TW201006295A - Linear heater - Google Patents

Linear heater Download PDF

Info

Publication number
TW201006295A
TW201006295A TW97128293A TW97128293A TW201006295A TW 201006295 A TW201006295 A TW 201006295A TW 97128293 A TW97128293 A TW 97128293A TW 97128293 A TW97128293 A TW 97128293A TW 201006295 A TW201006295 A TW 201006295A
Authority
TW
Taiwan
Prior art keywords
layer
heat source
carbon
carbon nanotube
line heat
Prior art date
Application number
TW97128293A
Other languages
Chinese (zh)
Other versions
TWI380728B (en
Inventor
Chang-Hong Liu
Ding Wang
Shou-Shan Fan
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97128293A priority Critical patent/TWI380728B/en
Publication of TW201006295A publication Critical patent/TW201006295A/en
Application granted granted Critical
Publication of TWI380728B publication Critical patent/TWI380728B/en

Links

Landscapes

  • Resistance Heating (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a linear heater. The linear heater includes a linear substrate, a heating layer disposed on a surface of the linear substrate, two electrodes disposed on a surface of the heating layer separately. The two electrodes are electrically connected with the heating layer. The heating layer includes at least one carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotubes. The carbon nanotubes in the carbon nanotube layer are isotropically arranged, oriented along a same direction, or oriented along different directions.

Description

201006295 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種線熱源’尤其涉及一種基於奈米碳管 的線熱源。 【先前技術】 熱源於人們的生產、生活、科研中起著重要的作用。 線熱源係常用的熱源之一,被廣泛應用於電加熱器、紅外 治療儀、電暖器等領域。 0% 請參見圖1,先前技術提供一種線熱源10,其包括一 中空圓柱狀支架102 ; —加熱層104設置於該支架102表 面’ 一絕緣保護層106設置於該加熱層1 〇4表面;兩個電 極110分別設置於支架1〇2兩端,且與加熱層1〇4電連接; 兩個夾緊件108分別將兩個電極no與加熱層1〇4卡固於 支架102兩端。其中,加熱層1〇4通常採用一碳纖維紙通 過纏繞或包裹的方式形成。當通過兩個電極11〇對該線熱 ❹源10施加一電壓時,所述加熱層1〇4產生焦耳熱,並向周 圍進行熱輻射。所述碳纖維紙包括紙基材及雜亂分佈於該 紙基材中的瀝青基碳纖維。其中,紙基材包括纖維素纖維 及樹脂等的混合物’瀝青基碳纖維的直徑為3〜6毫米,長 度為5〜20微米。 然而’採用碳纖維紙作為加熱層具有以下缺點:第一, 呶纖維紙厚度較大,一般為幾十微米,使線熱源不易做成 U型結構,無法應用於微型器件的加熱。第二,由於該破 纖維紙中包含紙基材,故,該碳纖維紙的密度較大,重量 201006295 • 大’使得採用該碳纖維紙的線熱源使用不便。第三,由於 .該碳纖維紙中的瀝青基碳纖維雜亂分佈,故,該碳纖維紙 的強度較小,柔性較差,容易破裂,限制其應有範圍。第 四’碳纖維紙的電熱轉換效率較低,不利於節能環保。 有鑒於此,提供一種重量小,強度大,適應用於微型 器件的加熱,且電熱轉換效率較低,利於節能環保的線熱 源實為必要。 【發明内容】 ❹ 種線熱源包括一線狀基底;一加熱層設置於線狀基 底的表面;及兩個電極間隔設置於加熱層的表面,並分別 與該加熱層電連接,其令,所述的加熱層包括一奈米碳管 層,且該奈米碳管層包括各向同性、沿一固定方向取向或 不同方向取向擇優排列的複數個奈米碳管。 相較於先則技術,所述的線熱源具有以下優點:第一, 奈米碳管可方便地製成任意尺寸的奈米碳管層,既可應用 ©於宏觀領域也可應用於微觀領域。第二,奈米碳管比碳纖 維八有更小的进度,故,採用奈米碳管層的線熱源具有更 ^的重量’使用方便。第三,奈米碳管層的電熱轉換效率 同,熱阻率低,故,該線熱源具有升溫迅速、熱滯後小、 熱父換速度快的特點。第四,所述的奈米碳管層可通過礙 壓奈米碳管陣列直接獲得,易於製備’成本較低。 【實施方式】 以下將結合附圖詳細說明本技術方案線熱源。 明參閱圖2至圖4,本技術方案實施例提供一種線熱 201006295 ,包括—線狀基底2〇2; 一反射層η。 ".„7 —加熱層2G4設置於所述 ,:層210表面;兩個電極2〇6間隔設置於該加熱層2〇4 且與該加熱層_電連接;及—絕緣保護層2〇8 :置於该加熱層施的表面。所述線熱源、20的長度不限, 徑為〇. 1微米〜1.5厘米。本實施例的線熱源2 〇的直徑優 選為1.1毫米〜1.1厘米。 ❹料,Γ述線狀基底规起支撐作用,其材料可為硬性材 ’、.陶究、玻璃、樹脂、石英等,亦可選擇羊性材料, 如:塑膠或柔性纖維等。當線狀基底202為=二=, 該線熱源20使用時可根據需要.彎折成任意形狀。所述線狀 基底202的長度、直控及形狀不限,可依據實際需要進行 選擇。本實施例優選的線狀基底2〇2為一陶瓷桿,其直徑 為1毫米〜1厘米。 八 二 所述反射層210的材料為一白色絕緣材料’如:金屬 ❹氧化物、金屬鹽或陶究等。本實施例中,反射層21〇的材 料優選為三氧化二鋁,其厚度為1〇〇微米〜〇 5毫米。該反 射層210通過濺射的方法沈積於該線狀基底2〇2表面。所 述反射層210用來反射加熱層204所發的熱量,使其有效 的散發到外界空間去,故,該反射層21〇為一可選擇結構。 所述加熱層204包括一奈米碳管層。該奈米碳管層可 包裹或纏繞於所述反射層210的表面。該奈米碳管層可利 用本身的黏性與該反射層210連接,也可進一步通過黏結 劑與反射層210連接。所述的黏結劑為矽膠。可以理解, 201006295 虽忒線熱源20不包括反射層21〇時,加熱層2〇4可直接包 裹或纏繞於所述線狀基底202的表面。 ^所述奈米碳管層包括均勻分佈的奈米碳管。該奈米碳 官層中的奈米碳管與奈米碳管層的表面成一夾角α,其 中,α大於等於零度且小於等於15度(〇^^15。卜優選地, 所述奈采碳管層中的奈米碳管平行於奈米碳管層的表面。 該奈米碳管層可通過礙壓一奈米碳管陣列製備’依據礙壓 的方式不同,該奈米碳管層中的奈米碳管具有不同的排列 形式。具體地,奈米碳管可各向同性排列;或沿不同方向 擇優取向排列,請參閱圖5;或沿—固定方向擇優取向排 列’清參閱圖6。所述奈米碳管層中的奈米碳管部分交疊。 所述奈f碳管層中奈米碳管之間通過凡德瓦爾力相互吸 引緊岔使得該奈米碳管層具有很好的柔韌性 彎曲折疊成任意形狀而不破裂。 該奈米碳管層中的奈米碳f包括單壁奈米碳管 〇 壁奈米碳管中的-種或多種。所述單壁奈米 =的直:為0.5奈米〜10奈米,雙壁奈米碳管的直徑為i 二 壁奈米碳管的直徑為奈以。奈米。 ί:優的長度大於50微米。本實施例中,奈米碳管的 長度優選為200〜900微米。 擇。該:二的面積和厚度不限’可根據實際需要選 尺寸有:二:、:的面積與奈米碳管陣列所生長的基底的 _力有關’可為1微米…米。二 9 201006295 管陣列的面度越大而施加的壓力越小,則製備的奈米碳管 層的厚度越大;反之,奈米碳管陣列的高度越小而施加的 壓力越大’則製備的奈米礙管層的厚度越小。可以理解, 奈米碳管層的熱响應速度與其厚度有關。相同面積的情況 下’奈米碳管層的厚度越大’熱响應速度越慢;反之,奈 米碳管層的厚度越小,熱响應速度越快。 本實施例中’加熱層204採用厚度為1〇〇微米的奈米 ❹奴官層。该奈米碳管層的長度為5厘米,奈米碳管薄膜的 寬度為3厘米。利用奈米碳管層本身的黏性,將該奈米碳 管層包袠於所述反射層21〇的表面。 所述電極206可設置於加熱層204的同一表面上也可 二置=加熱層204的不同表面上。所述電極2〇6可通過奈 米奴管層的黏性或導電黏結劑(圖未示)設置於該加熱層 204的表面上。導電黏結劑實現電極2〇6與奈米碳管層電 接觸的同時,還可將電極2〇6更好地固定於奈米碳管層的 ❿表面上。通過該兩個電極2〇6可對加熱層2〇4施加電壓。 其中,兩個電極206之間相隔設置,以使採用奈米碳管層 的加熱層204通電發熱時接入—定的阻值避免短路現象產 生。優選地,由於線狀基底2〇2直徑較小,兩個電極2〇6 間隔設置於線狀基底2〇2的兩端,並環繞設置於加熱層2〇4 的表面。 所述電極206為導電薄膜、金屬片或者金屬引線。該 導電薄膜的材料可為金屬、合金、铜錫氧化物(ιτ〇)、録 锡氧化物(ΑΤΟ)、導電銀膠、導電聚合物等。該導電薄膜 201006295 可通過物理氣相沈積法、化學氣相沈積法或其他方法形成 於加熱層204表面。該金屬片或者金屬引線的材料可為銅 片或鋁片等。該金屬片可通過導電黏結劑固定於加熱岸 204表面。 所述電極206射為一奈米碳管結構。該奈米碳管社 構包裹或纏繞於反射層210的表面。該奈米碳管結構可= 過其自身的黏性或導電黏結劑固定於反射層21〇的表面。 ,奈米碳管結構包括^向排列且均句分佈的金屬性奈米碳 管。具體地,該奈米碳管結構包括至少一有序奈米碳管二 膜或至少一奈米碳管長線。 ' 本實施例中,優選地,將兩個有序奈米碳管薄膜分別 設置於沿線狀基底202長度方向的兩端作為電極高。該 兩個有序奈米碳管薄膜環繞於加熱層2〇4的内表面,並通 過導電黏結劑與加熱層204之間形成電接冑。所述導 結劑優選為銀膠。由於本實施例中的加熱層2〇4也採用太 _米碳管層,故,電極鳩與加熱層綱之間具有較小的二 姆接觸電阻,可提高線熱源2〇對電能的利用率。 所述絕緣保護層2 〇 8的材料為一絕緣材料,如:橡膠、 =等。所述絕緣保護層208厚度不限,可根據實際情況 =擇。本實施例中’該絕緣保護層雇的材料採用橡膠, =厚度為0.5~2毫米。該絕緣保護層2〇8可通過塗 =方法形成於加熱層綱的表面。所述絕緣保護層雇 ,來防止該線熱源2G使用時與外界形成電接觸,同時還可 方止加熱層204中的奈来碳管層吸附外界雜質。該絕緣保 11 201006295 護層208為一可選擇結構。 本實施例t,對厚度為微米的奈米碳管層進行電 熱性能測量。該奈米碳管層長5厘米,寬3厘米。將該争 米碳管層包裹於一直徑為1厘米的線狀基底202上,且立 位於兩個電極206之間的長度為3厘米。電流沿著線狀基 底202的長度方向流人。測量$ ^ ^ ^ ❹ ❹ AZ彻。,施加電壓於玉伏,伏,加熱功率為ι瓦〜4〇 瓦時,奈米碳管層的表面溫度為5〇它〜5〇〇<t。可見,該太 :碳管層具有較高的電熱轉換效率。對於具有黑體結二 物體來說’其所對應的溫度為·。c〜斗坑時就能發出人 眼看不見的熱輕射(紅外線)’此時的熱輕射最穩定、效率 最南’所產生的熱輻射熱量最大。 該線熱源20使用時,可將其設置於所要加熱的物體表 面或將其與被加熱的物體間隔設置,利用其熱輻射即可進 行加熱。另’還可將複數個該線熱源2()排列成各種預定的 圖形使用。該線熱源、20可廣泛應用於電加熱器、紅 儀、電暖器等領域。 σ療 本實施例中,由於奈米碳管具有奈米級的直徑 製備的奈米碳管結構可具有較小的厚度,故,採用小直^ 的線狀基底可製備微型線熱源。奈米碳管具有強的抗腐: 性,使其可於酸性環境中工作。而且’奈米碳管具有極強 的穩定性,即使於3 _ 以上高溫的真空環境下工作而不 會分解,使該線熱源20適合於真空高溫下工作。另,奈米 碳管比同體積的鋼強度高100倍,重量卻只有其,=欠;; 12 •201006295 採用奈米碳管的線熱源20具有更高的強度及更輕的重量。 „ 综上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為先前技術的線熱源的結構示意圖。 圖2為本技術方案實施例的線熱源的結構示意圖 圖3為圖2的線熱源沿線瓜_皿的剖面示意圖。 圖4為圖3的線熱源沿線jy — jy的剖面示意圖。 圖5為本技術方案實施例採用的包括沿不同方向擇優 取向排列的奈米碳管的奈米碳管層的掃描電鏡照片。 圖6為本技術方案實施例採用的包括沿同一方向擇優 取向排列的奈米碳管的奈米碳管層的掃描電鏡照片。 【主要元件符號說明】 線熱源 支架 10, 20 102 加熱層 保護層 夾緊件 104, 204 106 108 110, 206 202 208 電極 線狀基底 絕緣保護層 13 210 201006295 反射層201006295 IX. Description of the Invention: [Technical Field] The present invention relates to a line heat source', and more particularly to a line heat source based on a carbon nanotube. [Prior Art] Heat plays an important role in people's production, life, and scientific research. One of the commonly used heat sources for line heat sources is widely used in electric heaters, infrared therapeutic devices, and electric heaters. 0% Please refer to FIG. 1 , the prior art provides a line heat source 10 including a hollow cylindrical bracket 102; a heating layer 104 is disposed on the surface of the bracket 102 ' an insulating protective layer 106 is disposed on the surface of the heating layer 1 〇 4; The two electrodes 110 are respectively disposed at two ends of the bracket 1〇2 and electrically connected to the heating layer 1〇4; the two clamping members 108 respectively fix the two electrodes no and the heating layer 1〇4 to both ends of the bracket 102. Among them, the heating layer 1〇4 is usually formed by winding or wrapping a carbon fiber paper. When a voltage is applied to the line heat source 10 through the two electrodes 11?, the heating layer 1?4 generates Joule heat and conducts heat radiation around. The carbon fiber paper includes a paper substrate and pitch-based carbon fibers randomly distributed in the paper substrate. Among them, the paper substrate comprises a mixture of cellulose fibers and a resin. The pitch-based carbon fibers have a diameter of 3 to 6 mm and a length of 5 to 20 μm. However, the use of carbon fiber paper as a heating layer has the following disadvantages: First, the thickness of the fiber paper is large, generally several tens of micrometers, making the wire heat source difficult to form a U-shaped structure and cannot be applied to the heating of micro devices. Second, since the fiber paper contains a paper substrate, the density of the carbon fiber paper is large, and the weight of 201006295 • large is inconvenient to use the line heat source using the carbon fiber paper. Third, since the pitch-based carbon fibers in the carbon fiber paper are disorderly distributed, the carbon fiber paper has a small strength, is inferior in flexibility, and is easily broken, thereby limiting its due range. The fourth 'carbon fiber paper's electrothermal conversion efficiency is low, which is not conducive to energy saving and environmental protection. In view of this, it is necessary to provide a line heat source which is small in weight, high in strength, suitable for heating of a micro device, and has low electrothermal conversion efficiency, which is advantageous for energy saving and environmental protection. The invention relates to: a seed line heat source comprising a linear substrate; a heating layer disposed on the surface of the linear substrate; and two electrodes spaced apart from the surface of the heating layer and electrically connected to the heating layer, respectively, The heating layer comprises a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes which are isotropic, oriented in a fixed direction or oriented in different directions. Compared with the prior art, the line heat source has the following advantages: First, the carbon nanotube can be conveniently fabricated into a carbon nanotube layer of any size, which can be applied to both macroscopic and microscopic fields. . Second, the carbon nanotubes have a smaller progress than the carbon fiber. Therefore, the line heat source using the carbon nanotube layer has a more convenient weight. Third, the electrothermal conversion efficiency of the carbon nanotube layer is the same as that of the thermal resistivity. Therefore, the heat source of the line has the characteristics of rapid temperature rise, small thermal hysteresis, and fast heat change. Fourth, the carbon nanotube layer can be obtained directly by obstructing the nanotube array, which is easy to prepare and low in cost. [Embodiment] Hereinafter, a line heat source of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 2 to FIG. 4, the embodiment of the present technical solution provides a line heat 201006295, including a linear substrate 2〇2; a reflective layer η. ". 7 - The heating layer 2G4 is disposed on the surface of the layer 210; the two electrodes 2〇6 are spaced apart from the heating layer 2〇4 and electrically connected to the heating layer; and the insulating protective layer 2〇 8: placed on the surface of the heating layer. The length of the line heat source 20 is not limited, and the diameter is 微米1 μm to 1.5 cm. The diameter of the line heat source 2 本 of the present embodiment is preferably 1.1 mm to 1.1 cm. The material is used to support the linear substrate. The material can be hard material, ceramics, glass, resin, quartz, etc., or sheep material, such as plastic or flexible fiber. The substrate 202 is ===, and the line heat source 20 can be bent into any shape as needed. The length, the direct control and the shape of the linear substrate 202 are not limited, and can be selected according to actual needs. The linear substrate 2〇2 is a ceramic rod having a diameter of 1 mm to 1 cm. The material of the reflective layer 210 is a white insulating material such as metal cerium oxide, metal salt or ceramics. In this embodiment, the material of the reflective layer 21 is preferably aluminum oxide, and the thickness thereof. The thickness of the reflective layer 210 is deposited on the surface of the linear substrate 2〇2 by sputtering. The reflective layer 210 is used to reflect the heat generated by the heating layer 204 to make it effective. Dissipated to the external space, the reflective layer 21 is an optional structure. The heating layer 204 includes a carbon nanotube layer. The carbon nanotube layer may be wrapped or wrapped around the surface of the reflective layer 210. The carbon nanotube layer may be connected to the reflective layer 210 by its own viscosity, or may be further connected to the reflective layer 210 by a binder. The adhesive is a silicone. It is understood that 201006295, although the heat source 20 is not When the reflective layer 21 is included, the heating layer 2〇4 may be directly wrapped or wound around the surface of the linear substrate 202. The carbon nanotube layer includes a uniformly distributed carbon nanotube. The carbon nanotubes in the middle form an angle α with the surface of the carbon nanotube layer, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees (〇^^15. Preferably, the nanotubes in the carbon nanotube layer The carbon tube is parallel to the surface of the carbon nanotube layer. The carbon nanotube layer can pass Pressing a carbon nanotube array to prepare 'the carbon nanotubes in the carbon nanotube layer have different arrangements depending on the way of impeding pressure. Specifically, the carbon nanotubes can be isotropically arranged; or differently Orientation preferred orientation alignment, please refer to Figure 5; or along the - fixed direction preferred orientation arrangement - see Figure 6. The carbon nanotubes in the carbon nanotube layer partially overlap. The carbon nanotubes are attracted to each other by van der Waals force so that the carbon nanotube layer has good flexibility and bends into any shape without breaking. The carbon carbon f in the carbon nanotube layer includes a single One or more kinds of wall-nanocarbon nanotubes in the wall-nanocarbon tube. The single-walled nanometer = straight: 0.5 nm to 10 nm, and the diameter of the double-walled carbon nanotube is i. The diameter of the carbon nanotubes is Nai. Nano. ί: Excellent length is greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm. Choose. The area and thickness of the two are not limited. The size may be selected according to actual needs: the area of the second::: is related to the _ force of the substrate on which the carbon nanotube array is grown, and may be 1 micrometer...meter. 2 9 201006295 The greater the face of the tube array and the lower the applied pressure, the greater the thickness of the prepared carbon nanotube layer; conversely, the smaller the height of the carbon nanotube array, the greater the applied pressure. The thickness of the nano-barrier layer is smaller. It can be understood that the thermal response speed of the carbon nanotube layer is related to its thickness. In the case of the same area, the larger the thickness of the 'nanocarbon tube layer', the slower the thermal response speed; conversely, the smaller the thickness of the carbon nanotube layer, the faster the thermal response speed. In the present embodiment, the heating layer 204 is a nano layer having a thickness of 1 μm. The carbon nanotube layer has a length of 5 cm and the carbon nanotube film has a width of 3 cm. The carbon nanotube layer is coated on the surface of the reflective layer 21 by the viscosity of the carbon nanotube layer itself. The electrodes 206 may be disposed on the same surface of the heating layer 204 or on different surfaces of the heating layer 204. The electrode 2〇6 may be disposed on the surface of the heating layer 204 through a viscous or conductive adhesive (not shown) of the nanotube layer. The conductive adhesive enables the electrode 2〇6 to be electrically contacted with the carbon nanotube layer, and the electrode 2〇6 can be better fixed to the crucible surface of the carbon nanotube layer. A voltage can be applied to the heating layer 2〇4 through the two electrodes 2〇6. Wherein, the two electrodes 206 are spaced apart from each other so that when the heating layer 204 using the carbon nanotube layer is energized and heated, the resistance value is prevented from being short-circuited. Preferably, since the diameter of the linear substrate 2〇2 is small, the two electrodes 2〇6 are spaced apart from both ends of the linear substrate 2〇2 and surround the surface of the heating layer 2〇4. The electrode 206 is a conductive film, a metal sheet or a metal lead. The material of the conductive film may be a metal, an alloy, a copper tin oxide (ITO), a tin oxide (yttrium), a conductive silver paste, a conductive polymer or the like. The conductive film 201006295 can be formed on the surface of the heating layer 204 by physical vapor deposition, chemical vapor deposition, or the like. The material of the metal piece or the metal lead may be a copper piece or an aluminum piece or the like. The metal sheet can be attached to the surface of the heated shore 204 by a conductive adhesive. The electrode 206 is formed as a carbon nanotube structure. The carbon nanotube mechanism is wrapped or wound around the surface of the reflective layer 210. The carbon nanotube structure can be fixed to the surface of the reflective layer 21 by its own viscous or conductive adhesive. The carbon nanotube structure includes a metallic carbon nanotubes arranged in an aligned manner and uniformly distributed. Specifically, the carbon nanotube structure comprises at least one ordered carbon nanotube membrane or at least one nanocarbon tube long line. In the present embodiment, preferably, two ordered carbon nanotube films are respectively disposed at both ends along the longitudinal direction of the linear substrate 202 as electrode heights. The two ordered carbon nanotube films surround the inner surface of the heating layer 2〇4 and form an electrical junction with the heating layer 204 through the conductive bonding agent. The bonding agent is preferably a silver paste. Since the heating layer 2〇4 in the embodiment also adopts a carbon nanotube layer, a small two-dimensional contact resistance between the electrode crucible and the heating layer can improve the utilization of electric energy of the line heat source 2〇. . The material of the insulating protective layer 2 〇 8 is an insulating material such as rubber, =, or the like. The thickness of the insulating protective layer 208 is not limited, and may be selected according to actual conditions. In the present embodiment, the insulating protective layer is made of rubber, and has a thickness of 0.5 to 2 mm. The insulating protective layer 2〇8 can be formed on the surface of the heating layer by a coating method. The insulating protective layer is employed to prevent the line heat source 2G from making electrical contact with the outside when in use, and also to prevent the carbon nanotube layer in the heating layer 204 from adsorbing foreign impurities. The insulation protector 11 201006295 sheath 208 is an optional structure. In this embodiment t, the thermoelectric properties of the carbon nanotube layer having a thickness of micrometers are measured. The carbon nanotube layer is 5 cm long and 3 cm wide. The carbon nanotube layer was wrapped on a linear substrate 202 having a diameter of 1 cm and stood between the two electrodes 206 to a length of 3 cm. Current flows along the length of the linear substrate 202. Measure $^^^ ❹ ❹ AZ Che. Apply voltage to Yufu, Volt, heating power to ι watts ~ 4 〇 watt hour, the surface temperature of the carbon nanotube layer is 5 〇 it ~ 5 〇〇 < t. It can be seen that the carbon layer has a high electrothermal conversion efficiency. For a black body with two objects, the corresponding temperature is . When c ~ bucket, it can emit hot light (infrared) that is invisible to the human eye. At this time, the heat radiation is the most stable, and the efficiency is the most south. When the line heat source 20 is used, it can be placed on the surface of the object to be heated or spaced apart from the object to be heated, and can be heated by the heat radiation. Alternatively, a plurality of the line heat sources 2() may be arranged in various predetermined patterns for use. The line heat source and 20 can be widely used in the fields of electric heaters, red meters, electric heaters and the like. σ 本 In this embodiment, since the carbon nanotube structure having a nanometer diameter can have a small thickness, a microwire heat source can be prepared by using a small linear substrate. The carbon nanotubes have strong anti-corrosion properties, making them work in an acidic environment. Moreover, the carbon nanotubes have extremely high stability and do not decompose even in a vacuum environment of a temperature higher than 3 _, so that the line heat source 20 is suitable for working at a vacuum high temperature. In addition, the carbon nanotubes are 100 times stronger than the same volume of steel, but only the weight, = ow;; 12 • 201006295 The line heat source 20 using carbon nanotubes has higher strength and lighter weight. „In summary, the invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a prior art line heat source. FIG. 3 is a schematic cross-sectional view of the line heat source of FIG. 2 along the line of the line. FIG. 4 is a schematic cross-sectional view of the line heat source of FIG. 3 along the line jy — jy. FIG. A scanning electron micrograph of a carbon nanotube layer comprising carbon nanotubes arranged in different orientations in different directions. FIG. 6 is a view of a carbon nanotube including a preferred orientation in the same direction. Scanning electron micrograph of the carbon nanotube layer. [Main component symbol description] Line heat source bracket 10, 20 102 Heating layer protective layer clamping member 104, 204 106 108 110, 206 202 208 Linear base electrode insulating protective layer 13210201006295 reflective layer

1414

Claims (1)

201006295 十、申請專利範園 .種線熱源包括一線狀基底;_加熱層設置於線狀基底 的表面’·及兩㈣極間隔設置,並分別與該加熱層電連 接’其改良在於’所述的加熱層包括一奈米碳管層,且 该奈米碳管層包括各向同性、沿一固定方向取向或不同 方向擇優取向排列的複數個奈米碳管。 專利犯圍第1項所述的線熱源,其中,所述奈米 β奴官層中的奈米碳管與奈米碳管層的表面成—夾角α, 且 〇SaS150。 3,1 申f專利範圍第1項所述的線熱源,纟中,所述奈米 =層^奈米碳管部分交疊’並通過凡德 相互 吸引,緊密結合。 4·:Ι =利範圍第1項所述的線熱源,其中,所述奈米 反e層的厚度為i微米至i毫米。 5.如申請專利範圍第i項所 ❹ 磁忠μι ώ $所迹的線熱源,其中,所述奈米 6二:^ 5〇微米,直徑小於5〇奈米。 · = 範圍第1項所述的線熱源,㈣,所述奈米 7::層纏繞或包裹設置於線狀基底的表面。 •如申請專利範圍第1項所f 栊势“ 貝所返的線熱源,其中,所述奈米 面。 身的黏性固定於線狀基底的表 .如申請專利範圍第1項所述 々呔的線熱源,其中,所述兩個 电極没置於加熱層的表面。 9·如申請專利範圍第i項所 <的線熱源,其中,所述電極 15 201006295 . 為—導電薄膜、金屬片、金屬^ .10.如申請專利範圍第9項所述的丄:或奈米碳管結構。 碳管結構包括定向排列且均L…、源,其中,所述奈米 如申請專利範圍第9項所述的^的金屬性奈米碳管。 碳管結構包括至少一有 、線熱源,其中,所述奈米 管長線。 不米碳官薄膜或至少一奈米碳 U.如申請專利範圍第9項所述的 米碳管結構包裹其中,所述該奈 13. 如申請專利範圍第" 的表面。 碳管結構通過其自身的點、慕I原’其中,所述奈米 的表面。 —^電黏結劑固定於加熱層 14. 如申請專利範圍第1項 基底的材料為柔性材料或熱源,其中,所述線狀 塑膠或柔性纖維,所述魏j料’且所述雜材料為 石英。 料為陶瓷、玻璃、樹脂、 .15=3C述的線熱源,其中,所述線熱 且該反射層的材料熱層與⑽^ 為100微米〜0.5毫米。 金屬鹽或陶瓷,厚度 16.如申請專利範圍第1項 源進-步包括一絕緣保護層設、=:’其中’所述 面。 ° 又置於所述加熱層的外表 17·如申請專利範圍第1項 源的直徑為(U微米〜! ·5厘迷卡的線熱源,其中,所述線熱 16201006295 X. Application for patent garden. The seed line heat source includes a linear substrate; the heating layer is disposed on the surface of the linear substrate and is disposed at intervals of two (four) poles, and is electrically connected to the heating layer respectively. The heating layer comprises a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes which are isotropic, oriented in a fixed direction or in a preferred orientation in different directions. The invention relates to the line heat source according to Item 1, wherein the carbon nanotubes in the nano-β slave layer form an angle α with the surface of the carbon nanotube layer, and 〇SaS150. 3,1 The line heat source described in item 1 of the patent scope of the patent, in which the nano-layers of carbon nanotubes partially overlap and are closely attracted to each other by Vander. 4: The linear heat source according to item 1, wherein the nano-reverse layer has a thickness of from i micrometer to i millimeter. 5. The line heat source of the magnetic loyal μ ώ 所 如 , , , , , , , , , , , , , , 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线 线· = Line heat source according to item 1 of the range, (4), the nano 7:: layer is wound or wrapped on the surface of the linear substrate. • As claimed in the first paragraph of the patent application, “the line heat source returned by the shell, wherein the nano surface. The viscosity of the body is fixed to the surface of the linear substrate. As described in the first paragraph of the patent application 々呔The line heat source, wherein the two electrodes are not placed on the surface of the heating layer. 9. The line heat source according to the item [i] of claim 1, wherein the electrode 15 201006295 . is - a conductive film, a metal Sheet, metal ^.10. The bismuth: or carbon nanotube structure as described in claim 9 of the patent application. The carbon tube structure comprises an orientation arrangement and a source, wherein the nanometer is as claimed in the patent scope. The metal carbon nanotube according to claim 9. The carbon tube structure comprises at least one line heat source, wherein the nano tube has a long line. The carbon carbon film or at least one nano carbon U. The carbon nanotube structure described in the ninth item is wrapped therein, wherein the naphthalene 13. as claimed in the scope of the patent " the carbon tube structure through its own point, the original I, the nano Surface. —^Electrostatic bonding agent is fixed on the heating layer. 14. Apply for patent The material surrounding the substrate of the first item is a flexible material or a heat source, wherein the linear plastic or flexible fiber, the material and the impurity material are quartz. The material is ceramic, glass, resin, .15=3C The wire heat source, wherein the wire is hot and the material thermal layer of the reflective layer is (10)^100 μm to 0.5 mm. Metal salt or ceramic, thickness 16. The source of the first step of the patent application includes a The insulating protective layer is provided, =: 'where' the surface. ° is placed on the outer surface of the heating layer. 17 · The diameter of the source of the first item of the patent application range is (U micron ~! · 5 PCT fan line heat source) Where the line heat 16
TW97128293A 2008-07-25 2008-07-25 Linear heater TWI380728B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97128293A TWI380728B (en) 2008-07-25 2008-07-25 Linear heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97128293A TWI380728B (en) 2008-07-25 2008-07-25 Linear heater

Publications (2)

Publication Number Publication Date
TW201006295A true TW201006295A (en) 2010-02-01
TWI380728B TWI380728B (en) 2012-12-21

Family

ID=44826615

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97128293A TWI380728B (en) 2008-07-25 2008-07-25 Linear heater

Country Status (1)

Country Link
TW (1) TWI380728B (en)

Also Published As

Publication number Publication date
TWI380728B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
US8841588B2 (en) Heater
TW201008362A (en) Hollow heating source
US20100218367A1 (en) Method for making carbon nanotube heater
CN101616513B (en) Linear heat source
KR20090131652A (en) Linear heater and methods for making the same
CN101610613B (en) Line heat source
TW201006295A (en) Linear heater
CN101616514B (en) Linear heat source
TWI380729B (en) Linear heater
TWI386363B (en) Linear heater
TWI448417B (en) Linear heater
CN101616512B (en) Line heat source
TW201000395A (en) Linear heater
TWI360521B (en) Planar heat source
TWI380733B (en) Planar heating source
TWI462630B (en) Planar heating source
TWI462627B (en) Hollow heating source
TWI462628B (en) Planar heating source
TWI473524B (en) Hollow heating source
TWI465145B (en) Hollow heating source
TWI380734B (en) Linear heater
TWI380731B (en) Planar heating source
TWI380730B (en) Planar heating source
TWI466585B (en) Hollow heating source
CN101636011B (en) Hollow heat source