425〇C/2h 5.94 38 23650 78 k=0.002 1150〇C/2h 1425〇C/2h 5.79 32 34250 51 k=0.005 1150〇C/2h 1425〇C/2h 5.83 37 33462 65 k=0.01 1150〇C/2h 1425〇C/2h 6.06 35.5 22506 45 k=0.02 1150〇C/2h 1425〇C/2h 5.92 31 6273 42 The above results show that the density and electrical properties of the ceramic increase with increasing Ba content, when y = 0.03, the sintering temperature is 1425°. c, holding temperature for 2 hours, the highest density and electrical properties; ceramic body density up to 95% theoretical density (T.D_〇 / 〇) or more, K = 40 ~ 41 'Q * f &gt; 40000, τ,=60ρριη/ t:; and the addition of Μη has no obvious improvement on the material properties. Although it can be lowered by 0, 201006783, the overall body density and κ, Q*f values are significantly reduced. Therefore, Ba5.〇3Nt&gt;4〇15 is the optimum ratio. <Example 2> Low-temperature sintering of Ba5Q3Nb4〇15 Generally, the sintering aid used to reduce the sintering temperature is divided into two types, one is a low-melting glass, and the other is a low-focus metal oxide. Although adding glass can lower the sintering temperature. However, it also reduces the dielectric properties of the material, so it is necessary to add some low melting point oxides to lower the sintering temperature while maintaining excellent dielectric properties. Metal oxides commonly used to reduce the sintering temperature are, ^ 2 3

CuO、Zn〇、v2〇5等’由於Ba0、已2〇3和cu〇間有共晶 相反應’因此會在875。(:時形成二次相BaCu(B2〇5),又該 BaO的添加能改善與Bh^Nb4。15間的潤濕行為,因此可 利用液相BaCu(B2〇5)燒結於Ba5.〇3Nb4〇15材料中,並添 加B2〇3_CuO、ZnO- Bz〇3等粉體,以降低其燒結溫度;其 ❹ 實驗數據如下表三所述: 表三Ba5+yNb4015陶瓷的低溫微波介電特性 組成 (Composition) 助燒 ‘ (Sintered aid) S.T 燒結 溫度 密度 (Density) 微波介電性質 (Microwave dielectric properties') ε Qy τ f Ba5.03Nb4O15 0.3B2O3:0.3ZnO 900 °C/2h 5.986 40.84 9483 65 0.3B2O3:0.3CuO 900 °C/2h 6.068 40.69 16674 62 0.3B2O3:0.3CuO:1.5BaO 900 °C/2h 6.014 41.1 18953 52 15 201006783CuO, Zn〇, v2〇5, etc. ' due to eutectic reaction between Ba0, already 2〇3 and cu〇&apos; will therefore be at 875. (: When the secondary phase BaCu(B2〇5) is formed, the addition of BaO can improve the wetting behavior with Bh^Nb4.15, so it can be sintered to Ba5.〇3Nb4 by liquid phase BaCu(B2〇5). In the 〇15 material, powders such as B2〇3_CuO and ZnO-Bz〇3 are added to reduce the sintering temperature; the experimental data are as follows in Table 3: Table 3 Low-temperature microwave dielectric characteristics of Ba5+yNb4015 ceramics ( Composition) Sintered aid ST Sintering Density Microwave dielectric properties' ε Qy τ f Ba5.03Nb4O15 0.3B2O3: 0.3ZnO 900 °C/2h 5.986 40.84 9483 65 0.3B2O3: 0.3CuO 900 °C / 2h 6.068 40.69 16674 62 0.3B2O3: 0.3CuO: 1.5BaO 900 °C / 2h 6.014 41.1 18953 52 15 201006783

Ba505Nb4O15 0.3B2O3:0.3CuO 900 °C/2h 6.056 40.71 16657 70 0.3B203:0.3Li20 900 °C/2h 5.892 38.02 17498 66 Ba5.】0Nb4O】5 0.3B2O3:0.3CuO 900 °C/2h 6.073 41.4 17024 65 由上述數據可得知添加B2〇3-CuO重量比例為 0.6wt% ’在低溫埤結之微波介電特性上最具有效益;而在 比較添加Ba0-B203-Cu0與添加B203-Cu0中可得知,在 φ 較低燒結溫度(&lt;900。(:)下,添加Ba0-B203-Cu0之材料燒 結特性較僅添加B2〇3-CuO為佳;因此,BaO的添加能有 效提升材料的介電.特性,而在固定Ba0-B203-Cu0添加量, 改變混合比例至 Ba5 03Nb4O15/BaO/B2O3/CuO = 1/0_5%/0.4%/0_2%可得到相對較佳微波介電特性;3.丁&lt;900 °C ’ K=40〜41,Q*f&gt;i8000 ’ i:f ~50 ppm/°C。 由上述的結果得知,添加Ba0-B203-Cu〇助燒劑雖能 有效降低燒結溫度,但其頻率溫度係數~仍過高卜5〇ppm/ ❹。C )。 〈實施例三 &gt;藉由不同添加量的Bai+zNb2〇6調整其溫度 係數 表四係探討不同添加量對Ba5+y(Nbl kMnk)4〇15陶瓷材 料特性之影響,其實驗數值如下表所示: 表四&amp;)不同添加量的氧化鋇(Ba〇)對(1_x)Ba5.〇3Nb4〇i5.xBaiNb A陶免的低溫 微波介電特性的影響 201006783 表四(b)不同添加量的BaO對(l-x^a^N^CVxBauN^C^陶瓷的低溫微波 參 介電特性的影響 體系 S.T 燒結溫度 Microwave dielectric properties 0^^%wNb4015+。。抑! jNb^+OJwt %B203+Xwt%Ba0 925〇C/2h ε Q*/ τ f X=0.3 925〇C/2h 41.6 11983 44 X=0.5 925〇C/2h 41.4 13147 47 X=1_0 925〇C/2h 41.1 13114 45 --- X=1.5 925〇C/2h 40.5 25218 47 〇 iNb2〇6&quot;l&quot;〇.3wt • %B2〇3+Xwt%BaO 925〇C/2h ε Qy X=0.5 925〇C/2h 41.5 10695 35 X=1.0 925〇C/2h 41.3 10855 36 X=1.5 925〇C/2h 40.8 13346 40 --- X=2.0 925〇C/2h 41.1 13136 38 -* X=2.5 925〇C/2h 36.7 17024 39 〇β84Β%{?3Ν^4〇ΐ5^· ^ 6Baj 1Nb2O6+0.3 wt%B203+Xwt%Ba0 925〇C/2h ε Q*f Tf --- X=0.3 . 925〇C/2h 41.9 10459 28 X=0.5 925〇C/2h 41.7 7094 29 --- X=1.0 925〇C/2h 41.6 9485 31 X=1.5 925〇C/2h 41.4 10428 35 一一^ X=2.0 925〇C/2h 40.1 12990 33 一 X=2.5 -—-- 925〇C/2h 40.3 13232 25 體系 S.T 燒結溫度 微波介電性質 (Microwave dielectric properties) ε Q*/ 〇.95Ba50iNb40]5+〇.〇5BaNb206+0.3wt %B2〇3+1.5wt%BaO 925〇C/2h 37.4 19993 52 0.9Ba5 ^Nl&gt;4〇i5+〇. lBaNb2O6+0.3wt% B2O3+2.0wt%BaO 925〇C/2h 40 30768 42 〇.84Ba加Nb4〇15+〇. 16BaNb2O6+0.3 wt %B2〇3+2.5wt%BaO 925〇C/2h 39.4 21730 33 17 .201006783 用Bai+zNb2〇6第二相來調節頻率温度係數的時候, B2〇3_Cu〇二元助燒劑的加入會使得Q*f值惡化的非常嚴 重,故只能採用BaO-B2〇3來降低燒结温度。而 第二相的加入能有效降低頻率温度係數,其中以添加 Bai*|Nb2〇6的調節效果最好,不但能有效降低溫度係數, 還能維持優良的Q*f值,且丁,值隨著添加量的增加而下降, 參當其添加量為〇_16mole%時,τ,值達到最小值。而Ba〇 的添加卻能有效提升Q*f值,當添加量為2 5wt%時,Q*f 值達到最佳值;因此’其最佳的配比條件 為:0.84Ba5.03Nb4O15、〇.16Bai iNb2〇6、〇 3wt%B2〇3 和 2.5wt%BaO 相互燒結,其性能為:κ=4〇 3,Q*f=1, xf= + 25ppm/°C,S.T_= 925〇C/2h。 綜合上述研究數據可知’依據本發明之高頻用(l x^asMNbuMnkhOu-xBahNt^Oe低溫共燒微波介電陶 φ 莞材料配方製作,可在90〇°c左右或更低溫度不燒結成型, 同時具有良好的微波特性,可以成為理想的微波介電陶瓷 材料。 以上所述,僅是本發明的較佳實施例,並非對本發明作任 何形式上的限制,任何所屬技術領域中具有通常知識者,若在 不脫離本發明所提技術特徵的範圍内,利用本發明所揭示技術 内谷所做出局部更動或修飾等效實施例,並且未脫離本發明的 技術特徵内容’均仍屬於本發明技術特徵範圍。 .201006783 【圖式簡單說明】 第一圖係本發明的製作流程圖。 【主要元件符號說明】 無0Ba505Nb4O15 0.3B2O3: 0.3CuO 900 °C / 2h 6.056 40.71 16657 70 0.3B203: 0.3Li20 900 °C / 2h 5.892 38.02 17498 66 Ba5.] 0Nb4O] 5 0.3B2O3: 0.3CuO 900 °C / 2h 6.073 41.4 17024 65 by The above data shows that the addition of B2〇3-CuO in a weight ratio of 0.6wt% 'is most beneficial in the microwave dielectric properties of low temperature enthalpy junctions; and it can be known from the comparison of adding Ba0-B203-Cu0 and adding B203-Cu0. At a lower sintering temperature of φ (&lt;900.(:), the sintering characteristics of the material added with Ba0-B203-Cu0 are better than the addition of only B2〇3-CuO; therefore, the addition of BaO can effectively enhance the dielectric of the material. Characteristics, while the amount of Ba0-B203-Cu0 is fixed, and the mixing ratio is changed to Ba5 03Nb4O15/BaO/B2O3/CuO = 1/0_5%/0.4%/0_2% to obtain relatively better microwave dielectric properties; &lt;900 °C 'K=40~41, Q*f&gt;i8000 'i:f ~50 ppm/°C. From the above results, it is known that the addition of Ba0-B203-Cu strontium can effectively reduce sintering. Temperature, but its frequency temperature coefficient ~ is still too high 5 〇ppm / ❹. C). <Example 3> The temperature coefficient is adjusted by different addition amounts of Bai+zNb2〇6. The influence of different addition amounts on the properties of Ba5+y(Nbl kMnk)4〇15 ceramic material is discussed. The experimental values are as follows: Shown: Table 4 &amp;) Effect of different additions of cerium oxide (Ba〇) on low temperature microwave dielectric properties of (1_x)Ba5.〇3Nb4〇i5.xBaiNb A ceramics 201006783 Table IV (b) Different additions Effect of BaO on the low-temperature microwave dielectric properties of lx^a^N^CVxBauN^C^ ceramics ST sintering temperature Microwave dielectric properties 0^^%wNb4015+. suppression! jNb^+OJwt %B203+Xwt%Ba0 925〇C/2h ε Q*/ τ f X=0.3 925〇C/2h 41.6 11983 44 X=0.5 925〇C/2h 41.4 13147 47 X=1_0 925〇C/2h 41.1 13114 45 --- X=1.5 925〇C/2h 40.5 25218 47 〇iNb2〇6&quot;l&quot;〇.3wt • %B2〇3+Xwt%BaO 925〇C/2h ε Qy X=0.5 925〇C/2h 41.5 10695 35 X=1.0 925〇 C/2h 41.3 10855 36 X=1.5 925〇C/2h 40.8 13346 40 --- X=2.0 925〇C/2h 41.1 13136 38 -* X=2.5 925〇C/2h 36.7 17024 39 〇β84Β%{?3Ν ^4〇ΐ5^· ^ 6Baj 1Nb2O6+0.3 wt%B203+Xwt%Ba0 925〇C /2h ε Q*f Tf --- X=0.3 . 925〇C/2h 41.9 10459 28 X=0.5 925〇C/2h 41.7 7094 29 --- X=1.0 925〇C/2h 41.6 9485 31 X=1.5 925〇C/2h 41.4 10428 35 一一^ X=2.0 925〇C/2h 40.1 12990 33 One X=2.5 -—-- 925〇C/2h 40.3 13232 25 System ST Sintering Temperature Microwave dielectric properties ε Q*/ 〇.95Ba50iNb40]5+〇.〇5BaNb206+0.3wt %B2〇3+1.5wt%BaO 925〇C/2h 37.4 19993 52 0.9Ba5 ^Nl&gt;4〇i5+〇. lBaNb2O6+0.3wt% B2O3+2.0wt%BaO 925〇C/2h 40 30768 42 〇.84Ba plus Nb4〇15+〇. 16BaNb2O6+0.3 wt %B2〇3+2.5wt%BaO 925〇C/2h 39.4 21730 33 17 .201006783 With Bai When +zNb2〇6 second phase is used to adjust the temperature coefficient of frequency, the addition of B2〇3_Cu〇 binary sintering agent will make the Q*f value worse. Therefore, only BaO-B2〇3 can be used to reduce sintering. temperature. The addition of the second phase can effectively reduce the temperature coefficient of frequency. Among them, the addition of Bai*|Nb2〇6 has the best adjustment effect, which not only can effectively reduce the temperature coefficient, but also maintain excellent Q*f value, and When the amount of addition is decreased, the value of τ is the minimum value when the amount of addition is 〇16 mole%. The addition of Ba〇 can effectively increase the Q*f value. When the addition amount is 25 wt%, the Q*f value reaches the optimal value; therefore, the optimal ratio is: 0.84Ba5.03Nb4O15, 〇. 16Bai iNb2〇6, 〇3wt%B2〇3 and 2.5wt% BaO are sintered to each other, and their properties are: κ=4〇3, Q*f=1, xf= + 25ppm/°C, S.T_= 925〇C /2h. Based on the above research data, it can be seen that the high frequency use (lx^asMNbuMnkhOu-xBahNt^Oe low temperature co-fired microwave dielectric ceramic φ wan material formulation can be molded at a temperature of about 90 〇 ° C or lower, while Having good microwave characteristics, it can be an ideal microwave dielectric ceramic material. The above is only a preferred embodiment of the present invention, and is not intended to limit the invention in any way, and any person having ordinary knowledge in the art, If the present invention does not depart from the technical features of the present invention, the embodiment of the present invention may be modified or modified, and the technical features of the present invention are not deviated from the technical features of the present invention. Characteristic range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1919

Claims (1)

.201006783 十、申請專利範圍: 1 · 一種低溫共燒微波介電陶瓷材料,係包括: 利用非化學計量比調整原料配方比例,使其化合物的 配方比例為(l-xjBas+yiNt^-kMnkhOu-xBahNhc^,其中 〇Sx&lt;1,〇&lt;yg〇.3,〇szs〇.3,〇SkS〇.1。 2 . —種低溫共燒微波介電陶瓷材料的製備方法,係 包括: (a) 利用混合氧化物之固態反應法製備微波介電陶究 參 Ba5+y(Nbi-kMnk)4〇15 主體粉體’然後於 i35〇〇c ~145〇〇c 進 行燒結,並維持持溫2~4小時,以形成純相Ba5+y(Nbi kMnk)4〇i5 粉末,其中 0&lt;y$0_3,0幺ks〇.1 ; (b) 係將Bai+zNb2〇6粉體進行煆燒,以形成純相 Ba1+zNb2〇6 粉末,其中 〇5Ζ&lt;〇·3 ;以及 (c) 將 Bas+yiNbuMrikhO” 及 Ba1+zNb206 粉體按分子 式(IxWas+^NbuMnkhOb-xBa^NI^Oe 的配方比例加入 φ 一種以上的助燒劑進行低溫燒結,其中0α&lt;1且該助燒劑 佔整體材料之0.3〜2.8wt%。 3 ·如申請專利範圍第2項所述低溫共燒微波介電陶兗材 料的製備方法’其中該X : y : Z =0.16 : 0.03 : 0.1。 4 ·如申請專利範圍第2或3項所述低溫共燒微波介電陶 瓷材料的製備方法,其中該助燒劑係選自於由氧化硼(日2〇3)、 氧化鋇(BaO)、氧化鋅(Zn0)、氧化鋰(up)和氡化銅(Cu〇)所組 成之群組。 5·如申請專利範圍第4項所述低溫共燒微波介電陶瓷材 20 .201006783 料的製備方法,其中該助燒劑係為氧化硼(日2〇3)和氧化鋇 (BaO)。 6.如申請專利範圍第5項所述低温共燒微波介電陶 究材料的製備方法,i中贫董Λ 八1ρ这氧化硼do」和氧化鋇(Ba〇)的 添加比例係分別佔整體低溫丘馇 丨&amp; /皿/、堤微波介電陶瓷材料的 0.3wt%和 2.5wt%。 Η 、囷式: 如次頁 Ο 21.201006783 X. Patent application scope: 1 · A low-temperature co-fired microwave dielectric ceramic material, including: Using non-stoichiometric ratio to adjust the proportion of raw material formula, so that the formula ratio of the compound is (l-xjBas+yiNt^-kMnkhOu- xBahNhc^, wherein 〇Sx&lt;1, 〇&lt;yg〇.3, 〇szs〇.3, 〇SkS〇.1. 2 . A method for preparing a low temperature co-fired microwave dielectric ceramic material, comprising: Preparation of microwave dielectric ceramics Ba5+y(Nbi-kMnk)4〇15 bulk powder by solid state reaction method using mixed oxides and then sintering at i35〇〇c ~145〇〇c, and maintaining temperature 2 ~4 hours to form a pure phase Ba5+y(Nbi kMnk)4〇i5 powder, where 0 &lt;y$0_3,0幺ks〇.1; (b) The Bai+zNb2〇6 powder is calcined, To form a pure phase Ba1+zNb2〇6 powder, wherein 〇5Ζ&lt;〇·3; and (c) add Bas+yiNbuMrikhO” and Ba1+zNb206 powder according to the formula (IxWas+^NbuMnkhOb-xBa^NI^Oe) φ One or more sintering aids are subjected to low-temperature sintering, wherein 0α&lt;1 and the sintering aid accounts for 0.3 to 2.8 wt% of the whole material. The method for preparing the low-temperature co-fired microwave dielectric ceramic material according to the second item, wherein the X: y : Z =0.16 : 0.03 : 0.1 4 · The low-temperature co-fired microwave according to the second or third aspect of the patent application A method for preparing a dielectric ceramic material, wherein the sintering aid is selected from the group consisting of boron oxide (Daily 3:3), barium oxide (BaO), zinc oxide (Zn0), lithium oxide (up), and copper telluride (Cu) ·) The group consisting of 5. The preparation method of the low-temperature co-fired microwave dielectric ceramic material according to the fourth paragraph of claim 4, 201006783, wherein the sintering aid is boron oxide (day 2〇3) And cerium oxide (BaO). 6. The preparation method of the low-temperature co-fired microwave dielectric ceramic material according to item 5 of the patent application scope, i, the poor dong Λ8 1ρ, the boron oxide do" and the cerium oxide (Ba 〇) The addition ratios are 0.3wt% and 2.5wt%, respectively, of the overall low temperature mound &amp; / dish /, microwave dielectric ceramic material. Η, 囷: as the next page Ο 21
TW097129995A 2008-08-07 2008-08-07 Low Temperature Co - firing Microwave Dielectric Ceramics and Its Preparation TWI461385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097129995A TWI461385B (en) 2008-08-07 2008-08-07 Low Temperature Co - firing Microwave Dielectric Ceramics and Its Preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097129995A TWI461385B (en) 2008-08-07 2008-08-07 Low Temperature Co - firing Microwave Dielectric Ceramics and Its Preparation

Publications (2)

Publication Number Publication Date
TW201006783A true TW201006783A (en) 2010-02-16
TWI461385B TWI461385B (en) 2014-11-21

Family

ID=44826825

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097129995A TWI461385B (en) 2008-08-07 2008-08-07 Low Temperature Co - firing Microwave Dielectric Ceramics and Its Preparation

Country Status (1)

Country Link
TW (1) TWI461385B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788676A (en) * 2021-11-03 2021-12-14 电子科技大学 Low-temperature co-fired modified NiTa2O6Microwave-based dielectric ceramic material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173928B2 (en) 2017-03-02 2019-01-08 Industrial Technology Research Institute Dielectric ceramic composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW360879B (en) * 1997-12-31 1999-06-11 Amecs Co Ltd Dielectric ceramic compositions
JP2000319066A (en) * 1999-05-07 2000-11-21 Selectron Low temperature simultaneously firing dielectric ceramic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788676A (en) * 2021-11-03 2021-12-14 电子科技大学 Low-temperature co-fired modified NiTa2O6Microwave-based dielectric ceramic material and preparation method thereof

Also Published As

Publication number Publication date
TWI461385B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
US6743744B1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
CN101462874B (en) Low temperature sintering middle-dielectric constant microwave-medium ceramic material and preparation method thereof
CN101362647A (en) Low temperature sintering lithium-base microwave dielectric ceramic material and preparation thereof
JP2000044341A (en) Dielectric ceramic composition
US11897815B2 (en) Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor and low-temperature preparation method thereof
Ullah et al. Microwave dielectric properties of Bi2 (Li0. 5Ta1. 5) O7–TiO2-based ceramics for 5G cellular base station resonator application
JP2934639B2 (en) Dielectric ceramic composition
JP2004284941A (en) Dielectric composition for low temperature firing, and electronic component
CN104387057B (en) A kind of temperature-stable titanio spinelle microwave-medium ceramics and low temperature preparation method thereof
JP3737774B2 (en) Dielectric ceramic composition
CN107721421B (en) Zn-Nb-Ti LTCC material and preparation method thereof
JP3011123B2 (en) Dielectric ceramic composition
TW201006783A (en) Low temperature co-firing microwave dielectric ceramic material and preparation method thereof
CN101891461B (en) Ternary microwave medium material of Li2O-CoO2-TiO2 and low temperature sintering method
CN102173782B (en) Molybdenum-based and titanium-based temperature stabilized microwave dielectric ceramic material and preparation method thereof
JPWO2006013981A1 (en) Dielectric ceramic composition and dielectric ceramic
CN112608144B (en) Lithium-based microwave dielectric ceramic material, preparation method thereof and lithium-based microwave dielectric ceramic
JP4468155B2 (en) Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
Xing et al. LiCuVO4: A low-firing microwave material with promising dielectric properties and chemical compatibility with silver
JP4409165B2 (en) Microwave dielectric ceramic composition and microwave dielectric ceramic composition for substrate
CN115010488B (en) Low-firing low-dielectric high-Q high-stability microwave porcelain for capacitor
JP2009227483A (en) Dielectric ceramic composition
KR100635015B1 (en) Dielectric Ceramic Composition Capable of Co-Firing at Low Temperature
JP4368136B2 (en) Dielectric porcelain composition