TW201006002A - Opto-electrical device - Google Patents

Opto-electrical device Download PDF

Info

Publication number
TW201006002A
TW201006002A TW97128758A TW97128758A TW201006002A TW 201006002 A TW201006002 A TW 201006002A TW 97128758 A TW97128758 A TW 97128758A TW 97128758 A TW97128758 A TW 97128758A TW 201006002 A TW201006002 A TW 201006002A
Authority
TW
Taiwan
Prior art keywords
layer
photovoltaic element
element according
semiconductor layer
forming
Prior art date
Application number
TW97128758A
Other languages
Chinese (zh)
Other versions
TWI420694B (en
Inventor
Ya-Lan Yang
Hsin-Ying Wang
Chin-Yuen Lin
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW097128758A priority Critical patent/TWI420694B/en
Publication of TW201006002A publication Critical patent/TW201006002A/en
Application granted granted Critical
Publication of TWI420694B publication Critical patent/TWI420694B/en

Links

Abstract

A opto-electrical device having a omni-direction reflector (ODR) comprises a light-emitting stacked layer including a first semiconductor, an active layer and a second semiconductor layer, wherein the surface of the first semiconductor layer having a plurality of cavities; a transparent conductive layer is formed on the surface of the first semiconductor layer to form a plurality of holes containing air; a metal reflective layer is deposited above the transparent conductive layer.

Description

201006002 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種光電元件,特別是一種具有高效率反 射層之發光二極體元件。 【先前技術】 β 發光二極體與傳統的白熾燈泡與冷陰極燈管相較,具有 省電以及使用壽命更長的優越特性,所以被廣泛應用於各種領 域之中,例如交通號誌、背光模組、路燈照明、醫療設備盥通 訊儲存裝置等產業。 ' 〃 為提升發光二極體的出光效率,通常於發光二極體結構 之適當位置,如基板與發光疊層之間,設置一反射層,可減少 基板的吸光效應,使發光層所產生的光透過上述反射層之反射 作用而增加出光。反射層多採用具有高反射特性的金屬材料, 籲 例如金(Au)或銀(Ag) ’來做為單一反射金屬層。此種反射層之 反射能力,取決於所選用的反射金屬層之材料其反射係數之大 小,例如金(Au)大約是86%、銀(Ag)大約是92%。 另一經常運用於發光二極體結構中之反射層為布拉格反 射鏡(Distributed Bragg Reflector : DBR)。布拉格反射鏡(dbr) 是由厚度為約四分之一光波長之多層具不同折射率之材料所 组成的結構’其組成材料選擇眾多,例如是由Si〇2/Ti〇2所形 成的多層結構或是由磊晶製程所形成之不同組成之半導體層 所堆疊而成的多層結構。其反射率取決多層結構的層數與折射 率變化的搭配設計。 、 201006002 • 於發光二極體結構中,尚可以採用一種全方向性反射層 (omni-direction reflector : ODR)之設計’其通常具有比一般金屬 反射層更好的反射效果。全方向性反射層(〇DR)是由半導體 層、低折射率層與金屬層所堆疊形成的結構,其中低折射率層 (low index layer)之厚度為四分之一光波長的倍數,且通常為絕 緣材料,例如二氧化矽(si〇2)或氮化矽(sysu) ’所以並不具有 導電的特性。 ~ 鲁 如上所述,設置一反射層於發光二極體結構中的適當位 置’來增加元件的出光效率,是一個習知而且有效的方法,但 如何設計一個反射效率更高的反射層,便成為一個大家所追求 的目標。 【發明内容】 本發明係提供一種光電元件,其包含一半導體層,其表 面具有許多凹陷;一中間層,形成於半導體層之表面,並將這 _ 些凹陷形成内含空氣(折射係數約為1)的孔洞;以及一反射 層,形成於中間層之上,以形成一具有高反射效率之全方向性 反射層(0DR);其中上述之中間層可以是透明導電層或介電 層。 本發明係再提供一種光電元件,其包含一半導體發光疊 層’具有一第一半導體層、一主動層與一第二半導體層,且第 一半導體層之表面,具有許多凹陷;一透明導電層,形成於第 一半導體層之表面,並將這些凹陷形成内含空氣(折射係數約 為1)的孔洞;一金屬反射層,形成於透明導電層之上,以便形 成一具有高反射效率之全方向性反射層(0DR)。 201006002 本發明主要是希望藉由上述於半導體層與透明導電層之 間所形成的孔洞設計,來達到降低透明導電層之折射係數的效 果’以提昇全方向性反射層(ODR)的反射效率,使得由主動層 所產生的光可以經由全方向性反射層(ODR)之反射作用而出 光’以增加元件的出光效率。 【實施方式】201006002 IX. Description of the Invention: [Technical Field] The present invention relates to a photovoltaic element, and more particularly to a light-emitting diode element having a high-efficiency reflective layer. [Prior Art] Compared with conventional incandescent bulbs and cold cathode lamps, β-emitting diodes have superior characteristics of power saving and longer service life, so they are widely used in various fields, such as traffic signs and backlights. Modules, street lighting, medical equipment, communication storage devices and other industries. 〃 In order to improve the light-emitting efficiency of the light-emitting diode, usually at a suitable position of the light-emitting diode structure, such as between the substrate and the light-emitting layer, a reflective layer is provided, which can reduce the light-absorbing effect of the substrate and cause the light-emitting layer to generate Light is transmitted through the reflection of the reflective layer to increase the light. The reflective layer is often made of a metal material having high reflection characteristics, such as gold (Au) or silver (Ag) as a single reflective metal layer. The reflective ability of such a reflective layer depends on the size of the reflection coefficient of the material of the selected reflective metal layer, such as gold (Au) of about 86% and silver (Ag) of about 92%. Another reflective layer commonly used in light-emitting diode structures is the Distributed Bragg Reflector (DBR). A Bragg mirror (dbr) is a structure composed of a plurality of layers of materials having different refractive indices having a thickness of about one-fourth of a wavelength. The composition of the material is numerous, for example, a multilayer formed of Si〇2/Ti〇2. The structure is a multilayer structure in which semiconductor layers of different compositions formed by an epitaxial process are stacked. The reflectivity depends on the combination of the number of layers of the multilayer structure and the change in refractive index. , 201006002 • In the light-emitting diode structure, an omni-direction reflector (ODR) design can be used, which usually has better reflection than the general metal reflective layer. The omnidirectional reflective layer (〇DR) is a structure in which a semiconductor layer, a low refractive index layer, and a metal layer are stacked, wherein a low index layer has a thickness of a multiple of a quarter of a wavelength of light, and It is usually an insulating material such as cerium oxide (si 〇 2) or cerium nitride (sysu) 'and therefore does not have conductive properties. ~ As mentioned above, it is a well-known and effective method to increase the light-emitting efficiency of the component by setting a reflective layer in the appropriate position in the structure of the light-emitting diode, but how to design a reflective layer with higher reflection efficiency. Become a goal that everyone pursues. SUMMARY OF THE INVENTION The present invention provides a photovoltaic element comprising a semiconductor layer having a plurality of recesses on its surface, an intermediate layer formed on a surface of the semiconductor layer, and forming the recesses to contain air (a refractive index is approximately a hole of 1); and a reflective layer formed on the intermediate layer to form an omnidirectional reflective layer (0DR) having high reflection efficiency; wherein the intermediate layer may be a transparent conductive layer or a dielectric layer. The present invention further provides a photovoltaic element comprising a semiconductor light emitting layer 'having a first semiconductor layer, an active layer and a second semiconductor layer, and the surface of the first semiconductor layer has a plurality of recesses; a transparent conductive layer Forming on the surface of the first semiconductor layer, and forming the recesses into holes containing air (having a refractive index of about 1); a metal reflective layer formed on the transparent conductive layer to form a full reflection efficiency Directional reflective layer (0DR). 201006002 The present invention mainly aims to reduce the refractive index of the transparent conductive layer by the hole design formed between the semiconductor layer and the transparent conductive layer to improve the reflection efficiency of the omnidirectional reflective layer (ODR). The light generated by the active layer can be made to emit light through the reflection of an omnidirectional reflective layer (ODR) to increase the light extraction efficiency of the element. [Embodiment]

第1圖為本發明之第一實施例。如圖所示為一發光元件, 例如一發光二極體結構,是於基板200上以磊晶方式形成一第 了半導體層210’再於第一半導體層210上形成一主動層220, 最後形成一第二半導體層230於主動層220之上,其中第一半 V,層210與第二半導體層230兩者的電性相異。接者,於第 一半導體層230之表面形成複數個凹陷232,並於其上方覆蓋 一透明導電層240,此時透明導電層240並不會將凹陷232填 滿,因而形成複數個孔洞231,其中大致包含空氣(折射係數約 為1)。然後再於透明導電層240之上方,形成一金屬反射層 250,此時第二半導體層23〇、透明導電層24〇 25〇形成-具有高反射效率之全方向性反㈣(刪曰n g^tor ^DR)。最後分別於第一半導體層21〇與金屬反射層 50 ^上方’形成一第一電極挪與一第二電極挪,便可完 成本實施例之發光二極體之結構。 複數個孔洞231其大小以使其上方 則’其最大直徑較佳約為小於20=, ίί;其形綠鎌制,可 々廿W i塔形,不規則的多邊形等;其排列方 式並無關,例如是職性排顺不酬制。凹陷230的Ϊ 7 201006002 成方式也並不受侷限,舉例如下:(a)磊晶法—於形成第二 •體層230之磊晶製程中,藉由控制磊晶條件,使得第二半導 層230之表面自然形成複數個凹陷232 ; (]〇)濕式蝕刻法—去— 成第二半導體層230之後’依據第二半導體層23〇之材質二g 擇適當的蝕刻溶液如鹽酸或磷酸,對第二半導體層23〇之表面 進行奈米微影蝕刻,形成凹陷232 ; (C)奈米麗印法 (nano-imprint)-完成第二半導體層230之後,於其表面進行齐 米印刷製程步驟,以形成具有奈米級的複數個凹陷232 ^ 奈米球體散佈法-當完成第二半導體層230之後,於其表面散 ❹ 佈如Sl〇2、Al2〇3、Ti〇2、MgO、ZnO等奈米球體,便可以於 第二半導體層230之表面形成複數個凹陷232 ; (e)高溫合金 球法-於第二半導體層230之表面先形成一薄金屬層,再^用 高溫合金法,將此薄金屬層轉變為金屬球體,便可以在第二半 ,體層230之表面形成複數個凹陷232 ;②機械式粗化法〜於 第二半導體層230之表面’利用機械研磨的方式形成複數個凹 陷232於第二半導體層230之表面;(g)乾式蝕刻法…於第二 半導體層230之表面’利用乾式蝕刻法如電漿蝕刻法、電子束 蝕刻法或雷射蝕刻法等,對第二半導體層230之表面進行蝕 刻,形成複數個凹陷232。形成此些凹陷232是為了於半導體 • 層23〇與透明導電層240之間,形成内含空氣(折射率大約為Figure 1 is a first embodiment of the present invention. As shown in the figure, a light-emitting element, such as a light-emitting diode structure, is formed on the substrate 200 by epitaxial formation of a first semiconductor layer 210' and then an active layer 220 on the first semiconductor layer 210. A second semiconductor layer 230 is over the active layer 220, wherein the first half V, the electrical properties of the layer 210 and the second semiconductor layer 230 are different. A plurality of recesses 232 are formed on the surface of the first semiconductor layer 230, and a transparent conductive layer 240 is overlaid thereon. At this time, the transparent conductive layer 240 does not fill the recesses 232, thereby forming a plurality of holes 231. It contains roughly air (a refractive index of about 1). Then, a metal reflective layer 250 is formed over the transparent conductive layer 240. At this time, the second semiconductor layer 23, the transparent conductive layer 24〇25〇 is formed - the omnidirectional inverse with high reflection efficiency (four) (deleted ng^ Tor ^DR). Finally, a first electrode and a second electrode are formed on the first semiconductor layer 21 and the metal reflective layer 50^, respectively, so that the structure of the light-emitting diode of the embodiment can be completed. The plurality of holes 231 are sized such that their upper diameters are preferably less than about 20=, ίί; their shape is green, 々廿W i tower shape, irregular polygons, etc.; For example, the job is not remunerated. Ϊ 7 201006002 The formation method is also not limited, for example as follows: (a) epitaxial method - in the epitaxial process for forming the second body layer 230, the second semi-conductive layer is controlled by controlling the epitaxial conditions The surface of 230 naturally forms a plurality of recesses 232; (] 〇) wet etching method - after - forming the second semiconductor layer 230 - according to the material of the second semiconductor layer 23 二 select an appropriate etching solution such as hydrochloric acid or phosphoric acid, The surface of the second semiconductor layer 23 is subjected to nano-lithography etching to form a recess 232; (C) nano-imprint-finishing the second semiconductor layer 230, and then performing a zigzag printing process on the surface thereof a step of forming a plurality of depressions having a nanometer level 232 ^ nanosphere scattering method - after the completion of the second semiconductor layer 230, the surface of the second semiconductor layer 230 is dispersed such as Sl2, Al2〇3, Ti〇2, MgO, A nanosphere of ZnO or the like can form a plurality of recesses 232 on the surface of the second semiconductor layer 230; (e) a superalloy ball method - forming a thin metal layer on the surface of the second semiconductor layer 230, and then using a high temperature alloy Method, by converting this thin metal layer into a metal sphere, In the second half, the surface of the body layer 230 is formed with a plurality of recesses 232; 2 mechanical roughening method ~ the surface of the second semiconductor layer 230 is formed by mechanical grinding to form a plurality of recesses 232 on the surface of the second semiconductor layer 230; (g) dry etching method... etching the surface of the second semiconductor layer 230 on the surface of the second semiconductor layer 230 by a dry etching method such as plasma etching, electron beam etching, or laser etching to form a plurality A depression 232. The recesses 232 are formed to form an intrinsic air between the semiconductor layer 23 and the transparent conductive layer 240 (the refractive index is approximately

1)的孔洞231之結構,透過孔洞231之結構設計來達到降低透 明導電層240之折射係數的效果,進而提高全方向性反射 (ODR)的反射能力。 S 上述實施例辛基板200,可以是Al2〇3、GaN、AIN、SiC、 GaAs、GaP、Si、ZnO、MgO、MgAl204及玻璃所構成之材料 組群中至少一種材料或其它可代替之材料取代之;第一半導體 層210、主動層220以及第二半導體層230可選自於GaN、 AlGaN、InGaN、AlGalnP 及 AlInGaN 等材料;第一電極 27〇 201006002 與一第二電極 280 係選自於 AhTi、Ti/Al、Cr/Al、Ti/Au、〇/Au、 Ni/Au、TiW、TiN、WSi、Au/Ge、Pt、Pd 及 Rb 所構成之材 料組群中至少一種材料;透明導電層240係選自於氧化銦錫、 氧化鎘錫、氧化銻錫、氧化鋅鋁及氧化鋅錫所構成之材料組群 中至少一種材料;金屬反射層250,為具有高反射率之導電性 的材料,例如鋁(A1)或銀(Ag)。 如第2圖所示為本發明之第二實施例。本實施例之結構 與第一實施例不同的地方,是由第一半導體層21〇、透明導電 層240與金屬反射層250所形成的全方向性反射層(〇dr)係位 於基板200與主動層220之間’使得由主動層220所產生向下 發射的光經由全方向性反射層(ODR)的反射作用而反射出 光,而避免為下方基板所吸收,進而提高出光效率。其中透明 導電層240除了是由氧化銦錫、氧化鎘錫、氧化銻錫、氧化鋅 鋁及氧化鋅錫等透明導電材料所構成以外;也可以一介電層所 取代,此介電層可以是無機介電材料,例如二氧化發(Si〇^、 氧化鋁(Al2〇3)、氮化矽(SiNx)、或旋塗玻璃(spin_on glass)等, 或是有機介電材料,例如環氧樹脂(ep0Xy)、聚亞醢胺(p〇lyimide) 或 BCB 樹脂(benzocyclobutene)等。 如第3圖所示為本發明之第三實施例。本實施例是一利 用基板轉移方法所形成之發光二極體結構,其具有一導電基板 3〇〇,其下方設置有一第一電極370 ;其上方係透過一連結層 310連接一多層結構,包含連結層31〇上方之金屬反射層32〇; 金屬反射層320上方之透明導電層330 ;以及透明導電層33〇 上方之蠢晶曼層,包含一第一半導體層340,並於第一半導體 層340上形成一主動層350,以及於主動層350上形成一第二 半導體層360,其中第一半導體層340與第二半導體層36〇兩 者的電性相異;最後於第二半導體層360之上方形成一第二電 201006002 極380。其中於第一半導體層34〇與透明導電層33〇接觸之界 面處,於第-半導體層340之表面形成複數個凹陷342,且透 明導電層330並不會將凹陷342填滿,而形成複數個孔洞341, 其中大致包含空氣(折射係數約為1),其中本實施例之孔洞Mi 的=成方法、大小、形狀、與排列方式與前述之實施例相同。 由第一半導體層340、透明導電層33〇與金屬反射層32〇,所 幵/成的王方向性反射層(〇mni_direction reflector : ODR)具有高 反射效率,可以使由發光疊層所產生的光往下發射時,經由全 方向性反射層(ODR)的反射作用而反射出光,以避免光為下方 的基板所吸收,進而提高出光效率。 本實施例中基板300 ’為具有導電特性的基板,例如矽基 板、銅基板及SiC所構成之材料組群中至少一種材料或其它可 代替之材料取代之;第一半導體層340、主動層350以及第二 半導體層360可選自於GaN、AlGaN、InGaN、ΑΚΜηΡ及 AlInGaN所構成材料群組中的一種材料;第一電極37〇與一第 二電極 380 係選自於 A卜 Ti、Ti/Al、Cr/Al、Ti/Au、Cr/Au、 Ni/Au、TiW、TiN、WSi、Au/Ge、Pt、Pd 及 Rb 所構成材料 組群中之至少一種材料;透明導電層330係選自於氧化銦錫、 氧化鎘錫、氧化銻錫、氧化鋅鋁及氧化鋅錫所構成材料組群中 之至少一種材料;金屬反射層320,為具有高反射率之導電性 的材料,例如鋁(A1)或銀(Ag);黏結層310係選自於環氧樹脂 (eP〇xy)、聚亞醯胺(polyimide)或 BCB 樹脂(benzocyclobutene) 所構成材料組群中之至少一種材料。 上述之所有實施例並不侷限於發光二極體元件,可以將 具有孔洞結構設計之全方向性反射層(ODR),應用於任何需要 反射層之光電元件的任何適當位置,如太陽能電池(SdarCell) 或雷射二極體(Laser Diode)等。 201006002The structure of the hole 231 of 1) is designed to reduce the refractive index of the transparent conductive layer 240 through the structural design of the hole 231, thereby improving the reflection capability of the omnidirectional reflection (ODR). The above embodiment symplectic substrate 200 may be replaced by at least one material selected from the group consisting of Al2〇3, GaN, AIN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl204, and glass, or other alternative materials. The first semiconductor layer 210, the active layer 220, and the second semiconductor layer 230 may be selected from materials such as GaN, AlGaN, InGaN, AlGalnP, and AlInGaN; the first electrode 27〇201006002 and a second electrode 280 are selected from AhTi. At least one material selected from the group consisting of Ti/Al, Cr/Al, Ti/Au, 〇/Au, Ni/Au, TiW, TiN, WSi, Au/Ge, Pt, Pd, and Rb; transparent conductive layer The 240 series is selected from at least one material selected from the group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide, and zinc tin oxide; and the metal reflective layer 250 is a material having high reflectivity conductivity. For example, aluminum (A1) or silver (Ag). A second embodiment of the present invention is shown in Fig. 2. The structure of this embodiment is different from that of the first embodiment in that the omnidirectional reflective layer (〇dr) formed by the first semiconductor layer 21, the transparent conductive layer 240 and the metal reflective layer 250 is located on the substrate 200 and active. Between the layers 220, 'the downward emission of light generated by the active layer 220 reflects light through the reflection of the omnidirectional reflective layer (ODR), thereby avoiding absorption by the underlying substrate, thereby improving light extraction efficiency. The transparent conductive layer 240 is composed of a transparent conductive material such as indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide, or zinc tin oxide; or a dielectric layer may be replaced by a dielectric layer. Inorganic dielectric materials, such as oxidized hair (Si〇^, alumina (Al2〇3), tantalum nitride (SiNx), or spin-on glass), or organic dielectric materials such as epoxy resins (ep0Xy), polyplylimide or benzocyclobutene, etc. A third embodiment of the present invention is shown in Fig. 3. This embodiment is a light-emitting diode formed by a substrate transfer method. a polar body structure having a conductive substrate 3?, a first electrode 370 is disposed under the first electrode 370; and a plurality of layers are connected through a connecting layer 310, and the metal reflective layer 32 is disposed above the connecting layer 31; The transparent conductive layer 330 above the reflective layer 320 and the stray crystal layer above the transparent conductive layer 33 include a first semiconductor layer 340, and an active layer 350 is formed on the first semiconductor layer 340, and the active layer 350 Forming a second semiconductor layer 36 thereon 0, wherein the electrical properties of the first semiconductor layer 340 and the second semiconductor layer 36 are different; finally, a second electrical 201006002 pole 380 is formed over the second semiconductor layer 360. The first semiconductor layer 34 is At the interface where the transparent conductive layer 33 is in contact, a plurality of recesses 342 are formed on the surface of the first semiconductor layer 340, and the transparent conductive layer 330 does not fill the recesses 342, and a plurality of holes 341 are formed, which substantially contain air ( The refractive index is about 1), wherein the method, size, shape, and arrangement of the holes Mi of the present embodiment are the same as those of the foregoing embodiments. The first semiconductor layer 340, the transparent conductive layer 33 and the metal reflective layer 32 are formed. 〇, the 方向mni_direction reflector (ODR) has high reflection efficiency, and can reflect the omnidirectional reflection layer (ODR) when the light generated by the light-emitting layer is emitted downward. The light is reflected to prevent the light from being absorbed by the underlying substrate, thereby improving the light extraction efficiency. In the embodiment, the substrate 300' is a substrate having conductive properties, such as a germanium substrate, a copper substrate, and SiC. The material layer group is replaced by at least one material or other replaceable material; the first semiconductor layer 340, the active layer 350, and the second semiconductor layer 360 may be selected from the group consisting of GaN, AlGaN, InGaN, ΑΚΜnΡ, and AlInGaN. One of the materials; the first electrode 37A and the second electrode 380 are selected from the group consisting of A, Ti, Ti, Al, Cr/Al, Ti/Au, Cr/Au, Ni/Au, TiW, TiN, WSi, Au/Ge, Pt, Pd, and Rb are at least one material group; the transparent conductive layer 330 is selected from the group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide, and zinc tin oxide. At least one material in the group; the metal reflective layer 320 is a material having high reflectivity, such as aluminum (A1) or silver (Ag); and the adhesive layer 310 is selected from epoxy resin (eP〇xy) At least one of a group of materials composed of polyimide or benzocyclobutene. All of the above embodiments are not limited to the light emitting diode element, and an omnidirectional reflective layer (ODR) having a hole structure design can be applied to any suitable position of any photovoltaic element requiring a reflective layer, such as a solar cell (SdarCell). ) or a laser diode (Laser Diode). 201006002

Ann a a4.圖顯示本發明之背光模組結構。其中背光模組裝置 t ·由本發虹雜4實射狀發光元件611所構成的 句610; 一光學裝置620置於光源裝置610之出光路 二光做適當處理後出光;以及—電源供應系統630,提 供上述光源裝置61〇所需之電源。 极 可以ί/攸圖顯示本發明之照明裝置結構。上述照明裝置· 置7〇〇包路燈、指示燈等等。其中照明裝 71〇所需之雷、7i .斤,電源供應系、統720,提供光源裝置 710。 心、,1 控制元件730控制電源輸入光源裝置 癸明之t她藉各實施咖如上,峨_以限制本 批對於本發明所作之各種修飾與變更,皆不脫本發 明之積砷與範圍。 201006002 【圖式簡單說明】 第1圖係利用本發明之第-實施例。 ,2圖係利用本發明之第二實施例。 ,3圖係利用本發明之第三實施例。 第4圖係利用本發明之背光模組結構圖。 第5圖係利用本發明之照明裝置結構圖。Ann a a4. The figure shows the structure of the backlight module of the present invention. The backlight module device t is a sentence 610 composed of the fascinating light-emitting element 611 of the present invention; an optical device 620 is disposed on the light-emitting path of the light source device 610 and is appropriately processed to emit light; and the power supply system 630 The power source required for the above-described light source device 61 is provided. The structure of the illuminating device of the present invention can be shown in an ui/攸 diagram. The above lighting device is equipped with 7 〇〇 road lights, indicator lights, and so on. The light source device 710 is provided in the lighting device, the lightning supply, the 7i. kg, the power supply system, and the system 720. The control element 730 controls the power input light source device. The present invention does not deviate from the arsenic and range of the present invention by limiting the various modifications and changes made by the present invention to the present invention. 201006002 [Simplified description of the drawings] Fig. 1 is a view showing a first embodiment of the present invention. 2 shows a second embodiment of the present invention. 3 shows the use of the third embodiment of the present invention. Fig. 4 is a structural view of a backlight module using the present invention. Fig. 5 is a structural view of a lighting device using the present invention.

【主要元件符號說明】[Main component symbol description]

200基板 220主動層 231孔洞 240透明導電層 270第一電極 300基板 320金屬反射層 340第一半導體層 342凹陷 360第二半導體層 380第二電極 600背光模組裝置 611發光元件 630電源供應系統 71〇光源裝置 720電源供應系統 210第一半導體層 230第二半導體層 232凹陷 250金屬反射膚 280第二電極 310連結層 330透明導電層 341孔洞 350主動層 370第一電極 61〇光源裝置 620光學裝置 700照明裝置 711發光元件 730控制元件 12200 substrate 220 active layer 231 hole 240 transparent conductive layer 270 first electrode 300 substrate 320 metal reflective layer 340 first semiconductor layer 342 recess 360 second semiconductor layer 380 second electrode 600 backlight module device 611 light-emitting element 630 power supply system 71 Xenon light source device 720 power supply system 210 first semiconductor layer 230 second semiconductor layer 232 recess 250 metal reflective skin 280 second electrode 310 bonding layer 330 transparent conductive layer 341 hole 350 active layer 370 first electrode 61 xenon light source device 620 optical device 700 lighting device 711 light-emitting element 730 control element 12

Claims (1)

201006002 十、申請專利範圍: 1. 一種光電元件,包含 一半導體發光疊層,具有一第一半導體層、一主動層與一第 二半導體層,其中該一第一半導體層之一表面,具有複數個 凹陷; 一透明導電層,形成於該第一半導體層之該表面上,使得該 些凹陷,形成複數個孔洞;以及 一金屬反射層,形成於該透明導電層之上。 2. 如請求項1所述之光電元件,其中該孔洞之最大直徑小於 200nm ° 3. 如請求項1所述之光電元件,其中該孔洞之折射係數為i。 4. 如請求項1所述之光電元件,其中該孔洞之形狀可以是六角 形孔穴、倒金字塔形或不規則的多邊形。 八201006002 X. Patent Application Range: 1. A photovoltaic element comprising a semiconductor light emitting layer having a first semiconductor layer, an active layer and a second semiconductor layer, wherein a surface of the first semiconductor layer has a plurality a recess; a transparent conductive layer formed on the surface of the first semiconductor layer such that the recesses form a plurality of holes; and a metal reflective layer formed over the transparent conductive layer. 2. The photovoltaic element according to claim 1, wherein the maximum diameter of the hole is less than 200 nm. 3. The photovoltaic element according to claim 1, wherein the hole has a refractive index of i. 4. The photovoltaic element according to claim 1, wherein the shape of the hole may be a hexagonal hole, an inverted pyramid or an irregular polygon. Eight 5.如請求項1所述之光電元件, 或不規則排列。 其中該孔洞可以是週期性排列 6.如請求項1所述之光電元件,其中形成該凹陷之方法可以是 磊晶法、濕式蝕刻法、奈米印刷法、奈米球體散佈古、、w 合金球法、機械式粗化法或乾式餘刻法。 同'皿 7.如請求項1所述之光電元件,其中該翻導 化銦錫、氧化祕、祕_、氧化馳及氧化㈣^構成 13 201006002 材料組群中之至少一種材料。 8.如請求項1所述之光電元件’其中該透明導電層係為一介電 層所取代。 9.如請求項8所述之光電元件,其中該介電層可以是無機介電 材料’例如二氧化矽(Si〇2)、氧化鋁(a12〇3)、氮化矽(siNx)、 或旋塗玻璃(spin-on glass)等。5. Optoelectronic components as claimed in claim 1, or arranged irregularly. The hole may be periodically arranged. 6. The photovoltaic element according to claim 1, wherein the method of forming the recess may be epitaxial method, wet etching method, nano printing method, nanosphere scattering, and w Alloy ball method, mechanical roughening method or dry residual method. 7. The photovoltaic element according to claim 1, wherein the indium tin oxide, the oxidized secret, the secret oxidized, and the oxidized (tetra) ^ constitute at least one material in the group of materials. 8. The photovoltaic element of claim 1 wherein the transparent conductive layer is replaced by a dielectric layer. 9. The photovoltaic element of claim 8, wherein the dielectric layer is an inorganic dielectric material such as cerium oxide (Si 〇 2), aluminum oxide (a 12 〇 3), tantalum nitride (siNx), or Spin-on glass, etc. 10·如请求項8所述之光電元件,其中該介電層可以是有機介 電材料,例如環氧樹脂(epoxy)、聚亞醯胺(p〇lyimide;)或BCB 樹脂(benzocyclobutene)等。 11. 一種光電元件,包含 一半導體層’其表面具有複數個凹陷; 二巧層’形成於該半導體層之該表面,使得該些凹陷形成 複數個孔洞;以及 一反射層,形成於該中間層之上。 12或^^項11所述之找元件,其巾針聰為咖導電層 求項12所述之光電元件,其中該透明導電層係包含選 自^氧化蝴、氧化賴、氧鱗錫、氧鱗缺氡 所構成材料組群中之至少一種材料。 氧鋅錫 14雪求項12所述之光電元件,其中該介電層可以是盈機八 電材料,例如二氧化矽(Si〇 )、氧化 疋-、、機" 或旋塗玻璃(S_nglass)等。乳化雖l2〇3)、聽石夕_x)、 201006002 15·如凊求項12所述之光電元件,其中該介電層可以是有機介 電材料,例如環氧樹脂(epoxy)、聚亞醯胺(polyimide)或BCB 樹脂(benzocyclobutene)等。 16.如請求項11所述之光電元件,其中該孔洞之之最大直徑小 於 200nm。 如凊求項11所述之光電元件,其中該孔洞之折射係數為The photovoltaic element according to claim 8, wherein the dielectric layer is an organic dielectric material such as epoxy, p〇lyimide, or benzocyclobutene. 11. A photovoltaic element comprising a semiconductor layer having a plurality of recesses on its surface; a tantalum layer 'on the surface of the semiconductor layer such that the recesses form a plurality of holes; and a reflective layer formed on the intermediate layer Above. Or the component of claim 12, wherein the transparent conductive layer comprises a photoactive element selected from the group consisting of: oxidized butterfly, oxidized lysate, oxynized tin, and oxygen. At least one of the material groups formed by the scale defects. The photovoltaic element according to item 12, wherein the dielectric layer may be a ferroelectric material such as cerium oxide (Si〇), cerium oxide-, machine, or spin-on glass (S_nglass). )Wait. Emulsifying, although l2〇3), listening to Shi Xi _x), 201006002 15. The photovoltaic element according to claim 12, wherein the dielectric layer may be an organic dielectric material, such as epoxy (epoxy), poly Polyimide or BCB resin (benzocyclobutene). 16. The photovoltaic element of claim 11, wherein the largest diameter of the hole is less than 200 nm. The photovoltaic element according to Item 11, wherein the refractive index of the hole is 18.如凊求項u所述之光電元件,其中該孔洞之形狀可以是六 角形孔穴、倒金字塔形,不規則的多邊形等。 .如明求項11所述之光電元件,其中該孔洞可以是週期性 列或不規則排列。 20、t請求項11所述之光電元件’其中形成該凹陷之方法可以 、濕式_法、奈米壓印法、奈米球體散佈法、高 /皿口金球法、機械式粗化法或乾式蝕刻法。 21.如明求項11所述之光電元件,其中該反射層是一金屬反射 項21所述之光電元件,其中該金屬反射層為銘(A1) 23. —種光電元件製造方法,其步驟包含 導體層、一主動層與-第二半導體層之- 15 201006002 形成複數個凹陷於該一第一半導體層之一表面上; 形成一透明導電層於該第一半導體層之該表面上,並使得該 些凹陷形成複數個孔洞;以及 〇Λ 形成一金屬反射層於該透明導電層之上。 24·如請求項23所述之光電元件製造方法,其中形成該複數個 凹陷之方法是以一磊晶製程進行,係藉由控制該第一半導體 層之磊晶條件,使得該第一半導體層之該表面自然形成該 數個凹陷。 μ Ο 瘳 25. 如請求項23所述之光電元件製造方法,其中形成該複數 凹陷之方法是以-濕式餘刻製程進行,係選擇一適當的 溶液,對該第一半導體層之該表面進行奈米微影蝕刻。Α 26. 如請求項23所述之光電元件製造方法,其中形成該複 凹陷之方法係利用一奈米壓印製程步驟於該第一半導體声 該表面形成具有奈米級的該複數個凹陷。 It請求項23所述ί光電元件製造方法,其中形成該複數個 I陷之方法是以-奈米球體散佈法,於該第—半 = 散佈複數個如 Si02、Α1Α、Ti〇2、Mg〇、z J 米球體,以形成該複數個凹陷。 寻不 如請求項23所述之光電元件製造方法, 為複數個金屬球體,细==職_層轉變 29.如請求項23所述之光電元件製造方法,其中形成該複數個 201006002 凹陷之方法是以機械式粗化法於該第一半導體層之該表面, 利用機械研磨的方式形成該複數個凹陷。 四陷光電兀件製造方法,其中形成該複數個 於該第-半導想層之該表面進行爛,形成ί 3ι. 一種背光模組裝置包含:18. The photovoltaic element according to claim u, wherein the shape of the hole may be a hexagonal hole, an inverted pyramid shape, an irregular polygon or the like. The photovoltaic element according to claim 11, wherein the holes may be in a periodic column or an irregular arrangement. 20. The method according to claim 11, wherein the method of forming the recess is: wet method, nano imprint method, nanosphere scattering method, high/bowl gold ball method, mechanical roughening method or Dry etching method. The photovoltaic element according to claim 11, wherein the reflective layer is a photovoltaic element according to a metal reflection item 21, wherein the metal reflective layer is a stamp (A1) 23. A method for manufacturing a photovoltaic element, the steps of which are a conductor layer, an active layer, and a second semiconductor layer - 15 201006002 forming a plurality of recesses on a surface of the first semiconductor layer; forming a transparent conductive layer on the surface of the first semiconductor layer, and Forming the recesses into a plurality of holes; and forming a metal reflective layer over the transparent conductive layer. The method of manufacturing a photovoltaic element according to claim 23, wherein the method of forming the plurality of recesses is performed by an epitaxial process by controlling epitaxial conditions of the first semiconductor layer such that the first semiconductor layer The surface naturally forms the plurality of depressions. The method of manufacturing a photovoltaic element according to claim 23, wherein the method of forming the plurality of recesses is performed by a wet-type process, and selecting a suitable solution for the surface of the first semiconductor layer Perform nano lithography etching. The method of fabricating a photovoltaic element according to claim 23, wherein the method of forming the recess is performed by using a nanoimprint process to form the plurality of recesses having a nanometer order on the surface of the first semiconductor. The method of manufacturing the photovoltaic element according to claim 23, wherein the method of forming the plurality of I traps is a nanosphere scattering method, wherein the first half = a plurality of scattered such as SiO 2 , Α 1 Α, Ti 〇 2, Mg 〇 , z J m spheres to form the plurality of depressions. The method of manufacturing a photovoltaic element according to claim 23, which is a plurality of metal spheres, and a method of manufacturing the photovoltaic element according to claim 23, wherein the method of forming the plurality of 201006002 recesses is The plurality of depressions are formed by mechanical grinding on the surface of the first semiconductor layer by mechanical polishing. A method for manufacturing a photoelectric trap, wherein the surface of the plurality of first semi-conducting layers is formed to be ruined to form ί 3ι. A backlight module device comprises: =源裝置’係由_請專利_第丨〜3G項所述之發光元件所 光學裝置,置於該光源裝置之丨光路徑上;以及 電源供應系統,提供該光源裝置所需之電源。 32. —種照明裝置包含: =源裝置’係由中請專利細第1〜3G項所述之發光元件所 供應系統係提供該光源裝置所需之電源;以及 一控制元件,係控制該電源輸入該光源裝置。The source device is disposed on the light path of the light source device by the optical device described in the Japanese Patent Application Laid-Open No. 3G, and a power supply system for supplying power required for the light source device. 32. A lighting device comprising: a source device is provided by a system for supplying a light-emitting device according to the above-mentioned patents 1 to 3G, and a control device is for controlling the power source; The light source device is input.
TW097128758A 2008-07-29 2008-07-29 Opto-electrical device TWI420694B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097128758A TWI420694B (en) 2008-07-29 2008-07-29 Opto-electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097128758A TWI420694B (en) 2008-07-29 2008-07-29 Opto-electrical device

Publications (2)

Publication Number Publication Date
TW201006002A true TW201006002A (en) 2010-02-01
TWI420694B TWI420694B (en) 2013-12-21

Family

ID=44826507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128758A TWI420694B (en) 2008-07-29 2008-07-29 Opto-electrical device

Country Status (1)

Country Link
TW (1) TWI420694B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124329A (en) * 2013-04-25 2014-10-29 晶元光电股份有限公司 Light emitting diode device
US8912022B2 (en) 2012-03-30 2014-12-16 Tsinghua University Methods for making light emitting diodes and optical elements
TWI474511B (en) * 2011-10-07 2015-02-21 Hon Hai Prec Ind Co Ltd Light emitting diode
TWI478402B (en) * 2012-06-07 2015-03-21 Hon Hai Prec Ind Co Ltd Light emitting diode
TWI479682B (en) * 2012-03-30 2015-04-01 Hon Hai Prec Ind Co Ltd Light emitting diode
US9029889B2 (en) 2011-10-07 2015-05-12 Tsinghua University Light emitting diode
US9041029B2 (en) 2011-10-07 2015-05-26 Tsinghua University Light emitting diode
US9070823B2 (en) 2012-03-30 2015-06-30 Tsinghua University Method for making a light emitting diode having three dimensional nano-structures
US9178113B2 (en) 2012-03-30 2015-11-03 Tsinghua University Method for making light emitting diodes
US9570652B2 (en) 2012-03-30 2017-02-14 Tsinghua University Light emitting diodes
US9645372B2 (en) 2012-03-30 2017-05-09 Tsinghua University Light emitting diodes and optical elements
US9705055B2 (en) 2012-03-30 2017-07-11 Tsinghua University Light emitting diodes
CN111883625A (en) * 2020-07-08 2020-11-03 扬州乾照光电有限公司 LED chip structure and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446337B (en) 2019-01-16 2021-08-10 隆达电子股份有限公司 Light emitting diode structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624416B1 (en) * 2003-12-23 2006-09-18 삼성전자주식회사 flip-chip light emitting diodes and method of manufacturing thereof
TWI237903B (en) * 2004-06-24 2005-08-11 Epistar Corp High efficiency light emitting device
TWI239668B (en) * 2004-10-21 2005-09-11 Formosa Epitaxy Inc Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029889B2 (en) 2011-10-07 2015-05-12 Tsinghua University Light emitting diode
US9041030B2 (en) 2011-10-07 2015-05-26 Tsinghua University Light emitting diode
TWI474511B (en) * 2011-10-07 2015-02-21 Hon Hai Prec Ind Co Ltd Light emitting diode
US9041029B2 (en) 2011-10-07 2015-05-26 Tsinghua University Light emitting diode
US9070823B2 (en) 2012-03-30 2015-06-30 Tsinghua University Method for making a light emitting diode having three dimensional nano-structures
TWI479682B (en) * 2012-03-30 2015-04-01 Hon Hai Prec Ind Co Ltd Light emitting diode
US8912022B2 (en) 2012-03-30 2014-12-16 Tsinghua University Methods for making light emitting diodes and optical elements
US9178113B2 (en) 2012-03-30 2015-11-03 Tsinghua University Method for making light emitting diodes
US9570652B2 (en) 2012-03-30 2017-02-14 Tsinghua University Light emitting diodes
US9645372B2 (en) 2012-03-30 2017-05-09 Tsinghua University Light emitting diodes and optical elements
US9705055B2 (en) 2012-03-30 2017-07-11 Tsinghua University Light emitting diodes
TWI478402B (en) * 2012-06-07 2015-03-21 Hon Hai Prec Ind Co Ltd Light emitting diode
CN104124329A (en) * 2013-04-25 2014-10-29 晶元光电股份有限公司 Light emitting diode device
US9831384B2 (en) 2013-04-25 2017-11-28 Epistar Corporation Light emitting device
CN104124329B (en) * 2013-04-25 2018-03-27 晶元光电股份有限公司 Light emitting diode device
CN108269908A (en) * 2013-04-25 2018-07-10 晶元光电股份有限公司 Light emitting diode device
CN111883625A (en) * 2020-07-08 2020-11-03 扬州乾照光电有限公司 LED chip structure and preparation method thereof

Also Published As

Publication number Publication date
TWI420694B (en) 2013-12-21

Similar Documents

Publication Publication Date Title
TW201006002A (en) Opto-electrical device
KR101203622B1 (en) Method of making a vertical light emitting diode
JP5911856B2 (en) Nanowire LED structure and method of fabricating the same
TW201210075A (en) Light-emitting devices with substrate coated with optically denser material
US20130009167A1 (en) Light emitting diode with patterned structures and method of making the same
JP2014530504A (en) Nanowire-sized photoelectric structure and method of manufacturing the same
TW200939548A (en) A high-efficiency light-emitting device and manufacturing method thereof
TWI382567B (en) Light-emitting device
CN103097113B (en) Manufacture the method for metallic mold for nano-imprint, utilize the method that the metallic mold for nano-imprint manufactured thus manufactures light emitting diode and the light emitting diode manufactured thus
US20090290355A1 (en) Light-emitting device including reflective layer formed with curved surface and manufacturing method thereof
WO2012174950A1 (en) Deep ultraviolet semiconductor light-emitting device and method of fabricating the same
WO2008064068A2 (en) Planarized led with optical extractor
KR101233768B1 (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
WO2012174949A1 (en) Deep ultraviolet semiconductor light emitting device
KR100958590B1 (en) Light emitting diode device having advanced light extraction efficiency and preparation method thereof
US20100065866A1 (en) Inverted LED Structure with Improved Light Extraction
CN101645474B (en) Photoelectric element and manufacturing method thereof, backlight module device and illuminating apparatus
WO2012045222A1 (en) Light emitting device and manufacturing method thereof
TWI509832B (en) Opto-electrical device
KR20160137476A (en) Light Emitting Diode
KR101221075B1 (en) Method of manufacturing gallium nitride based light emitting diodes using nano imprinting and light emitting diode element using the same
US20100051971A1 (en) High efficiency light emitting articles and methods of forming the same
TWI382566B (en) And a light-emitting diode chip having an adhesive layer of reflectionable light
KR20150067958A (en) Light Emitting Diode
TW201006004A (en) A photonic crystal equipped solid state light-emitting component