TWI237903B - High efficiency light emitting device - Google Patents

High efficiency light emitting device Download PDF

Info

Publication number
TWI237903B
TWI237903B TW93118481A TW93118481A TWI237903B TW I237903 B TWI237903 B TW I237903B TW 93118481 A TW93118481 A TW 93118481A TW 93118481 A TW93118481 A TW 93118481A TW I237903 B TWI237903 B TW I237903B
Authority
TW
Taiwan
Prior art keywords
light
item
scope
patent application
luminous efficiency
Prior art date
Application number
TW93118481A
Other languages
Chinese (zh)
Other versions
TW200601575A (en
Inventor
Chen Ou
Ting-Yang Lin
Shih-Kuo Lai
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW93118481A priority Critical patent/TWI237903B/en
Priority to JP2005180721A priority patent/JP4339822B2/en
Priority to US11/160,354 priority patent/US7385226B2/en
Priority to DE102005029268.2A priority patent/DE102005029268B4/en
Priority to KR20050054517A priority patent/KR100687783B1/en
Application granted granted Critical
Publication of TWI237903B publication Critical patent/TWI237903B/en
Publication of TW200601575A publication Critical patent/TW200601575A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A high efficiency light emitting device, comprising a substrate; a first nitride semiconductor stack forming on the substrate; a nitride light emitting layer forming on the first nitride semiconductor stack; a second nitride semiconductor stack forming on the nitride light emitting layer, wherein the second nitride semiconductor stack comprising a first surface and a second surface, the first surface is closer to the substrate, the second surface comprising multiple hexagonal pyramid cavity; a transparence oxide conductivity layer forming on and having an ohmic contact with the second nitride semiconductor stack.

Description

1237903 五、發明說明(1) 技術領域 本發明係β 率之發光元件 種發光元件,尤其關於一種高發光效 先前技術 示裝發置光二:二應用二為二, 置、以及醫療裝置。目前拮淋人„壬^甙裝置、照明裝 極體之亮度。 目月J技術人"要課題為提高發光二 在傳統氮化物發光二極體中,其表面 層(-般為Ni/Au系列材料)作為透 ’、—薄金屬 多具有遮光性,發光二極體所產生的上日被:因金屬 :收,:得光線穿透率降低,為使其仍保有一定If:層 儘管'此,該薄金屬層之在可見光波段=至== 約在60/〇〜70%左右’故使發光二極體之發光效率偏低、。 、在美國專利第6,078, 064號(其與本案具有相同受讓 人)揭露一種發光二極體構造,該發光二極體表 透明氧化物導電層且形成於一高濃度口型接觸層上, 明氧化物導電層通常具有較高之穿透率(〜9〇%以上 u迓 透光率好,可具較厚之厚度,故電流擴展效果亦較佳且= 此能改善發光二極體之發光特性,提升其發光效率哀 惟該透明氧化物導電層需與高濃度P型接觸層(p型載1^ ^曲 度需大於5 X 1018/cm3以上),才能形成較好的歐姆接觸辰。 國 _ 第7頁 1237903 五、發明說明(2) 在台灣專利第144, 415號(其與本案具有相同受讓 人)揭露另一種反向穿隧層之技藝,利用—n+反向接觸層 可使得一氧化物透明電極層與一半導體發光疊層間,利用 穿隧之機制來達到良好之歐姆接觸之目的,以達到提升發 光二極體之發光效率,並降低操作電壓。 此外,Y.C. Lin 等人在論文 nInGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts’丨(Solid-State Electronics Vol.47 第849-1237903 V. Description of the invention (1) Technical field The present invention relates to a β-rate light-emitting element and a light-emitting element, in particular, to a high light-emitting effect. The prior art display device has two light sources: two applications, two applications, and medical devices. At present, the brightness of non-glycoside devices and lighting poles is extremely high. The technical task of the project is to improve the light-emitting diodes in conventional nitride light-emitting diodes, and the surface layer (-generally Ni / Au Series materials) As transparent, thin metals are mostly light-shielding. The previous day's quilt produced by light-emitting diodes is due to the reduction of light transmittance due to the metal: harvest, so that it still retains a certain If: layer despite its' Therefore, in the visible light band of the thin metal layer = to = = about 60/0 to 70%, so the luminous efficiency of the light-emitting diode is relatively low. In US Patent No. 6,078, 064 (which is related to the present application) Have the same assignee) reveal a light-emitting diode structure, the light-emitting diode has a transparent oxide conductive layer on the surface and is formed on a high-density mouth contact layer, and the bright oxide conductive layer usually has a higher transmittance (~ 90% or more u 迓 has good light transmittance and can have a thicker thickness, so the current spreading effect is also better and = this can improve the light emitting characteristics of the light emitting diode, and improve its light emitting efficiency. However, the transparent oxide The conductive layer needs to be in contact with the high-concentration P-type contact layer (the p-type load needs to have a large curvature) 5 X 1018 / cm3 or more) in order to form a good ohmic contact. Country_ Page 7 1237903 V. Description of the invention (2) In Taiwan Patent No. 144, 415 (which has the same assignee as this case), it is disclosed that A technique of reverse tunneling layer, the use of -n + reverse contact layer can make an oxide transparent electrode layer and a semiconductor light-emitting stack, use the tunneling mechanism to achieve the purpose of good ohmic contact, so as to improve the light emission The luminous efficiency of the polar body and reduce the operating voltage. In addition, YC Lin et al. 849-

853頁)中也揭露在氮化物二極體之p型接觸層上,先置入 一薄金屬層,再置上透明氧化物導電層,如此可有效降低 P型接觸層與透明氧化物導電層間之接觸電阻。惟薄金屬 層仍會有降低整體穿透率之作用,故仍會使得發光二極體 之發光效率受到限制。(Page 853) is also disclosed on the p-type contact layer of the nitride diode. A thin metal layer is placed first, followed by a transparent oxide conductive layer, which can effectively reduce the gap between the P-type contact layer and the transparent oxide conductive layer. Its contact resistance. However, the thin metal layer still has the effect of reducing the overall transmittance, so the light emitting efficiency of the light emitting diode is still limited.

本案發明人於進一步思考如何提高此等先前技藝發光 一極體之亮度、降低此類接觸層與透明氧化物導電層間之 接觸電阻問題’並簡化製程之覆雜性時,獲得一發明靈 感’認為若提供一高發光效率之發光元件,使其發光元件 表面處,具有複數個向下延伸之内六角錐形孔穴構造,再 =其表面直接形成一氧化物透明導電層,並該氧化物透明 導電層與該元件表面之内六角錐形孔穴之内側表面直接形 成低電阻之歐姆接觸,如此即可克服傳統氧化物透明導電 層與P型氮化物疊層表面之高電阻問題,且不需加入前述 技藝中之高濃度p型接觸層、反向穿隧接觸層、或是薄金 屬層。再者,藉由該内六角錐形孔穴構造,不僅可增加整The inventor of this case gained an inventive idea when he further considered how to improve the brightness of these prior art light-emitting poles, reduce the contact resistance between such contact layers and the transparent oxide conductive layer, and simplify the complexity of the process. If a light-emitting element with high luminous efficiency is provided, the surface of the light-emitting element has a plurality of inner hexagonal tapered hole structures extending downward, and then an oxide transparent conductive layer is directly formed on the surface, and the oxide is transparent and conductive The layer directly forms a low-resistance ohmic contact with the inner surface of the hexagonal cone-shaped hole on the surface of the element. High concentration p-type contact layers, reverse tunneling contact layers, or thin metal layers in the art. Moreover, with the hexagonal cone-shaped hole structure,

1237903 五、發明說明(3) 體之出光面積,降低全反射效應所造成的出光損失,並且 能減少發光層上側之半導體疊層之吸光效應,大幅提高發 光元件之整體光摘出效率,同時達到提高發光元件之發^ 效率、降低操作電壓、並簡化製程流程等多項目的。又 發明内容 本發明之主要目的在於提供一種高發光效率之發光元 件,其中存在一基板;形成於該基板上之一第一氮化物半 導體疊層;形成於該第一氮化物半導體疊層上之一氮化物 發光層;形成於該氮化物發光層上之一第二氮化物半導體 二層其中,5亥第二氮化物半導體疊層相對於該氮化物發 光層之表面處,具有複數個向下延伸之内六角錐形孔穴構 ,丄以及形成於該第二氮化物半導體疊層上之一氧化物透 明導電層,其中該氧化物透明導電層延伸並填入該第二氮 化物半導體疊層表面之内六角錐形孔穴内,且與第二氮化 物半導體疊層表φ之内六角錐形孔穴内側表面形成歐姆接 觸。 月j述之第一氮化物半導體疊層可為Ν型或ρ型,第二氮 化f半Ϊ體疊層與第一氮化物半導體疊層電性相反,一般 而e ’右該第二氮化物半導體疊層為p型,該p型氮化物半 導體疊層相^於該氮化物發光層之表面處為一平行基板方 ,之平面結構’該氧化物透明導電層無法直接與該p型 亂化物表層形成良好之歐姆接觸,故易造成元件之操作電 壓偏高。 第9頁 1237903 五、發明說明(4) 該:型氮化物半導體疊層相對於該氮化物 毛先層之表面處,先形成複數個内六角錐形, 將該氧化物透明導電層形成於其上,盆 ,再 ,該p型氮化物半導體疊層表面之内中:角 内侧表面形成接觸’·由於P型氮化物半導體疊層平行於美 J方向之表面與該内六角錐形孔穴之内側表面具有不同土之 表面能態,此表面能態之不同係由於晶格方向不同,並 面原子之電位能亦不同所致。若氧化物透明導電声ς ^ 成於ρ型氮化物半導體疊層平行於基板方向之 9 每/ 質亡,化物透明導電層與ρ型氮化物半導體疊層之界面^ 有,高的位能障,其為導致歐姆接觸不良、元件操作偏曰壓 偏尚之主因。但在該内六角錐形孔穴之内側表面與氧化物 透明導電層接觸時,因其表面能態不$,故其與氧化物透 明導電層界面上所形成位能障極低,因此能形成良好的歐 姆接觸、降丨氏元件之操作電壓。 s外加操作電流時,電流可先藉由氧化物透明導電層 作一擴散,再經由該氧化物透明導電層與内六角錐形孔二 之内側面接觸之低電阻處,流入p型氮化物半導體疊層内 並流經發光層而產生發光。 又由於表層之内六角錐形孔穴構造本身即有減低全反 射效應並降低光線被P型疊層吸收之作用,提高元件光摘 出效率’再加上氧化物透明導電層又較傳統薄金屬透明導 電層具有更佳之穿透率,因此可大幅提升元件發光效率。1237903 V. Description of the invention (3) The light output area of the body reduces the light loss caused by the total reflection effect, and can reduce the light absorption effect of the semiconductor stack on the upper side of the light-emitting layer, and greatly improves the overall light extraction efficiency of the light-emitting element, while achieving an improvement The development of light-emitting elements ^ efficiency, reducing operating voltage, and simplifying the process and other projects. Another object of the present invention is to provide a light-emitting element with high luminous efficiency, in which a substrate exists; a first nitride semiconductor stack formed on the substrate; and a first nitride semiconductor stack formed on the first nitride semiconductor stack. A nitride light-emitting layer; a second nitride semiconductor two layer formed on the nitride light-emitting layer, wherein the surface of the second nitride semiconductor stack with a plurality of downwards facing the nitride light-emitting layer has a plurality of downwards An extended hexagonal cone-shaped hole structure, osmium, and an oxide transparent conductive layer formed on the second nitride semiconductor stack, wherein the oxide transparent conductive layer extends and fills the surface of the second nitride semiconductor stack Inside the hexagonal tapered hole and forming an ohmic contact with the inner surface of the hexagonal tapered hole of the second nitride semiconductor stacked surface φ. The first nitride semiconductor stack described in J may be N-type or ρ-type. The second nitride f-halide body stack is electrically opposite to the first nitride semiconductor stack. Generally, the second nitrogen The p-type nitride semiconductor stack is p-type. The p-type nitride semiconductor stack is parallel to the substrate at the surface of the nitride light-emitting layer. The planar structure of the oxide transparent conductive layer cannot be directly confused with the p-type. The surface layer of the compound forms a good ohmic contact, so it is easy to cause the operating voltage of the device to be high. Page 91237903 V. Description of the invention (4) The surface of the nitride nitride semiconductor stack with respect to the nitride hair layer first forms a plurality of hexagonal cones, and the oxide transparent conductive layer is formed thereon. Above, basin, and again, inside the surface of the p-type nitride semiconductor stack: the inner surface of the corner is in contact with each other. Since the surface of the p-type nitride semiconductor stack parallel to the US direction J and the inside of the hexagonal cone-shaped hole The surface has different surface energy states of the soil. This difference in surface energy states is due to the different lattice directions and the potential energy of the coplanar atoms. If the oxide transparent conductive layer is formed at 9 / mass of the p-type nitride semiconductor stack parallel to the substrate, the interface between the transparent conductive layer of the compound and the p-type nitride semiconductor stack ^ Yes, high potential barrier , Which is the main cause of poor ohmic contact and component bias. However, when the inner surface of the hexagonal tapered hole is in contact with the oxide transparent conductive layer, the surface energy state is not high, so the potential barrier formed at the interface with the oxide transparent conductive layer is extremely low, so it can form a good Ohmic contact, drop the operating voltage of the element. When an operating current is applied, the current can be first diffused through the oxide transparent conductive layer, and then flows into the p-type nitride semiconductor through the low resistance of the oxide transparent conductive layer in contact with the inner side of the hexagonal tapered hole II. Luminescence occurs in the stack and flows through the light-emitting layer. And because the inner hexagonal tapered hole structure of the surface layer itself reduces the total reflection effect and reduces the light absorption by the P-type stack, it improves the light extraction efficiency of the element. In addition, the oxide transparent conductive layer is more transparent and conductive than the traditional thin metal. The layer has better transmittance, and therefore can greatly improve the light emitting efficiency of the device.

第10頁 1237903Page 10 1237903

實施方式 =參閱圖1,依本發明一較佳實施例一種高發光效率 之發光兀’包含一藍寶石基板1 0 ;形成於該藍寶石基 板上之^一氮化物緩衝層11 ;形成於該氮化物缓衝層11上之 一 型氮化物半導體疊層丨2,其中該N型氮化物半導體疊層 12遠離该氮化物緩衝層處包含一第一表面及一第二表面; 形成於,第一表面上之一氮化物多重量子井發光層13 ;形 ^於該氮化物多重量子井發光層上之一 p型氮化物半導體 疊層14 ’該p型氮化物半導體疊層14遠離氮化物多重量子 井發光層之表面包含複數個向下延伸之内六角錐形孔穴構_ 造141 ;形成於該p型氮化物半導體疊層14與内六角錐形孔 穴構造1 41上之一氧化物透明導電層丨5,該氧化物透明導 電層材料與該内六角錐形孔穴構造1 4 1之内側面1 4 11形成 接觸;形成於N型氮化物半導體疊層12之第二表面上之1^型 電極16 ;以及形成於氧化物透明導電層15上之一p型電極 1 7 °圖2為具有複數個内六角錐形孔穴構造1 4 1之p型氮化 物半導體疊層14表層之示意圖。 前述之氧化物透明導電層15與該内六角錐形孔穴構造 之内側面1 4 11形成之接觸電阻小於該氧化物透明導電層丨5 φ 與該P型氮化物半導體疊層之上表面140所形成之接觸電 阻。 前述之内六角錐形孔穴構造,與氮化物材料之晶格物 理特性有關,其形狀及角度主要取決於氮化物材料之晶格Embodiment = refer to FIG. 1, according to a preferred embodiment of the present invention, a light-emitting device with high luminous efficiency includes a sapphire substrate 10; a nitride buffer layer 11 formed on the sapphire substrate; and a nitride formed on the nitride A type nitride semiconductor stack 2 on the buffer layer 11, wherein the N-type nitride semiconductor stack 12 includes a first surface and a second surface away from the nitride buffer layer; formed on the first surface The previous nitride multiple quantum well light-emitting layer 13; a p-type nitride semiconductor stack 14 formed on the nitride multiple quantum well light-emitting layer; the p-type nitride semiconductor stack 14 is far from the nitride multiple quantum well. The surface of the light-emitting layer includes a plurality of downwardly extending internal hexagonal tapered hole structures _ 141; an oxide transparent conductive layer formed on the p-type nitride semiconductor stack 14 and the internal hexagonal tapered hole structures 1 41 丨5. The oxide transparent conductive layer material is in contact with the inner side surface 1 4 11 of the hexagonal cone-shaped hole structure 1 4 1; the 1 ^ -type electrode 16 formed on the second surface of the N-type nitride semiconductor stack 12 ; And formed by oxidation The transparent conductive layer is one of p-type electrode 15 1 7 ° 2 is a schematic view of a surface layer 14 of the tapered hole has a hexagonal configuration within a plurality of p type 141 of the nitride semiconductor multilayer. The contact resistance formed by the foregoing oxide transparent conductive layer 15 and the inner side surface 1 4 11 of the hexagonal cone-shaped hole structure is smaller than the oxide transparent conductive layer 5 φ and 140 on the upper surface of the P-type nitride semiconductor stack. Formed contact resistance. The aforementioned hexagonal cone-shaped hole structure is related to the physical properties of the lattice of the nitride material, and its shape and angle mainly depend on the lattice of the nitride material

第11頁 1237903 五、發明說明(6) 長在C面之藍寶石基板上為例,其相鄰錐形面 貫質上為120〇,而錐形面是由"〇 或疋U1-22 }晶面群所構成。 砰 該^六角錐形孔穴構造可藉由以下製造方法之至少— 種或一種以上之組合而形成: 芦=Ξ二角錐形孔穴構造可藉由在其内六角錐形孔穴起始 層成長時,提供表面活 ^c. 始 改變i石曰#分r〜 片Rsuriactant)、如Si或Mg,來 之。/、猫日日成核形悲,而於p型半導體疊層或表層中形成 2始=::ΐ ?孔穴構造又可藉由在其内六角錐形孔穴起 i :UBB溫度⑽力至95。。。之範圍成長,使其改變 f:ί :悲,而於p型半導體疊層或表層中形成之。 U内六土錐形孔穴構造可藉由在其内六角錐形孔穴起始 1係以-畐氮氣氛進形蟲晶成長,使其改變蟲晶 悲,而於P型半導體疊層或表層中形成之。 4、 ·該内六角錐形孔穴構造可藉由完成p型半導體疊層後, 以一化學溼蝕刻之方式(如高溫H3p〇4)蝕刻該p型半Page 111237903 V. Description of the invention (6) As an example, the sapphire substrate grown on the C surface has a continuous tapered surface of 120 °, and the tapered surface is formed by " 〇 or 疋 U1-22} Crystal plane group. The hexagonal conical hole structure can be formed by at least one or a combination of the following manufacturing methods: Lu = Ξ The pyramidal hole structure can be formed by growing the initial layer of the hexagonal conical hole. Provide surface activity ^ c. Begin by changing the stone # 分 r〜 片 Rsuriactant), such as Si or Mg. / 、 The cat becomes a nucleus, and it is formed in the p-type semiconductor stack or surface layer. = :: ΐ? The hole structure can also be formed by i. . . . The range grows so that it changes f: ί: sadness, and is formed in the p-type semiconductor stack or surface layer. The U-six-earth cone-shaped hole structure can be formed by forming a worm crystal in the -H nitrogen atmosphere at the beginning of its hexagonal cone-shaped hole. Form it. 4. The inner hexagonal tapered hole structure can be etched by a chemical wet etching method (such as high temperature H3p04) after the p-type semiconductor stack is completed.

層之表層所形成之。 S 5. 該内六角錐形孔穴構造可藉由以蠢晶成長方式先 -較小之内六角錐形孔穴,再於遙晶成長完成I, 學澄蚀刻之方式將原有之較小内六角錐形孔穴,姓刻成= 大之内六角錐形孔穴,it而改變出光效率4於以 ^ 式形成内六角錐形孔穴時,若直接形成較大之孔穴,合Z 内六角錐形孔穴周邊處產生較大之應力,導致遙晶缺二之The surface layer of the layer is formed. S 5. The hexagonal cone-shaped hole structure can be formed by first growing a small hexagonal cone-shaped hole in a stupid crystal, and then growing it in a remote crystal. The pyramidal hole is engraved as = a large hexagonal pyramidal hole, it changes the light output efficiency. 4 When a hexagonal pyramidal hole is formed in the form of ^, if a larger hole is directly formed, it is combined with the periphery of the Z hexagonal pyramidal hole Large stresses are generated everywhere, leading to the lack of two

1237903 五、發明說明(7) 產生而破壞磊晶品質,影響發光二極體之電氣特性。但若 是先以磊晶方式形成較小孔穴,再以化學溼蝕刻方式使其 孔穴加深與變大,則較不會產生應力,而避免破壞内六角 錐形孔穴周邊蠢晶層之品質。 於本發明中内六角錐形孔穴構造之變化對發光二極體 亮度之影響,可由圖3至圖5做一說明。 於本發明中内六角錐形孔穴密度可介於1 χ l〇Vcm2至} χ 1011/cm2之間;内六角錐形孔穴密度之較佳範圍請參閱圖 3 ’其為依本發明所製得之高發光效率之發光元件,其亮 度與内六角錐形孔穴密度之關係圖。由圖中可見,隨著内 六角錐形孔穴密度由1 X 108/cm2增加至2 X l〇Vcm2,亮度由 117mcd明顯提升至15〇mcd左右,顯示增加内六角錐形孔穴 密度的確有助於發光二極體亮度之提升。 於本發明中内六角錐形孔穴頂端對角線大小可介於 1 0nm至1 um之間;内六角錐形孔穴頂端對角線大小之較佳 I巳圍清參閱圖4,其為依本發明所製得之高發光效率之發 光7G件’其亮度與内六角錐形孔穴頂端對角線大小之關係 圖。由圖中可見,隨著内六角錐形孔穴大小由1 22nm增加 至168nm時’亮度可由128mcd提升至173mcd,顯示較大六 角錐形孔穴亦對於發光二極體亮度之提升,有明顯之助 益。 •於士發明中内六角錐形孔穴深度可介於10nm至lum之 !、角錐形孔穴深度之較佳範圍請參閱圖5,其為依 本發明所制# 表传之高發光效率之發光元件,其亮度與内六角1237903 V. Description of the invention (7) The quality of the epitaxy is destroyed and the electrical characteristics of the light-emitting diode are affected. However, if smaller holes are first formed by epitaxy and then deepened and enlarged by chemical wet etching, less stress will be generated and the quality of the stupid crystal layer around the hexagonal cone holes will be avoided. In the present invention, the influence of the change in the structure of the hexagonal cone-shaped hole on the brightness of the light-emitting diode can be explained with reference to FIGS. 3 to 5. In the present invention, the density of the hexagonal cone holes may be between 1 x 10Vcm2 and} χ 1011 / cm2; for a preferred range of the density of the hexagonal cone holes, please refer to FIG. 3 'It is prepared according to the present invention The relationship between the brightness of the light emitting element with high luminous efficiency and the density of the hexagonal cone holes. It can be seen from the figure that as the density of the hexagonal cone holes increases from 1 X 108 / cm2 to 2 X l0Vcm2, the brightness significantly increases from 117mcd to about 150mcd, showing that increasing the density of the hexagonal cone holes really helps Improved brightness of light-emitting diodes. In the present invention, the diagonal size of the top end of the hexagonal tapered hole can be between 10 nm and 1 um; the preferred diagonal size of the top of the hexagonal tapered hole is shown in FIG. 4, which is based on this The relationship between the brightness of the light-emitting 7G piece with high luminous efficiency and the size of the diagonal line at the top of the hexagonal cone hole. It can be seen from the figure that as the size of the hexagonal cone holes increases from 122nm to 168nm, the brightness can be increased from 128mcd to 173mcd, showing that the larger hexagonal cone holes can also significantly improve the brightness of the light-emitting diode. . • In the invention of the inventor, the depth of the hexagonal cone-shaped hole can be between 10nm and lum! For a preferred range of the depth of the pyramid-shaped hole, please refer to FIG. 5, which is a light-emitting element with high luminous efficiency made according to the present invention. , Its brightness and inner hexagon

第13頁 1237903Page 13 1237903

五、發明說明(8) 錐形孔穴深度之關係圖。由圖中可貝,告丄 = 0^cd左右,顯示較深的内六角錐形孔穴較有助於亮度之 ’需控制於發光 易造成發光二極 需足夠,以確保 孔穴之内側與外 否則極易造成電 六角錐形孔穴之 ’而造成操作電V. Description of the invention (8) Relation diagram of the depth of the conical hole. From the picture, it can be seen that = 0 ^ cd, showing a deeper hexagonal tapered hole is more conducive to brightness. 'It needs to be controlled to emit light and cause the light emitting diode to be sufficient to ensure the inside and outside of the hole. Otherwise It is easy to cause the operation of electric hexagonal tapered holes

然而,内六角錐形孔穴之底部起始處 層上方’右其起始處延伸至發光層區,較 體之電氣特性不良。 此外,前述之氧化物透明導電層厚度 能維持該氧化物透明導電層在内六角錐形 側交界處,不致形成不連續或斷裂現象, 流無法有效經由該氧化物透明導電層與内 内側面接觸電阻較低處進入半導體材料中 壓偏高。 參見下表,以一氮化物發光二極體其表面具有向下延 伸之内六角錐孔穴,該内六角錐孔穴平均深度為l5〇nm,However, the bottom of the inner hexagonal cone-shaped hole starts at the bottom of the layer, and the top of the layer extends to the light-emitting layer, which has poor electrical characteristics. In addition, the thickness of the oxide transparent conductive layer can maintain the oxide transparent conductive layer at the junction of the tapered sides of the hexagon, so that no discontinuity or breakage is formed, and the flow cannot effectively contact the inner and inner sides through the oxide transparent conductive layer. The lower the resistance into the semiconductor material, the higher the voltage. Referring to the following table, a nitride light-emitting diode has a hexagonal cone hole extending downward on its surface, and the average depth of the hexagonal cone hole is 150 nm.

當分別將70nm與220nm之氧化物透明導電層形成於其上 時’會發現70nm厚之發光二極體具有較高的操作電壓, 20mA時約在3·6ν,而220nm厚之發光二極體之2〇mA操作電 壓僅約3·3ν,由此可知當氧化物透明導電層實質上具有足 夠之厚度時,能夠有效降低元件之操作電壓。When the 70nm and 220nm oxide transparent conductive layers are formed thereon, it will be found that a 70nm thick light-emitting diode has a higher operating voltage, which is about 3 · 6ν at 20mA, and a 220nm thick light-emitting diode. The 20mA operating voltage is only about 3 · 3ν, so it can be known that when the oxide transparent conductive layer has substantially sufficient thickness, the operating voltage of the device can be effectively reduced.

第14頁 1237903Page 14 1237903

五、發明說明(9) 内六角錐孔穴 平均深度 氧化物透明導電層 厚度 ___ ^ 發光二極體操作電壓 (@20mA) 3.6V ~~ 150nm 70nm 一 一 3.3V 150nm 220nm 前述之氧化物透明導電層15於波長範圍300〜700nm間 係具有一 50%以上之穿透率。該氧化物透明導電層可藉由 電子束蒸鍵法(Ebeam evaporater)、離子濺鑛法 (Sputter)或是熱蒸鏡法(Thermal coater),或是結合兩 種以上之方式而製成。V. Description of the invention (9) The average depth of the oxide transparent conductive layer of the hexagonal cone hole ^ ^ Operating voltage of the light emitting diode (@ 20mA) 3.6V ~~ 150nm 70nm-3.3V 150nm 220nm The aforementioned oxide is transparent and conductive The layer 15 has a transmittance of more than 50% in a wavelength range of 300 to 700 nm. The oxide transparent conductive layer may be made by an electron beam evaporation method (Ebeam evaporater), an ion sputtering method (Sputter) or a thermal coating method (Thermal coater), or a combination of two or more methods.

於進行前述之氧化物透明導電層製程時,以能填滿該 内六角錐形孔穴為佳,如此能增加低電阻接觸區域之面 積’有效降低元件之操作電壓。 材料 上在 徵。 出效 率差 述之 封裝 折射 物透 值者 再者 會填 氧化 換言 果, 異極 氧化 材料 率與 明導 為佳 ,由於 入内六 物透明 之,欲 需在内 大4匕為 物透明 之折射 該氮化 電層之 角錐形孔穴 導電層表面 使原内六角 六角錐形孔 最佳,故在 導電層之折 率之間,此 物材料之折 折射率與後 而易將其填 不再具有内 錐形孔穴結 穴下側材料 材料折射率 射率需介於 外,以該氧 射率之絕對 續封裝材料 後,該 滿或填 六角錐 構發揮 與上側 之組合 氮化物 化物透 差值, 之折射 氧化物透明 平,故實質 形孔穴特 最佳的光摘 材料之折射 設計上,前 材料與後續 明導電層之 大於該氧化 率之絕對差In the aforementioned oxide transparent conductive layer manufacturing process, it is better to fill the hexagonal tapered hole, so that the area of the low-resistance contact area can be increased 'and the operating voltage of the device can be effectively reduced. Signs on materials. For packaged refractors that are poor in efficiency, they will be filled with oxidation. In other words, the rate of heteropolar oxide materials and the light guide is better. Because the six materials inside are transparent, it is necessary to refraction the material to be transparent. The surface of the conductive layer of the pyramidal hole of the nitrided electrical layer makes the original hexagonal hexagonal tapered hole the best. Therefore, the refractive index of this material is between the refractive index of the conductive layer and it is easy to fill it. The refractive index emissivity of the material on the lower side of the tapered cavity node needs to be outside. After the encapsulation material is absolutely continued with the oxygen emissivity, the full or filled hexagonal cone structure exhibits the combined nitride transmittance value with the upper side. The refractive oxide is transparent and flat. Therefore, the refractive index design of the best light-extracting material with substantially shaped cavities is that the absolute difference between the front material and the subsequent bright conductive layer is greater than the oxidation rate.

第15頁 1237903 五、發明說明(10) 圖6為本發明具有内六角錐孔穴構造配合氧化物導電 層之發光二極體(LED-A)與無内六角錐孔穴構造配合薄金 屬透明導電層之傳統發光二極體(LED-B)以及無内六角錐 孔穴構造配合氧化物導電層之發光二極體(LED-C),其發 光強度與操作電流之特性比較。由圖中可看出在無内六角 錐孔穴構造配合薄金屬透明導電層之傳統發光二極體LED-β中,由於薄金屬透明導電層之穿透率不佳,故其發光特 性不甚理想,亮度偏低。而以氧化物透明導電層取代傳統 薄金屬透明導電層之發光二極體LED-C,由於其良好之穿 透率’其確能改善發光效能,提高發光效率。而利用本發 明技藝之發光二極體L E D - A,利用内六角孔穴構造增加整 體之出光面積,降低全反射效應所造成的出光損失,並且 能減少發光層上側之半導體疊層之吸光效應,故確能大幅 提高整體發光效率與亮度。 圖7為本發明具有内六角錐孔穴構造配合氧化物導電 層之發光二極體(LED-A)與無内六角錐孔穴構造配合薄金 屬透明導電層之傳統發光二極體(LED — B)&及無内六角錐 孔穴構造配合氧化物導電層之發光二極體(LE卜c)之正向 電流與電壓特性比較。由圖中可看出,傳統發光二極體 LED-B具有一較低的操作電壓;而使用無内六角錐孔穴構 造配合氧化物透明導電層之發光二極體LED — C,由於介面 無法形成良妤之歐姆接觸,故其操作電壓相當高,在2〇mA 時會達到5 V以上。反觀依本發明技藝之方式,以内六角錐 孔八構造配合氧化物透明導電層之發光二極體,其Page 15 12379903 V. Description of the invention (10) Figure 6 shows a light-emitting diode (LED-A) with a hexagonal tapered hole structure and an oxide conductive layer and a thin metal transparent conductive layer without a hexagonal tapered hole structure. Comparison of the characteristics of the luminous intensity and the operating current of the conventional light-emitting diode (LED-B) and the light-emitting diode (LED-C) without the hexagonal cone hole structure and the oxide conductive layer. It can be seen from the figure that in the traditional light-emitting diode LED-β without the hexagonal cone hole structure and the thin metal transparent conductive layer, the thin metal transparent conductive layer has poor transmittance, so its luminous characteristics are not ideal. , The brightness is low. The light-emitting diode LED-C, which replaces the traditional thin metal transparent conductive layer with an oxide transparent conductive layer, can indeed improve the luminous efficiency and luminous efficiency due to its good permeability. By using the light-emitting diode LED-A of the present invention, the hexagonal cavity structure is used to increase the overall light output area, reduce the light loss caused by the total reflection effect, and reduce the light absorption effect of the semiconductor stack on the upper side of the light-emitting layer. It can greatly improve the overall luminous efficiency and brightness. FIG. 7 is a conventional light-emitting diode (LED-B) with a hexagonal cone-shaped hole structure and an oxide conductive layer and a thin metal transparent conductive layer without a hexagon-shaped cone-hole structure of the invention & Comparison of forward current and voltage characteristics of light-emitting diodes (LEbc) with no hexagonal cone hole structure and oxide conductive layer. It can be seen from the figure that the traditional light-emitting diode LED-B has a lower operating voltage; while the light-emitting diode LED-C using an internal hexagonal cone hole structure and an oxide transparent conductive layer is not formed because of the interface Good ohmic contact, so its operating voltage is quite high, it will reach 5 V or more at 20mA. In contrast, according to the method of the present invention, a light-emitting diode with a hexagonal cone-shaped hole and eight structures and a transparent oxide conductive layer is provided.

第16頁 1237903 五、發明說明(11) 操作電壓可降低至與傳統薄金屬透明導電層發光二極體 LED-B相近之範圍,顯然有其顯著之進步性。 請參閱圖8,依本發明另一較佳實施例高發光效率之 發光元件2,其與前述之高發光效率發光元件1不同處在於 該N型半導體疊層12之第二表面包含一 N型電極接觸區域、 121及一無電極接觸區域122,該N型電極16形成於該N型電 極接觸區域121上,其中該無電極接觸區域122更包含一高 光摘出效率表面,該高光摘出效率表面可經蝕刻處理或遙 晶成長形成一粗化表面或複數個向下延伸之内六角錐形孔 穴構造,在本實施例中以一粗化表面構造123表示之,藉 由該無電極接觸區域之表面更包含該粗化表面構造,可減 少N型氮化物半導體疊層與基板間反覆反射傳遞之側向光 線,使得側向光能有效摘出,以進一步提高發光二極體之 發光效率。 出:m圖9 ’依本發明又一較佳實施例為-種高光摘 :率毛光疋件3,其與前述高光摘出效率發光元件2Page 16 1237903 V. Description of the invention (11) The operating voltage can be reduced to a range close to the traditional thin metal transparent conductive layer light-emitting diode LED-B, which obviously has its significant improvement. Referring to FIG. 8, according to another preferred embodiment of the present invention, a light emitting device 2 with high light emitting efficiency is different from the light emitting device 1 with high light emitting efficiency described above in that the second surface of the N-type semiconductor stack 12 includes an N-type An electrode contact region 121 and an electrodeless contact region 122. The N-type electrode 16 is formed on the N-type electrode contact region 121. The electrodeless contact region 122 further includes a high-light extraction efficiency surface. After the etching process or telecrystal growth, a roughened surface or a plurality of downwardly extending hexagonal cone-shaped hole structures is formed. In this embodiment, it is represented by a roughened surface structure 123. The surface of the non-electrode contact area Including the roughened surface structure can reduce the lateral light transmitted repeatedly between the N-type nitride semiconductor stack and the substrate, so that the lateral light can be effectively extracted to further improve the light emitting efficiency of the light emitting diode. Out: m FIG. 9 ′ According to another preferred embodiment of the present invention, a kind of high-light extraction: a light-emitting light member 3, which is similar to the above-mentioned high-light extraction efficiency light-emitting element 2

導體疊層12之第二表面上之無電極接觸區 123,更包Ϊ =含該粗化表面構造之高光摘出效率表面 造之言糸搞3屮該無電極接觸區域1 2 2上與粗化表面4 18,該第二氧^率表面丨23上之一第二氧化物透明導電層 觸,如型電極16形成接 果;此外,誃笛物透導電層亦可增加電流擴散效 物材料與後續封1鉍4;:12斛折射革右介於 封裝材料之折射率之間’其又可增加封裝4The electrodeless contact area 123 on the second surface of the conductor stack 12 is more complicated. = High light extraction efficiency including the roughened surface structure. The surface is made of 3. The electrodeless contact area 1 2 2 is roughened. Surface 4 18, one of the second oxide transparent conductive layer on the second oxygen surface 23, such as the electrode 16 to form a fruit; In addition, the transparent conductive layer can also increase the current diffusion effect material and Subsequent sealing 1 bismuth 4 ;: 12 Dendrobium refracting leather is right between the refractive index of the packaging material 'which can increase the packaging 4

1237903 五、發明說明(12) 之光摘出效率。 上述實施例中,於該N型半導體疊層12之第二表面上 之N型電極接觸區域121上與N型電極16間,亦可包含一氧 化物透明導電層。 上述實施例中,亦可直接以氧化物透明導電層作為N 型電極。 上述實施例中,於N型電極接觸區域121上,亦可包含 複數個向下延伸之内六角錐形孔穴構造。 上述實施例中,藍寶石基板藍寶石基板可具有〇。〜1〇。 之一任意偏角,而該藍寶石基板亦可由SiC、GaAs、CaN、 AIN、GaP、Si、ZnO、MgO及玻璃所構成材料組群中之至少 一種材料或其它可代替之材料取代之。 上述實施例中,氮化物緩衝層可包含選自於A1 N、1237903 V. Description of the invention (12) Light extraction efficiency. In the above embodiment, an oxide transparent conductive layer may be included between the N-type electrode contact region 121 on the second surface of the N-type semiconductor stack 12 and the N-type electrode 16. In the above embodiments, the oxide transparent conductive layer can also be directly used as the N-type electrode. In the above embodiment, the N-type electrode contact region 121 may include a plurality of inner hexagonal tapered hole structures extending downward. In the above embodiment, the sapphire substrate may have 0. ~ 10. The sapphire substrate can be replaced by at least one of the materials in the group consisting of SiC, GaAs, CaN, AIN, GaP, Si, ZnO, MgO, and glass, or other replaceable materials. In the above embodiment, the nitride buffer layer may include a material selected from A1 N,

GaN、AlGaN、InGaN及A1 InGaN所構成材料群組中的一種材 料’N型氮化物半導體疊層可包含選自於ain、GaN、One of the materials in the group consisting of GaN, AlGaN, InGaN, and A1 InGaN is an N-type nitride semiconductor stack that may be selected from the group consisting of ain, GaN,

AjGaN、InGaN及AlInGaN所構成材料群組中的一種材料; 氮化物多重量子井發光層可包含選自於GaN、InGaN及 AjlnGaN所構成材料群組中的一種材料;p型氮化物半導體 璺層可包含選自於AIN、GaN、AlGaN、InGaN及A1 InGaN所 構成材,群組中的一種材料;該氧化物透明導電層係包含 選自於氧化銦錫、氧化鎘錫、氧化銻錫、氧化銦辞、 辞鋁及氧化鋅錫所構成材料組群中之至少一種材料。 以上所述者,僅為本發明之較佳實施例,本發明之節 圍不限於該等較佳實施W,凡依本發明所做的任何變更, 1237903 五、發明說明(13) 皆屬本發明申請專利之範圍。因此任何熟知此項技藝者, 在不脫離本發明之申請專利範圍及精神下,當可做任何改 變0 第19頁 1237903A material in the material group consisting of AjGaN, InGaN, and AlInGaN; the nitride multiple quantum well light emitting layer may include a material selected from the material group consisting of GaN, InGaN, and AjlnGaN; the p-type nitride semiconductor hafnium layer may A material selected from the group consisting of AIN, GaN, AlGaN, InGaN, and A1 InGaN; the oxide transparent conductive layer includes a material selected from indium tin oxide, cadmium tin oxide, antimony tin oxide, and indium oxide At least one of the materials group consisting of aluminum, zinc aluminum and zinc tin oxide. The above are only preferred embodiments of the present invention, and the scope of the present invention is not limited to these preferred implementations. Any changes made in accordance with the present invention, 1237903 V. Description of the invention (13) belongs to this The scope of patent application for invention. Therefore, any person who is familiar with this technology can make any changes without departing from the scope and spirit of the patent application of the present invention. Page 19 1237903

圖式之簡單說明: _ 圖1為 示思圖,顯示依本發明一較佳實施例之一種 高發光效率之發光元件; 圖2為一示意圖,顯示本發明中複數個内六角錐形孔 穴構造之P型氮化物半導體疊層表層之示意圖; 圖3顯示依本發明所製得之發光元件,其亮度與内六 角錐形孔穴密度之關係; 圖4顯不依本發明所製得之發光元件,其亮度與内六 角錐形孔穴頂端對角線大小之關係; 圖5顯示依本發明所製得之發光元件,其亮度與内六 角錐形孔穴深度之關係; ^圖6顯示本發明具有内六角錐孔穴構造配合氧化物導 =層之發光二極體、無内六角錐孔穴構造配合薄金屬透明 道電層之發光二極體以及無内六角錐孔穴構造配合氧化物 導電層之發光二極體,其發光強度與操作電流之特性比 圖7顯示本發明具有内六角錐孔穴構造配合氧化物Brief description of the drawings: _ Figure 1 is a schematic diagram showing a light emitting element with high light emitting efficiency according to a preferred embodiment of the present invention; Figure 2 is a schematic diagram showing a plurality of hexagonal cone-shaped hole structures in the present invention Schematic diagram of the P-type nitride semiconductor laminated surface layer; Figure 3 shows the relationship between the brightness of the light-emitting element made according to the present invention and the hexagonal cone hole density; Figure 4 shows the light-emitting element not made according to the present invention. The relationship between the brightness and the diagonal size of the top of the hexagonal cone hole; Figure 5 shows the relationship between the brightness and the depth of the hexagonal cone hole of a light-emitting device made according to the present invention; ^ Figure 6 shows that the present invention has an internal six Pyramid hole structure with light-emitting diode of oxide conducting layer, light-emitting diode without hexagonal tapered hole structure with thin metal transparent channel layer, and light-emitting diode without hexagonal tapered hole structure with oxide conductive layer The ratio of the luminous intensity to the operating current. Figure 7 shows that the present invention has a hexagonal cone-shaped hole with a complex oxide structure.

I::發光二極體、無内六角錐孔穴構造配合薄金屬专 之傳統發光二極體以及無内六角Μ穴構造配^ 圖電/一之一發^ 一極體一之正向電流與電壓特性比較; 發光效率之發光元# ; “明杈佳實施例之-種 圖9為一示意圖,顯示依太 發光致率之發光元件。本發明較佳實施例之-種I :: Light-emitting diodes, no hexagonal taper hole structure with traditional thin-metal traditional light-emitting diodes and no hexagonal M-hole structure Comparison of voltage characteristics; luminous efficiency of the luminous element #; "A bright embodiment of a bright type-a kind of Fig. 9 is a schematic diagram showing a light-emitting element of the Ether photoluminescence. The preferred embodiment of the present invention-a kind of

第20頁 1237903 圖式簡單說明1237903 Simple illustration on page 20

第21頁 符號說明 10 藍 寶 石 基 板 11 氮 化 物 緩 衝 層 12 N 型 氮 化 物 半 導 體 疊 層 13 氮 化 物 多 重 量 子 井 發 光層 14 P 型 氮 化 物 半 導 體 疊 層 141 内 六 角 錐 形 孔 穴 構 造 1411 内 側 面 15 氧 化 物 透 明 導 電 層 16 N 型 歐 JtEL 電 極 17 P 型 歐 Lel 電 極 121 N 型 電 極 接 觸 區 域 122 無 電 極 接 觸 區 域 123 粗 化 表 面 構 造 18 氧 化 物 透 明 導 電 層Explanation of symbols on page 21 10 Sapphire substrate 11 Nitride buffer layer 12 N-type nitride semiconductor stack 13 Nitride multiple quantum well light-emitting layer 14 P-type nitride semiconductor stack 141 Hexagonal tapered hole structure 1411 Inner side surface 15 Oxide Transparent conductive layer 16 N-type European JtEL electrode 17 P-type European Lel electrode 121 N-type electrode contact area 122 No-electrode contact area 123 Roughened surface structure 18 Oxide transparent conductive layer

Claims (1)

1237903 六、申請專利範圍 1. 一種高發 一基板 形成於 形成於 層; 形成於 層,其中, 層之表面處 造;以及 形成於 電層,該氧 體疊層表面 該内六角錐 光效率之發光元件,至少包含: y 亡之-第-氮化物半導體疊層; μ弟-虱化物半導體疊層上之一氮化物發光 該氮化物發光居卜 兮笛-斤層上之一弟二亂化物半導體疊 二化物半導體疊層相對於該氮化物發光 八有後數個向下延伸之内六角錐形孔穴構 2第二氮化物半導體疊層上之一氧化物透明導 化物透明導電層延伸並填入該第二氮化物半導 之複數個向下延伸之内六角錐形孔穴内,且與 形孔穴内側表面實質上形成歐姆接觸。 2 ·如申清專利範圍第1項所述之一種高發光效率之發光元 件,其中,該内六角錐孔穴構造之頂端對角線大小,係介 於1 Onm至1 um之間。 3·如申請專利範圍第1項所述之,種高發光效率之發光元 件,其中,該内六角錐孔穴構造之密度,係介於lxl 〇7cnr2 至 1 xl 011 cnr2 之間。 4 ·如申請專利範圍第1項所述么〆,间發光效率之發光元 件,其中,該内六角錐孔穴構遠之深度,係介於ΙΟ·至1237903 VI. Scope of patent application 1. A high-fabrication substrate is formed on the layer; formed on the layer, wherein the surface of the layer is formed; and formed on the electrical layer, the surface of the oxygen stack, and the light emission efficiency of the hexagonal cone The device includes at least: y-Z-Nitride semiconductor stack; μ-nitride one of the nitride semiconductor light-emitting stacks, the nitride-emitting zibu-diode semiconductor With respect to the nitride, the stacked semiconductor stack has a number of internal hexagonal tapered hole structures extending downward. One of the oxide transparent conductive layers on the second nitride semiconductor stack extends and is filled in. The plurality of inner hexagonal tapered cavities extending downward of the second nitride semiconductor semiconductor are substantially in ohmic contact with the inner surface of the shaped cavities. 2. A light-emitting element with high luminous efficiency as described in item 1 of the scope of Shenqing Patent, wherein the size of the diagonal of the top end of the hexagonal cone hole structure is between 1 Onm and 1 um. 3. As described in item 1 of the scope of the patent application, a light-emitting element with high luminous efficiency, wherein the density of the hexagonal cone hole structure is between lxl 007cnr2 to 1xl 011 cnr2. 4 · As described in item 1 of the scope of the patent application, the light-emitting element of indirect luminous efficiency, wherein the depth of the hexagonal cone hole structure is between 10 · to 第 1237903 六、申請專利範圍 1 V m之間。 5.如申請專利範圍第1項所述之一種高發光效率之發光元 件,其中,於該基板及該第一半導體疊層之間更包X含一& 衝層。 幾 6 ·如申請專利範圍第1項所述之一種高發光效率之發光元 件,其中,該氧化物透明導電層係包含選自於氧化x銦錫、 ^匕鎘錫、氧化銻錫、氧化銦鋅、氧化鋅鋁及氧化鋅錫 冓成材料組群中之至少一種材料或其它可代替之材料。 7株如申請專利範圍第!項所述之一種高發光效率之發光元 :門:中該氧化物透明導電層於波長範圍於3 之間時,係具有50%以上之穿透率。 8 ·如 件, 申請專利範圍第1項所沭 _ 其中該氧化物透明導電局發光效率之發光元 導電層之厚度係介於50nm至lum。 9 •如申請專利範圍第丨項所 ^ 件,其中,該基板係為_c ^種高發光效率之發光元 板。該内六角錐孔穴相鄰 1 )為主面之藍寶石基 而錐形面係由{ 10-U }曰 '曲間之夾角實質上為120。 成。 日日面群或丨11 - 2 2丨晶面群所構 1237903 六、申請專利範圍 二件如Π專利範圍第1項所述之-種高發光效率之發光 疋件,其中,該藍寶石基板,椋盔,πηπ^ 主面之美舡係為一( 0 0 0 1)或(11-20)為 基板,且具有0〜!〇。之-任意偏角。 1 1.如申請專利範圍第1項所 件,复中,钤装此及—人 ^之一種问發先效率之發光元 Gap 1 μ 基板係 0 3 選自於GaN、AIN、SiC、GaAs、 至少^\ίη()、Mg〇、MgA1 204及玻璃所構成材料組群中之 主夕一種材料或其它可代替之材料。 如/+請專利範圍/1項所述之一種高發光效率之發光元 /、,該第一氮化物半導體疊層係包含選自於Α1Ν、 1 G a Ν、I n G a Ν及A1 I n G a Ν所構成材料組群中之$ ,丨、一 種材料或其它可代替之材料。 乂 1 3·如申請專利範圍第1項所述之一種高發光效率之發光 70件’其中,該第一氮化物半導體疊層至少包含一n ^氮 化物半導體層,且該第二氮化物半導體疊層中係至少包含 Ρ型氮化物半導體層。 1 4·如申請專利範圍第i項所述之一種高發光效率之發光 70件’其中,該第一氮化物半導體疊層至少包含一 p型氮 化物半導體層,且該第二氮化物半導體疊層至少包含一n 型氮化物半導體層。Article 1237903 6. The scope of patent application is between 1 V m. 5. A light-emitting element with high luminous efficiency as described in item 1 of the scope of the patent application, wherein X & > is included between the substrate and the first semiconductor stack. 6. A light-emitting device with high luminous efficiency as described in item 1 of the scope of patent application, wherein the oxide transparent conductive layer comprises a material selected from the group consisting of x indium tin oxide, cadmium tin oxide, antimony tin oxide, and indium oxide. Zinc, zinc aluminum oxide, and zinc tin oxide form at least one of the material groups or other alternative materials. 7 strains such as the scope of patent application! A light-emitting element with high luminous efficiency as described in the item: Gate: The transparent conductive layer of the oxide has a transmittance of more than 50% when the wavelength range is between 3. 8 · If, the thickness of the light-emitting element of the transparent transparent conductive luminous efficiency of the oxide is the thickness of the conductive layer between 50nm and lum. 9 • As mentioned in item 丨 of the scope of patent application, wherein the substrate is a _c ^ light emitting element plate with high luminous efficiency. The hexagonal cone holes are adjacent 1) as the sapphire base of the main surface, and the cone surface is formed by {10-U}, the angle between the curves is substantially 120. to make. Day-to-day noodle group or 丨 11-2 2 crystal face group structure 1237903 6. Two patent application scopes, as described in the first patent scope item-a kind of high luminous efficiency light-emitting element, in which the sapphire substrate,椋 helm, πηπ ^ The beauty of the main surface is one (0 0 0 1) or (11-20) as the substrate, and has 0 ~! 〇. Of-any declination. 1 1. As described in item 1 of the scope of the patent application, resumption, pretending to be a kind of light-emitting element Gap 1 μ substrate system 0 3 selected from GaN, AIN, SiC, GaAs, At least ^ \ ίη (), Mg〇, MgA1 204, and one of the materials in the group of materials made of glass or other alternative materials. A light emitting element with a high luminous efficiency as described in / + Please patent scope / 1, the first nitride semiconductor stack system includes a member selected from A1N, 1 G a Ν, I n G a Ν, and A1 I $, 丨, a material, or other replaceable materials in the material group formed by n G a Ν.乂 1 3. A light-emitting device with high luminous efficiency as described in item 1 of the scope of the patent application, wherein the first nitride semiconductor stack includes at least one n ^ nitride semiconductor layer, and the second nitride semiconductor The stack includes at least a P-type nitride semiconductor layer. 1 4. A light-emitting device with high luminous efficiency described in item i of the patent application, 70 pieces, wherein the first nitride semiconductor stack includes at least one p-type nitride semiconductor layer, and the second nitride semiconductor stack The layer includes at least one n-type nitride semiconductor layer. 1237903 1 咖 六、申請專利範圍 1 5·如申請專利範圍第〗項所 AL r . 1之 種局發光效率之於古- 件,其中,該氮化物發光層係#人 &尤双手先凡 :二、」—編―所構成材3料I群於中^ 料或其它可代替之材料。 野rI主v種材 1 件6.如Λ請專利範圍第1項所述之-種高發光效率之發光元 U:該氮化物發光層可為雙異質結構、單量子井2 構或多重量子井結構。 干里卞开結 1 开7株如,申Λ專利範圍第1項或所述之-種高發光效率之發光 八,该第二氮化物半導體疊層係包含選自於 、GaN、AlGaN、InGaN及AlInGaN所構成材料組群十 至> 一種材料或其它可代替之材料。 18·如申請專利範圍第1項所述一種高發光效率之發光元 件’其中’該緩衝層係包含選自於AIN、GaN、AlGaN、 GaN及AlInGaN所構成材料組群中之至少一種材料 可代替之材料。 4 丁叶忒具匕 1 9 ·如申睛專利範圍第1項所述之一種高發光效率之發光元 件’其中’該第二氮化物半導體疊層表面之内六条Y — 構係以遙晶成長之方式形成。 角孔八、,° 2 0·如申請專利範圍第1項所述之一種高發光效率之發光元 第25頁 1237903 六、 申請專利範圍 件,其中’該第二氮化物半導體疊層表面之内 穴 結構係以溼蝕刻方式形成。 /、角、’ 件,其中§亥弟二氮化物半導體疊層表面之内六 穴 結構係以磊晶成長方式再配合溼蝕刻方式所形^。’’ 22.如專Λ範圍第1項所述之—種高發光效率之發光元 ΐ ;ΐ:氮錐形孔穴之底部距該基板之距離,係 不小於該虱化物發光層上表面距該基板之距離。 2 3 ·如申請專利範圍第1 g所 级么々 件,豆中#南發光效率之發光元 物透明導電層心第觸電阻,實質上低於該氧化 之接觸電: 第-鼠化物半導體疊層平行基板之表面 元件,其月中專,1二圍第1項’所述之-種高發光效率之發光 材料與封I =氧,物透明導電層之折射率係介於氮化物 、对裝材枓之折射率之間。 25·如 %件,其;專:H f1項所述之-種高發光效率之發光 〜第〜表面及二 氮化物半導體疊層遠離該基板處包含 第一表面,該氮化物發光層形成於該第一 第26頁 12379031237903 1 6. The scope of patent application 1 5 · As in the scope of the patent application, item AL r.1, the local luminous efficiency is more important than ancient ones, in which the nitride light-emitting layer is # 人 & YOU Shoufan Xianfan : "2."-compilation-3 materials I group of materials in the group ^ materials or other alternative materials. Wild rI main v seed material 1 piece 6. As described in Λ claim patent range 1-a kind of high luminous efficiency light emitting element U: the nitride light emitting layer can be a double heterostructure, a single quantum well 2 structure or multiple quantum Well structure. Qianliyuan Kaijie 1 opened 7 strains, such as the Λ patent scope of item 1 or described-a kind of high luminous efficiency of light emitting eight, the second nitride semiconductor stacking system contains a material selected from the group consisting of GaN, AlGaN, InGaN Groups of materials consisting of AlInGaN and AlInGaN are one or more alternative materials. 18. A light-emitting device with high luminous efficiency as described in item 1 of the scope of the patent application, wherein the buffer layer contains at least one material selected from the group consisting of AIN, GaN, AlGaN, GaN, and AlInGaN. Of materials. 4 丁 叶 忒 具 匕 9 9 A light-emitting element with a high luminous efficiency as described in item 1 of Shenjing's patent scope, where 'the' six Y-structures within the surface of the second nitride semiconductor stack are grown by telecrystals Way of forming. Angle hole VIII, ° 2 0 · As described in item 1 of the scope of patent application, a light-emitting element with high luminous efficiency, page 25, 1237903 6. Application for patent scope, where 'the second nitride semiconductor laminate surface is within The cavity structure is formed by wet etching. /, Corner, ’, in which the six-cavity structure inside the surface of the helium di-nitride semiconductor stack is formed by epitaxial growth followed by wet etching ^. '' 22. As described in item 1 of the range of Λ-a kind of high luminous efficiency light emitting element ΐ; ΐ: the distance from the bottom of the nitrogen cone hole to the substrate is not less than the upper surface of the lice compound light emitting layer from the The distance of the substrate. 2 3 · As in the case of Grade 1g in the scope of the patent application, the contact resistance of the transparent conductive layer of the luminescent element in the #South luminous efficiency is substantially lower than that of the oxidized contact: The surface element of the layer-parallel substrate is the one described in item 1 of the second round, a kind of high luminous efficiency light-emitting material and sealing I = oxygen. The refractive index of the transparent conductive layer is between nitride and Refractive index of the packing material. 25 · As per%, its; Special: a kind of high luminous efficiency light emission described in item H f1 ~ the first surface and the dinitride semiconductor stack away from the substrate include the first surface, and the nitride light emitting layer is formed on The first page 261237903 六、申請專利範圍 表面之上。 2 6.如申請專利範圍第託項所述之一種高發光效率之 元件,其中,更包含於該第/氮化物半導體疊層/光 上形成一第二氧化物透明導電層。 又面 2 7 ·如申請專利範圍第2 6項所述之一種高發光效率之 το件,其中,該第二氧化物透明導電層係包含選自於\ “ 銦錫、氧化鎘錫、氧化銻錫、氧化銦鋅、氧化 鋅錫所構成材料組群中之至少一種材料 、及氧化 料。 虱八它可代替之材 28.如申請專利範圍第26項所述之〜種 元件,其中,該* :氧化物透日月導電層之X折射4牟:之^發气 化物材料與封裝材料之折射率之間。 、…"於氮 29·如申請專利範圍第25項所述之〜種高發光 兀件,其中,肖第一氮化物苹導體疊層第二表面:之3 摘出效率表面。 弟表面係一商光 3〇·如申請專利範圍第29項所述之一種高發光效率之 兀件,其中,該高光摘出效率表面包含一向下延 ;> 角錐形孔穴構造。 、狎之内八6. Scope of Patent Application Above the surface. 2 6. A high luminous efficiency device as described in the entrusted item of the patent application scope, further comprising forming a second oxide transparent conductive layer on the / nitride semiconductor stack / light. Another aspect is a high luminous efficiency το component as described in item 26 of the scope of patent application, wherein the second oxide transparent conductive layer comprises a material selected from the group consisting of indium tin, cadmium tin oxide, and antimony oxide. At least one material in the group of materials composed of tin, indium zinc oxide, and zinc tin oxide, and an oxidizing material. L. It can be replaced by a material 28. A component as described in item 26 of the scope of patent application, wherein, the *: X-ray refraction of the conductive layer of the oxide through the sun and the moon 4: between the refractive index of the gaseous material and the packaging material. 、 &Quot; in nitrogen 29 · As described in the scope of patent application No. 25 ~ High luminous element, in which the second surface of the first nitride semiconductor conductor stack second surface: No. 3 extraction efficiency surface. The younger surface is a commercial light 30. A high luminous efficiency as described in item 29 of the scope of patent application Element, wherein the high-light extraction efficiency surface includes a downwardly extending pyramidal hole structure. 构造 内 内 八 圍 /種高發光效率之發光 之深度,係介於1〇_至 1237903 六、申請專利範 3一1 ·如申請專利範圍第30項所述之一種高發光效率之發光 疋件,其中,更包含於該具有向下延伸之内六角錐形孔穴 構造之第一氮化物半導體疊層第二表面上形成一第二氧化 物透明導電層。 3 2.如申請專利範圍第3丨項所述之一種高發光效率之發光 元件,其中,該氧化物透明導電層延伸並填入該第一氮化 物半導體疊層表面之内六角錐形孔穴内。 3 3 ·如申請專利範圍第3 0項所述之〆種1^發光效率之發光 元件,其中,該内六角錐孔穴構造之頂端對角線大小,係 介於1 Onm至1 // m之間。 34·如申請專利範圍第30項所述之〆種/發光效率之發光 元件,其中,該内六角錐孔穴構造之被度,係介於 lxl07cm_2 至lxliPcnr2 之間。 35.如申請專利範圍第30項所述之 元件,其中,該内六角錐孔穴構造 1 // m之間。 36.如申請專利範圍第30項所述之,種尚發光效率之發光 元件,其中,該内六角錐孔穴結構係以溼蝕刻方式形成。The luminous depth of the surrounding / type of high luminous efficiency is between 10 and 1237903. 6. Patent application range 3-1. · A luminous element with high luminous efficiency as described in item 30 of the scope of patent application. Among them, more A second oxide transparent conductive layer is formed on the second surface of the first nitride semiconductor stack having the inner hexagonal tapered cavity structure extending downward. 3 2. The light-emitting device with high light-emitting efficiency according to item 3 丨 in the scope of patent application, wherein the oxide transparent conductive layer extends and fills the inner hexagonal tapered hole on the surface of the first nitride semiconductor stack. . 3 3 · The light emitting element of the 1 ^ luminous efficiency described in item 30 of the scope of patent application, wherein the size of the diagonal of the top end of the hexagonal cone hole structure is between 1 Onm and 1 // m between. 34. The light-emitting element of the above-mentioned type / luminous efficiency as described in item 30 of the scope of patent application, wherein the quilt structure of the hexagonal cone hole structure is between lxl07cm_2 and lxliPcnr2. 35. The element according to item 30 of the scope of patent application, wherein the hexagonal cone hole structure is between 1 // m. 36. As described in item 30 of the scope of application for a patent, a light-emitting element with light-emitting efficiency, wherein the hexagonal cone hole structure is formed by wet etching. 第28頁Page 28 1237903 申請專利範圍 六 3 7.如申請專利範圍第3丨項所述之一種高發光效率之發光 元件,其中,該第二氧化物透明導電層係包含選自於氧化 銦錫、氧化編錫、氧化録錫、氧化銦鋅、氧化鋅鋁及氧化 鋅錫所構成材料組群中之至少一種材料或其它可代替之材 料。 3 8·如申請專利範圍第2 9項所述之一種高發光效率之發光 元件,其中,該高光摘出效率表面包含一粗化構造。 3 9 ·如申·請專利範圍第3 8項所述之一種高發光效率之發光 元件’其中,更包含於該具有粗化構造之第一氮化物半導 體疊層第二表面上形成一第二氧化物透明導電層。 40·如申請專利範圍第39項所述之一種高發光效率之發光 元件,其中,該第二氧化物透明導電層係包含選自於氧化 銦錫、氧化鎘錫、氧化銻錫、氧化銦鋅、氧化鋅鋁及氧化 辞錫所構成材料組群中之至少一種材料或其它可代替之材 料0 4 1 ·如申請專利範圍第38項所述之一種高發光效率之發光 元件,其中,該粗化結構係以溼蝕刻方式形成。 又 42·如申請專利範圍第31項所述之一種高發光效率之發光 元件,其中,該第二氧化物透明導電層之折射率係介於氮 第29頁 1237903 六、申請專利範圍 化物材料與封裝材料之折射率之間 ΙΙΙΗΙΙ 第30頁1237903 Patent Application Range 6 7. A light-emitting device with high luminous efficiency as described in Item 3 丨 of the Patent Application Range, wherein the second oxide transparent conductive layer contains a material selected from the group consisting of indium tin oxide, oxidized tin oxide, At least one of the materials in the group consisting of tin oxide, indium zinc oxide, zinc aluminum oxide, and zinc tin oxide or other alternative materials. 38. The light-emitting element with high light-emitting efficiency according to item 29 of the scope of the patent application, wherein the high-light extraction efficiency surface includes a roughened structure. 39. As claimed in claim 38, a light-emitting device with high luminous efficiency as described in item 38, further comprising forming a second surface on the second surface of the first nitride semiconductor stack having a roughened structure. An oxide transparent conductive layer. 40. A light-emitting device with high luminous efficiency as described in item 39 of the scope of patent application, wherein the second oxide transparent conductive layer comprises a material selected from the group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, and indium zinc oxide At least one of the materials in the group consisting of zinc oxide, zinc oxide, and tin oxide or other substitute materials 0 4 1 · A light-emitting element with high luminous efficiency as described in item 38 of the scope of patent application, wherein The chemical structure is formed by wet etching. 42. A light-emitting device with high luminous efficiency as described in item 31 of the scope of patent application, wherein the refractive index of the second oxide transparent conductive layer is between nitrogen on page 29, 12379903. Refractive index of packaging materials ΙΙΙΗΙΙ page 30
TW93118481A 2004-03-24 2004-06-24 High efficiency light emitting device TWI237903B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW93118481A TWI237903B (en) 2004-06-24 2004-06-24 High efficiency light emitting device
JP2005180721A JP4339822B2 (en) 2004-06-24 2005-06-21 Light emitting device
US11/160,354 US7385226B2 (en) 2004-03-24 2005-06-21 Light-emitting device
DE102005029268.2A DE102005029268B4 (en) 2004-06-24 2005-06-23 Light-emitting component
KR20050054517A KR100687783B1 (en) 2004-06-24 2005-06-23 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93118481A TWI237903B (en) 2004-06-24 2004-06-24 High efficiency light emitting device

Publications (2)

Publication Number Publication Date
TWI237903B true TWI237903B (en) 2005-08-11
TW200601575A TW200601575A (en) 2006-01-01

Family

ID=35504676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93118481A TWI237903B (en) 2004-03-24 2004-06-24 High efficiency light emitting device

Country Status (4)

Country Link
JP (1) JP4339822B2 (en)
KR (1) KR100687783B1 (en)
DE (1) DE102005029268B4 (en)
TW (1) TWI237903B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508902B2 (en) 2005-02-21 2016-11-29 Epistar Corporation Optoelectronic semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887067B1 (en) * 2006-02-14 2009-03-04 삼성전기주식회사 Manufacturing Method for Semiconductor Emitting Device with nano pattern structure
DE102005056604A1 (en) * 2005-09-28 2007-03-29 Osram Opto Semiconductors Gmbh Semiconductor body comprises an active semiconductor layer sequence based on a nitride compound semiconductor material which produces electromagnetic radiation and an epitaxially grown coupling layer with openings
KR100755598B1 (en) * 2006-06-30 2007-09-06 삼성전기주식회사 Nitride semiconductor light emitting diode array
JP5201566B2 (en) * 2006-12-11 2013-06-05 豊田合成株式会社 Compound semiconductor light emitting device and manufacturing method thereof
JP5493252B2 (en) * 2007-06-28 2014-05-14 日亜化学工業株式会社 Semiconductor light emitting device
KR100905859B1 (en) * 2007-12-17 2009-07-02 삼성전기주식회사 Nitride semiconductor light emitting device and manufacturing method thereof
KR20090073935A (en) * 2007-12-31 2009-07-03 주식회사 에피밸리 Iii-nitride semiconductor light emitting device
TWI420694B (en) * 2008-07-29 2013-12-21 Epistar Corp Opto-electrical device
JP5282503B2 (en) 2008-09-19 2013-09-04 日亜化学工業株式会社 Semiconductor light emitting device
CN101859856B (en) 2010-06-04 2016-06-15 清华大学 Light emitting diode
KR101389462B1 (en) * 2013-04-10 2014-04-28 주식회사 소프트에피 Iii-nitride semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977280A3 (en) * 1998-07-28 2008-11-26 Interuniversitair Micro-Elektronica Centrum Vzw Devices for emitting radiation with a high efficiency and a method for fabricating such devices
JP2002164570A (en) * 2000-11-24 2002-06-07 Shiro Sakai Gallium nitride compound semiconductor device
JP4233268B2 (en) * 2002-04-23 2009-03-04 シャープ株式会社 Nitride-based semiconductor light-emitting device and manufacturing method thereof
TWI237402B (en) * 2004-03-24 2005-08-01 Epistar Corp High luminant device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9508902B2 (en) 2005-02-21 2016-11-29 Epistar Corporation Optoelectronic semiconductor device
US9876146B2 (en) 2005-02-21 2018-01-23 Epistar Corporation Optoelectronic semiconductor device
US10529895B2 (en) 2005-02-21 2020-01-07 Epistar Corporation Optoelectronic semiconductor device

Also Published As

Publication number Publication date
JP4339822B2 (en) 2009-10-07
DE102005029268A1 (en) 2006-01-19
KR20060049672A (en) 2006-05-19
DE102005029268B4 (en) 2017-04-13
TW200601575A (en) 2006-01-01
KR100687783B1 (en) 2007-02-27
JP2006013500A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
TWI237402B (en) High luminant device
US7385226B2 (en) Light-emitting device
KR100750933B1 (en) Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
JP4960712B2 (en) Nitride semiconductor light emitting device
EP2410582B1 (en) Nano rod type light emitting diode and method for fabricating a nano rod type light emitting diode
KR100720101B1 (en) Top-emitting Light Emitting Devices Using Nano-structured Multifunctional Ohmic Contact Layer And Method Of Manufacturing Thereof
KR101449030B1 (en) group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
KR100706796B1 (en) Nitride-based top emitting light emitting device and Method of fabricating the same
TWI270222B (en) Light emitting diode chip
JP4014557B2 (en) Light emitting diode with dual dopant contact layer
TWM260003U (en) Light-emitting diode to increase the light-emitting efficiency of spontaneous emission
TWI237903B (en) High efficiency light emitting device
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
TWI249966B (en) Light-emitting device having porous light-emitting layer
US8053794B2 (en) Nitride semiconductor light emitting device and fabrication method thereof
JPWO2009001596A1 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
KR20050021237A (en) Light-emitting device and manufacturing method thereof
US8946736B2 (en) Optoelectronic device and method for manufacturing the same
TW200406076A (en) Gallium nitride series light-emitting diode structure and its manufacturing method
TWI234295B (en) High-efficiency nitride-based light-emitting device
KR100755649B1 (en) Gan-based semiconductor light emitting device and method of manufacturing the same
JP2009049195A (en) Semiconductor light emitting element and light emitting device
US7183579B2 (en) Gallium nitride (GaN)-based semiconductor light emitting diode and method for manufacturing the same
CN100438090C (en) Light-emitting component with high lightening effect
JP2010147242A (en) Semiconductor light emitting device