TW201000808A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
TW201000808A
TW201000808A TW97123112A TW97123112A TW201000808A TW 201000808 A TW201000808 A TW 201000808A TW 97123112 A TW97123112 A TW 97123112A TW 97123112 A TW97123112 A TW 97123112A TW 201000808 A TW201000808 A TW 201000808A
Authority
TW
Taiwan
Prior art keywords
light source
electrode
source device
light
heat
Prior art date
Application number
TW97123112A
Other languages
Chinese (zh)
Other versions
TWI341375B (en
Inventor
Chung-Min Chang
Tse-An Lee
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW097123112A priority Critical patent/TWI341375B/en
Publication of TW201000808A publication Critical patent/TW201000808A/en
Application granted granted Critical
Publication of TWI341375B publication Critical patent/TWI341375B/en

Links

Abstract

The present invention relates to a light source device. The light source device includes at least one LED module; a circuit layer placed on one side of the at least one LED module; a heat conducting plate placed on the other side of the at least one LED module and opposite to the circuit layer, the heat conducting plate is separated to the circuit layer, and the at least one LED module is thermally connected to the heat conducting plate; an optical element placed on one side of the at least one LED module and opposite to the heat conducting plate, and the optical element has a incident surface connected with the at least one LED module.

Description

201000808 九、發明說明: 【發明所屬之技術領域】 ’ 本發明涉及一種光源裝置,特別涉及一種具有發光二 ' 極體模組之光源裝置。 【先前技術】 現如今,發光二極體(Light Emitting Diode,LED)已經 被廣泛應用到很多領域,在此,一種新型發光二極體可參 見 Daniel A. Steigerwald 等人於文獻 IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8,No.2, March/April 2002 中 Illumination With Solid State Lighting Technology —文。發光二極體一般可發出特定波長之光 線,例如可見光,惟,發光二極體所接收能量之大部分被 轉換為熱量,其餘部分之能量才被真正轉換為光能。因此, 發光二極體發光所產生之熱量必須被疏散掉以保證發光二 極體之正常運作。 如圖1所示’ 一種光源裝置10,其包括一殼體1:^,一 個光源模組12及一個燈罩13。該光源模組12設置於該殼 體11中,且該燈罩13設置於該光源模組12之上方以保護 該光源模組12。該光源模組12包括:一個印刷電路板 (Printed Circuit Board,PCB) 121、設置於該印刷電路板 121 上之一個金屬線路層122與複數個發光元件123(如,發光 二極體晶片),以及覆蓋該發光元件123之封裝體124。該 複數個發光元件123與該金屬線路層122電性連接。然, 一般印刷電路板121之熱傳效率不高,發光元件123至殼 6 201000808 體11之熱傳導路徑中包含了熱阻較高之印刷電路板121, 則該複數個發光元件123所產生之熱量不能及時有效地從 該设體11中排除’進而降低了該複數個發光元件123之發 光效率&此可見’有必要提供一種具有良好散熱性能之 光源裝置。 【發明内容】 以下將以實施例說明一種具有良好散熱性能之光源裝 種光源裝置’其包括··至少一個發光二極體模組; 一㈣路層,該電路層設置於該至少—個發光二極體模組 之側該至少一個發光二極體模組分別與該電路層電性 連接’㈤導熱基板,該導熱基板設置於該至少-個發光 二極體模組之與該電路層相對之—側且與該電路助隔 =’該至少-個發光二極體模組分別與該導熱基板熱性連 接,-個光學元件’該光學元件設置於該至少—個發光二 極體模組之與料熱基板相對之—側,該光學元件具有一 與該複數個發光二極體模組相連之入光面。 八與先前技術相比,該光源袭置中之電路層與導熱基板 ^別設置於至少-個發光:極體模組之相對之兩側,該至 J一個發光二極體模組產生之熱量可直接傳導至導熱基 板’再由導熱基板將吸收狀熱量傳導出去,避免經過^ 電路層’從而有效地提高了該光源裝置之熱傳導效率。 【實施方式】 下面結合附圖對本發明作進一步詳細說明。 201000808 : 請參見圖2與圖3,本發明第一實施例提供之一種光源 - 裝置20,其包括複數個發光二極體模組21 ’ 一個電路層 * 22,一個導熱基板23,一個光學元件24。 複數個發光二極體模組21並行設置’且分別與電路層 22電性連接。 電路層22與該複數個發光二極體模組21相鄰設置’ 並與一外部電源(圖未示)相連以提供複數個發光二極體模 組21所需電源。電路層22為單片式(0ne_piece)結構,其 具有複數個通孔2201。電路層22為一導電架(Lead Frame) 或一電路板,例如:玻璃纖維板(FR4) ’雙馬來醯亞胺-三氮 雜苯樹脂電路板(Bismaleimide-Triazine Resin PCB),金屬芯 電路板(Metal-core PCB)等。 導熱基板23設置於複數個發光二極體模組21之與電 路層22相對之一側。導熱基板23具有一個與複數個發光 二極體模組21相接觸之接觸面231。導熱基板23與複數個 、 發光二極體模組21熱性連接,並與電路層22相隔離。導 熱基板23可為金屬(例如銅、紹、銀、金等)基板或陶瓷基 板。導熱基板23所用材料可為類鑽石(Diamond like Carbon)、碳纖維等有機材料。導熱基板23可為散熱片(Heat Sink)’ 熱導管(Heat Pipe),導熱平板(Heat Spreader)等具有 高導熱特性之散熱體。導熱基板23用於將複數個發光二極 體模組21釋放之熱量快速傳導出去,以避免由於複數個發 光二極體模組21之溫度上升導致其出光效率降低,輸出光 波長偏移等現象發生。 8 201000808 光學元件24設置於複數個發光二極體模組21之與導 熱基板23相對之一側,電路層22位於光學元件24與導熱 基板23之間。光學元件24包括一入光面2401,一與入光 面2401相對之出光面2402,以及位於入光面2401與出光 面2402之間之侧面(圖未示)。光學元件24之入光面2401 上具有複數個向發光二極體模組21延伸之凸起部241,該 凸起部241之頂面2412與發光二極體模組21相連。光學 元件24之出光面2402可為一粗糙面以增加光學元件24之 出光率。光學元件24之内部可包含光轉換物質(如螢光粉 等),光散射粒子或光反射粒子等。光學元件24所用材料為 聚碳酸醋樹脂(polycarbonate, PC),聚曱基丙烯酸甲酉旨 (Polymethyl Methacrylate, PMMA),玻璃等高透光性物質。 光學元件24之結構可為一導光板(Light Guide Plate),一透 光薄膜或者一透鏡。光學元件24用於使複數個發光二極體 模組21發出之光均勻出射,在此,光學元件24之側面亦 可為出光面使得光學元件24為一個三維出光體。可理解的 是,光學元件24之側面上可設置光反射層(圖未示),以增 加光經由出光面2402射出之出光效率。 參見圖4與圖5,每個發光二極體模組21包括:一個 絕緣體210,一個第一電極220,一個第二電極230,一個 散熱塊240,一個發光二極體晶片250,金屬線260及封裝 層 270。 絕緣體210包括一支撐部212及一與支撐部212 —體 成型之反光部214。反光部214位於支撐部212之一側,在 9 201000808 : 本實施例中,反光部214位於支撐部212之上方。反光部 214具有一容置槽2140,容置槽2140設置於反光部214中 且容置槽2140之底部延伸至支撐部212,即支撐部212與 ‘ 容置槽2140相對之部分暴露於容置槽2140之底部。反光 部214分別穿設於該複數個通孔2201中’使得第一電極 220、第二電極230與該電路層22直接相連或者藉由金屬 焊料(Metal Solder)等導電介質(圖未示)形成電連接。容置槽 2140具有一圓錐形侧壁,圓錐形側壁上可設置反射層 2144。絕緣體210所用材料可為液晶聚合物(Liquid crystal polymer, LCP)等絕緣材料。 第一電極220與第二電極230相對設置且分別藉由嵌 入式射出成型技術(insert-molding)設置於絕緣體210中並 延伸至容置槽2140之底部。在本實施例中,第一電極220 之一端與第二電極230之一端相對設置,二者分別嵌設於 絕緣體210之支撐部212與反光部214之結合處並均延伸 〔 至容置槽2140中。第一電極22〇與第二電極230分別具有 暴露於容置槽2140底部之部分。第一電極220之另一端與 第二電極230之另一端均延伸出容置槽2140,用以與電路 層22電性連接。第一電極22〇,第二電極230與電路層22 之接合方式可為共晶方式或表面貼合方式(Surface Mount Technology,SMT)。 散熱塊240設置於絕緣體210之與其容置槽2140相對 之一側且與絕緣體21〇相連。散熱塊240具有一暴露於容 置槽2140底部之承戴部242及一與承載部242相對之底部 201000808 • 244,該承載部242用以承載發光二極體晶片250,底部244 - 與導熱基板23直接接觸以形成熱性連接。散熱塊240之承 載部242與第一電極220,第二電極230之間間隔有絕緣體 "210之支撐部212之部分結構,使得散熱塊240與第一電極 220,第二電極230電性絕緣。散熱塊240之底部244與導 熱基板23之接觸面231之間可設置錫或其合金等高熱傳導 率之金屬介質。散熱塊240之底部244之寬度D1等於第一 電極220與第二電極230之總寬度D2。可理解的是,第一 電極220與第二電極230之總寬度D2亦可略小於散熱塊 240之底部244之寬度D1,只要利於第一電極220之上表 面2202及第二電極230之上表面2302分別與電路層22形 成電連接即可。散熱塊22所用材料可為銅、鋁等具有較好 導熱性能之金屬,或陶瓷等導熱物質。 發光二極體晶片250直接設置於散熱塊240之承載部 242上,並且發光二極體晶片250藉由兩條金屬線260與第 一電極220與第二電極230之暴露於容置槽2140底部之部 分形成電連接。發光二極體晶片250可藉由粘合方式與散 熱塊240形成熱連接,例如於發光二極體晶片250與散熱 塊240之承載部242之間設置有銀膠、導電膠等粘膠。可 理解的是,發光二極體晶片250亦可藉由其他方式與散熱 塊240形成熱連接,例如焊接方式(Solder Bonding)或共晶 方式(Eutectic Bonding)。 發光二極體晶片250發出之光線經由該容置槽2140之 開口射出,入射至容置槽2140之側壁上之光線可經由反射 η 201000808 層2144反射並從該容置槽2140之開口射出,從而提高了 發光二極體晶片250之出光效率。 封裝層270設置於絕緣體210之容置槽2140中用以覆 蓋發光二極體晶片250與金屬線260。發光二極體晶片250 發出之光線經由封裝層270之外表面2701出射,封裝層270 之外表面2701與光學元件24之凸起部241之頂面2412直 接接觸,或藉由矽膠等透明材料相連。封裝層270中還可 設置有螢光粉(Phosphor),光散射物質(Light Diffuser),光 反射物質(Reflector),以改變發光二極體模組21之出光特 性。封裝層270所用材料為環氧樹脂(Epoxy Resin)、石夕膠 (Silicone)或其他電絕緣之透明材料。 由於發光二極體晶片250直接設置於散熱塊240之承 載部242上並且與散熱塊240形成良好之熱連接,故發光 二極體晶片250發光時產生之熱量可直接傳導至散熱塊 240,散熱塊240吸收到之熱量傳導至導熱基板23,再由導 熱基板23將熱量快速傳導出去,從而降低了發光二極體晶 片250之溫度,提高了光源裝置20之散熱效率。 由於複數個發光二極體模組21之第一電極220及第二 電極230位於絕緣體210之支撐部212與反光部214之結 合處並與電路層22電連接,而導熱基板23設置於複數個 發光二極體模組21之與電路層22相對之一側並與散熱塊 240之底部244熱連接。故,複數個發光二極體模組21產 生之熱量可經由導熱基板23迅速傳導出去,避免經過電路 層22,從而有效地提高了光源裝置20之熱傳導效率。 12 201000808 - 值得指出的是,光源裝置20可僅包括一個發光二極體 . 模組21。光學元件24,發光二極體模組21及導熱基板23 * 三者依次疊加設置,而電路層22位於光學元件24與導熱 基板23之間,光源裝置20之總厚度並不包括電路層22之 厚度,故,光源裝置20更為薄型化。 請參見圖6,本發明第二實施例提供之一種光源裝置 30,其與上述第一實施例提供之光源裝置20基本相同,不 同之處在於: 散熱塊之底部344之寬度D3小於第一電極320與第二 電極330之總寬度D4,從而便於第一電極320之上表面 3202與第二電極330之上表面3302同時與電路層32形成 電連接,或者第一電極320之下表面3204與第二電極330 之下表面3304同時與電路層22形成電連接,以提高發光 二極體模組21之組裝靈活性。在本實施例中,第一電極320 之上表面3202與第二電極330之上表面3302與電路層32 電性連接; 光源裝置30進一步包括設置於電路層32與導熱基板 33之間之連接裝置35,用以固定複數個發光二極體模組 31,電路層32,及導熱基板33,防止其脫落或者移位。導 熱基板33與複數個發光二極體模組31接觸之接觸面331 可為粗糙面,以增加二者間之接合力。連接裝置35可為扣 環,螺絲,支撐條等。 請參見圖7與圖8,本發明第三實施例提供之一種光源 裝置40,其與上述第一實施例提供之光源裝置20基本相 13 201000808 同,不同之處在於: 光源裝置40所包括之電路層42為—透明導電層,該 透明導電層設置於光學元件44之複數個凸起部441 :頂面Λ 4412上;複數個發光二極體模組21之出光面π"盥光風 兀件44之複數個凸起名M41之間之入光面键直接接二 或藉由梦膠等透明材料相連。該透明導電層中包 錫(ITO)等材料。 u 於本實施例中,複數個發光二極體模組21發光時產生 之熱量可傳導至導熱基板43,再由導熱基板43將孰量 =去,降低了發光二極體模組21之溫度,提高了光源 裝置40之政熱效率。#,光源裝置4〇所包括之電路層c 為-透明導電層,該透明導電層與電路板相比厚度更^, 成本更低,使得光源裝置4〇更為輕薄化。 可理解的是,發光二極體模組之結構並不限於上述實 施例’其他具有類似結構之發光二極體模組同樣適用於上 述實施例所提供之光源裝置。 綜上所述’本發明確已符合發明專利之要件,遂依法 ,出專射請。惟’以上所述者僅為本發明之較佳實施方 二蓺自不i以此限制本案之申請專利範圍。舉凡熟悉本案 之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係一種現有光源裝置之截面示意圖。 圖2係本發明第—實施例提供之光源裝置之截面示意 14 201000808 圖。 圖3係圖2所示光源裝置之分解示意圖。 圖4係圖2所示光源裝置之發光二極體模組之截面示 意圖。 圖5係圖2所示光源裝置之發光二極體模組之俯視圖。 圖6係本發明第二實施例提供之光源裝置之截面示意 圖。 圖7係本發明第三實施例提供之光源裝置之截面示意 圖。 圖8係圖7所示光源裝置之分解示意圖。 【主要元件符號說明】 光源裝置 10、 20、 30、40 殼體 11 光源模組 12 燈罩 13 印刷電路板 121 金屬線路層 122 發光元件 123 封裝體 124 、27 發光二極體模組 21、 31 電路層 22、 32、 42 導熱基板 23、 33 > 43 光學元件 24、 44 通孔 2201 15 201000808 接觸面 入光面 出光面 凸起部 頂面 絕緣體 第一電極 第二電極 散熱塊 發光二極體晶片 金屬線 封裝層 支撐部 反光部 容置槽 反射層 承載部 底部 上表面 下表面 外表面 連接裝置 231 、 331 2401 、 4401 2402 > 2701 241 、 441 2412 、 4412 210 220 ' 320 230 ' 330 240 250 260 270 212 214 2140 2144 242 244 、 344 2202、2302、3202、3302 3204 、 3304 2701 35 16201000808 IX. Description of the Invention: [Technical Field] The present invention relates to a light source device, and more particularly to a light source device having a light-emitting two-pole module. [Prior Art] Nowadays, Light Emitting Diode (LED) has been widely used in many fields. Here, a new type of light-emitting diode can be found in Daniel A. Steigerwald et al. in the IEEE Journal on Selected Topics. In Quantum Electronics, Vol. 8, No. 2, March/April 2002, Illumination With Solid State Lighting Technology. A light-emitting diode generally emits light of a specific wavelength, such as visible light. However, most of the energy received by the light-emitting diode is converted into heat, and the rest of the energy is actually converted into light energy. Therefore, the heat generated by the illuminating diode must be evacuated to ensure the normal operation of the illuminating diode. As shown in Fig. 1, a light source device 10 includes a housing 1, a light source module 12 and a lamp cover 13. The light source module 12 is disposed in the housing 11 and the light cover 13 is disposed above the light source module 12 to protect the light source module 12. The light source module 12 includes a printed circuit board (PCB) 121, a metal circuit layer 122 disposed on the printed circuit board 121, and a plurality of light emitting elements 123 (eg, light emitting diode chips). And a package 124 covering the light emitting element 123. The plurality of light emitting elements 123 are electrically connected to the metal wiring layer 122. However, generally, the heat transfer efficiency of the printed circuit board 121 is not high, and the heat conduction path of the light-emitting element 123 to the shell 6 201000808 body 11 includes the printed circuit board 121 having a higher thermal resistance, and the heat generated by the plurality of light-emitting elements 123 It is not possible to eliminate the 'light-emitting efficiency of the plurality of light-emitting elements 123 in a timely manner and effectively reduce the luminous efficiency of the plurality of light-emitting elements 123. It is necessary to provide a light source device having good heat dissipation performance. SUMMARY OF THE INVENTION Hereinafter, a light source type light source device having good heat dissipation performance will be described by way of example, which includes at least one light emitting diode module, and a (four) circuit layer disposed on the at least one light emitting layer. The at least one LED module on the side of the diode module is electrically connected to the circuit layer respectively (5) a thermally conductive substrate disposed on the at least one LED module opposite to the circuit layer Separating from the circuit and supporting the circuit = 'the at least one light emitting diode module is thermally connected to the heat conducting substrate respectively, and the optical element is disposed in the at least one light emitting diode module On the opposite side of the heat-generating substrate, the optical component has a light-incident surface connected to the plurality of light-emitting diode modules. 8. Compared with the prior art, the circuit layer and the heat-conducting substrate in the light source are disposed on at least one of the opposite sides of the light-emitting body module, and the heat generated by the one LED module It can be directly transmitted to the heat-conducting substrate' and then the heat-dissipating heat is radiated from the heat-conducting substrate to avoid passing through the circuit layer', thereby effectively improving the heat conduction efficiency of the light source device. [Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings. 201000808: Referring to FIG. 2 and FIG. 3, a light source device 20 according to a first embodiment of the present invention includes a plurality of light emitting diode modules 21', a circuit layer*22, a heat conducting substrate 23, and an optical component. twenty four. A plurality of light emitting diode modules 21 are disposed in parallel and electrically connected to the circuit layer 22, respectively. The circuit layer 22 is disposed adjacent to the plurality of LED modules 21 and is coupled to an external power source (not shown) to provide the power required by the plurality of LED modules 21. Circuit layer 22 is a monolithic (0ne_piece) structure having a plurality of vias 2201. The circuit layer 22 is a lead frame or a circuit board, for example: fiberglass board (FR4) 'Bismaleimide-Triazine Resin PCB, metal core circuit board (Metal-core PCB) and so on. The heat conductive substrate 23 is disposed on one side of the plurality of light emitting diode modules 21 opposite to the circuit layer 22. The thermally conductive substrate 23 has a contact surface 231 that contacts a plurality of LED modules 21. The thermally conductive substrate 23 is thermally coupled to a plurality of LED modules 21 and is isolated from the circuit layer 22. The heat conducting substrate 23 may be a metal (e.g., copper, slag, silver, gold, etc.) substrate or a ceramic substrate. The material used for the heat conductive substrate 23 may be an organic material such as diamond like carbon or carbon fiber. The heat conductive substrate 23 may be a heat sink such as a heat sink, a heat pipe or a heat spreader. The heat-conducting substrate 23 is configured to quickly conduct heat released by the plurality of LED modules 21 to prevent the light-emitting efficiency from being lowered due to the temperature rise of the plurality of LED modules 21, and the wavelength of the output light is shifted. occur. 8 201000808 The optical element 24 is disposed on one side of the plurality of light emitting diode modules 21 opposite to the heat conducting substrate 23, and the circuit layer 22 is located between the optical element 24 and the heat conducting substrate 23. The optical element 24 includes a light incident surface 2401, a light exit surface 2402 opposite to the light incident surface 2401, and a side surface (not shown) between the light incident surface 2401 and the light exit surface 2402. The light incident surface 2401 of the optical component 24 has a plurality of convex portions 241 extending toward the light emitting diode module 21, and the top surface 2412 of the convex portion 241 is connected to the LED module 21. The light exit surface 2402 of the optical element 24 can be a roughened surface to increase the light output of the optical element 24. The inside of the optical element 24 may contain a light-converting substance (e.g., phosphor powder, etc.), light-scattering particles or light-reflecting particles, and the like. The material used for the optical element 24 is polycarbonate (PC), polymethyl Methacrylate (PMMA), and a highly translucent material such as glass. The optical element 24 can be constructed as a Light Guide Plate, a light transmissive film or a lens. The optical element 24 is used to uniformly emit light emitted from the plurality of LED modules 21, and the side surface of the optical element 24 may also be a light-emitting surface such that the optical element 24 is a three-dimensional light-emitting body. It can be understood that a light reflecting layer (not shown) may be disposed on the side of the optical element 24 to increase the light-emitting efficiency of the light emitted through the light-emitting surface 2402. Referring to FIG. 4 and FIG. 5 , each of the LED modules 21 includes: an insulator 210 , a first electrode 220 , a second electrode 230 , a heat dissipation block 240 , a light emitting diode wafer 250 , and a metal line 260 . And encapsulation layer 270. The insulator 210 includes a support portion 212 and a reflective portion 214 formed integrally with the support portion 212. The light reflecting portion 214 is located on one side of the support portion 212 at 9 201000808: In the present embodiment, the light reflecting portion 214 is located above the support portion 212. The light reflecting portion 214 has a receiving groove 2140. The receiving portion 2140 is disposed in the reflecting portion 214 and the bottom portion of the receiving groove 2140 extends to the supporting portion 212, that is, the portion of the supporting portion 212 opposite to the receiving groove 2140 is exposed to the receiving portion 212. The bottom of the slot 2140. The light reflecting portion 214 is respectively disposed in the plurality of through holes 2201 to make the first electrode 220 and the second electrode 230 directly connected to the circuit layer 22 or formed by a conductive medium (not shown) such as a metal solder (not shown). Electrical connection. The accommodating groove 2140 has a conical side wall on which a reflective layer 2144 can be disposed. The material used for the insulator 210 may be an insulating material such as a liquid crystal polymer (LPP). The first electrode 220 is disposed opposite to the second electrode 230 and is respectively disposed in the insulator 210 by insert-molding and extends to the bottom of the accommodating groove 2140. In this embodiment, one end of the first electrode 220 is opposite to one end of the second electrode 230, and the two are respectively embedded in the joint of the support portion 212 and the light reflecting portion 214 of the insulator 210 and extend to the receiving groove 2140. in. The first electrode 22A and the second electrode 230 respectively have portions exposed to the bottom of the accommodating groove 2140. The other end of the first electrode 220 and the other end of the second electrode 230 extend out of the receiving groove 2140 for electrically connecting to the circuit layer 22. The first electrode 22A, the second electrode 230 and the circuit layer 22 may be joined in a eutectic manner or a surface mount technology (SMT). The heat dissipating block 240 is disposed on one side of the insulator 210 opposite to the receiving groove 2140 and connected to the insulator 21A. The heat dissipating block 240 has a receiving portion 242 exposed to the bottom of the receiving groove 2140 and a bottom portion 201000808 • 244 opposite to the carrying portion 242 for carrying the light emitting diode wafer 250, the bottom portion 244 - and the heat conducting substrate 23 direct contact to form a thermal connection. A portion of the structure of the support portion 212 of the insulator "210 is spaced between the first electrode 220 and the second electrode 230, so that the heat dissipation block 240 is electrically insulated from the first electrode 220 and the second electrode 230. . A high thermal conductivity metal medium such as tin or an alloy thereof may be disposed between the bottom portion 244 of the heat slug 240 and the contact surface 231 of the heat conductive substrate 23. The width D1 of the bottom 244 of the heat slug 240 is equal to the total width D2 of the first electrode 220 and the second electrode 230. It can be understood that the total width D2 of the first electrode 220 and the second electrode 230 may also be slightly smaller than the width D1 of the bottom portion 244 of the heat dissipation block 240 as long as the upper surface 2202 of the first electrode 220 and the upper surface of the second electrode 230 are beneficial. 2302 may be electrically connected to the circuit layer 22, respectively. The material used for the heat sink block 22 may be a metal having good thermal conductivity such as copper or aluminum, or a heat conductive material such as ceramic. The light-emitting diode wafer 250 is disposed directly on the carrying portion 242 of the heat-dissipating block 240, and the light-emitting diode wafer 250 is exposed to the bottom of the receiving groove 2140 by the two metal wires 260 and the first electrode 220 and the second electrode 230. Portions form an electrical connection. The light-emitting diode wafer 250 can be thermally connected to the heat-dissipating block 240 by bonding. For example, a glue such as silver paste or conductive paste is disposed between the light-emitting diode wafer 250 and the carrying portion 242 of the heat-dissipating block 240. It can be understood that the LED wafer 250 can also be thermally connected to the heat sink block 240 by other means, such as Solder Bonding or Eutectic Bonding. The light emitted from the LED chip 250 is emitted through the opening of the accommodating groove 2140, and the light incident on the sidewall of the accommodating groove 2140 can be reflected by the reflection η 201000808 layer 2144 and emitted from the opening of the accommodating groove 2140, thereby The light extraction efficiency of the LED wafer 250 is improved. The encapsulation layer 270 is disposed in the receiving groove 2140 of the insulator 210 for covering the LED wafer 250 and the metal wire 260. The light emitted by the LED wafer 250 is emitted through the outer surface 2701 of the encapsulation layer 270, and the outer surface 2701 of the encapsulation layer 270 is in direct contact with the top surface 2412 of the convex portion 241 of the optical element 24, or is connected by a transparent material such as silicone. . Phosphor, Light Diffuser, and Reflector may also be disposed in the encapsulation layer 270 to change the light-emitting characteristics of the LED module 21. The encapsulating layer 270 is made of epoxy resin (Epoxy Resin), Silicone or other electrically insulating transparent material. Since the light-emitting diode wafer 250 is directly disposed on the carrying portion 242 of the heat-dissipating block 240 and forms a good thermal connection with the heat-dissipating block 240, the heat generated when the light-emitting diode wafer 250 emits light can be directly transmitted to the heat-dissipating block 240, and the heat is dissipated. The heat absorbed by the block 240 is conducted to the heat conductive substrate 23, and the heat is quickly conducted out by the heat conductive substrate 23, thereby lowering the temperature of the light emitting diode wafer 250 and improving the heat dissipation efficiency of the light source device 20. The first electrode 220 and the second electrode 230 of the plurality of LED modules 21 are located at the junction of the support portion 212 and the light reflecting portion 214 of the insulator 210 and are electrically connected to the circuit layer 22, and the heat conductive substrate 23 is disposed in plural One side of the LED module 21 opposite to the circuit layer 22 is thermally coupled to the bottom 244 of the heat slug 240. Therefore, the heat generated by the plurality of LED modules 21 can be quickly conducted through the heat-conducting substrate 23 to avoid passing through the circuit layer 22, thereby effectively improving the heat conduction efficiency of the light source device 20. 12 201000808 - It is worth noting that the light source device 20 may comprise only one light emitting diode. Module 21. The optical element 24, the LED module 21 and the heat-conducting substrate 23* are sequentially stacked, and the circuit layer 22 is located between the optical element 24 and the heat-conducting substrate 23. The total thickness of the light source device 20 does not include the circuit layer 22. The thickness of the light source device 20 is thinner. Referring to FIG. 6, a light source device 30 according to a second embodiment of the present invention is substantially the same as the light source device 20 provided in the first embodiment, except that the width D3 of the bottom portion 344 of the heat dissipation block is smaller than the first electrode. 320 and the total width D4 of the second electrode 330, thereby facilitating the first surface 3202 of the first electrode 320 and the upper surface 3302 of the second electrode 330 to simultaneously form an electrical connection with the circuit layer 32, or the lower surface 3204 of the first electrode 320 The lower surface 3304 of the two electrodes 330 is simultaneously electrically connected to the circuit layer 22 to improve the assembly flexibility of the LED module 21. In this embodiment, the upper surface 3202 of the first electrode 320 and the upper surface 3302 of the second electrode 330 are electrically connected to the circuit layer 32. The light source device 30 further includes a connecting device disposed between the circuit layer 32 and the heat conductive substrate 33. 35, for fixing a plurality of LED modules 31, a circuit layer 32, and a heat-conducting substrate 33 to prevent them from falling off or shifting. The contact surface 331 of the heat conducting substrate 33 in contact with the plurality of light emitting diode modules 31 may be a rough surface to increase the bonding force therebetween. The connecting means 35 can be a buckle, a screw, a support bar or the like. Referring to FIG. 7 and FIG. 8 , a light source device 40 according to a third embodiment of the present invention is the same as the light source device 20 of the first embodiment, which is substantially the same as the 2010 20100808. The difference is that the light source device 40 includes The circuit layer 42 is a transparent conductive layer, and the transparent conductive layer is disposed on the plurality of convex portions 441 of the optical element 44: the top surface Λ 4412; the light emitting surface of the plurality of light emitting diode modules 21 is π" The light entrance key between the plurality of raised names M41 of 44 is directly connected to the second or connected by a transparent material such as a dream glue. The transparent conductive layer is made of a material such as tin (ITO). In this embodiment, the heat generated when the plurality of LED modules 21 emit light can be conducted to the heat-conducting substrate 43 and then the heat-conducting substrate 43 reduces the temperature of the LED module 21 The political efficiency of the light source device 40 is improved. #, The circuit layer c included in the light source device 4 is a transparent conductive layer, and the transparent conductive layer has a smaller thickness and a lower cost than the circuit board, so that the light source device 4 is more light and thin. It can be understood that the structure of the LED module is not limited to the above embodiment. Other LED modules having similar structures are also applicable to the light source device provided in the above embodiments. In summary, the invention has indeed met the requirements of the invention patent, and the law has been specially issued. However, the above description is only the preferred embodiment of the present invention. Equivalent modifications or variations made by persons familiar with the present invention in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a conventional light source device. 2 is a cross-sectional view of a light source device according to a first embodiment of the present invention. 3 is an exploded perspective view of the light source device shown in FIG. 2. Fig. 4 is a cross-sectional view showing a light emitting diode module of the light source device shown in Fig. 2. FIG. 5 is a top plan view of the light emitting diode module of the light source device shown in FIG. 2. FIG. Fig. 6 is a schematic cross-sectional view showing a light source device according to a second embodiment of the present invention. Fig. 7 is a schematic cross-sectional view showing a light source device according to a third embodiment of the present invention. Fig. 8 is an exploded perspective view showing the light source device shown in Fig. 7. [Main component symbol description] Light source device 10, 20, 30, 40 Housing 11 Light source module 12 Lamp cover 13 Printed circuit board 121 Metal circuit layer 122 Light-emitting element 123 Package body 124, 27 Light-emitting diode module 21, 31 Circuit Layer 22, 32, 42 thermally conductive substrate 23, 33 > 43 optical element 24, 44 through hole 2201 15 201000808 contact surface light entrance surface convex surface convex portion top surface insulator first electrode second electrode heat sink block light emitting diode chip Metal wire encapsulation layer support portion light-reflecting portion accommodating groove reflection layer bearing portion bottom upper surface lower surface outer surface connecting device 231, 331 2401, 4401 2402 > 2701 241, 441 2412, 4412 210 220 '320 230 ' 330 240 250 260 270 212 214 2140 2144 242 244 , 344 2202 , 2302 , 3202 , 3302 3204 , 3304 2701 35 16

Claims (1)

201000808 十、申請專利範圍: 1·一種光源裝置,包括: 至少一個發光二極體模組; 一個電路層,該電路層設置於該至少一個發# 4 _ 夕一彳目,丨# v 1U&先一極體模組 ’該至少-個發光二極體模組分別與該電路層電性 該導熱基板設置於該至少—個發光二極體 /、 、'^電路層相對之一側且與該電路層相隔離,該至 J 一個發光二極體模組分別與該導熱基板熱性連接·以及 :個光學元件’該光學元件設置於該至少—個發光二極體 模組之與該導熱基板相對之一側,該光學元件具有一與該 複數個發光二極體模組相連之入光面。 /、Μ 2.如申請專利範圍第 極體模組包括: 1項所述之光源裝置,其中,該發光二 個絕緣體,該絕緣體具有一容置槽; 一個第一電極,該第一電極嵌設於該絕緣體中並 至 容置槽之底部; :個第二電極,該第二電極與該第—電極相對之喪設於該 絕緣體中並延伸至該容置槽之底部; 個散熱塊,其設置於該絕緣體之與該容置槽相對之一側 且與該絕緣體相it ’該散熱塊具有一暴露於該容置槽底部 之承載部,該散熱塊之承載部與該第一電極及第二電極電 性絕緣; 一個發光二極體晶片,其直接設置於該散熱塊之承載部 17 201000808 上;以及 :金屬線,該第-電極與第二電極分別藉由該金屬線與該發 光一極體晶片形成電連接。 3. 如申明專利範圍第2項所述之光源裝置,其中,該絕緣體 包括一支撐部及一與該支撐部一體成型且相對之反光部, 該容置槽位於該反光部中且該容置槽之底部延伸至該支擇 部’該第-電極之-端與第二電極之—端分別欲設於該絕 緣體之支撐部與反光部之結合處並均延伸至該容置槽中, 該第電極及第二電極與該散熱塊電絕緣。 4. 如申睛專利範圍帛2項所述之光源裝置,纟中,該光源裝 f還包括一個封裝層’該封裝層設置於該容置槽中用以覆 蓋該發光二極體晶片及該金屬線。 =如申明專利範圍第2項所述之光源裝置,其中,該散熱塊 有一個與該承載部相對之底部,該散熱塊之底部之寬度 小於或等於該第一電極與第二電極之總寬度。 (6.如申請專利範圍第1項所述之光源裝置,其中,該電路層 =破螭纖維板,雙馬來醯亞胺-三氮雜苯樹脂電路板,金屬 芯電路板或透明導電層。 7·如申4專利範圍第6項所述之光源裝置,其中,該透明導 電層中包含氧化銦錫。 8.如申睛專利範圍第1項所述之光源裝置,其中,該導熱基 、斤用材料為銅、鋁、銀、金或其合金,陶瓷,類鑽石, 或竣纖維。 9·如申睛專利範圍第1項所述之光源裝置,其中,該導熱基 18 201000808 板為散熱片’熱導管,或導熱平板。 ' i〇.如申請專利範圍第1項所述之光源裝置,其申,該導熱 .基板具有一與該複數個發光二極體模組接觸之接觸面,該 接觸面為一粗糙表面。 11·如申請專利範圍第i項所述之光源裝置,其中,該光學 70件中設置有螢光粉’光散射粒子,或光反射粒子。 I2·如申請專利範圍第1項所述之光源裝置,其中,該光學 ^ 70件為導光板,透光薄膜或者透鏡。 13.如申請專利範圍第1項所述之光源裝置,其中,該光源 裳置進一步包括一個設置於該電路層與該導熱基板之間之 連接裂置’該連接裝置用以固定該複數個發光二極體模 組,該電路層及該導熱基板。 ·*ί Λ .如申請專利範圍第13項所述之光源裝置,其中,該連接 裂置為扣環,螺絲或支撐條。 19201000808 X. Patent application scope: 1. A light source device, comprising: at least one light emitting diode module; a circuit layer, the circuit layer is disposed on the at least one hair #4 _ 夕一彳目, 丨# v 1U& The first pole body module 'the at least one light emitting diode module and the circuit layer are respectively electrically disposed on the opposite side of the at least one light emitting diode/, '^ circuit layer and The circuit layer is isolated, and the one LED module is thermally connected to the heat conducting substrate, and: an optical component is disposed on the at least one light emitting diode module and the heat conducting substrate On one side, the optical component has a light incident surface connected to the plurality of LED modules. The second embodiment of the invention includes: the light source device of claim 1, wherein the light source has two insulators, the insulator has a receiving groove; a first electrode, the first electrode is embedded Provided in the insulator and to the bottom of the accommodating groove; a second electrode, the second electrode is opposite to the first electrode and is disposed in the insulator and extends to the bottom of the accommodating groove; The heat dissipating block has a bearing portion exposed to the bottom of the accommodating groove, and the bearing portion of the heat dissipating block and the first electrode are disposed on a side opposite to the accommodating groove of the insulator. The second electrode is electrically insulated; a light-emitting diode wafer is directly disposed on the bearing portion 17 201000808 of the heat-dissipating block; and: a metal wire, the first electrode and the second electrode respectively pass the metal wire and the light-emitting The one body wafer forms an electrical connection. 3. The light source device of claim 2, wherein the insulator comprises a support portion and a reflective portion integrally formed with the support portion, the accommodating groove being located in the reflective portion and accommodating The bottom of the groove extends to the portion of the support portion, the end of the first electrode and the end of the second electrode are respectively disposed at the junction of the support portion and the light reflecting portion of the insulator and extend into the receiving groove. The first electrode and the second electrode are electrically insulated from the heat sink. 4. The light source device of claim 2, wherein the light source assembly f further comprises an encapsulation layer disposed in the accommodating groove for covering the illuminating diode chip and the metal wires. The light source device of claim 2, wherein the heat dissipating block has a bottom portion opposite to the carrying portion, and a width of a bottom portion of the heat dissipating block is less than or equal to a total width of the first electrode and the second electrode . (6) The light source device of claim 1, wherein the circuit layer is a broken fiberboard, a bismaleimide-triazole resin circuit board, a metal core circuit board or a transparent conductive layer. The light source device of claim 6, wherein the transparent conductive layer comprises indium tin oxide. The light source device according to claim 1, wherein the heat conductive base, The material for the jin is copper, aluminum, silver, gold or its alloy, ceramic, diamond-like, or yttrium fiber. The light source device according to claim 1, wherein the heat-conducting base 18 201000808 is a heat sink. The light source device of the first aspect of the invention, wherein the heat conducting substrate has a contact surface with the plurality of light emitting diode modules, The contact surface is a rough surface. The light source device of claim i, wherein the optical 70 is provided with a phosphor powder "light scattering particle, or a light reflecting particle." The light source device of the first item, wherein The light source device of the first aspect of the invention, wherein the light source device further comprises a circuit layer disposed on the circuit layer and the heat conductive substrate. The connecting device is configured to fix the plurality of light emitting diode modules, the circuit layer and the heat conducting substrate. The light source device of claim 13, wherein , the connection is split into a buckle, a screw or a support bar. 19
TW097123112A 2008-06-20 2008-06-20 Light source device TWI341375B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097123112A TWI341375B (en) 2008-06-20 2008-06-20 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097123112A TWI341375B (en) 2008-06-20 2008-06-20 Light source device

Publications (2)

Publication Number Publication Date
TW201000808A true TW201000808A (en) 2010-01-01
TWI341375B TWI341375B (en) 2011-05-01

Family

ID=44824609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097123112A TWI341375B (en) 2008-06-20 2008-06-20 Light source device

Country Status (1)

Country Link
TW (1) TWI341375B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475296B (en) * 2010-11-22 2015-03-01 Lg Innotek Co Ltd Method for manufacturing backlight unit
TWI495165B (en) * 2012-06-27 2015-08-01 Brightek Optoelectronic Co Ltd Multichip package structure for generating a symmetrical and uniform light-mixing source
TWI566437B (en) * 2012-12-07 2017-01-11 榮創能源科技股份有限公司 Light emitting device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475296B (en) * 2010-11-22 2015-03-01 Lg Innotek Co Ltd Method for manufacturing backlight unit
TWI495165B (en) * 2012-06-27 2015-08-01 Brightek Optoelectronic Co Ltd Multichip package structure for generating a symmetrical and uniform light-mixing source
TWI566437B (en) * 2012-12-07 2017-01-11 榮創能源科技股份有限公司 Light emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI341375B (en) 2011-05-01

Similar Documents

Publication Publication Date Title
CN101603636B (en) Light source device
US8168992B2 (en) Light-emitting diode backlight module
US8455895B2 (en) LED-based light source utilizing asymmetric conductors
TWI333533B (en) Led lamp structure and system with high-efficiency heat-dissipating function
JP5750040B2 (en) Optoelectronic semiconductor components
US20050116235A1 (en) Illumination assembly
US7926986B2 (en) Light-emitting device with a long lifespan
KR20050061464A (en) Power surface mount light emitting die package
KR20120094526A (en) Led light module
TW201224588A (en) Light source device
US9453617B2 (en) LED light device with improved thermal and optical characteristics
JP2008130823A (en) Lighting device, and electronic equipment with it
EP2184790A1 (en) Light emitting diode and llght source module having same
EP2535641A1 (en) Led light source
TW201000808A (en) Light source device
TWI385824B (en) Light source device
US7897991B2 (en) Light emitting diode and LED chip thereof
KR101946912B1 (en) Lighting source module and light system having the same
JP2006013237A (en) Light emitting device
JP2004127716A (en) Lighting system
KR101924014B1 (en) Light emitting device package and lighting system having the same
TWI523271B (en) Plug-in light-emitting unit and light-emitting device
CN215933639U (en) Light emitting diode, light bar and backlight module
KR102043713B1 (en) Lighting device
TW201137466A (en) Backlight module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees