TW200950576A - Light-emitting device, display device, and method for controlling driving of the light-emitting device - Google Patents

Light-emitting device, display device, and method for controlling driving of the light-emitting device Download PDF

Info

Publication number
TW200950576A
TW200950576A TW98110355A TW98110355A TW200950576A TW 200950576 A TW200950576 A TW 200950576A TW 98110355 A TW98110355 A TW 98110355A TW 98110355 A TW98110355 A TW 98110355A TW 200950576 A TW200950576 A TW 200950576A
Authority
TW
Taiwan
Prior art keywords
light
voltage
current
data
pixels
Prior art date
Application number
TW98110355A
Other languages
Chinese (zh)
Other versions
TWI407826B (en
Inventor
Yasushi Mizutani
Kazunori Morimoto
Tsuyoshi Ozaki
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008092020A external-priority patent/JP4877261B2/en
Priority claimed from JP2009038663A external-priority patent/JP4816744B2/en
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Publication of TW200950576A publication Critical patent/TW200950576A/en
Application granted granted Critical
Publication of TWI407826B publication Critical patent/TWI407826B/en

Links

Abstract

A light-emitting device comprises a power supply line, at least one data line, at least one pixel having a light-emitting element with one end electrically connected to the power supply line and another end set to a prescribed potential, and a first transistor connecting the data line(s) and one end of the light-emitting element, a current supplying circuit that outputs a verification current of a preset value, and a data driver unit having voltage measuring circuits that acquire a voltage of the one end of the light-emitting element as the verification voltage when the verification current flows via a current path of the data line and the first transistor of the pixel, from the one end of the light-emitting element to the other end from the current supplying circuit via the power supply line.

Description

200950576 六、發明說明: 【發明所屬之技術領域】 本發明係有關於發光裝置、顯示裝置及發光裝置的驅 動控制方法,尤其係有關於像素具備有發光元件的發光裝 置、具備此發光裝置的顯示裝置及發光裝置的驅動控制方 法。 【先前技術】 以往’已知一種發光裝置或使用此發光裝置進行顯示 之發光元件型顯示器(顯示裝置),而該發光裝置係在像 素’作爲光學元件’具有如有機電致發光元件、無機電致 發光元件或LED等之發光元件,各像素排列成一行或矩陣 (行列)狀,而各像素的發光元件將進行發光。 尤其’主動陣列驅動方式的發光元件型顯示器,在高 亮度、高對比、高精細、低耗電力等點上具有優勢,尤其, 有機電致發光元件受到注目。 作爲這種其中之像素具有有機電致發光元件的顯示裝 置(發光裝置),爲了藉由控制往有機電致發光元件的電流 而得到所供給之圖像資料的亮度,有使用複數個電晶體而 驅動有機電致發光元件者(例如,日本特開2002-156923號 公報)。 此顯示裝置進行控制成,在用以控制往有機電致發光 元;件之•電流的電晶體閘極-源極間,藉由寫入根據所供給之 圖像資料的亮度之資料(閘極電壓),而使有機電致發光元 件以此亮度進行發光。 -4 - 200950576 【發明內容】 [發明所欲解決之課題] 已知有機電致發光元件持續使電流流動而進行發光的 動作時,其電阻値逐漸增加,同時發光效率逐漸降低。可 是,在上述的顯示裝置,無法測量有機電致發光元件兩端 間的電壓,而難檢測有機電致發光元件之特性變化。因而, 無法進行對應於有機電致發光元件之特性變化的驅動控 制。 ® 本發明係鑑於這種以往之問題點而開發者,其優點在 於提供可在考慮到有機電致發光元件之特性變化下進行驅 動控制之發光裝置、顯示裝置及發光裝置的驅動控制方法。 又,本發明之優點在於提供可在考慮到有機電致發光 元件之特性變化下進行驅動之發光裝置、顯示裝置及發光 裝置的驅動控制方法。 [解決課題之手段] Φ 爲了達成此優點,本發明的發光裝置,其具備以下之 構件: 電源線; 至少一條的資料線; 至少一個像素,其具有:發光元件,係一端和該電源 線以電氣連接,而另一端被設定成既定之電位;及第1電 晶體,係將該資料線和該發光元件的一端連接; 電流供給電路,係輸出所預設之電流値的檢測電流; 以及 200950576 資料驅動部’係具有電壓測量電路,其經由該資料線 和該像素之該第1電晶體的電流路,作爲檢測電壓而取得 該檢測電流從該電流供給電路經由該電源線,再從該發光 元件的一端向另一端流動時之該發光元件之該一端的電 壓。 該資料驅動部具備有:修正電路,係根據藉該電壓測 量電路所取得之該檢測電壓’而修正因應於從外部所供給 之圖像資料的驅動資料;及驅動信號供給電路,係根據已 修正的該驅動資料而產生驅動信號。 © 該修正電路具備有: 發光效率抽出部,係具有記憶電路,其預先記憶發光 效率和電壓之關係,而該發光效率係表示使該檢測電流在 該發光元件流動時,對應在該發光元件具有起始特性時之 起始亮度的亮度比例,該電壓係使該檢測電流在該發光元 件流動時之該發光元件兩端間的電壓,並根據該記憶電路 所記憶之該發光效率和該發光元件兩端間的電壓之關係, 0 而抽出和藉該電壓測量電路所測量之該檢測電壓對應之該 發光效率的値;及 運算部,係根據藉該發光效率抽出部所抽出之該發光 效率的値而對該驅動資料進行計算,而修正該驅動資料。 該發光裝置具有排列有複數個該像素的發光區域; 該資料驅動部的該電壓測量電路係被控制成取得對應 該發光區域之該複數個像素的一個該像素之該檢測電壓。 該像素係在該發光區域,沿著列方向及行方向排列有 200950576 複數個; 該資料線係沿著該發光區域的行方向而配設複數條; 該發光裝置具有:複數條選擇線,係在該發光區域, 和該各資料線正交並在列方向配設複數條,並和該各像素 連接;及選擇驅動部,係對該各選擇線施加選擇信號,而 將對應於該各選擇線的該各像素設定成選擇狀態; 該各像素係於該各資料線和該各選擇線的交點附近排 列成陣列形,並具有:第2電晶體,係電流路的一端和該 電源線連接,電流路的另一端和該發光元件的一端連接, 並將該電源線和該發光元件的一端以電氣連接;及電壓保 持部,係保持該第2電晶體之控制端子和電流路的另一端 之間的電壓; 該驅動信號供給電路係在使該檢測電流在該發光元件 流動之前,對藉該選擇驅動部設爲選擇狀態的列之取得該 檢測電壓的該一個像素,作爲該驅動信號而施加第1寫入 電壓,其具有使電流値比該檢測電流大之電流在該第2電 晶體的電流路流動所需之電壓値,而將該第2電晶體設爲 導通狀態,對藉該選擇驅動部設爲選擇狀態的列之將取得 該檢測電壓的該一個像素除外的該像素,作爲該驅動信號 而施加第2寫入電壓,其具有將該第2電晶體設爲不導通 狀態下之電壓値。 該各像素具有第3電晶體,其電流路的一端和該電源 線連接,電流路的另一端和該第2電晶體的控制端子連接; 該複數條選擇線具有:第1選擇線,係和該各像素之 200950576 該第3電晶體的控制端子連接,並在列方向配設複數條; 及第2選擇線,係和該各像素之該第1電晶體的控制端子 連接,並在列方向配設複數條; 該選擇驅動部具有:第1選擇驅動部,係將第1選擇 信號施加於該各第1選擇線;及第2選擇驅動部,係將第 2選擇信號施加於該各第2選擇線; 該第1電晶體和該第3電晶體係藉該第1選擇驅動部 和該第2選擇驅動部個別地設定成導通狀態。 該各像素具有第3電晶體,其電流路的一端和該電源 線連接,電流路的另一端和該第2電晶體的控制端子連接; 該複數條選擇線具有:第1選擇線,係和該各像素之 該第1電晶體的控制端子連接,並在列方向配設複數條; 及第2選擇線,係和該各像素之該第3電晶體的控制端子 連接,並在列方向配設複數條; 該選擇驅動部具有: 第1選擇驅動部,係將第1選擇信號施加於該各第1 選擇線;及 第2選擇驅動部,係由開關電路和開關驅動電路所構 成,而開關電路具有將根據該第1選擇信號的第2選擇信 號施加於該各第2選擇線之複數個切換元件而構成,該開 關驅動電路控制該開關電路之該各電晶體的動作; 該第1電晶體和該第3電晶體係藉該第1選擇驅動部 和該第2選擇驅動部個別地設定成導通狀態。 該開關電路具有:複數個第1切換元件,係對應於該 200950576 發光區域之各列而設置,並使電流路的一端和該第2選擇 線連接,電流路的另一端被設定成既定之電位;複數個第 2切換元件,係對應於該發光區域之各列而設置,並使電 流路的兩端和該各列的像素所連接之該第1選擇線及該第 2選擇線連接;第1控制信號線,係和該各第1切換元件的 控制端子共通地連接;以及第2控制信號線,係和該各第 2切換元件的控制端子共通地連接; 該開關驅動電路對第1控制信號線及第2控制信號線 個別地施加控制信號,其控制該各第1切換元件及該各第 2切換元件的導通。 該發光裝置係具有排列有複數個該像素的發光區域; 該複數個像素係在該發光區域沿著列方向及行方向將 複數個排列成陣列狀; 該資料線係沿著在該發光區域之行方向配設複數條; 從該電流供給電路所輸出之電流係在該發光區域之全 部的像素的該發光元件同時流動; 該資料驅動部之該電壓測量電路係對應於該複數條資 料線的各條而設置複數個,該各電壓測量電路係沿著該發 光區域之行方向而配設,並取得和該複數條資料線之各條 連接之複數個該像素之該檢測電壓的平均値。 該發光裝置係具有排列有複數個該像素的發光區域; 該複數個像素係在該發光區域沿著列方向及行方向將 複數個排列成陣列狀; 該資料線沿著行方向配設複數條; 200950576 從該電流供給電路所輸出之電流係在沿著該發光區域 之任一列所配設之複數個該像素的該發光元件同時流動; 該資料驅動部之該電壓測量電路係對應於該複數條資 料線的各條而設置複數個,該各電壓測量電路係同時取得 該發光區域之該一列所配設之該各像素的該檢測電壓。 一種顯示裝置,其具備以下之構件: 電源線; 複數條的資料線; 複數個像素,係和該複數條資料線的任一條連接,並 © 具有:發光元件,係一端和該電源線以電氣連接,而另一 端被設定成既定之電位;及第1電晶體,係將該各資料線 和該發光元件的一端連接; 電流供給電路,係輸出所預設之電流値的檢測電流; 以及 資料驅動部,係具有:電壓測量電路,係經由該資料 線和在該複數個像素之至少一個之該像素的該第1電晶體 ^ 〇 的電流路,作爲檢測電壓而取得該檢測電流從該電流供給 電路經由該電源線,再從該發光元件的一端向另一端流動 時之該發光元件之該一端的電壓;修正電路,係根據藉該 電壓測量電路所取得之該檢測電壓,而修正因應於從外部 所供給之圖像資料的驅動資料;及驅動信號供給電路,係 根據已修正的該驅動資料而產生驅動信號。 該修正電路具備有: 發光效率抽出部,係具有記憶電路,其預先記憶發光 -10- i 200950576 效率和電壓之關係,而該發光效率係表示使該檢測電流在 該發光元件流動時,對應在該發光元件具有起始特性時之 起始亮度的亮度比例,該電壓係使該檢測電流在該發光元 件流動時之該發光元件兩端間的電壓,並根據該記憶電路 所記憶之該發光效率和該發光元件兩端間的電壓之關係, 而抽出和藉該電壓測量電路所測量之該檢測電壓對應之該 發光效率的値;及 運算部,係根據藉該發光效率抽出部所抽出之該發光 ® 效率的値而對該驅動資料進行計算,而修正該驅動資料。 一種發光裝置的驅動控制方法,其驅動具有發光元件 的發光裝置,而該發光裝置具有:電源線;至少一條的資 料線;至少一個像素,其具有:發光元件,係一端和該電 源線以電氣連接,而另一端被設定成既定之電位;及第1 電晶體,係將該資料線和該發光元件的一端連接;以及電 流供給電路,係輸出具有所預設之電流値的檢測電流; ^ 該驅動方法包含: 流動步驟,係使該檢測電流從該電流供給電路經由該 電源線,再從該發光元件的一端向另一端流動;及 取得步驟,係經由該資料線和該第1電晶體的電流 路,取得該檢測電流從該發光元件的一端向另一端流動時 之該發光元件之該一端的電壓。 該驅動方法包含: 修正步驟,係根據該取得之該檢測電壓的値而修正因 應於從外部所供給之圖像資料的驅動資料;及 -11- 200950576 供給步驟’係根據該已修正的驅動資料而產生驅動信 號,再經由該資料線而向該像素供給。 該修正驅動資料的步驟包含: 抽出步驟,係記憶電路預先記憶發光效率和電壓之關 係’而該發光效率係表示使該檢測電流在該發光元件流動 時,對應在該發光元件具有起始特性時之起始亮度的亮度 比例,該電壓係使該檢測電流在該發光元件流動時之該發 光元件兩端間的電壓,並根據該記憶電路所記憶之該發光 效率和該發光元件兩端間的電壓之關係,而抽出和藉取得 © 該發光元件之一端的電壓的步驟所取得之該檢測電壓對應 之該發光效率的値;及 修正步驟,係根據該抽出之發光效率而對該驅動資料 進行計算,而修正該驅動資料。 該發光裝置具有將該像素沿著列方向及行方向排列有 複數個的發光區域; 在使該檢測電流從該發光元件的一端向另一端流動的 0 步驟,從該電流供給電路所輸出之該檢測電流係在位於該 發光區域之該複數個像素之一個該像素的該發光元件流 動; 取得該發光元件之一端的電壓之步驟係包含有測量步 驟,其依序測量在該發光區域所排列之該複數個像素之各 個的該檢測電壓。 該發光裝置具有將該像素沿著列方向及行方向排列有 複數個的發光區域,該資料線沿著行方向配設複數條; -12- 200950576 在使該檢測電流從該發光元件的一端向另一端流動的 步驟,從該電流供給電路所輸出之該檢測電流係在該發光 區域之全部的該像素之該發光元件同時流動; 取得該發光元件之一端的電壓之步驟係包含有測量步 驟,其測量沿著該發光區域之行方向所配設之複數個該像 素之該檢測電壓的平均値。 或者, 該發光裝置具有將該像素沿著列方向及行方向排列有 複數個的發光區域,該資料線沿著行方向配設複數條; 在使該檢測電流從該發光元件的一端向另一端流動的 步驟,從該電流供給電路所輸出之該檢測電流係在沿著該 發光區域之任一列所配設之複數個該像素之該發光元件同 時流動; 取得該發光元件之一端的電壓之步驟係包含有取得步 驟,其同時取得該發光區域之該一列所排列之該各像素的 該檢測電壓。 依據本發明,可檢測發光元件之特性變化。又,可在 考慮到發光元件之特性變化下進行驅動控制》 爲了達成此優點,具有具備本發明之發光元件的像素 的發光裝置,其中: 具備有 發光區域’係排列於在列方向及行方向所配設之複數 條選擇線及資料線的各交點附近,並排列有複數個該像 素;及 -13- 200950576 資料驅動部,係產生因應於從外部所供給之圖像資料 的驅動信號’並經由該資料線而向該各像素供給; 該各像素係具有:電流控制電晶體,係電流路的一端 和電源線連接,電流路的另一端和該發光元件的一端連 接’並控制向該發光元件流動的電流;及選擇控制電晶體, 係電流路的一端和資料線連接,電流路的另一端和該電流 控制電晶體之電流路的另一端與該發光元件的連接點連 接,而控制端子和該選擇線連接; 該資料驅動部係具有:複數個電流供給電路,係對該 複數條資料線的各條供給既定之檢測電流;及複數個電壓 測量電路,係經由該選擇控制電晶體而測量使該檢測電流 從該各電流供給電路經由該各像素之該選擇控制電晶體的 電流路在該各發光元件流動時之該各發光元件之端子間的 電壓,並作爲檢測電壓。 該發光裝置還具備有選擇驅動部,其對該顯示面板之 該各選擇線施加選擇信號,而將各列之該像素設定成選擇 狀態; 該資料驅動部係對藉該選擇驅動部設定成該選擇狀態 之列的該像素測量該檢測電壓。 該資料驅動部具備有:修正電路,係根據藉該電壓測 量電路所測量之該檢測電壓,而修正因應於該圖像資料的 驅動資料;及驅動信號供給電路,係根據已修正的該驅動 資料而產生該驅動信號。 該修正電路具有發光效率抽出部,其具有記憶電路, -14- 200950576 其預先記憶發光效率和電壓之關係,而該發光效率係表示 使該檢測電流在該發光元件流動時,對應在該發光元件具 有起始特性時之起始亮度的亮度比例,該電壓係使該檢測 電流在該發光元件流動時之該發光元件兩端間的電壓,並 根據該記憶電路所記憶之該發光效率和該發光元件兩端間 的電壓之關係,而抽出和藉該電壓測量電路所測量之該檢 測電壓對應之該發光效率的値。 該修正電路具備有運算部,其根據藉該發光效率抽出 ® 部所抽出之該發光效率的値而對該驅動資料進行計算,而 修正該驅動資料。 一種發光裝置的驅動控制方法,該發光裝置具有具備 發光元件的像素: 該發光裝置,係在發光區域將複數個該像素排列於在 列方向及行方向所配設之複數條選擇線及資料線的各交點 附近,而該像素具有:電流控制電晶體,係電流路的一端 π 和電源線連接,並使電流路的另一端和該發光元件的一端 連接,而控制向該發光元件流動的電流:及選擇控制電晶 體,係電流路的一端和該資料線連接,並使電流路的另一 端和該電流控制電晶體之電流路的另一端與該發光元件的 連接點連接,而控制端子和該選擇線連接; 該方法包含: 流動步驟,係對該複數條資料線之各條供給既定之檢 測電流,並使該檢測電流經由被設爲選擇狀態之列的該各 像素的該選擇控制電晶體的電流路而在該各發光元件流 -15- 200950576 動; 測量步驟,係經由該選擇控制電晶體而測量該各發光 元件之端子間的電壓,並作爲檢測電壓;以及 修正步驟,係根據所檢測之該檢測電壓,而修正因應 於從外部所供給之圖像資料的該驅動資料。 該修正驅動資料的步驟包含: 抽出步驟,係預先記憶發光效率和電壓之關係,而該 發光效率係表示使該檢測電流在該發光元件流動時,對應 在該發光元件具有起始特性時之起始亮度的亮度比例,該 電壓係使該檢測電流在該發光元件流動時之該發光元件兩 端間的電壓,並根據該發光效率和該發光元件兩端間的電 壓之關係,而抽出和所測量之該檢測電壓對應之該發光效 率的値;及 修正步驟,係根據所抽出之發光效率而修正因應於該 圖像資料的該驅動資料》 在使該檢測電流流動的步驟,使該檢測電流在該被設 爲選擇狀態之該顯示面板的任一列之該各像素的該發光元 件同時流動; 在測量該檢測電壓的步驟,同時執行該顯示面板的該 一列所排列之該各像素之該檢測電壓的量測。 依據本發明,可測量發光元件之特性變動,並補償發 光元件之特性變動。 【實施方式】 以下,參照圖面,說明本發明之實施形態的顯示裝置 -16- 200950576 (發光裝置)。 (第1實施形態) 第1圖表示第1實施形態之顯示裝置的構成。 第1實施形態之顯示裝置由複數個像素 j = l~n,m、η:自然數)、排列有複數個像素11_。的發光區 域10、陽極電路(電源線驅動部)12、資料驅動器(資料驅動 部)13、選擇驅動器(選擇驅動部)14以及控制部15所構成。 各像素11 _ϋ各自是對應於圖像的1個像素者,於發光 V 區域10在列及行方向配置成陣列狀。各像素ll_ij具備有 像素驅動電路,其由作爲發光元件的有機電致發光元件 111、電晶體T1~T3以及電容器(電壓保持部)C1所構成。 有機電致發光元件(Organic Electroluminescent Element)l 1 1是在陽極和陰極間利用藉有機化合物所注入的 電子和電洞的再結合所產生之激子而進行發光之現象的發 光元件,並以與所供給之電流的電流値對應的亮度進行發 ⑩ 光。 在有機電致發光元件111形成像素電極,並於此像素 電極上,形成電洞注入層、發光層以及相對向電極(都未圖 示)。電洞注入層形成於像素電極上,並具有向發光層供給 電洞之功能。 像素電極由具備有透光性之例如ITO(Indium Tin Oxide)、ZnO等導電材料所構成。各像素電極利用層間絕緣 膜(未圖示)和相鄰之其他像素的像素電極進行絕緣。 電洞注入層由可注入、輸送電洞(hole)的有機高分子系 -17- 200950576 的材料所構成。又,作爲包含有有機高分子系之電洞注入、 輸送材料的有機化合物含有液,使用例如PE DO Τ/PSS水溶 液’其是使屬導電性聚合物的聚乙烯二氧噻吩(PEDOT)和屬 摻雜劑的聚苯乙烯磺酸(PSS)分散於水系溶媒的分散液。 發光層形成於中間層(未圖示)上。發光層具有藉由對 陽極和陰極之間施加既定之電壓而產生光的功能。 發光層由可發出螢光或燐光之周知的高分子發光材料 所構成,而該高分子發光材料例如是包含有聚對苯撐 (polyparaphenylene)系或聚芴系等之共轭雙重結合聚合物 之紅(R)、綠(G)、藍(B)色的發光材料。 又,這些發光材料是利用噴嘴塗布法或噴墨法等塗布 溶液(分散液),並藉由使如下之溶媒揮發而形成,而此溶 液(分散液)係適當地溶解(或分散)於水系溶媒或四磷、四甲 苯、三甲苯、二甲苯等有機溶媒。 此外,在三原色的情況,一般對每一行塗布有機電致 發光元件1 1 1之RGB的發光材料。 相對向電極爲二層構造,其由例如Ca、Ba等功函數小 的導電材料所構成之層 '和A1等之光反射性導電層所構 成,並和與接地電位連接的接地線112連接。 電流從像素電極向相對向電極方向流動,且不會逆向 流動,像素電極、相對向電極各自成爲陽極、陰極。 此有機電致發光元件111因供給電流,並長時間進行 驅動,而特性逐漸變差。即,有機電致發光元件111之特 性變差時,電阻增加而電流變得難流動,同時針對流動之 -18- 200950576 電流的發光亮度降低,而發光效率降低。 即,在有機電致發光元件111之特性變差的情況,爲 了得到起始的亮度,需要增加供給有機電致發光元件1Π 的電流。增加電流時,有機電致發光元件111之陰極-陽極 間的電壓VEL亦將增加。 .此亮度和有機電致發光元件111之陰極-陽極間的電壓 VEL之間具有關連性。第2圖表示發光效率7?和電壓VEL 的關係。發光效率/7是在使固定之電流(電流起始値Iel_〇 : ® 檢測電流)流向有機電致發光元件1 1 1的情況下,將有機電 致發光元件111具有起始特性時的起始亮度(値)設爲1時之 表示亮度變化的參數。因此,此第2圖表示依驅動時間而 發光效率7?變化時電壓VEL的變化量。 此外,此關係是利用實驗所得之資料,是在有機電致 發光元件111具有起始特性時,使亮度爲5 000cd/m2、每單 位面積之亮度爲16cd/A之使電流起始値lel_0流動時的資 @ 料,在將發光部之面積設爲100/zmx3 00 /zm的情況,電流 起始値 lel_0 的電流値是 5 000χ(100χ300)/16 = 9·38(νΑ)。 本實施形態的顯示裝置著眼於此發光效率7?和電壓 VEL的關係,而以如下之方式構成:測量使該電流起始値 lel_0流向有機電致發光元件 111時的電壓(檢測電 壓)VEL,再根據此電壓VEL,修正所供給之電流的電流値, 藉此得到所供給之圖像資料的亮度。 電晶體 T1〜T3是由 η通道型 FET(Field Effect Transistor :電場效應電晶體)所構成之薄膜電晶體(TFT : -19- 200950576[Technical Field] The present invention relates to a light-emitting device, a display device, and a driving control method for the light-emitting device, and more particularly to a light-emitting device including a light-emitting element for a pixel, and a display including the light-emitting device A device and a method of controlling the driving of the illuminating device. [Prior Art] Conventionally, there has been known a light-emitting device or a light-emitting element type display (display device) that performs display using the light-emitting device, and the light-emitting device has an organic electroluminescence element, such as an organic electroluminescence element, in a pixel 'as an optical element' In a light-emitting element such as a light-emitting element or an LED, each pixel is arranged in a row or matrix (row and column), and the light-emitting elements of each pixel emit light. In particular, the light-emitting element type display of the active array driving type has advantages in terms of high brightness, high contrast, high definition, low power consumption, and the like, and in particular, organic electroluminescent elements are attracting attention. As a display device (light-emitting device) having such an organic electroluminescence device as a pixel, in order to obtain the luminance of the supplied image data by controlling the current to the organic electroluminescence device, a plurality of transistors are used. The organic electroluminescent element is driven (for example, Japanese Laid-Open Patent Publication No. 2002-156923). The display device is controlled to write data according to the brightness of the supplied image data (gate gate) between the gate and the source of the transistor for controlling the current to the organic electroluminescent element; The voltage) causes the organic electroluminescent element to emit light with this brightness. [Embodiment] [Problems to be Solved by the Invention] When an organic electroluminescence device continues to cause a current to flow and emit light, the resistance 値 is gradually increased, and the luminous efficiency is gradually lowered. However, in the above display device, the voltage between both ends of the organic electroluminescence element cannot be measured, and it is difficult to detect the change in characteristics of the organic electroluminescence element. Therefore, the drive control corresponding to the change in the characteristics of the organic electroluminescence element cannot be performed. The present invention has been made in view of such conventional problems, and an advantage thereof is to provide a light-emitting device, a display device, and a drive control method for a light-emitting device that can perform drive control in consideration of variations in characteristics of the organic electroluminescence device. Further, an advantage of the present invention is to provide a light-emitting device, a display device, and a drive control method for a light-emitting device that can be driven in consideration of variations in characteristics of the organic electroluminescence device. [Means for Solving the Problem] Φ In order to achieve the advantage, the light-emitting device of the present invention has the following components: a power supply line; at least one data line; at least one pixel having a light-emitting element, one end and the power line Electrically connected, and the other end is set to a predetermined potential; and the first transistor is connected to the data line and one end of the light-emitting element; the current supply circuit outputs a detection current of the preset current ;; and 200950576 The data driving unit includes a voltage measuring circuit that obtains the detection current from the current supply circuit via the power supply line via the data line and the current path of the first transistor of the pixel, and then emits the light from the current supply circuit. The voltage at one end of the light-emitting element when one end of the element flows toward the other end. The data driving unit includes: a correction circuit that corrects driving data corresponding to image data supplied from the outside based on the detection voltage obtained by the voltage measuring circuit; and the driving signal supply circuit is corrected according to The drive data generates a drive signal. The correction circuit includes: a luminous efficiency extraction unit having a memory circuit that preliminarily stores a relationship between luminous efficiency and voltage, and the luminous efficiency indicates that when the detection current flows in the light emitting element, corresponding to the light emitting element a brightness ratio of the initial brightness at the initial characteristic, the voltage is a voltage between the two ends of the light-emitting element when the detecting current flows, and the luminous efficiency and the light-emitting element are stored according to the memory circuit The relationship between the voltages at the two ends, 0, and the 发光 of the luminous efficiency corresponding to the detection voltage measured by the voltage measuring circuit; and the calculation unit based on the luminous efficiency extracted by the luminous efficiency extracting portion The drive data is calculated and the drive data is corrected. The light emitting device has a light emitting region in which a plurality of the pixels are arranged; the voltage measuring circuit of the data driving portion is controlled to obtain the detected voltage of one of the pixels corresponding to the plurality of pixels of the light emitting region. The pixel is arranged in the light-emitting region, and a plurality of 200950576 are arranged along the column direction and the row direction; the data line is disposed along the row direction of the light-emitting region; the light-emitting device has: a plurality of selection lines, In the light-emitting region, a plurality of strips are orthogonal to the data lines and arranged in the column direction, and are connected to the pixels; and the driving unit is selected to apply a selection signal to each of the selection lines, which corresponds to the selection The pixels of the line are set to a selected state; the pixels are arranged in an array shape near the intersection of the data lines and the selection lines, and have a second transistor, and one end of the current path is connected to the power line The other end of the current path is connected to one end of the light emitting element, and the power line is electrically connected to one end of the light emitting element; and the voltage holding portion holds the control terminal of the second transistor and the other end of the current path The driving voltage supply circuit obtains the detection voltage for the column selected by the selection driving unit before the detection current flows through the light emitting element. The one pixel applies a first write voltage as the drive signal, and has a voltage 所需 required to cause a current having a current 値 larger than the detection current to flow in a current path of the second transistor, and the second power is generated. The crystal is set to be in an on state, and the second write voltage is applied as the drive signal to the pixel excluding the one pixel from which the detection voltage is obtained in the column selected by the selection drive unit, and the second write voltage is applied to the drive signal 2 The transistor is set to a voltage 不 in a non-conducting state. Each of the pixels has a third transistor, one end of the current path is connected to the power line, and the other end of the current path is connected to the control terminal of the second transistor; the plurality of selection lines have: a first selection line, 200950576 of each pixel is connected to the control terminal of the third transistor, and a plurality of rows are arranged in the column direction; and the second selection line is connected to the control terminal of the first transistor of each pixel, and is in the column direction The selection drive unit includes: a first selection drive unit that applies a first selection signal to each of the first selection lines; and a second selection drive unit that applies a second selection signal to each of the first selection lines 2 selection line; the first transistor and the third transistor system are individually set to be in an on state by the first selection drive unit and the second selection drive unit. Each of the pixels has a third transistor, one end of the current path is connected to the power line, and the other end of the current path is connected to the control terminal of the second transistor; the plurality of selection lines have: a first selection line, The control terminals of the first transistor of each pixel are connected, and a plurality of rows are arranged in the column direction; and the second selection line is connected to the control terminal of the third transistor of each pixel, and is arranged in the column direction. The selection drive unit includes: a first selection drive unit that applies a first selection signal to each of the first selection lines; and a second selection drive unit that is configured by a switch circuit and a switch drive circuit, and The switching circuit includes a plurality of switching elements that apply a second selection signal according to the first selection signal to each of the second selection lines, and the switch driving circuit controls the operation of the transistors of the switching circuit; The transistor and the third transistor system are individually set to be in an on state by the first selection drive unit and the second selection drive unit. The switch circuit includes a plurality of first switching elements, which are provided corresponding to the respective columns of the 200950576 light-emitting region, and one end of the current path is connected to the second selection line, and the other end of the current path is set to a predetermined potential a plurality of second switching elements are provided corresponding to the respective columns of the light-emitting regions, and the two ends of the current path are connected to the first selection line and the second selection line to which the pixels of the respective columns are connected; a control signal line connected in common to the control terminals of the respective first switching elements, and a second control signal line connected in common to the control terminals of the second switching elements; the switch control circuit for the first control A control signal is individually applied to the signal line and the second control signal line, and the conduction of the first switching element and each of the second switching elements is controlled. The light-emitting device has a plurality of light-emitting regions arranged with the plurality of pixels; the plurality of pixels are arranged in an array in the column-direction and the row direction in the light-emitting region; the data line is along the light-emitting region a plurality of strips are arranged in the row direction; the current outputted from the current supply circuit flows simultaneously with the light-emitting elements of all the pixels of the light-emitting region; the voltage measuring circuit of the data driving portion corresponds to the plurality of data lines A plurality of voltage measuring circuits are disposed along the row direction of the light emitting region, and an average value of the detected voltages of the plurality of pixels connected to each of the plurality of data lines is obtained. The light-emitting device has a plurality of light-emitting regions in which the plurality of pixels are arranged; the plurality of pixels are arranged in an array in the column direction and the row direction in the plurality of pixels; the data line is arranged in a plurality of rows along the row direction 200950576 The current output from the current supply circuit flows simultaneously with the plurality of pixels arranged along any one of the light-emitting regions; the voltage measuring circuit of the data driving portion corresponds to the plurality A plurality of strips of data lines are provided, and the voltage measuring circuits simultaneously obtain the detected voltages of the pixels arranged in the column of the light emitting regions. A display device having the following components: a power supply line; a plurality of data lines; a plurality of pixels connected to any one of the plurality of data lines, and having: a light-emitting element, one end and the power line electrically Connecting, and the other end is set to a predetermined potential; and the first transistor connects the data lines to one end of the light-emitting element; the current supply circuit outputs a detection current of the preset current ;; The driving unit includes: a voltage measuring circuit that obtains the detection current from the current path through the data line and the current path of the first transistor in the pixel of at least one of the plurality of pixels as a detection voltage And a voltage of the one end of the light-emitting element when the supply circuit flows from one end of the light-emitting element to the other end; the correction circuit corrects the detection voltage according to the voltage obtained by the voltage measurement circuit The driving data of the image data supplied from the outside; and the driving signal supply circuit are generated according to the modified driving data Signal. The correction circuit includes: a luminous efficiency extraction unit having a memory circuit that preliminarily stores the relationship between the efficiency and the voltage of the light emission -10-i 200950576, and the luminous efficiency indicates that the detection current flows when the light emitting element flows, corresponding to The light-emitting element has a brightness ratio of the initial brightness at the initial characteristic, the voltage is a voltage between the two ends of the light-emitting element when the detecting current flows, and the luminous efficiency is memorized according to the memory circuit And a relationship between a voltage between the two ends of the light-emitting element, and extracting the light-emitting efficiency corresponding to the detection voltage measured by the voltage measuring circuit; and calculating the portion extracted by the light-emitting efficiency extracting portion The luminosity® efficiency is calculated by calculating the drive data and correcting the drive data. A driving control method for a light-emitting device, which drives a light-emitting device having a light-emitting element, the light-emitting device having: a power line; at least one data line; at least one pixel having: a light-emitting element, one end and the power line electrically Connected, and the other end is set to a predetermined potential; and the first transistor is connected to the data line and one end of the light-emitting element; and the current supply circuit outputs a detection current having a preset current ;; The driving method includes: a flow step of flowing the detection current from the current supply circuit through the power supply line from one end of the light emitting element to the other end; and obtaining the step of transmitting the data through the data line and the first transistor The current path obtains a voltage of the one end of the light-emitting element when the detection current flows from one end of the light-emitting element to the other end. The driving method includes: a correcting step of correcting driving data corresponding to the image data supplied from the outside according to the obtained detection voltage; and -11-200950576, the supplying step is based on the corrected driving data A drive signal is generated and supplied to the pixel via the data line. The step of correcting the driving data includes: an extracting step, wherein the memory circuit pre-memorizes the relationship between the luminous efficiency and the voltage', and the luminous efficiency indicates that the detecting current flows when the light emitting element flows, corresponding to when the light emitting element has a starting characteristic a brightness ratio of the initial brightness, the voltage is a voltage between the two ends of the light-emitting element when the light-emitting element flows, and the light-emitting efficiency is stored according to the memory circuit and between the two ends of the light-emitting element a relationship between voltages, and extracting and borrowing the detection voltage corresponding to the voltage at one end of the light-emitting element; and correcting the step of performing the driving data according to the extracted luminous efficiency Calculate and correct the driver data. The light-emitting device has a plurality of light-emitting regions in which the pixels are arranged in the column direction and the row direction, and the step of flowing the detection current from one end of the light-emitting element to the other end is output from the current supply circuit Detecting a current flowing in the light-emitting element of the pixel of the plurality of pixels located in the light-emitting region; and obtaining a voltage at one end of the light-emitting element includes a measuring step of sequentially measuring the light-emitting area The detected voltage of each of the plurality of pixels. The light-emitting device has a plurality of light-emitting regions in which the pixels are arranged along the column direction and the row direction, and the data lines are arranged in a plurality of strips along the row direction; -12- 200950576, the detection current is made from one end of the light-emitting element a step of flowing the other end, the detection current outputted from the current supply circuit is simultaneously flowing in the light-emitting element of the pixel of the light-emitting region; and the step of obtaining the voltage at one end of the light-emitting element includes a measuring step, It measures the average 値 of the detected voltages of the plurality of pixels arranged along the row direction of the light-emitting region. Alternatively, the light-emitting device has a plurality of light-emitting regions in which the pixels are arranged along the column direction and the row direction, and the data lines are arranged in a plurality of strips along the row direction; and the detection current is from one end of the light-emitting element to the other end a step of flowing, the detection current outputted from the current supply circuit is simultaneously flowing in the plurality of pixels disposed along any one of the light-emitting regions; and the step of obtaining a voltage at one end of the light-emitting element The method includes an obtaining step of simultaneously obtaining the detected voltage of each pixel arranged in the column of the light emitting region. According to the present invention, the change in characteristics of the light-emitting element can be detected. Further, in order to achieve the above advantages, a light-emitting device having a pixel including the light-emitting element of the present invention may be provided in which the light-emitting region is arranged in the column direction and the row direction. a plurality of pixels are arranged in the vicinity of each intersection of the plurality of selection lines and the data lines; and -13-200950576 data driving unit generates a driving signal corresponding to the image data supplied from the outside. The pixels are supplied to the pixels via the data line; the pixels each have a current control transistor, and one end of the current path is connected to the power line, and the other end of the current path is connected to one end of the light emitting element and controls the light emission. a current flowing through the component; and a control transistor, wherein one end of the current path is connected to the data line, and the other end of the current path and the other end of the current path of the current control transistor are connected to a connection point of the light emitting element, and the control terminal Connected to the selection line; the data driving unit has: a plurality of current supply circuits, each of the plurality of data lines Supplying a predetermined detection current; and a plurality of voltage measurement circuits for measuring a current path of the control current from the respective current supply circuits via the selection control transistors of the respective pixels via the selection control transistor The voltage between the terminals of the respective light-emitting elements when flowing is used as the detection voltage. The light-emitting device further includes a selective driving unit that applies a selection signal to the selection lines of the display panel to set the pixels of each column to a selected state; and the data driving unit sets the selection driving unit to The pixel of the selected state is used to measure the detected voltage. The data driving unit includes: a correction circuit that corrects driving data corresponding to the image data according to the detection voltage measured by the voltage measuring circuit; and the driving signal supply circuit is based on the modified driving data The drive signal is generated. The correction circuit has a luminous efficiency extraction portion having a memory circuit, -14-200950576, which pre-memorizes the relationship between luminous efficiency and voltage, and the luminous efficiency indicates that the detection current corresponds to the luminous element when the luminous element flows a brightness ratio of the initial brightness at the initial characteristic, the voltage is a voltage between the two ends of the light-emitting element when the detection current flows, and the light-emitting efficiency and the light-emitting stored in the memory circuit The relationship between the voltages across the elements, and the 发光 of the luminous efficiency corresponding to the detected voltage measured by the voltage measuring circuit. The correction circuit includes a calculation unit that calculates the drive data based on the luminosity extracted by the illuminating efficiency extraction unit, and corrects the drive data. A driving control method for a light-emitting device, the light-emitting device having a pixel including a light-emitting device: the light-emitting device is configured to arrange a plurality of the pixels in a plurality of selection lines and data lines arranged in a column direction and a row direction in a light-emitting region In the vicinity of each intersection, the pixel has a current control transistor, and one end π of the current path is connected to the power line, and the other end of the current path is connected to one end of the light emitting element to control the current flowing to the light emitting element. And selecting a control transistor, one end of the current path is connected to the data line, and the other end of the current path and the other end of the current path of the current control transistor are connected to the connection point of the light emitting element, and the control terminal and The selection line is connected; the method includes: a flow step of supplying a predetermined detection current to each of the plurality of data lines, and causing the detection current to be controlled by the selection of the pixels selected as a selected state The current path of the crystal is in the flow of the respective light-emitting elements -15-200950576; the measuring step is measured by controlling the transistor through the selection Between the terminals of each light-emitting element of the voltage, and as a detection voltage; and a correction step of, based on the detected based on the detection of voltage is corrected in response to the image information supplied from the outside to the data driver. The step of correcting the driving data includes: an extracting step of pre-memorizing the relationship between the luminous efficiency and the voltage, wherein the luminous efficiency is such that when the detecting current flows in the light emitting element, corresponding to when the light emitting element has a starting characteristic a brightness ratio of the initial brightness, the voltage is a voltage between the two ends of the light-emitting element when the light-emitting element flows, and is extracted according to the relationship between the light-emitting efficiency and the voltage between the two ends of the light-emitting element Measured by the detected voltage corresponding to the luminous efficiency; and a correcting step of correcting the driving current according to the driving data according to the extracted luminous efficiency to cause the detecting current to flow Simultaneously flowing the light-emitting elements of the pixels in any one of the columns of the display panel that are set to be selected; in the step of measuring the detection voltage, performing the detection of the pixels arranged in the column of the display panel simultaneously Measurement of voltage. According to the present invention, variations in characteristics of the light-emitting elements can be measured, and variations in characteristics of the light-emitting elements can be compensated. [Embodiment] Hereinafter, a display device -16-200950576 (light-emitting device) according to an embodiment of the present invention will be described with reference to the drawings. (First Embodiment) Fig. 1 shows a configuration of a display device according to a first embodiment. In the display device according to the first embodiment, a plurality of pixels j = l~n, m, η: natural numbers are arranged, and a plurality of pixels 11_ are arranged. The light-emitting region 10, the anode circuit (power supply line drive unit) 12, the data driver (data drive unit) 13, the selection driver (selection drive unit) 14, and the control unit 15 are provided. Each of the pixels 11_ϋ is one pixel corresponding to the image, and is arranged in an array in the column and row directions in the light-emitting V region 10. Each of the pixels 11_ij is provided with a pixel drive circuit composed of an organic electroluminescence element 111 as a light-emitting element, transistors T1 to T3, and a capacitor (voltage holding portion) C1. An organic electroluminescent element (I1) is a light-emitting element that emits light by an exciton generated by recombination of electrons and holes injected by an organic compound between an anode and a cathode, and The current corresponding to the supplied current 値 emits 10 light. A pixel electrode is formed on the organic electroluminescent element 111, and a hole injection layer, a light-emitting layer, and a counter electrode (both not shown) are formed on the pixel electrode. The hole injection layer is formed on the pixel electrode and has a function of supplying a hole to the light-emitting layer. The pixel electrode is made of a conductive material such as ITO (Indium Tin Oxide) or ZnO which is translucent. Each of the pixel electrodes is insulated by an interlayer insulating film (not shown) and pixel electrodes of other adjacent pixels. The hole injection layer is composed of a material of an organic polymer system -17-200950576 which can inject and transport a hole. In addition, as an organic compound-containing liquid containing a hole injection and transport material of an organic polymer system, for example, a PE DO Τ/PSS aqueous solution is used, which is a polyethylene dioxythiophene (PEDOT) and a genus belonging to a conductive polymer. The dopant polystyrene sulfonic acid (PSS) is dispersed in a dispersion of an aqueous solvent. The light emitting layer is formed on an intermediate layer (not shown). The light-emitting layer has a function of generating light by applying a predetermined voltage between the anode and the cathode. The light-emitting layer is composed of a polymer light-emitting material which is known to emit fluorescence or light, and the polymer light-emitting material is, for example, a conjugated double-bonded polymer containing a polyparaphenylene system or a polyfluorene system. Red (R), green (G), blue (B) color luminescent materials. Further, these luminescent materials are formed by applying a solution (dispersion) such as a nozzle coating method or an inkjet method, and volatilizing the following solvent, and the solution (dispersion) is appropriately dissolved (or dispersed) in the water system. Solvent or organic solvent such as tetraphosphorus, tetramethylbenzene, trimethylbenzene or xylene. Further, in the case of the three primary colors, the RGB luminescent material of the organic electroluminescent element 11 1 is generally applied to each row. The counter electrode has a two-layer structure composed of a layer of a conductive material having a small work function such as Ca or Ba, and a light-reflective conductive layer such as A1, and is connected to a ground line 112 connected to a ground potential. The current flows from the pixel electrode to the opposite electrode and does not flow in the reverse direction, and the pixel electrode and the counter electrode are each an anode and a cathode. This organic electroluminescent element 111 is driven for a long time by supplying a current, and the characteristics are gradually deteriorated. That is, when the characteristics of the organic electroluminescent element 111 are deteriorated, the electric resistance increases and the current becomes difficult to flow, and the luminance of the current for the flow of -18 - 200950576 decreases, and the luminous efficiency decreases. That is, in the case where the characteristics of the organic electroluminescent element 111 are deteriorated, in order to obtain the initial luminance, it is necessary to increase the current supplied to the organic electroluminescent element 1?. When the current is increased, the voltage VEL between the cathode and the anode of the organic electroluminescent element 111 will also increase. This brightness has a correlation with the voltage VEL between the cathode and the anode of the organic electroluminescent element 111. Fig. 2 shows the relationship between the luminous efficiency 7? and the voltage VEL. The luminous efficiency /7 is when the fixed current (current starting 値Iel_〇: ® detecting current) flows to the organic electroluminescent element 11 1 , and the organic electroluminescent element 111 has an initial characteristic The parameter indicating the change in brightness when the initial brightness (値) is set to 1. Therefore, Fig. 2 shows the amount of change in voltage VEL when the luminous efficiency 7 is changed depending on the driving time. Further, this relationship is obtained by experimentally, and when the organic electroluminescent element 111 has an initial characteristic, the luminance is 5 000 cd/m 2 and the luminance per unit area is 16 cd/A, so that the current starts 値lel_0 flows. When the area of the light-emitting portion is set to 100/zmx3 00 /zm, the current 电流 of the current start 値lel_0 is 5 000 χ (100 χ 300) / 16 = 9·38 (ν Α). The display device of the present embodiment is configured to measure the voltage (detection voltage) VEL when the current start 値lel_0 flows to the organic electroluminescent element 111, focusing on the relationship between the luminous efficiency 7? and the voltage VEL. Based on this voltage VEL, the current 値 of the supplied current is corrected, thereby obtaining the brightness of the supplied image data. The transistors T1 to T3 are thin film transistors composed of an n-channel type FET (Field Effect Transistor) (TFT: -19-200950576)

Thin Film Transistor)。 電晶體T1 (第3電晶體、寫入控制電晶體)是用以使電 晶體T3(第2電晶體、電流控制電晶體)變成導通、不導通 的開關電晶體。 各像素ll_ij之電晶體Τ1的汲極(端子)和陽極線(電源 線)La連接。 各像素之電晶體T1的閘極(端子)和選擇 線Lsll連接。一樣地,各像素ll_12~ll_m2之電晶體T1 的閘極和選擇線Lsl2連接.....各像素ll_ln~ll_mn之電 晶體T1的閘極各自和選擇線Ls In連接。 在像素11_11的情況,若從選擇驅動器14向選擇線 Lsll輸出導通(Hi: High)位準的信號時,電晶體T1變成導 通,電晶體T3亦變成導通。 向選擇線Lsll輸出不導通(Lo: Low)位準的信號時’ 電晶體T1變成不導通,電晶體T3亦變成不導通。同時, 電晶體T1變成不導通時,保持業已對電容器C11充電的電 荷。 電晶體T2(第1電晶體、選擇控制電晶體)是一開關電 晶體,其用於藉由選擇驅動器14而選擇變成導通、不導 通,而使陽極電路12和資料驅動器13之間變成導通、不 導通。 各像素11 _ij之作爲電晶體Τ2的一端的汲極和有機電 致發光元件111的陽極連接。 各像素ll_ll〜ll_ml之電晶體T2的閘極和選擇線Lsll -20- 200950576 連接。 樣地,各像素11_12 之電晶體 和選擇線Lsl2連接.....各像素1 1 _ 1 n~ 1 1 mn T2的閘極和選擇線Lsin連接。 又’各像素11_11〜U_ln之作爲電晶體T2的 源極和資料線Ldl連接。一樣地,各像素丨丨_21 電晶體 T2的源極和資料線Ld2連接、... 1 1 一ml~l l_mn之電晶體T2的源極和資料線Ldm , 在像素11_11的情況,電晶體T2在從選擇 W 向選擇線Ls 11輸出導通位準的信號時變成導通, 電致發光元件111之陽極和資料線Ldl連接。 又,向選擇線Ls 11輸出不導通位準的信號時 通,而將有機電致發光元件111之陽極和資料線 電晶體T3之功能係在測量電壓VEL時,使衍 12所供給之電流向有機電致發光元件ill流動。 在測量電壓VEL時,各像素ll_ij之電晶體 0 是從陽極電路12所供給之電流流入的電流流入3 極線La連接,而源極是電流流出的電流流出端, 電致發光元件111的陽極連接,閘極是控制在汲 流動之電流的電流値的控制端,並和電晶體T1 接。 電容器C1是保持電晶體T3之閘極-源極間霄 後記爲閘極電壓Vgs。)的電容器,其一端和電晶 極及電晶體T3的閘極連接,而另一端和電晶體 及有機電致發光元件111的陽極連接。 T2的閘極 之電晶體 I另一端的 ~1l_2n 之 、各像素 軎接。 驅動器14 而將有機 &變成不導 Ldl切斷。 [陽極電路 T3的汲極 諸,並和陽 並和有機 極-源極間 的源極連 i壓v g s (以 體T1的源 T3的源極 -21- 200950576 由於當電晶體T1變成導通時,電晶體T3閘極-汲極間 被連接,並進行二極體連接而變成導通,所以電流從陽極 線La向電晶體Τ3的汲極-源極間流動,而以那時之電晶體 T3的閘極電壓Vgs對電容器C1充電,並儲存該電荷。 電晶體T1及T2變成不導通時,電容器C1保持電晶體 T3的蘭極電壓Vgs。 陽極電路12是具有在測量電壓VEL時,經由陽極線 La而對各像素ll_ij供給量測用電流之功能,同時具有在 進行對各像素11 _ij之資料的寫入動作及進行因應各像素 11 _ij之有機電致發光元件111的圖像資料的發光動作時, 將陽極線La設定成接地電位及比接地電位高電位之既定 的電壓(電壓Vsrc)之功能,並具備有電流供給電路121、 開關122與123、和接地電位連接的接地線124、以及輸出 電壓Vsrc的定電壓電源》 電流供給電路121是一電流供給源,其供給具有預先 設定之電流値的電流。開關122將電壓Vsrc或接地線124 和開關123的一端選擇性連接。開關123將電流供給電路 121的輸出端和開關122的輸出端選擇性連接。 資料驅動器13具有將資料寫入各像素ιι_〇•之有機電 致發光元件111的功能,並具備有開關131-1〜131-m'緩衝 器 132-1〜132-m、A/D轉換器 133-1〜133-m、修正電路 134-l~134-m、以及DAC(D/A轉換器:驅動信號供給電 路)135-l~135-m 。 開關131-l~131-m各自是用以將資料線Ldl~Ldm和緩 200950576 衝器132-l~132-m之輸入端或D/A轉換器135-1〜135-m的輸 出端選擇性地連接。 緩衝器132-l~132-m各自是用以阻止來自各像素n_in 〜limn之電流的流入,是由輸入阻抗高之例如運算放大器 所構成。緩衝器132-1〜132-m各自將經由資料線Ldl~Ldm 所測量之類比的電壓VEL供給A/D轉換器133-l〜133-m » A/D轉換器133-l~133-m各自是用以測量從緩衝器 132- 1~132-111所供給之類比的電壓乂£1^,並將所測量之類比 ϋ ^ 的電壓VEL轉換成數位的電壓VEL» A/D轉換器133-l~133-m 將轉換後之數位的電壓VEL供給修正電路134-1〜134-m。各 緩衝器132-l~132-m和與其連接之A/D轉換器133-l~133-m 相當於本發明的電壓測量電路。 修正電路134-l~134-m各自係一電路,其爲了得到與 所供給之圖像資料對應的亮度,而根據從A/D轉換器 133- l~133-m所供給的電壓VEL,修正與圖像資料對應之驅 0 動資料Vdata的値。 修正電路134-l~134-m各自如第3圖所示,具備有發 光效率抽出部136-l~136-m、記憶體137-l~137-m、以及運 算部 138-1〜138-m。 發光效率抽出部136-l~136-m各自抽出和藉量測所得 之電壓VEL對應的發光效率π ,並具有如第4圖所示之 LUT(Look Up Table :查找表,記憶電路)。 此LUT是表示電壓VEL、亮度以及發光效率之關係 的表,是根據第2圖所示之發光效率7?和電壓VEL的關係 -23- 200950576 而作成者。 此LUT是表示使電流起始値lel_0之電流流向有機電 致發光元件111的情況之亮度的變化、發光效率7?以及電 壓VEL之關係。 此LUT表示,在有機電致發光元件111具有起始特性 時爲了得到亮度5000 cd/m2而使所需之電流起始値lel_0的 電流流動,而亮度變成3000 cd/m2時,發光效率將變成7?… = 0.60,=3000/5000 = 0.60,電壓 VEL 從起始値 7.85V 增加 至 8.30V。 此外,在本實施形態,該LUT雖然作成對應於一個電 流起始値lel_0(檢測電流),並從陽極電路12的電流供給電 路121供給與其對應的1種電流,但是本發明未限定如此, 亦可採用使LUT對應於2位準以上之複數種相異之電流値 的檢測電流者,並採用從陽極電路12的電流供給電路121 供給與其對應之和複數種位準相異之電流値對應的電流之 構成。在此情況,因應於各位準的檢測電流而進行複數次 電壓VEL的量測。 發光效率抽出部136-l~136-m各自參照此LUT,並抽 出對應於電壓VEL的發光效率7?。 記憶體137_l〜137_m各自是用以記憶發光效率抽出部 136-l~136-m所抽出之發光效率7?的記憶體(記憶電路)。 運算部138-l~138-m各自是被供給圖像資料,並取得 用以得到與圖像資料對應之亮度的驅動資料Vdata。 運算部138-l~138-m各自在以驅動資料Vdata進行寫入 時,從記憶體137-1〜137-m讀出發光效率π。 200950576 運算部138-l~138-m各自用以將在有機電致發光元件 111具有起始特性時爲了得到與所供給之圖像資料對應的 亮度所需之電流値lelf_0,和從記憶體137-1所讀出之發光 效率7?的倒數相乘,而取得電流修正値Ielf_l » 然後,運算部138-1〜138-m根據與各像素ll_ij的電晶 體T3之閘極電壓對應的汲極-源極間電流的特性、及此電 流修正値Ielf_l,而求得驅動資料Vdata。 D/A轉換器135-1〜135-m各自是將運算部138-1〜138-m ® 所求得之數位的驅動資料Vdata轉換成屬類比之寫入電壓 的驅動信號Vd(負電壓)。 D/A轉換器135-l~135-m各自將該寫入電壓的驅動信 號Vd經由資料線Ldl~Ldm,而施加於各像素ll_ll~li_mn 之電晶體T2的另一端,藉此經由電晶體T2,而從電晶體 T3引入電流。 選擇驅動器1 4是由控制部1 5控制,並用以對每一列 φ 選擇像素11 _ij者,例如具備有移位暫存器。選擇驅動器 14各自向選擇線Ls 11 ~Ls In輸出具有導通位準或不導通位 準的信號。 控制部15控制各部。控制部15控制各部成,根據有 機電致發光元件111之電壓VEL的變動,而修正在寫入驅 動信號時所供給之電流的電流値,藉此得到所需之亮度。 因而,控制部15控制各部成,測量各像素n_ij之有 機電致發光元件111的電壓VEL,並對各像素11 _ij之電晶 體T 3的鬧極·源極間寫入屬寫入電壓的驅動信號Vd,而使 -25· 200950576 有機電致發光元件in進行發光。 第1實施形態之顯示裝置對每一行測量電壓VEL。此 外,顯示裝置例如在電源起動時、每一天、或者每使用固 定時間進行此電壓VEL的量測。 在對每一行進行此電壓VEL之量測的情況,控制部1 5 控制陽極電路12、資料驅動器13以及選擇驅動器14成, 使電流從陽極電路12經由各像素11 _ij的有機電致發光元 件11 1,向接地線11 2流動。 在進行驅動資料Vdau之寫入的情況,控制部15控制 ® 陽極電路12、資料驅動器13以及選擇驅動器14成,使電 流從陽極電路12不會向各像素ll_ij的有機電致發光元件 111流動,而向資料驅動器13流動。 在使有機電致發光元件111進行發光的情況,控制部 15控制陽極電路12、資料驅動器13以及選擇驅動器14成, 根據各像素11 _ij的電容器C1中所寫入之電晶體T3的閘 極電壓Vgs而將電流供給有機電致發光元件ni。 〇 其次’說明第1實施形態之顯示裝置的動作。 首先’說明測量各像素11 _ij之有機電致發光元件111 的電壓VEL時的動作。 顯示裝置測量各像素11 _ij之有機電致發光元件m 的電壓VEL。如第5圖所示,控制部15爲了測量電壓VEL, 而控制開關123成,使陽極電路12的電流供給電路121和 陽極線La連接。 控制部1 5分別控制開關丨3卜丨~丨3丨_m成,使資料驅動 -26- 200950576 器13之各緩衝器132-l~132-m和資料線Ldl~Ldm連接。 而且,控制部15控制選擇驅動器14成,使其向全部 的選擇線Lsll~Lsln輸出導通位準的信號。 選擇驅動器14向選擇線LslULs In輸出導通位準的信 號時,全部之像素ll_ij的電晶體ΤΙ、T2變成導通。電晶 體T1變成導通時,連接電晶體T3之閘極-汲極之間,而電 晶體T3變成導通狀態,並使二極體進行動作。 第6圖係表示電晶體T 3之汲極-源極間電壓V d s對汲 ® 極-源極間電流Ids特性和有機電致發光元件m之負載線 SPel的圖。電晶體T3的動作點是電晶體T3之Vds對Ids 特性圖和有機電致發光元件111之負載線SPel的交點,在 第6圖以P3表示,在飽和區域進行動作。 此外,在第6圖,P0是夾止點,Vth是臨限値電壓, 汲極-源極間電壓Vds之從0V至夾止電壓爲止的區域是不 飽和區域,汲極-源極間電壓Vds之夾止電壓以上的區域是 φ 飽和區域。 全部之像素ll_ij的電晶體T1~T3變成導通時,因爲將 電流供給電路121和陽極線La連接,所以從電流供給電路 121所供給之電流被分配並流向全部之像素Η的電晶體 T3 ° 在此,從電流供給電路121所供給之電流的電流値被 設定爲向各像素11-ij流動之電流的平均値變成和該電流 起始値lel_0相等的電流値。 因爲資料驅動器13之各緩衝器132-1〜132-m是高阻 -27- 200950576 抗,所以此電流不會流向資料驅動器13。因而,經由全部 之像素1 l_ij的有機電致發光元件111並向接地線丨丨2流 動。 緩衝器132-1〜132-m各自經由開關inq〜131-m,取得 資料線Ldl~Ldm的電壓。各像素ll_ij之電晶體T2的導通 電阻’因閘極電壓Vgs高,而成爲幾乎可忽略的値。因此, 緩衝器132-1〜132-m各自所取得之資料線Ldl〜Ldm的電壓 成爲有機電致發光元件111的電壓VEL。 又’在資料線Ldl ’因爲經由1行之像素iLnqun 的各電晶體T2而和各有機電致發光元件in的陽極連接, 所以資料線Ldl的電壓成爲1行之像素im — mn的各 有機電致發光元件111之平均化的電壓VEL。緩衝器132-1 將此電壓VEL供給A/D轉換器133-1。 —樣地’緩衝器 132-2~132-m 各自經由開關 131-2~131-m’而將對資料線Ld2~Ldm所連接之像素ll_ij 的有機電致發光元件1 1 1之每一列所平均化的電壓VEL供 給 A/D 轉換器 133-2~133-m。 A/D轉換器133-1〜133-m依此方式,各自經由緩衝器 1 3 2 -1 ~ 1 3 2 _ m ’以類比値測量對每一列所平均化之有機電致 發光元件1 1 1的電壓VEL。然後,A/D轉換器133-1〜133-m 各自將類比的電壓VEL轉換成數位的電壓VEL。在此,緩 衝器132-l~132-m及A/D轉換器133-l~133-m構成本發明的 電壓測量電路。 修正電路134-l~134-m之發光效率抽出部136-1〜136-m 200950576 各自參照LUT,並抽出和a/D轉換器133-1〜133-m已轉換 之數位的電壓VEL對應的發光效率”。發光效率抽出部 136- l~136-m各自將所抽出之發光效率π記憶於記憶體 137- l~137-m 。 其次’說明根據驅動資料而驅動各像素U_ij之有機電 致發光元件111時的動作。 被供給圖像資料時,顯示裝置對各像素n_n〜Hmn 寫入驅動資料Vdata。此時,控制部15如第7圖所示,控 制陽極電路12的開關122、123成,使陽極線La變成接地 電位。開關122將接地線124和開關123的一端連接,而 開關123將此開關123的一端和陽極線La連接,並將陽極 線La和接地線124連接。 接著’控制部15控制選擇驅動器14成,使其向選擇 線Lsll輸出導通位準的信號,並向選擇線Ls12~Lsln輸出 不導通位準的信號,而選擇像素11_11〜U_ml。 φ 運算部138-l~138-m各自從記憶體137-l~137-m讀出各 像素11_11〜ll_ml的發光效率77,再根據所讀出之發光效 率β而求得驅動資料Vdata。 資料驅動器13之各D/A轉換器135-l~135-m各自將運 算部138-l~i38-m所求得之驅動資料Vdau轉換成屬類比之 寫入電壓的驅動信號Vd。 控制部15各自控制開關131-l~131-m成,使資料驅動 器13之各D/A轉換器^5-^35-01和資料線Ld卜Ldm連接。 資料驅動器13之各D/A轉換器135-l~135-m各自對資 -29- 200950576 料線Ld卜Ldm施加是已被類比轉換之寫入電壓的驅動信號 V d 〇 陽極線La成爲接地電位,因爲各像素ll_ll~ll_ml之 有機電致發光元件111的陰極的電位亦是接地電位,所以 電流不會流向各像素的有機電致發光元件 1 1 1 〇 又,因爲寫入電壓之驅動信號Vd是負電壓,所以電流 從陽極電路12經由各像素11_11〜1 l_ml的電晶體T3、T2、 資料線Ldl〜Ldm,分別流向資料驅動器13的D/A轉換器 135-1〜135-m 。 因爲各像素ll_ll〜ll_ml之各電晶體T1變成導通,所 以連接各電晶體T3之閘極-汲極之間,並進行二極體之連 接。因而,電晶體T3在飽和區域內進行動作,因應於二極 體特性的汲極電流Id流向電晶體T3,而其動作點成爲第6 圖的動作點P2。 電晶體T1變成導通,因爲汲極電流id流向電晶體T3, 所以電晶體T3的閘極電壓Vgs被設定成對應於汲極電流Id 的電壓,並以此閘極電壓Vgs對電容器Cl進行充電。 依此方式,資料驅動器13從各像素的電 晶體T3引入根據所測量之電壓VEL所修正的電流,並使電 容器C1保持根據驅動資料Vdata之電晶體T3的閘極電壓 Vgs。 以下’一樣地’控制部1 5控制選擇驅動器1 4成,使 其依序選擇像素1 1 _ 1 2〜1 1 _m2.....像素1 1 _1 η〜1 1 _mn,而 -30- 200950576 將根據驅動資料Vdata的電壓寫入各像素11_11〜ll_mn的 電晶體T3之閘極·源極間的電容器C1。 對全部之像素1 l_ij的電晶體T3之閘極-源極間的電容 器C1寫入驅動資料Vdata後,顯示裝置使各像素ll_ij的 有機電致發光元件111進行發光。 此時,控制部15如第8圖所示,控制選擇驅動器14 成,使其向全部之選擇線Lsll~Lsln輸出導通位準的信號, 並使全部之像素ll_ij的電晶體ΤΙ、T2變成不導通。 在全部的像素ll_ij各個的電晶體ΤΙ、T2變成不導通 時,電晶體T3變成非選擇狀態。電晶體T3變成非選擇狀 態時,將電晶體T3之閘極-源極間電壓Vgs保持於業已寫 入電容器C1的電壓。 又,此時,控制部15控制陽極電路12的開關122、123, 使其對陽極線La施加電壓Vsrc。此電壓Vsrc被設定成例 如約12V。 此時,因爲藉電容器C1保持電晶體T3的閘極電壓 Vgs,所以電晶體T3的動作點如第6圖所示,成爲是所保 持之閘極電壓Vgs的動作線和有機電致發光元件111之負 載線S Pel的交點的動作點P3。將此電壓Vsrc的電壓値設 定成此動作點P3變成在電晶體T3之飽和區域動作之狀態 的電壓値。 而,於電晶體T3的汲極-源極間,使電流値和寫入驅 動資料Vdata時之寫入電流相同的汲極電流Id流動。電晶 體T2變成不導通,因爲有機電致發光元件ill之陽極側的 -31- 200950576 電位變成比陰極側的電位高之狀態,所以將此汲極電流Id 供給有機電致發光元件111。 此時,根據所測量之電壓VEL而修正流向各像素ll_ij 之有機電致發光元件111的電流Id。 例如,對像素11_11的有機電致發光元件111,因應於 所供給之圖像資料的亮度是5 000 cd/m2,而在有機電致發 光元件111之被測量的電壓VEL是8.30V的情況,若未修 正,亮度降低至3000 cd/m2。 在此情況,發光效率抽出部136-1從電壓VEL=8.3 0V, 參照第4圖所示的LUT,取得發光效率=0.6。 運算部138-1參照記憶體137-1,並取得7? =0.6,作爲 用以得到亮度5000 cd/m2的電流値,將電流起始値lel_0變 成1/ 7? =1.67倍,而取得電流修正値Iel_l。 即,修正成使電流起始値lel_0之1.67倍的電流流向 像素11_11的有機電致發光元件111,結果,有機電致發光 元件1 1 1以亮度5000 cd/m2進行發光。 如以上之說明所示,若依據本第1實施形態,控制部 15對各像素ll_ij寫入驅動資料Vdata後,控制成各像素 ll_ij的電晶體ΤΙ、T2變成導通,再控制陽極電路12,以 將電流從陽極電路12經由各像素11 _ij的電晶體T3而供給 有機電致發光元件111。 又,資料驅動器13作成具備有輸入阻抗爲高阻抗的緩 衝器 132-l~132-m 。 因此,資料驅動器13的A/D轉換器133-1〜133-m各自 200950576 可經由高阻抗之緩衝器132-1〜132-m,測量對各像素U ij 之有機電致發光元件111的每一行所平均化的電壓vEL〇 又’修正電路134-l~134-m各自爲了得到所供給之圖 像資料的亮度而作成如下:根據A/D轉換器133-l~133-m 所測量的電壓VEL,而修正供給有機電致發光元件丨丨丨之電 流的電流値,並得到驅動資料Vdata。 又’控制部15控制成陽極電路12變成和有機電致發 光元件111同電位的接地電位,將資料驅動器13的各D/A ® 轉換器135-1〜135-m作成將負之寫入電壓的驅動信號Vd各 自施加於資料線Ldl~Ldm。 因此,可因應於所測量之電壓VEL的値,而以和所供 給之圖像資料的亮度對應之驅動資料Vdata進行寫入。因 而,即使長時間驅動有機電致發光元件111,亦可使有機電 致發光元件111以因應於所供給之圖像資料的亮度進行發 光。 ^ 如上述所示,在RGB三原色的情況,一般對每一行塗 布RGB的發光材料。若有機電致發光元件111的材料相 異,其劣化的程度亦相異。可是,在第1實施形態’因爲 作成對每行平均化的電壓VEL進行測量,所以不必考慮這 種材料的相異,並可測量以相同之材料所產生之有機電致 發光元件1 1 1的平均化的電壓VEL。 (第2實施形態) 第2實施形態的顯示裝置是作成對每一列測量各有機 電致發光元件的電壓。 -33- 200950576 在圖像顯示,在顯示橫線的頻次多的情況,每一列所 流動的電流値相異。因而,電壓VEL的値亦因每一列而相 異。第2實施形態的顯示裝置即使在這種情況,亦爲了正 確地測量電壓VEL,而對每一列測量電壓VEL。 此第2實施形態的顯示裝置和第1實施形態一樣,具 有第1圖所示之構成。 其次,說明第2實施形態之顯示裝置的動作。 在電壓VEL的量測動作,控制部1 5測量各列之各像素 ll_ij之有機電致發光元件1Π的電壓VEL。 控制部15如 第9圖所示,控制開關123成,使陽極電路12的電流供給 電路121和陽極線La連接。 控制部15控制開關13卜1~1 3 Ι-m成,使其分別將資料 驅動器13的各緩衝器132-卜13 2-m和資料線Ldl〜Ldm連接。 控制部15控制選擇驅動器14成,使其向選擇線Lsll 輸出導通位準的信號,並向選擇線Lsl2〜Lsln輸出不導通 位準的信號,而選擇第1列的像素。 選擇驅動器14向選擇線Lsl2〜Lsln輸出不導通位準的 信號時,像素1 1_12~1 l_m2.....1 1 _ 1 η〜11 _mn的電晶體 T1~T3變成不導通。 因爲像素ll_12~ll_m2.....1 1 _ 1 η〜1 1 _mn的電晶體 T1~T3變成不導通,所以從電流供給電路121所供給的電 流不會流向像素1 l_m2.....H_ln〜ll_mn。 選擇驅動器14向選擇線Ls 11輸出導通位準的信號 時,第1列之像素的電晶體T1、T2變成導通。 200950576 和該第1實施形態的情況一樣’連接電晶體Τ 3之閘極-汲 極之間,而電晶體Τ3變成導通狀態,並使二極體動作,而 在飽和區域進行動作,其動作點成爲第6圖的Ρ2。 像素ll_ll~ll_ml之電晶體Τ1~Τ3變成導通時,因爲 將電流供給電路121和陽極線La連接,所以從電流供給電 路121所供給之電流被分配並流向像素ιι_ιι〜ii_ml的電 晶體T3。 在此,從電流供給電路121所供給之電流的電流値被 設定爲向1列之各像素11_11〜ll_ml流動之電流的平均値 變成和該電流起始値lel_0相等的電流値。 因爲資料驅動器13之各緩衝器132-l~132-m是高阻 抗,所以此電流不會流向資料驅動器13。因而,電流經由 像素的有機電致發光元件111並向接地線112 流動。 資料驅動器13的緩衝器132-1〜132-m各自經由開關 13卜l~131-m,取得資料線Ldl~Ldm的電壓。 因爲像素1 之電晶體T2的導通電阻可忽 略,所以緩衝器132-l~132-m所取得之電壓各自成爲像素 11_11〜ll_ml的各有機電致發光元件111的電壓VEL。 緩衝器132-l~132-m各自將所取得之電壓VEL供給A/D 轉換器133-2~133-m。A/D轉換器133-l~133-m將各自經由 緩衝器132-l~132-m所測量之像素之有機電 致發光元件111的類比的電壓VEL轉換成數位的電壓VEL’ 並供給修正電路134-1〜134-m。 -35- 200950576 修正電路134.1~134-m之發光效率抽出部l36-l~136-m 各自將A/D轉換器所轉換之數位的電壓VEL 進行平均化,並參照LUT,抽出和1列份量之電壓VEL的 平均値對應的發光效率D。 發光效率抽出部136-l~136-m各自將所抽出之發光效 率記憶於記憶體137-1〜137-m。 如此’將發光效率7?記憶於記憶體137-l~137-m後, 控制部15選擇第2列的像素ll_12~ll_m2,並和該第1列 一樣地取得各像素ll_12~ll_m2的電壓VEL,再抽出和每 一列之電壓VEL的平均値對應的發光效率/7 ,並將與其對 應之發光效率?7記憶於記憶體137-l~137-m。 依此方式,控制部 15依序選擇各列的像素 11_13〜ll_mn,而記憶體137-l~137-m記憶和每一列之電壓 VEL的平均値對應的發光效率。 在本實施形態,根據圖像資料之各像素11 _ij之有機電 致發光元件111的顯示動作是和該第1實施形態的情況一 樣,被供給圖像資料時,顯示裝置對各像素ll_ll~ll_mn 寫入驅動資料Vdata » 此時,控制部15和第1實施形態一樣,依序選擇像素 11_11~11_m1 ' …、ll_ln~ll_mn。 資料驅動器13的運算部138-l~138-m各自從記憶體 137-l~137-m讀出控制部15所選擇之各列的像素u_ij的發 光效率β,再根據所讀出之發光效率^而修正電流値,並 求得驅動資料Vdata。 -36- 200950576 D/A轉換器i35-l~135-m各自將運算部138-i~138-m所 求得之驅動資料Vdata轉換成屬類比之負的寫入電壓之驅 動信號Vd,再根據此是負的寫入電壓之驅動信號vd,將 驅動資料Vdata寫入控制部15所選擇之各列的像素nj 之電晶體T3的閘極-源極間。 顯示裝置對全部之列的像素11 _ij進行寫入時,和第i 實施形態一樣’使各像素1 1 _i j的有機電致發光元件n i 進行發光。 如以上之說明所示,若依據本實施形態,顯示裝置作 成控制各部,使對每一列測量各像素ll_ij之有機電致發光 元件1 11的電壓VEL,並進行寫入。 因此,可取得對每一列所平均的電壓VEL,尤其在圖 像顯示,就算是顯示橫線的頻次多,在每一列電壓VEL相 異的情況,亦可正確地測量電壓VEL。 (第3實施形態) 第3實施形態的顯示裝置是作成對每個像素測量各像 素之有機電致發光元件的電壓。 例如,在如數位相機之指示器般長時間進行顯示的情 況,若有機電致發光元件111局部地變差時,電壓VEL變 成因各像素而異。第3實施形態的顯示裝置,係即使在這 種情況,亦爲了正確地測量各有機電致發光元件111的電 壓VEL,而對每個像素測量電壓VEL。 第10圖表示第3實施形態之顯示裝置的構成。 第3實施形態的顯示裝置,除了和在第1實施形態之 -37- 200950576 構成一樣的第1選擇驅動器14(第1選擇驅動部)以外,還 具備有第2選擇驅動器16(第2選擇驅動部)。在此,第1 選擇驅動器1 4由控制部1 5控制,係控制各像素1 1 _ij之電 晶體T1(第3電晶體)的導通、不導通,而第2選擇驅動器 16是由控制部15控制,係控制各像素ll_ij之電晶體T2(第 1電晶體)的導通、不導通。 像素 ll_12~ll_m2、…、ll_ln~ll_mn 之各電晶體T2的閘極各自經由選擇線Ls21~Ls2n並和第2 選擇驅動器16連接。 其次,說明第3實施形態之顯示裝置的動作。 顯示裝置的控制部1 5控制各部,使選擇列,再選擇所 選擇之列的像素ll_ij,對所選擇之列的1個像素ll_ij進 行導通位準的寫入後,對已寫入導通位準之像素n_ij測量 有機電致發光元件111的電壓VEL。 在對像素ll_ij的電壓寫入動作,控制部15首先,如 第11圖所示,控制陽極電路12的開關122、123成,使陽 極線La和接地線124連接,而設爲接地電位。 控制部15控制第1選擇驅動器14、第2選擇驅動器 16,使其選擇像素11_11。即’控制部15控制第1選擇驅 動器14成’使其對選擇線Lsll輸出導通位準的信號,並 對選擇線Lsl2〜Lsln輸出不導通位準的信號。 又,控制部15控制第2選擇驅動器16,使其對選擇線 Ls21輸出導通位準的信號,並對選擇線Ls22~Ls2n輸出不 導通位準的信號。 -38- 200950576 第1選擇驅動器14對選擇線Lsl2~Lsln輸出不導通位 準的信號時,各像素Π-12〜ll_m2.....ll_ln〜ll_mn的電 晶體T1變成不導通。 第2選擇驅動器16對選擇線Ls22~Ls2n輸出不導通 位準的信號時’各像素11_12〜ll_m2.....ll_ln〜ll_mn的 電晶體T2變成不導通。 各像素 1 1_12~1 l_m2.....11 _ 1 n~ 11 _mn 的電晶體 T1、 T2變成不導通時’電流不會流向各像素2~ n_m2..... ❿ 1 1 _·1 n~ 1 1 _mn。 另一方面’第1選擇驅動器14向選擇線Ls 11輸出導 通位準的信號時,像素11_11〜ll_ml的電晶體T1變成導通。 第2選擇驅動器16向選擇線Ls21輸出導通位準的信 號時’像素的電晶體T2變成導通。 像素之電晶體τΐ、T2變成導通時,D/A 轉換器135_1將經施加於像素ii_h之寫入電壓的驅動信 φ 號設定成比陽極線La的電位充分低之低電位的第1寫入電 壓的驅動信號Vdl。 此第1寫入電壓之驅動信號Vdl的電壓値具有超過電 晶體T1之臨限値的値,而電晶體T3變成導通狀態,並被 設定成在寫入此第1寫入電壓之驅動信號 Vdl時向像素 11 _11流動之電流的電流値成爲比在以後測量電壓VEL時 從陽極電路12所供給之電流(電流起始値lel_0)大的電流 値所需的値。 另一方面,D/A轉換器135-2~135-m將施加於像素 -39- 200950576 ll_21~ll_ml之寫入電壓的驅動信號設定成不會超過電晶 體T3之臨限値之第2寫入電壓的驅動信號Vd2。因而,像 素之電晶體T3變成不導通狀態。此第2寫入 電壓之驅動信號Vd2的電壓値例如是〇V。 控制部1 5控制開關1 3 1 -1〜1 3 1 -m,使其分別將資料線 Ldl~Ldm和資料驅動器13的D/A轉換器135-l~135-m連接。 資料線Ldl〜Ldm和資料驅動器13的D/A轉換器 135-l~135-m連接時,關於資料線Ldl,因爲像素ii_ll的 電晶體T 3變成導通狀態,所以電流從陽極電路1 2的接地 線124’經由陽極線La、像素11_11的電晶體T3'電晶體 T2、資料線Ldl’向d/A轉換器135-1流動,因爲有機電致 發光兀件111的陽極成爲負電位,所以不會向像素 的有機電致發光元件m流動。又,在資料線Ld2~Ldm, 因爲像素11_21〜U_ml的電晶體T3是不導通狀態,所以電 流不會流動。又,因爲有機電致發光元件lu之陽極成爲 接地電位或負電位,所以電流不會向像素11_21〜ll_ml的 有機電致發光元件U1流動。 因爲電晶體T1變成導通,所以像素u_u的電晶體 T3進行—極體連接,並在飽和區域內進行動作,其動作點 成爲第6圖的動作點p2。 於是’對第1列之像素11-Π之電晶體T3的閘極-源 極間’根據第1寫入電壓的驅動信號Vdl,進行電流流向 電晶體T3的閘極_源極間之狀態的電壓値的電壓寫入,對 ί象素 1 1 9 1 1 1 ’ — 之電晶體Τ3的閘極-源極間,根據第2 200950576 寫入電壓的驅動信號Vd2,進行電流不會流向電晶體T3的 閘極-源極間之狀態的電壓値的電壓寫入。 接著,在像素11_11之電壓VEL的量測動作,如上述 所示進行寫入後,控制部1 5如第1 2圖所示,控制開關1 23 成,以從電流供給電路121向陽極線La供給電流。從電流 供給電路121所供給之電流的電流値被設定成和該電流起 始値lel_0相等的電流値。 然後,控制部15控制第1選擇驅動器14,使其向選擇 ¥ 線Lsll輸出不導通位準的信號。控制部15控制第2選擇 驅動器16,使其持續向選擇線Ls21輸出導通位準的信號。 向選擇線 Lsll輸出不導通位準的信號時,像素 的電晶體T1變成不導通。 控制部15控制開關131-l~131-m,使其分別將資料線 Ldl〜Ldm和緩衝器132-l~132-m連接。 在像素11_11,對電晶體T3的閘極-源極間,因爲進行 @ 電流流向電晶體T3之汲極-源極間之程度的電壓寫入,所 以即使電晶體T 1變成不導通,電晶體T3的閘極-源極間電 壓亦保持爲藉超過臨限値之電壓寫入而對電容器C1所寫 入之電壓的閘極電壓Vgs。 因而’像素1 1_1 1之電晶體T3的閘極電壓Vgs不會變 化,電晶體T3如第6圖以動作點p丨所示,在閘極電壓Vgs 固定之動作線上進行動作,並在不飽和區域進行動作。 另一方面’在像素11_21〜U_mi,對電晶體T3的閘極 -源極間,進行電流不會流向電晶體T3之汲極-源極間之程 -41 - 200950576 度的電壓寫入,因爲電晶體T3的閘極·源極間電壓未超過 臨限値,所以不管電晶體Τ1導通、不導通,電晶體Τ3都 成爲不導通狀態。因而,不會將來自電流供給電路121的 電流供給像素ll_21~ll_ml的各有機電致發光元件111。 因此,從電流供給電路121所供給的電流僅向像素 11 _ij的有機電致發光元件111流動,並經由有機電致發光 元件111而向接地線112流動。 此時,資料驅動器13的A/D轉換器133-1經由電晶體 T2、資料線Ldl、開關131-1以及緩衝器132-1,測量有機 電致發光元件1 1 1的電壓VEL。 修正電路134-1的發光效率抽出部136-1將A/D轉換器 I 3 3 -1所測量的電壓VEL轉換成發光效率7/,並記憶於記憶 體 137-1 。 發光效率抽出部1 36-1將此發光效率7?記憶於記憶體 13 7-1後,控制部15控制第1選擇驅動器14、第2選擇驅 動器16.以及資料驅動器13成,對像素11_21.....ll_ml > 依序對各自之電晶體T3的閘極-源極間進行電流流向電晶 體T3的汲極-源極間之程度的電壓寫入及各電壓VEL的量 測’接著,按照第2列~第η列的順序,對各列之各像素 II _ij依序進行各電壓寫入及各電壓VEL的量測。如此,對 全部的像素1 l_ij之電晶體T3的閘極-源極間,進行電流流 向電晶體T3的汲極-源極間之程度的電壓寫入,並依序測 量各自的電壓VEL。 依此方式,顯示裝置測量全部之像素11 _ij之有機電致 -42- 200950576 發光元件111的電壓VEL。 被供給圖像資料時,顯示裝置和第丨實施形態—樣, 根據所測量的電壓VEL而修正電流値,再對各像素 11_11〜ll_ml之電晶體T3的閘極-源極間寫入驅動資料 Vdata。然後’顯示裝置使各像素!i_ij的有機電致發光元 件1 1 1進行發光。 如以上之說明所示,若依據本實施形態,作成使用第 1選擇驅動器14及第2選擇驅動器16,而選擇性地進行成 爲電流流向電晶體T3的汲極-源極間之狀態之電壓値的電 壓寫入、成爲電流不會流向電晶體T3的汲極-源極間之狀 態之電壓値的電壓寫入後’個別地控制各像素1 1 _ij之電晶 體ΤΙ、T2的導通、不導通,並測量各像素u_ij之有機電 致發光元件111的電壓VEL。 因此,可對各像素測量有機電致發光元件111的電壓 VEL。因而,即使在如數位相機之指示器般,長時間進行顯 示的結果,電壓VEL因各像素而異的情況,亦可對每個像 素正確地測量電壓VEL。 (第4實施形態) 第4實施形態的顯示裝置是作成對該第3實施形態改 變構成,並和第3實施形態一樣,對每個像素測量各有機 電致發光元件的電壓。 第13圖表示第4實施形態之顯示裝置的構成。 第4實施形態的顯示裝置,除了和在第1實施形態之 構成一樣的選擇驅動器14(第1選擇驅動部)以外,還具備 -43- 200950576 有第2選擇驅動部,其由電晶體ΤΙ 1-1 ~TU-n(第1切換元 件)、電晶體T12-1〜T12-n(第2切換元件)、閘極線Lgl (第1 控制信號線)、閘極線Lg2(第2控制信號線)、以及開關驅 動器(開關驅動電路)17所構成。 電晶體 Τ11-1~Τ11-η各自是用以進行選擇線 Ls31〜Ls3n、和低位準線Lm之連接、切斷的電晶體。對此 低位準線Lm施加低位準的電壓。電晶體T11-1〜ΤΙ 1·η是由 η通道型電晶體FET所構成之TFT。 電晶體Τ11-1~Τ11-η的汲極各自和選擇線Ls3卜Ls3n 連接,而源極各自和低位準線Lm連接。又,電晶體 Τ11-1~Τ11-η的閘極和閘極線Lgl共通地連接。 電晶體 T12-1〜T12-n是用以將選擇線 Lsll和Thin Film Transistor). The transistor T1 (third transistor, write control transistor) is a switching transistor for turning on the transistor T3 (the second transistor, the current control transistor) and not conducting. The drain (terminal) of the transistor Τ1 of each pixel ll_ij is connected to the anode line (power supply line) La. The gate (terminal) of the transistor T1 of each pixel is connected to the selection line Ls11. Similarly, the gate of the transistor T1 of each pixel ll_12~ll_m2 is connected with the selection line Lsl2. . . . . The gates of the transistors T1 of the respective pixels 11_ln to 11_mn are connected to the selection line Ls In. In the case of the pixel 11_11, when a signal of a (Hi: High) level is output from the selection driver 14 to the selection line Ls11, the transistor T1 becomes conductive, and the transistor T3 also becomes conductive. When the signal of the non-conducting (Lo: Low) level is output to the selection line Ls11, the transistor T1 becomes non-conductive, and the transistor T3 also becomes non-conductive. At the same time, when the transistor T1 becomes non-conductive, the charge that has charged the capacitor C11 is maintained. The transistor T2 (the first transistor, the selection control transistor) is a switching transistor for selecting to be turned on and off by selecting the driver 14, thereby turning the anode circuit 12 and the data driver 13 into conduction. Not conductive. The drain of one end of each of the pixels 11_ij as the transistor Τ2 is connected to the anode of the organic electroluminescent element 111. The gate of the transistor T2 of each of the pixels 11_11 to 11_ml is connected to the selection line Lsll -20-200950576. Sample, the transistor of each pixel 11_12 is connected with the selection line Lsl2. . . . . The gate of each pixel 1 1 _ 1 n~ 1 1 mn T2 is connected to the selection line Lsin. Further, the respective pixels 11_11 to U_ln are connected to the source of the transistor T2 and the data line Ldl. Similarly, the source of each pixel 丨丨_21 transistor T2 is connected to the data line Ld2. . .  1 1 The source of the transistor T2 of a ml~l l_mn and the data line Ldm, in the case of the pixel 11_11, the transistor T2 becomes conductive when the signal of the conduction level is output from the selection W to the selection line Ls11, electroluminescence The anode of the element 111 is connected to the data line Ldl. Moreover, when the signal of the non-conducting level is output to the selection line Ls11, the function of the anode of the organic electroluminescent element 111 and the data line transistor T3 is measured at the voltage VEL, and the current supplied by the derivative 12 is directed. The organic electroluminescent element ill flows. When the voltage VEL is measured, the transistor 0 of each pixel 11_ij is a current flowing from the current supplied from the anode circuit 12 flowing into the 3-pole line La, and the source is the current flowing out of the current, the anode of the electroluminescent element 111. Connected, the gate is the control terminal that controls the current 値 of the current flowing in the 汲 and is connected to the transistor T1. The capacitor C1 is held between the gate and the source of the transistor T3 and is referred to as the gate voltage Vgs. The capacitor has one end connected to the gate of the transistor and the transistor T3, and the other end connected to the anode of the transistor and the organic electroluminescent element 111. The gate of T2 is connected to each pixel of ~1l_2n at the other end of the transistor I. The driver 14 turns the organic & [The anode of the anode circuit T3, and the source between the anode and the organic pole-source is connected to the voltage vgs (the source of the source T3 of the body T1-21-200950576) when the transistor T1 becomes conductive, The gate of the transistor T3 is connected between the gate and the drain, and is connected to the diode to become conductive. Therefore, a current flows from the anode line La to the drain-source of the transistor ,3, and the transistor T3 at that time The gate voltage Vgs charges the capacitor C1 and stores the charge. When the transistors T1 and T2 become non-conductive, the capacitor C1 maintains the blue voltage Vgs of the transistor T3. The anode circuit 12 has the anode line when the voltage VEL is measured. La supplies the function of the current for measurement to each of the pixels 11_ij, and has a light-emitting operation for performing a writing operation on the data of each pixel 11_ij and performing image data of the organic electroluminescent element 111 corresponding to each pixel 11_ij. The anode line La is set to have a function of a ground potential and a predetermined voltage (voltage Vsrc) that is higher than the ground potential, and includes a current supply circuit 121, switches 122 and 123, and a ground line 124 connected to the ground potential, and Output The constant voltage power supply of the voltage Vsrc is a current supply source that supplies a current having a preset current 。. The switch 122 selectively connects the voltage Vsrc or the ground line 124 to one end of the switch 123. The switch 123 conducts current The output terminal of the supply circuit 121 is selectively connected to the output terminal of the switch 122. The data driver 13 has a function of writing data to the organic electroluminescent element 111 of each pixel, and is provided with switches 131-1 to 131- m' buffers 132-1 to 132-m, A/D converters 133-1 to 133-m, correction circuits 134-1 to 134-m, and DAC (D/A converter: drive signal supply circuit) 135 -l~135-m. Each of the switches 131-l~131-m is used to input the data line Ldl~Ldm and the 200950576 punch 132-l~132-m or the D/A converter 135-1~135 The output terminals of -m are selectively connected. Each of the buffers 132-1 to 132-m is for blocking the inflow of current from each of the pixels n_in to limn, and is constituted by an operational amplifier such as an operational amplifier having a high input impedance. -1 to 132-m each supply analog voltage VEL measured via data lines Ldl~Ldm to A/D converters 133-1~133-m » The A/D converters 133-1 to 133-m are each used to measure the analog voltage 11^ supplied from the buffers 132-1 to 132-111, and the analog ϋ^ voltage VEL measured The voltage converted to digital VEL» A/D converters 133-1 to 133-m supplies the converted voltage VEL to the correction circuits 134-1 to 134-m. Each of the buffers 132-1 to 132-m and the A/D converters 133-1 to 133-m connected thereto correspond to the voltage measuring circuit of the present invention. The correction circuits 134-1 to 134-m are each a circuit which corrects the voltage VEL supplied from the A/D converters 133-l~133-m in order to obtain the brightness corresponding to the supplied image data. The data corresponding to the image data drives the data Vdata. Each of the correction circuits 134-1 to 134-m includes a luminous efficiency extraction unit 136-1 to 136-m, a memory 137-1 to 137-m, and a calculation unit 138-1 to 138- as shown in FIG. m. Each of the luminous efficiency extracting portions 136-1 to 136-m extracts and measures the luminous efficiency π corresponding to the voltage VEL, and has a LUT (Look Up Table, memory circuit) as shown in Fig. 4. This LUT is a table showing the relationship between voltage VEL, luminance, and luminous efficiency, and is based on the relationship between the luminous efficiency 7? and the voltage VEL shown in Fig. 2, -23-200950576. This LUT is a relationship between the change in luminance, the luminous efficiency 7?, and the voltage VEL in the case where the current of the current start 値lel_0 flows to the organic electroluminescent element 111. This LUT indicates that when the organic electroluminescent element 111 has an initial characteristic, in order to obtain a luminance of 5000 cd/m2, a current of a desired current start 値lel_0 flows, and when the luminance becomes 3000 cd/m2, the luminous efficiency becomes 7?... = 0. 60,=3000/5000 = 0. 60, voltage VEL from the start 値 7. 85V increased to 8. 30V. Further, in the present embodiment, the LUT is formed to correspond to one current start 値lel_0 (detection current), and a current corresponding thereto is supplied from the current supply circuit 121 of the anode circuit 12, but the present invention is not limited thereto. A detection current for causing the LUT to correspond to a plurality of different currents 2 of two or more levels may be employed, and the current supply circuit 121 of the anode circuit 12 is used to supply a current 値 corresponding to the corresponding plurality of levels. The composition of the current. In this case, the measurement of the voltage VEL is performed plural times in response to the respective detection currents. The luminous efficiency extracting portions 136-1 to 136-m each refer to the LUT, and extract the luminous efficiency 7? corresponding to the voltage VEL. Each of the memories 137_l to 137_m is a memory (memory circuit) for storing the luminous efficiency 7? extracted by the luminous efficiency extracting portions 136-1 to 136-m. Each of the arithmetic units 131-1 to 138-m is supplied with image data, and acquires drive data Vdata for obtaining brightness corresponding to the image data. Each of the arithmetic units 131-1 to 138-m reads out the luminous efficiency π from the memories 137-1 to 137-m when writing is performed by the drive data Vdata. 200950576 The calculation units 134-1 to 138-m are each used to set the current 値lelf_0 required for obtaining the brightness corresponding to the supplied image data when the organic electroluminescent element 111 has the initial characteristics, and the slave memory 137. The reciprocal of the luminous efficiency 7? read out of -1 is multiplied to obtain the current correction 値Ielf_l » Then, the arithmetic units 138-1 to 138-m are based on the gate corresponding to the gate voltage of the transistor T3 of each pixel 11_ij. The characteristics of the current between the sources and the current correction 値Ielf_l are obtained to obtain the driving data Vdata. Each of the D/A converters 135-1 to 135-m converts the drive data Vdata obtained by the calculation units 138-1 to 138-m ® into a drive signal Vd (negative voltage) of a write voltage of an analogy. . Each of the D/A converters 135-1 to 135-m applies the drive signal Vd of the write voltage to the other end of the transistor T2 of each of the pixels 11_11 to li_mn via the data lines Ld1 to Ldm, thereby passing through the transistor. T2, while introducing current from the transistor T3. The selection driver 14 is controlled by the control unit 15 and is used to select the pixel 11_ij for each column φ, for example, with a shift register. The selection drivers 14 each output a signal having a conduction level or a non-conduction level to the selection lines Ls 11 to Ls In. The control unit 15 controls each unit. The control unit 15 controls the respective units to correct the current 电流 of the current supplied when the drive signal is written, based on the fluctuation of the voltage VEL of the electroluminescent element 111, thereby obtaining the desired luminance. Therefore, the control unit 15 controls the respective units to measure the voltage VEL of the organic electroluminescent element 111 of each pixel n_ij, and writes the write voltage to the gate and source of the transistor T 3 of each pixel 11_ij. The signal Vd is used to cause the -25.200950576 organic electroluminescent element in to emit light. The display device of the first embodiment measures the voltage VEL for each row. Further, the display device performs the measurement of the voltage VEL, for example, at the time of power-on, every day, or every fixed time. In the case where the measurement of the voltage VEL is performed for each row, the control unit 15 controls the anode circuit 12, the data driver 13, and the selection driver 14 so that current flows from the anode circuit 12 via the organic electroluminescent element 11 of each pixel 11_ij. 1. Flows to the ground line 11 2 . When writing the drive data Vdau, the control unit 15 controls the anode circuit 12, the data driver 13, and the selection driver 14 so that the current does not flow from the anode circuit 12 to the organic electroluminescent element 111 of each pixel 11_ij. The data driver 13 flows. In the case where the organic electroluminescent element 111 is caused to emit light, the control unit 15 controls the anode circuit 12, the data driver 13, and the selection driver 14 to form a gate voltage of the transistor T3 written in the capacitor C1 of each pixel 11_ij. The current is supplied to the organic electroluminescent element ni by Vgs. 〇 Next, the operation of the display device of the first embodiment will be described. First, the operation when measuring the voltage VEL of the organic electroluminescent element 111 of each pixel 11_ij will be described. The display device measures the voltage VEL of the organic electroluminescent element m of each pixel 11_ij. As shown in Fig. 5, the control unit 15 controls the switch 123 so that the current supply circuit 121 of the anode circuit 12 and the anode line La are connected in order to measure the voltage VEL. The control unit 15 controls the switches 丨3 to 丨3丨_m to respectively connect the buffers 132-1 to 132-m of the data drive -26-200950576 to the data lines Ld1 to Ldm. Further, the control unit 15 controls the selection driver 14 to output a signal of the conduction level to all of the selection lines Ls11 to Lsln. When the selection driver 14 outputs a signal of the conduction level to the selection line Ls1ULs In, the transistors ΤΙ and T2 of all the pixels ll_ij become conductive. When the transistor T1 is turned on, it is connected between the gate and the drain of the transistor T3, and the transistor T3 is turned on, and the diode is operated. Fig. 6 is a view showing the drain-source voltage V d s of the transistor T 3 versus the 极 ® pole-source current Ids characteristic and the load line SPel of the organic electroluminescent element m. The operating point of the transistor T3 is the intersection of the Vds of the transistor T3 with the Ids characteristic map and the load line SPel of the organic electroluminescent element 111, and is represented by P3 in Fig. 6 and operates in a saturated region. In addition, in Fig. 6, P0 is the pinch point, Vth is the threshold voltage, and the region from the 0V to the pinch voltage of the drain-source voltage Vds is an unsaturated region, and the drain-source voltage is The area above the clamping voltage of Vds is the φ saturation area. When the transistors T1 to T3 of all the pixels 11_ij become conductive, since the current supply circuit 121 and the anode line La are connected, the current supplied from the current supply circuit 121 is distributed and flows to the transistor T3 of the entire pixel. Thus, the current 値 of the current supplied from the current supply circuit 121 is set such that the average 値 of the current flowing to each of the pixels 11-ij becomes the current 相等 equal to the current start 値lel_0. Since the buffers 132-1 to 132-m of the data driver 13 are high impedance -27-200950576, this current does not flow to the data driver 13. Therefore, the organic electroluminescent element 111 passing through all of the pixels 1 l_ij flows to the ground line 丨丨2. The buffers 132-1 to 132-m each acquire voltages of the data lines Ld1 to Ldm via the switches inq to 131-m. The on-resistance ' of the transistor T2 of each pixel ll_ij is almost negligible due to the high gate voltage Vgs. Therefore, the voltages of the data lines Ld1 to Ldm obtained by the buffers 132-1 to 132-m become the voltage VEL of the organic electroluminescent element 111. Further, the 'data line Ldl' is connected to the anode of each of the organic electroluminescent elements in via the respective transistors T2 of the pixels iLnqun of one line, so that the voltage of the data line Ld1 becomes the pixel of one line of im_mn. The averaged voltage VEL of the illuminating element 111. The buffer 132-1 supplies this voltage VEL to the A/D converter 133-1. The sample buffers 132-2 to 132-m are each connected to each column of the organic electroluminescent elements 1 1 1 of the pixels 11_ij to which the data lines Ld2 to Ldm are connected via the switches 131-2 to 131-m'. The averaged voltage VEL is supplied to the A/D converters 133-2 to 133-m. In this manner, the A/D converters 133-1 to 133-m measure the organic electroluminescent elements 1 1 averaged for each column by the buffers 1 3 2 -1 to 1 3 2 _ m ' 1 voltage VEL. Then, the A/D converters 133-1 to 133-m each convert the analog voltage VEL into a digital voltage VEL. Here, the buffers 132-1 to 132-m and the A/D converters 133-1 to 133-m constitute the voltage measuring circuit of the present invention. The light-emitting efficiency extraction sections 136-1 to 136-m 200950576 of the correction circuits 134-1 to 134-m each refer to the LUT, and extract the voltage VEL corresponding to the converted digits of the a/D converters 133-1 to 133-m. "Luminous efficiency". The luminous efficiency extracting portions 136-l~136-m each store the extracted luminous efficiency π in the memory 137-l~137-m. Next, the organic electro-electricity of each pixel U_ij is driven according to the driving data. The operation of the light-emitting element 111. When the image data is supplied, the display device writes the drive data Vdata to each of the pixels n_n to Hmn. At this time, the control unit 15 controls the switches 122 and 123 of the anode circuit 12 as shown in Fig. 7. The anode line La is brought to the ground potential. The switch 122 connects the ground line 124 to one end of the switch 123, and the switch 123 connects one end of the switch 123 to the anode line La, and connects the anode line La and the ground line 124. The control unit 15 controls the selection driver 14 to output a signal of the conduction level to the selection line Ls11, and outputs a signal of a non-conduction level to the selection lines Ls12 to Lsln to select the pixels 11_11 to U_ml. φ The calculation unit 138- l~138-m each from memory 137-l~137-m The light-emitting efficiency 77 of each of the pixels 11_11 to 11_ml is obtained, and the drive data Vdata is obtained based on the read light-emission efficiency β. Each of the D/A converters 135-1 to 135-m of the data driver 13 has a calculation unit 138- The drive data Vdau obtained by l~i38-m is converted into a drive signal Vd of analog input voltage. The control unit 15 controls the switches 131-1 to 131-m to make each D/A conversion of the data driver 13. The device ^5-^35-01 is connected with the data line Ld and the Ldm. Each D/A converter of the data driver 13 is 135-l~135-m, and the application of the material Ld Bu Ldm is analogized. The drive signal V d of the converted write voltage 〇 the anode line La becomes the ground potential, and since the potential of the cathode of the organic electroluminescent element 111 of each of the pixels 11_11 to 11_ml is also the ground potential, the current does not flow to the organic power of each pixel. In addition, since the drive signal Vd of the write voltage is a negative voltage, current flows from the anode circuit 12 to the data via the transistors T3 and T2 of the respective pixels 11_11 to 1 l_ml, and the data lines Ld1 to Ldm, respectively. D/A converters 135-1 to 135-m of the drive 13. Because each pixel ll_ll~ll_ml Since each of the transistors T1 is turned on, the gates and the drains of the respective transistors T3 are connected to each other, and the diodes are connected. Therefore, the transistor T3 operates in a saturated region in response to the characteristics of the diode. The drain current Id flows to the transistor T3, and its operating point becomes the operating point P2 of Fig. 6. The transistor T1 becomes conductive because the drain current id flows to the transistor T3, so the gate voltage Vgs of the transistor T3 is set to a voltage corresponding to the gate current Id, and the capacitor C1 is charged by the gate voltage Vgs. In this manner, the data driver 13 introduces the current corrected based on the measured voltage VEL from the transistor T3 of each pixel, and causes the capacitor C1 to maintain the gate voltage Vgs of the transistor T3 according to the driving data Vdata. The following 'same' control unit 15 controls the selection driver 14 to sequentially select the pixels 1 1 _ 1 2~1 1 _m2. . . . . The pixels 1 1 _1 η 〜1 1 _mn, and -30- 200950576 are written into the capacitor C1 between the gate and the source of the transistor T3 of each of the pixels 11_11 to 11_mn in accordance with the voltage of the drive data Vdata. After the driving data Vdata is written to the gate-source capacitor C1 of the transistor T3 of all the pixels 1 l_ij, the display device causes the organic electroluminescent element 111 of each pixel 11_ij to emit light. At this time, as shown in Fig. 8, the control unit 15 controls the selection driver 14 to output a signal of the conduction level to all of the selection lines Ls11 to Lsln, and causes the transistors ΤΙ and T2 of all the pixels 11_ij to become no. Turn on. When the transistors ΤΙ and T2 of the respective pixels ll_ij become non-conductive, the transistor T3 becomes a non-selected state. When the transistor T3 becomes the non-selected state, the gate-source voltage Vgs of the transistor T3 is maintained at the voltage that has been written into the capacitor C1. Further, at this time, the control unit 15 controls the switches 122 and 123 of the anode circuit 12 to apply a voltage Vsrc to the anode line La. This voltage Vsrc is set to, for example, about 12V. At this time, since the gate voltage Vgs of the transistor T3 is held by the capacitor C1, the operating point of the transistor T3 becomes the operation line of the held gate voltage Vgs and the organic electroluminescent element 111 as shown in Fig. 6. The operating point P3 of the intersection of the load line S Pel. The voltage 値 of this voltage Vsrc is set to a voltage 値 at which the operating point P3 becomes a state in which the saturation region of the transistor T3 operates. Further, between the drain and the source of the transistor T3, the current 値 flows in the same current as the write current when the drive data Vdata is written. The electric crystal T2 becomes non-conductive, and since the -31 - 200950576 potential on the anode side of the organic electroluminescent element ill becomes higher than the potential on the cathode side, the drain current Id is supplied to the organic electroluminescent element 111. At this time, the current Id flowing to the organic electroluminescent element 111 of each pixel 11_ij is corrected based on the measured voltage VEL. For example, for the organic electroluminescent element 111 of the pixel 11_11, the measured voltage VEL at the organic electroluminescent element 111 is 8. The brightness of the supplied image data is 5 000 cd/m2. In the case of 30V, if not corrected, the brightness is reduced to 3000 cd/m2. In this case, the luminous efficiency extracting portion 136-1 is from the voltage VEL=8. 3 0V, refer to the LUT shown in Figure 4, to obtain luminous efficiency = 0. 6. The computing unit 138-1 refers to the memory 137-1 and obtains 7?=0. 6. As a current 値 for obtaining a luminance of 5000 cd/m2, the current start 値lel_0 is changed to 1/7? =1. 67 times, and the current correction 値Iel_l is obtained. That is, it is corrected to make the current start 値lel_01. 67 times of the current flows to the organic electroluminescent element 111 of the pixel 11_11, and as a result, the organic electroluminescent element 11 1 emits light at a luminance of 5000 cd/m2. As described above, according to the first embodiment, the control unit 15 writes the drive data Vdata to each of the pixels 11_ij, and then controls the transistors ΤΙ and T2 of the respective pixels 11_ij to be turned on, and then controls the anode circuit 12 to A current is supplied from the anode circuit 12 to the organic electroluminescent element 111 via the transistor T3 of each pixel 11_ij. Further, the data driver 13 is provided with buffers 132-1 to 132-m having high impedance of input impedance. Therefore, each of the A/D converters 133-1 to 133-m of the data driver 13 can measure each of the organic electroluminescent elements 111 for the respective pixels U ij via the high-impedance buffers 132-1 to 132-m. The voltages vEL〇 and 'correction circuits 134-l~ 134-m averaged in one row are each made to obtain the brightness of the supplied image data as follows: measured according to the A/D converters 133-1~133-m The voltage VEL is corrected, and the current 供给 of the current supplied to the organic electroluminescent element 修正 is corrected, and the driving data Vdata is obtained. Further, the control unit 15 controls the anode circuit 12 to become the ground potential of the same potential as the organic electroluminescent element 111, and the respective D/A ® converters 135-1 to 135-m of the data driver 13 are made to have a negative write voltage. The drive signals Vd are each applied to the data lines Ld1 to Ldm. Therefore, the drive data Vdata corresponding to the brightness of the supplied image data can be written in response to the measured voltage VEL. Therefore, even if the organic electroluminescent element 111 is driven for a long period of time, the organic electroluminescent element 111 can be made to emit light in accordance with the brightness of the supplied image data. ^ As shown above, in the case of RGB three primary colors, RGB luminescent materials are generally applied to each row. If the materials of the organic electroluminescent elements 111 are different, the degree of deterioration is also different. However, in the first embodiment, since the voltage VEL averaged for each row is measured, it is not necessary to consider the difference of the materials, and the organic electroluminescent element 11 1 produced by the same material can be measured. The averaged voltage VEL. (Second Embodiment) The display device of the second embodiment is configured to measure the voltage of each of the organic electroluminescent elements for each column. -33- 200950576 In the image display, when the frequency of the horizontal line is large, the current flowing in each column is different. Therefore, the 电压 of the voltage VEL is also different for each column. Even in this case, the display device of the second embodiment measures the voltage VEL for each column in order to accurately measure the voltage VEL. The display device of the second embodiment has the configuration shown in Fig. 1 as in the first embodiment. Next, the operation of the display device of the second embodiment will be described. At the measurement operation of the voltage VEL, the control unit 15 measures the voltage VEL of the organic electroluminescent element 1A of each pixel ll_ij of each column. As shown in Fig. 9, the control unit 15 controls the switch 123 so that the current supply circuit 121 of the anode circuit 12 and the anode line La are connected. The control unit 15 controls the switches 13 to 1 to 1 3 Ι-m to connect the buffers 132-b 13 2-m of the data drive 13 and the data lines Ld1 to Ldm, respectively. The control unit 15 controls the selection driver 14 to output a signal of the conduction level to the selection line Ls11, and outputs a signal of the non-conduction level to the selection lines Lsl2 to Lsln to select the pixels of the first column. When the selection driver 14 outputs a signal of a non-conduction level to the selection lines Lsl2 to Lsln, the pixel 1 1_12~1 l_m2. . . . . 1 1 _ 1 η~11 _mn The transistor T1~T3 becomes non-conductive. Because the pixel ll_12~ll_m2. . . . . The transistors T1 to T3 of 1 1 _ 1 η~1 1 _mn become non-conductive, so the current supplied from the current supply circuit 121 does not flow to the pixel 1 l_m2. . . . . H_ln~ll_mn. When the selection driver 14 outputs a signal of the conduction level to the selection line Ls 11, the transistors T1 and T2 of the pixels of the first column become conductive. In the case of the first embodiment, 200950576 is connected between the gate and the drain of the transistor Τ3, and the transistor Τ3 is turned on, and the diode is operated to operate in the saturation region. Become the Ρ2 of Figure 6. When the transistors Τ1 to Τ3 of the pixels ll_ll to ll_ml are turned on, since the current supply circuit 121 and the anode line La are connected, the current supplied from the current supply circuit 121 is distributed and flows to the transistor T3 of the pixels ιι_ι to ii_ml. Here, the current 値 of the current supplied from the current supply circuit 121 is set such that the average 値 of the current flowing to each of the pixels 11_11 to 11_ml of one column becomes the current 相等 equal to the current start 値lel_0. Since the buffers 132-1 to 132-m of the data driver 13 are high impedance, this current does not flow to the data driver 13. Thus, current flows through the organic electroluminescent element 111 of the pixel and toward the ground line 112. The buffers 132-1 to 132-m of the data driver 13 respectively acquire the voltages of the data lines Ld1 to Ldm via the switches 131 to 131-m. Since the on-resistance of the transistor T2 of the pixel 1 is negligible, the voltages obtained by the buffers 132-1 to 132-m each become the voltage VEL of each of the organic electroluminescent elements 111 of the pixels 11_11 to 11_ml. The buffers 132-1 to 132-m each supply the obtained voltage VEL to the A/D converters 133-2 to 133-m. The A/D converters 133-1 to 133-m convert the analog voltage VEL of the organic electroluminescent element 111 of each pixel measured via the buffers 132-1 to 132-m into a digital voltage VEL' and supply the correction. Circuits 134-1 to 134-m. -35- 200950576 Correction circuit 134. The luminous efficiency extraction unit l36-l~136-m of 1~134-m averages the voltage VEL of the digit converted by the A/D converter, and refers to the LUT, and extracts the average voltage VEL of one column of the amount 値Corresponding luminous efficiency D. The luminous efficiency extracting portions 136-1 to 136-m each store the extracted luminous efficiency in the memory 137-1 to 137-m. When the luminous efficiency 7 is stored in the memory 137-1 to 137-m, the control unit 15 selects the pixels 11_11 to 11_m2 in the second column, and obtains the voltage VEL of each of the pixels 11_12 to 11_m2 in the same manner as the first column. And then extract the luminous efficiency corresponding to the average 値 of the voltage VEL of each column /7, and the corresponding luminous efficiency? 7 Memory in memory 137-l~137-m. In this manner, the control unit 15 sequentially selects the pixels 11_13 to 11_mn of the respective columns, and the memories 137-1 to 137-m memorize the luminous efficiency corresponding to the average value of the voltage VEL of each column. In the present embodiment, the display operation of the organic electroluminescent element 111 in accordance with each pixel 11__ij of the image data is the same as in the case of the first embodiment, and when the image data is supplied, the display device pairs the pixels ll_ll~ll_mn. In the case of the drive data Vdata, the control unit 15 sequentially selects the pixels 11_11 to 11_m1 ' ..., ll_ln to ll_mn in the same manner as in the first embodiment. The computing units 134-1 to 138-m of the data driver 13 read out the luminous efficiency β of the pixels u_ij of the respective columns selected by the control unit 15 from the memories 137-1 to 137-m, and then based on the read luminous efficiency. ^ Correct the current 値 and find the driving data Vdata. -36- 200950576 Each of the D/A converters i35-l~135-m converts the drive data Vdata obtained by the calculation unit 138-i~138-m into a drive signal Vd of a write voltage which is analogously negative, and then According to this, the drive signal vd of the negative write voltage writes the drive data Vdata between the gate and the source of the transistor T3 of the pixel nj of each column selected by the control unit 15. When the display device writes all the pixels 11_ij in the column, the organic electroluminescent element n i of each pixel 1 1 — i j is emitted in the same manner as in the i-th embodiment. As described above, according to the present embodiment, the display device controls the respective portions so that the voltage VEL of the organic electroluminescent element 11 11 of each pixel 11_ij is measured for each column and is written. Therefore, the average voltage VEL for each column can be obtained, especially in the image display, even if the frequency of the horizontal line is large, the voltage VEL can be accurately measured in the case where the voltage VEL of each column is different. (Third Embodiment) A display device according to a third embodiment is a voltage for forming an organic electroluminescence device that measures each pixel for each pixel. For example, when the display is performed for a long time as an indicator of a digital camera, if the organic electroluminescent element 111 is locally deteriorated, the voltage VEL varies depending on each pixel. In the display device of the third embodiment, even in this case, in order to accurately measure the voltage VEL of each of the organic electroluminescent elements 111, the voltage VEL is measured for each pixel. Fig. 10 is a view showing the configuration of a display device according to a third embodiment. In addition to the first selection driver 14 (first selection drive unit) having the same configuration as the -37 to 200950576 of the first embodiment, the display device of the third embodiment further includes a second selection driver 16 (second selection drive). unit). Here, the first selection driver 14 is controlled by the control unit 15 to control the conduction and non-conduction of the transistor T1 (third transistor) of each pixel 1 1 _ij, and the second selection driver 16 is controlled by the control unit 15. Control is to control the conduction and non-conduction of the transistor T2 (first transistor) of each pixel ll_ij. The gates of the respective transistors T2 of the pixels ll_12 to ll_m2, ..., ll_ln to ll_mn are connected to the second selection driver 16 via the selection lines Ls21 to Ls2n. Next, the operation of the display device of the third embodiment will be described. The control unit 15 of the display device controls the respective units, selects the selected column, selects the selected column of pixels 11_ij, and writes the on-level of one pixel ll_ij of the selected column, and writes the turned-on level. The pixel n_ij measures the voltage VEL of the organic electroluminescent element 111. In the voltage writing operation for the pixel ll_ij, the control unit 15 first controls the switches 122 and 123 of the anode circuit 12 to connect the anode line La and the ground line 124 to the ground potential as shown in Fig. 11. The control unit 15 controls the first selection driver 14 and the second selection driver 16 to select the pixel 11_11. That is, the control unit 15 controls the first selection driver 14 to output a signal for turning on the selection line Ls11, and outputs a signal of a non-conduction level to the selection lines Lsl2 to Lsln. Further, the control unit 15 controls the second selection driver 16 to output a signal of the conduction level to the selection line Ls21, and outputs a signal of the non-conduction level to the selection lines Ls22 to Ls2n. -38- 200950576 When the first selection driver 14 outputs a non-conducting signal to the selection lines Lsl2 to Lsln, each pixel Π-12~ll_m2. . . . . The transistor T1 of ll_ln~ll_mn becomes non-conductive. When the second selection driver 16 outputs a signal of a non-conducting level to the selection lines Ls22 to Ls2n, each pixel 11_12 to ll_m2. . . . . The transistor T2 of ll_ln~ll_mn becomes non-conductive. Each pixel 1 1_12~1 l_m2. . . . . When 11 _ 1 n~ 11 _mn transistors T1 and T2 become non-conducting, 'current does not flow to each pixel 2~n_m2. . . . .  ❿ 1 1 _·1 n~ 1 1 _mn. On the other hand, when the first selection driver 14 outputs a signal of the conduction level to the selection line Ls 11, the transistor T1 of the pixels 11_11 to 11_ml becomes conductive. When the second selection driver 16 outputs a signal of the on level to the selection line Ls21, the transistor T2 of the pixel becomes conductive. When the pixel transistors τ ΐ and T 2 are turned on, the D/A converter 135_1 sets the drive signal φ number applied to the write voltage of the pixel ii_h to the first write of the low potential which is sufficiently lower than the potential of the anode line La. Voltage drive signal Vdl. The voltage 値 of the drive signal Vd of the first write voltage has a threshold exceeding the threshold of the transistor T1, and the transistor T3 becomes an ON state, and is set to the drive signal Vd at which the first write voltage is written. The current 値 of the current flowing to the pixel 11_11 becomes a 値 which is larger than the current 値 which is larger than the current supplied from the anode circuit 12 (current start 値lel_0) when the voltage VEL is measured later. On the other hand, the D/A converters 135-2 to 135-m set the drive signal applied to the write voltage of the pixel -39-200950576 ll_21~ll_ml to the second write which does not exceed the threshold of the transistor T3. The drive signal Vd2 of the input voltage. Thus, the transistor T3 of the pixel becomes a non-conducting state. The voltage 値 of the drive signal Vd2 of the second write voltage is, for example, 〇V. The control unit 15 controls the switches 1 3 1 -1 to 1 3 1 -m to connect the data lines Ldl to Ldm to the D/A converters 135-1 to 135-m of the data driver 13, respectively. When the data lines Ldl to Ldm are connected to the D/A converters 135-1 to 135-m of the data driver 13, with respect to the data line Ld1, since the transistor T3 of the pixel ii_11 becomes conductive, current flows from the anode circuit 12 The ground line 124' flows to the d/A converter 135-1 via the anode line La, the transistor T3' transistor T2 of the pixel 11_11, and the data line Ldl', because the anode of the organic electroluminescent element 111 becomes a negative potential, so It does not flow to the organic electroluminescent element m of the pixel. Further, in the data lines Ld2 to Ldm, since the transistors T3 of the pixels 11_21 to U_ml are not in a conducting state, current does not flow. Further, since the anode of the organic electroluminescent element lu is at the ground potential or the negative potential, the current does not flow to the organic electroluminescent element U1 of the pixels 11_21 to 11_ml. Since the transistor T1 is turned on, the transistor T3 of the pixel u_u is connected to the body and operates in the saturation region, and its operating point becomes the operating point p2 of Fig. 6. Then, 'the gate-source of the transistor T3 of the pixel 11 of the first column' is subjected to a current between the gate and the source of the transistor T3 in accordance with the drive signal Vd1 of the first write voltage. The voltage 値 voltage is written between the gate and the source of the transistor Τ3 of ί pixel 1 1 9 1 1 1 ' — according to the second 200950576 write voltage drive signal Vd2, the current does not flow to the transistor. The voltage 値 voltage of the state between the gate and the source of T3 is written. Next, after the measurement operation of the voltage VEL of the pixel 11_11 is performed as described above, the control unit 15 controls the switch 1 23 to flow from the current supply circuit 121 to the anode line La as shown in FIG. Supply current. The current 电流 of the current supplied from the current supply circuit 121 is set to a current 相等 equal to the current 値lel_0. Then, the control unit 15 controls the first selection driver 14 to output a signal of a non-conduction level to the selection line Lsll. The control unit 15 controls the second selection driver 16 to continue to output a signal of the conduction level to the selection line Ls21. When the signal of the non-conducting level is output to the selection line Lsll, the transistor T1 of the pixel becomes non-conductive. The control unit 15 controls the switches 131-1 to 131-m to connect the data lines Ld1 to Ldm and the buffers 132-1 to 132-m, respectively. In the pixel 11_11, between the gate and the source of the transistor T3, since the voltage is written to the level between the drain and the source of the transistor T3, even if the transistor T1 becomes non-conductive, the transistor The gate-to-source voltage of T3 is also maintained as the gate voltage Vgs of the voltage written to capacitor C1 by a voltage that exceeds the threshold voltage. Therefore, the gate voltage Vgs of the transistor T3 of the pixel 1 1_1 1 does not change, and the transistor T3 operates as shown at the operating point p 第 in Fig. 6 on the line of action in which the gate voltage Vgs is fixed, and is unsaturated. The area moves. On the other hand, in the pixels 11_21 to U_mi, the voltage between the gate and the source of the transistor T3 does not flow to the drain-source of the transistor T3 -41 - 200950576 degrees, because Since the voltage between the gate and the source of the transistor T3 does not exceed the threshold 値, the transistor Τ3 is rendered non-conductive regardless of whether the transistor Τ1 is turned on or off. Therefore, the current from the current supply circuit 121 is not supplied to the respective organic electroluminescent elements 111 of the pixels 11_21 to 11_ml. Therefore, the current supplied from the current supply circuit 121 flows only to the organic electroluminescent element 111 of the pixel 11_ij, and flows to the ground line 112 via the organic electroluminescent element 111. At this time, the A/D converter 133-1 of the data drive 13 measures the voltage VEL of the organic electroluminescent element 11 1 via the transistor T2, the data line Ld1, the switch 131-1, and the buffer 132-1. The luminous efficiency extracting portion 136-1 of the correcting circuit 134-1 converts the voltage VEL measured by the A/D converter I 3 3 -1 into the luminous efficiency 7/, and memorizes it in the memory 137-1. After the luminous efficiency extraction unit 1 36-1 stores the luminous efficiency 7? in the memory 13 7-1, the control unit 15 controls the first selection driver 14 and the second selection driver 16. And the data driver 13 into the pair of pixels 11_21. . . . . Ll_ml > sequentially writes a voltage between the gate and the source of the respective transistor T3 to the level between the drain and the source of the transistor T3 and the measurement of the voltage VEL. Then, according to the second In the order of the column to the nth column, the voltage writing and the voltage VEL are sequentially measured for each pixel II_ij of each column. In this manner, a voltage is written between the gate and the source of the transistor T3 of all the pixels 1 l_ij to the level between the drain and the source of the transistor T3, and the respective voltages VEL are sequentially measured. In this manner, the display device measures the voltage VEL of the organic light-42-200950576 light-emitting element 111 of all the pixels 11_ij. When the image data is supplied, the display device corrects the current 根据 based on the measured voltage VEL, and writes the driving data between the gate and the source of the transistor T3 of each of the pixels 11_11 to 11_ml. Vdata. Then the 'display device makes each pixel! The organic electroluminescent element 1 1 1 of i_ij emits light. As described above, according to the present embodiment, the first selection driver 14 and the second selection driver 16 are used to selectively perform a voltage which is a state in which a current flows between the drain and the source of the transistor T3. The voltage is written, and the voltage does not flow to the voltage between the drain and the source of the transistor T3. After the voltage is written, the transistor ΤΙ and T2 of each pixel 1 1 _ij are individually controlled to be turned on and off. And measuring the voltage VEL of the organic electroluminescent element 111 of each pixel u_ij. Therefore, the voltage VEL of the organic electroluminescent element 111 can be measured for each pixel. Therefore, even if the display is performed for a long time as in the case of a digital camera, the voltage VEL can be accurately measured for each pixel as the voltage VEL varies depending on each pixel. (Fourth Embodiment) The display device of the fourth embodiment is configured to change the configuration of the third embodiment, and the voltage of each of the organic electroluminescent elements is measured for each pixel as in the third embodiment. Fig. 13 is a view showing the configuration of a display device according to a fourth embodiment. In addition to the selection driver 14 (first selection drive unit) having the same configuration as that of the first embodiment, the display device of the fourth embodiment further includes a -43-200950576 second selection drive unit including the transistor ΤΙ 1 -1 ~ TU-n (first switching element), transistors T12-1 to T12-n (second switching element), gate line Lgl (first control signal line), gate line Lg2 (second control signal) A line) and a switch driver (switch drive circuit) 17 are formed. Each of the transistors Τ11-1 to Τ11-η is a transistor for connecting and disconnecting the selection lines Ls31 to Ls3n and the low level line Lm. A low level voltage is applied to the low level line Lm. The transistors T11-1 to ΤΙ1·n are TFTs composed of n-channel type transistor FETs. The drains of the transistors Τ11-1 to Τ11-η are each connected to the selection line Ls3b Ls3n, and the sources are each connected to the low level line Lm. Further, the gates of the transistors Τ11-1 to Τ11-η are connected in common to the gate line Lgl. The transistors T12-1~T12-n are used to select the line Lsll and

Ls31.....Lsln和Ls3n連接、切斷的電晶體。電晶體 T12-l~T12-n是由η通道型電晶體FET所構成之TFT。 電晶體T12-l~T12-n的汲極各自和選擇線Ls31~Ls3n 連接,而源極各自和選擇線Lsll〜Lsln連接。又,電晶體 T12-l~T12-n的閘極和閘極線Lg2共通地連接。 開關驅動器17由控制部15控制成,分別向閘極線 Lgl、Lg2輸出導通(Hi)位準或不導通(Lo)位準的信號。 其次,說明第4實施形態之顯示裝置的動作。 顯示裝置僅對所選擇的列之中的1個像素11 _ij之電晶 體T3的閘極-源極間’進行成爲電流流向電晶體T3的汲極 -源極間之狀態的電壓値的電壓寫入後,對該已進行電壓寫 入的1 10測量有機電致發光元件111的電壓VEL。 200950576 在對像素1 l_ij的電壓寫入動作,控制部15如第14圖 所示,控制陽極電路12的開關122、123,使陽極線La變 成接地電位。 控制部15控制成選擇驅動器14向選擇線Lsll輸出導 通位準的信號,並對選擇線Lsl2~Lsln輸出不導通位準的 信號,並選擇像素ll_ll~ll_ml。 又,控制部1 5控制開關驅動器1 7,使其向閘極線Lg !、Ls31.....Lsln and Ls3n connected and disconnected transistors. The transistors T12-l~T12-n are TFTs composed of n-channel type transistor FETs. The drains of the transistors T12-1 to T12-n are each connected to the selection lines Ls31 to Ls3n, and the sources are connected to the selection lines Ls11 to Lsln. Further, the gates of the transistors T12-1 to T12-n and the gate line Lg2 are connected in common. The switch driver 17 is controlled by the control unit 15 to output a signal of a conduction (Hi) level or a non-conduction (Lo) level to the gate lines Lgl and Lg2, respectively. Next, the operation of the display device of the fourth embodiment will be described. The display device performs voltage writing of a voltage 成为 which is a state in which a current flows between the drain and the source of the transistor T3 only for the gate-source between the transistors T3 of one pixel 11_ij of the selected column. After the entry, the voltage VEL of the organic electroluminescent element 111 is measured for the voltage which has been subjected to voltage writing. In the voltage writing operation for the pixel 1 l_ij, the control unit 15 controls the switches 122 and 123 of the anode circuit 12 to change the anode line La to the ground potential as shown in Fig. 14 . The control unit 15 controls the selection driver 14 to output a signal of the conduction level to the selection line Ls11, and outputs a signal of a non-conduction level to the selection lines Lsl2 to Lsln, and selects the pixels 11_ll to 11_ml. Further, the control unit 15 controls the switch driver 17 to be turned to the gate line Lg!,

Lg2分別輸出不導通(Lo)位準、導通(Hi)位準的信號。 i| ^ 開關驅動器17向閘極線Lgl輸出不導通位準的信號 時,電晶體T11-1〜Tll-n變成不導通,而將選擇線LS31〜Ls3n 和低位準線Lm切斷。 開關驅動器17向閘極線Lg2輸出導通位準的信號時, 將選擇線Lsll和Ls31.....Lsln和Ls3n連接。 選擇驅動器14分別向選擇線Lsll~Lsln輸出不導通位 準的信號時,各像素11_12~1 l_m2.....1 l_ln~l l_mn的電 ❹ 晶體T2變成不導通。 又’此時’因爲將選擇線Lsll和Ls31連接,所以各 像素.....ll_ln~ll_mn的電晶體T1亦變成 不導通。 各像素11_12〜ll_m2、…、ll_ln~ll_mn之電晶體T1、 T2變成不導通時,從電流供給電路121所供給之電流不會 流向各像素 11_12 〜11_ιη2、…、ll_ln~ll_mn。 另一方面,選擇驅動器14向選擇線Lsll輸出導通位 準的信號時’各像素的電晶體T2變成導通。 -45 - 200950576 又,因爲將選擇線Lsl 1和Ls31連接,所以各像素 1 1_1 1~1 l_ml的電晶體T2亦變成導通。 D/A轉換器135-1設定施加於像素1 1_1 1之電晶體T3 的閘極-源極間之具有電流流向電晶體T 3的汲極-源極間 之狀態的電壓値之第1寫入電壓的驅動信號Vdl,在各像 素之電晶體T1、T2變成導通時,向像素11_11 輸出第1寫入電壓的驅動信號Vdl。 將此第1電壓的電壓値設定成,在寫入此第1寫入電 壓之驅動信號Vdl時之向像素11_11流動之電流的電流値 成爲比在以後測量電壓VEL時從陽極電路1 2所供給之電流 (電流起始値lel_0)大的電流値的値。 另一方面,D/A轉換器135-2~135-m將施加於像素 之電晶體T3的閘極-源極間之具有設爲電流 不會流向電晶體T3的汲極-源極間之狀態的電壓値的第2 寫入電壓的驅動信號Vd2。而,在各像素ll_ll~ll_ml的 電晶體ΤΙ、T2變成導通時,向像素ll_21~ll_ml輸出第2 寫入電壓的驅動信號Vd2。此第2寫入電壓之電壓値例如 是0V。 控制部1 5控制開關1 3 1 -1 ~ 1 3卜m,使其各自將資料線 Ldl~Ldm和資料驅動器13的D/A轉換器135-1〜135-m連接。 資料線Ldl〜Ldm和資料驅動器13的 D/A轉換器 135-l~135-m連接時,因爲像素11 — 11的電晶體T3變成導 通狀態,所以電流從陽極電路12的接地線124,經由陽極 線La、像素1 1_1 1的電晶體T3、電晶體T2、資料線Ldl, 200950576 向D/A轉換器135-1流動,因爲有機電致發光元件111的 陽極成爲負電位,所以不會向像素11_11的有機電致發光 元件1 1 1流動。 又,在資料線Ld2~Ldm,因爲像素11_21〜ll_ml的電 晶體T3是不導通狀態,所以電流不會流動。又,因爲有機 電致發光元件111之陽極成爲接地電位或負電位,所以電 流不會向像素ll_21~ll_ml的有機電致發光元件111流動。 因爲電晶體T1變成導通,所以像素11_11的電晶體 T3進行二極體連接,並在飽和區域內進行動作,其動作點 成爲第6圖的動作點P2。 如此,對第1列之像素1 1_1 1之電晶體T3的閘極-源 極間,進行超過臨限値之電壓値的寫入,對像素 ll_21~ll_ml之電晶體T3的閘極-源極間,進行不超過臨限 値之電壓値的寫入。 接著,在像素1 1_11之電壓VEL的量測動作,如此進 行電壓寫入後,控制部1 5如第1 5圖所示,控制開關1 23, 以從電流供給電路121向陽極線La供給電流。從電流供給 電路121所供給之電流的電流値被設定成和該電流起始値 lel_0相等的電流値。 然後,控制部15控制開關驅動器17,使其向閘極線 Lgl輸出導通位準的信號,並向閘極線Lg2輸出不導通位 準的信號。 此外,控制部15控制選擇驅動器14,使其持續向選擇 線Lsll輸出導通位準的信號,並向選擇線Lsl2~Lsln輸出 -47- 200950576 不導通位準的信號。 開關驅動器17向閘極線Lgl輸出導通位準的信號時, 電晶體T11-1〜Tll-n變成導通,並各自將選擇線Ls31~Ls3n 和低位準線Lm連接。 開關驅動器17向閘極線Lg2輸出不導通位準的信號 時,電晶體T1 2-1〜T12-n變成不導通,並各自將選擇線 Lsll~Lsln和選擇線Ls31〜Ls3n切斷》 因而,選擇線Ls31〜Ls3n之信號位準變成不導通位準, 第1列之像素的各電晶體T1變成不導通。 ◎ 另一方面’第1列之像素1 1_1 1〜1 l_ml的各電晶體T2 依然導通》 如此’和第3實施形態一樣,個別地控制各像素1丨 之電晶體ΤΙ、T2的導通、不導通。 因而,和第3實施形態一樣,從電流供給電路121所 供給之電流僅向像素11_11的有機電致發光元件111流 動,並經由有機電致發光元件111而向接地線112流動。 控制部15控制開關131-l~131-m,使其各自將資料線 D LcU〜Ldm和緩衝器132-l~132-m連接。 資料驅動器13的A/D轉換器133-1經由資料線Ldl、 開關131-1以及緩衝器132-1,測量有機電致發光元件U1 的電壓VEL,修正電路134-1的發光效率抽出部136-1抽出 和A/D轉換器133-1所測量的電壓VEL對應的發光效率π, 並記憶於記憶體137-1。 發光效率抽出部136-1將此發光效率7?記憶於記憶體 -48 - 200950576 13 7-1後,控制部15控制選擇驅動器14、開關驅動器17 以及資料驅動器13,對像素11_21.....ll_ml,依序對各 自之電晶體T3的閘極-源極間進行設爲電流流向電晶體T3 ‘的汲極-源極間之狀態的電壓値的電壓寫入及各電壓VEL 的量測,接著,按照第2列~第η列的順序,對各列之各像 素11 _ij依序進行各電壓寫入及各電壓VEL的量測。如此, 對全部的像素1 l_ij之電晶體T3的閘極-源極間,進行電流 流向電晶體T3的汲極-源極間之程度的電壓寫入,並測量 ® 各自的電壓VEL。 依此方式,顯示裝置測量全部之像素ll_ij之有機電致 發光元件111的電壓VEL,被供給圖像資料時,和第1實施 形態一樣,根據所測量的電壓VEL而修正電流値。 然後,顯示裝置對各像素ll_ll~ll_ml之電晶體T3的 閘極-源極間寫入驅動資料Vdata,使各像素ll_ij的有機電 致發光元件111進行發光。 ϋ 如以上之說明所示,若依據本實施形態,作成以電晶 體 Τ12-1~Τ12-η將 2個選擇線 Lsll~Lsln、和選擇線 Ls31〜Ls3n連接或切斷,並使用電晶體T12-l~T12-n控制對 選擇線Ls31~Ls3n之不導通位準之信號的供給。 因此,在本實施形態,亦和第3實施形態一樣,可個 別地控制各像素ll_ij之電晶體T1和T2的導通、不導通, 並可對每個像素測量有機電致發光元件111的電壓VEL。因 而,即使在電壓VEL因每個像素而異的情況,亦可對每個 像素正確地測量電壓VEL。 -49- 200950576 此外,在實施本發明時,有各種的形態,未限定爲上 述的實施形態。 例如,在上述的實施形態,以有機電致發光元件說明 發光元件。可是,發光元件未限定爲有機電致發光元件, 例如亦可是無機電致發光元件或LED。 在上述的實施形態,作成爲了阻止電流流入資料驅動 器13,而具備有高阻抗的緩衝器132-1〜132-m。可是,只 要A/D轉換器133-1〜133-m是高阻抗者,亦可不具備緩衝 器 132-l~132-m 。 ❹ 第2圖所示之有機電致發光元件之發光效率和電壓的 關係是根據有機電致發光元件的發光材料等而變者,未必 限定爲這種。又,第3圖所示的LUT亦一樣,未必限定爲 這種。 又,在上述的各實施形態,雖然說明將本發明應用於 將具有發光元件之複數個像素排列成陣列狀之具有發光區 域的顯示裝置的情況,但是本發明未限定如此。例如,亦 q 可應用於一種發光裝置,其具有將具有發光元件之複數個 像素朝向一方向排列的發光元件陣列,並構成將因應於圖 像資料而進行發光的光照射於感光體鼓而進行曝光的曝光 裝置。 (第5實施形態) 以下,參照圖面,並說明本發明之第5實施形態的發 光裝置。 在第16圖表示本發明之發光裝置的構成。 -50- 200950576 本實施形態的發光裝置由複數個像素ll_ij(i=l~m、 j = l~n,m、η :自然數)、排列有複數個像素1 i_ij的發光區 域10、陽極電路12、資料驅動器(資料驅動部)13、選擇驅 動器(選擇驅動部)14以及控制部15所構成。 各像素11 _ij各自是對應於圖像的1個像素者,進行陣 列配置。各像素ll_ij具備有有機電致發光元件111、電晶 體T1-T3以及電容器(電壓保持部)C1。 有機電致發光(Organic Electro-Luminescent)元件 111 是利用藉有機化合物所注入的電子和電洞的再結合所產生 之激子而進行發光之現象的發光元件,並以對應於所供給 之電流的電流値的亮度進行發光。 在有機電致發光元件111,形成像素電極,並於此像素 電極上,形成電洞注入層、發光層以及相對向電極(都未圖 示)。電洞注入層形成於像素電極上,並具有向發光層供給 電洞之功能。 像素電極由具備有透光性之例如ITO(Indium Tin Oxide)、ZnO等導電材料所構成。各像素電極利用層間絕緣 膜(未圖示)和相鄰之其他的像素的像素電極進行絕緣。 電洞注入層由可注入、輸送電洞(hole)的有機高分子系 的材料所構成。又,作爲包含有有機高分子系之電洞注入、 輸送材料的有機化合物含有液,使用例如PED0T/PSS水溶 液’其是使屬導電性聚合物的聚乙烯二氧噻吩(PED0T)和屬 摻雜劑的聚苯乙烯磺酸(PSS)分散於水系溶媒的分散液。 發光層形成於中間層(未圖示)上。發光層具有藉由對 -51- 200950576 陽極和陰極之間施加既定之電壓而產生光的功能。 發光層由可發出螢光或燐光之周知的高分子發光材料 所構成,而該高分子發光材料例如是包含有聚對苯撐 (polyparaphenylene)系或聚芴系等之共軛雙重結合聚合物 之紅(R)、綠(G)、藍(B)色的發光材料。 又,這些發光材料是利用噴嘴塗布法或噴墨法等塗布 適當地溶解(或分散)於水系溶媒或四磷、四甲苯、三甲苯、 二甲苯等有機溶媒的溶液(分散液),並藉由使溶媒揮發而 形成。 此外,在三原色的情況,一般對每一行塗布有機電致 發光元件111之RGB的發光材料。 相對向電極爲二層構造,其由例如Ca、Ba等功函數小 的導電材料所構成之層、和A1等之光反射性導電層所構 成,並和接地線112連接。 電流從像素電極向相對向電極方向流動,而向逆向不 流動,像素電極、相對向電極各自成爲陽極、陰極。 此有機電致發光元件111因供給電流,並長時間進行 驅動,而特性逐漸變差。即,有機電致發光元件111之特 性變差時,電阻增加而電流變得難流動.,同時針對流動之 電流的發光亮度降低,而發光效率降低。 即,在有機電致發光元件111之特性變差的情況,爲 了得到起始的亮度,需要增加供給有機電致發光元件ill 的電流。增加電流時’有機電致發光元件lii之陰極-陽極 間的電壓VEL亦將增加。 200950576 此亮度和有機電致發光元件111之陰極-陽極間的電壓 VEL之間具有關連性。第2圖表示發光效率7?和電壓VEL 的關係。發光效率7?是在使固定之電流(電流起始値lel_0 : 檢測電流)流向有機電致發光元件111的情況下,將有機電 致發光元件111具有起始特性時的起始亮度(値)設爲1時之 表示亮度變化的參數。因此,此第2圖表示依驅動時間而 發光效率7?變化時電壓VEL的變化量。 此外,此關係是利用實驗所得之資料,是在有機電致 ® 發光元件111具有起始特性時,使亮度爲5 0 00cd/m2、每單 位面積之亮度爲16cd/A之使電流起始値lel_0流動時的資 料,在將發光部之面積設爲100 emx3 00 的情況,電流 起始値 lel_0 的電流値是 5000x( 100x3 00 )/16 = 9.38(#A)。 本實施形態的顯示裝置著眼於此發光效率7?和電壓 VEL的關係,而以如下之方式構成,測量使該電流起始値 lel_0流向有機電致發光元件111時的電壓(檢測電 @ 壓)VEL,再根據電壓VEL,修正所供給之電流的電流値, 藉此,得到所供給之圖像資料的亮度。 電晶體 T1~T3 是由 η 通道型 FET(Field Effect Transistor :電場效應電晶體)所構成之TFT,例如由非晶形 矽或多矽TFT所構成。 電晶體T1(寫入控制電晶體)是用使電晶體T3(電流控 制電晶體)變成導通、不導通的開關電晶體。 各像素11 _ij之電晶體Τ1的汲極(端子)和陽極線(電源 線)La連接。 -53- 200950576 各像素之電晶體T1的閘極(端子)和選擇 線Lsl 1連接。一樣地,各像素1 1_12~1 l_m2之電晶體Τ1 的閘極和選擇線Lsl2連接.....各像素ll_ln~ll_mn之電 晶體T1的閘極各自和選擇線Ls In連接。 在像素11_11的情況,若從選擇驅動器14向選擇線 Lsll輸出導通(High ;高)位準的信號時,電晶體T1變成導 通,電晶體T3亦變成導通。 向選擇線Lsll輸出不導通(Low;低)位準的信號時, 電晶體T1變成不導通,電晶體T3亦變成不導通。同時, 電晶體T1變成不導通時,保持業已對電容器C1充電的電 荷。 電晶體T2(選擇控制電晶體)是一開關電晶體,其用於 藉由選擇驅動器14而選擇變成導通、不導通,而使陽極電 路12和資料驅動器13之間變成導通、不導通。各像素11 _ij 之作爲電晶體T2的一端的汲極和有機電致發光元件Ul的 陽極連接。 各像素ll_ll~ll_ml之電晶體T2的閘極和選擇線Lsll 連接。一樣地,各像素11_12〜ll_m2之電晶體T2的閘極和 選擇線Lsl2連接.....各像素U-ln〜ll_mn之電晶體T2 的閘極和選擇線Ls In連接。 又’各像素ll_ll~ll_lri之作爲電晶體T2的另一端的 源極和資料線Ldl連接。一樣地,各像素u_2i〜u_2n之 電晶體T2的源極和資料線Ld2連接.....各像素 之電晶體T2的源極和資料線[仏連接。 -54- 200950576 在像素11-11的情況,電晶體T2在從選擇驅動器14 向選擇線Lsll輸出導通位準的信號時變成導通,而將有機 電致發光元件111之陽極和資料線Ldl連接。 又’向選擇線Lsll輸出不導通位準的信號時,電晶體 T2變成不導通’而將有機電致發光元件1丨丨之陽極和資料 線Ldl切斷。 電容器C1是保持電晶體T3之閘極-源極間電壓Vgs(以 後記爲閘極電壓Vgs。)的電容器’其一端和電晶體τι的源 ® 極及電晶體T3的閘極連接,而另一端和電晶體T3的源極 及有機電致發光元件111的陽極連接。 由於當電晶體T1變成導通時,電晶體T3閘極-汲極間 被連接’並進行二極體連接而變成導通,所以電流從陽極 線La向電晶體T2的汲極流動時,電晶體T3變成導通狀 態,而以對應之電晶體T3的閘極電壓Vgs對電容器C1充 電,並儲存該電荷。 @ 電晶體T1及T2變成不導通時,電容器C1保持電晶體 T3的鬧極電壓Vgs。 陽極電路12是具有在測量電壓VEL時及對各像素 11 _ij寫入驅動信號時,將陽極線La設爲例如接地電位, 而在使各像素ll_ij進行因應於圖像資料的發光動作時,將 陽極線La設定成既定的電壓(電壓Vsrc),並具備有開關 122、和輸出電壓Vsrc的定電壓電源^ 開關122將電壓Vsrc或接地線124和陽極線La的連 接切換。此電壓Vsrc被設定成例如約12V。 -55- 200950576 資料驅動器13是用以將資料寫入各像素n_ij之有機 電致發光元件111,並具備有開關1311-1〜1311-m、電流供 給電路 139-l~139-m、A/D 轉換器(ADC)133-1〜133-m、修正 電路 134-1〜134-m、D/A 轉換器(DAC)135-l~135-m、以及開 關 1312-l~1312-m。 開關1311-1〜1311-m各自是用以將資料線Ldl~Ldm和 電流供給電路 139-1〜139-m之輸入端及 a/d轉換器 133-1〜133-m的輸入端之間連接或切斷。 電流供給電路139-1〜139-m是供給成爲該檢測電流的 定電流。A/D轉換器 133-l~133-m各自是經由開關 13 1 1-1〜131 Ι-m並用以測量施加於資料線Ldl l~Ldln之類比 的電壓VEL,並將所測量之類比的電壓VEL轉換成數位的 電壓VEL °A/D轉換器133-1〜133-m將轉換後之數位的電壓 VEL供給修正電路134-l~134-m。 修正電路134-1 ~134-m各自是爲了得到因應於所供給 之圖像資料的亮度,而根據從A/D轉換器133-卜133-m所 供給的電壓VEL,修正因應於圖像資料之驅動資料Vdata 的値的電路。 修正電路134-1〜134-m各自如第17圖所示,具備有發 光效率抽出部136-l~136-m、記憶體137-1〜137-m、以及運 算部 138-l~138-m 。 發光效率抽出部136-l~136-m各自抽出和藉量測所得 之電壓VEL對應的發光效率7/,並記憶如第4圖所示之 LUT(Look Up Table » 記憶電路)。 200950576 此LUT是表示電壓VEL、亮度以及發光效率7?之關係 的表,是根據第2圖所示之發光效率η和電壓VEL的關係 而作成者。 此LUT是表示使電流起始値Iel_〇之電流流向有機電 致發光元件111的情況之亮度的變化、發光效率以及電 壓VEL之關係。 此LUT表示,在有機電致發光元件111具有起始特性時 爲了得到亮度5000 cd/m2而使所需之電流起始値Iel_〇的電流 流動,而亮度變成3000 cd/m2時,發光效率將變成/7…=0.60, = 3000/500 0 = 0.60,電壓 VEL 從起始値 7.85V 增加至 8.30V。 此外,在本實施形態,該LUT雖然作成對應於一個電 流起始値lel_0(檢測電流),並從電流供給電路139-l~139-m 供給與其對應的1種檢測電流,但是本發明未限定如此, 亦可採用使LUT對應於2位準以上之複數種相異之電流値 的檢測電流者,並採用從電流供給電路139-1〜139-m供給 與其對應之和複數種位準相異之電流値對應的檢測電流之 構成。在此情況,因應於各位準的檢測電流而進行複數次 電壓VEL的量測。 發光效率抽出部136-1〜136-m各自參照此LUT,並抽 出對應於電壓VEL的發光效率7?。 記憶體137-l~137-m各自是用以記憶發光效率抽出部 136-1〜136-m所抽出之發光效率的記憶體(記憶電路)。 運算部138-l~138-m各自是被供給圖像資料,並取得 用以得到因應於圖像資料之亮度的驅動資料Vdata。 -57- 200950576 運算部138-1〜138-m各自是以驅動資料Vdata進行寫入 時,從記憶體137-l~137-m讀出發光效率r?。 運算部138-1〜138-m各自將在有機電致發光元件U1 具有起始特性時用以得到因應於所供給之圖像資料的亮度 所需之電流値Ielf_〇,和從記憶體137-1所讀出之發光效率 r?的倒數相乘,而取得電流修正値Ielf_l。 然後’運算部138-1〜138-m根據各像素1 l_ij的電晶體 T3之閘極電壓對汲極-源極間電流的特性、及此電流修正値 Ielf_l,而求得驅動資料Vdata。 D/A轉換器135-l~135-m各自是將運算部138-1〜138-m 所求得之數位的驅動資料Vdata轉換成靥類比之寫入電壓 Vd(驅動信號:負電壓)。 D/A轉換器135-l~135-m各自將該寫入電壓Vd經由資 料線Ldl~Ldm,而施加於各像素之電晶體T2 的另一端’藉此,經由電晶體Τ2,而從電晶體Τ3引入電 流。Lg2 outputs a signal that does not conduct (Lo) level and conduct (Hi) level, respectively. i| ^ When the switch driver 17 outputs a signal of a non-conducting level to the gate line Lgl, the transistors T11-1 to T11-n become non-conductive, and the selection lines LS31 to Ls3n and the low level line Lm are cut off. When the switch driver 17 outputs a signal of the conduction level to the gate line Lg2, the selection line Ls11 and Ls31.....Lsln and Ls3n are connected. When the selection driver 14 outputs a signal of a non-conduction level to the selection lines Lsll to Lsln, the electric crystal T2 of each of the pixels 11_12 to 1 l_m2.....1 l_ln~l l_mn becomes non-conductive. Further, at this time, since the selection lines Ls11 and Ls31 are connected, the transistor T1 of each pixel ..... ll_ln~ll_mn also becomes non-conductive. When the transistors T1 and T2 of the respective pixels 11_12 to 11_m2, ..., ll_ln to ll_mn become non-conductive, the current supplied from the current supply circuit 121 does not flow to the respective pixels 11_12 to 11_ιη2, ..., ll_ln to ll_mn. On the other hand, when the selection driver 14 outputs a signal of the on-level to the selection line Ls11, the transistor T2 of each pixel becomes conductive. -45 - 200950576 Further, since the selection lines Lsl 1 and Ls31 are connected, the transistor T2 of each of the pixels 1 1_1 1 to 1 l_ml is also turned on. The D/A converter 135-1 sets the first write of the voltage 値 between the gate and the source of the transistor T3 applied to the pixel 1 1_1 1 with a current flowing to the drain-source between the transistors T 3 . The drive signal Vd1 of the input voltage outputs the drive signal Vd1 of the first write voltage to the pixel 11_11 when the transistors T1 and T2 of the respective pixels become conductive. The voltage 値 of the first voltage is set such that the current 电流 of the current flowing to the pixel 11_11 when the drive signal Vd of the first write voltage is written is supplied from the anode circuit 12 when the voltage VEL is measured later. The current (current start 値lel_0) is a large current 値. On the other hand, the D/A converters 135-2 to 135-m have a relationship between the gate and the source of the transistor T3 applied to the pixel, so that the current does not flow between the drain and the source of the transistor T3. The drive signal Vd2 of the second write voltage of the voltage 状态 of the state. On the other hand, when the transistors ΤΙ and T2 of the respective pixels ll_ll to ll_ml become conductive, the drive signal Vd2 of the second write voltage is output to the pixels ll_21 to ll_ml. The voltage 此 of this second write voltage is, for example, 0V. The control unit 15 controls the switches 1 3 1 -1 to 1 3 m to connect the data lines Ldl to Ldm to the D/A converters 135-1 to 135-m of the data driver 13. When the data lines Ld1 to Ldm are connected to the D/A converters 135-1 to 135-m of the data driver 13, since the transistors T3 of the pixels 11-11 become in an on state, current flows from the ground line 124 of the anode circuit 12 via The anode line La, the transistor T3 of the pixel 1 1_1 1 , the transistor T2, and the data line Ld1, 200950576 flow to the D/A converter 135-1 because the anode of the organic electroluminescent element 111 becomes a negative potential, so The organic electroluminescent element 11 1 of the pixel 11_11 flows. Further, in the data lines Ld2 to Ldm, since the transistors T3 of the pixels 11_21 to 11_ml are in a non-conducting state, current does not flow. Further, since the anode of the organic electroluminescent element 111 has a ground potential or a negative potential, current does not flow to the organic electroluminescent element 111 of the pixels 11_21 to 11_ml. Since the transistor T1 is turned on, the transistor T3 of the pixel 11_11 is connected to the diode and operates in the saturation region, and its operating point becomes the operating point P2 of Fig. 6. In this manner, the gate-source of the transistor T3 of the pixel 1 1_1 1 of the first column is written with a voltage 超过 exceeding the threshold ,, and the gate-source of the transistor T3 of the pixel ll_21 ll_ml is performed. During the process of writing, the voltage 不 does not exceed the threshold. Next, after the voltage VEL of the pixel 1 1_11 is measured, the voltage is written, and the control unit 15 controls the switch 1 23 to supply a current from the current supply circuit 121 to the anode line La as shown in FIG. . The current 电流 of the current supplied from the current supply circuit 121 is set to a current 相等 equal to the current start 値 lel_0. Then, the control unit 15 controls the switch driver 17 to output a signal of the conduction level to the gate line Lgl, and outputs a signal of the non-conduction level to the gate line Lg2. Further, the control unit 15 controls the selection driver 14 to continuously output a signal of the conduction level to the selection line Ls11, and outputs a signal of -47 to 200950576 non-conduction level to the selection lines Lsl2 to Lsln. When the switch driver 17 outputs a signal of the conduction level to the gate line Lgl, the transistors T11-1 to T11-n become conductive, and the selection lines Ls31 to Ls3n and the low level line Lm are connected. When the switch driver 17 outputs a signal of a non-conducting level to the gate line Lg2, the transistors T1 2-1 to T12-n become non-conductive, and each of the selection lines Ls11 to Lsln and the selection lines Ls31 to Ls3n are turned off. The signal levels of the selection lines Ls31 to Ls3n become non-conducting levels, and the respective transistors T1 of the pixels of the first column become non-conductive. ◎ On the other hand, the transistors T2 of the pixels 1 1_1 1 to 1 l_ml in the first column are still turned on. Thus, as in the third embodiment, the transistor ΤΙ and T2 of each pixel are individually controlled. Turn on. Therefore, as in the third embodiment, the current supplied from the current supply circuit 121 flows only to the organic electroluminescent element 111 of the pixel 11_11, and flows to the ground line 112 via the organic electroluminescent element 111. The control unit 15 controls the switches 131-1 to 131-m to connect the data lines D LcU to Ldm and the buffers 132-1 to 132-m, respectively. The A/D converter 133-1 of the data driver 13 measures the voltage VEL of the organic electroluminescent element U1 via the data line Ld1, the switch 131-1, and the buffer 132-1, and the luminous efficiency extracting portion 136 of the correction circuit 134-1. -1 extracts the luminous efficiency π corresponding to the voltage VEL measured by the A/D converter 133-1, and memorizes it in the memory 137-1. After the luminous efficiency extracting portion 136-1 stores the luminous efficiency 7? in the memory -48 - 200950576 13 7-1, the control portion 15 controls the selection driver 14, the switch driver 17, and the data driver 13, for the pixels 11_21.... .ll_ml, sequentially writes the voltage 写入 of the voltage 値 between the gate and the source of the respective transistors T3 to the state between the drain and the source of the transistor T3 ′ and the measurement of each voltage VEL Then, in the order of the second column to the nth column, the voltage writing and the voltage VEL are sequentially measured for each pixel 11_ij of each column. In this manner, a voltage is written between the gate and the source of the transistor T3 of all the pixels 1 l_ij to a level between the drain and the source of the transistor T3, and the respective voltages VEL are measured. In this manner, the display device measures the voltage VEL of the organic electroluminescent element 111 of all the pixels 11_ij, and when the image data is supplied, the current 値 is corrected based on the measured voltage VEL as in the first embodiment. Then, the display device writes the drive data Vdata between the gate and the source of the transistor T3 of each of the pixels 11_11 to 11_ml, and causes the organic electroluminescent element 111 of each of the pixels 11_ij to emit light. As described above, according to the present embodiment, the two selection lines Ls11 to Lsln and the selection lines Ls31 to Ls3n are connected or disconnected by the transistors Τ12-1 to Τ12-η, and the transistor T12 is used. -l~T12-n controls the supply of signals to the non-conducting levels of the selection lines Ls31 to Ls3n. Therefore, in the present embodiment, as in the third embodiment, the conduction and non-conduction of the transistors T1 and T2 of the respective pixels 11_ij can be individually controlled, and the voltage VEL of the organic electroluminescent element 111 can be measured for each pixel. . Therefore, even when the voltage VEL varies from pixel to pixel, the voltage VEL can be correctly measured for each pixel. Further, in the practice of the present invention, various aspects are not limited to the above embodiments. For example, in the above embodiment, the light-emitting element will be described with an organic electroluminescence device. However, the light-emitting element is not limited to an organic electroluminescence element, and may be, for example, an inorganic electroluminescence element or an LED. In the above-described embodiment, the current is prevented from flowing into the data driver 13, and the buffers 132-1 to 132-m having high impedance are provided. However, as long as the A/D converters 133-1 to 133-m are high impedance, the buffers 132-1 to 132-m may not be provided. The relationship between the luminous efficiency and the voltage of the organic electroluminescence device shown in Fig. 2 varies depending on the luminescent material of the organic electroluminescence device, etc., and is not necessarily limited thereto. Further, the LUT shown in Fig. 3 is also the same, and is not necessarily limited to this. Further, in the above embodiments, the present invention has been described as applied to a display device having a light-emitting region in which a plurality of pixels having light-emitting elements are arranged in an array, but the present invention is not limited thereto. For example, it is also applicable to a light-emitting device having a light-emitting element array in which a plurality of pixels having light-emitting elements are arranged in one direction, and is configured to irradiate light emitted in response to image data onto a photoreceptor drum. Exposure exposure device. (Fifth Embodiment) Hereinafter, a light-emitting device according to a fifth embodiment of the present invention will be described with reference to the drawings. Fig. 16 shows the configuration of a light-emitting device of the present invention. -50- 200950576 The light-emitting device of the present embodiment has a plurality of pixels ll_ij (i=l~m, j=l~n, m, η: natural number), a light-emitting region 10 in which a plurality of pixels 1 i_ij are arranged, and an anode circuit 12. A data drive (data drive unit) 13, a selection drive (select drive unit) 14, and a control unit 15. Each of the pixels 11_ij is one pixel corresponding to the image, and is arranged in an array. Each of the pixels 11_ij includes an organic electroluminescence element 111, an electric crystal T1-T3, and a capacitor (voltage holding portion) C1. The organic electro-luminescence element 111 is a light-emitting element that emits light by excitons generated by recombination of electrons and holes injected by an organic compound, and corresponds to a supplied current. The brightness of the current 进行 emits light. A pixel electrode is formed on the organic electroluminescent element 111, and a hole injection layer, a light-emitting layer, and a counter electrode (both not shown) are formed on the pixel electrode. The hole injection layer is formed on the pixel electrode and has a function of supplying a hole to the light-emitting layer. The pixel electrode is made of a conductive material such as ITO (Indium Tin Oxide) or ZnO which is translucent. Each of the pixel electrodes is insulated by an interlayer insulating film (not shown) and pixel electrodes of other adjacent pixels. The hole injection layer is made of a material of an organic polymer which can inject and transport a hole. In addition, as an organic compound-containing liquid containing a hole injection and transport material of an organic polymer system, for example, a PEDOT/PSS aqueous solution is used, which is a polyethylene dioxythiophene (PED0T) and a genus doped with a conductive polymer. The polystyrene sulfonic acid (PSS) of the agent is dispersed in a dispersion of an aqueous solvent. The light emitting layer is formed on an intermediate layer (not shown). The light-emitting layer has a function of generating light by applying a predetermined voltage between the anode and the cathode of -51-200950576. The light-emitting layer is composed of a polymer light-emitting material which is known to emit fluorescence or light, and the polymer light-emitting material is, for example, a conjugated double-bonded polymer containing a polyparaphenylene system or a polyfluorene system. Red (R), green (G), blue (B) color luminescent materials. Further, these luminescent materials are a solution (dispersion) which is appropriately dissolved (or dispersed) in an aqueous solvent or an organic solvent such as tetraphosphorus, tetramethylbenzene, trimethylbenzene or xylene by a nozzle coating method or an inkjet method. It is formed by volatilizing a solvent. Further, in the case of the three primary colors, the RGB luminescent material of the organic electroluminescent element 111 is generally applied to each row. The counter electrode has a two-layer structure composed of a layer made of a conductive material having a small work function such as Ca or Ba, and a light-reflective conductive layer such as A1, and is connected to the ground line 112. The current flows from the pixel electrode to the opposite electrode and does not flow in the reverse direction, and the pixel electrode and the counter electrode each become an anode and a cathode. This organic electroluminescent element 111 is driven for a long time by supplying a current, and the characteristics are gradually deteriorated. In other words, when the characteristics of the organic electroluminescent element 111 are deteriorated, the electric resistance increases and the current hardly flows. At the same time, the luminance of the current flowing is lowered, and the luminous efficiency is lowered. That is, in the case where the characteristics of the organic electroluminescent element 111 are deteriorated, in order to obtain the initial luminance, it is necessary to increase the current supplied to the organic electroluminescent element ill. When the current is increased, the voltage VEL between the cathode and the anode of the organic electroluminescent element lii will also increase. 200950576 This brightness has a correlation with the voltage VEL between the cathode and the anode of the organic electroluminescent element 111. Fig. 2 shows the relationship between the luminous efficiency 7? and the voltage VEL. The luminous efficiency 7? is the initial luminance (値) when the organic electroluminescent element 111 has a starting characteristic in the case where a fixed current (current starting 値lel_0: detection current) flows to the organic electroluminescent element 111. A parameter indicating the change in brightness when set to 1. Therefore, Fig. 2 shows the amount of change in voltage VEL when the luminous efficiency 7 is changed depending on the driving time. In addition, this relationship is obtained by experiments. When the organic electroluminescent element 111 has an initial characteristic, the luminance is 5 00 cd/m2, and the luminance per unit area is 16 cd/A. In the case of lel_0 flow, when the area of the light-emitting portion is set to 100 emx3 00, the current 电流 of the current start 値lel_0 is 5000x (100x3 00 ) / 16 = 9.38 (#A). In view of the relationship between the luminous efficiency 7? and the voltage VEL, the display device of the present embodiment is configured to measure the voltage at which the current start 値lel_0 flows to the organic electroluminescent element 111 (detection electric @voltage). VEL, according to the voltage VEL, corrects the current 値 of the supplied current, thereby obtaining the brightness of the supplied image data. The transistors T1 to T3 are TFTs composed of an η channel type FET (Field Effect Transistor), for example, an amorphous germanium or a multi-turn TFT. The transistor T1 (write control transistor) is a switching transistor in which the transistor T3 (current control transistor) is turned on and off. The drain (terminal) of the transistor T1 of each pixel 11_ij is connected to the anode line (power supply line) La. -53- 200950576 The gate (terminal) of the transistor T1 of each pixel is connected to the selection line Lsl 1. Similarly, the gates of the transistors Τ1 of the respective pixels 1 1_12 to 1 l_m2 are connected to the selection line Lsl2. The gates of the transistors T1 of the respective pixels 11_ln to 11_mn are connected to the selection line Ls In. In the case of the pixel 11_11, when a signal of a high (high) level is output from the selection driver 14 to the selection line Ls11, the transistor T1 becomes conductive, and the transistor T3 also becomes conductive. When the signal of the non-conducting (low) level is output to the selection line Lsll, the transistor T1 becomes non-conductive, and the transistor T3 also becomes non-conductive. At the same time, when the transistor T1 becomes non-conductive, the charge that has charged the capacitor C1 is maintained. The transistor T2 (selection control transistor) is a switching transistor which is selected to be turned on and off by the selection of the driver 14, so that the anode circuit 12 and the data driver 13 become conductive and non-conductive. The drain of one end of the transistor 11_ij as the transistor T2 is connected to the anode of the organic electroluminescent element U1. The gate of the transistor T2 of each of the pixels 11_ll to 11_ml is connected to the selection line Ls11. Similarly, the gate of the transistor T2 of each of the pixels 11_12 to 11_m2 is connected to the selection line Ls12. The gate of the transistor T2 of each of the pixels U-ln to 11_mn is connected to the selection line Ls In. Further, the source of each of the pixels 11_1 to 11_1 as the other end of the transistor T2 is connected to the data line Ldl. Similarly, the source of the transistor T2 of each of the pixels u_2i to u_2n is connected to the data line Ld2. The source of the transistor T2 of each pixel is connected to the data line [仏. -54- 200950576 In the case of the pixel 11-11, the transistor T2 becomes conductive when a signal of the conduction level is output from the selection driver 14 to the selection line Ls11, and the anode of the organic electroluminescent element 111 is connected to the data line Ldl. Further, when a signal of a non-conducting level is outputted to the selection line Ls11, the transistor T2 becomes non-conductive, and the anode of the organic electroluminescent element 1 and the data line Ld1 are cut. The capacitor C1 is a capacitor which holds the gate-source voltage Vgs (hereinafter referred to as the gate voltage Vgs) of the transistor T3, and one end thereof is connected to the source electrode of the transistor τι and the gate of the transistor T3, and the other One end is connected to the source of the transistor T3 and the anode of the organic electroluminescent element 111. When the transistor T1 becomes conductive, the gate-drain is connected to the transistor T3 and is connected to the diode to become conductive. Therefore, when the current flows from the anode line La to the drain of the transistor T2, the transistor T3 It becomes conductive, and the capacitor C1 is charged with the gate voltage Vgs of the corresponding transistor T3, and the charge is stored. @ When the transistors T1 and T2 become non-conductive, the capacitor C1 maintains the voltage Vgs of the transistor T3. The anode circuit 12 has a case where the anode line La is set to, for example, a ground potential when the voltage VEL is measured and a driving signal is written to each of the pixels 11_ij, and when each pixel 11_ij is caused to emit light in response to image data, The anode line La is set to a predetermined voltage (voltage Vsrc), and is provided with a constant voltage power supply switch 122 having a switch 122 and an output voltage Vsrc to switch the connection of the voltage Vsrc or the ground line 124 and the anode line La. This voltage Vsrc is set to, for example, about 12V. -55- 200950576 The data driver 13 is an organic electroluminescent element 111 for writing data to each pixel n_ij, and is provided with switches 1311-1 to 1311-m, current supply circuits 131-1 to 139-m, A/ D converters (ADC) 133-1 to 133-m, correction circuits 134-1 to 134-m, D/A converters (DAC) 135-1 to 135-m, and switches 1312 to 1312-m. The switches 1311-1 to 1311-m are respectively used to connect the data lines Ld1 to Ldm and the input terminals of the current supply circuits 139-1 to 139-m and the input terminals of the a/d converters 133-1 to 133-m. Connect or cut. The current supply circuits 139-1 to 139-m supply a constant current to be the detection current. The A/D converters 133-1 to 133-m are each used to measure the voltage VEL applied to the data lines Ldl1 to Ldln via the switches 13 1 1-1 to 131 Ι-m, and the analogy of the measurements The voltage VEL is converted into a digital voltage. The VEL °A/D converters 133-1 to 133-m supply the converted voltage VEL to the correction circuits 134-1 to 134-m. The correction circuits 134-1 to 134-m are each adapted to the image data according to the voltage VEL supplied from the A/D converter 133-b 133-m in order to obtain the brightness of the supplied image data. The circuit that drives the data Vdata. Each of the correction circuits 134-1 to 134-m includes the luminous efficiency extraction units 136-1 to 136-m, the memories 137-1 to 137-m, and the arithmetic units 138-l to 138- as shown in Fig. 17 . m. The luminous efficiency extracting portions 136-1 to 136-m each extract and subtract the luminous efficiency 7/ corresponding to the voltage VEL obtained by the measurement, and memorize the LUT (Look Up Table) as shown in Fig. 4. 200950576 This LUT is a table showing the relationship between the voltage VEL, the luminance, and the luminous efficiency 7?, and is based on the relationship between the luminous efficiency η and the voltage VEL shown in Fig. 2. This LUT is a relationship between the change in luminance, the luminous efficiency, and the voltage VEL in the case where the current of the current start 値Iel_〇 flows to the organic electroluminescent element 111. This LUT indicates that when the organic electroluminescent element 111 has an initial characteristic, in order to obtain a luminance of 5000 cd/m2, a current of a desired current origin 値Iel_〇 flows, and when the luminance becomes 3000 cd/m2, luminous efficiency is obtained. It will become /7...=0.60, = 3000/500 0 = 0.60, and the voltage VEL will increase from the initial 値7.85V to 8.30V. Further, in the present embodiment, the LUT is configured to correspond to one current start 値lel_0 (detection current), and one type of detection current corresponding thereto is supplied from the current supply circuits 139-1 to 139-m, but the present invention is not limited thereto. In this way, it is also possible to use a detection current that causes the LUT to correspond to a plurality of different currents 2 of two or more levels, and to supply the corresponding plurality of levels from the current supply circuits 139-1 to 139-m. The current 値 corresponds to the detection current. In this case, the measurement of the voltage VEL is performed plural times in response to the respective detection currents. The luminous efficiency extracting portions 136-1 to 136-m each refer to the LUT, and extract the luminous efficiency 7? corresponding to the voltage VEL. Each of the memories 137-1 to 137-m is a memory (memory circuit) for storing the luminous efficiency extracted by the luminous efficiency extraction portions 136-1 to 136-m. Each of the arithmetic units 133-1 to 138-m is supplied with image data, and obtains drive data Vdata for obtaining brightness corresponding to the image data. -57- 200950576 When the arithmetic units 138-1 to 138-m write each of the drive data Vdata, the luminous efficiency r? is read from the memories 137-1 to 137-m. The arithmetic units 138-1 to 138-m each have a current 値Ielf_〇 required for the brightness of the supplied image data when the organic electroluminescent element U1 has the initial characteristics, and the slave memory 137. The reciprocal of the luminous efficiency r? read by -1 is multiplied to obtain the current correction 値Ielf_l. Then, the arithmetic units 138-1 to 138-m obtain the drive data Vdata based on the characteristics of the gate voltage of the transistor T3 of each pixel 1 l_ij, the current between the drain and the source, and the current correction 値 Ielf_l. Each of the D/A converters 135-1 to 135-m converts the drive data Vdata obtained by the calculation units 138-1 to 138-m into a write voltage Vd (drive signal: negative voltage). Each of the D/A converters 135-1 to 135-m applies the write voltage Vd to the other end of the transistor T2 of each pixel via the data lines Ld1 to Ldm, thereby passing through the transistor Τ2. The crystal Τ3 introduces a current.

開關1312-l~1312-m各自是將資料線Ldl〜Ldm和D/A 轉換器135-l~135-m的輸出端連接、切斷。 選擇驅動器14是由控制部丨5控制,並用以對每一列 選擇像素例如具備有移位暫存器。選擇驅動器14 各自向選擇線Lsll~Lsln輸出具有導通位準或不導通位準 的信號。 控制部15控制各部。控制部15控制各部成,根據有 機電致發光元件111之電壓VEL的變動,而修正在寫入驅 200950576 動信號時所供給之電流的電流値,藉此得到所需 因而,控制部15執行校正步驟、圖像顯示步 校正步驟是測量各像素11 _ij之有機電致發光 的電壓VEL,並從預先所測量之如第2圖所示之 和發光效率7?的關係,抽出對應於所測量之電壓 光效率77的步驟。 圖像顯示步驟是在被供給圖像資料時,根據 7?,而將電流値修正成可得到因應於所供給之圖 亮度,再將對應之驅動資料Vdata寫入各像素ιι_ -源極間,並使各有機電致發光元件111進行發光 此外,發光裝置例如在電源起動時、每一天 使用固定時間進行此電壓VEL的量測。 在進行電壓VEL之量測的情況,控制部1 5控 路12、資料驅動器13以及選擇驅動器14成,使 電流供給電路139-1〜139-m經由各像素ll_ij的有 光元件1 1 1,向接地線1 1 2流動。 在進行驅動資料Vdata之寫入的情況,控制吾 陽極電路12、資料驅動器13以及選擇驅動器14 流從陽極電路12不會向各像素ll_ij的有機電致 111流動,而向資料驅動器13流動。 在使有機電致發光元件111進行發光的情況 15控制陽極電路12、資料驅動器13以及選擇驅動 使其根據各像素11 _ij的電容器C1所寫入之電還 閘極電壓Vgs而將電流供給有機電致發光元件π 之亮度。 驟。 i元件1 1 1 電壓VEL VEL之發 發光效率 像資料的 ij的閘極 的步驟。 、或者每 制陽極電 定電流從 機電致發 形1 5控制 成,使電 發光元件 ,控制部 器1 4成, ^體Τ3的 .1 0 -59- 200950576 其次,說明本實施形態之發光裝置的動作。 首先,說明測量各像素11 _ij之有機電致發光元件m 的電壓VEL時的動作。 發光裝置的控制部1 5控制各部,選擇各列的各像素 11 ,並測量所選擇之列的各有機電致發光元件1 1 1的電 壓VEL。 控制部1 5爲了測量電壓VEL,而如第1 8圖所示, 控制陽極電路12的開關122成,連接陽極線La和接地線 124。控制部15藉由如此地控制,而可使陽極線La和有機 電致發光元件111的陰極成爲同電位。 控制部15例如選擇第1列的像素11_11〜ll_ml。爲了 選擇像素ll_ll~ll_ml,控制部15控制選擇驅動器14,使 其分別向選擇線Lsll輸出導通位準的信號,向選擇線 Lsl2~Lsln輸出不導通位準的信號》 選擇驅動器14向選擇線Lsl2〜Lsln輸出不導通位準的 信號時,像素11_12〜ll_m2.....ll_ln~ll_mn之各電晶體 ΤΙ、T2變成不導通。 像素 1 1_12~1 l_m2.....1 1 _ 1 η~ 1 1 _mn 之各電晶體 T 1 變成不導通時,各電晶體T3亦變成不導通,電流不會流向 像素 ll_12~ll_m2、…、ll_ln~ll_mn。 又,像素.....Π - 1 η〜1 1 之各電晶體 T2 變成不導通時,像素 ll_12~ll_m2、...、n_ln~ii_mE 之各電晶體 ΤΙ、 T2變成不導通時,將像素 11_12~1 l_m2.....11 - 1 n~ 11-mn 從資料線 Ld! ~Ldin 切斷。 選擇驅動器14向選擇線Lsll輸出導通位準的信號 200950576 時,像素1 1_1 1〜1 l_ml之各電晶體ΤΙ、T2變成導 晶體Τ1變成導通時,各電晶體Τ3的閘極-源極間 進行二極體連接,而變成導通。 控制部15控制開關1312-1〜1312-m,使其各 線 Ldl~Ldm 和 D/A 轉換器 135-l~135-m 切斷。 \ 控制部1 5控制開關1 3 1 1 -1〜1 3 11 -m,使其各 線Ldl和資料驅動器13的電流供給電路139-1以 換器133-1連接.....將資料線Ldm和電流供給電 v 以及A/D轉換器133-m連接。 又,在像素ll_ll~ll_ml,將各有機電致發光 的陰極進行接地,而陽極線La變成接地電位。 因而,將資料線Ldl和資料驅動器13的電流 139-1以及A/D轉換器133-1連接,而從電流供給賃 供給定電流時,因爲像素11_11之電晶體T3的源 汲極高電位,所以電流不會流向電晶體T3的汲極 φ 而從電流供給電路1 39-1所供給的定電流,從資 13的電流供給電路139-1,經由資料線Ldl、各偉 的電晶體T2、有機電致發光元件in,向接地線1 在此’從電流供給電路139_1所供給之定電流的 設定爲和該電流起始値lel_0(檢測電流)相等的値 —樣地,資料線Ld2和電流供給電路139-2 轉換器133-2.....資料線Ldm和電流供給電路 及A/D轉換器133-m連接時,定電流分別從資料 的電流供給電路139-1,經由各像素ιι_ιι〜n_mi 通。各電 被連接, 自將資料 自將資料 及A/D轉 路 1 3 9 - m 元件1 1 1 供給電路 i 路 139-1 極成爲比 -源極間, 料驅動器 [素 1 1_1 1 12流動。 電流値被 〇 以及A/D 139-m 以 驅動器13 的有機電 -61- 200950576 致發光元件111,而向接地線112流動。 資料驅動器13的A/D轉換器133-1〜133-m分別經由像 素11_11〜ll_ml之各電晶體T2、資料線Ldl~Ldm、開關 測量電晶體T2之汲極和有機電致發光元 件111的陽極之連接點的電壓。 此電壓成爲有機電致發光元件111的電壓VEL。依此方 式,A/D轉換器133-1〜133-m分別測量有機電致發光元件 1 11的電壓VEL。 此外,各像素1 1_1 1〜1 l_ml之各電晶體’T2的導通電 ® 阻,因爲閘極電壓Vgs高,而成爲幾乎可忽略的値》 A/D轉換器133-1〜133-m各自將類比的電壓VEL轉換成 數位的電壓VEL。 修正電路134-l~134-m之發光效率抽出部136-1〜136-m 各自參照LUT,並抽出和已轉換之數位的電壓VEL對應的 發光效率7?。發光效率抽出部136-1〜136-m各自將所抽出 之發光效率7?記憶於記憶體137-l~137-m。 ^ 〇 發光效率抽出部136-l~136-m各自將所抽出之發光效 率記憶於記憶體137-1-137-m時,控制部15選擇第2列 的像素 1 1_12~1 l_m2。 爲了選擇第2列的像素11 _ 1 1 1 _m2,控制部1 5控制 選擇驅動器14,使其向選擇線Ls 12輸出導通位準的信號, 並向選擇線Lsll、Lsl3~Lsln輸出不導通位準的信號。 選擇驅動器14向選擇線Ls 11、Ls 13〜Ls In輸出不導通 位準的信號時,像素 11_1、 11_13~1l_m3 ..... -62- 200950576 ll-ln〜ll_mn的各電晶體τΐ、T2變成不導通。 各電晶體ΤΙ、Τ2變成不導通時,電流不會流向像素 11 一1 1 ~ 1 1 _m 1、1 1 _1 3 ~ 1 1 _m3.....11 _ 1 n~ 11 _mn,而各自從 資料線Ldl ~Ldm切斷。 又’選擇驅動器14向選擇線Lsl2輸出導通位準的信 號時’像素11_12〜ll_m2的各電晶體τΐ、T2變成導通。電 晶體T1變成導通時,電晶體T3亦變成導通。 電流分別從資料驅動器13的電流供給電路 m 139-l~139-m’ 經由資料線 Ldl 〜Ldm、各像素 ii_i2~ll_m2 的電晶體T2,而向有機電致發光元件U1流動。 資料驅動器13的A/D轉換器133-l~l33-m各自經由像 素11_12〜ll_m2的各電晶體T2、資料線Ldl~Ldm、開關 測量有機電致發光元件hi的電壓VEL, 再轉換成數位的電壓VEL。 修正電路134-l~134-m之發光效率抽出部— m ❿ 各自參照LUT’並抽出和A/D轉換器133-1〜133-m已轉換 之數位的電壓VEL對應的發光效率〇 ,再將所抽出之發光 效率7?記憶於記憶體137-1〜137-m。 控制部 15 —樣地控制各部成,使選擇像素 11 _ 1 3 ~ 1 1 _m3.....11 _ 1 n~ 11 _mn,並對每—列測量有機電 致發光元件111的電壓VEL。 其次,說明根據驅動資料而顯示驅動各像素U_ij之有 機電致發光元件111時的動作。 被供給圖像資料時,發光裝置對各像素11 n~ll_mn -63- 200950576 寫入驅動資料Vdata。控制部15和測量電壓VEL時一樣, 如第19圖所示,控制陽極電路12的開關122,使陽極線 La和接地線124連接,而陽極線La成爲接地電位。 控制部15控制開關1311-l~1311-m成,使其分別將資 料線Ld卜Ldm、資料驅動器13的電流供給電路i39-l~139-m 以及A/D轉換器133-l~133-m切斷。 接著,控制部15選擇第1列的像素im — umi。爲 了選擇像素控制部15控制選擇驅動器14, 使其分別向選擇線Ls 12 ~Ls In輸出不導通位準的信號,向 選擇線Ls 11輸出導通位準的信號。 又,選擇驅動器14向選擇線Lsl2~Lsln輸出不導通位 準的信號時,像素1 1_12〜1 l_m2.....1 1 _ 1 η~ 1 1 _mn之各電 晶體ΤΙ、T2變成不導通。 各電晶體ΤΙ、T2變成不導通時,各電晶體T3亦變成 不導通,電流將不會流向像素 ll_12~ll_m2..... ll_ln~ll_mn,各自切斷資料線Ld卜Ldm。 選擇驅動器14向選擇線Ls 11輸出導通位準的信號 時,像素之各電晶體ΤΙ、T2變成導通。各電 晶體T1變成導通時,各電晶體T3亦變成導通。 修正電路134-1〜134-m各自的運算部138-1〜138-m從記 憶體137-l~137-m讀出像素ll_ll~ll_ml的發光效率7?。 然後,運算部138-1〜138-m各自爲了得到因應於所供 給之圖像資料的亮度,根據所讀出之發光效率〃而修正電 流値,再根據此電流修正値而求得驅動資料Vdata。 200950576 部 壓 線 時 施 Ο 接 極 12 資 ❹ 各 以 性 流 電 電 度 資料驅動器13的D/A轉換器135-l~135-m各自將運算 138-1〜138-m所求得之驅動資料Vdata轉換成類比之負電 的寫入電壓Vd。 控制部15控制開關1312-1〜1312-m,使其各自將資料 Ldl〜Ldm和D/A轉換器135-1〜135-m連接。 資料線Ldl〜Ldm和D/A轉換器l35-l~135-m各自連接 ’ D/A轉換器i35-l~135-m各自將負電壓的寫入電壓Vd 加於資料線Ldl ~Ldm。 在像素11_11〜各有機電致發光元件111的陰極 地’因爲陽極線La亦成爲接地電位,所以電流不會從陽 電路12流向有機電致發光元件 又’因爲寫入電壓Vd是負電壓,所以電流從陽極電路 ’經由陽極線La、像素11_11〜ll_ml之各電晶體T3、T2、 料線Ldl〜Ldm,而向D/A轉換器135-卜135-m流動。 因爲像素之各電晶體T1變成導通,所以 電晶體T3進行二極體連接。因而,電晶體T3如第6圖 動作點P2所示,在飽和區域進行動作,因應於二極體特 之汲極電流向電晶體T3流動。 電晶體T1變成導通,因爲汲極電流Id向向電晶體T3 動,所以電晶體T3的閘極電壓Vgs被設定成對應於汲極 流Id的電壓,並以此閘極電壓Vgs對電容器C1進行充 〇 依此方式,爲了得到因應於所供給之圖像資料的亮 ,而對像素之各電晶體T3的閘極-源極間, -65- 200950576 以根據電壓VEL已修正的電流値進行寫入。 接著,控制部15選擇第2列的像素11_12〜ll_m2。爲 了選擇像素ll_12~ll_m2,控制部15控制選擇驅動器14 成,使其分別向選擇線Lsll、Lsl3~Lsln輸出不導通位準 的信號,並向選擇線Ls 12輸出導通位準的信號。 選擇驅動器14向選擇線Lsll、Lsl3~Lsln輸出不導通 位準的信號時,像素11_11〜ll_ml 、 11_13〜ll_m3 ..... ll_ln〜ll_mn的各電晶體ΤΙ、T2變成不導通。 像素ll_ll~ll_ml的各電晶體ΤΙ、T2變成不導通時, 電晶體T3之閘極電壓Vgs被保持於業已寫入電容器C1的 電壓。 選擇驅動器14向選擇線Lsl2輸出導通位準的信號 時,像素ll_12~ll_m2的各電晶體ΤΙ、T2變成導通。電晶 體T1變成導通時,電晶體T3亦變成導通。 修正電路134-1〜134-m之各自的運算部138-l~138-m從 記億體137-1〜137-m讀出像素ll_12~ll_m2的發光效率 ;?,並將電流値修正成可得到因應於所供給之圖像資料的 亮度,再根據已修正的電流値而求得驅動資料Vdata。 資料驅動器13的D/A轉換器135-1〜135-m各自將運算 部138-l~138-m所求得之驅動資料Vdata轉換成類比之負電 壓的寫入電壓Vd。 然後,資料驅動器13以寫入電壓Vd,對所選擇之像 素ll_12~ll_m2之電晶體T3的閘極-源極間寫入驅動資料 Vdata。 200950576 依此方式,控制部15依序選擇像素U_13~ll_m3..... 1 1 _1n~11_mn。 對全部的像素ll_ij進行這種寫入時,控制部15控制 各部,使各像素11 _ij的有機電致發光元件111進行發光。 控制部15如第20圖所示,控制陽極電路12的開關 122,以將陽極線La和電壓Vsrc的電源連接。 控制部15持續控制開關1311-l~1311-m,使其各自將 資料線 Ldl〜Ldm、資料驅動器 13的電流供給電路 V 139-1 〜139-m 以及 A/D 轉換器 133-l~133-m 切斷。 控制部15控制開關1312-1〜1312-m,使其各自將資料 線 Ldl~Ldm 和 D/A 轉換器 135-l~135-m 切斷。 選擇驅動器14向選擇線Ls 11 ~Ls In輸出不導通位準的 信號。選擇驅動器14向選擇線Lsll〜Lsln輸出不導通位準 的信號時,全部之像素ll_ij的各電晶體ΤΙ、T2變成不導 通。 ϋ 全部之像素ll_ij,因爲各電晶體T2變成不導通,所 以從資料線Ldl〜Ldm切斷。 可是,因爲對全部之像素11 _ij的電晶體T3的閘極-源極間寫入驅動資料Vdata,所以電流向各電晶體T3流動》 因此,施加電壓Vsrc時,電流從陽極電路12經由陽 極線La、各像素11 _ij的各電晶體T3,而向有機電致發光 元件Π 1流動。 第6圖係表示電晶體T3之汲極-源極間電壓Vds對汲 極-源極間電流Ids特性和有機電致發光元件1 1 1之負載線 -67- 200950576 SPel的圖。因爲藉電容器(:丨保持各像素u_ij之電晶體Τ3 的閘極電壓Vgs,所以電晶體Τ3的動作點如第6圖所示’ 成爲是所保持之閘極電壓Vgs的動作線和有機電致發光元 件111之負載線SPel的交點的動作點P3。電壓Vsrc的電 壓値被設定成此動作點P3成爲電晶體T3在飽和區域進行 動作之狀態的電壓値。 此外,在第6圖,p〇是夾止點,Vth是臨限値電壓, 汲極-源極間電壓Vds之從0V至夾止電壓爲止的區域是不 飽和區域,汲極-源極間電壓Vds之夾止電壓以上的區域是 飽和區域。 而,和寫入驅動資料Vdata時之寫入電流相同之電流 値的汲極電流Id向電晶體T3的閘極-源極間流動。電晶體 T2變成不導通,因爲成爲有機電致發光元件111之陽極側 的電位比陰極側的電位髙之狀態,所以將此汲極電流Id供 給有機電致發光元件111。 此時,根據所測量之電壓VEL而修正向各像素ll_ij 的有機電致發光元件111流動的電流。 例如,對像素11_1 1的有機電致發光元件11 1,因應於 所供給之圖像資料的亮度是5000 cd/m2,在有機電致發光 元件1 1 1之所量測的電壓VEL是8.30V的情況,若不修正, 亮度降至3 000 cd/m2。 在此情況,發光效率抽出部13 6-1參照第4圖所示的 1^1',從電壓丫£1> = 8.3(^,取得發光效率7?=〇.6。 運算部138-1參照記憶體137-1,並取得7? =〇.6,作爲 200950576 用以得到亮度5000 cd/m2的電流値,將電流起始値lei_〇變 成1/77=1.67倍,而取得電流修正値Iel_l。 即,修正成使電流起始値Iel_〇之1.67倍的電流流向 像素11_11的有機電致發光元件111’結果,有機電致發光 元件1 1 1以亮度5000 cd/m2進行發光。 如以上之說明所示,若依據本實施形態,控制部1 5將 每一列控制成各像素1 l_ij的電晶體ΤΙ、T2變成導通,再 控制各部成,使定電流從資料驅動器13被供給各像素11 _ij ® 的有機電致發光元件111,並測量有機電致發光元件111 的電壓VEL。 又,資料驅動器13爲了得到因應於所供給之圖像資料 的亮度,作成根據所測量的電壓VEL而修正電流値,再向 各像素 U_ij之電晶體T3的閘極-源極間寫入驅動資料 Vdata。 因此,可補償各像素ll_ij之有機電致發光元件111 @ 的特性變動。 又,顯示驅動裝置作成對每一行配置RGB的有機電致 發光元件1 1 1,並對每一行測量電壓VEL。 如上述所示,在RGB三原色的情況,一般對每一行塗 布RGB的發光材料。若有機電致發光元件111的材料相 異,其劣化的程度亦相異。可是,藉由對每一列測量電壓 VEL,所以不必考慮這種材料的相異,並可測量以相同之材 料所產生之有機電致發光元件111的電壓VEL。 又,即使在因發光材料之塗布不均而產生特性之變動 -69- 200950576 的情況,亦可補償各像素11 _ij之有機電致發光元件111 的特性變動。 發光材料之電阻値和金屬相異,和半導體差不多高。 在發光材料有塗布不均的情況,所塗布之發光材料之厚度 的變動對有機電致發光元件111的特性亦有影響。 然而,爲了在製造、出貨時等對各有機電致發光元件 111的電壓VEL進行測量,並得到所供給之圖像資料的亮 度,藉由根據所測量的電壓VEL而修正電流値,可補償各 像素1 l_ij之有機電致發光元件1 1 1的特性變動。 此外,在實施本發明時,有各種形態,未限定爲上述 的實施形態。 例如,在上述的實施形態,以有機電致發光元件說明 發光元件。可是,發光元件未限定爲有機電致發光元件, 例如亦可是無機電致發光元件或LED。 第2圖所示之有機電致發光元件之發光效率和電壓的 關係是依有機電致發光元件之發光材料等而變,未必限定 爲這種。又,第1圖所示的LUT亦一樣,未限定爲這種。 又,在上述的各實施形態,雖然說明將本發明應用於 將具有發光元件之複數個像素排列成陣列狀之具有發光區 域的顯示裝置的情況,但是本發明未限定如此。例如,亦 可應用於發光裝置,其具有將具有發光元件之複數個像素 朝向一方向排列的發光元件陣列,並構成將因應於圖像資 料而進行發光的光照射於感光體鼓而進行曝光的曝光裝 置。 -70- 200950576 此外,關於本專利申請,主張以日本專利申請特願 2009-38663號及特願2008-92020號爲基礎的優先權,將該 基礎專利申請的內容全部編入本專利申請。 【圖式簡單說明】 第1圖係表示本發明之第1實施形態的顯示裝置的構 成圖。 第2圖係表示有機電致發光元件的發光效率和電壓之 關係圖。 ❹ 第3圖係表示第1圖所示之修正電路的構成圖。 第4圖係表示第3圖、第17圖所示之發光效率抽出部 所記憶的LUT(Look Up Table :查找表)的圖。 第5圖係表示在第1圖所示之顯示裝置中之有機電致 發光元件的電壓測量動作(1行平均的情況)的圖。 第6圖係表示第1圖、第16圖所示之電晶體的動作區 域(汲極電壓和汲極電流的關係)的圖。 @ 第7圖係表示在第1圖所示之顯示裝置之顯示動作用 的寫入動作的圖。 第8圖係表示第1圖所示之顯示裝置之在顯示動作中 的發光動作的圖。 第9圖係表示在本發明之第2實施形態的顯# 之有機電致發光元件的電壓測量動作(1列平均$胃& > @ 圖。 第10圖係表示本發明之第3實施形態的顯示裝®的構 成圖。 -71 - 200950576 第11圖係表示在第10圖所示的顯示裝置之用以對每 個像素測量有機電致發光元件的電壓的電壓寫入動作圖。 第12圖係表示在第10圖所示的顯示裝置之對每個像 素測量有機電致發光元件的電壓的動作圖。 第13圖係表示本發明之第4實施形態的顯示裝置的構 成圖。 第14圖係表示在第13圖所示的顯示裝置之用以對每 個像素測量有機電致發光元件的電壓的電壓寫入動作圖。 第15圖係表示在第13圖所示的顯示裝置之用以對每 個像素測量有機電致發光元件的電壓的動作圖。 第16圖係表示本發明之第5實施形態的發光裝置之構 成的方塊圖。 第17圖係表示第16圖所示之修正電路的構成圖。 第18圖係表示第16圖所示之有機電致發光元件的電 壓測量動作的圖。 第19圖係表示第16圖所示之發光裝置的寫入動作的 圖。 第20圖係表示第16圖所示之發光裝置的發光動作的 圖。 【主要元件符號說明】 1 〇 發光區域 1 1 _ 1 1 ~ 1 1 _mn 像素 !2 陽極電路 1 3 資料驅動器 -72- 200950576Each of the switches 1312-1 to 1312-m connects and disconnects the data lines Ld1 to Ldm and the output terminals of the D/A converters 135-1 to 135-m. The selection driver 14 is controlled by the control unit 丨5 and is used to select a pixel for each column, for example, with a shift register. The selection driver 14 outputs a signal having a conduction level or a non-conduction level to the selection lines Lsll to Lsln, respectively. The control unit 15 controls each unit. The control unit 15 controls the respective units, and corrects the current 値 of the current supplied when the drive signal 200950576 is written, based on the fluctuation of the voltage VEL of the organic electroluminescent element 111, thereby obtaining the required condition, and the control unit 15 performs the correction. Step, image display step correction step is to measure the voltage VEL of the organic electroluminescence of each pixel 11_ij, and extract the corresponding to the measured relationship from the previously measured relationship with the luminous efficiency 7? as shown in FIG. The step of voltage light efficiency 77. The image display step is to correct the current 値 according to 7? when the image data is supplied, and to obtain the brightness corresponding to the supplied picture, and then write the corresponding driving data Vdata between the pixels ιι_ - source. Each of the organic electroluminescent elements 111 is caused to emit light. Further, the light-emitting device performs the measurement of the voltage VEL using a fixed time every day, for example, at the time of power-on. When the measurement of the voltage VEL is performed, the control unit 15 control circuit 12, the data driver 13 and the selection driver 14 are formed so that the current supply circuits 139-1 to 139-m pass through the light-emitting elements 1 1 1 of the respective pixels 11_ij. Flow to the ground line 1 1 2 . In the case where writing of the drive data Vdata is performed, the flow of the control anode circuit 12, the data driver 13, and the selection driver 14 from the anode circuit 12 does not flow to the organic electroluminescence 111 of each pixel 11_ij, and flows to the data driver 13. In the case where the organic electroluminescent element 111 is caused to emit light, the anode circuit 12, the data driver 13, and the selective driving are controlled to supply current to the organic electric power according to the electric gate voltage Vgs written by the capacitor C1 of each pixel 11_ij. The brightness of the luminescent element π. Step. I component 1 1 1 Voltage VEL VEL The luminous efficiency is the step of the ij gate of the data. Or, the anode current constant current is controlled from the electroluminescence type 15 to make the electroluminescence element, the control unit 14 is formed, and the body Τ3 is .1 0 - 59 - 200950576. Next, the illuminating device of the embodiment will be described. Actions. First, the operation when the voltage VEL of the organic electroluminescent element m of each pixel 11_ij is measured will be described. The control unit 15 of the light-emitting device controls each unit, selects each pixel 11 of each column, and measures the voltage VEL of each of the organic electroluminescent elements 11 1 in the selected column. In order to measure the voltage VEL, the control unit 15 controls the switch 122 of the anode circuit 12 to connect the anode line La and the ground line 124 as shown in Fig. 18. The control unit 15 can control the anode line La and the cathode of the organic electroluminescent element 111 to have the same potential. The control unit 15 selects, for example, the pixels 11_11 to 11_ml of the first column. In order to select the pixels ll_ll~ll_ml, the control unit 15 controls the selection driver 14 to output a signal of the conduction level to the selection line Ls11, and outputs a signal of the non-conduction level to the selection lines Lsl2 to Lsln". Selecting the driver 14 to the selection line Lsl2 When Lsln outputs a signal that does not conduct a level, the transistors ΤΙ and T2 of the pixels 11_12 to 11_m2.....ll_ln~ll_mn become non-conductive. When the transistors T 1 of the pixels 1 1_12~1 l_m2.....1 1 _ 1 η~ 1 1 _mn become non-conducting, the transistors T3 become non-conducting, and the current does not flow to the pixels 11_12~ll_m2, ... , ll_ln~ll_mn. When the transistors T2 of the pixels . . . Π - 1 η 〜 1 1 become non-conductive, when the transistors ΤΙ and T2 of the pixels 11_12 to 11_m2, ..., n_ln to ii_mE become non-conductive, The pixel 11_12~1 l_m2.....11 - 1 n~ 11-mn is cut off from the data line Ld! ~Ldin. When the selection driver 14 outputs the conduction level signal 200950576 to the selection line Ls11, when the transistors ΤΙ and T2 of the pixels 1 1_1 1 to 1 l_ml become the conduction transistors Τ1 become conductive, the gate-source of each transistor Τ3 is performed. The diodes are connected and become conductive. The control unit 15 controls the switches 1312-1 to 1312-m to cut off the respective lines Ldl to Ldm and the D/A converters 135-1 to 135-m. \ Control unit 1 5 controls the switches 1 3 1 1 -1 to 1 3 11 -m so that the respective lines Ld1 and the current supply circuit 139.1 of the data driver 13 are connected by the converter 133-1. The Ldm is connected to the current supply electric v and the A/D converter 133-m. Further, in the pixels 11_1 to 11_ml, the cathode of each organic electroluminescence is grounded, and the anode line La becomes a ground potential. Therefore, when the data line Ld1 is connected to the current 139-1 of the data driver 13 and the A/D converter 133-1, and the constant current is supplied from the current supply, since the source of the transistor T3 of the pixel 11_11 is extremely high, Therefore, the current does not flow to the drain φ of the transistor T3, and the constant current supplied from the current supply circuit 1 39-1 is supplied from the current supply circuit 139.1 of the power supply 13 through the data line Ld1 and the transistor T2. The organic electroluminescent element in is set to the ground line 1 where the constant current supplied from the current supply circuit 139_1 is set to be equal to the current start 値lel_0 (detection current), the data line Ld2 and the current Supply circuit 139-2 Converter 133-2..... When the data line Ldm is connected to the current supply circuit and the A/D converter 133-m, the constant current is supplied from the data current supply circuit 139-1 to each pixel. Ιι_ιι~n_mi pass. Each power is connected, and the data is supplied from the data and the A/D circuit 1 3 9 - m element 1 1 1 to the circuit i. The path 139-1 becomes the ratio-source, and the material driver [1 1_1 1 1 12 flows . The current 値 is turned on and the A/D 139-m is applied to the ground line 112 by the organic light -61 - 200950576 of the actuator 13. The A/D converters 133-1 to 133-m of the data driver 13 respectively measure the drains of the transistor T2 and the organic electroluminescent element 111 via the respective transistors T2 of the pixels 11_11 to 11_ml, the data lines Ld1 to Ldm, and the switch. The voltage at the junction of the anode. This voltage becomes the voltage VEL of the organic electroluminescent element 111. In this manner, the A/D converters 133-1 to 133-m measure the voltage VEL of the organic electroluminescent element 1 11 , respectively. In addition, the conduction current resistance of each transistor 'T2 of each pixel 1 1_1 1 to 1 l_ml is almost negligible because the gate voltage Vgs is high, and each of the A/D converters 133-1 to 133-m The analog voltage VEL is converted to a digital voltage VEL. The luminous efficiency extracting sections 136-1 to 136-m of the correcting circuits 134-1 to 134-m each refer to the LUT, and extract the luminous efficiency 7? corresponding to the converted voltage VEL. The luminous efficiency extracting portions 136-1 to 136-m each store the extracted luminous efficiency 7? in the memory bodies 137-1 to 137-m. ^ When the luminous efficiency extracting portions 136-1 to 136-m each store the extracted luminous efficiency in the memory 137-1-137-m, the control unit 15 selects the pixels 1 1_12 to 1 l_m2 in the second column. In order to select the pixel 11 _ 1 1 1 _m2 of the second column, the control unit 15 controls the selection driver 14 to output a signal of the conduction level to the selection line Ls 12, and outputs a non-conduction bit to the selection lines Ls11, Lsl3 to Lsln. Quasi-signal. When the selection driver 14 outputs a signal of a non-conducting level to the selection lines Ls 11 and Ls 13 to Ls In, the respective transistors τ ΐ, T2 of the pixels 11_1, 11_13~1l_m3 ..... -62- 200950576 ll-ln~ll_mn Becomes non-conducting. When the transistors ΤΙ and Τ2 become non-conductive, the current does not flow to the pixels 11 -1 1 ~ 1 1 _m 1 , 1 1 _1 3 ~ 1 1 _m3.....11 _ 1 n~ 11 _mn, and each The data line Ldl ~ Ldm is cut. Further, when the selection driver 14 outputs a signal of the conduction level to the selection line Ls12, the transistors τ and T2 of the pixels 11_12 to 11_m2 become conductive. When the transistor T1 becomes conductive, the transistor T3 also becomes conductive. The current flows from the current supply circuits m 139-1 to 139-m' of the data driver 13 to the organic electroluminescent element U1 via the data lines Ld1 to Ldm and the transistors T2 of the respective pixels ii_i2 to ll_m2. The A/D converters 133-1 to l33-m of the data driver 13 respectively measure the voltage VEL of the organic electroluminescent element hi via the respective transistors T2 and Ld to Ldm of the pixels 11_12 to 11_m2, and convert them into digital bits. Voltage VEL. The light-emitting efficiency extracting portions of the correcting circuits 134-1 to 134-m - m 各自 respectively refer to the LUT' and extract the luminous efficiency corresponding to the voltage VEL of the converted digits of the A/D converters 133-1 to 133-m, and then The extracted luminous efficiency 7 is stored in the memory 137-1 to 137-m. The control unit 15 controls the respective components such that the pixels 11 _ 1 3 to 1 1 _m3.....11 _ 1 n to 11 _mn are selected, and the voltage VEL of the organic electroluminescent element 111 is measured for each column. Next, an operation when the electroluminescent element 111 for driving each pixel U_ij is displayed in accordance with the driving data will be described. When the image data is supplied, the light-emitting device writes the drive data Vdata to each of the pixels 11 n to ll_mn - 63 - 200950576. Similarly to the case of measuring the voltage VEL, the control unit 15 controls the switch 122 of the anode circuit 12 to connect the anode line La and the ground line 124, and the anode line La becomes a ground potential as shown in Fig. 19. The control unit 15 controls the switches 1311-1 to 1311-m to respectively supply the data lines Ld and Ldm, the current supply circuits i39-1 to 139-m of the data driver 13, and the A/D converters 133-1 to 133- m cut off. Next, the control unit 15 selects the pixel im_umi of the first column. The selection pixel control unit 15 controls the selection driver 14 to output a signal of a non-conduction level to the selection lines Ls 12 to Ls In, and outputs a signal of a conduction level to the selection line Ls 11. Further, when the selection driver 14 outputs a signal of a non-conduction level to the selection lines Lsl2 to Lsln, the transistors ΤΙ and T2 of the pixels 1 1_12 to 1 l_m2.....1 1 _ 1 η~ 1 1 _mn become non-conductive. . When each transistor ΤΙ and T2 become non-conductive, each transistor T3 also becomes non-conductive, and the current does not flow to the pixels ll_12~ll_m2.....ll_ln~ll_mn, and the data line Ldb Ldm is cut off. When the selection driver 14 outputs a signal of the conduction level to the selection line Ls 11, the transistors ΤΙ and T2 of the pixel become conductive. When each of the transistors T1 is turned on, each of the transistors T3 is also turned on. The calculation units 138-1 to 138-m of the correction circuits 134-1 to 134-m read out the luminous efficiency 7? of the pixels 11_ll to 11_ml from the memory bodies 137-1 to 137-m. Then, in order to obtain the brightness corresponding to the supplied image data, the calculation units 138-1 to 138-m correct the current 根据 according to the read luminescence efficiency 値, and then obtain the drive data Vdata based on the current correction 値. . 200950576 When the pressure line is applied, the pole 12 is used. The D/A converters 135-1 to 135-m of each of the galvanic power data drivers 13 respectively drive the data obtained by the operations 138-1 to 138-m. Vdata is converted to an analog negative write voltage Vd. The control unit 15 controls the switches 1312-1 to 1312-m to connect the data Ldl to Ldm and the D/A converters 135-1 to 135-m, respectively. The data lines Ldl to Ldm and the D/A converters 135-1 to 135-m are connected to each other. The D/A converters i35-1 to 135-m each add a write voltage Vd of a negative voltage to the data lines Ld1 to Ldm. In the cathode 11_11 to the cathode of each of the organic electroluminescent elements 111, since the anode line La also becomes a ground potential, current does not flow from the anode circuit 12 to the organic electroluminescent element. Since the write voltage Vd is a negative voltage, the write voltage Vd is a negative voltage. The current flows from the anode circuit 'to the D/A converter 135- 135-m via the anode line La, the transistors T3 and T2 of the pixels 11_11 to 11_ml, and the feed lines Ld1 to Ldm. Since each of the transistors T1 of the pixel becomes conductive, the transistor T3 is connected by a diode. Therefore, as shown in the operation point P2 of Fig. 6, the transistor T3 operates in the saturation region, and flows to the transistor T3 in response to the diode-specific blip current. The transistor T1 becomes conductive because the drain current Id is moved toward the transistor T3, so the gate voltage Vgs of the transistor T3 is set to correspond to the voltage of the drain current Id, and the gate voltage Vgs is used to conduct the capacitor C1. In this way, in order to obtain the brightness of the supplied image data, the gate-source of each transistor T3 of the pixel is -65-200950576 written with the current 修正 corrected according to the voltage VEL In. Next, the control unit 15 selects the pixels 11_12 to 11_m2 in the second column. In order to select the pixels ll_12 to ll_m2, the control unit 15 controls the selection driver 14 to output signals of non-conduction levels to the selection lines Ls11 and Lsl3 to Lsln, respectively, and outputs a signal of the conduction level to the selection line Ls12. When the selection driver 14 outputs a signal indicating a non-conduction level to the selection lines Ls11 and Lsl3 to Lsln, the transistors ΤΙ and T2 of the pixels 11_11 to ll_ml, 11_13 to ll_m3 ..... ll_ln to ll_mn become non-conductive. When the transistors ΤΙ and T2 of the pixels ll_ll to ll_ml become non-conductive, the gate voltage Vgs of the transistor T3 is held at the voltage that has been written to the capacitor C1. When the selection driver 14 outputs a signal of the conduction level to the selection line Ls12, the transistors ΤΙ and T2 of the pixels 11_12 to 11_m2 become conductive. When the transistor T1 becomes conductive, the transistor T3 also becomes conductive. The calculation units 134-1 to 138-m of the correction circuits 134-1 to 134-m read the luminous efficiency of the pixels 11_1 to 11_m2 from the cells 137-1 to 137-m, and correct the current 成 to The drive data Vdata can be obtained based on the corrected current 値 in response to the brightness of the supplied image data. The D/A converters 135-1 to 135-m of the data driver 13 convert the drive data Vdata obtained by the arithmetic units 134-1 to 138-m into the write voltage Vd of the analog negative voltage. Then, the data driver 13 writes the drive data Vdata between the gate and the source of the transistor T3 of the selected pixel 11_12 to 11_m2 with the write voltage Vd. In this manner, the control unit 15 sequentially selects pixels U_13~ll_m3.....1 1 _1n~11_mn. When such writing is performed on all of the pixels 11_ij, the control unit 15 controls the respective sections so that the organic electroluminescent elements 111 of the respective pixels 11_ij emit light. As shown in Fig. 20, the control unit 15 controls the switch 122 of the anode circuit 12 to connect the anode line La and the power source of the voltage Vsrc. The control unit 15 continuously controls the switches 1311 to 1311-m to supply the data lines Ld1 to Ldm, the current supply circuits V 139-1 to 139-m of the data driver 13, and the A/D converters 133-1 to 133. -m cut off. The control unit 15 controls the switches 1312-1 to 1312-m to cut off the data lines Ldl to Ldm and the D/A converters 135-1 to 135-m, respectively. The selection driver 14 outputs a signal of a non-conduction level to the selection lines Ls 11 to Ls In. When the selection driver 14 outputs a signal of a non-conduction level to the selection lines Ls11 to Lsln, the transistors ΤΙ and T2 of all the pixels 11_ij become non-conductive. ϋ All the pixels ll_ij, since each of the transistors T2 becomes non-conductive, it is cut off from the data lines Ld1 to Ldm. However, since the drive data Vdata is written between the gate and the source of the transistor T3 of all the pixels 11_ij, the current flows to the respective transistors T3. Therefore, when the voltage Vsrc is applied, the current flows from the anode circuit 12 to the anode line. La, each transistor T3 of each pixel 11_ij flows to the organic electroluminescent element Π1. Fig. 6 is a view showing the drain-source-to-source voltage Vds of the transistor T3 versus the drain-source current Ids characteristic and the load line of the organic electroluminescent element 11 1 -67-200950576 SPel. Since the capacitor (: 丨 holds the gate voltage Vgs of the transistor Τ3 of each pixel u_ij, the operating point of the transistor Τ3 is as shown in FIG. 6 'being the action line and the organic electro-optic of the gate voltage Vgs held The operating point P3 at the intersection of the load line SPel of the light-emitting element 111. The voltage 値 of the voltage Vsrc is set such that the operating point P3 becomes a voltage 状态 in a state in which the transistor T3 operates in the saturation region. Further, in Fig. 6, p〇 Is the pinch point, Vth is the threshold voltage, and the region from the 0V to the pinch voltage of the drain-source voltage Vds is an unsaturated region, and the region above the clamping voltage of the drain-source voltage Vds It is a saturated region. However, the drain current Id of the current 相同 which is the same as the write current when the drive data Vdata is written flows between the gate and the source of the transistor T3. The transistor T2 becomes non-conductive because it becomes organic electricity. Since the potential on the anode side of the light-emitting element 111 is lower than the potential on the cathode side, the drain current Id is supplied to the organic electroluminescent element 111. At this time, the correction to the respective pixels 11_ij is performed based on the measured voltage VEL. Electromechanical The current flowing through the element 111. For example, the organic electroluminescent element 11 1 for the pixel 11_1 1 is measured by the organic electroluminescent element 11 1 in response to the brightness of the supplied image data being 5000 cd/m 2 . The voltage VEL is 8.30 V, and if not corrected, the luminance is reduced to 3 000 cd/m 2 . In this case, the luminous efficiency extracting portion 13 6-1 refers to the 1^1' shown in Fig. 4, and the voltage is 丫1> = 8.3 (^, the luminous efficiency is 7? = 〇.6. The computing unit 138-1 refers to the memory 137-1 and obtains 7? = 〇.6, which is used as a current of 200950576 to obtain a current of 5000 cd/m2.値, the current start 値lei_〇 is changed to 1/77=1.67 times, and the current correction 値Iel_l is obtained. That is, the organic electroluminescence which is corrected to a current of 1.67 times the current start 値Iel_〇 is applied to the pixel 11_11. As a result of the element 111', the organic electroluminescent element 11 1 emits light at a luminance of 5000 cd/m2. As described above, according to the present embodiment, the control unit 15 controls each column to the electric power of each pixel 1 l_ij. The crystal ΤΙ and T2 become conductive, and then the respective components are controlled so that a constant current is supplied from the data driver 13 to each pixel 11 _ij The organic electroluminescent element 111 measures the voltage VEL of the organic electroluminescent element 111. Further, the data driver 13 corrects the current 根据 according to the measured voltage VEL in order to obtain the brightness corresponding to the supplied image data. Further, the drive data Vdata is written between the gate and the source of the transistor T3 of each pixel U_ij. Therefore, the characteristic variation of the organic electroluminescent element 111 @ of each pixel 11_ij can be compensated. Further, the display driving means is configured to arrange RGB organic electroluminescent elements 11 1 for each row and measure the voltage VEL for each row. As described above, in the case of the RGB three primary colors, RGB luminescent materials are generally applied to each row. If the materials of the organic electroluminescent elements 111 are different, the degree of deterioration is also different. However, by measuring the voltage VEL for each column, it is not necessary to consider the difference of the materials, and the voltage VEL of the organic electroluminescent element 111 produced by the same material can be measured. Further, even in the case where the variation of the characteristics is caused by the uneven coating of the luminescent material -69 to 200950576, the characteristic variation of the organic electroluminescent element 111 of each pixel 11_ij can be compensated. The resistance of the luminescent material is different from that of the metal, which is almost as high as that of the semiconductor. In the case where the luminescent material is unevenly coated, the variation in the thickness of the applied luminescent material also affects the characteristics of the organic electroluminescent element 111. However, in order to measure the voltage VEL of each of the organic electroluminescent elements 111 at the time of manufacture, shipment, etc., and obtain the brightness of the supplied image data, the current 値 can be corrected by correcting the current 根据 according to the measured voltage VEL. The characteristics of the organic electroluminescent element 11 1 of each pixel 1 l_ij fluctuate. Further, in the practice of the present invention, there are various forms and are not limited to the above embodiments. For example, in the above embodiment, the light-emitting element will be described with an organic electroluminescence device. However, the light-emitting element is not limited to an organic electroluminescence element, and may be, for example, an inorganic electroluminescence element or an LED. The relationship between the luminous efficiency and the voltage of the organic electroluminescence device shown in Fig. 2 varies depending on the luminescent material of the organic electroluminescence device, etc., and is not necessarily limited thereto. Further, the LUT shown in Fig. 1 is also the same, and is not limited to this. Further, in the above embodiments, the present invention has been described as applied to a display device having a light-emitting region in which a plurality of pixels having light-emitting elements are arranged in an array, but the present invention is not limited thereto. For example, it can also be applied to a light-emitting device having a light-emitting element array in which a plurality of pixels having light-emitting elements are arranged in one direction, and is configured to emit light that emits light in response to image data onto a photoreceptor drum for exposure. Exposure device. In addition, the priority of the Japanese Patent Application No. 2009-38663 and the Japanese Patent Application No. 2008-92020 is hereby incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of a display device according to a first embodiment of the present invention. Fig. 2 is a graph showing the relationship between the luminous efficiency and the voltage of the organic electroluminescence device. ❹ Fig. 3 is a view showing the configuration of the correction circuit shown in Fig. 1. Fig. 4 is a view showing an LUT (Look Up Table) stored in the luminous efficiency extracting unit shown in Figs. 3 and 17 . Fig. 5 is a view showing a voltage measuring operation (in the case of one line averaging) of the organic electroluminescent element in the display device shown in Fig. 1. Fig. 6 is a view showing the operation region (the relationship between the drain voltage and the drain current) of the transistor shown in Figs. 1 and 16. @ Fig. 7 is a view showing a write operation for display operation of the display device shown in Fig. 1. Fig. 8 is a view showing a light-emitting operation of the display device shown in Fig. 1 during a display operation. Fig. 9 is a view showing a voltage measurement operation of an organic electroluminescence device according to a second embodiment of the present invention (1 column average $ stomach &> @图. Fig. 10 shows a third embodiment of the present invention. Fig. 11 is a diagram showing a voltage writing operation diagram for measuring the voltage of the organic electroluminescent element for each pixel in the display device shown in Fig. 10. Fig. 13 is a view showing the operation of measuring the voltage of the organic electroluminescent element for each pixel in the display device shown in Fig. 10. Fig. 13 is a view showing the configuration of the display device according to the fourth embodiment of the present invention. Fig. 14 is a view showing a voltage writing operation for measuring the voltage of the organic electroluminescent element for each pixel in the display device shown in Fig. 13. Fig. 15 is a view showing the display device shown in Fig. 13. Fig. 16 is a block diagram showing a configuration of a light-emitting device according to a fifth embodiment of the present invention. Fig. 17 is a view showing a configuration of a light-emitting device according to a fifth embodiment of the present invention. Correction of the circuit diagram. Figure 18 Fig. 19 is a view showing a writing operation of the light-emitting device shown in Fig. 16. Fig. 20 is a view showing a writing operation shown in Fig. 16. Diagram of the light-emitting operation of the light-emitting device [Description of main component symbols] 1 〇Light-emitting area 1 1 _ 1 1 ~ 1 1 _mn Pixel! 2 Anode circuit 1 3 Data driver-72- 200950576

14 15 16 17 111 112 121 122 、 123 124 134- l~134-m 131- l~131-m 132- 1〜132-m 133- l~133-m 135- l~135-m 136- 1〜136-m 137- l~137-m 138- 1〜138-m 139- 1〜139-m La T1 〜T3 Cl Ldl~Ldm L s 1 1 ~ L s 1 n V s r c VEL 選擇驅動器 控制部 第2選擇驅動器 開關驅動器 有機電致發光元件 接地線 電流供給電路 開關 接地線 修正電路 開關 緩衝器 A/D轉換器 D/A轉換器 發光效率抽出部 記憶體 運算部 電流供給電路 陽極線 電晶體 電容器 資料線 選擇線 電壓 電壓 -73-14 15 16 17 111 112 121 122 , 123 124 134- l~134-m 131- l~131-m 132- 1~132-m 133- l~133-m 135- l~135-m 136- 1~ 136-m 137- l~137-m 138- 1~138-m 139- 1~139-m La T1 ~T3 Cl Ldl~Ldm L s 1 1 ~ L s 1 n V src VEL Select the drive control section 2 Select Driver Switch Driver Organic Electroluminescent Element Ground Wire Current Supply Circuit Switch Ground Wire Correction Circuit Switch Buffer A/D Converter D/A Converter Luminous Efficiency Extraction Memory Unit Current Supply Circuit Anode Line Transistor Capacitor Data Line Select line voltage -73-

Claims (1)

200950576 七、申請專利範圍: 1. —種發光裝置,其具備以下之構件: 電源線; 至少一條的資料線; 至少一個像素,其具有:發光元件’係一端和該電源 線以電氣連接,而另一端被設定成既定之電位;及第1 電晶體,係將該資料線和該發光元件的一端連接; 電流供給電路,係輸出所預設之電流値的檢測電流; ^ 以及 資料驅動部’係具有電壓測量電路,其經由該資料線 和該像素之該第1電晶體的電流路,作爲檢測電壓而取 得該檢測電流從該電流供給電路經由該電源線,再從該 發光元件的一端向另一端流動時之該發光元件之該一端 的電壓。 2. 如申請專利範圍第1項之發光裝置,其中該資料驅動部 φ 具備有:修正電路,係根據藉該電壓測量電路所取得之 該檢測電壓’而修正因應於從外部所供給之圖像資料的 驅動資料;及驅動信號供給電路,係根據已修正的該驅 動資料而產生驅動信號。 3·如申請專利範圍第2項之發光裝置,其中該修正電路具 備有: 發光效率抽出部,係具有記憶電路,其預先記憶發光 效率和電壓之關係,而該發光效率係表示使該檢測電流 在該發光元件流動時,對應在該發光元件具有起始特性 -74- 200950576 時之起始亮度的亮度比例,該電壓係使該檢測電流在該 發光元件流動時之該發光元件兩端間的電壓’並根據該 記憶電路所記憶之該發光效率和該發光元件兩端間的電 壓之關係,而抽出和藉該電壓測量電路所測量之該檢測 電壓對應之該發光效率的値:及 運算部,係根據藉該發光效率抽出部所抽出之該發光 效率的値而對該驅動資料進行計算,而修正該驅動資料。 4. 如申請專利範圍第3項之發光裝置,其中 該發光裝置具有排列有複數個該像素的發光區域; 該資料驅動部的該電壓測量電路係被控制成取得對應 該發光區域之該複數個像素的一個該像素之該檢測電 壓。 5. 如申請專利範圍第4項之發光裝置,其中 該像素係在該發光區域,沿著列方向及行方向排列有 複數個; 該資料線係沿著該發光區域的行方向而配設複數條; 該發光裝置具有:複數條選擇線,係在該發光區域, 和該各資料線正交並在列方向配設複數條,並和該各像 素連接;及選擇驅動部,係對該各選擇線施加選擇信號, 而將對應於該各選擇線的該各像素設定成選擇狀態; 該各像素係於該各資料線和該各選擇線的交點附近排 列成陣列形,並具有:第2電晶體,係電流路的一端和 該電源線連接,電流路的另一端和該發光元件的一端連 接’並將該電源線和該發光元件的一端以電氣連接;及 -75- 200950576 電壓保持部,係保持該第2電晶體之控制端子和電流路 的另一端之間的電壓; 該驅動信號供給電路係在使該檢測電流在該發光元件 流動之前,對藉該選擇驅動部設爲選擇狀態的列之取得 該檢測電壓的該一個像素,作爲該驅動信號而施加第1 寫入電壓,其具有使電流値比該檢測電流大之電流在該 第·2電晶體的電流路流動所需之電壓値,而將該第2電 晶體設爲導通狀態,對藉該選擇驅動部設爲選擇狀態的 ^ 列之將取得該檢測電壓的該一個像素除外的該像素,作 爲該驅動信號而施加第2寫入電壓,其具有將該第2電 晶體設爲不導通狀態下之電壓値。 6.如申請專利範圍第5項之發光裝置,其中 該各像素具有第3電晶體,其電流路的一端和該電源 線連接,電流路的另一端和該第2電晶體的控制端子連 接; Q 該複數條選擇線具有:第1選擇線,係和該各像素之 該第3電晶體的控制端子連接,並在列方向配設複數條; 及第2選擇線,係和該各像素之該第1電晶體的控制端 子連接,並在列方向配設複數條; 該選擇驅動部具有:第1選擇驅動部,係將第1選擇 信號施加於該各第1選擇線;及第2選擇驅動部’係將 第2選擇信號施加於該各第2選擇線; 該第1電晶體和該第3電晶體係藉該第1選擇驅動部 和該第2選擇驅動部個別地設定成導通狀態。 -76- 200950576 7. 如申請專利範圍第5項之發光裝置,其中 該各像素具有第3電晶體,其電流路的一端和該電源 線連接,電流路的另一端和該第2電晶體的控制端子連 接: 該複數條選擇線具有:第1選擇線,係和該各像素之 該第1電晶體的控制端子連接,並在列方向配設複數條; 及第2選擇線,係和該各像素之該第3電晶體的控制端 子連接,並在列方向配設複數條; 該選擇驅動部具有: 第1選擇驅動部,係將第1選擇信號施加於該各第1 選擇線;及 第2選擇驅動部,係由開關電路和開關驅動電路所構 成,而開關電路具有將根據該第1選擇信號的第2選擇 信號施加於該各第2選擇線之複數個切換元件而構成, 該開關驅動電路控制該開關電路之該各電晶體的動作; 該第1電晶體和該第3電晶體係藉該第1選擇驅動部 和該第2選擇驅動部個別地設定成導通狀態。 8. 如申請專利範圍第7項之發光裝置,其中 該開關電路具有:複數個第1切換元件,係對應於該 發光區域之各列而設置,並使電流路的一端和該第2選 擇線連接,電流路的另一端被設定成既定之電位;複數 個第2切換元件,係對應於該發光區域之各列而設置, 並使電流路的兩端和該各列的像素所連接之該第1選擇 線及該第2選擇線連接;第1控制信號線,係和該各第 -77- 200950576 1切換元件的控制端子共通地連接;以及第2控制信號 線,係和該各第2切換元件的控制端子共通地連接; 該開關驅動電路對第1控制信號線及第2控制信號線 個別地施加控制信號,其控制該各第1切換元件及該各 第2切換元件的導通。 9. 如申請專利範圍第3項之發光裝置,其中 該發光裝置係具有排列有複數個該像素的發光區域; 該複數個像素係在該發光區域沿著列方向及行方向將 複數個排列成陣列狀; 該資料線係沿著在該發光區域之行方向配設複數條; 從該電流供給電路所輸出之電流係在該發光區域之全 部的像素的該發光元件同時流動; 該資料驅動部之該電壓測量電路係對應於該複數條資 料線的各條而設置複數個,該各電壓測量電路係沿著該 發光區域之行方向而配設,並取得和該複數條資料線之 各條連接之複數個該像素之該檢測電壓的平均値。 10. 如申請專利範圍第5項之發光裝置,其中 該發光裝置係具有排列有複數個該像素的發光區域; 該複數個像素係在該發光區域沿著列方向及行方向 將複數個排列成陣列狀; 該資料線沿著行方向配設複數條; 從該電流供給電路所輸出之電流係在沿著該發光區 域之任一列所配設之複數個該像素的該發光元件同時流 動; -78· 200950576 該資料驅動部之該電壓測量電路係對應於該複數條 資料線的各條而設置複數個,該各電壓測量電路同時取 得該發光區域之該一列所配設之該各像素的該檢測電 壓。 π.—種顯示裝置,其具備以下之構件: 電源線; 複數條的資料線; 複數個像素,係和該複數條資料線的任一條連接,並 具有:發光元件,係一端和該電源線以電氣連接,而另 一端被設定成既定之電位;及第1電晶體,係將該各資 料線和該發光元件的一端連接; 電流供給電路,係輸出所預設之電流値的檢測電流; 以及 資料驅動部,係具有:電壓測量電路,係經由該資料 線和在該複數個像素之至少一個之該像素的該第1電晶 體的電流路,作爲檢測電壓而取得該檢測電流從該電流 供給電路經由該電源線,再從該發光元件的一端向另一 端流動時之該發光元件之該一端的電壓;修正電路,係 根據藉該電壓測量電路所取得之該檢測電壓,而修正因 應於從外部所供給之圖像資料的驅動資料;及驅動信號 供給電路,係根據已修正的該驅動資料而產生驅動信號。 12.如申請專利範圍第11項之顯示裝置,其中該修正電路 具備有: 發光效率抽出部,係具有記億電路,其預先記憶發光 -79- 200950576 效率和電壓之關係,而該發光效率係表示使該檢測電流 在該發光元件流動時,對應在該發光元件具有起始特性 時之起始亮度的亮度比例,該電壓係使該檢測電流在該 發光元件流動時之該發光元件兩端間的電壓,並根據該 記憶電路所記憶之該發光效率和該發光元件兩端間的電 壓之關係,而抽出和藉該電壓測量電路所測量之該檢測 電壓對應之該發光效率的値;及 運算部,係根據藉該發光效率抽出部所抽出之該發光 ® 效率的値而對該驅動資料進行計算,而修正該驅動資料。 13. 如申請專利範圍第12項之顯示裝置,其中 該顯示裝置具有排列有複數個該像素的發光區域; 該資料驅動部的該電壓測量電路係被控制成依序取 得對應該發光區域之該複數個像素的每一個該像素之該 檢測電壓。 14. 如申請專利範圍第12項之顯示裝置,其中 ^ 該顯示裝置具有將該複數個像素沿著列方向及行方 向排列成陣列狀的發光區域; 該資料線係沿著該發光區域的行方向而配設複數條; 從該電流供給電路所輸出之電流係在該發光區域之 全部的像素的該發光元件同時流動: 該資料驅動部之該電壓測量電路係對應於該複數條 資料線的各條而設置複數個,該各電壓測量電路係沿著 該發光區域之行方向而配設,並取得和該複數條資料線 之各條連接之複數個該像素之該檢測電壓的平均値。 -80- 200950576 15. 如申請專利範圍第12項之顯示裝置,其中 該顯示裝置具有將該複數個像素沿著列方向及行方 向排列成陣列狀的發光區域; 該資料線沿著行方向配設複數條; 從該電流供給電路所輸出之電流係在沿著該發光區 域之任一列所配設之複數個該像素的該發光元件同時流 動; 該資料驅動部之該電壓測量電路係對應於該複數條 資料線的各條而設置複數個,該各電壓測量電路同時取 © 得該發光區域之該一列所配設之該各像素的該檢測電 壓。 16. —種發光裝置的驅動控制方法,其驅動具有發光元件的 發光裝置,而該發光裝置具有:電源線;至少一條的資 料線;至少一個像素,其具有:發光元件,係一端和該 電源線以電氣連接,而另一端被設定成既定之電位;及 第1電晶體,係將該資料線和該發光元件的一端連接; Ο 以及電流供給電路,係輸出具有所預設之電流値的檢測 電流; 該驅動方法包含: 流動步驟’係使該檢測電流從該電流供給電路經由該 電源線’再從該發光元件的一端向另一端流動;及 取得步驟’係經由該資料線和該第1電晶體的電流 路,取得該檢測電流從該發光元件的一端向另一端流動 時之該發光元件之該一端的電壓。 -81 - 200950576 17. 如申請專利範圍第16項之發光裝置的驅動控制方法, 其中包含: 修IH步驟,係根據該取得之該檢測電壓的値而修正因 應於從外部所供給之圖像資料的驅動資料;及 供給步驟,係根據該已修正的驅動資料而產生驅動信 號’再經由該資料線而向該像素供給。 18. 如申請專利範圍第17項之發光裝置的驅動控制方法, 其中該修正驅動資料的步驟包含: 抽出步驟,係記憶電路預先記憶發光效率和電壓之關 係’而該發光效率係表示使該檢測電流在該發光元件流 動時’對應在該發光元件具有起始特性時之起始亮度的 亮度比例,該電壓係使該檢測電流在該發光元件流動時 之該發光元件兩端間的電壓,並根據該記憶電路所記憶 之該發光效率和該發光元件兩端間的電壓之關係,而抽 出和藉取得該發光元件之一端的電壓的步驟所取得之該 檢測電壓對應之該發光效率的値;及 修正步驟,係根據該抽出之發光效率而對該驅動資料 進行計算,而修正該驅動資料。 19. 如申請專利範圍第16項之發光裝置的驅動控制方法, 其中 該發光裝置具有將該像素沿著列方向及行方向排列 有複數個的發光區域; 在使該檢測電流從該發光元件的一端向另一端流動 的步驟,從該電流供給電路所輸出之該檢測電流係在位 -82- 200950576 於該發光區域之該複數個像素之一個該像素的該發光 元件流動; 取得該發光元件之一端的電壓之步驟係包含有測量 步驟’其依序測量在該發光區域所排列之該複數個像素 之各個的該檢測電壓。 20.如申請專利範圍第16項之發光裝置的驅動控制方法, 其中 該發光裝置具有將該像素沿著列方向及行方向排列 有複數個的發光區域,該資料線沿著行方向配設複數 條; 在使該檢測電流從該發光元件的一端向另一端流動 的步驟,從該電流供給電路所輸出之該檢測電流係在該 發光區域之全部的該像素之該發光元件同時流動; 取得該發光元件之一端的電壓之步驟係包含有測量 步驟,其測量沿著該發光區域之行方向所配設之複數個 該像素之該檢測電壓的平均値。 2 1 .如申請專利範圍第1 6項之發光裝置的驅動控制方法, 其中 該發光裝置具有將該像素沿著列方向及行方向排列 有複數個的發光區域,該資料線沿著行方向配設複數 條; 在使該檢測電流從該發光元件的一端向另一端流動 的步驟,從該電流供給電路所輸出之該檢測電流係在沿 著該發光區域之任一列所配設之複數個該像素之該發 -83- 200950576 光元件同時流動; 取得該發光元件之一端的電壓之步驟係包含有取得 步驟’其同時取得該發光區域之該一列所排列之該各像 素的該檢測電壓。 22.—種發光裝置,其具有具備發光元件的像素: 具備有 發光區域,係排列於在列方向及行方向所配設之複數 條選擇線及資料線的各交點附近,並排列有複數個該像 ® 素:及 資料驅動部,係產生因應於從外部所供給之圖像資料 的驅動信號’並經由該資料線而向該各像素供給; 該各像素係具有:電流控制電晶體,係電流路的一端 和電源線連接,電流路的另一端和該發光元件的一端連 接’並控制向該發光·元件流動的電流;及選擇控制電晶 體,係電流路的一端和資料線連接,電流路的另一端和 $ 該電流控制電晶體之電流路的另一端與該發光元件的連 接點連接,而控制端子和該選擇線連接; 該資料驅動部係具有:複數個電流供給電路,係對該 複數條資料線的各條供給既定之檢測電流;及複數個電 壓測量電路,係經由該選擇控制電晶體而測量使該檢測 電流從該各電流供給電路經由該各像素之該選擇控制電 晶體的電流路在該各發光元件流動時之該各發光元件之 端子間的電壓,並作爲檢測電壓。 2 3.如申請專利範圍第22項之發光裝置,其中 -84- 200950576 該發光裝置還具備有選擇驅動部,其對該顯示面板 之該各選擇線施加選擇信號,而將各列之該像素設定成 選擇狀態: 該資料驅動部係對藉該選擇驅動部設定成該選擇狀 態之列的該像素測量該檢測電壓。 24 .如申請專利範圍第23項之發光裝置,其中該資料驅動 部具備有:修正電路,係根據藉該電壓測量電路所測量 之該檢測電壓,而修正因應於該圖像資料的驅動資料; 及驅動信號供給電路,係根據已修正的該驅動資料而產 生該驅動信號。 25.如申請專利範圍第24項之發光裝置,其中該修正電路 具有發光效率抽出部,其具有記憶電路,其預先記憶發 光效率和電壓之關係,而該發光效率係表示使該檢測電 流在該發光元件流動時,對應在該發光元件具有起始特 性時之起始亮度的亮度比例,該電壓係使該檢測電流在 該發光元件流動時之該發光元件兩端間的電壓,並根據 該記憶電路所記憶之該發光效率和該發光元件兩端間的 電壓之關係,而抽出和藉該電壓測量電路所測量之該檢 測電壓對應之該發光效率的値。 2 6.如申請專利範圍第25項之發光裝置,其中該修正電路 具備有運算部,其根據藉該發光效率抽出部所抽出之該 發光效率的値而對該驅動資料進行計算,而修正該驅動 資料。 27. —種發光裝置的驅動控制方法,該發光裝置具有具備發 -85- 200950576 光元件的像素: 該發光裝置,係在發光區域將複數個該像素排列於在 列方向及行方向所配設之複數條選擇線及資料線的各交 點附近,而該像素具有:電流控制電晶體,係電流路的 一端和電源線連接,並使電流路的另一端和該發光元件 的一端連接,而控制向該發光元件流動的電流;及選擇 控制電晶體,係電流路的一端和該資料線連接,並使電 流路的另一端和該電流控制電晶體之電流路的另一端與 該發光元件的連接點連接,而控制端子和該選擇線連接; 該驅動方法包含: 流動步驟,係對該複數條資料線之各條供給既定之檢 測電流,並使該檢測電流經由被設爲選擇狀態之列的該 各像素的該選擇控制電晶體的電流路而在該各發光元件 流動; . 測量步驟,係經由該選擇控制電晶體而測量該各發光 元件之端子間的電壓,並作爲檢測電壓;以及 修正步驟,係根據所檢測之該檢測電壓,而修正因應 於從外部所供給之圖像資料的該驅動資料。 28 .如申請專利範圍第27項之發光裝置的驅動控制方法, 其中該修正驅動資料的步驟包含: 抽出步驟,係預先記憶發光效率和電壓之關係,而該 發光效率係表示使該檢測電流在該發光元件流動時,對 應在該發光元件具有起始特性時之起始亮度的亮度比 例,該電壓係使該檢測電流在該發光元件流動時之該發 -86- 200950576 光元件兩端間的電壓,並根據該發光效率和該發光元件 兩端間的電壓之關係,而抽出和所測量之該檢測電壓對 應之該發光效率的値:及 修正步驟,係根據所抽出之發光效率而修正因應於該 圖像資料的該驅動資料。 29.如申請專利範圍第27項之發光裝置的驅動控制方法, 其中 在使該檢測電流流動的步驟,使該檢測電流在該被設 爲選擇狀態之該顯示面板的任一列之該各像素的該發光 元件同時流動; 在測量該檢測電壓的步驟,同時執行該顯示面板的該 一列所排列之該各像素之該檢測電壓的量測。 -87-200950576 VII. Patent application scope: 1. A light-emitting device having the following components: a power line; at least one data line; at least one pixel having: a light-emitting element 'one end and the power line electrically connected, and The other end is set to a predetermined potential; and the first transistor is connected to the data line and one end of the light-emitting element; the current supply circuit outputs a detection current of the preset current ;; ^ and the data driving part' A voltage measuring circuit is provided as a detection voltage through the data line and a current path of the first transistor of the pixel, and the detection current is obtained from the current supply circuit via the power supply line, and then from one end of the light-emitting element The voltage at one end of the light-emitting element when the other end flows. 2. The light-emitting device according to claim 1, wherein the data driving unit φ is provided with: a correction circuit that corrects an image supplied from the outside based on the detected voltage obtained by the voltage measuring circuit The driving data of the data; and the driving signal supply circuit generate a driving signal according to the modified driving data. 3. The light-emitting device of claim 2, wherein the correction circuit comprises: a luminous efficiency extraction portion having a memory circuit that pre-stores a relationship between luminous efficiency and voltage, and the luminous efficiency indicates that the detection current is When the light-emitting element flows, corresponding to a brightness ratio of the initial brightness of the light-emitting element having a starting characteristic of -74 to 200950576, the voltage is such that the detecting current is between the two ends of the light-emitting element when the light-emitting element flows The voltage 'and extracts and outputs the luminous efficiency corresponding to the detection voltage measured by the voltage measuring circuit according to the relationship between the luminous efficiency and the voltage between the two ends of the light-emitting element: and the operation unit And the driving data is calculated based on the enthalpy of the luminous efficiency extracted by the luminous efficiency extracting unit, and the driving data is corrected. 4. The illuminating device of claim 3, wherein the illuminating device has a illuminating region in which a plurality of the pixels are arranged; the voltage measuring circuit of the data driving portion is controlled to obtain the plurality of corresponding illuminating regions The detected voltage of one of the pixels of the pixel. 5. The illuminating device of claim 4, wherein the pixel is arranged in the light-emitting region, and the plurality of pixels are arranged along the column direction and the row direction; the data line is disposed along the row direction of the light-emitting region The light-emitting device has: a plurality of selection lines connected to the light-emitting regions, orthogonal to the data lines, and a plurality of strips arranged in the column direction, and connected to the pixels; and the driving unit is selected The selection line applies a selection signal, and the pixels corresponding to the selection lines are set to a selected state; the pixels are arranged in an array shape near the intersection of the data lines and the selection lines, and have: 2nd a transistor, wherein one end of the current path is connected to the power line, and the other end of the current path is connected to one end of the light emitting element and electrically connects the power line to one end of the light emitting element; and -75-200950576 voltage holding portion Holding a voltage between the control terminal of the second transistor and the other end of the current path; the drive signal supply circuit borrows the detection current before flowing the light-emitting element The selection drive unit is configured to select the one pixel of the detection voltage in the column of the selected state, and apply a first write voltage as the drive signal, and the current having a current 値 greater than the detection current is in the second power The voltage required to flow the current path of the crystal is turned on, and the second transistor is turned on, and the pixel which is obtained by the one selected by the selection driving unit and which is the selected one is obtained. A second write voltage is applied as the drive signal, and has a voltage 値 in which the second transistor is in a non-conducting state. 6. The illuminating device of claim 5, wherein each of the pixels has a third transistor, one end of the current path is connected to the power line, and the other end of the current path is connected to a control terminal of the second transistor; Q: the plurality of selection lines have: a first selection line connected to a control terminal of the third transistor of each pixel, and a plurality of columns arranged in a column direction; and a second selection line and the pixels The control terminals of the first transistor are connected to each other and arranged in a plurality of columns; the selection drive unit includes: a first selection drive unit that applies a first selection signal to each of the first selection lines; and a second selection The driving unit' applies a second selection signal to each of the second selection lines, and the first transistor and the third transistor system are individually set to be in a conductive state by the first selection driving unit and the second selection driving unit. . 7. The light-emitting device of claim 5, wherein each of the pixels has a third transistor, one end of the current path is connected to the power line, the other end of the current path, and the second transistor Control terminal connection: the plurality of selection lines have: a first selection line connected to a control terminal of the first transistor of each pixel, and a plurality of lines arranged in a column direction; and a second selection line a control terminal of the third transistor of each pixel is connected to each other and arranged in a plurality of columns; the selection drive unit includes: a first selection drive unit that applies a first selection signal to each of the first selection lines; The second selection drive unit is configured by a switch circuit and a switch drive circuit, and the switch circuit includes a plurality of switching elements that apply a second selection signal based on the first selection signal to each of the second selection lines. The switch drive circuit controls the operation of the transistors of the switch circuit. The first transistor and the third transistor system are individually set to be in an on state by the first selection drive unit and the second selection drive unit. 8. The light-emitting device of claim 7, wherein the switch circuit has: a plurality of first switching elements disposed corresponding to respective columns of the light-emitting regions, and one end of the current path and the second selection line Connecting, the other end of the current path is set to a predetermined potential; a plurality of second switching elements are disposed corresponding to the columns of the light-emitting region, and the two ends of the current path and the pixels of the columns are connected The first selection line is connected to the second selection line; the first control signal line is connected in common to the control terminals of the respective -77-200950576 1 switching elements; and the second control signal line is associated with the second The control terminals of the switching elements are connected in common. The switch driving circuit individually applies control signals to the first control signal line and the second control signal line, and controls conduction between the first switching elements and the second switching elements. 9. The illuminating device of claim 3, wherein the illuminating device has a illuminating region in which a plurality of the pixels are arranged; the plurality of pixels are arranged in the illuminating region along a column direction and a row direction. Array-like; the data line is disposed along a row direction of the light-emitting region; a current output from the current supply circuit flows simultaneously with the light-emitting elements of all pixels of the light-emitting region; the data driving portion The voltage measuring circuit is provided corresponding to each of the plurality of data lines, and the voltage measuring circuits are arranged along the direction of the light emitting area, and each of the plurality of data lines is obtained. The average 値 of the detected voltages of the plurality of pixels connected. 10. The illuminating device of claim 5, wherein the illuminating device has a illuminating region in which a plurality of the pixels are arranged; the plurality of pixels are arranged in the illuminating region along a column direction and a row direction. Array-like; the data line is arranged in a plurality of strips along the row direction; the current output from the current supply circuit is simultaneously flowing in the plurality of pixels arranged along any one of the light-emitting regions; 78· 200950576 The voltage measuring circuit of the data driving unit is configured to correspond to each of the plurality of data lines, and the voltage measuring circuits simultaneously obtain the pixels of the pixels in the column of the light emitting region. Detect voltage. π. A display device having the following components: a power line; a plurality of data lines; a plurality of pixels connected to any one of the plurality of data lines, and having: a light-emitting element, one end and the power line Electrically connected, and the other end is set to a predetermined potential; and the first transistor is connected to each of the data lines and one end of the light-emitting element; and the current supply circuit outputs a detection current of the preset current ;; And the data driving unit includes: a voltage measuring circuit that obtains the detection current from the current path through the data line and the current path of the first transistor of the pixel at least one of the plurality of pixels as a detection voltage And a voltage of the one end of the light-emitting element when the supply circuit flows from one end of the light-emitting element to the other end; the correction circuit corrects the detection voltage according to the voltage obtained by the voltage measurement circuit The driving data of the image data supplied from the outside; and the driving signal supply circuit are generated according to the modified driving data Signal. 12. The display device of claim 11, wherein the correction circuit is provided with: a luminous efficiency extraction portion having a relationship of efficiency and voltage in advance of illuminating -79-200950576, and the luminous efficiency is And a ratio of brightness of the initial brightness when the detection current flows in the light-emitting element, the voltage is such that the detection current is between the two ends of the light-emitting element when the light-emitting element flows The voltage, and according to the relationship between the luminous efficiency of the memory circuit and the voltage between the two ends of the light-emitting element, extracting and illuminating the luminous efficiency corresponding to the detection voltage measured by the voltage measuring circuit; The driving data is calculated based on the enthalpy of the illuminating energy extracted by the luminous efficiency extracting portion, and the driving data is corrected. 13. The display device of claim 12, wherein the display device has a plurality of light emitting regions in which the pixels are arranged; the voltage measuring circuit of the data driving portion is controlled to sequentially obtain the corresponding light emitting region The detected voltage of each of the plurality of pixels. 14. The display device of claim 12, wherein the display device has a light-emitting region in which the plurality of pixels are arranged in an array along the column direction and the row direction; the data line is along the row of the light-emitting region a plurality of strips are arranged in the direction; the current output from the current supply circuit flows simultaneously with the light-emitting elements of all the pixels of the light-emitting region: the voltage measuring circuit of the data driving portion corresponds to the plurality of data lines A plurality of voltage measuring circuits are disposed along the row direction of the light emitting region, and an average value of the detected voltages of the plurality of pixels connected to each of the plurality of data lines is obtained. The display device of claim 12, wherein the display device has a light-emitting region in which the plurality of pixels are arranged in an array along the column direction and the row direction; the data line is arranged along the row direction a plurality of strips; the current output from the current supply circuit is simultaneously flowing in the plurality of pixels arranged along any one of the light-emitting regions; the voltage measuring circuit of the data driving portion corresponds to A plurality of the plurality of data lines are provided, and the voltage measuring circuits simultaneously take the detection voltage of the pixels arranged in the column of the light emitting region. 16. A driving control method for a light-emitting device, which drives a light-emitting device having a light-emitting element, the light-emitting device having: a power supply line; at least one data line; at least one pixel having: a light-emitting element, one end and the power source The line is electrically connected, and the other end is set to a predetermined potential; and the first transistor is connected to the data line and one end of the light emitting element; and the current supply circuit outputs the preset current 値Detecting a current; the driving method includes: a flow step of: causing the detection current to flow from the current supply circuit via the power line 'from one end of the light-emitting element to the other end; and obtaining the step 'via the data line and the first A current path of the transistor obtains a voltage of the one end of the light-emitting element when the detection current flows from one end of the light-emitting element to the other end. -81 - 200950576 17. The driving control method of the illuminating device of claim 16, comprising: repairing the IH step, correcting the image data supplied from the outside according to the obtained 检测 of the detected voltage And the supplying step of generating a driving signal based on the corrected driving data and supplying the pixel to the pixel via the data line. 18. The driving control method of the illuminating device of claim 17, wherein the step of correcting the driving data comprises: an extracting step, the memory circuit pre-memorizing the relationship between the luminous efficiency and the voltage, and the luminous efficiency is indicative of the detecting a current ratio when the current flowing in the light-emitting element corresponds to a luminance ratio of an initial luminance when the light-emitting element has an initial characteristic, the voltage is a voltage between the two ends of the light-emitting element when the detection current flows, and And extracting the luminous efficiency corresponding to the detection voltage obtained by the step of obtaining the voltage at one end of the light-emitting element according to the relationship between the luminous efficiency stored in the memory circuit and the voltage between the two ends of the light-emitting element; And the correcting step is to calculate the driving data according to the extracted luminous efficiency, and correct the driving data. 19. The driving control method of a light-emitting device according to claim 16, wherein the light-emitting device has a plurality of light-emitting regions in which the pixels are arranged along a column direction and a row direction; and the detection current is made from the light-emitting element a step of flowing from one end to the other end, wherein the detection current outputted from the current supply circuit flows in the light-emitting element of the pixel of the plurality of pixels in the light-emitting region from -82 to 200950576; obtaining the light-emitting element The step of voltage at one end includes a measuring step 'which sequentially measures the detected voltage of each of the plurality of pixels arranged in the light emitting region. 20. The driving control method of a light-emitting device according to claim 16, wherein the light-emitting device has a plurality of light-emitting regions in which the pixels are arranged along a column direction and a row direction, and the data lines are arranged in a plurality of rows along the row direction. a step of flowing the detection current from one end of the light-emitting element to the other end, wherein the detection current output from the current supply circuit flows simultaneously with the light-emitting element of the pixel of all of the light-emitting regions; The step of voltage at one end of the light-emitting element includes a measuring step of measuring an average 値 of the detected voltages of the plurality of pixels disposed along the direction of the light-emitting region. The driving control method of a light-emitting device according to claim 16 wherein the light-emitting device has a plurality of light-emitting regions arranged in the column direction and the row direction, wherein the data lines are arranged along the row direction. a plurality of steps; wherein the detection current flows from one end of the light-emitting element to the other end, the detection current output from the current supply circuit is a plurality of the plurality of the detection currents arranged in any one of the light-emitting regions The light element simultaneously flows; the step of obtaining the voltage at one end of the light emitting element includes the obtaining step 'the detection voltage of the pixels arranged in the column of the light emitting region simultaneously. 22. A light-emitting device comprising: a pixel having a light-emitting element: comprising a light-emitting region arranged in the vicinity of each intersection of a plurality of selection lines and data lines arranged in a column direction and a row direction, and arranged in plurality The image sensor and the data driving unit generate a driving signal for the image data supplied from the outside and supply the image to the respective pixels via the data line. The pixels include a current control transistor. One end of the current path is connected to the power line, the other end of the current path is connected to one end of the light-emitting element, and the current flowing to the light-emitting element is controlled; and the control transistor is selected, and one end of the current path is connected to the data line, and the current is connected. The other end of the circuit and the other end of the current path of the current control transistor are connected to the connection point of the light emitting element, and the control terminal is connected to the selection line; the data driving part has a plurality of current supply circuits, which are Each of the plurality of data lines supplies a predetermined detection current; and a plurality of voltage measurement circuits are measured by the selection control transistor The detection current is used as a detection voltage from the respective current supply circuits via the selection of the respective pixels to control the voltage between the terminals of the respective light-emitting elements when the current path of the transistor flows through the respective light-emitting elements. 2. The illuminating device of claim 22, wherein -84-200950576 the illuminating device further comprises a selective driving portion, wherein a selection signal is applied to the selection lines of the display panel, and the pixels of each column are The selection state is set: the data driving unit measures the detection voltage for the pixel set to the selected state by the selection driving unit. [24] The illuminating device of claim 23, wherein the data driving unit is provided with: a correction circuit that corrects driving data corresponding to the image data according to the detection voltage measured by the voltage measuring circuit; And the driving signal supply circuit generates the driving signal based on the modified driving data. [25] The light-emitting device of claim 24, wherein the correction circuit has a luminous efficiency extraction portion having a memory circuit that pre-stores a relationship between luminous efficiency and voltage, and the luminous efficiency indicates that the detection current is in the When the light-emitting element flows, corresponding to a brightness ratio of the initial brightness when the light-emitting element has an initial characteristic, the voltage is a voltage between the two ends of the light-emitting element when the detection current flows in the light-emitting element, and according to the memory The relationship between the luminous efficiency memorized by the circuit and the voltage across the light-emitting element extracts and illuminates the luminous efficiency corresponding to the detected voltage measured by the voltage measuring circuit. [2] The illuminating device of claim 25, wherein the correction circuit is provided with a computing unit that calculates the driving data based on the illuminating efficiency extracted by the luminous efficiency extracting portion, and corrects the driving data. Drive data. 27. A driving control method for a light-emitting device, wherein the light-emitting device has a pixel having an optical element of -85-200950576: the light-emitting device is arranged in a plurality of the pixels in the column direction and the row direction in the light-emitting region The plurality of selection lines and the intersection of the data lines are adjacent to each other, and the pixel has a current control transistor, wherein one end of the current path is connected to the power line, and the other end of the current path is connected to one end of the light emitting element, and the control is performed. a current flowing to the light-emitting element; and a control transistor, wherein one end of the current path is connected to the data line, and the other end of the current path and the other end of the current path of the current control transistor are connected to the light-emitting element Point connection, and the control terminal is connected to the selection line; the driving method includes: a flow step of supplying a predetermined detection current to each of the plurality of data lines, and causing the detection current to be set to a selected state The selection of the pixels controls the current path of the transistor to flow in the respective light-emitting elements; the measuring step controls the electricity via the selection Body measured terminal voltage of the light-emitting elements, and as a detection voltage; and a correction step of, based on the detected based on the detection of voltage is corrected in response to the image information supplied from the outside to the data driver. 28. The method of driving control of a light-emitting device according to claim 27, wherein the step of correcting the driving data comprises: extracting a step of pre-memorizing a relationship between luminous efficiency and voltage, wherein the luminous efficiency indicates that the detecting current is When the light-emitting element flows, corresponding to a brightness ratio of an initial brightness when the light-emitting element has an initial characteristic, the voltage is such that the detection current is between the two ends of the light-emitting element when the light-emitting element flows a voltage, and according to the relationship between the luminous efficiency and the voltage between the two ends of the light-emitting element, the 値: and the correcting step of extracting the measured luminous efficiency corresponding to the detected voltage are corrected according to the extracted luminous efficiency The driving data for the image data. 29. The driving control method of a light-emitting device according to claim 27, wherein, in the step of flowing the detection current, the detection current is in the pixel of any one of the display panels of the display panel selected to be in a selected state The illuminating elements are simultaneously flowed; in the step of measuring the detected voltage, the measurement of the detected voltage of the pixels arranged in the column of the display panel is simultaneously performed. -87-
TW98110355A 2008-03-31 2009-03-30 Light-emtting device, display device, and method for controlling driving of the light-emitting device TWI407826B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008091882 2008-03-31
JP2008092020A JP4877261B2 (en) 2008-03-31 2008-03-31 Display device and drive control method thereof
JP2009038663A JP4816744B2 (en) 2008-03-31 2009-02-20 Light emitting device, display device, and drive control method of light emitting device

Publications (2)

Publication Number Publication Date
TW200950576A true TW200950576A (en) 2009-12-01
TWI407826B TWI407826B (en) 2013-09-01

Family

ID=44871372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110355A TWI407826B (en) 2008-03-31 2009-03-30 Light-emtting device, display device, and method for controlling driving of the light-emitting device

Country Status (1)

Country Link
TW (1) TWI407826B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358332C (en) * 2005-02-23 2007-12-26 宇东电浆科技股份有限公司 Scanning module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150107A (en) * 2001-11-09 2003-05-23 Sharp Corp Display device and its driving method
JP4158570B2 (en) * 2003-03-25 2008-10-01 カシオ計算機株式会社 Display drive device, display device, and drive control method thereof
JP4804711B2 (en) * 2003-11-21 2011-11-02 株式会社 日立ディスプレイズ Image display device
JP2008003456A (en) * 2006-06-26 2008-01-10 Seiko Epson Corp Electro-optical device, its control method, and electronic equipment

Also Published As

Publication number Publication date
TWI407826B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
KR101074760B1 (en) Light emitting device, display device, and drive control method of the light emitting device
JP4816744B2 (en) Light emitting device, display device, and drive control method of light emitting device
JP4877261B2 (en) Display device and drive control method thereof
TWI437527B (en) A pixel driving device, light emitting device and property parameter acquisition method in a pixel driving device
US10262584B2 (en) Pixel circuit, method for driving the same, array substrate and display device
TWI394122B (en) Pixel, organic light emitting display and associated methods
TWI430224B (en) A light emitting device and a drive control method in a light emitting device
US20140333680A1 (en) Pixel of an organic light emitting display device and organic light emitting display device
US20130328753A1 (en) Display apparatus
KR101413585B1 (en) Pixel circuit of voltage compensation and control method thereof
WO2015014064A1 (en) Pixel drive circuit, display apparatus and pixel drive method
US20170018224A1 (en) Apparatus and method for compensating for luminance difference of organic light-emitting display device
JP5012774B2 (en) Pixel drive device, light emitting device, and parameter acquisition method
WO2013078931A1 (en) Pixel unit drive circuit and method, pixel unit, and display apparatus
WO2015024338A1 (en) Pixel circuit and drive method therefor, array substrate and display device
JP5083245B2 (en) Pixel drive device, light emitting device, display device, and connection unit connection method for pixel drive device
JP2004252036A (en) Active drive type light emitting display device and driving control method therefor
TW201030710A (en) A pixel driving device and a light emitting device
US20160358544A1 (en) Oled pixel driving circuit and oled display panel
WO2014201755A1 (en) Pixel circuit and drive method therefor, organic light-emitting display panel and display device
JP5257075B2 (en) Image display device
KR20060113004A (en) Light emitting display and driving method theroef
TW200950576A (en) Light-emitting device, display device, and method for controlling driving of the light-emitting device
JP2008310075A (en) Image display device
WO2013143332A1 (en) Drive circuit and organic light-emitting display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees