TW201006710A - Slope road detecting method and slope road detecting device - Google Patents

Slope road detecting method and slope road detecting device Download PDF

Info

Publication number
TW201006710A
TW201006710A TW098126510A TW98126510A TW201006710A TW 201006710 A TW201006710 A TW 201006710A TW 098126510 A TW098126510 A TW 098126510A TW 98126510 A TW98126510 A TW 98126510A TW 201006710 A TW201006710 A TW 201006710A
Authority
TW
Taiwan
Prior art keywords
slope
road
calculated
height
slope road
Prior art date
Application number
TW098126510A
Other languages
Chinese (zh)
Other versions
TWI359088B (en
Inventor
Tomoyuki Yamazaki
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Publication of TW201006710A publication Critical patent/TW201006710A/en
Application granted granted Critical
Publication of TWI359088B publication Critical patent/TWI359088B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)

Abstract

A slope road detecting device includes an atmospheric pressure sensor, and a control section that determines whether a road surface on which a vehicle travels is a slope road on the basis of atmospheric pressure data inputted from the atmospheric pressure sensor. The control section includes an altitude calculation section that calculates an altitude every time a vehicle travels for a prescribed unit travel distance on the basis of the atmospheric pressure data obtained from the atmospheric pressure sensor, a gradient calculation section that calculates a gradient of the road surface on the basis of a difference between the altitude calculated in a last time and the altitude calculated in a current time and the unit travel distance, a counting section that counts the number of times of calculating the gradient, and a slope road determining section that determines that the road surface is a slope road when the gradients obtained by the gradient calculation section in the prescribed number of times are continuously located within a prescribed range.

Description

201006710 六、發明說明: 【發明所屬之技術領域】 本發明有關於一種斜坡道路檢測方法和一種斜坡道路檢 測裝置’其提供用於諸如卡車之車輛的交通控制之斜坡道路 資訊。 【先前技術】 環境保護的觀點或受到燃油成本近來突然升高的影響機 動車輛的經濟駕駛被認為是报重要的。特別是,其工作是由 卡車等運送的運輸業進行嚴格的交通控制,即追求行駛距離 或燃油消耗以強迫駕駛員進行節能駕駛並節省開銷。而且, 也提出交通控制系統來檢測諸如突然加速或發動機超迷運 轉的不經濟的駕駛狀態,用警報通知駕駛員這種駕駛狀態。 在正常的交通控制中,為了以低燃油成本駕駛,通常已設 置上限使得發動機的旋轉速度不超過規定的值,並且在觀察 其狀態的情況下對駕駛員進行評估。但是在斜坡道路中,在 上斜坡道路和下斜坡道路兩者中發動機的旋轉速度都增 加,使得旋轉速度不時地高於最近設置的旋轉速度。因此, 產生儘管是不可避免的狀態還是發出無用的警報或者駕駛 員被不適當地評估的問題。 因此’改進僅僅將行駛距離和燃油消耗認為是決策因素的 才示準化的交通控制或駕驶員的評估,提出一種用於車輛的交 通控制系統或交通控财法,其提㈣示斜坡道路的路面狀 098126510 201006710 態的適當資訊等(例如,見專利文獻i或專利文獻2)。 例如’在專利文獻1中所揭露的交通控制系統從車輛速度 與燃油喷射時間之間的關係計算車輛的重量,而無需使用昂 貴的重量感測器,並且從氣壓錶計算車輛(斜坡道路)的坡 度’以適當地掌握車輛的行駛狀態並且給予駕駛員用於節能 駕駛的資訊。 此外’在專利文獻2中所揭露的交通控制方法預先掌握適 • 合於諸如重量、車輛速度、車輛的坡度等的車輛狀態之合適 的燃油消耗率,並且通知駕駛員該車輛偏離它的行駛狀況的 情況。 專利文獻1 :日本專利申請JP-A-2004-46439 (第3至6 頁,圖1) 專利文獻2 :曰本專利申請JP-A-2004-29000 (第14至23 頁,圖1) 參 然而,在如上所述的相關的交通控制系統或交通控制方法 中’在關於由氣壓錶測量的精度方面出現問題,即,出現斜 坡道路的檢測精度低的問題。特別是,如果氣壓錶(與包括 '氣壓錶的交通控制系統相關的裝置)安裝在車輛内部,當在 •車輛行駛期間車窗玻璃升高或降低時,當在車輛完全打開車 窗玻璃的行驶期間該車輛與相對的車輛相互經過時,或當車 輛通過隧道時,大氣壓力的指示大大地變化。 而且’在相關的例子中,由於高度只用測量的大氣壓力值 098126510 5 201006710 來計算’以從與駕驶開始時間(在上—次測量時間)的高度 差來計算坡度,當在大氣壓力值測量期間臨時測量到非正常 的大氣壓力時’不鱗確地顏斜坡姐,使得不能實現合 適的交通控制或駕駛員的適當評估。在交通控制或駕驶員的 評估中準確地掌握車輛行駛的路面狀況,即非常準確地檢測-斜坡道路是非常重要的。 - 【發明内容】 藉由考慮上述情況創造本發明,並且本發明的目的是提供❿ -種斜坡道路檢測方法和斜坡道路檢測裝置,其非常準確地 檢測是否存在斜坡道路,作為車辆的交通控制或駕驶員 的評估的重要資訊。 為了達到上述目的,根據本發明的斜坡道路檢測方法的特 徵在於下述(1)至。 (1)一種斜坡道路檢測方法,包括: 高度計算步驟,每次車輛行駛一規定單位行駛距離,根據❹ 從大氣壓力感測器所得到的大氣壓力資料來計算高度; 坡度計算步驟’根據在上一次高度計算步驟中所計算的高 度與目前高度計算步驟中所計算的高度之間的差以及單位 行駛距離,計算車輛行驶之路面的坡度; 計數步驟,計數在坡度計算步驟中計算坡度的次數;以及 斜坡道路確定步驟,當在規定的次數中所執行的坡度計算 步驟所得到的坡度連續地位於規定的範圍内時,確定該路面 098126510 6 201006710 是斜坡道路。 (2)較佳地’在該斜坡道路確定步驟中’當僅僅在規定次 數的坡度計算步驟中所計算的坡度不位於該規定範圍内,而 在下一次的坡度計算步驟中所計算的坡度位於該規定範圍 内時,確定該路面是斜坡道路。 * (3)較佳地,在該斜坡道路確定步驟中’當在下一次的坡 度計算步驟中所計算的坡度位於該規定範圍内,並且在過去 • 的規定次數的坡度計算步驟中所計算的坡度的平均值位於 該規定範圍内時,判定該路面是斜坡道路。 (4) 較佳地,在該斜坡道路確定步驟中,當在坡度計算步 驟中所計算的坡度大於該規定範圍的上限值時,在該坡度計 算步驟中所計算的大於上限值的坡度不計數在該坡度計算 步驟中計算坡度的規定次數内。 (5) 較佳地,在該斜坡道路確定步驟中,當確定該路面是 ❹斜坡道路時,該規定範圍在該確定之後改變。 在根據上述(1)的斜坡道路檢測方法中,由於多次掌握坡 度的趨勢以較斜坡道路,因此斜坡道路能夠被非常準確地 _ 檢測。 -而且,在根據上述(2)的斜坡道路檢測方法中,者在大氣 壓力測量期間大氣壓力的指示偶然且瞬間大大地變田化時,由 於監控大氣壓力直到下一次測量從而確定斜坡道路,因此斜 坡道路能夠被非常準確地檢測。 098126510 7 201006710 而且,在根據上述(3)的斜坡道路檢測方法中,當在大氣 壓力測量期間大氣壓力的指示偶然且瞬間大大地變化時,由 於監控大氣壓力直到下一次測量從而確定斜坡道路,因此斜 坡道路能夠被非常準確地檢測。 而且,在根據上述(4)的斜坡道路檢測方法中,因為刪除 當作雜訊之能夠檢測到由於大氣壓力的擾動所引起的陡山肖 的坡度,因此斜坡道路能夠被非常準確地檢測。 而且,在根據上述(5)的斜坡道路檢測方法中,斜坡道路 能夠被靈活地檢測,例如,能夠適當地檢測比較長的斜坡道 路。 為了達到上述目的’根據本發明的斜坡道路檢測裝置的犄 徵在於下述的(6)至(10)。 (6) —種斜坡道路檢測裝置,包括: 大氣壓力感測器;以及 控制區段,其根據從大氣壓力感測器所輸入的大氣壓力資 料來確定車輛行駛的路面是否是斜坡道路, 其中該控制區段包括: 高度計算區段’每次車輛躲—蚊單位彳圾輯 從大氣壓力感測器所得到的大氣壓力資料來計算高度; 坡度計算區段’其根據在上一次所計算的高度與:前所計 算的南度之間的差以及單位行驶距離,來計算路面的坡度; 計數區段,其計數計算坡度的次數;以及 又 098126510 0 201006710 斜坡道路確定區段,當在規定的次數中由該坡度計算區段 所得到的坡度連續地位於規定的範圍内時,確定該路面是斜 坡道路。 (7) 較佳地,當由坡度計算區段僅僅在規定次數中所計算 的坡度不位於該規定範圍内,而在下一次所計算的坡度位於 該規定範圍内時’則斜坡道路確定區段確定該路面是斜坡道 路。 (8) 較佳地’當在下一次所計算的坡度位於該規定範圍 内’並且在過去的規定次數中所計算的坡度的平均值位於該 規定範圍内時,則斜坡道路確定區段確定該路面是斜坡道 路。 (9) 較佳地’當由坡度計算區段所計算的坡度大於該規定 範圍的上限值時,該計數區段不將該大於上限值的坡度計數 在規定次數中。 (10) 較佳地’當斜坡道路確定區段確定路面是斜坡道路 時’該控制區段在該確定之後改變該規定範圍。 在根據上迷(6)的斜坡道路檢測裝置中,由於多次掌握坡 度的趨勢以確定斜坡道路’因此能夠非常準確地檢測斜坡道 路。 而且’在根據上述(7)的斜坡道路檢測裝置中’當在大氣 壓力測量期間大氣壓力的指示偶然且瞬間大大地變化時,由 於監控大氣壓力直到下一次測量以確定斜坡道路,因此能夠 098126510 9 201006710 非常準確地檢測斜坡道路。 而且,在根據上述(8)的斜坡道路檢測裝置中,當在大氣 壓力測量期間大氣壓力的指示偶然且瞬間大大地變化時,由 於監控大氣壓力直到下一次測量以確定斜坡道路,因此能夠 非常準確地檢測斜坡道路。 而且,在根據上述(9)的斜坡道路檢測裝置中,因為刪除 當作雜訊之能夠被檢測出由於大氣壓力的擾動所引起的陡 峭的坡度’因此斜坡道路能夠被非常準確地檢測》 而且,在根據上述(10)的斜坡道路檢測裝置中,斜坡道路 能夠被靈活地檢測,例如,能夠被適當地檢測比較長的斜坡 道路。 根據本發明,即便在將被測量的周圍環境大大地變化時, 也能夠非常準確地檢測斜坡道路。 【實施方式】 現在,將藉由參考附圖在下面詳細描述本發明的實施例。 圖1是根據本發明的實施例中的斜坡道路檢測裝置的電 路方塊圖。該斜坡道路檢測裝置主要包括cPU卜eeprom 2以及大氣壓城 3。該咖丨是整健制該斜坡道路 檢測裝置的所有操作的控繼段。而且,該cpu !用作高 度计算區段、坡度計算區段、賴區段錢斜坡道路確定區 段。該EEPR0M 2儲存用於操作該CPU i的程式或用於測 量的資料。該大氣壓力❹❻3以規定_間間隔測 量運行 098126510 201006710 車輛的周圍中的大氣壓力p。在這個實施例中,大氣壓力以 大約0.5秒的時間間隔測量,以將過去的規定次數的資料儲 存作為高度值Η,該高度值Η只用下面的方程式計算, H = 44.33kmx[l-(P/101325Pa)° 19] 而且,CPU 1獲得通過電源電路4所輸入的IGN (點火) 信號5或通過介面電路6從車輛速度感測器所輸入的速度信 號7,以開始檢測斜坡道路的操作或進行各種計算。而且。 ® CPU 1通過介面電路8和9輸出斜坡道路的上升檢測信號 10和下降檢測信號11。 下面將描述具有上述結構的斜坡道路檢測裝置的斜坡道 路檢測操作。 圖2是顯示根據本發明的該實施例的斜坡道路檢測裝置 的斜坡道路檢測操作的程序的流程圖。在點火信號導通之 後’ cpu 1啟動速度信號的輸入過程(步驟sl01)。當速度 參信號的脈衝計數開始時,根據從大氣壓力感測器3所測量的 值首先計算初始高度值。對於該高度值,較佳使用在規定的 時間間隔所測量的多個值的平均值。 然後’CPU 1計數輸入的脈衝數目,以計算行駛距離(步 驟S102)。在這個實施例中,正如在下面所描述的,設置成 以每大約50m作為單位行駛距離來計算高度值’以在每次 由每圈8脈衝(637rpm)的車輛速度感測器來計數254個 脈衝時’進行高度計算過程。當CPU 1完成規定的脈衝計 098126510 11 201006710 數時’ CPU 1就在下-次之前,儲存由上述方法計算三次的 咼度值的平均值作為車輛行駛50m時的高度值。在這個實 施例中,次數設定為三,但是可以適當地確定在下一次之前 所參考的高度值的次數,並且較佳由使用者自由地設定。 然後,CPU 1進行坡度判定過程(步驟sl〇3)。在這裏, 坡度表示藉由將對每個單位行駛距離所計算的高度值的變 數(variation)除以50m的單位行駛距離所得到的值(%)。 在這個實施例中2.5〇/〇設定為用於判定斜坡道路的臨界值。 也就疋,當向上的斜坡道路或向下的斜坡道路之坡度不滿足 2.5%時,CPU 1判定該坡度不位於斜坡道路的範圍内,而是 在自然形成的上坡及下坡路面的範圍内。將該臨界值設定成 符合50m的單位行駛距離,使得能夠確定地檢測諸如陸地 橋的短斜坡道路,也能夠檢測由法律和規章所定義的普通的 斜坡道路。然而,上述臨界值不限於此並且可以適當地設 定。而且,臨界值係較佳地由使用者設定。實際上,在這個 實施例中,向上的坡度和向下的坡度的臨界值能夠由兩個錶 盤12和13分別設定在ι.〇〇/0至4 0〇/〇的範圍内。 本實施例的斜坡道路檢測方法的特徵在於:當過去所計算 的坡度顯示在相同方向連續三次的坡度時,判定該坡度是斜 坡道路。例如,當坡度顯示向上的坡度、向上的坡度和向上 的坡度時,第一次判定該坡度顯示向上的斜坡道路。而且, 當該坡度表示向下的坡度、向下的坡度和向下的坡度時,判 098126510 12 201006710 定該坡度顯示向下的斜坡道路。 圖3是顯示坡度判定過程的詳細程序的流程圖。起初, CPU 1判定在行駛了 L(m)時的高度差A是否大於〇 (A>〇) (步驟S2〇l)。當A大於0 (A>0)時,CPU 1判定存在向 上的坡度’而當A小於〇 (A<0)時,CPU 1判定存在向下 的坡度。 然後’ CPU 1判定在行駛了 L(m)時的高度差A是否大於 籲H (m)(步驟S2〇2)。η表示用於從“斜坡道路”的坡度的 目前臨界值(%)所計算的單位行駛距離的高度差。在這個 實施例中,由於臨界值設定為2.5%,在50 m的單位行駛距 離中的咼度差Η為2.5(%)x50 (m) =1.25 (m)。因此,當單 位行駛距離的高度差為+ 1.25m或以上時,判定該坡度表示 “向上的斜坡道路”。 如圖15所示,在3%的坡度的例子中,該坡度最初用“坡 參度=高度差/水平距離,,來表示。由於能夠認為水平距離能與 實際傾斜表面的行駛距離實質上相同,所以從行歇距離來計 算坡度。 •當高度差A大於H (m)(在步驟S202為是)時,cpui •對顯示向上坡度的連續數目的“向上計數,,加i (+ι)(步 驟S203)。然後,CPU1判定向上計數是否是2(步驟幻〇4)。 當向上計數是2時,CPU1進一步列定對於下一個單位行敬 距離(L)之該高度差a是否是H(m)或以上(步驟幻⑹。 098126510 13 201006710 當尚度差A大於Η ( A>H)(在步驟S2〇5為是)時,由於 向上計數是3並且向上坡度連續三次(步驟S2〇6),所以 cpu 1輸出上升檢測信號(步驟S2〇7) ^此後,cpu j將計 數重置為0並且再一次重複上述過程。 另一方面’當第三個單位行駛距離的高度差不表示a>h (在步驟S2G5為否)時’即,當坡度不是規㈣向上的坡 度時,CPU 1進行下一次的單位行駛距離的監控過程(步驟 S208)。由於下面的原因進行這個過程。即便當“向上的” 坡度在緊接該向上的坡度連續兩次之後只有一次沒被檢測 到時,也不能直接反映結果,但是監控下一個單位行駛距離 的高度差,以便非常準確地判定該斜坡道路。 圖4是顯示下次的單位行駛距離的監控過程的程序的流 程圖。起初’ CPU !判定這次的高度值(稱為(4))(在行敬第 二個單位行驶距離後的單位行駛距離之後,其中高度差不表 示向上的坡度)與倒數第二個高度值(稱為(2))之間的高度差 是否大於0(即’丨(4)-(2)1 > 〇)並且這次的高度值與上一次的 高度值(稱為(3))之間的高度差是否大於〇(即丨(4)一(3)丨> 0)’並且這次的高度值與倒數第三個高度值(稱為⑴)之間的 高度差是否是與設定為“斜坡道路”的規定坡度相關的高度 差的三倍或以上一樣大(即,丨(4)一(1)卜Ηχ3)(步驟幻叫。 當滿足上述條件(在步驟S301為是)時,CPlJ丨將向上吁 數設定為3,以輸出上升檢測信號(步驟S3〇2)。圖5人至 098126510 14 201006710 疋示意地顯7F每個單位行駛距離(L)的高度變化的例子的示 忌圖。圖5A顯示上述的行駛狀況。即,由於第三個坡度不 顯不向上的坡度,但是,第四個坡度顯示“向上的,,坡 度並且在過去計算三次的高度差是設定為“斜坡道路,,的 臨界值的高度差的三倍或以上,CPU1判定該坡度是向上的 斜坡道路。 當不滿足上述條件(在步驟S301為否)時,那麼,cpu ! •判定上-次的高度值與倒數第二次的高度值之間的高度差 在向下的方向是否是Η或以上(即,丨(3)_(2)|多H),並且這 -人的同度值與上—次的高度值之間的高度差在向下的方 向疋否疋Η或以上(即’丨⑷_(3)丨彡Η)(步驟S3〇3)。 當滿足上述條件(在步驟S3〇3為是)時,cpu 1將向下計 數认疋為2,以轉換到下一個L(m)的判定(步驟s3〇4)。圖 5B顯示上述行驶狀況。即,由於向上的坡度連續兩次,但 是此後’第三和第四個坡度是連續向下的坡度,因此咖: 將=下冲數设定為2,以判定下-個過程中的斜坡道路。 當不滿足上述條件(在步驟S3〇3為否)時,CPU!判定 是否只有在向下的方向中這次的高度值與上一次的高度= .之:的高度差是㈣以上(即,|(4)一(3)| > H)(步驟s3〇5)。 當滿足上述條件(在步驟S305為是)時,cpu丨將向下計 數設定為i ’以轉換到下-個L (m)的判定(步驟藝)。 圖5C顯示上述的行駛狀況。即,由於向上的坡度連續兩次, 098126510 15 201006710 但是此後,第三個坡度报小並且第四個坡度“向下的,,坡 度’因此CPU1將向下計數設以卜以對後面的過程進行 斜坡道路的判定。 當不滿足上述條件(在步驟S3〇5為否)時,由於 判定向上的坡度連續兩次,但是其後,小坡度連續,因此 CPU 1將核重置為〇,以轉換到下—個單位行駛距離的判 定(步驟S307)。 回到圖3的流程圖,在步驟82〇2中,當A不大於h(a>h) Q 時,並且在步驟S204中向上計數不是2時,由於斜坡道路 尚不能被判定,因此CPU 1轉換到步驟S201,以判定下一 個單位行駿距離(L)的高度差(步驟S209)。 另一方面,在步驟S201中,A不大於〇 ( a>〇 ),CPIJ 1 類似地判定向下的坡度。起初,CPU 1進行用於將Αχ (-1) 設定為Α的過程(步驟S210)。CPU 1進行這個過程,因為 CPU1用其絕對值判定向下坡度的高度差(負值)。 ⑩ 然後’ CPU 1對單位行駛距離L(m)判定A是否大於 H(m)(步驟S211)。當A(絕對值)大於h(在步驟S211為是) 時’CPU1對表示向下的坡度的連續數的“向下的”計數加 1(+1)(步驟S212)。然後,CPU 1判定向下計數是否是2(步 驟S213)。當向下計數是2時,CPU 1進一步判定對於下一 個單位行駛距離(L)的A(絕對值)是否是H(m)或以上(步驟 S214)。當在向下的方向上高度差a大於H(在步驟S214為 098126510 201006710 是)時,由於向下計數是3並且向下的坡度連續三次(步驟 S215),因此CPU 1輸出下降檢測信號(步驟S216)。此後, CPU 1將計數重置為〇,以再—次重複上述過程。 另一方面’當第三個單位行駛距離的高度差不表示 A>H(A是絕對值)(在步驟S214為否),也就是,當坡度不是 規定的向下坡度時’CPU1進行下一次的單位行駛距離的監 控過程(步驟S217)。由於下述理由而進行這個過程。即便當 參在緊接該向下的坡度被連續檢測兩次之後,“向下的,,坡度 只有一次沒有檢測到時,也不直接反映結果,但是監控下一 個單位行駛距離的高度差,以便非常準確地判定斜坡道路。 圖6是顯示下一次的單位行駛距離的監控過程的程序的 流程圖。起初,CPU 1判定這次的高度值(稱為(4))(在行駛 第二個單位行駛距離後的單位行駛距離之後,其中高度差不 表示向下的坡度)與倒數第二個高度值(稱為(2))之間的高度 •差(絕對值)是否大於0(即’丨⑷一⑺丨> 〇),以及這次的高度 值與上一次的高度值(稱為(3))之間的高度差(絕對值)是否 大於0(即,|(4)-(3)| > 〇),以及這次的高度值與倒數第三次 的南度值(稱為(1))之間的高度差C絕對值)是否是與設定為 斜坡道路”的規定坡度相關的高度差的三倍或以上(即, 丨(4)-(1)| > Hx3)(步驟 S401)。 當滿足上述條件(在步驟S401為是)時,CPU }將向下 計數設定為3以輸出下降檢測信號(步驟S402)。圖7A至 098126510 17 201006710 是^也員示每個單位行駛距離(L)的高度變化的例子 的示思圖β 7A顯示上述的行驶狀況。即由於第三個坡度 不,、、負示向下的坡度”,然而,第四個坡度顯示“向下的” 坡度並且在過去已計算三次的高度差是與設定為 “斜坡道 路”的臨界值的高度差的三倍或以上-樣大,因此CPU 1 判定該坡度顯示下斜坡道路。 田不滿足上述條件(在步驟S401為否)時,然後,CPU 1 判疋上— 人的鬲度值與倒數第二次的高度值之間的高度差❹ 在向上的方向上是否是η或以上(即,|(3)_(2)|彡 Η),並且 這次的高度值與上一次的高度值之間的高度差在向上的方 向上疋否疋Η或以上(即,|(4)_(3)丨> Η)(步驟以〇3)。 當滿足上述條件(在步驟S403為是)時,CPU i將向上 汁數。又疋為2’以轉換到下一個L(m)的判定(步驟S4〇4)。 圖7B顯不上述的行駛狀況,即,由於向下的坡度連續檢測 兩次,但是此後,第三和第四個坡度是連續“向上的”坡 ❹ 度’因此CPU 1將向上計數設定為2,以在下_個過程甲判 定斜坡道路。 當不滿足上述條件(在步驟S403為否)時,cpu i判定是 否只有这次的高度值與上一次的高度值之間的高度差在自 - 上的方向上是Η或以上(即,1(4)-(3)1彡H)(步驟S405)。 當滿足上述條件(在步驟S405為是)時,cpu i將向上計 數设疋為1以轉換到下一個l (m)的判定(步驟S4〇6)。 098126510 18 201006710 圖7C顯示上述行駛狀況。即,由於向下的坡度被連續檢測 兩认,但疋其後,第二個坡度很小並且下一個第四個坡度是 向上的坡度,因此CPU 1將向上計數設定為丨以對後 面的過程進行斜坡道路的判定。 當不滿足上述條件(在步驟S405為否)時,由於cpu 1 判定向下的坡度被連續檢測兩次,但是其後,很小的坡度被 連續地檢測,因此CPU 1將計數重置為〇,以轉換到下一個 • 單位行駛距離的判定(步驟S407)。 回到圖3所示的流程圖’在步驟S211中,當A不大於Η (Α>Η)時,並且在步驟S213中向下計數不是2時,由於 斜坡道路尚不能被判定,因此為了判定下一個單位行歇距離 (L)的咼度差(步驟S218 ),CPU 1轉換到步驟S201。藉 由這些過程,結束坡度判定過程。 回到圖2所示的流程圖,在坡度判定過程中當相同方向的 ❿坡度被檢測三次或以上時(步驟S103),輸出上升或下降檢 測信號。然而,在斜坡道路檢測過程中判斷其後的斜坡道路 是否連續(步驟S104)。 圖8是顯示斜坡道路判定過程的詳細程序的流程圖。起 -初’ CPU 1判定在行駛了 L(m)時的高度差A是否大於0(A> 〇)(步驟S501)。當A大於〇(a〉〇)時’ CPU 1判定存在向上 坡度,而當A小於0(A<〇)時,CPU1判定存在向下的坡度。 然後’ CPU 1判定在行駛了 L(m)時的高度差a是否大於 098126510 19 201006710 H(m)(步驟 S502)。 當咼度差A大於Η ( A>H)(在步驟S5〇2為是)時,cpu 1判定現在是否輸出上升檢測信號(步驟S503)。當現在輸 出上升檢測信號時,CPU i連續地輸出上升檢測信號(步驟 S504)另方面,^現在不輸出上升檢測信號(在步驟s5〇3 為否)時’然後’ CPU 1判定現在是否輸出下降檢測信號(步 驟S507)。f現在不輸出下降檢測信號時,cpui對向上計 數加1 (+1)(步驟S508),以轉換到步驟S5〇1,以判定下 一個單位行駛距離(L)的高度差(步驟S509)。 另一方面 當高度差A不大於H (A>H)(在步驟S5| 為否)時’ CPU i判定現在是否輸出上升檢測信號(步 S505)。當現在輸出上升檢測信料,咖丨進行下一個 崎駛距離的監控過程(步驟⑽)。由於下述理由而進 這個過程。即便在輸出上升檢測信號期間只有一次沒有檢; 到。向上的”坡度時,也不能直接反映結果,但是監控下_ 個單位订駛距離的高度差,以便非常準確地判定斜坡道路 圖9是顯示下一次單位行駛距離的監控過程的程序的分 單位—^刀CPU 1判定這次的高度值(稱為(8))(在行歇驾 距離制單位行馼距離之後,其㈣單位行敗距截 ::表示在輸出上升檢測信號期間的向上的坡度)輿 個高度值(稱為⑹)之間的高度差是否大於〇(即, 〇)’以及㈣的高度值與上—次的高度值(稱為⑺ 098126510201006710 VI. Description of the Invention: [Technical Field] The present invention relates to a slope road detecting method and a slope road detecting device which provides slope road information for traffic control of a vehicle such as a truck. [Prior Art] The viewpoint of environmental protection or the sudden increase in fuel costs has recently affected the economic driving of motor vehicles and is considered to be important. In particular, the job is to carry out strict traffic control in the transportation industry carried by trucks, etc., that is, to pursue driving distance or fuel consumption to force the driver to perform energy-saving driving and save money. Moreover, a traffic control system is also proposed to detect an uneconomical driving state such as sudden acceleration or engine overrun, and the driver is informed of the driving state by an alarm. In normal traffic control, in order to drive at a low fuel cost, an upper limit has usually been set such that the rotational speed of the engine does not exceed a prescribed value, and the driver is evaluated while observing its state. However, in a sloped road, the rotational speed of the engine is increased in both the upper sloped road and the lower sloped road, so that the rotational speed is occasionally higher than the most recently set rotational speed. Therefore, there is a problem that a useless alarm is issued, or the driver is improperly evaluated, although it is an inevitable state. Therefore, the improvement of the traffic control or the driver's evaluation, which only considers the driving distance and fuel consumption as the decision-making factors, proposes a traffic control system or traffic control method for the vehicle, which provides (4) the road surface of the slope road. Appropriate information of the state of 098126510 201006710 (for example, see Patent Document i or Patent Document 2). For example, the traffic control system disclosed in Patent Document 1 calculates the weight of the vehicle from the relationship between the vehicle speed and the fuel injection time without using an expensive weight sensor, and calculates the vehicle (slope road) from the barometer. The slope 'to properly grasp the driving state of the vehicle and give the driver information for energy-saving driving. Further, the traffic control method disclosed in Patent Document 2 preliminarily grasps an appropriate fuel consumption rate suitable for a vehicle state such as weight, vehicle speed, slope of the vehicle, etc., and notifies the driver that the vehicle deviates from its driving condition. Case. Patent Document 1: Japanese Patent Application JP-A-2004-46439 (pages 3 to 6, FIG. 1) Patent Document 2: Japanese Patent Application JP-A-2004-29000 (pages 14 to 23, FIG. 1) However, in the related traffic control system or traffic control method as described above, 'the problem arises with respect to the accuracy measured by the barometer, that is, the problem that the detection accuracy of the slope road is low. In particular, if a barometer (a device associated with a traffic control system including a 'barometer) is installed inside the vehicle, when the window glass is raised or lowered during the running of the vehicle, when the vehicle is fully opened, the window glass is driven. The indication of atmospheric pressure greatly changes during the passage of the vehicle and the opposite vehicle, or as the vehicle passes through the tunnel. And 'in the relevant example, since the height is only calculated using the measured atmospheric pressure value 098126510 5 201006710' to calculate the slope from the height difference from the driving start time (in the upper-time measurement time), when measuring at atmospheric pressure During the temporary measurement of abnormal atmospheric pressure during the period, it is not possible to achieve proper traffic control or proper evaluation by the driver. It is very important to accurately grasp the road surface conditions of the vehicle in the traffic control or the driver's assessment, that is, to detect the slope road very accurately. - SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a ramp road detecting method and a slope road detecting device which detect a very accurate presence of a slope road as a traffic control of a vehicle Or important information about the driver's assessment. In order to achieve the above object, the slope road detecting method according to the present invention is characterized by the following (1) to. (1) A method for detecting a slope road, comprising: a height calculation step of calculating a height according to atmospheric pressure data obtained from an atmospheric pressure sensor each time a predetermined unit travel distance is traveled by the vehicle; the slope calculation step is based on Calculating the difference between the height calculated in the height calculation step and the height calculated in the current height calculation step and the unit travel distance, calculating the slope of the road surface on which the vehicle is traveling; and counting the step of counting the number of times the slope is calculated in the slope calculation step; And a slope road determining step of determining that the road surface 098126510 6 201006710 is a slope road when the slope obtained by the slope calculating step performed in the prescribed number of times is continuously within the prescribed range. (2) Preferably, 'in the slope road determining step', when only the slope calculated in the slope calculation step of the predetermined number of times is not within the prescribed range, and the slope calculated in the next slope calculating step is located in the slope When the specified range is within, it is determined that the road surface is a slope road. (3) Preferably, in the slope road determining step, 'when the slope calculated in the next slope calculating step is within the prescribed range, and the slope calculated in the slope calculation step of the prescribed number of times in the past When the average value is within the prescribed range, it is determined that the road surface is a slope road. (4) Preferably, in the slope road determining step, when the slope calculated in the slope calculating step is greater than the upper limit value of the predetermined range, the slope calculated in the slope calculating step is greater than the upper limit value It is not counted within the prescribed number of times the slope is calculated in the slope calculation step. (5) Preferably, in the slope road determining step, when it is determined that the road surface is a slope road, the prescribed range is changed after the determination. In the slope road detecting method according to the above (1), since the tendency of the slope is grasped multiple times to the slope road, the slope road can be detected very accurately. Further, in the slope road detecting method according to the above (2), when the indication of the atmospheric pressure during the atmospheric pressure measurement is occasionally and instantaneously greatly changed, since the atmospheric pressure is monitored until the next measurement to determine the slope road, Slope roads can be detected very accurately. 098126510 7 201006710 Moreover, in the slope road detecting method according to the above (3), when the indication of the atmospheric pressure is changed accidentally and instantaneously during the atmospheric pressure measurement, since the atmospheric pressure is monitored until the next measurement to determine the slope road, Slope roads can be detected very accurately. Moreover, in the slope road detecting method according to the above (4), the slope road can be detected very accurately because the slope of the steep mountain ridge caused by the disturbance of the atmospheric pressure can be detected as the noise. Moreover, in the slope road detecting method according to (5) above, the slope road can be flexibly detected, for example, a relatively long ramp road can be appropriately detected. In order to achieve the above object, the slope path detecting device according to the present invention is characterized by the following (6) to (10). (6) A slope road detecting device comprising: an atmospheric pressure sensor; and a control section that determines whether the road surface on which the vehicle travels is a slope road based on atmospheric pressure data input from the atmospheric pressure sensor, wherein The control section includes: a height calculation section 'Each atmospheric vehicle pressure data obtained from the atmospheric pressure sensor to calculate the altitude each time; the slope calculation section 'based on the height calculated at the previous time Calculate the slope of the road surface with the difference between the previously calculated south degree and the unit travel distance; count the number of times the section calculates the slope; and 098126510 0 201006710 the slope road determination section, when the specified number of times When the slope obtained by the slope calculating section is continuously within a prescribed range, it is determined that the road surface is a slope road. (7) Preferably, when the slope calculated by the slope calculation section only within the prescribed number of times is not within the prescribed range, and when the next calculated slope is within the prescribed range, then the slope road determination section is determined The road is a sloped road. (8) Preferably, 'when the slope calculated next time is within the prescribed range' and the average value of the slope calculated in the past prescribed number of times is within the prescribed range, the slope road determining section determines the road surface It is a slope road. (9) Preferably, when the slope calculated by the gradient calculating section is larger than the upper limit of the prescribed range, the counting section does not count the gradient larger than the upper limit value by a predetermined number of times. (10) Preferably, when the slope road determining section determines that the road surface is a slope road, the control section changes the prescribed range after the determination. In the slope road detecting device according to the above (6), since the tendency of the slope is grasped a plurality of times to determine the slope road, it is possible to detect the slope road very accurately. Further, 'in the slope road detecting device according to the above (7), when the indication of the atmospheric pressure changes greatly accidentally and instantaneously during the atmospheric pressure measurement, since the atmospheric pressure is monitored until the next measurement to determine the slope road, it is possible to 098126510 9 201006710 Very accurate detection of slope roads. Moreover, in the slope road detecting device according to the above (8), when the indication of the atmospheric pressure changes greatly accidentally and instantaneously during the atmospheric pressure measurement, since the atmospheric pressure is monitored until the next measurement to determine the slope road, it can be very accurate. Ground detection of slope roads. Further, in the slope road detecting device according to the above (9), since the steep slope which is caused by the disturbance of the atmospheric pressure can be detected as the noise, the slope road can be detected very accurately. In the slope road detecting device according to (10) above, the slope road can be flexibly detected, for example, a relatively long slope road can be appropriately detected. According to the present invention, the slope road can be detected very accurately even when the surrounding environment to be measured is greatly changed. [Embodiment] Now, embodiments of the present invention will be described in detail below with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a circuit block diagram of a ramp road detecting device in an embodiment in accordance with the present invention. The slope road detecting device mainly includes a cPU eeprom 2 and an atmospheric city 3. The curry is a control segment for all operations of the slope road detection device. Moreover, the cpu ! is used as the height calculation section, the slope calculation section, and the Lai section money slope road determination section. The EEPR0M 2 stores a program for operating the CPU i or data for measurement. The atmospheric pressure ❹❻3 is measured at a prescribed interval 098126510 201006710 The atmospheric pressure p in the surroundings of the vehicle. In this embodiment, atmospheric pressure is measured at intervals of about 0.5 seconds to store the past specified number of data as a height value Η, which is calculated using only the following equation, H = 44.33 kmx [l-( P/101325Pa) ° 19] Moreover, the CPU 1 obtains the IGN (ignition) signal 5 input through the power supply circuit 4 or the speed signal 7 input from the vehicle speed sensor through the interface circuit 6 to start the operation of detecting the slope road Or perform various calculations. and. The CPU 1 outputs the rising detection signal 10 and the falling detection signal 11 of the ramp road through the interface circuits 8 and 9. The ramp detection operation of the slope detecting device having the above structure will be described below. Fig. 2 is a flowchart showing a procedure of a slope road detecting operation of the slope road detecting device according to the embodiment of the present invention. After the ignition signal is turned on, cpu 1 starts the input process of the speed signal (step sl01). When the pulse count of the speed reference signal starts, the initial height value is first calculated based on the value measured from the atmospheric pressure sensor 3. For this height value, it is preferred to use an average of a plurality of values measured at prescribed time intervals. Then, the CPU 1 counts the number of pulses input to calculate the travel distance (step S102). In this embodiment, as described below, it is arranged to calculate the height value 'at a unit travel distance of approximately 50 m per unit to count 254 at each time a vehicle speed sensor of 8 pulses per revolution (637 rpm) When the pulse is taken, the height calculation process is performed. When the CPU 1 completes the prescribed pulse meter 098126510 11 201006710 number, the CPU 1 stores the average value of the twist value calculated three times by the above method as the height value when the vehicle travels 50 m before the next time. In this embodiment, the number of times is set to three, but the number of times of the height value referred to before the next time can be appropriately determined, and is preferably freely set by the user. Then, the CPU 1 performs a gradient determination process (step sl3). Here, the gradient indicates a value (%) obtained by dividing a variation of the height value calculated for each unit travel distance by a unit travel distance of 50 m. In this embodiment, 2.5 〇 / 〇 is set as a threshold for determining a slope road. In other words, when the slope of the upward slope road or the downward slope road does not satisfy 2.5%, the CPU 1 determines that the slope is not within the range of the slope road, but is in the range of the naturally formed uphill and downhill road surface. Inside. The threshold is set to a unit travel distance of 50 m, so that a short slope road such as a land bridge can be surely detected, and a normal slope road defined by laws and regulations can also be detected. However, the above critical value is not limited thereto and may be appropriately set. Moreover, the threshold is preferably set by the user. In fact, in this embodiment, the critical values of the upward slope and the downward slope can be set by the two dials 12 and 13 in the range of ι.〇〇/0 to 40 〇/〇, respectively. The slope road detecting method of the present embodiment is characterized in that when the slope calculated in the past shows the slope three consecutive times in the same direction, it is judged that the slope is a slope road. For example, when the slope shows an upward slope, an upward slope, and an upward slope, it is first determined that the slope shows an upward slope. Moreover, when the slope indicates a downward slope, a downward slope, and a downward slope, it is determined that the slope indicates a downward slope road. Fig. 3 is a flow chart showing the detailed procedure of the gradient determination process. Initially, the CPU 1 determines whether or not the height difference A when traveling L(m) is larger than 〇 (A > 〇) (step S2〇1). When A is greater than 0 (A > 0), the CPU 1 determines that there is an upward slope ' while when A is smaller than 〇 (A < 0), the CPU 1 determines that there is a downward slope. Then, the CPU 1 determines whether or not the height difference A when L(m) is traveled is greater than H (m) (step S2〇2). η represents the height difference of the unit travel distance calculated from the current critical value (%) of the slope of the "slope road". In this embodiment, since the threshold is set to 2.5%, the temperature difference in the unit running distance of 50 m is 2.5 (%) x 50 (m) = 1.25 (m). Therefore, when the height difference of the unit travel distance is + 1.25 m or more, it is judged that the slope indicates "upward slope road". As shown in Fig. 15, in the example of 3% slope, the slope is initially expressed by "slope parameter = height difference / horizontal distance, because the horizontal distance can be considered to be substantially the same as the actual inclined surface. , so the slope is calculated from the break distance. • When the height difference A is greater than H (m) (YES in step S202), cpui • "up counts up, showing the continuous number of upward slopes, plus i (+ι) (Step S203). Then, the CPU 1 determines whether the up count is 2 (step illusion 4). When the up count is 2, the CPU 1 further sets whether the height difference a for the next unit line distance (L) is H (m) or more (step magic (6). 098126510 13 201006710 when the variance difference A is greater than Η ( A > H) (YES in step S2 〇 5), since the up count is 3 and the upward slope is three times in succession (step S2 〇 6), cpu 1 outputs a rising detection signal (step S2 〇 7) ^ thereafter, cpu j The count is reset to 0 and the above process is repeated again. On the other hand 'when the height difference of the third unit travel distance does not indicate a>h (NO in step S2G5) 'that is, when the slope is not gauge (four) upward At the time of the gradient, the CPU 1 performs the monitoring process of the next unit travel distance (step S208). This process is performed for the following reasons. Even when the "upward" slope is only twice after the slope immediately after the upward direction is not once When detected, the result cannot be directly reflected, but the height difference of the next unit travel distance is monitored to determine the slope road very accurately. Fig. 4 is a flow of the program showing the monitoring process of the next unit travel distance At the beginning, the CPU determines the height value of this time (called (4)) (after the unit travel distance after the second unit travel distance, the height difference does not indicate the upward slope) and the penultimate Whether the height difference between the height values (called (2)) is greater than 0 (ie '丨(4)-(2)1 > 〇) and this time the height value is the same as the previous height value (called (3) Is the height difference between 〇(ie 丨(4)-(3)丨> 0)' and the height difference between this time's height value and the third last height value (called (1)) is It is set to be three times or more of the height difference of the specified slope of the "slope road" (ie, 丨(4)-1(1) Ηχ3) (step phantom. When the above conditions are satisfied (YES at step S301) When CP1J丨 sets the upward appeal number to 3 to output the rising detection signal (step S3〇2). Fig. 5 to 098126510 14 201006710 疋 schematically shows the example of the height change of each unit travel distance (L) of 7F Figure 5A shows the above driving situation. That is, since the third slope does not show an upward slope, the fourth slope shows "toward". The above, the slope and the height difference calculated three times in the past is set to "three times or more the height difference of the threshold value of the slope road," and the CPU 1 determines that the slope is an upward slope road. When the above condition is not satisfied (in When step S301 is NO, then, cpu ! • determines whether the height difference between the upper-order height value and the penultimate height value is Η or more in the downward direction (ie, 丨(3)_ (2)|Multiple H), and the height difference between the person's homogeneity value and the upper-order height value is in the downward direction or not (ie '丨(4)_(3)丨彡Η (Step S3〇3). When the above condition is satisfied (YES in step S3, YES), cpu 1 counts down to 2 to switch to the next L (m) decision (step s3〇4). Fig. 5B shows the above driving situation. That is, since the upward slope is continuous twice, but thereafter the 'third and fourth slopes are continuous downward slopes, so the coffee: set the =down number to 2 to determine the slope course in the next process. . When the above condition is not satisfied (NO in step S3〇3), the CPU! determines whether only the current height value in the downward direction and the previous height==: the height difference is (four) or more (ie, | (4) One (3)| > H) (Step s3〇5). When the above condition is satisfied (YES in step S305), cpu 丨 sets the down count to i ' to switch to the next - L (m) decision (step art). Fig. 5C shows the above driving situation. That is, since the upward slope is twice in succession, 098126510 15 201006710, but after that, the third slope is reported small and the fourth slope is "downward, slope" so the CPU1 will count down to make the following process Judgment of the slope road. When the above condition is not satisfied (NO in step S3〇5), since it is determined that the upward slope is continuous twice, but thereafter, the small slope is continuous, the CPU 1 resets the core to 〇 to convert The determination of the travel distance to the next unit (step S307). Returning to the flowchart of Fig. 3, in step 82A2, when A is not greater than h(a > h) Q, and up counting in step S204 is not At 2 o'clock, since the slope road cannot be determined yet, the CPU 1 shifts to step S201 to determine the height difference of the next unit line distance (L) (step S209). On the other hand, in step S201, A is not greater than 〇( a > 〇), CPIJ 1 similarly determines the downward slope. Initially, the CPU 1 performs a process for setting Αχ (-1) to ( (step S210). The CPU 1 performs this process because the CPU 1 uses it Absolute value determines the height difference of the downward slope Negative value. 10 Then 'CPU 1 determines whether A is greater than H(m) for the unit travel distance L(m) (step S211). When A (absolute value) is greater than h (YES at step S211) 'CPU1 pair representation The "downward" count of consecutive numbers of downward slopes is incremented by 1 (+1) (step S212). Then, the CPU 1 determines whether the down count is 2 (step S213). When the down count is 2, the CPU 1 further determines whether A (absolute value) for the next unit travel distance (L) is H (m) or more (step S214). When the height difference a is greater than H in the downward direction (098126510 201006710 in step S214) YES), since the down count is 3 and the downward slope is three consecutive times (step S215), the CPU 1 outputs a fall detection signal (step S216). Thereafter, the CPU 1 resets the count to 〇 to repeat again. On the other hand, 'the height difference of the third unit travel distance does not indicate A>H (A is an absolute value) (NO in step S214), that is, when the slope is not the specified downward slope, 'CPU1 The monitoring process of the next unit travel distance is performed (step S217). This is done for the following reasons. Even if the slope is continuously detected twice after the downward slope, "downward, when the slope is not detected once, it does not directly reflect the result, but monitors the height difference of the next unit travel distance. In order to determine the slope road very accurately. Fig. 6 is a flow chart showing the procedure of the monitoring process of the next unit travel distance. Initially, the CPU 1 determines the current height value (referred to as (4)) (after the unit travel distance after the second unit travel distance, where the height difference does not indicate the downward slope) and the penultimate height value ( Whether the height/difference (absolute value) between (2)) is greater than 0 (ie '丨(4)一(7)丨> 〇), and the height value of this time and the previous height value (called (3)) Whether the height difference (absolute value) is greater than 0 (ie, |(4)-(3)| > 〇), and the height value of this time and the third degree of the last degree (referred to as (1)) Whether the height difference C absolute value between them is three times or more (i.e., 丨(4) - (1)| > Hx3) of the height difference associated with the predetermined gradient set as the slope road (step S401). When the above condition is satisfied (YES in step S401), the CPU } sets the down count to 3 to output the fall detection signal (step S402). Fig. 7A to 098126510 17 201006710 is also shown for each unit travel distance (L) The reflection diagram β 7A of the example of the height change shows the above-mentioned driving condition. That is, since the third slope is not, the negative slope is shown, On the other hand, the fourth slope shows the "downward" slope and the height difference that has been calculated three times in the past is three times or more the height difference from the threshold value set to "slope road" - so the CPU 1 determines that The slope shows the sloped road. When the field does not satisfy the above condition (NO in step S401), then, the CPU 1 determines whether the height difference between the human-temperance value and the penultimate height value is η in the upward direction or Above (ie, |(3)_(2)|彡Η), and the height difference between this time's height value and the previous height value is 疋Η or above in the upward direction (ie, |(4) )_(3)丨> Η) (Step 〇3). When the above condition is satisfied (YES in step S403), the CPU i will count upwards. Further, it is determined to be 2' to switch to the next L (m) (step S4〇4). Fig. 7B shows the above-described running condition, i.e., since the downward slope is continuously detected twice, but thereafter, the third and fourth slopes are continuous "upward" slope degrees' so the CPU 1 sets the up count to 2 To determine the slope road in the next _ process A. When the above condition is not satisfied (NO in step S403), cpu i determines whether only the height difference between this time height value and the previous height value is Η or more in the direction from - (i.e., 1 (4)-(3)1彡H) (step S405). When the above condition is satisfied (YES in step S405), cpu i sets the upward count to 1 to switch to the next l (m) decision (step S4 - 6). 098126510 18 201006710 Figure 7C shows the above driving situation. That is, since the downward slope is continuously detected, but the second slope is small and the next fourth slope is the upward slope, the CPU 1 sets the up count to 丨 to the subsequent process. The determination of the slope road is carried out. When the above condition is not satisfied (NO in step S405), since cpu 1 determines that the downward slope is continuously detected twice, but thereafter, a small gradient is continuously detected, so the CPU 1 resets the count to 〇 To determine the next unit distance traveled (step S407). Returning to the flowchart shown in FIG. 3, when A is not larger than Η (Α > Η) in step S211, and the countdown is not 2 in step S213, since the slope road cannot be determined yet, in order to determine The next unit breaks the distance (L) by the difference (step S218), and the CPU 1 shifts to step S201. By these processes, the slope determination process is ended. Returning to the flowchart shown in Fig. 2, when the slope of the same direction is detected three times or more during the gradient determination (step S103), the rising or falling detection signal is output. However, it is judged whether or not the subsequent slope road is continuous during the slope road detection (step S104). Fig. 8 is a flow chart showing the detailed procedure of the slope road determination process. The up-first CPU 1 determines whether or not the height difference A when the vehicle travels L (m) is greater than 0 (A > 〇) (step S501). When A is larger than 〇(a>〇), the CPU 1 determines that there is an upward slope, and when A is less than 0 (A < 〇), the CPU 1 determines that there is a downward slope. Then, the CPU 1 determines whether or not the height difference a when L(m) is traveled is greater than 098126510 19 201006710 H(m) (step S502). When the 差 degree difference A is larger than Η (A > H) (YES in step S5 〇 2), cpu 1 determines whether or not the up detection signal is now output (step S503). When the rising detection signal is now output, the CPU i continuously outputs the rising detection signal (step S504). On the other hand, when the rising detection signal is not output (NO in step s5〇3), 'the CPU' determines whether the output is now down. The signal is detected (step S507). f When the fall detection signal is not output now, cpui adds 1 (+1) to the upward count (step S508) to shift to step S5〇1 to determine the height difference of the next unit travel distance (L) (step S509). On the other hand, when the height difference A is not larger than H (A > H) (NO in step S5|), the CPU i determines whether or not the up detection signal is now output (step S505). When the rising detection information is now output, the curry performs the monitoring process of the next driving distance (step (10)). This process is entered for the following reasons. Even if there is only one check during the output rise detection signal; When the upward slope is used, the result cannot be directly reflected, but the height difference of the _ unit set driving distance is monitored to determine the slope road very accurately. FIG. 9 is a sub-unit of the program for displaying the monitoring process of the next unit driving distance— ^Knife CPU 1 determines the current height value (referred to as (8)) (after the line break distance system unit line distance, its (four) unit line defeat distance:: indicates the upward slope during the output rise detection signal) Whether the height difference between the height values (called (6)) is greater than the height value of 〇 (ie, 〇)' and (4) and the height value of the upper-order (referred to as (7) 098126510

20 201006710 之間的高度差是否大於G(即’丨(8H7)丨>G),以及這次的高 度值與倒數第三次的高度值(稱為(5))之間的高度差是否大 於與設定為“斜坡道路,,的規定坡度相關的高度差的三倍 或以上(即,丨⑻―(5)|>Hx3)(步驟S601)。 , #滿足上述條件(在步驟讓為是)時,咖丨繼續輸 出上升檢測信號(步驟S6〇2)。圖10A至1〇c是示意地顯 示每個單位行駛距離(L)的高度變化的例子的示意圖。圖 • 10A顯示上述的行駛狀況。即,由於上—次((6)至(7)) 的坡度不顯* “向上的坡度”,然而,這:欠的坡度顯示“向 上的坡度’並且在過去計算二次的高度差與設定為“斜坡 道路的臨界值的面度差的二倍或以上—樣大,因此CPU 1 連續地輸出上升檢測信號。 當不滿足上述條件(在步驟S601為否)時,於是,cpu 1 停止輸出斜坡道路檢測信號(步驟S603)。然後,CPU 1判定 參上一次的咼度值與倒數第二次的高度值之間的高度差在向 下的方向上是否是Η或以上(即,|(7)-(6)|彡H),以及這次 的高度值與上一次的高度值之間的高度差在向下的方向上 是否也是Η或以上(即,|(8卜(7)丨彡H)(步驟S604)。 - 當滿足上述條件(在步驟S604為是)時,CPU 1將向下 計數設定為2,以轉換到下一個L(m)的判定(步驟S605)。 圖10B顯示上述行敬狀況,即’由於上一次的坡度((6) 至(7))不表示向上的”坡度’於是’“向下的”坡度被 098126510 21 201006710 連續檢測料,CPU丨停止斜岐狄一,將向 下計數設定為2 ’並且在下—個軸巾狀斜坡道路。 當不滿足上述條件(在步驟S604為否)時,CPXJ i判定是 否只有這次的高度值與上—次的高度值之間的高度差在向 下的方向上是Η或以上(即,丨⑻—⑺丨> H)(步雜蠢)。20 Is the height difference between 201006710 greater than G (ie '丨(8H7)丨>G), and whether the height difference between this height value and the third last time height value (called (5)) is greater than Three times or more of the height difference associated with the predetermined slope set to "slope road," (ie, 丨(8) - (5)|> Hx3) (step S601). , # satisfy the above condition (in the step let's be When the curry continues to output the rising detection signal (step S6〇2), Figs. 10A to 1〇c are schematic diagrams schematically showing an example of the change in height of each unit traveling distance (L). Fig. 10A shows the above-described driving The condition, that is, since the slope of the upper-time ((6) to (7)) does not show * "upward slope", however, this: the slope of the undershoot shows "upward slope" and in the past calculated the second height difference The CPU 1 continuously outputs the rising detection signal when it is twice or more than the difference of the face value set to the threshold value of the slope road. When the above condition is not satisfied (NO in step S601), then, cpu 1 Stop outputting the slope road detection signal (step S603). Then, the CPU 1 determines the parameter Whether the height difference between the one-time value and the penultimate height value is Η or more in the downward direction (ie, |(7)-(6)|彡H), and the height value of this time Whether the height difference from the previous height value is also Η or more in the downward direction (ie, |(8 bu(7)丨彡H)) (step S604) - when the above condition is satisfied (at step S604) In the case of YES, the CPU 1 sets the down count to 2 to switch to the next L (m) decision (step S605). Fig. 10B shows the above-mentioned line condition, that is, 'because of the last slope ((6) To (7)) does not indicate the upward "slope" and then the 'down' slope is continuously detected by 098126510 21 201006710, the CPU 丨 stops the slanting Di, sets the down count to 2 ' and the next one When the above condition is not satisfied (NO in step S604), the CPXJ i determines whether only the height difference between the current height value and the upper-order height value is Η or more in the downward direction ( That is, 丨(8)-(7)丨> H) (step stupid).

當滿足上述條件(在步驟S606為是)時,CPU !將向下 计數《又疋為1以轉換到下一個L(m)的判定(步驟S6〇7)。 圖10C顯示上述行驶狀況。即,由於上—次的坡度((6) 至(7))不表示“向上的,,坡度,於是,“向下的”坡度被 檢測,CPU 1停止斜坡道路檢測信號之輸出,將向下計數設 定為1,以對後面的過程進行斜坡道路的判定。 當不滿足上述條件(在步驟S6〇6為否)時,由於Cpu 1 判定在輸出斜坡道路檢測信號期間連續地檢測很小的坡 度,因此,CPU 1將計數重置為〇,以轉換到下一個單位行When the above condition is satisfied (YES in step S606), the CPU ! will count down the judgment "Yes to 1 to switch to the next L (m) (step S6 - 7). Fig. 10C shows the above driving situation. That is, since the upper-order slope ((6) to (7)) does not indicate "upward, slope, and thus, the "downward" slope is detected, the CPU 1 stops the output of the slope detection signal and will go down The count is set to 1 to determine the slope course for the subsequent process. When the above condition is not satisfied (NO at step S6 〇 6), since the CPU 1 determines that the slope is continuously detected during the output of the slope road detection signal , therefore, CPU 1 resets the count to 〇 to switch to the next unit line

駛距離的判定(步驟S6〇8)。 回到圖8所示流程圖中,在步驟;55〇5中,當現在不輸出 上升檢測信號時,由於CPU 1不需要判定是否停止斜坡道 路檢測信號的輸出,因此CPU 1轉換到步驟S501 ’以判定 下一個單位行駛距離(乙)的高度差(步驟S5〇9) 。而且, 在步驟S507中’當此時輸出下降檢測信號時,CPU 1轉換 到下面所述的步驟S515中的下一次的監控過程。 另一方面’在步驟S501中,A不大於〇 ( A>0),CPU 1 098126510 22 201006710 類似地判定向下的坡度。起初,CPU丨進行用於將Ax ( 設定為A的過程(步驟ssiOhCPIJI進行這個過程,G CPU1藉由其絕對值判定向下坡度的高度差(負值)。… 當高度差A (絕對值)大於H(A>H)(在步驟s 311為是) 時,CPU 1判定現在是否輸出下降檢測信號(步驟Μ。) 當現在輸出下降檢測信號時,CPU i連續地輸出下 號(步驟S513)m當現在*輸出下降檢測信號^ (在步驟S512為否),於是cpu丨判定現在是否輸出上、 檢測信號(步驟S516)。當現在不輸出上升檢測信號時, 1對向下計數加1(+1)(步驟S517),以轉換到步驟 以判定下一個單位行駛距離(]L)的高度差(步驟Μ”)1, 另一方面’當高度差A (絕對值)*大於Η (在步驟 為否)時’ CPU 1判定現在是否輸出下降檢剛信號(步 S514)。當現在輸出下降檢測信號時,cpu i進行用於下驟 次的單位行駛距離的監控過程(步驟S515)。因為下述理 進行這個過程。即便在輸出下降檢測信號期間“向下的,,= 度只有-次沒有檢咖時,也不直接反映結果,但是監控下 -個單位行駛距離的高度差,以便非常準確地判定斜坡道 路 圖11是顯示下-次的單位行驶距離的監控過程的程序的 流程圖。起初,CPU 1判定這次的高度值(稱為⑻在行駛 -單位行駛麟後的料躲轉之後,其巾在輸出下降檢 098126510 23 201006710 測仏號期間該單位行駛距離的高度差不表示向下的坡度)與 倒數第二個高度值(稱為(6))之間的高度差(絕對值)是否大 於〇(即’ |(8)-(6)丨> 〇),以及這次的高度值與上一次的高度 值(稱為(7))之間的高度差(絕對值)是否大於0(即,丨(8)-(7)丨> 〇),以及這次的高度值和倒數第三次的高度值(稱為(5))之間 的同度差(絕對值)是否大於與設定為“斜坡道路,,的規定 坡度相關的高度差的三倍或以上(即,丨(8)_(5)丨〉Ηχ3)(步驟 S701)〇 當滿足上述條件(在步驟S701為是)時,CPU i繼續輸 出下降檢測信號(步驟S702)。圖12A至12C是示意地顯 示每個單位行驶距離⑴的高度變化的例子的示意圖。圖 12A顯不上述的行駛狀況。即,由於上一次的坡度((6)至 (:))不顯示‘‘向下的”坡度,但是這次的坡度顯示“向下 的坡度,並且在過去計算三次的高度差是設定為“斜坡道 路的臨界值的尚度差的三倍或以上’因此CPU 1連續地 輸出下降檢測信號。 ▲當不滿足上述條件(在步驟讀為否)時,於是,CPU i 停止斜坡道路檢測信號之輸出(步驟S7〇3)。然後,CPU 1判 疋上人的同度值與倒數第二次的高度值之間的高度差在 向上的方向上疋否是H或以上(即’ 1(7)-(6)|》H),以及這 次的南度值與上—次的高度值之間的高度差在向 上的方向 疋否也疋Η或以上(即,|⑻_(7)| >印(步棘s7〇4)。 098126510 201006710 當滿足上述條件(在步驟S704為是)時,CPU 1蔣向> δ十數没疋為2,以轉換到下一個L(m)的判定(步驟 圖12B顯示上述行駛狀況。即,由於上一次的坡度((6) 至(7))不表示“向下的”坡度,於是,‘‘向上的,,玻虞被 連續檢測兩次’ CPU 1停止斜坡道路檢測信號之輸出’ 向上计數设定為2,並且在下一個過程中判定斜坡道絡 當不滿足上述條件(在步驟s?〇4為否)時,cpu !列定是 • 否只有這次的高度值與上一次的高度值之間的高度差在向 上的方向上是Η或以上(即,|(8)-(7)|彡η)(步驟S706)。 當滿足上述條件(在步驟S7〇6為是)時,CPU i將向上 §十數设疋為1以轉換到下一個L(m)的判定(步驟S7〇7)。 圖12C顯示上述行駛狀況。即,由於上一次的坡度((6) 至(7))不表示“向下的”坡度,於是,檢測“向上的,,坡 度,CPU 1停止斜坡道路檢測信號之輸出,以將向上計數設 • 定為1,並對後面的過程進行斜坡道路的判定。 冨不滿足上述條件(在步驟S706為否)時,由於cpu 1 判定在輸出斜坡道路檢測信號期間連續地檢測很小的坡 度,因此,CPU 1將計數重置為0,以轉換到下一個單位行 • 駛距離的判定(步驟S708)。 回到圖8所示流程圖中,在步驟S514中,當現在不輸出 下降檢測信號時,由於CPU 1不需要判定是否停止斜坡道 路檢測信號的輸出,因此CPU 1轉換到步驟S5〇1,以判定 098126510 25 201006710 下-個单位行駛距離α)的高度差(步驟s5i8)。而且, 在步驟S516中,當此時輸出上升檢測信號時,CPU1轉換 到步驟隨中的上面所述的下—次的監控過程。 、 當車輛通過隨道時,因為由於大氣壓力擾動所引起的通常 不出現的陡峭的坡度偶爾被檢測為非正常值,因此進行雜訊 除去過程’以在本發明中儘可能防止這種現象。較佳地在坡 度判定過程巾狀坡度之前來進行_崎去過程(例如, 在圖3所示的流程圖中纟“A”顯示的點)。圖U是顯示雜 訊除去過程的詳細程序的流程圖。 ❹The determination of the driving distance (step S6〇8). Returning to the flowchart shown in FIG. 8, in the step; 55〇5, when the rise detection signal is not output now, since the CPU 1 does not need to determine whether to stop the output of the ramp detection signal, the CPU 1 shifts to step S501' The height difference of the next unit travel distance (B) is determined (step S5〇9). Moreover, in step S507, when the down detection signal is output at this time, the CPU 1 shifts to the next monitoring process in step S515 described below. On the other hand, in step S501, A is not larger than 〇 (A > 0), and CPU 1 098126510 22 201006710 similarly determines the downward slope. Initially, the CPU performs the process for setting Ax (set to A (step ssiOhCPIJI performs this process, G CPU1 determines the height difference (negative value) of the downward slope by its absolute value.... When the height difference A (absolute value) When it is greater than H (A > H) (YES in step s311), the CPU 1 determines whether or not the down detection signal is output now (step Μ.) When the fall detection signal is now output, the CPU i continuously outputs the lower number (step S513) m is now *outputs the falling detection signal ^ (NO in step S512), and then cpu 丨 determines whether or not the upper and detection signals are now output (step S516). When the rising detection signal is not output now, 1 pair is counted down by 1 ( +1) (step S517) to switch to the step to determine the height difference of the next unit travel distance (]L) (step Μ")1, and on the other hand 'when the height difference A (absolute value)* is greater than Η (in When the step is NO), the CPU 1 determines whether or not the down detection signal is now output (step S514). When the down detection signal is now output, the CPU i performs the monitoring process for the unit travel distance of the next step (step S515). The following process is carried out. Even During the output of the falling detection signal, "downward, = degree is only - when there is no check, the result is not directly reflected, but the height difference of the driving distance of the next unit is monitored, so that the slope road is very accurately determined. A flowchart showing the procedure of the monitoring process of the next-time unit travel distance. Initially, the CPU 1 determines the height value of this time (referred to as (8) after the vehicle after the travel-unit travels, the towel is in the output drop detection 098126510 23 201006710 The height difference between the distance traveled by the unit during the slogan does not indicate the downward slope) and the height difference (absolute value) between the penultimate height value (called (6)) is greater than 〇 (ie ' | (8)-(6)丨> 〇), and whether the height difference (absolute value) between this height value and the previous height value (called (7)) is greater than 0 (ie, 丨(8) -(7)丨> 〇), and whether the same degree difference (absolute value) between the height value and the third time height value (called (5)) is greater than the setting with the "slope road, Specify three or more times the height difference associated with the slope (ie, 丨(8)_(5)丨>Ηχ3) ( Step S701) When the above condition is satisfied (YES in step S701), the CPU i continues to output the fall detection signal (step S702). Figs. 12A to 12C are diagrams schematically showing an example of the change in height of each unit travel distance (1). Figure 12A shows the driving situation described above. That is, since the last slope ((6) to (:)) does not show the ''downward' slope, but this time the slope shows "downward slope, and in the past The height difference calculated three times is set to "three times or more of the difference in the threshold value of the slope road" so the CPU 1 continuously outputs the falling detection signal. ▲ When the above condition is not satisfied (NO in the step), then the CPU i stops the output of the ramp detection signal (step S7〇3). Then, the CPU 1 determines whether the height difference between the upper-degree value of the uppermost person and the second-to-last height value is H or more in the upward direction (ie, '1(7)-(6)|"H ), and the height difference between the south degree value and the upper-order height value in the upward direction is also 疋Η or above (ie, |(8)_(7)| >print (step s7〇4) 098126510 201006710 When the above condition is satisfied (YES in step S704), the CPU 1 indicates that the δ number is not 2, so as to switch to the next L (m) (step FIG. 12B shows the above-described running condition). That is, since the last slope ((6) to (7)) does not indicate the "downward" slope, then, ''upward, the glass is continuously detected twice'" CPU 1 stops the output of the slope detection signal ' The up count is set to 2, and in the next process, it is determined that the ramp path does not satisfy the above conditions (in step s? 〇 4 is NO), cpu ! is set to be • No only this time the height value and the last time The height difference between the height values is Η or more in the upward direction (ie, |(8) - (7) | 彡η) (step S706). When the above condition is satisfied (in step When the step S7 〇 6 is YES), the CPU i sets the upward § ten to 1 to switch to the next L (m) determination (step S7 〇 7). Fig. 12C shows the above-described running condition. The slope ((6) to (7)) does not indicate the "downward" slope, so, detecting "upward, slope, CPU 1 stops the output of the slope detection signal to set the up count to 1, The subsequent process is judged on the slope road. When the above condition is not satisfied (NO in step S706), since cpu 1 determines that a small gradient is continuously detected during the output of the slope road detection signal, the CPU 1 counts Reset to 0 to switch to the next unit line • Determination of the driving distance (step S708). Returning to the flowchart shown in Fig. 8, in step S514, when the falling detection signal is not output now, since the CPU 1 does not It is necessary to determine whether or not to stop the output of the slope road detection signal, so the CPU 1 shifts to step S5〇1 to determine the height difference of the unit distance travel distance α) of 098126510 25 201006710 (step s5i8). Also, in step S516, when The output rises When the signal is measured, the CPU 1 switches to the next-time monitoring process described above in the step. When the vehicle passes the track, the steep slope that usually does not occur due to atmospheric pressure disturbance is occasionally detected as non- The normal value, therefore the noise removal process is performed 'to prevent this phenomenon as much as possible in the present invention. It is preferable to carry out the _slag process before the slope determination process scale slope (for example, in the flow chart shown in FIG. 3 The point displayed in the middle "A". Figure U is a flow chart showing the detailed procedure of the noise removal process. ❹

起初’ CPU 1判定所計算的高度差(或其絕對值)A是否超 過與作為非正常的坡度值的臨界值(在這個實施例中設定為 20%)相關的高度差Hn (步驟S801)。當高度差A不超過 Hn (在步驟S801為是)時,CPU 1判定在相應的單位行駛 距離中的坡度值不是非正常的,以重置雜訊計數(步驟 S802),並返回到坡度判定過程。 另一方面’當高度差A超過Hn(在步驟S801為否)時,CPtT 1認為在相應的單位行駛距離中的坡度值是非正常的,並且 不使用該坡度值對雜訊計數加1(+1)(步驟S803)。於是,CPU 1判定雜訊計數是否是3(步驟S804)。當雜訊計數不是3時, CPU 1切換到下一個L(m)的高度差的判定(步驟S805)。另 一方面,當雜訊計數是3時,CPU 1判定該坡度值不是非正 常值,並且表示陡峭的斜坡道路,以返回到坡度判定過程。 098126510 26 201006710 藉由上述雜訊過程,能夠防止由於非正常大氣壓力所導致的 錯誤檢測,以非常準確地檢測斜坡道路。 而且,在本發明中,在輸出斜坡道路檢測信號期間所判定 的斜坡道路的坡度的值可以適當地改變。例如,當道路一曰 被判疋為斜坡道路之後’可以減小(mitigate)後面的坡度 的許可值’使得能夠適當地檢測連續比較長距離的斜坡道 路。在這種情況下,較佳地進行斜坡道路之坡度的改變過程 ❿在斜坡道路判定過程的第一部分(圖8所示的流程圖的B 所示的點)中。 圖14是顯示斜坡道路判定過程的變化過程的詳細程序的 流程圖。起初’ CPU 1判定現在是否輸出斜坡道路檢測信號 (步驟S901)。當現在輸出斜坡道路檢測信號時,cpu 1改 變設定為斜坡道路的坡度的臨界值(步驟S902)。例如,在 這個實施例中’當判定現在輸出斜坡道路檢測信號時,減小 馨 第一臨界值(2.5% )以設定為1.2%。藉由這個改變過程, 能夠更靈活地檢測斜坡道路。 在這個實施例中,藉由在過去三次的坡度來判定斜坡道 • 路,然而,判定的次數不限於三次’並且次數可以是兩次或 • 四次。而且,較佳地可以由使用者自由地設定次數。 如上所述,根據這個實施例的斜坡道路檢測裝置,由於僅 僅藉由對單位行駛距離在相同的方向上三次檢測相同的坡 度,則道路被檢測為“斜坡道路”。例如,當斜坡道路檢測 098126510 27 201006710 裝置安裝在車輛内部時’即使在車輛行駛期間上升或者放低 車窗玻璃,在車輛完全打開車窗玻璃行駛期間,該車輛與相 對的車輛相互通過’或該車輛通過隧道,使得大氣壓力的指 示瞬間大大地改變時,也能夠非常準確地檢測斜坡道路。因 此’能夠適當地實現交通控制或駕駛員的評估。 - 雖然用具體的較佳實施例示出並描述了本發明,但是本領 - 域的技術人員應當理解,根據本發明的技術能夠進行各種變 化和修改。很顯然,這些變化和修改在由申請專利範圍所限❿ 定的本發明的精神實質和範圍内。 本發明基於2008年8月7日所提交的日本專利申請 Ν〇·2008-204749,其内容併入於此供參考。 【圖式簡單說明】 藉由參考附圖詳細地描述本發明的較佳實施例,本發明的 上述目的和優點將變得更加清楚,其中: 圖1是本發明的實施例中的斜坡道路檢測裝置的電路方 ❹ 塊圖; 圖2是顯示本發明的實施例中的斜坡道路檢測裝置的斜 坡道路檢測操作之程序的流程圖; 圖3是顯示坡度判定過程的詳細程序的流程圖; 圖4是顯示下一個單位行驶距離的監控過程的程序的流 程圖; 圖5Α至圖5C是示意地顯示每個單位行駛距離的高度變 098126510 28 201006710 化的例子的示意圖; 圖ό是顯示下一個單位行駿距離的監控過程的程序的流 程圖; 圖7Α至圖7C是示意地顯示每個單位行馱距離的高度變 化的例子的示意圖; 圖8是顯示斜坡道路判定過程的詳細程序的流程圖; 圖9是顯示下一個單位行駛距離的監控過程的程序的流 # 程圖; 圖10Α至圖l〇C是示意地顯示每個單位行駛距離的高度 變化的例子的不意圖, 圖11是顯示下一個單位行駛距離的監控過程的程序的流 程圖; 圖12Α至圖12C是示意地顯示每個單位行敬距離的高度 變化的例子的示意圖; _ 圖13是顯示雜訊去除過程的詳細程序的流程圖; 圖14是顯示斜坡道路判定過程的變化過程的詳細程序的 流程圖;以及 圖15是說明在斜坡道路中的水平距離與行駛姖離之間的 關係的示意圖。 【主要元件符號說明】 1 2Initially, the CPU 1 determines whether the calculated height difference (or its absolute value) A exceeds the height difference Hn associated with the critical value (set to 20% in this embodiment) as the abnormal gradient value (step S801). When the height difference A does not exceed Hn (YES in step S801), the CPU 1 determines that the gradient value in the corresponding unit travel distance is not abnormal to reset the noise count (step S802), and returns to the slope determination. process. On the other hand, when the height difference A exceeds Hn (NO in step S801), CPtT 1 considers that the gradient value in the corresponding unit travel distance is abnormal, and does not use the slope value to add 1 to the noise count (+ 1) (Step S803). Then, the CPU 1 determines whether or not the noise count is 3 (step S804). When the noise count is not 3, the CPU 1 switches to the determination of the height difference of the next L (m) (step S805). On the other hand, when the noise count is 3, the CPU 1 judges that the gradient value is not an abnormal value, and indicates a steep slope road to return to the gradient determination process. 098126510 26 201006710 By the above-mentioned noise process, it is possible to prevent false detection due to abnormal atmospheric pressure, so as to detect the slope road very accurately. Moreover, in the present invention, the value of the gradient of the slope road determined during the output of the slope road detection signal can be appropriately changed. For example, when the road is judged as a sloped road, the permission value of the slope which can be mitigated can be appropriately detected to continuously detect the long-distance slope path. In this case, it is preferable to carry out the process of changing the gradient of the slope road in the first portion of the slope road determination process (the point shown by B in the flowchart shown in Fig. 8). Fig. 14 is a flow chart showing the detailed procedure of the changing process of the slope road determining process. Initially, the CPU 1 determines whether or not the ramp road detection signal is now output (step S901). When the ramp road detection signal is now output, the cpu 1 is changed to the threshold value of the slope of the slope road (step S902). For example, in this embodiment, when it is determined that the ramp detection signal is now output, the first critical value (2.5%) is reduced to be set to 1.2%. With this change process, it is possible to detect the slope road more flexibly. In this embodiment, the ramp path is determined by the slope of the past three times, however, the number of determinations is not limited to three times' and the number of times may be two or four times. Moreover, it is preferable that the number of times can be freely set by the user. As described above, according to the slope road detecting device of this embodiment, since the same gradient is detected three times only in the same direction for the unit running distance, the road is detected as "slope road". For example, when the slope road detection 098126510 27 201006710 device is installed inside the vehicle 'even if the vehicle window is raised or lowered during driving, the vehicle and the opposite vehicle pass each other during the vehicle's full opening of the window glass' or When the vehicle passes through the tunnel so that the indication of the atmospheric pressure changes greatly instantaneously, the slope road can also be detected very accurately. Therefore, it is possible to appropriately implement traffic control or driver evaluation. The present invention has been shown and described with respect to the preferred embodiments thereof, and those skilled in the art will understand that various changes and modifications can be made in accordance with the techniques of the invention. It is apparent that these variations and modifications are within the spirit and scope of the invention as defined by the scope of the claims. The present invention is based on Japanese Patent Application No. 2008-204749, filed on Jan. BRIEF DESCRIPTION OF THE DRAWINGS The above described objects and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments of the invention. FIG. 2 is a flow chart showing a procedure of a slope road detecting operation of the slope road detecting device in the embodiment of the present invention; FIG. 3 is a flowchart showing a detailed procedure of the slope determining process; Is a flowchart of a procedure for displaying a monitoring process of the next unit travel distance; FIGS. 5A to 5C are schematic diagrams schematically showing an example of a height change of each unit travel distance 098126510 28 201006710; FIG. FIG. 7A to FIG. 7C are schematic diagrams schematically showing an example of a change in height of each unit traveling distance; FIG. 8 is a flowchart showing a detailed procedure of a slope road determining process; 9 is a flow chart showing the program of the monitoring process of the next unit travel distance; FIG. 10A to FIG. FIG. 11 is a flowchart showing a procedure of a monitoring process of the next unit travel distance; FIG. 12A to FIG. 12C are diagrams schematically showing an example of a height change of each unit line distance. Figure 13 is a flow chart showing the detailed procedure of the noise removal process; Figure 14 is a flow chart showing the detailed procedure of the change process of the slope road determination process; and Figure 15 is a diagram illustrating the horizontal distance and travel in a sloped road A schematic diagram of the relationship between detachment. [Main component symbol description] 1 2

CPUCPU

EEPROM 098126510 29 201006710 3 大氣壓力感測器 4 電源電路 5 IGN信號 6 介面電路 7 速度信號 8 介面電路 9 介面電路 10 上升檢測信號 11 下降檢測信號 12 錄盤 13 錶盤 098126510 30EEPROM 098126510 29 201006710 3 Atmospheric pressure sensor 4 Power circuit 5 IGN signal 6 Interface circuit 7 Speed signal 8 Interface circuit 9 Interface circuit 10 Ascending detection signal 11 Falling detection signal 12 Recording 13 Dial 098126510 30

Claims (1)

201006710 七、申請專利範圍: 1,一種斜坡道路檢測方法,包括: 高度計算步驟,每次車輛倾—規定單位行駛距離,根據 從一大氣壓力感測器所得到的大氣壓力資料來計算一高度; • 坡度計算步驟’根據在上-次高度計算步驟中所計算的高 度與目前高度計算步驟中所計算的高度之間的差以及單位 行駛距離’來計算車輛行駛的路面的坡度; • 計數步驟,計數在坡度計算步驟中的計算坡度的次數;以 及 斜坡道路確定步驟,當在規定的次數中所執行的坡度計算 步驟所得到的坡度連續地位於規定的範圍内時,確定該路面 是斜坡道路。 2.如申請專利範圍第1項之斜坡道路檢測方法,其中,在 斜坡道路確定步驟中,當僅僅在規定次數的坡度計算步驟中 ❿所計算的坡度不位於該規定範圍内,而在下一次坡度計算步 驟中所計算的坡度位於該規定範圍内時,確定該路面是斜坡 道路。 • 3·如申請專利範圍第2項之斜坡道路檢測方法,其中,在 •該斜坡道路確定步驟中,當在該下一次坡度計算步驟中所計 算的坡度位於該規定範圍内,並且在過去的規定次數的坡度 計算步驟中所計算的坡度的平均值位於該規定範圍内時,判 定該路面是斜坡道路。 098126510 31 201006710 4_如申請專利範圍第1至3項中任一項之斜坡道路檢測方 法,其中,在該斜坡道路確定步驟中,當在坡度計算步驟中 所計算的坡度大於該規定範圍的上限值時,在該坡度計算步 驟中所計算的大於上限值的坡度不計數在該坡度計算步驟 中的計算坡度的該規定次數中。 5. 如申請專利範圍第1至3項中任一項之斜坡道路檢測方 法’其中’當在該斜坡道路確定步驟中確定該路面是斜坡道 路時,該規定範圍在該確定之後改變。 6. —種斜坡道路檢測裝置,包括: 一大氣壓力感測器;以及 一控制區段’其根據從該大氣壓力感測器所輸入的大氣壓 力資料來確定車輛行駛的路面是否是斜坡道路, 其中該控制區段包括: 一高度計算區段,每次車輛行駛一規定單位行駛距離,根 據從該大氣壓力感測器所得到的大氣壓力資料來計算一高 度; 一坡度計算區段,其根據在上一次所計算的高度與目前所 計算的高度之間的差以及該單位行駛距離,來計算路面的坡 度; 一計數區段’其計數計算該坡度的次數;以及 一斜坡道路確定區段,當在規定的次數中由該坡度計算區 段所得到的坡度連續地位於規定的範圍内時,確定路面是斜 098126510 32 201006710 坡道路。 7. 如申明專利範圍弟6項之斜坡道路檢測裳置,其中,當 由該坡度計算區段僅僅在規定次數中所計算的坡度不位於 該規定範圍内,而在下一次所計算的坡度位於該規定範圍内 時,該斜坡道路確定區段確定路面是斜坡道路。 8. 如申請專利範圍第7項之斜坡道路檢測裝置,其中,當 在下一次所計算的坡度位於該規定範圍内,並且在過去的規 鲁定次數中所計算的坡度的平均值位於該規定範圍内時,該斜 坡道路確定區段確定路面是斜坡道路。 9. 如申請專利範圍第6至8項中任一項之斜坡道路檢測裝 置,其中,當由該坡度計算區段所計算的坡度大於該規定範 圍的一上限值時’該計數區段不將該大於該上限值的坡度計 數在規定的次數内。 10. 如申請專利範圍第6至8項中任一項之斜坡道路檢測 _ 裝置’其中’當該斜坡道路確定區段確定路面是斜坡道路 時,該控制區段在該確定之後改變該規定範圍。 098126510 33201006710 VII. Patent application scope: 1. A method for detecting slope roads, comprising: a height calculation step, each vehicle tilting - specifying a unit driving distance, and calculating a height based on atmospheric pressure data obtained from an atmospheric pressure sensor; • The slope calculation step 'calculates the gradient of the road surface on which the vehicle is traveling based on the difference between the height calculated in the upper-order height calculation step and the height calculated in the current height calculation step and the unit travel distance'; The number of times of calculating the gradient in the slope calculating step is counted; and the slope road determining step determines that the road surface is a slope road when the slope obtained by the slope calculating step performed in the prescribed number of times is continuously within the prescribed range. 2. The method for detecting a slope road according to claim 1, wherein in the slope road determining step, when only the slope of the predetermined number of slopes is calculated, the calculated slope is not within the prescribed range, and the next slope is When the slope calculated in the calculation step is within the specified range, it is determined that the road surface is a slope road. 3. The method of detecting a slope road according to item 2 of the patent application, wherein, in the slope road determining step, when the slope calculated in the next slope calculating step is within the prescribed range, and in the past When the average value of the gradient calculated in the slope calculation step of the predetermined number of times is within the predetermined range, it is determined that the road surface is a slope road. The sloping road detecting method according to any one of claims 1 to 3, wherein, in the slope road determining step, when the slope calculated in the slope calculating step is larger than the predetermined range At the limit value, the slope greater than the upper limit value calculated in the gradient calculating step is not counted in the predetermined number of times of calculating the gradient in the gradient calculating step. 5. The slope road detecting method of any one of claims 1 to 3, wherein the prescribed range is changed after the determination when it is determined in the slope road determining step that the road surface is a slope road. 6. A slope road detecting device comprising: an atmospheric pressure sensor; and a control section 'determining whether the road surface on which the vehicle is traveling is a slope road based on atmospheric pressure data input from the atmospheric pressure sensor Wherein the control section comprises: a height calculation section, each time the vehicle travels a prescribed unit travel distance, calculating a height based on atmospheric pressure data obtained from the atmospheric pressure sensor; a slope calculation section, according to Calculating the slope of the road surface by the difference between the last calculated height and the currently calculated height and the unit travel distance; a counting section 'the number of times the count calculates the slope; and a slope road determining section, When the slope obtained by the slope calculating section is continuously within the prescribed range in a predetermined number of times, it is determined that the road surface is a slope 098126510 32 201006710 slope road. 7. If the slope road detection of the sixth part of the patent scope is declared, the slope calculated by the slope calculation section only in the specified number of times is not within the specified range, and the slope calculated at the next time is located in the slope. The slope road determination section determines that the road surface is a slope road when the range is within the prescribed range. 8. The slope road detecting device of claim 7, wherein the slope calculated in the next time is within the prescribed range, and the average value of the slope calculated in the past number of rules is located in the specified range. In the meantime, the slope road determining section determines that the road surface is a slope road. 9. The slope road detecting device according to any one of claims 6 to 8, wherein when the slope calculated by the slope calculating section is greater than an upper limit value of the predetermined range, the counting section does not The slope greater than the upper limit is counted within a predetermined number of times. 10. The slope road detection_device of any one of claims 6 to 8 wherein: when the slope road determination section determines that the road surface is a slope road, the control section changes the prescribed range after the determination . 098126510 33
TW098126510A 2008-08-07 2009-08-06 Slope road detecting method and slope road detecti TWI359088B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204749A JP5235114B2 (en) 2008-08-07 2008-08-07 Slope detection method and slope detection device

Publications (2)

Publication Number Publication Date
TW201006710A true TW201006710A (en) 2010-02-16
TWI359088B TWI359088B (en) 2012-03-01

Family

ID=41656550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098126510A TWI359088B (en) 2008-08-07 2009-08-06 Slope road detecting method and slope road detecti

Country Status (4)

Country Link
JP (1) JP5235114B2 (en)
KR (1) KR101117395B1 (en)
CN (1) CN101644568B (en)
TW (1) TWI359088B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582864B2 (en) * 2010-05-11 2014-09-03 矢崎エナジーシステム株式会社 Slope detection method and slope detection device
JP5836711B2 (en) * 2011-09-06 2015-12-24 矢崎エナジーシステム株式会社 Slope detection device for vehicle operation recorder
KR101727329B1 (en) * 2011-10-19 2017-04-17 엘에스산전 주식회사 An apparatus and method for mesuring velocity of train
JP6058907B2 (en) * 2012-03-29 2017-01-11 矢崎エナジーシステム株式会社 In-vehicle recording device
CN104002816B (en) * 2014-05-22 2018-04-27 厦门雅迅网络股份有限公司 A kind of vehicle geographical environment, which excavates, perceives fuel saving method
JP2016070439A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Control device of power split type continuously variable transmission
CN104554271B (en) * 2014-12-08 2017-09-12 昆明理工大学 A kind of road gradient and vehicle condition parametric joint method of estimation based on parameter estimating error
CN104482919B (en) * 2014-12-10 2016-11-30 陕西法士特齿轮有限责任公司 A kind of commercial car dynamic gradient test system and method for testing thereof
JP6498061B2 (en) * 2015-07-23 2019-04-10 セイコーインスツル株式会社 Altimeter
EP3682417B1 (en) * 2017-09-10 2024-01-10 Tactile Mobility Ltd. Method and apparatus for evaluating a weight of the vehicle
CN113682314B (en) * 2021-09-22 2023-06-02 汤恩智能科技(常熟)有限公司 Gradient detection method and terminal
KR102624067B1 (en) * 2021-11-26 2024-01-10 한국자동차연구원 An apparatus and method for measuring an inclination angle of a real-time road using a vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057009B2 (en) * 1978-06-23 1985-12-12 株式会社日本自動車部品総合研究所 Vehicle slope detection device
JPS61250514A (en) * 1985-04-26 1986-11-07 Nippon Soken Inc Gradient detector for vehicle
JPH08261755A (en) * 1995-03-20 1996-10-11 Cat I:Kk Altitude measuring device
KR100220046B1 (en) 1995-12-20 1999-09-01 정몽규 Device and method for control of fuel injection at start with inclination road
JP2001331832A (en) * 2000-05-19 2001-11-30 Horiba Ltd Digital travel recording system
JP2004138553A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Device, method, program, and record medium for detecting position of moving object
JP4314250B2 (en) * 2006-05-23 2009-08-12 トヨタ自動車株式会社 Road surface determination device for vehicles
JP4816339B2 (en) * 2006-08-31 2011-11-16 ソニー株式会社 Navigation device, navigation information calculation method, and navigation information calculation program

Also Published As

Publication number Publication date
JP2010039954A (en) 2010-02-18
JP5235114B2 (en) 2013-07-10
CN101644568A (en) 2010-02-10
CN101644568B (en) 2013-02-06
KR20100019331A (en) 2010-02-18
KR101117395B1 (en) 2012-03-07
TWI359088B (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TW201006710A (en) Slope road detecting method and slope road detecting device
CN102610058B (en) For the method judging driver attention
US20090312945A1 (en) Navigation device and method, navigation program, and storgage medium
CN104205187B (en) Fortuitous event predicts sensitivity judgment means
JP2010205205A (en) Signal controller
CN106384524A (en) System of assisting driver to determine whether to pass through traffic light intersection based on navigation and method thereof
KR100828796B1 (en) Calculation method of distance to empty of the trip computer
JP6790935B2 (en) Accident control devices, accident control methods, and accident control programs
JP5609192B2 (en) Information providing program, information providing apparatus, and information providing method
JP6330291B2 (en) Safe driving degree judgment device
US8793047B2 (en) System and method for vehicle spinout detection
JP5608429B2 (en) Operation state analysis method
CN208889032U (en) A kind of workshop device for detecting distance
JPH08106593A (en) Judging device for traffic flow state
JP2018028835A (en) Parking lot congestion degree estimation system, parking lot congestion degree estimation server, and parking lot congestion degree estimation program
JPH08161686A (en) Method for measuring congestion using sensor data
JP6775173B1 (en) Reverse run detection device, reverse run detection method and reverse run detection program
JP7425759B2 (en) Information processing device, information processing method, and information processing program
CN109461324A (en) A kind of workshop device for detecting distance
JP6851022B2 (en) Reverse run detection device, reverse run detection method and reverse run detection program
JP2000339585A (en) Display method for traffic congestion information
KR100376427B1 (en) Railway crossing automation system
JPS62113300A (en) Vehicle congestion alarm system
TWI444933B (en) Method to direct vehicles
JPS607364A (en) Method of confirming vehicle to be measured in measurement of vehicle running speed

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees