JP4468155B2 - Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof - Google Patents

Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof Download PDF

Info

Publication number
JP4468155B2
JP4468155B2 JP2004370941A JP2004370941A JP4468155B2 JP 4468155 B2 JP4468155 B2 JP 4468155B2 JP 2004370941 A JP2004370941 A JP 2004370941A JP 2004370941 A JP2004370941 A JP 2004370941A JP 4468155 B2 JP4468155 B2 JP 4468155B2
Authority
JP
Japan
Prior art keywords
composition
dielectric ceramic
dielectric
microwave dielectric
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004370941A
Other languages
Japanese (ja)
Other versions
JP2005314212A (en
Inventor
英 齊 呉
▲ヒョク▼ 林
Original Assignee
コリア インスティテュート オブ サイエンス アンド テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア インスティテュート オブ サイエンス アンド テクノロジー filed Critical コリア インスティテュート オブ サイエンス アンド テクノロジー
Publication of JP2005314212A publication Critical patent/JP2005314212A/en
Application granted granted Critical
Publication of JP4468155B2 publication Critical patent/JP4468155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/02Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
    • E04F2290/023Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は各種通信用電子機器の部品に使われるマイクロ波誘電体セラミック組成物に関し、より詳細には高い誘電率及び品質係数及び安定した共振周波数の温度係数(Temperature Coefficient of Resonant Frequency:TCF)を有し、かつ880〜960℃の低い温度範囲で焼成が可能な低温焼成用マイクロ波誘電体セラミック組成物及びその製造方法に関する。   The present invention relates to a microwave dielectric ceramic composition for use in various communication electronic device parts, and more particularly, a high dielectric constant, a quality factor, and a temperature coefficient of a stable resonant frequency (Temperature Coefficient of Resonant Frequency: TCF). The present invention relates to a microwave dielectric ceramic composition for low-temperature firing that can be fired in a low temperature range of 880 to 960 ° C. and a method for producing the same.

最近になって、移動通信及び衛星放送などの情報・通信技術の発達によって、通信部品に使われる周波数が次第にマイクロ波領域化されている。特に、IMT−2000のような新たな移動通信サービスだけでなく、既存の携帯電話、GPS(Global Positioning System)、衛星通信分野においても、より多くの容量の情報をやり取りするための周波数帯域の高周波化及びデジタル化が進行している。従って、マイクロ波領域において作動する通信機器に対する重要性が浮上している。   Recently, with the development of information / communication technologies such as mobile communication and satellite broadcasting, the frequency used for communication components is gradually becoming a microwave region. In particular, not only in new mobile communication services such as IMT-2000, but also in existing mobile phones, GPS (Global Positioning System), and satellite communication fields, high frequency in a frequency band for exchanging more capacity information. And digitization are progressing. Accordingly, the importance of communication devices operating in the microwave region has emerged.

移動通信に使われる電子部品は、能動部品と受動部品に大きく分けられ、特に、デュープレクサー、フィルター、アンテナなどのような受動部品は、マイクロ波誘電体セラミックを核心素材として用いている。誘電体セラミックをマイクロ波素子に用いるためには大きい誘電率を有さなければならず、このために誘電損失を小さくするためには高い品質係数を有しなければならない。また、マイクロ波機器の共振周波数が安定化して共振回路の温度補償を容易にするためには共振素子として使われる誘電体材料の共振周波数の温度係数を小さくしなければならない。   Electronic components used for mobile communication are roughly divided into active components and passive components. In particular, passive components such as duplexers, filters, and antennas use microwave dielectric ceramics as the core material. In order to use a dielectric ceramic for a microwave device, it must have a large dielectric constant, and for this reason, in order to reduce the dielectric loss, it must have a high quality factor. Also, in order to stabilize the resonance frequency of the microwave device and facilitate temperature compensation of the resonance circuit, the temperature coefficient of the resonance frequency of the dielectric material used as the resonance element must be reduced.

最近になって移動通信機器の小型化、集積化、高機能化のために、MMIC(Microwave Monolithic IC)等の個別部品のモジュール化が試みられており、これはMCMC(Multi-Chip Module on Ceramics)技術により実現が可能になる。MCMC技術は、セラミックが個別部品として使われるアンテナ、デュープレクサー、帯域通過フィルターの素子などを積層形態とし、金属電極パターンと同時に焼結して一体型とすることによって、部品の小型化及び量産化ができる技術である。これはLTCC(Low temperature cofiring ceramic)技術により実現可能である。   Recently, modularization of individual components such as MMIC (Microwave Monolithic IC) has been attempted in order to reduce the size, integration, and functionality of mobile communication devices. This is called MCMC (Multi-Chip Module on Ceramics). ) Technology makes it possible. MCMC technology uses antennas, duplexers, bandpass filter elements, etc., in which ceramic is used as individual parts in a laminated form, and sinters simultaneously with metal electrode patterns to make the parts smaller and mass-produced. It is a technology that can. This can be realized by LTCC (Low temperature cofiring ceramic) technology.

現在開発されているマイクロ波誘電体セラミック組成の場合には、焼結温度が1200℃以上と非常に高いため、融点が高い金属電極であるPt、PdまたはWを使用しなければならない。しかし、PtまたはPdを電極に用いる場合には、これらの金属が高価であるため、生産原価がかなり上昇する問題があり、Wの場合には、還元雰囲気下で焼結しなければならないという問題がある。従って、比較的安価で、電気伝導度が優れたAg(融点960℃)またはCu(融点1083℃)を内部電極として用いるための試みが進められている。マイクロ波誘電体セラミックがAgまたはCuと同時焼成できるためには、これらの電極の融点より低い温度での焼結が可能でなければならないため、その温度に相応する焼結温度を有する低温焼結セラミック誘電体が必要である。   In the case of a microwave dielectric ceramic composition that is currently being developed, the sintering temperature is as high as 1200 ° C. or higher, so that Pt, Pd, or W, which is a metal electrode having a high melting point, must be used. However, when Pt or Pd is used for an electrode, these metals are expensive, so there is a problem that the production cost is considerably increased. In the case of W, the problem is that sintering must be performed in a reducing atmosphere. There is. Therefore, attempts are being made to use Ag (melting point 960 ° C.) or Cu (melting point 1083 ° C.), which is relatively inexpensive and excellent in electrical conductivity, as the internal electrode. In order for microwave dielectric ceramics to be co-fired with Ag or Cu, it must be possible to sinter at temperatures below the melting point of these electrodes, so low temperature sintering with a sintering temperature corresponding to that temperature. A ceramic dielectric is required.

現在までに報告された低温焼結セラミック誘電体は、主に従来の誘電体組成に融点が低いガラスフリット(glass frit)を添加して焼結温度を低くするか、または共沈法やゾル−ゲル法を用いて、誘電体セラミック原料の粒径を小さくする方法がなされている。しかし、ガラスフリットを添加する場合は、誘電体特性が大幅に低下するという短所があり、共沈法やゾル−ゲル法で誘電体セラミック原料粒径を小さくする場合には製造工程が複雑であり、出発物質が高価で製造原価が高くなるという問題点がある。   The low-temperature sintered ceramic dielectrics reported to date are mainly made by adding a glass frit having a low melting point to the conventional dielectric composition to lower the sintering temperature, or by coprecipitation or sol- A method of reducing the particle size of a dielectric ceramic raw material using a gel method has been made. However, when glass frit is added, there is a disadvantage in that the dielectric characteristics are greatly reduced. When the dielectric ceramic raw material particle size is reduced by the coprecipitation method or the sol-gel method, the manufacturing process is complicated. However, the starting material is expensive and the manufacturing cost is high.

一方、ビスマスはそれ自体の低い融点(825℃)のため、セラミックの液状焼結のための助剤として多く取り上げられてきた物質である。これを基本とするセラミック物質は相対的に低い焼結温度を有しており、ビスマス系セラミックをマイクロ波誘電体として用いるための研究が進められている。BiNbO系、Bi−CaO系、Bi−CaO−ZnO−Nb系等に各種焼結助剤を添加して低温焼結が可能な誘電体セラミックが開発されている。 On the other hand, bismuth is a substance that has been widely taken up as an aid for liquid sintering of ceramics because of its low melting point (825 ° C.). Ceramic materials based on this have a relatively low sintering temperature, and research is underway to use bismuth-based ceramics as microwave dielectrics. BiNbO 4 system, Bi 2 O 3 -CaO based, Bi 2 O 3 -CaO-ZnO -Nb 2 O 5 system, etc. to the addition of various sintering aids dielectric ceramic capable low-temperature sintering is developed Yes.

これらの中で、BiNbOに焼結助剤としてCuO、Vを添加した組成の場合が最も好ましい誘電特性を示したが、実際の部品として適用するにはその誘電特性はまだ十分でなく、優れた誘電特性を有し、低い温度において焼結が可能な誘電体組成物が依然として要求されている。 Of these, the composition in which CuO and V 2 O 5 were added as sintering aids to BiNbO 4 showed the most preferable dielectric properties, but the dielectric properties were still insufficient for application as actual parts. There is still a need for dielectric compositions that have excellent dielectric properties and can be sintered at low temperatures.

本発明は高い誘電率及び品質係数及び安定した共振周波数の温度係数を有し、880〜960℃の低い温度範囲で焼成が可能であり、内部電極にAgまたはCuを用いることができるマイクロ波誘電体セラミック組成物及びその製造方法を提供することを目的とする。   The present invention has a high dielectric constant, quality factor and temperature coefficient of a stable resonance frequency, can be fired in a low temperature range of 880 to 960 ° C., and can use Ag or Cu for an internal electrode. An object of the present invention is to provide a body ceramic composition and a method for producing the same.

以下、本発明によるマイクロ波誘電体セラミック組成物及びその製造方法に関して詳細に説明する。   Hereinafter, the microwave dielectric ceramic composition and the manufacturing method thereof according to the present invention will be described in detail.

本発明によるマイクロ波誘電体セラミック組成物は下記式1または2で示した組成を有する。   The microwave dielectric ceramic composition according to the present invention has a composition represented by the following formula 1 or 2.

Bi1−xNbO (1)
BiNb1−x (2)
(式中、AはSmまたはDyであり、BはSbまたはPであり、xは0<x≦0.1である。)
Bi 1-x A x NbO 4 (1)
BiNb 1-x B x O 4 (2)
(In the formula, A is Sm or Dy, B is Sb or P, and x is 0 <x ≦ 0.1.)

本発明による誘電体組成物は、誘電率が40以上であり、品質係数が20,000〜42,000であり、共振周波数の温度係数は−2〜−26である。また、880〜960℃の温度範囲で焼結可能で、融点が低いAgまたはCuと共に焼成が可能である。   The dielectric composition according to the present invention has a dielectric constant of 40 or more, a quality factor of 20,000 to 42,000, and a temperature coefficient of resonance frequency of −2 to −26. Moreover, it can sinter in the temperature range of 880-960 degreeC, and baking is possible with Ag or Cu with low melting | fusing point.

また、本発明による誘電体セラミック組成物は、CuOまたはVを焼結助剤として含むことができる。この際、CuOまたはVのうちのいずれか一方を含む時よりも、CuO及びVをいずれも含む場合に更に好ましい焼結性を示す。このような焼結助剤の含有量は、全体組成物に対して0.03〜0.5重量%であり、0.03〜0.25重量%のCuO及び0.03〜0.25重量%のVを含むことがより好ましい。上記焼結助剤の添加量が0.03重量%未満の場合は、十分な焼結性を示すことができず、焼結助剤の添加量が0.5%を超える場合は、焼結性は大きく向上するが、誘電特性が低下するという問題点を有している。 In addition, the dielectric ceramic composition according to the present invention may include CuO or V 2 O 5 as a sintering aid. In this case, a more preferable sinterability is exhibited when both CuO and V 2 O 5 are included than when either one of CuO or V 2 O 5 is included. The content of the sintering aid is 0.03 to 0.5% by weight with respect to the entire composition, 0.03 to 0.25% by weight of CuO and 0.03 to 0.25% by weight. It is more preferable that V 2 O 5 is contained. When the addition amount of the sintering aid is less than 0.03% by weight, sufficient sinterability cannot be exhibited, and when the addition amount of the sintering aid exceeds 0.5%, sintering is not possible. However, there is a problem that the dielectric properties are lowered.

本発明による誘電体セラミック組成物は、一般的な酸化物合成法で製造することができる。例えば、下記の通り、製造することができる。
Bi、Nb、及びSb+5、P+5、Sm+3またはDy+3の元素を有する化合物を所定の化学量論的組成比で溶媒に湿式混合し、乾燥した後、熱処理して製造することができる。
The dielectric ceramic composition according to the present invention can be manufactured by a general oxide synthesis method. For example, it can be manufactured as follows.
Bi 2 O 3 , Nb 2 O 5 , and a compound having an element of Sb +5 , P +5 , Sm +3 or Dy +3 are wet-mixed in a solvent at a predetermined stoichiometric composition ratio, dried, and then heat-treated. Can be manufactured.

また、このように製造されたBi1−xNbO(A=SmまたはDy)またはBiNb1−x(B=SbまたはP)の組成の粉末に、焼結助剤として一定量のCuO及び(又は)Vを添加して湿式混合・乾燥した後、焼結して製造することができる。 Moreover, the powder of the composition of Bi 1-x A x NbO 4 (A = Sm or Dy) or BiNb 1-x B x O 4 (B = Sb or P) thus produced is used as a sintering aid. A certain amount of CuO and / or V 2 O 5 can be added, wet-mixed and dried, and then sintered.

上記においてSb+5、P+5、Sm+3またはDy+3の元素を有する化合物としては、Sb、HPO、Sm、Dyなどがあるが、これに制限されるものではない。 In the above, the compounds having an element of Sb +5 , P +5 , Sm +3 or Dy +3 include, but are not limited to, Sb 2 O 5 , H 3 PO 4 , Sm 2 O 3 , Dy 2 O 3 and the like. It is not a thing.

以下、実施例及び参考例を通して本発明をより詳細に説明することにする。ただし、本発明は下記の実施例及び参考例に限定されるものではない。 Hereinafter, the present invention will be described in more detail through examples and reference examples . However, the present invention is not limited to the following examples and reference examples .

本実施例及び参考例では基本原料として純度99.9%以上のBi、Nb、Sb、HPO、Sm及びDyを使用し、低温での焼結を促進するための焼結助剤として、純度99%以上のCuO及びVを用いた。粉末合成はBiNb1−x(B=Sb+5、P+5)とBi1−xNbO(A=Sm+3、Dy+3)の組成に対して一般的な酸化物合成法を用いた。 In this example and reference example , Bi 2 O 3 , Nb 2 O 5 , Sb 2 O 5 , H 3 PO 4 , Sm 2 O 3 and Dy 2 O 3 having a purity of 99.9% or more are used as basic raw materials. CuO and V 2 O 5 having a purity of 99% or more were used as sintering aids for promoting low temperature sintering. Powder synthesis BiNb 1-x B x O 4 (B = Sb +5, P +5) and Bi 1-x A x NbO 4 (A = Sm +3, Dy +3) General oxide synthesis with respect to the composition of the Was used.

各出発物質を化学量論的組成比によって電子秤を用いてそれぞれ測定した後、エタノールを溶媒として、直径が10mmである安定化ジルコニアボールを用いて24時間湿式混合した。混合後、乾燥器を利用して24時間乾燥した後、乾燥粉末をアルミナ坩堝に入れて800℃で2時間か焼した。   Each starting material was measured with an electronic balance according to the stoichiometric composition ratio, and then wet-mixed for 24 hours using ethanol as a solvent and stabilized zirconia balls having a diameter of 10 mm. After mixing, the mixture was dried for 24 hours using a dryer, and the dried powder was placed in an alumina crucible and calcined at 800 ° C. for 2 hours.

このようにして得たBiNb1−X(B=SbまたはP)またはBi1−XNbO(A=SmまたはDy)の組成のか焼した粉末に、焼結助剤として一定量のCuOとVを添加して再びエタノールと共に安定化ジルコニアボールを利用して24時間湿式混合した後、再び乾燥器を利用して24時間乾燥し、乾燥した粉末組成物を50メッシュの篩で粒状化した。粒状化した粉末組成物は、直径12mmのモールドを用いて、1.03MPa(150psiの圧力で一軸成形した後、137.8MPa(20,000psiの圧力で冷間等圧成形した。成形された試片は、5℃/minの昇温速度で空気中で880〜960℃で2時間焼結後、炉冷した。
As a sintering aid, the thus obtained calcined powder having the composition of BiNb 1-X B X O 4 (B = Sb or P) or Bi 1-X A X NbO 4 (A = Sm or Dy) is used. A certain amount of CuO and V 2 O 5 were added and again wet-mixed with ethanol using a stabilized zirconia ball for 24 hours, and then again dried using a dryer for 24 hours. Granulated with a mesh sieve. The granulated powder composition was uniaxially molded at a pressure of 1.03 MPa (150 psi ) using a mold having a diameter of 12 mm, and then cold isobar- molded at a pressure of 137.8 MPa ( 20,000 psi ) . The molded specimen was sintered in the air at 880 to 960 ° C. for 2 hours at a heating rate of 5 ° C./min and then cooled in the furnace.

このようにして得た焼結試片は、ヒューレットパッカード社(HP 8720C)のネットワーク分析機を利用して、ハッキ(Hakki)とコールマン(Coleman)により提示され、小林(Kobayashi)と田中(Tanaka)が補正したpost resonant method(非特許文献1)を用いてマイクロ波誘電特性を測定し、次の数式(1)によって、各温度での共振周波数の変化を測定して共振周波数の温度係数を求めた。その結果を表2〜6に示した。   The sintered specimens thus obtained were presented by Hakki and Coleman using a network analyzer of Hewlett Packard (HP 8720C), and Kobayashi and Tanaka. Is measured using the post resonant method (Non-patent Document 1) corrected by the above, and the change of the resonance frequency at each temperature is measured by the following equation (1) to obtain the temperature coefficient of the resonance frequency. It was. The results are shown in Tables 2-6.

Y. Kobayashi, and S. Tanaka, "Measurement of Complex Dielectric Constant by Columnar Dielectric Resionaror," Tech. Rept. CPM72-33, Institute of Electron and Communication Engineers of Japan (1972))Y. Kobayashi, and S. Tanaka, "Measurement of Complex Dielectric Constant by Columnar Dielectric Resionaror," Tech. Rept. CPM72-33, Institute of Electron and Communication Engineers of Japan (1972))

Figure 0004468155

(式中、fT1=温度Tにおける共振周波数、fT2=温度Tにおける共振周波数、T=80℃、T=20℃である。)
Figure 0004468155

( Where f T1 = resonance frequency at temperature T 1 , f T2 = resonance frequency at temperature T 2 , T 2 = 80 ° C., T 1 = 20 ° C.)

また、本発明の比較例として、出発物質としてBiとNbを用いてBiNbO組成のセラミック組成物を上記方法と同様に製造した。各誘電特性を測定し、その結果を表1に示した。 Further, as a comparative example of the present invention, a ceramic composition having a BiNbO 4 composition was produced in the same manner as described above, using Bi 2 O 3 and Nb 2 O 4 as starting materials. Each dielectric property was measured and the result is shown in Table 1.

Figure 0004468155
Figure 0004468155

Figure 0004468155
Figure 0004468155

Figure 0004468155
Figure 0004468155

Figure 0004468155
Figure 0004468155

Figure 0004468155
Figure 0004468155

Figure 0004468155
Figure 0004468155

これらの表から分かるように、本発明によるマイクロ波誘電体セラミック組成物は、960℃以下の温度で焼結が可能であり、既存のBiNbO組成の誘電体セラミック組成物と比べて誘電定数及び品質係数特性に優れ、共振周波数の温度係数が良好であった。具体的には、BiNb1−x組成のセラミック組成物の場合、誘電率が40〜44、品質係数は14,000〜42,000を示し、Bi1−xNbO組成のセラミック組成物の場合、誘電率が40〜42、品質係数は20,000〜32,000を示した。 As can be seen from these tables, the microwave dielectric ceramic composition according to the present invention can be sintered at a temperature of 960 ° C. or less, and has a dielectric constant and a dielectric constant higher than those of a dielectric ceramic composition having an existing BiNbO 4 composition. Excellent quality factor characteristics and good temperature coefficient of resonance frequency. Specifically, in the case of a ceramic composition having a BiNb 1-x B x O 4 composition, the dielectric constant is 40 to 44, the quality factor is 14,000 to 42,000, and the Bi 1-x A x NbO 4 composition In the case of the ceramic composition, the dielectric constant was 40 to 42, and the quality factor was 20,000 to 32,000.

Claims (3)

下記式1又は2の組成を有するか焼した粉末を主成分として含み、組成物の総重量を基準に0.03〜0.25重量%のCuO及び0.03〜0.25重量%のVを焼結助剤として含む、低温焼成用マイクロ波誘電体セラミック粉末組成物。
Bi1−xDyNbO (1)
(式中、xは0<x≦0.1である。)
BiNb1−x (2)
(式中、xは0<x≦0.1である。)
A calcined powder having the composition of the following formula 1 or 2 is included as a main component, and 0.03-0.25 wt% CuO and 0.03-0.25 wt% V based on the total weight of the composition. A microwave dielectric ceramic powder composition for low-temperature firing, comprising 2 O 5 as a sintering aid.
Bi 1-x Dy x NbO 4 (1)
(In the formula, x is 0 <x ≦ 0.1.)
BiNb 1-x P x O 4 (2)
(In the formula, x is 0 <x ≦ 0.1.)
請求項1記載の粉末組成物を焼結して得られた、マイクロ波誘電体セラミック焼結体。A microwave dielectric ceramic sintered body obtained by sintering the powder composition according to claim 1. POまたはDyと、Bi、Nb、CuO及びVとを湿式混合した後、乾燥し、次いで焼結することを含み、下記式1又は2の組成を主成分として含むマイクロ波誘電体セラミック焼結体の製造方法
Bi 1−x Dy NbO (1)
(式中、xは0<x≦0.1である。)
BiNb 1−x (2)
(式中、xは0<x≦0.1である。)
And H 3 PO 4 or Dy 2 O 3, after the Bi 2 O 3, Nb 2 O 5, CuO and V 2 O 5 were wet-mixed, the method comprising dried and then sintered, the following formula 1 or 2 A method for producing a microwave dielectric ceramic sintered body containing the composition as a main component .
Bi 1-x Dy x NbO 4 (1)
(In the formula, x is 0 <x ≦ 0.1.)
BiNb 1-x P x O 4 (2)
(In the formula, x is 0 <x ≦ 0.1.)
JP2004370941A 2004-04-30 2004-12-22 Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof Expired - Fee Related JP4468155B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040030517A KR20050105392A (en) 2004-04-30 2004-04-30 Microwave dielectric ceramic composition for low temperature firing and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2005314212A JP2005314212A (en) 2005-11-10
JP4468155B2 true JP4468155B2 (en) 2010-05-26

Family

ID=35442015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370941A Expired - Fee Related JP4468155B2 (en) 2004-04-30 2004-12-22 Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4468155B2 (en)
KR (1) KR20050105392A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261816A (en) * 2014-09-27 2015-01-07 桂林理工大学 Low dielectric constant microwave dielectric ceramic NaBi2Sb3O11 capable of being sintered at low temperatures
CN110423093B (en) * 2019-09-03 2020-10-16 浙江大学 Microwave dielectric material with ultralow dielectric constant and preparation method thereof
CN116003127B (en) * 2023-01-06 2023-08-22 湖南聚能陶瓷材料有限公司 Low-loss microwave dielectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2005314212A (en) 2005-11-10
KR20050105392A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
KR100426219B1 (en) Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof
CN102249670A (en) Low temperature sintered microwave dielectric ceramic Li2Ba1-xSrxTi4O16 and preparation method thereof
CN102584208A (en) Low-temperature sinterable microwave dielectric ceramic BiZn2VO4 and preparation method thereof
CN103467095B (en) Low-temperature sinterable microwave dielectric ceramic SrCuV2O7 and preparation method thereof
CN103539452A (en) Microwave dielectric ceramic Li2BiNb3O10 capable of being subjected to low-temperature sintering as well as preparation method thereof
CN103496981B (en) Low-temperature sintering temperature-stable microwave dielectric ceramic Bi14W2O27 and preparation method thereof
CN102603292A (en) Composite oxide used for sintering microwave dielectric ceramics at low temperature
CN103319177B (en) Microwave dielectric ceramic Ba3WTiO8 with low-temperature sintering characteristic and preparation method thereof
CN103193483B (en) Low-temperature sintering tungstate microwave dielectric ceramic Li3R3W2O12 and preparation method thereof
CN101891461B (en) Ternary microwave medium material of Li2O-CoO2-TiO2 and low temperature sintering method
JP4468155B2 (en) Microwave dielectric ceramic composition for low temperature firing and manufacturing method thereof
CN101538159A (en) Microwave dielectric ceramic with medium dielectric constant sintered at low temperature and preparation method thereof
CN103539449A (en) Microwave dielectric ceramic BiNbW2O10 capable of being sintered at low temperature and preparation method thereof
CN103496969B (en) Low-temperature sintering temperature-stable microwave dielectric ceramic Bi14WO24 and preparation method thereof
JPH1072258A (en) Dielectric ceramic composition
JP4473099B2 (en) Ceramic composition for LTCC
CN102531568A (en) Low-temperature sinterable microwave dielectric ceramic LiBa4Bi3O11 and preparation method thereof
CN103896573B (en) Low temperature sintering temperature-stable microwave dielectric ceramic LiPO 3and preparation method thereof
KR100582983B1 (en) Microwave Dielectric Ceramic Composition for Low Temperature Firing and Preparation Method Thereof
CN103964848B (en) The microwave dielectric ceramic Li of sintered at ultra low temperature 2pVO 6and preparation method thereof
CN103922721A (en) Low-temperature sintering available microwave dielectric ceramic Li4P2O7 and preparation method thereof
CN103435348B (en) Low-temperature sintered microwave dielectric ceramic Sr8CuW3O18 and preparation method thereof
CN103539445A (en) Microwave dielectric ceramic Zn2V3Bi3O14 capable of being subjected to low-temperature sintering as well as preparation method thereof
KR100478127B1 (en) Dielectric Ceramic Composition
CN103449814A (en) Low-temperature-sintering available microwave dielectric ceramic Sr2WCuO6

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees