TW200947903A - Apparatus and method for computing maximum power reduction for a UMTS signal - Google Patents

Apparatus and method for computing maximum power reduction for a UMTS signal Download PDF

Info

Publication number
TW200947903A
TW200947903A TW098100276A TW98100276A TW200947903A TW 200947903 A TW200947903 A TW 200947903A TW 098100276 A TW098100276 A TW 098100276A TW 98100276 A TW98100276 A TW 98100276A TW 200947903 A TW200947903 A TW 200947903A
Authority
TW
Taiwan
Prior art keywords
mpr
configuration
maximum
error
equation
Prior art date
Application number
TW098100276A
Other languages
Chinese (zh)
Other versions
TWI479818B (en
Inventor
John W Haim
Kurt G Vetter
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200947903A publication Critical patent/TW200947903A/en
Application granted granted Critical
Publication of TWI479818B publication Critical patent/TWI479818B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

A method and apparatus are provided for controlling transmit power with an estimated value of cubic metric (CM) and/or peak-to-average ratio (PAR). Preferably, the method is applied in determining a value for Maximum Power Reduction (MPR) for computing maximum-MPR or minimum-MPR, by estimating CM and/or PAR from signal parameters. The method of estimating CM and/or PAR is applicable to any multicode signal.

Description

200947903 六、發明說明: 【發明所屬之技術領域】 本申請涉及無線通信。 【先前技術】 在實際的放大器電路中,例如用在通用移動電信系統 (UMTS)無線發射接收單元(WTRU)發射鏈上的放大器電 路中’引發頻譜再生是由於非線性的放大器特性。術語頻譜再 ® 生描述了在功率放大器輸出端處的帶外信號能量的增加4非 線性放大器效應所產生的頻譜再生主要產生在鄰近期望發射 頻道的頻道内。對於UMTS來說,對功率放大器的要求是由 在期望頻道的+/-5MHZ的鄰近頻道洩漏比(ACLR)來定義 的。以下是放大器電壓增益特性: V0 (t) = ^ · V,. (0 + g2 V,. (Ο2 + g3 . Vi (〇3 + ... + gn . Vi {t)n 等式(1 ) 其中,是放大器的線性增益,其餘的部分(即, ❹ Α·ν,·(ί)2+&·咕)3+·.. +义·ν,.(0")表示非線性增益。如果信號攜帶 了調變後的第三代合夥夥伴計晝(3GPP)射頻(RF),則作為 交調失真的結果會產生非線性項,這會產生帶内失真項和帶外 失真,帶内失真會引起誤差向量幅值(EVM)的增加,而帶 外失真會引起ACLR的增加。這兩者都會造成調變品質的下 降。 、 例如UMTS版本5和版本6中的多碼信號在峰均功率中 貫現了增加,這會產生更大的動態信號變化。這些增加的信號 變化耑要更強的放大益線性化,這會產生更大的功率消耗。最 3 200947903 ^ t 近_果_,為dB衫接魏肪(即,信鱗值功率與平 均功率的祕,也稱騎驰(嫩))職大科率衰減來 說並不有效。對放大器頻譜再生的分析表明,3階非線性增益 項(立方增益”)是ACLR增加的主要原因。立方項的總 能量取決於輸入信號的統計分佈。 、 隨著高速上行鏈路封包存取(HSUPA)的提出,在版本6 中引入了-種新的用於消除放大器功率衰減的方法,稱為立方 度量(CM)。CM是基於放大器的立方增益部分。CM描述了 在峨測的信號中的立方部分與12·2 _語音幹擾信號的比❹ 值。CM同時適用於高速下行鏈路封包存取(励pA)和 HSUPA上行鏈路信號。統計分析表明,根據cm估計的功率 降額與根據99.9 % PAR的功率降額相比,表現出明顯較小的 誤差分佈’其巾誤齡佈是指實際轉降糖·計的功率降 額之間的差值。 =3GPP規疋了最大功率哀減(MPR)測試,其表明wrpj^u 1最大發射功率大於或等於標稱最大發射功率,但小於所謂 “最大MPR”的總量’其中最大是所發送的信號的CM ❹ 的函數。對於給定的功率放大器,製造商可以決定該設備需要 將其最大功率聞在—些量中,在此稱為“最小刪^”,其 J於最大MPR’但是與3gppacLR相容。雖然“最小mpr” 可以被疋$為是CM的函數,但是也可以替換地被定義為是 PAR的特疋百分比的函數。使用最小MPR而不是最大MPR 來限制最大功率’使WTRU能夠以更大的最大功率來進行發 射’從而使採用最小赃㈣則製造商具有更有優勢的競 4 200947903 爭力。也可能某個wTRU的設計可關時包括ftAMpR和最 小MPR ’並在兩者之間進行選擇。 不考慮對最大MPR絲小MpR的,晴問題在於 WTRU必須知道CM〜或⑽的值,以計算所選擇的歷, 並且如果需要的話,(即,如果術肪是在最大功率附近操作 的話),最終使用上述值來實際設定發射功率。任何多碼信號 ❹ ❹ (其特徵在於發送的實體頻道、其頻道化碼和稱W項的權 重)都具有其特定的CM和PAR。 在UMTS中,信號,以及CM和pAR都可以在每2或⑺ 毫秒的贱時間間隔(TTI)中變化。可以看出,對贿§版 本6 ’有貫體頻道參數和量化的0項的超過二十萬_合,此 處的每種組合都稱作可齡號。大量的可能錄邮大^ =成Ϊ格—對—的CM或PAR的預定查找表來作為信號特 性的函數,對於即_應用是不合實際的;特暇在以讀S 資料速率進行操作的小型低功率手持設備中。瞭解w而不 可能簡單地查找CM或PAR之後,則需要在—^可容許的誤 差之内’從錢的特性參數來對其進行晰或料。 、 從實際信號測量CM或驗是已知的。其中的重要缺陷 在於必須首先產生健來進行。由於發射辨最終可能會 作為CM和/或par的函數來設置,因此通過測量來設定功率 將需要在發送前,產生信號或在至少—段__信號部分。 雖然在理論上這是可行的’但是觀了3的_闕要求和 際的存儲限制使這種方法也不可行。 上述方法的一種變形是在從CM或PAR# “猜測,,所計 5 200947903 算出的功率級上產生和開始發送信號,並在隨後:⑺中剩下的 整個時槽中將發射功率調整為第二功率級。對第—和第二功率 級的結合被計算以使得平均功率級接近在πι開始前就已知 CM或PAR所選擇的功率級。 在UMTS巾,在1〇亳秒的扣中有15個時槽,但是在2 毫秒的ΤΉ中只有三個時槽。假設例如對CM或PAR.的測量 需要例如K)毫秒的ΤΠ的—個時槽的—些部分來完成,則初 始功率級將被^置為僅用於第—個畴,關下的14個時槽 使用第-值。對於2宅秒的TTI ’初始功率級將被設置為使用 第-時槽’這一個時槽ά TTI的三分之一,而該π的剩下三 分之二將使用第二值。顯然,這種方法不是一致的,特別是在 2毫秒的TTI的情況中。因此,需要一種方法,能夠在開始發 送仏號之刖,就確定CM或PAR,以確定最大^尺和/或最小 MPR,以及最終的發射功率。 【發明内容】 提供一種用於使用通過估計出的CM或pAR的估計值來 控制發射功率的方法和裝置。該方法與直接測量CM或pAR 相反,可以應用於通過從信號參數估計CM或pAR來確定用 於計算最大MPR的最大功率衰減值(jyjpR)或最小mpR。估 計CM或PAR的方法適用於任何多碼信號。 【實施方式】 下文中所涉及的術語“無線發射/接收單元(WTRU),, 包括但不限於使用者設備(UE)、移動站、固定或移動使用 200947903 者早元、尋呼·機、行動雷每加,& 任何盆他類咖〜心! 助理(PDA)、電腦或 任1、他,1夠在無線環境中進行操作的使用者設備。 9- °°基地口包括但不限於節點B、 站點控制器、存取點fAP、—Wfy β ‘,()缺何其他_的關在無線環 境中進们操作的周邊設備。 第1圖疋被配置成執行下面所公開的方法的WTRu⑼ 的框圖。除了包含在典型的WTRU内的部件以外,WTRU120200947903 VI. Description of the Invention: TECHNICAL FIELD The present application relates to wireless communication. [Prior Art] In actual amplifier circuits, for example, in amplifier circuits used in the Transmitter of a Universal Mobile Telecommunications System (UMTS) Wireless Transmitting and Receiving Unit (WTRU), spectral regeneration is due to non-linear amplifier characteristics. The term spectrum reproduces the increase in out-of-band signal energy at the output of the power amplifier. The spectral regeneration produced by the non-linear amplifier effect is mainly generated in the channel adjacent to the desired transmission channel. For UMTS, the power amplifier requirements are defined by the adjacent channel leakage ratio (ACLR) of +/- 5 MHz at the desired channel. The following are the amplifier voltage gain characteristics: V0 (t) = ^ · V,. (0 + g2 V,. (Ο2 + g3 . Vi (〇3 + ... + gn . Vi {t)n Equation (1) Among them, is the linear gain of the amplifier, and the rest (ie, ❹ Α·ν,·(ί)2+&·咕)3+·..+义·ν,.(0") represents the nonlinear gain. If the signal carries a modulated third-generation partner (3GPP) radio frequency (RF), a nonlinear term is produced as a result of intermodulation distortion, which produces in-band distortion terms and out-of-band distortion, in-band distortion. It will cause an increase in the error vector magnitude (EVM), and the out-of-band distortion will cause an increase in the ACLR. Both of them will cause a decrease in the modulation quality. For example, the multi-signal signal in UMTS version 5 and version 6 is at the peak-to-average power. There is an increase in the number, which will produce more dynamic signal changes. These increased signal changes will be more linear and more linear, which will result in greater power consumption. Most 3 200947903 ^ t Near_fruit_, for the dB shirt It is not effective to take Wei Fei (that is, the secret of the power of the scale and the power of the average power, also known as the ride (nen)). Analysis of the spectrum regeneration shows that the third-order nonlinear gain term (cubic gain) is the main reason for the increase in ACLR. The total energy of the cubic term depends on the statistical distribution of the input signal. With high-speed uplink packet access (HSUPA) The proposed method introduced in version 6 is a new method for eliminating the power attenuation of the amplifier, called the cubic metric (CM). The CM is based on the cubic gain portion of the amplifier. The CM describes the signal in the speculation. The ratio of the cubic part to the 12.2 _voice interference signal. CM is applicable to both high-speed downlink packet access (excitation pA) and HSUPA uplink signals. Statistical analysis shows that the power derating and basis are estimated according to cm. Compared with the power derating of 99.9 % PAR, it shows a significantly smaller error distribution. The difference between the power drop of the actual drip sugar meter is the difference between the power derating of the actual drip sugar meter. A subtraction (MPR) test, which indicates that the maximum transmit power of wrpj^u 1 is greater than or equal to the nominal maximum transmit power, but less than the total amount of so-called "maximum MPR" where the maximum is a function of the CM ❹ of the transmitted signal. For a given power amplifier, the manufacturer can decide that the device needs to smell its maximum power, which is referred to herein as "minimum deletion", which is J at maximum MPR' but compatible with 3gppacLR. Although "minimum mpr" It can be 疋$ as a function of CM, but can alternatively be defined as a function of the percentage of PAR's characteristics. Using minimum MPR instead of maximum MPR to limit maximum power' enables the WTRU to perform at greater maximum power Launching 'so that the minimum 赃 (four) is used, the manufacturer has a more competitive position. It is also possible that a wTRU design can include ftAMpR and minimum MPR ′ and choose between the two. Regardless of the maximum MPR filament MpR, the problem is that the WTRU must know the value of CM~ or (10) to calculate the selected calendar, and if necessary, (ie, if the fat is operating near maximum power), Finally, the above values are used to actually set the transmission power. Any multi-code signal ❹ ❹ (characterized by the physical channel being transmitted, its channelization code, and the weight of the W item) has its specific CM and PAR. In UMTS, the signal, as well as CM and pAR, can vary in every 2 or (7) milliseconds of time interval (TTI). It can be seen that for the bribe § version 6 ′ with the channel parameter and the quantified 0 item of more than 200,000 _, each combination here is called the age number. A large number of possible record-casting _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In low power handheld devices. After understanding w and not simply looking for a CM or PAR, you need to clarify it from the characteristic parameters of the money within the tolerance of -^. Measuring CM or inspection from actual signals is known. An important flaw is that it must be produced first. Since the transmission discrimination may eventually be set as a function of CM and/or par, setting the power by measurement will require generating a signal or at least a segment__ signal portion before transmission. Although this is theoretically feasible, it is not feasible to observe the 3's requirements and the storage limitations. A variant of the above method is to generate and start transmitting signals at the power level calculated from CM or PAR# "guess," calculated 5 200947903, and adjust the transmit power to the first time slot remaining in (7). The second power stage. The combination of the first and second power levels is calculated such that the average power level is close to the power level selected by the CM or PAR before the start of π. In the UMTS towel, in the 1 second second buckle There are 15 time slots, but there are only three time slots in the 2 millisecond ΤΉ. Assume, for example, that the measurement of CM or PAR. requires, for example, K) milliseconds of ΤΠ-time slot-parts to complete, then the initial power The level will be set to be used only for the first domain, and the 14 time slots that are off will use the first value. For a TST of 2 home seconds, the initial power level will be set to use the time slot of the first time slot.三 one third of the TTI, and the remaining two-thirds of the π will use the second value. Obviously, this method is not consistent, especially in the case of a 2 millisecond TTI. Therefore, a method is needed. After you start sending the nickname, you can determine the CM or PAR to determine the maximum size. / or minimum MPR, and final transmit power. SUMMARY OF THE INVENTION [0005] A method and apparatus for controlling transmit power using estimated values of CM or pAR is provided. This method is opposite to directly measuring CM or pAR, Applies to determining the maximum power attenuation value (jyjpR) or minimum mpR for calculating the maximum MPR by estimating CM or pAR from signal parameters. The method of estimating CM or PAR is applicable to any multi-code signal. [Embodiment] The term "wireless transmit/receive unit (WTRU), including but not limited to user equipment (UE), mobile station, fixed or mobile use 200947903, early element, paging machine, action mine per plus, & any basin His class coffee ~ heart! Assistant (PDA), computer or any 1, he, 1 user device that is capable of operating in a wireless environment. The 9- °° base port includes, but is not limited to, the Node B, the site controller, the access point fAP, and the Wfy β ‘, () other peripherals that operate in the wireless environment. Figure 1 is a block diagram of WTRu (9) configured to perform the methods disclosed below. In addition to the components included in a typical WTRU, the WTRU 120

❹ 遥包括被配置錄行所公開的方法的處理n 125;與處理器 125通信的接收機126 ;與處理器125通信的發射機127 ;盘 接收機126和發射機127通信以實絲線資料的發送和接收 的天線128。WTRU無線地與基地台11〇通信。 下面將描述帛錄齡朗配置參數來料信號的發送 CM和/或PAR ’並個該估計縣計算的方法。配置 參數包括實體頻道的數量和麵以及配置航。配置情況可 以定義為頻道化碼和頻道權重(稱為石)的結合,最佳地用 於同相(I)和正交頻道(Q)部分碼。頻道權重(對於給定 業務和資料速率)、其他參數、以下所謂的“配置,,和以上的 所有組合都根據3GPP所定義的規範來確定。The process includes the processing of the method disclosed in the configuration record n 125; the receiver 126 in communication with the processor 125; the transmitter 127 in communication with the processor 125; the disk receiver 126 and the transmitter 127 communicate with the solid wire data. Antenna 128 for transmitting and receiving. The WTRU wirelessly communicates with the base station 11A. The method of transmitting the CM and/or PAR' of the incoming signal of the parameter aging configuration parameter and estimating the county is described below. Configuration parameters include the number and face of physical channels and the configuration of the route. The configuration can be defined as a combination of channelization code and channel weight (called stone), optimally for in-phase (I) and quadrature channel (Q) partial codes. The channel weights (for a given service and data rate), other parameters, the so-called "configurations," and all combinations above are determined according to the specifications defined by 3GPP.

信號可以定義為是實體頻道和冷項的組合。^_一個可能 的信號都必須至少在一種配置情況中。該定義可以擴展。例 如,可以包括用於一個或多個包括配置情況的實體頻道的一 些或所有沒項的子集或有限範圍。對配置情況的最小子集的 識別是主觀的,該配置情況規定了可接收的最小CM和/或 PAR估計誤差,該CM和/或PAR估計誤差反過來用於MpR 200947903 , ’ 估計誤差。 在表1中表示了一組11個配置情況的例子。這些配置情 況限於允許多至一個DpDCH。本領域技術人員可知,配^ 情況並不限於此。但是,彳^可能並不理想。經齡果表明所 產生的可接受的較小估計誤差,制是最大的最大 MPR估 计誤差疋小於或等於15dB。表i表示了配置情況通常由三 個主要特徵來定義:DPDCH的最大數量(細取 DPDCH) ’ 2)是否啟動高速(HS);和3) E-DPDCH的數量 和擴展因數(SF) (E-DPDCI^|@SF)。表2給出了-個替 〇 換的映射方式。表2表示了將—些絲在表丨巾所定義的情 /兄Jgj刀為夕種情況,從而可以產生比表1的映射更少的誤 差。特別是,其表示了最大的最大MPR估計誤差小於或等 於 l.OdB。 重新參考表1 ’ HS Chan碼一欄涉及用於HS_DPCCH的 特定“SF和正交變長(ov) SF碼”。請注意,SF通常為 256 ’且對於〇VSF ’使用兩個碼(%和64)中的一個。當 第二棚(即HS)顯示沒有(“N”)HS時,本欄表示為‘‘不 ❽ 可用 ” (N/A)。 E-DPDCH 1,3 I或Q攔表示在該部分中,顯示I或q, E-DPDCH頻道#1和#3 ’其根據欄的情況來使用。 E-DPOCH 1,3 Chan碼襴,如果有的話,涉及用於涉及頻 道#1和#3的E-DPDCH的SF和OVSF碼。例如’配置情況 6具有兩個E-DPDCH ’標記為#丨和#3,該欄的剩餘部分要麼 是沒有(不可用),要麼是一個(默認為“#1”)。大部分的 8 200947903 配置情況都只有一個E-DPDCH。 E-DPDCH 2,4 Chau碼欄與上面的類似’用於具有兩個或 更多E-DPDCH的情況。 I和Q攔表示在I和Q部分的/5項。在配置情況6中’ 涉及E-DPDCH頻道#1和#2,而石必4涉及E-DPDCH頻 道#3和#4。 表1A signal can be defined as a combination of a physical channel and a cold item. ^_ A possible signal must be in at least one configuration. This definition can be extended. For example, a subset or limited range of some or all of the items for one or more physical channels including configuration conditions may be included. The identification of the smallest subset of configuration conditions is subjective, which specifies the minimum acceptable CM and/or PAR estimation error, which in turn is used for MpR 200947903, 'estimation error. An example of a set of 11 configurations is shown in Table 1. These configurations are limited to allowing up to one DpDCH. It will be apparent to those skilled in the art that the configuration is not limited thereto. However, 彳^ may not be ideal. The age indicates the acceptable smaller estimation error produced by the system, and the maximum maximum MPR estimation error 疋 is less than or equal to 15 dB. Table i shows that the configuration is usually defined by three main characteristics: the maximum number of DPDCHs (fine DPDCH) ' 2) whether to start high speed (HS); and 3) the number of E-DPDCHs and the expansion factor (SF) (E) -DPDCI^|@SF). Table 2 shows the mapping method for the replacement. Table 2 shows the situation in which the filaments are defined in the table towel, and the Jgj knife is used as a case for the night, so that fewer errors than the map of Table 1 can be produced. In particular, it indicates that the maximum maximum MPR estimation error is less than or equal to 1.0 dB. Referring back to Table 1 'the HS Chan Code column relates to the specific "SF and Orthogonal Variable Length (ov) SF Codes" for HS_DPCCH. Note that SF is typically 256 ’ and one of two codes (% and 64) is used for 〇VSF ’. When the second shed (ie HS) shows no ("N") HS, this column is indicated as ''not available'' (N/A). E-DPDCH 1,3 I or Q is indicated in this section, Display I or q, E-DPDCH channels #1 and #3 ' are used according to the condition of the column. E-DPOCH 1,3 Chan code, if any, relates to E for channels #1 and #3 - SF and OVSF codes of DPDCH. For example, 'Configuration Case 6 has two E-DPDCH' flags ## and #3, and the rest of the column is either none (not available) or one (default is "#1" Most of the 8 200947903 configurations have only one E-DPDCH. The E-DPDCH 2,4 Chau code column is similar to the above for 'two or more E-DPDCH cases. I and Q block representation In the I and Q parts of the /5 item. In configuration case 6, 'related to E-DPDCH channels #1 and #2, and Shibi 4 involved E-DPDCH channels #3 and #4. Table 1

----- 配置 Nmax HS E-DPDCH HS E-DPDCH E-DPDCH E-DPDCH I Q 情況 DPDCH _SF Chan 碼 131 或 Q l,3Chan 碼 2,4Chan 瑪 0 1 N 0 N/A N/A N/A N/A βά Λ 1 0 Y 1@SF>=4 256, 33 I SF, SF/4 N/A fitted βζβ\^ 2 0 N 1@SF>=4 N/A I N/A N/A A 3 0 Y 0 256,33 I SF, SF/4 N/A N/A 4 0 Υ/ 2@SF>=4 256, 33 I SF, 4,1 Ν SF/4=4,1 β^ά 5 0 Υ/ 2@SF>=2 256, 33 I 2,1 2,1 Ν β^ά 6 0 Υ/ 4@SF>= 256, 33 I(#l) 2,1(#1) 2,1(#1) ^ec^ed, Ν 2/4/2/4 1(#3) 4,1(#3) 4’ _ β&ά3/4 β味 Ad3/4 7 1 Υ 0,或 256,64 I SF, SF/2 N/A fic^hs 1@SF>=4 ββά' 8 1 Υ/ 2@SF>=4 256, 64 如果 SF, 4,2 fic^hs, Ν ΪΚ=,Ύ” SF/2=4,2 fitA, fied ,則I,否 --— 則為Q 9 200947903 9 1 Y/ Ν 2@SF>=2 256,64 如果 HS=T ,則I,否 則為Q SF,. SF/2=4, 2 4,2 βοά, βζβ\&, Ad 10 1 Ν 1@SF>=4 Ν/Α Q SF, SF/2 N/A βά,^β&ο, A, Ad 表2 配置 情況 Nmax DPDCH HS E- DPDC H ,@SF 附加狀態 0 1 N 0 N/A 1 0 Y 1@SF>=4 N/A 2 0 N 1@SF>=4 N/A 3 0 Y 0 N/A 4 0 Y/N 2@SF=4 N/A 5 0 Y/N 2@SF=2 N/A 6 0 Y/N 4@SF= 2/4/2/4 N/A 7a 1 Y 〇,或 1@SF>=4 fic βά >0 7b fic-βά 彡0 8a 1 Y/N 2@SF=4 fic - βά >0 15*Aed=5 8b >0 15*Aed~=5 8c fic βά 彡0 15*Aed=5 8d fic - βά 彡0 15*Aed~=5----- Configure Nmax HS E-DPDCH HS E-DPDCH E-DPDCH E-DPDCH IQ Case DPDCH _SF Chan code 131 or Q l, 3Chan code 2, 4Chan Ma 0 1 N 0 N/AN/AN/AN/ A βά Λ 1 0 Y 1@SF>=4 256, 33 I SF, SF/4 N/A fitted βζβ\^ 2 0 N 1@SF>=4 N/AIN/AN/AA 3 0 Y 0 256, 33 I SF, SF/4 N/AN/A 4 0 Υ / 2@SF>=4 256, 33 I SF, 4,1 Ν SF/4=4,1 β^ά 5 0 Υ/ 2@SF> =2 256, 33 I 2,1 2,1 Ν β^ά 6 0 Υ/ 4@SF>= 256, 33 I(#l) 2,1(#1) 2,1(#1) ^ec^ Ed, Ν 2/4/2/4 1(#3) 4,1(#3) 4' _ β&ά3/4 β味Ad3/4 7 1 Υ 0, or 256,64 I SF, SF/2 N/A fic^hs 1@SF>=4 ββά' 8 1 Υ/ 2@SF>=4 256, 64 If SF, 4,2 fic^hs, Ν ΪΚ=,Ύ” SF/2=4,2 fitA, fied, then I, no--- then Q 9 200947903 9 1 Y/ Ν 2@SF>=2 256,64 If HS=T, then I, otherwise Q SF,. SF/2=4, 2 4,2 βοά, βζβ\&, Ad 10 1 Ν 1@SF>=4 Ν/Α Q SF, SF/2 N/A βά,^β&ο, A, Ad Table 2 Configuration situation Nmax DPDCH HS E-DPDC H , @SF additional status 0 1 N 0 N/A 1 0 Y 1@SF>=4 N/A 2 0 N 1@SF>=4 N/A 3 0 Y 0 N/A 4 0 Y/N 2@SF=4 N/ A 5 0 Y/N 2@SF=2 N/A 6 0 Y/N 4@SF= 2/4/2/4 N/A 7a 1 Y 〇, or 1@SF>=4 fic βά >0 7b fic-βά 彡0 8a 1 Y/N 2@SF=4 fic - βά >0 15*Aed=5 8b >0 15*Aed~=5 8c fic βά 彡0 15*Aed=5 8d fic - ά 彡 15 0 15*Aed~=5

10 20094790310 200947903

9a 1 Y/N 2@SF=2 >0 9b fit. ~βά 彡0 15*Aed=5 9c β〇-βά 彡0 15*Aed—5 10 1 N 1@SF>=4 N/A9a 1 Y/N 2@SF=2 >0 9b fit. ~βά 彡0 15*Aed=5 9c β〇-βά 彡0 15*Aed—5 10 1 N 1@SF>=4 N/A

表1和表2中的配置情況0是已知的需要零最大MPR 的普通情況。對於這種配置情況,不使用用於其他所有配置 情況的計算方法’而是簡單地將最大MPR和/或最小mpr設 置為零。 參考第2圖,表示了離線過程200的簡單版本。在下文 中還要結合第3圖進行更詳細的描述,過程200最終計算和Configuration case 0 in Tables 1 and 2 is a known general case where zero maximum MPR is required. For this configuration case, instead of using the calculation method for all other configuration cases, the maximum MPR and/or minimum mpr is simply set to zero. Referring to Figure 2, a simple version of the offline process 200 is shown. In the following, a more detailed description will be made in conjunction with Figure 3, which ultimately calculates and

存儲用於WTRU的參數,以產生最大MPR和/或最小mpR 值。在UMTS中’實體頻道和參數以及量化值石的每一種組 合都是可能的信號。量化值是根據信號的配置。首先,所有 可能的信號都映射到一組配置情況(210)。通過使用表1最 ❹ 右邊兩欄所給出的資訊(I和Q) ’可以為所有可能的信號產 生量化值(220)。通過發射機模擬來測量用於所有可能信號 的CM和/或PAR (230)。下文中將更詳細地描述對cm和 PAR的測量。 預先計算的項α最佳地通過使用發射機模擬23〇的輪出 來確定240。最佳地對於上面定義的每__獅置情況都 出根據下文中的等式7所計算出的用於CM的一組α項和/ 或用於PAR的' —組(2項。 對於每一種配置情況,發射機模擬230為所有可能的信 11 200947903 號都測量CM和PAR,(在下文帽會詳細地推導對 CM和/Parameters for the WTRU are stored to generate a maximum MPR and/or a minimum mpR value. In UMTS, each combination of physical channels and parameters and quantized value stones is a possible signal. The quantized value is based on the configuration of the signal. First, all possible signals are mapped to a set of configuration scenarios (210). The quantized value (220) can be generated for all possible signals by using the information (I and Q)' given in the last two columns of Table 1. The CM and/or PAR (230) for all possible signals is measured by transmitter simulation. The measurement of cm and PAR will be described in more detail below. The pre-calculated term a is optimally determined 240 by using the transmitter simulation 23 turns. Optimally for each __ lion case defined above, a set of alpha terms for CM and/or for PAR (2 terms) calculated according to Equation 7 below. In one configuration, Transmitter Simulator 230 measures CM and PAR for all possible letters 11 200947903 (in the following section, the cap will be deduced in detail for CM and /

或進行估計的數學推導),此處的信號定義為在3GPP 中量化f項22G的所有可驗合。可喊用最小二乘擬合的 方法’從配置纽的所有可能親,或從其巾的—個典型子 集中’來為特定配置情明定預先計算的_。對計算出的 α項、配置情況和計算㈣嫌雜進行計算(2价之後, 通過勒體、軟體或硬體將這些值寫入WTRU400中。 第3圖是離線初始配置過程(3〇〇)的流程圖。該過程 300同時為CM和PAR都計算_,並為配置情況確定調整❹ 因數。這雖鱗儲在WTRU⑽)巾,鎌躲定信號 估計CM和PAR。 參考第3圖’表示了離線過程3〇〇的詳細版本。首先, 在310根據實體頻道的特性來定義配置情況。例如,如表丄 中的配置情況9所示,定義了 DPCCH、一個卿CH (最大 的-個卿CH)、HS_DPCCH ( △概和Λα3ΐ設為相等; …疋發送月疋應答(ACK )和頻道品質指示(cqj ))、 E DPCCH 和 2SF@=2 (在 SF 的兩個 E-DPDCH 等於 2 )。Or to make a mathematical derivation of the estimate), the signal here is defined as all the fits that quantify the f-term 22G in 3GPP. The method of least squares fitting can be called to 'pre-calculate the specific configuration from all possible pros of the configuration, or from a typical subset of its towels. Calculate the calculated alpha term, configuration, and calculation (4) miscellaneous (after the 2 price, write these values into the WTRU400 by using the body, software or hardware. Figure 3 is the offline initial configuration process (3〇〇) The process 300 calculates _ for both CM and PAR, and determines the adjustment factor for the configuration. This is stored in the WTRU (10), and the signal is estimated to be CM and PAR. Refer to Figure 3 for a detailed version of the offline process. First, at 310, the configuration is defined according to the characteristics of the physical channel. For example, as shown in the configuration case 9 in the table, DPCCH, a clear CH (the largest - a single CH), HS_DPCCH (the △ and Λ α3 ΐ are set equal; ... 疋 send a monthly response (ACK) and channel Quality indicator (cqj)), E DPCCH and 2SF@=2 (two E-DPDCHs in SF are equal to 2).

使用在表1最右兩攔中的資訊(I#〇Q)來確定所需要的 單個、平朴組分喊叉㈣。從等式5的符射(將在下 文描述)’{心心心卜⑷L心}和{~ ~冷qs} - {/5C ^hs /3ec}(特定數字的指定是任意 的)。在表3中定義了十六個這種項md,心Use the information in the rightmost two blocks of Table 1 (I#〇Q) to determine the required single, plain component shout (4). From the characterization of Equation 5 (described below), {hearted heart (4) L heart} and {~ ~ cold qs} - {/5C ^hs /3ec} (the designation of a specific number is arbitrary). Sixteen such items md are defined in Table 3,

Hi’ β』ά,^ 点 dUhs,泠 C石 e々/3hs)5ed。 12 200947903 後確定配置情況的所有可能信號(即,胁頻量 化的_所有組合)_。每一 3Gp = 頻道= 值對的三十種隱式的细人Δ — 〇 有万c和泠d的數 A = /9 /6二士彻姑〇 的顯式的九個值, :严〜的九個值和義 對於每個配置情況的72900種可能 值十 出這誦倾合。種1^机驗合。在此沒有列 使用發射機模擬來絲個配置情⑽所有729⑻種可能 信號測量CM和測量99%PAR (33〇)。在此沒有列出所測量 的145800個值。 ❹ 通過使用每個配置情況的72900個可能信號和其線性 CM和線性PAR的測量值,使用等式7計算出用於估計cm 的十六個預先計算的α值和用於估計PAR的十六個預先計 异的α值(340 )。在等式8至等式7中給出了符號項;在表 3中給出了 α項的數字值。儘管可能只使用了 72900個組合 的一個小的子集’但是假設在下一步中需要具有72900行的 矩陣X,則使用整個72900個組合的完整集來用於計算一種 配置情況的表3。 表3 夕項的函數 ^CM 0PAR ^ec -1.53154 __ -0.0333305 —~ β^ά -1.04303 +1.97253 — _ βά -1.88422 -0.691914 —~ β〇 -1.10666 -1.24791 As -0.851261 _ -0.642072 ficc +2.7545 _ +2.3413 — -β&ά +3.39477 +1.35334 βά2 +2.85157 +2.61758 β,1 +2.47229 +2.86022 々hs +2.37892 +2.63543 — 13 200947903 .Aec ββά +23^ϊΤ~~ +1.72716 Pete -Ad βά .β〇 ^•l〇D53 +1.27585 +2.95673 -LI HC^on +2.75154 A: .々ed +2.052R^ +1.80679 βεΑ +3.06353 +1.59968 +2.07734 …對於每―個可能的信號,等式5和6 (將在下文中 描述)所描述的柄型來估計線性CM和線性卩姐(⑽)。在 等式12中給出了矩_式的計算。矩陣X是等式$的分子, 並且包括用於單個0項的歸_化函數。矩陣γ是線性CM與 線!·生PAR測量值與等式5的分母相乘;等式6的模型使用了 類似的形式。 最佳地使用等式13來計算驗CM和驗兩者的估計 誤差(360)。為了進一步描述,在第6A圖和第6b圖中給出 了 CM估5十誤差的分佈(以犯形式)。在第7a圖和第π 圖^給出了 PAR誤差dB形式的分佈。第6A圖和帛7a圖表 示等式5所描述的模型’而第6B圖和第%圖表示等式6所 描述的模型。 之後確骑需的調整因數(37G)。通過檢查可以看出, 對於等式5的模型,用於最大MPR的調整因數、在第6A圖 中的最大幅值正誤差約為054dB或1/0.883。如果最小mpr 疋所需的結果,卿於最小MPR的使用CM的調整因數、 第6A圖中的最大幅值負誤差約為_〇71dB。用於最小MpR 的使用PAR的調整因數、第7A圖中的最大幅值負誤差約為 -〇.41dB。從第6B圖和第7B圖中可以看出,用於等式6的模 型的相應值為-〇.54dB、_0.080dB 和-〇.57dB。 200947903 通過使用調整因數來確定最大MPR誤差的分佈⑽), 如上面所。·)·算的’該調整因數兩者—致為。 請看第5A ®和第5B圖,最大MPR誤差的分钸顯示, 對於兩個模型’最大的最大MPR誤差為1.5dB,如果認為其 已經足夠在本例中是這樣的),則理論上兩個模型^可^ 使用。 Ο 、作為第二標準’應當注意,如第5A圖和第5B圖所示, 等式5的模型的最大誤差的出現頻率,即9/72900,低於等式 6的模型’即406/72_。因此,選擇等式5的模型,、且^ WTRU (400)中配置〇值和調整因數(390)。可替換地,等 式6的模型估計CM需要較少的乘法,如果這是一個顯著的 因素的話’則可以選擇該模型。 現在描述對估計CM和/或PAR的推導。在已經使用了 頻道權重之後,但是在使用根升余弦和其他濾波器之前,根 據等式2來確定上行鏈路信號的PAR。Hi' β』ά, ^ point dUhs, 泠 C stone e々/3hs) 5ed. 12 200947903 After determining all possible signals for the configuration (ie, all combinations of metrics). Each of the 3Gp = channel = value pair of thirty implicit fine people Δ - 〇 has the number of 10,000 c and 泠 d A = / 9 / 6 two absolute values of the two aunts, a strict ~ The nine values and meanings are ten for each of the 72,900 possible values for each configuration. Kind of 1 ^ machine inspection. There is no column here to use the transmitter simulation to wire the configuration (10) all 729 (8) possible signals to measure CM and measure 99% PAR (33 〇). The measured 145,800 values are not listed here.十六 Calculate sixteen pre-calculated alpha values for estimating cm and sixteen for estimating PAR using Equation 7 using the measured values of 72,000 possible signals and linear CM and linear PAR for each configuration. A pre-tested alpha value (340). The symbol term is given in Equations 8 to 7; the numerical value of the α term is given in Table 3. Although it is possible to use only a small subset of 72,900 combinations', but assuming a matrix X with 72,900 lines in the next step, a complete set of the entire 72,900 combinations is used to calculate Table 3 for a configuration case. Table 3 The function of the evening term ^CM 0PAR ^ec -1.53154 __ -0.0333305 —~ β^ά -1.04303 +1.97253 — _ βά -1.88422 -0.691914 —~ β〇-1.10666 -1.24791 As -0.851261 _ -0.642072 ficc +2.7545 _ +2.3413 — -β&ά +3.39477 +1.35334 βά2 +2.85157 +2.61758 β,1 +2.47229 +2.86022 々hs +2.37892 +2.63543 — 13 200947903 .Aec ββά +23^ϊΤ~~ +1.72716 Pete -Ad βά .β〇 ^•l〇D53 +1.27585 +2.95673 -LI HC^on +2.75154 A: .々ed +2.052R^ +1.80679 βεΑ +3.06353 +1.59968 +2.07734 ...for every possible signal, Equations 5 and 6 (will The stalk type described is described below to estimate linear CM and linear sputum ((10)). The calculation of the moment_form is given in Equation 12. The matrix X is a numerator of the equation $ and includes a normalization function for a single zero term. The matrix γ is a linear CM and a line! The raw PAR measurement is multiplied by the denominator of Equation 5; the model of Equation 6 uses a similar form. Equation 13 is best used to calculate the estimated error (360) for both the CM and the test. For further description, the distribution of the CM estimate of the error of 50 is given in Figures 6A and 6b. The distribution of the PAR error dB form is given in Figure 7a and Figure π. Fig. 6A and Fig. 7a show the model described by Equation 5, and Fig. 6B and Fig. % show the model described in Equation 6. After that, I really need to ride the adjustment factor (37G). It can be seen from the inspection that for the model of Equation 5, the adjustment factor for the maximum MPR, the maximum amplitude positive error in Figure 6A is about 054 dB or 1/0.883. If the minimum mpr is the desired result, the adjustment factor using CM for the minimum MPR, and the maximum amplitude negative error for Figure 6A is about _〇71 dB. The adjustment factor using PAR for the minimum MpR and the maximum amplitude negative error in Figure 7A is approximately -〇.41dB. As can be seen from Figures 6B and 7B, the corresponding values for the model of Equation 6 are -〇54t, _0.080dB, and -〇.57dB. 200947903 Determine the distribution of the maximum MPR error (10) by using the adjustment factor, as above. ·)· Calculated 'the adjustment factor' is both. Looking at the 5A ® and 5B graphs, the maximum MPR error is displayed. For the two models, the maximum maximum MPR error is 1.5 dB. If it is considered to be sufficient in this example, then theoretically two Model ^ can be used ^. Ο , as the second standard 'should note that, as shown in Figures 5A and 5B, the frequency of occurrence of the maximum error of the model of Equation 5, ie 9/72900, is lower than the model of Equation 6 '406/72_ . Therefore, the model of Equation 5 is selected, and the 〇 value and the adjustment factor (390) are configured in the WTRU (400). Alternatively, the model of Equation 6 estimates that the CM requires less multiplication, and if this is a significant factor, then the model can be selected. The derivation of the estimated CM and/or PAR is now described. The PAR of the uplink signal is determined according to Equation 2 after the channel weight has been used, but before the root raised cosine and other filters are used.

^ = ioi〇g(p^ijBe〇r)=i〇log \^ = ioi〇g(p^ijBe〇r)=i〇log \

等式(2) 其中; 泠/是用於I部分中的實體頻道的頻道權重; 石2是用於Q部分中的實體頻道的頻道權重; 外是I部分中的實體頻道數量;和 外是Q部分中的實體頻道數量。 15 200947903 根據一個實施方式,對於給定配置情況,最佳地將 ,(線性而不是胆形式的CM,並且沒有3GPP方法 的0.5dB量化)作為與等式2的預濾波PARftnear有關的函數 來估計,如等式3所示: —___一_1 等式(3) ϊ>/+ίχ/ 7=1 j=\ 其中; 〇 r;是用於每個實體頻道的實際加權因數; η是用於定義總和的指示數的整數; #On/er疋任忍多項式的階次;和 (— . i Nj N 2-« 、实〜+g〜2)是歸一化函數,該函數使的值 與任意比例的泠無關。 也可以使用與等式3中_的函數來估㈣波器輸注 =Pdu中只有項的值與用於CU不同。對友Equation (2) where; 泠/ is the channel weight for the physical channel in the I part; Stone 2 is the channel weight for the physical channel in the Q part; the outside is the number of physical channels in the I part; The number of physical channels in the Q section. 15 200947903 According to one embodiment, for a given configuration case, (linear rather than bile-form CM, and without 0.5 dB quantization of 3GPP method) is estimated as a function related to pre-filtered PARftnear of Equation 2 , as shown in Equation 3: —___一_1 Equation (3) ϊ>/+ίχ/ 7=1 j=\ where; 〇r; is the actual weighting factor for each physical channel; η is An integer used to define the total number of indications; #On/er疋任忍 polynomial order; and (-. i Nj N 2-« , real ~+g~2) is a normalization function, the function makes Values are independent of 比例 in any ratio. It is also possible to use the function of _ in Equation 3 to estimate (four) the waver infusion = the value of only the term in Pdu is different from that used for the CU. Friend

㈣信號,使料式3來估計%職 /_將it巾會在所估計的值和所測量的值之間產生 差,這稱為估計誤差。(4) Signal, which is used to estimate the % job /_ will have a difference between the estimated value and the measured value, which is called the estimation error.

可以選擇為任何正整數,但是在-個實发 =咖7^0如二2。經驗結果表明,通過使用#驗= :有可4號的料誤麵範断於確定最大MpRYou can choose to be any positive integer, but in - a real hair = coffee 7^0 such as two 2. The empirical results show that by using #验=: there is a material error of No. 4 to determine the maximum MpR

大於2合^病《可接受的條11。目此,將U :產生額外的複雜岐,且沒有明顯的性能改進。因 16 200947903 當將U史為2時,等式3簡化為等式4所示:More than 2 combined disease "Acceptable Article 11. For this reason, U: creates additional complications, and there is no significant performance improvement. Because 16 200947903 When the U history is 2, Equation 3 is simplified to Equation 4:

等式(4) 擴展等式4則產生了等式$。 〇 ❹ ¥^2 等式(5) =,述的CMW基本等於單辦方加權(由方根項進行 權)、成分内交又/5項與還不已知細項的内積的加權的形 式。該公式同樣適用於撕w,只是α項的值不同。 在等式6中表示了對等式5中所描述的替換模型 6的模型去掉了單個Θ項以及錢的歸-化函數(在等式5 的分子中的最後—項)。經驗結果表明,對於-些配置情況, 該模型會產生比等式5的_更少祕計誤差。Equation (4) Extending Equation 4 yields the equation $. ^ ❹ ¥^2 Equation (5) =, the CMW described is basically equal to the weight of the single-party weighting (weighted by the square root term), the in-component intersection and the/5-term and the inner product of the detail item. The formula also applies to tearing w, except that the value of the alpha term is different. It is shown in Equation 6 that the model of the replacement model 6 described in Equation 5 removes a single term and the normalization function of money (the last term in the numerator of Equation 5). Empirical results show that for some configurations, the model produces less than the secret error of Equation 5.

1>/"2+堂么) r^h-Pn +ΣαΛ; +Σ Σ auApQk ___τ*ΐί·»>+ι hi-ba; Μ 户1 等式(6) 對於給定的配置情況,可以從以下來確定α項的值:j) 17 4 200947903 使用發射機模擬(23〇)来測量所有或一_少的典型可能信 號的和/或烈私_ ;和2)使用已知的最小二乘擬合 方法,在等式7中以矩陣的形式給出·· 等式(7) α = {χτχΥχ^γ 其中;1>/"2+堂) r^h-Pn +ΣαΛ; +Σ Σ auApQk ___τ*ΐί·»>+ι hi-ba; 11 1 equation (6) For a given configuration, The value of the alpha term can be determined from: j) 17 4 200947903 using transmitter simulation (23〇) to measure all or a few of the typical possible signals and/or singularity _; and 2) using the known minimum The two-square fitting method is given in the form of a matrix in Equation 7. Equation (7) α = {χτχΥχ^γ where;

X疋矩陣(已知為設計或Vandennode矩陣),每個信號 -行’其中,—行中的每個元素是平方、單個加權或成分内 父叉万項的數字值。這是通過將等式5或等式6中的符號幻 和的替換為蚊頻道0項_定的;對於具有兩贼四 個E-DPDCH的情況’每_解個和付的細都應當僅占 X的一行’而不是兩行或四行;並且 γ是列向量,具有每個信號一個元素,其中每個部分都 分別是所·❸CU缝^。假絲料算驗估計 &lt;^1的〇:項或用於估計1^的〇:項,則乘以等式5或等式6 的分母中的錢加權隨。可地,假期時要計算;於 Ο =CM和PAR的_,貝,j γ可以是具有兩個這樣的列的 Ρ 個用於,另一個用於。 下面提供了麟等式⑺中為本麟心項的符號項(而 不是其數字值):The X疋 matrix (known as the design or Vandennode matrix), each signal - row 'where, - each element in the row is a square, a single weight, or a numeric value of the parent fork in the component. This is done by replacing the symbolic sum of the symbol in Equation 5 or Equation 6 with the mosquito channel 0 item; for the case of having two E-DPDCHs of two thieves, the case of each _ solution and payment should only be A row of X' instead of two or four rows; and γ is a column vector with one element per signal, each of which is a ❸ ❸ seam. The false silk material estimates the 〇: item of the <^1 or the 〇: item used to estimate 1^, multiplied by the money weighted in the denominator of Equation 5 or Equation 6. Yes, it is calculated during holidays; _, 贝, j γ of CM = CM and PAR can be used for two such columns, and the other is used. The symbolic item of the ninth term (instead of its numerical value) in the equation (7) is provided below:

72900 ^~fiec72900 怂 X+2«+t Pdi +βεα +2^22+^22+^272900 ^~fiec72900 怂 X+2«+t Pdi +βεα +2^22+^22+^2

等式(8) 18 1= 200947903Equation (8) 18 1= 200947903

❹ &quot;Iz= χτ ^βά\+ββ(Λ +^ed\ +Pc\ +fihs\ +^βεά2 + β〇2 + fihs2 等式(9) ^rf72900 +Art2900 +^ed72900 + A:72900 +Α. fiec\ fiec2 ββά 1 βεά 2 β&lt;η β&lt;η β〇\ β〇2 fihsl Phsl fiec22 β&amp;ί2 An2 βάι Pc' β〇2 Phs\ fihs2 Pec\Ped\ PeclPedl Pec\Pd\ βεϋΐβάΐ βεά\β&lt;η β&amp;ηβάΐ Pc\fihs\ PclPhsl β〇\βεά\ βοΐββάΐ fihs 1 βεά 1 PhslPed 2 β( ec\❹ &quot;Iz= χτ ^βά\+ββ(Λ +^ed\ +Pc\ +fihs\ +^βεά2 + β〇2 + fihs2 Equation (9) ^rf72900 +Art2900 +^ed72900 + A:72900 +Α Fiec\ fiec2 ββά 1 βεά 2 β&lt;η β&lt;η β〇\ β〇2 fihsl Phsl fiec22 β&amp; ί2 An2 βάι Pc' β〇2 Phs\ fihs2 Pec\Ped\ PeclPedl Pec\Pd\ βεϋΐβάΐ βεά\β&lt; η β &amp;ηβάΐ Pc\fihs\ PclPhsl β〇\βεά\ βοΐββάΐ fihs 1 βεά 1 PhslPed 2 β( ec\

Jed\ Y^diagiy CM」ineafCM_linea^ 2 IJ72900Jed\ Y^diagiy CM"ineafCM_linea^ 2 IJ72900

Ac72900 ^/72900 Af72900 A: 72900 72900. %c729QO 2 72900 2 ββά 72900 &quot;c 72900 Atr 72900 PecmmPednm ^ec 72900 A/72900 足d 72900A/72900 A? 72900Aj 72900 PciimPediim Phs1290^Pednm_PARJLinea^ PAR—lineaj[ CMJineajfmo PARJinea^ 丨〇〇_Ac72900 ^/72900 Af72900 A: 72900 72900. %c729QO 2 72900 2 ββά 72900 &quot;c 72900 Atr 72900 PecmmPednm ^ec 72900 A/72900 Foot d 72900A/72900 A? 72900Aj 72900 PciimPediim Phs1290^Pednm_PARJLinea^ PAR-lineaj[ CMJineajfmo PARJinea ^ 丨〇〇_

等式(10) 等式(π) Ϋ = Χ α 等式(12) err = 10log(F)-10l〇g(F) 等式(13) 上面例子所引用的可能信號的減少集涉及這樣的情況, 即用於可靠地計算出^^項所需的信號數量可能會比所有可能 信號的數量少幾個量級。但是,使用等式12和13,來使用 具有所有可能信號的矩陣χ來計算估計誤差。通過限制χ中 用於5十算α項的信號數量,不會在離線處理器2〇〇中產生明 顯的節約。 19 200947903 在等式5和6中所規定的’分別用於構造矩 =根=力率(等式5和等式6的分母)、以及每』 施方^中可田(在等式5的分子中的均方根項)在特定實 &amp;方式中可u對所有信號都是相同或基本相同的。在這種产 =以要對每個信號進行計算。而是,兩個加權; 數叮刀別疋對所有信號通用的常量。 機脑I於測置CM和/或PAR、並之後計算α項的發射 、中的數字点項的比例等於WTRU中的數位点項的比Equation (10) Equation (π) Ϋ = Χ α Equation (12) err = 10log(F)-10l〇g(F) Equation (13) The reduced set of possible signals cited in the above example relates to such The situation, that is, the number of signals required to reliably calculate a ^^ item may be orders of magnitude less than the number of all possible signals. However, Equations 12 and 13 are used to calculate the estimation error using a matrix 具有 with all possible signals. By limiting the number of signals used in the 算 算 α term, there is no significant savings in the offline processor 2〇〇. 19 200947903 'Definitely used for constructing moment = root = force rate (equate 5 and equation 6 denominator), and per quotient ^ in the equations 5 and 6 (in Equation 5) The root mean square term in the numerator) can be the same or substantially the same for all signals in a particular real &amp; In this production = to calculate for each signal. Instead, two weights; the number of knives is a constant for all signals. The ratio of the digital point items in the WTRU and the PAR, and then the calculation of the alpha term, is equal to the ratio of the digits in the WTRU.

例則還可以攸等式5和6中去掉加權因數,並有效 至α項中。 k過使用第2圖和第3圖的過程,對所有所絲的配置 =況的α項、用於每—種配置情況的調整隨和能夠最小化 最大MPR或最小的模型,已經為等式5和6中所描述 的兩個核型而被叶算。最小化最大刷^和最小歷^的模型 根據如下來計算: 、For example, the weighting factors can be removed from equations 5 and 6, and validated into the alpha term. k through the use of the process of Figure 2 and Figure 3, for all the configuration of the wire = the alpha term, the adjustment for each configuration can be minimized the maximum MPR or the smallest model, already the equation The two karyotypes described in 5 and 6 are counted by leaves. The model that minimizes the maximum brush ^ and the minimum history ^ is calculated as follows:

^於最大MPR的情況,有三種替換方式來確定能夠最 小化最大MPR估計誤差的模型。 第y㈣射式是’解式5或6料出的现^應當 〒調以使調整後的估計的CM不大於從CM的實際測量所 麟的值。_整_應當是對補定配置叙的最大幅值 正誤差’翻數應當從實种減去。這獅整誤差的目 的是防止對任何信號過高地估計CM。 第二種替換方式是,從等式5或6估計出的應當 被調整以舰輕後狀CM所確糾敎刪^不大 20 200947903 於從實際CM測量所獲得的最大MPR。以這種方式來調整誤 差的目的是防止對任何信號過高地估計最大MPR。如下是確 定調整因數的方法: 1) 對於配置中的每一個信號’使用估計的CM來確定估 計的MPR ( MPR_estimated ),並從已知的模擬的實際cm中 確定實際 MPR (MPI^true)。 2) 根據等式14來計算MPR誤差(MPR_error): 议—err〇r = MPR—true - MPR 一 estimated等式(14) 3) 從MPR誤差小於〇的信號中,根據等式15來選擇 原始調整因數(adjustment factor raw): adjustment一 factor-raw= ms^CM一estimated·ceiKCM_ίηίφ,5));等式(15 ) 其中,⑽7(·,〇.5)的意思是向上舍入至最近的〇 5。 4) 最終的調整值是等式15的值加上一個小量,^,以 確保4式15中具有最大的的信號在使用了調整 因數後,不會向上捨入至下一個〇.5dB。換句話說,使用等 式16來計算調整因數(adjustment—factor),其中從MpR誤 差小於零的信號中it擇最大的。In the case of maximum MPR, there are three alternative ways to determine the model that minimizes the maximum MPR estimation error. The yth (fourth) shot is the result of the solution of the solution 5 or 6 so that the adjusted estimated CM is not greater than the value of the actual measurement from the CM. _ _ _ should be the maximum amplitude of the supplementary configuration. The positive error 'turns should be subtracted from the real species. The purpose of this lion's integer error is to prevent the CM from being overestimated for any signal. The second alternative is that the estimated MVP from Equation 5 or 6 should be adjusted to be the correct MPR obtained from the actual CM measurement. The purpose of adjusting the error in this way is to prevent the maximum MPR from being overestimated for any signal. The following is the method of determining the adjustment factor: 1) Use the estimated CM for each signal in the configuration to determine the estimated MPR ( MPR_estimated ) and determine the actual MPR (MPI^true) from the actual cm of the known simulation. 2) Calculate the MPR error (MPR_error) according to Equation 14: ——rr〇r = MPR—true - MPR estimated equation (14) 3) From the signal with MPR error less than 〇, select the original according to Equation 15. Adjustment factor raw: adjustment-factor-raw= ms^CM-estimated·ceiKCM_ίηίφ,5)); equation (15) where (10)7(·,〇.5) means round up to the nearest 〇 5. 4) The final adjustment value is the value of Equation 15 plus a small amount, ^ to ensure that the largest signal in Equation 4 is not rounded up to the next 〇.5dB after the adjustment factor is used. In other words, Equation 16 is used to calculate an adjustment factor, where it is the largest from the signal with an MpR error less than zero.

Wi_je”i_/aCtor = max(CM一&amp;siimaied-ce&quot;(CM一frue,0.5))+£ 等式(16) 第三種替換方式是,使用比其他替換方式所使用的更小 幅值的調整因數,所選擇的量作為設計折中,(例如,防止僅 僅對配置情況的特定信號過高估計CM)。 對於計算最小MPR來確定最小化最小MpR估計誤差的 模型的情況,所估計的αν[或PAR應當被調整以使得調整後 的CM或PAR不小於的αν[或PAR的實際測量值。調整後 200947903 的因數應▲疋對於特定配置情況的最大幅值的負CM或PAR 估計誤差,其應當從實際估計中減去。以這種方式來使用調 整因數的目的是防止對任何信號過低估計CM或PAR。可替 換地’可以使用更小幅值的負調整因數’所選擇的量作為設 計折中,(例如,防止僅僅對配置情況的特定信號過低估計 CM) 0 對於每一種配置情況,在任何一種方法使用了調整因數 之後,必須對該誤差對於兩個模型是否都足夠小來進行評 價。在第5A圖、第5B圖、第6A圖、第6B圖、第7A圖和 ❿ 第7B圖中給出了特定配置情況測量誤差的分佈。第5A圖, 第6A圖和第7A圖表示了等式5所描述的模型;第5B圖,第 6B圖和第7B圖表示等式6中描述的模型。第5A圖和第5B 圖表示了對特定情況的最大MPR估計誤差的分佈。在第5A 圖和第5B圖中,由於在最大MpR計算中的取頂(⑽7)操 作,該分佈高度量化了。 第6A圖和第6B圖表示了 CM估計誤差的強度;第6八 圖具有比第6B圖窄一些的強度。在第6A圖和第6B圖中的 ❹ 分饰以及第第7A圖和第7B圖中的分佈基本是連續的。第 7A圖和第7B圖表示了料PAR的誤絲度。為了計算最大 MPR ’最大的最大MPR誤差應當在賊的限制之内。可帛 換地,可以將在期望限制内的極限正和負CM測量誤差之間 的差作為標準。但是,最佳的是制最大的最大MpR誤差。 為了使用CM或PAR來計算最小⑽反,極限正和負測量誤 差之間的差應當在所需的範圍之内。 22 200947903 對於最大MPR,根據第―替換方式使用調整因數的結果 是沒有信號具有過高佑計的贿,但是一些信號具有過低佑 拍MPR。使職郷二賴村_制_結果是沒有 信號具有過高估計的CM,但是—些信號具有過低估計的 CM特別疋,具有最大正CM誤差的信號將會具有正確估 計的CM’具有最大幅值的負CM誤差的信號將會由於最大 巾田值正負CM誤差之間的差而具有過低估計的cm,其他信 號將會由於-些更小的量,而具有過低估計的cm /、° 對於最小MPR’使⑽整隨的結果是沒有信號會具有 過低估計的CM或PAR ;而—倾號具有過高估計的CM或 PAR。特別是’具有最太正CM &amp; pAR誤差的信號將會具有 •^確估計的CM或PAR;具有最大幅值正CM或驗誤差的 信號將會由於最大的正貞CM誤差之間的差而具有過高 估計的CM或PAR。 估計誤差存在兩個可能的問題:首先,由於故意的低估 和兩估CM和PAR,所計算出的最小mpr可能會超過計算 出的最大。在這種情況下,WTRU可能不能選擇出mpR 的值’該值能夠保證同時符合例如3GPP的標準的]VIPR和 ACLR的要求。其次,最大幅值正負估計誤差之間的差越大, 則根據所述方法所獲得的最小MPR與假設由測量所獲得的 最小MPR之間的差就越大’從而減小了能達到的最大發射 功率。 對上述問題的兩種可能的措施是:1)可以通過選擇替換 調整因數來使用上述折中,這樣對於一些可能較小的信號 23 200947903 » · 集,不適騎計算出的mpr :和U可以將特定的配置情況 劃分為兩個或更多配置情況,這樣所產生的估計誤差就更 小j例如,如果分析翻對於特定實體頻道,最大的石項產 生最大的估計誤差’败料些㈣來建立單獨的配置情況。 一旦已經定義了—組配置情況,且已經計算出了用於所 有配置情_〇:項和繼因數,則最佳地將其存儲在1哪 的表中。 參考第4圖’表示了 WTRU 4〇〇。在每個TTI開始傳輸 之前,選择適當的配置情況來配置由傳輸塊的介質訪問控制 ❹ (MAC)層所提供的資料。為了定義表1中給出的配置情況 集’根據用於發送傳輸塊的實體頻道的組合,以及可能的 E-DPDCH擴展因數來進行選擇。Wi_je"i_/aCtor = max(CM_&siimaied-ce&quot;(CM-frue,0.5))+£ Equation (16) The third alternative is to use a smaller magnitude than the other alternatives used. The adjustment factor, the selected amount is compromised as a design (for example, preventing CM from being overestimated only for specific signals in the configuration case). For the case of calculating the minimum MPR to determine the model that minimizes the minimum MpR estimation error, the estimated Αν[or PAR should be adjusted such that the adjusted CM or PAR is not less than the actual measured value of αν [or PAR. The factor of 200947903 after adjustment should be ▲ 负 negative CM or PAR estimation error for the maximum amplitude of a particular configuration case , which should be subtracted from the actual estimate. The purpose of using the adjustment factor in this way is to prevent CM or PAR from being underestimated for any signal. Alternatively, the 'negative adjustment factor for smaller amplitudes' can be used. The quantity is compromised as a design (for example, to prevent CM from being underestimated only for specific signals in the configuration) 0 For each configuration case, after any method uses the adjustment factor, the error must be Whether the models are small enough for evaluation. The distribution of measurement errors for specific configurations is given in Figures 5A, 5B, 6A, 6B, 7A, and 7B. Figure 5A Fig. 6A and Fig. 7A show the model described in Equation 5; Fig. 5B, Fig. 6B and Fig. 7B show the model described in Equation 6. Figs. 5A and 5B show the specific case The distribution of the maximum MPR estimation error. In the 5A and 5B diagrams, the distribution is highly quantized due to the topping ((10)7) operation in the maximum MpR calculation. Figures 6A and 6B show the CM estimation error. The intensity of Figure 6 has a narrower intensity than that of Figure 6B. The distribution in Figure 6A and Figure 6B and the distribution in Figures 7A and 7B are substantially continuous. Figure 7A And Figure 7B shows the degree of mis-filament of the material PAR. In order to calculate the maximum MPR 'maximum maximum MPR error should be within the limits of the thief. Can change the ground, between the limit positive and negative CM measurement error within the desired limit The difference is the standard. However, the best is to make the maximum maximum MpR error. In order to use CM Or PAR to calculate the minimum (10) inverse, the difference between the limit positive and negative measurement errors should be within the required range. 22 200947903 For the maximum MPR, the result of using the adjustment factor according to the first-alternative method is that no signal has too high a benefit The bribe, but some signals have too low to beat the MPR. The 郷 赖 赖 _ _ _ results are no signal with a high estimate of the CM, but some of the signals have a low estimate of the CM special 疋, with the largest positive CM The signal of the error will have a correctly estimated CM' signal with a negative CM error of the largest amplitude will have a low estimate of cm due to the difference between the positive and negative CM errors of the maximum field value, other signals will be due to Smaller quantities, with a low estimate of cm /, ° for the minimum MPR' so that (10) the result of the whole is that no signal will have a low estimate of CM or PAR; and - the number has a too high estimate of CM or PAR . In particular, the signal with the most positive CM &amp; pAR error will have a positive estimate of CM or PAR; the signal with the largest amplitude positive CM or error will be due to the difference between the largest positive CM errors. And have an overestimated CM or PAR. There are two possible problems with estimating errors: First, due to deliberate underestimation and two estimates of CM and PAR, the calculated minimum mpr may exceed the calculated maximum. In this case, the WTRU may not be able to select the value of mpR 'this value can guarantee compliance with both VIPR and ACLR requirements such as the 3GPP standard. Second, the greater the difference between the maximum amplitude positive and negative estimation errors, the greater the difference between the minimum MPR obtained according to the method and the minimum MPR obtained from the measurement, thereby reducing the maximum achievable Transmit power. Two possible measures for the above problem are: 1) the above compromise can be used by selecting the replacement adjustment factor, so for some possibly smaller signals 23 200947903 » · Set, unsuitable ride mpol: and U can The specific configuration case is divided into two or more configuration cases, so that the estimation error generated is smaller. For example, if the analysis turns to the specific physical channel, the largest stone item produces the largest estimation error, which is lost (four) to establish Separate configuration. Once the group configuration has been defined and the configuration and calculations have been calculated for all configuration conditions, then it is best stored in a table of 1. Referring to Figure 4, the WTRU 4 is shown. Before each TTI begins transmission, the appropriate configuration is selected to configure the material provided by the Media Access Control (MAC) layer of the transport block. The selection is made in order to define the set of configuration conditions given in Table 1 based on the combination of physical channels used to transmit the transport block, and possibly the E-DPDCH spreading factor.

不管MPR計算設備(43 〇 )計算出最大MPR、最小MPR 或以上兩者,並且,如果該設備使用pAR計算出了最小 MPR,則根據等式17估計,等式17是等式5和等式 6的簡化形式: CMl-S 等式(17) 〇 其中’ N和D分別是等式5或等式6的分子和分母,並使用 上面確定的配置情況的CM α項。使用等式11來估計 尸乂’但是將CMtoear替換為iMi^ear,並使用配置情況的 PAR a項。之後,將CM/_和/或轉化為dB形式。 如果MPR計算設備(430)計算出最大MPR,則從dB 形式的CM的估計中減去所選擇的用於計算最大MpR的調 整因數(以dB形式)。這樣就給出了用於計算最大MPR的 24 200947903 CM值。 如果MPR計算設備(430)使用CM計算出最小MPR, 則從dB形式的CM的估計中減去所選擇的用於計算最小 MPR的調整因數(以dB形式)。這樣的結果是使用CM值計 算出了最小MPR。 如果MPR計算設備(430)使用PAR計算出最小MPR, 則從dB形式的PAR的估計中減去所選擇的用於使用PAR來 計算最小MPR的調整因數(dB)’其結果用於計算最小MPR。Regardless of whether the MPR computing device (43 〇) calculates the maximum MPR, the minimum MPR, or both, and if the device calculates the minimum MPR using pAR, Equation 17 is estimated according to Equation 17, Equation 5 is an equation A simplified version of 6: CMl-S Equation (17) where 'N and D are the numerator and denominator of Equation 5 or Equation 6, respectively, and use the CM α term of the configuration determined above. Use Equation 11 to estimate the corpse' but replace CMtoear with iMi^ear and use the PAR a item of the configuration case. Thereafter, CM/_ and/or are converted to the dB form. If the MPR computing device (430) calculates the maximum MPR, the selected adjustment factor (in dB) for calculating the maximum MpR is subtracted from the estimate of the CM in dB form. This gives the 24 200947903 CM value used to calculate the maximum MPR. If the MPR computing device (430) calculates the minimum MPR using the CM, the selected adjustment factor (in dB) for calculating the minimum MPR is subtracted from the estimate of the CM in dB form. The result of this is that the minimum MPR is calculated using the CM value. If the MPR computing device (430) calculates the minimum MPR using PAR, the selected adjustment factor (dB) for calculating the minimum MPR using PAR is subtracted from the estimate of the PAR in dB form. The result is used to calculate the minimum MPR. .

φ 如果MPR計算設備(430)計算出最大mpr,則最佳地 根據3GPP來計算最大MPR。如果mpr計算設備計算出了 最小MPR,則最佳地根據功率放大器的規定來計算最小 MPR 〇 如果設備計算出了最大MPR或最小mpr,而不是兩者 同時’則將所§十算出的最大MPR或最小mpr作為用來設置 發射功率的MPR值進行輸出。同時計算最大MpR和最小 MPR的设備可以選擇某個令間值來作為用於設置發射功率 的MPR值,並保持與標準和製造商的建議一致。 實際並不需要完全估計出CM的值,而只需要檢測出所 估計的CM值是高於還是低於—個或多個臨界值。可以通過 猶微修改等式17,如等式18,來提供—種可朗臨界值測 試,其優點是避免了等式17中的劃分操作。φ If the MPR computing device (430) calculates the maximum mpr, the maximum MPR is optimally calculated from 3GPP. If the mpr computing device calculates the minimum MPR, the minimum MPR is calculated optimally according to the specifications of the power amplifier. If the device calculates the maximum MPR or the minimum mpr, instead of both, then the maximum MPR calculated by § 10 Or the minimum mpr is output as the MPR value used to set the transmission power. A device that calculates both the maximum MpR and the minimum MPR can select an inter-valve value as the MPR value used to set the transmit power and remain consistent with the standards and manufacturer's recommendations. Actually, it is not necessary to fully estimate the value of CM, but only need to detect whether the estimated CM value is higher or lower than one or more threshold values. A Koran threshold test can be provided by modifying Equation 17, as in Equation 18, which has the advantage of avoiding the division operation in Equation 17.

CM linmrT · ϋ〈N 等式(18 ) 其中’ cu 〇4_的特定臨界值;:操作符是臨界值 ;則《式如果不等式為真,則指示況_大於叫―。 25 200947903 表4是從3GPP TS 25.101的表6.1A所推導出的,其中 表示了以C語言的形式給出的有效演算法,該演算法設定了 max_MPR一dB的值和臨界值。選擇調整因數的線性等效的值 以用於計算最大]V1PR。 表4 編號 CM linear T MPR dB 0 10Λ(1.0/10)=1.258925 未使用 1 10^1.5/10)=1,412538 0.5 2 10λ(2.0/10)=1.584893 1.0 3 10α(2.5/10)=1.778279 1.5 4 10λ(3.0/10)=1.995262 2.0 5 未使用 2.5 用於計算最小MPR的專用設備演算法與計算最大mpr 的類似’根據特定數目,很可能只有一個CM和/或PAR的 臨界值’並且可以使用類似的演算法進行計算。 回到第4圖,第4圖是被配置用於無線通信的WTRU 400,由縮放電路450接收和處理數位使用者資料和控制資 料,以數位地縮放資料,設定其相對發射功率。可以將數位 使用者資料編碼至例如專用實體資料頻道(DPDCH)或增強 ❹ DPDCH (E-DPDCH)的頻道中。可以將控制資料編碼至例 如專用實體控制頻道(DPCCH )、高速DPCCH ( HS-DPCCH ) 或增強DPCCH (E-DPCCH)的頻道中。縮放電路450在這 各個頻道中操作。 由濾波器設備460對縮放後的資料進行濾波,由模數轉 換器(DAC) 470將濾波後的資料轉換為類比信號,並由無 線電發射機480通過天線(Tx) 490發送。WTRU的發射機 具有可調整的(即,功率可控)整體發射功率,以及可縮放 26 200947903 的單個頻道輸人’如第4圖巾由類比增益項和數位增益項分 別表不。也可以使用其他形式的可控傳輸設備。 根據3GPP中定義的過程,由發射功率控制單元44〇來 設定單個舰的發射功率和整體發射功率。標稱最大發射功 率由WTRU轉級或網絲奴。WTRU神級的最大發 射功率在3GPP巾絲。WTRU可以自祕錢最大mpR 或小一些的設備專用最小MpR來對其最大發射功率進行限 制,該最大MPR是在3GPP所定義的範圍之内的值。 發射功率控制單元440使用多個參數來設定發射功率。 這些參數中一個是MPR。為了計算MPR,首先根據離線配 置參數來定義配置情況,該參數是根據上述第2圖至第3圖 的描述所獲得的(41〇)。對於識別後的情況,根據下述内容 來計算調整後的估計CM和/或PAR (420)。 根據用於最大MPR和/或最小MPR的值來設置MpR (430 )。最佳地’由處理設備43〇根據調整後的CM和/或pAR 估計(420),或調整後的mpr估計來計算最大MpR和/或最 小MPR。如果是根據對mpr的調整來計算,則不再對cm 和/或PAR進行調整。 WTRU 400可以被構造為計算mpr中的任一個或兩個 都δ十异’以及從CM或PAR任一個來計算最小MPR,這樣, 可以選擇使用任意組合。CM和/或PAR的估計可以是預先計 异的值的函數’該值由α項來表示,也可以是所發送信號的 所需相關頻道功率(/3項)的函數,其中,石項的特定函數 疋根據該號的特定實體參數。對該估計的調整可以是來自 27 200947903 4. m 預先計算的項。 為了在WTRU 400中計算一個或兩個mpr,首先,街於 111,以該信號的配置舉例,其MAC-es的頻道權重為点c = 15 6’Ahs=方hs/^fmaxMACK 和 =几眞=15/15 ’ Aed,=凡狀=95/15。該信號的例子是在R4_ 060176, 3GPPTSG RAN 4 Meeting#38 中的信號 u。 第二,通過使用數位縮放,WTRU 4〇〇計算出以下數位 頻道權重:沒,22,,ySd = 9, y3hs=22, Κ2,κ〇〇。 這些權重相互占所需比例,並且其平方和為所需常量。 ❿ 第二,通過使用表3中的0:CM和yg,而使用等式5計算 出數位頻道權重和CM⑽ar的估計,為1.0589,等於〇.2487dB。 第四,通過減去0.54 dB而對CM的估計進行調整,得 到約-0.29 dB。可替換地,在線性形式中,通過將〗〇589與 0.883相乘來調整該估計,產生約〇 93。 第五,CM的線性調整估計0.94小於表4中的第一線性 臨界值;因此,將最大MPR計算為〇 dB。 通過第8圖進行總結’表示了通過WTRU 400計算mpr 〇 而設置發射功率的過程800。根據配置情況,在離線處理器 中確定和處理調整因數和預先計算出的〇值(810)。在WTRU 中存儲這些值’以幫助WTRU 4〇0識別配置情況(820 )。 一旦確定了配置情況,則計算調整後的估計CM和/或PAR (830)。通過使用這些調整後的估計值,計算出最大MpR 和最小MPR (840),並設置mpr。將MpR、理論最大功率 和功率控制命令相結合(850),從而設置發射功率(86〇)。 28 200947903 雖=蚊組合的最讀施辦贿了树特徵和 施例㈣Γ&quot;其㈣每—轉徵和部件都相在沒有最佳實 1=罐彻的敎™,纽每一個特 ^和部件都可財具錢不具有树其婦徵和部件的CM linmrT · ϋ < N Equation (18) where ' cu 〇 4 _ a specific critical value;: operator is a critical value; then "if the inequality is true, then the condition _ is greater than the call." 25 200947903 Table 4 is derived from Table 6.1A of 3GPP TS 25.101, which shows an efficient algorithm given in the form of C language, which sets the value of max_MPR-dB and the critical value. Select the linear equivalent of the adjustment factor to calculate the maximum]V1PR. Table 4 No. CM linear T MPR dB 0 10Λ(1.0/10)=1.258925 Not used 1 10^1.5/10)=1,412538 0.5 2 10λ(2.0/10)=1.584893 1.0 3 10α(2.5/10)=1.778279 1.5 4 10λ(3.0/10)=1.995262 2.0 5 Not used 2.5 The special device algorithm used to calculate the minimum MPR is similar to the calculation of the maximum mpr 'depending on the specific number, it is likely that there is only one critical value of CM and / or PAR' and A similar algorithm can be used for the calculation. Returning to Fig. 4, FIG. 4 is a WTRU 400 configured for wireless communication that receives and processes digital user data and control data by scaling circuit 450 to digitally scale the data to set its relative transmit power. The digital user data can be encoded into a channel such as a Dedicated Physical Data Channel (DPDCH) or an Enhanced ❹ DPDCH (E-DPDCH). Control data can be encoded into channels such as the Dedicated Physical Control Channel (DPCCH), High Speed DPCCH (HS-DPCCH), or Enhanced DPCCH (E-DPCCH). The scaling circuit 450 operates in each of these channels. The scaled data is filtered by filter device 460, and the filtered data is converted to analog signals by analog to digital converter (DAC) 470 and transmitted by antenna (Tx) 490 by radio transmitter 480. The WTRU's transmitter has an adjustable (i.e., power controllable) overall transmit power, and the scalable 26 200947903 single channel input' as shown in Fig. 4 is distinguished by the analog gain term and the digital gain term. Other forms of controllable transmission equipment can also be used. According to the procedure defined in 3GPP, the transmission power and the overall transmission power of a single ship are set by the transmission power control unit 44A. The nominal maximum transmit power is converted by the WTRU or mesh slave. The maximum transmit power of the WTRU's God level is in the 3GPP towel. The WTRU may limit its maximum transmit power from the secret maximum mpR or a smaller device-specific minimum MpR, which is a value within the range defined by 3GPP. The transmit power control unit 440 uses a plurality of parameters to set the transmit power. One of these parameters is MPR. In order to calculate the MPR, the configuration is first defined based on the offline configuration parameters obtained by the description of Figs. 2 to 3 above (41〇). For the case after identification, the adjusted estimated CM and/or PAR (420) is calculated based on the following. The MpR (430) is set according to the value for the maximum MPR and/or the minimum MPR. The maximum MpR and/or the minimum MPR are calculated optimally by the processing device 43 based on the adjusted CM and/or pAR estimate (420), or the adjusted mpr estimate. If it is calculated based on the adjustment to mpr, the cm and / or PAR are no longer adjusted. The WTRU 400 may be configured to calculate either or both of the mprs and calculate the minimum MPR from either CM or PAR, such that any combination may be selected for use. The estimate of CM and/or PAR may be a function of a pre-estimated value 'this value is represented by the alpha term, or may be a function of the desired correlated channel power (/3 term) of the transmitted signal, where The specific function 疋 is based on the specific entity parameter of the number. The adjustment to this estimate can be a pre-calculated term from 27 200947903 4. m. In order to calculate one or two mprs in the WTRU 400, first, at 111, with the configuration example of the signal, the channel weight of its MAC-es is point c = 15 6 'Ahs = square hs / ^ fmaxMACK and = several =15/15 ' Aed, = 凡 = 95/15. An example of this signal is signal u in R4_060176, 3GPP TSG RAN 4 Meeting #38. Second, by using digital scaling, the WTRU 4〇〇 calculates the following digital channel weights: no, 22, ySd = 9, y3hs=22, Κ2, κ〇〇. These weights take up the desired ratio and their sum of squares is the required constant. ❿ Second, by using 0: CM and yg in Table 3, the estimate of the digital channel weight and CM(10)ar is calculated using Equation 5, which is 1.0589, which is equal to 2.2487dB. Fourth, the CM estimate is adjusted by subtracting 0.54 dB, yielding approximately -0.29 dB. Alternatively, in the linear form, the estimate is adjusted by multiplying 〇 〇 589 and 0.883 to produce approximately 〇 93. Fifth, the linear adjustment estimate for CM is 0.94 less than the first linear threshold in Table 4; therefore, the maximum MPR is calculated as 〇 dB. Summarized by Figure 8 represents a process 800 for setting transmit power by the WTRU 400 calculating mpr 〇. The adjustment factor and the pre-calculated threshold (810) are determined and processed in the offline processor depending on the configuration. These values are stored in the WTRU' to help the WTRU 4〇0 identify the configuration (820). Once the configuration is determined, the adjusted estimated CM and/or PAR (830) is calculated. By using these adjusted estimates, the maximum MpR and minimum MPR (840) are calculated and mpr is set. The MpR, theoretical maximum power and power control commands are combined (850) to set the transmit power (86 〇). 28 200947903 Although the most popular reading of the mosquito combination, the characteristics and the application of the tree (4) Γ&quot; (4) each-transition and parts are not in the best real 1 = can of the 敎 TM, each of the special parts and components All can make money without the tree and its components

2下叫_組合方絲细。本發明提供的方法或流程 2以在由_電贼處驾執行㈣酿式、軟體或細體 貝施’其中所述電嘴程式、軟體或勒體是以有形的方式包 含在電腦可讀存儲介質中的’電腦可讀存儲介f的例子包括 唯讀記憶體(ROM)、隨機存儲記倾(RAM) '暫存器、快 取§己憶體、半導體存儲設備、内部硬碟和移動磁片之類的磁 介質、磁光介質和CD-ROM碟片和數位多用途光碟(dvd) 之類的光學介質。 舉例來说,適當的處理器包括,通用處理器、專用處理 器、常規處理器、數位信號處理器(Dsp)、多個微處理器、 與DSP核相關的一個或多個微處理器、控制器、微控制器、 專用積體電路(ASIC)、現場可編程閘陣列(FpGA)電路、 任何其他類型的積體電路(1C)和/或狀態機。 與軟體有關的處理器可以用於實現射頻收發機,以用於 無線發射接收單元(WTRU)、使用者設備(ue)、終端、基 地σ、無線網路控制器(RNC)或任何主機電腦。WTRU可 以與採用硬體和/或軟體形式實施的模組結合使用,例如照相 機、攝像機模組、視頻電話、揚聲器電話、振動設備、揚聲 器、麥克風、電視收發機、免提耳機、鍵盤、藍牙⑧模組、 調頻(FM)無線單元、液晶顯示器(LCD)顯示單元、有機 29 2009479032 is called _ combination square wire fine. The method or the flow 2 provided by the present invention is carried out by the electric thief (four) brewing, soft body or fine body. The electric mouth program, software or lemma is tangibly contained in the computer readable storage. Examples of 'computer-readable storage devices' in the medium include read-only memory (ROM), random access memory (RAM) 'scratch registers', cache memory, semiconductor memory devices, internal hard disks, and mobile magnetics. Magnetic media such as sheets, magneto-optical media, and optical media such as CD-ROM discs and digital versatile discs (DVDs). Suitable processors include, for example, general purpose processors, special purpose processors, conventional processors, digital signal processors (DSPs), multiple microprocessors, one or more microprocessors associated with a DSP core, control , microcontroller, dedicated integrated circuit (ASIC), field programmable gate array (FpGA) circuit, any other type of integrated circuit (1C) and/or state machine. The software-related processor can be used to implement a radio frequency transceiver for a wireless transmit receive unit (WTRU), user equipment (ue), terminal, base σ, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules implemented in hardware and/or software, such as cameras, camera modules, video phones, speaker phones, vibration devices, speakers, microphones, television transceivers, hands-free headsets, keyboards, Bluetooth 8 Module, FM radio unit, liquid crystal display (LCD) display unit, organic 29 200947903

【圖式簡單說明】[Simple description of the map]

第2圖是離線處理器的簡化版本的框圖; 第3圖是離線初始配置過程的詳細流程圖; 第4圖是根據-種實施方式的WTRU的框圖; +第5A圖和第5B圖是分別用於等式5的模型和等式㈣ 模型的兩侧*,綠最大⑽卩料誤差齡佈; 第队圖和第6B圖是分別用於等式5的模型和等式6的 模型的兩個圖示,表示CM估計誤差的分佈; 第7A圖和第7B圖疋分別用於等式$的模型和等式6的❹ 模型的兩侧示’麵PAR估計誤麵分佈;和 第8圖是設置發射功率的方法的流程圖。 【主要元件符號說明】 110 120、400、WTRU 125 基地台 無線發射接收單元 處理器 30 200947903 126 接收機 127 發射機 128 天線 200 離線過程 300 離線初始配置過程 440 發射功率控制單元 450 縮放電路 460 滤波器設備 470、DAC 模數轉換器 480 無線電發射機 490、Tx 天線 CM 立方度量 MPR 最大功率衰減 PAR 華均比2 is a block diagram of a simplified version of an offline processor; FIG. 3 is a detailed flowchart of an offline initial configuration process; FIG. 4 is a block diagram of a WTRU according to an embodiment; + 5A and 5B It is used for the model of Equation 5 and the two sides of the equation (4) model respectively, the green maximum (10) error error age cloth; the first team diagram and the 6B diagram are the model for Equation 5 and the model of Equation 6 respectively. The two graphs represent the distribution of the CM estimation error; the 7A and 7B graphs are used for the model of the equation $ and the ❹ model of the equation 6 respectively to show the 'surface PAR estimation misplanar distribution; and Figure 8 is a flow chart of a method of setting transmit power. [Major component symbol description] 110 120, 400, WTRU 125 base station wireless transmission receiving unit processor 30 200947903 126 receiver 127 transmitter 128 antenna 200 offline process 300 offline initial configuration process 440 transmission power control unit 450 scaling circuit 460 filter Device 470, DAC analog to digital converter 480 radio transmitter 490, Tx antenna CM cubic metric MPR maximum power attenuation PAR Hua ratio

3131

Claims (1)

200947903 * * 七、申請專利範圍: 1. ,·’’、線發射接收單元⑽則中實施以用於計算一最大功 率衰減(MPR)的裝置,該裝置包含: 根據’、有同相⑴和正交⑼部分的一經接收的信號的 特徵來從-組預先定義祕置情泥巾朗—配置情況; 由一預先配置的調整因數來調整一經估言十的立方度量 (CM) ’其中該CM係基於-發射功率放大器立方增益項,且該 經估计的CM從一初始配置時存儲在該wtru中; 根據該調整後的經估計的CM來計算該mpR ;以及 〇 使用該MPR來設置發射功率; 其中該經估計的CM被計算為下列其一: 平方石項、單獨/5項加權、和成分内交叉沒項的一加 權總和’其中召表示該信號的一強度;或 平方石項和成分内交又万項的的一加權總和,其中沒 表示該信號的一強度。 2. 如申請專利範圍第1項所述的方法,其中使用所計算的MPR 與一標稱最大功率極限和至少一功率控制命令來設定所述發射功 ❹ 率。 3. 如申請專利範圍第1項所述的方法,其中所述配置情況係由該 經接收的信號的一頻道化碼以及該經接收的信號的一同相(I)頻 道碼和一正交頻道(Q)碼的一頻道權重來定義。 4. 如申請專利範圍第1項所述的方法’包含設定一調整因素為一 頻道的一配置情況的一最大幅值正誤差。 5. 如申請專利範圍第1項所述的方法’包含設定一調整因素為小 32 200947903 於一頻道的一配置情況的一最大幅值正誤差。6.如申請專利範圍第i項所述的方法,更 用於最小化-最大MPR倾誤差的—_因_ :枝驟來確定 的MPR ;以及 為該配置情況中的每一信號確定一估計的 MPR和一實際 ,過從所述實際的嫩中減去所述估計的祖來計算一 MPR誤差。 ❹ 7. 如申請專利範圍第6項所述的古、i ^ ^ , 的方法,更包含選擇所述調整因數 值為具有MPR誤差小於零的一信號。 8. 如申请專利祀圍第6項所述的方法,更包含選擇所述調整因數 值為小於具有MPR誤差小於零之一信號的一數值。 9. 如申明專利耗圍第1項所述的方法,包含設定一調整因素為一 配置情況的一最大幅值負誤差。 ❹ 33200947903 * * VII. Patent application scope: 1. , · ' ', line transmission receiving unit (10) is implemented in the device for calculating a maximum power attenuation (MPR), the device includes: according to ', has the same phase (1) and positive The characteristics of the received signal in the (9) part are pre-defined from the - group; the cubic metric (CM) of the estimated ten is adjusted by a pre-configured adjustment factor. Based on a transmit power amplifier cubic gain term, and the estimated CM is stored in the wtru from an initial configuration; the mpR is calculated based on the adjusted estimated CM; and the MPR is used to set transmit power; Wherein the estimated CM is calculated as one of the following: a square stone term, a single/5 weighting, and a weighted sum of the cross-inclusions within the component, wherein the caller indicates an intensity of the signal; or the square stone term and the component A weighted sum of tens of thousands of items, which does not indicate an intensity of the signal. 2. The method of claim 1, wherein the calculated MPR is set using a calculated MPR with a nominal maximum power limit and at least one power control command. 3. The method of claim 1, wherein the configuration is a channelization code of the received signal and an in-phase (I) channel code of the received signal and an orthogonal channel The (Q) code is defined by a channel weight. 4. The method of claim 1 includes the setting of an adjustment factor to a maximum amplitude positive error for a configuration of a channel. 5. The method of claim 1 includes the setting of an adjustment factor to a maximum amplitude positive error of a configuration of a channel 32 200947903. 6. The method of claim i, further for minimizing the maximum MPR tilt error, the MPR determined by the branch; and determining an estimate for each of the signals in the configuration. The MPR and an actual, calculate an MPR error by subtracting the estimated ancestor from the actual tenderness. ❹ 7. The method of applying the ancient, i ^ ^ , as described in claim 6 of the patent, further includes selecting the adjustment factor value to have a signal having an MPR error of less than zero. 8. The method of claim 6, further comprising selecting the adjustment factor value to be less than a value having a signal having an MPR error less than zero. 9. The method of claim 1, wherein the method of setting an adjustment factor is a maximum amplitude negative error of a configuration. ❹ 33
TW098100276A 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal TWI479818B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US91294707P 2007-04-20 2007-04-20

Publications (2)

Publication Number Publication Date
TW200947903A true TW200947903A (en) 2009-11-16
TWI479818B TWI479818B (en) 2015-04-01

Family

ID=44722256

Family Applications (4)

Application Number Title Priority Date Filing Date
TW097114544A TWI429214B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal
TW098100276A TWI479818B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal
TW103123229A TW201515497A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW101115866A TW201318365A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW097114544A TWI429214B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW103123229A TW201515497A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW101115866A TW201318365A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal

Country Status (1)

Country Link
TW (4) TWI429214B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801440B (en) * 2011-05-23 2015-04-15 联发科技股份有限公司 Method and device for supplying signal measurement to emitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659540B1 (en) * 2005-01-10 2006-12-20 삼성전자주식회사 Apparatus and method for controlling reverse sending power in mobile communication terminal

Also Published As

Publication number Publication date
TW201318365A (en) 2013-05-01
TWI429214B (en) 2014-03-01
TW201515497A (en) 2015-04-16
TWI479818B (en) 2015-04-01
TW200904040A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
KR101537914B1 (en) Apparatus and method for computing maximum power reduction for a umts signal
AU2005217841B2 (en) Transmission power control method and device
CN105703715B (en) Communication equipment with power amplifier crest factor abatement
KR20070033051A (en) Method and apparatus for controlling transmit power of a wireless communication device
WO2012018625A1 (en) Apparatus and method for adjustment of transmitter power in a wireless system
JP2010515318A (en) Determining power reduction level for transmitter
US8767626B2 (en) Power reduction for correlated carriers in a cellular communication system
WO2007108306A1 (en) Transmission power controller, mobile station, and transmission power control method and program
KR101216262B1 (en) Method and apparatus for performing closed-loop transmit power control for fractional dedicated physical channel
TW200947903A (en) Apparatus and method for computing maximum power reduction for a UMTS signal
JP5726906B2 (en) Method for performing cubic metric calculation in a transmitter of a user equipment (UE) for a wireless communication system and apparatus for performing the method
CN110113810B (en) Power control method, related device and product
EP2768208B1 (en) Methods and apparatus for improving audio quality using an acoustic leak compensation system in a mobile device
JP5151893B2 (en) Terminal apparatus, transmission output control method thereof, and digital signal processing apparatus
CN104768212B (en) The method and device of signal metric is provided for transmitter
US8582461B2 (en) Analytical computation of cubic metric