TW200904040A - Apparatus and method for computing maximum power reduction for a UMTS signal - Google Patents

Apparatus and method for computing maximum power reduction for a UMTS signal Download PDF

Info

Publication number
TW200904040A
TW200904040A TW097114544A TW97114544A TW200904040A TW 200904040 A TW200904040 A TW 200904040A TW 097114544 A TW097114544 A TW 097114544A TW 97114544 A TW97114544 A TW 97114544A TW 200904040 A TW200904040 A TW 200904040A
Authority
TW
Taiwan
Prior art keywords
mpr
wtru
configuration
maximum
estimated
Prior art date
Application number
TW097114544A
Other languages
Chinese (zh)
Other versions
TWI429214B (en
Inventor
John W Haim
Kurt G Vetter
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200904040A publication Critical patent/TW200904040A/en
Application granted granted Critical
Publication of TWI429214B publication Critical patent/TWI429214B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

A method and apparatus are provided for controlling transmit power with an estimated value of cubic metric (CM) and/or peak-to-average ratio (PAR). Preferably, the method is applied in determining a value for Maximum Power Reduction (MPR) for computing maximum-MPR or minimum-MPR, by estimating CM and/or PAR from signal parameters. The method of estimating CM and/or PAR is applicable to any multicode signal.

Description

200904040 九、發明說明: 【技術領域】 本申請涉及無線通信。 【先前技術】200904040 IX. Description of the Invention: [Technical Field] The present application relates to wireless communication. [Prior Art]

在實際的放大器電路中,例如用在通用移動電信系統 (UMTS)無線發射接收單元(WTRu)發射鏈上的放大器 電路中,引發頻譜再生是由於非線性的放大 器特性。術語 頻譜再生描述了在功較輪出稱畴外信號能量的 “加由非線性放大II效應所產生㈣譜再生主要產生在 鄰近期望發軸道的頻勒。對於而^練,對功率放 大器的要錢姑·頻道的+/·5ΜΗζ_賴道韻比 (ACLR)來疋義的。以下是放大器電壓增益特性: 复 v。(0 m (’)+心 ’2+g3 · V,+·. + . Vi (〇„ 等式(1) /、中gl.v⑼疋放大器的線性增益,其餘的部分(即, t v’w +g3’w+_..+g”.vi(0„)表示非線性增益。如果信號播 ▼了調,後的第三代合夥夥伴計晝(3GPP)射頻(RF)’ =作為父調失真的結果會產生絲性項,這會產生帶内失 二項和f外失真’帶内失真會狀誤差向量幅值(£則 士)加〜外失真會引起ACLR的增加。這兩者都會造 成調變品質的下降。 中」']如UMTS版本5和版本6巾的多碼信號在峰均功率 =現了增加,這會產生更大的動態信號變化。這些增加 、^號變化需要更強的放大雜性化,這會產生更大的功 200904040 率消耗。最近的結果表明,為肪而直接發送dB (即,信 號峰值功率與平均功率的比值,也稱為峰均比(pAR乃對 放大器功率衰減來說並不有效。對放大器頻譜再生的分析 表明,3階非線性增益項(“立方增益,,)是ACLR增加 的主要原因。立^項的總能量取決於輸人信號的統計分佈。 隨著高速上行鏈路封包存取(HSUPA)的提出,在版 本6中引入了一種新的用於消除放大器功率衰減的方法, 稱為立方度量(CMXM是基於放大器的立方增益部分。 CM描述了在所觀測的信號中的立方部分與μ柳s語音 幹擾信號的比值。CJV[同時適用於高速下行鏈路封包存取 (HSDPA)和HSUPA上行鏈路錄。鱗分析表明,根據 CM估計的功率降額與根據99.9%嫩的功率降額相比, 表現出明難小的誤差分佈,其中誤差分佈是指實際功率 降額與所估計的功率降額之間的差值。 3GPP規定了最大功率衰減(撕幻測試,其表明 的最大發射功率大於或等於_最大發射功率,但小於所 謂最大MPR”的總量’其中最大MpR是所發送的信號 的CM的函數。對於給糾功率放大器,製造商可以決定 該設備需要將其最大功率限制在一些量中,在此稱為“最 小MPR,其小於最大撕尺,但是與3Gpp aclr相容。 雖然取小MPR可以被定義為是⑽的函數’但是也可 以替換地被定A妓PAR的特打分_錄。使用最小 MPR而不是最大贿來限制最大功率,使wtru能夠以 更大的最大功率來進行發射’從而使採用最小MPR的 200904040In practical amplifier circuits, such as amplifier circuits used in the Transmit Chain of the Universal Mobile Telecommunications System (UMTS) Wireless Transmitting and Receiving Unit (WTRu), spectral regeneration is induced due to nonlinear amplifier characteristics. The term spectral regeneration describes the "additional non-linear amplification II effect generated by the energy of the extra-domain signal in the round-off. (4) Spectral regeneration is mainly generated in the frequency adjacent to the desired chirp. For the power amplifier It is necessary to use the +/·5ΜΗζ_ 赖道韵 ratio (ACLR) of Qiangu·channel. The following are the voltage gain characteristics of the amplifier: complex v. (0 m (') + heart '2+g3 · V, +·. + Vi (〇„ Equation (1) /, the linear gain of the gl.v(9)疋 amplifier, the rest (ie, t v'w +g3'w+_..+g”.vi(0„) Nonlinear gain. If the signal is tuned, the third generation partner (3GPP) radio frequency (RF)' = as a result of the father's distortion will produce a silky term, which will result in an in-band missing term and f External distortion 'in-band distortion will be error vector magnitude (£士士) plus ~ external distortion will cause an increase in ACLR. Both will cause a decrease in modulation quality. Medium"'] such as UMTS version 5 and version 6 The multi-code signal is increasing at the peak-to-average power = this will produce a larger dynamic signal change. These increases, the ^ change requires a stronger amplification. This will result in greater power consumption for 200904040. Recent results have shown that dB is sent directly for fat (ie, the ratio of peak power to average power of the signal, also known as peak-to-average ratio (pAR is for amplifier power attenuation) It is not effective. Analysis of the spectrum regeneration of the amplifier shows that the third-order nonlinear gain term ("cubic gain,") is the main reason for the increase of ACLR. The total energy of the vertical term depends on the statistical distribution of the input signal. The introduction of Uplink Packet Access (HSUPA) introduced a new method for eliminating amplifier power attenuation in Release 6, called the cubic metric (CMXM is based on the cubic gain portion of the amplifier. CM describes the observed The ratio of the cubic part of the signal to the μ s speech interference signal. CJV [simultaneously applicable to High Speed Downlink Packet Access (HSDPA) and HSUPA uplink recording. Scale analysis shows that the power derating based on CM is estimated Compared with the 99.9% tender power derating, it shows a difficult error distribution, where the error distribution refers to the difference between the actual power derating and the estimated power derating. 3GPP specifies the maximum power attenuation (sharp test, which indicates that the maximum transmit power is greater than or equal to _ maximum transmit power, but less than the total amount of so-called maximum MPR) where the maximum MpR is a function of the CM of the transmitted signal. To correct the power amplifier, the manufacturer can decide that the device needs to limit its maximum power to some amount, referred to herein as "minimum MPR, which is less than the maximum tape size, but compatible with 3Gpp aclr. Although taking small MPR can be defined It is a function of (10) 'but can also be substituted for the special score of A 妓 PAR. Use the minimum MPR instead of the maximum bribe to limit the maximum power, so that wtru can transmit at a greater maximum power' Minimum MPR of 200904040

WTRU製造商具有更有優勢的辭力。也可能某個WTRU 的設計可叫時包括最大騰和最小MPR,並在兩者之 間進行選擇。 不考慮騎大MPR絲小MPR騎擇,騎問題在 於WTRU必須知道CM和/或pAR的值,以計算所選擇的 MPR並且如果需要的話,(即,如果wtru是在最 率附近操作的話),最終使用上述值來實際奴發射功率。 任=多碼信號(其特徵在於發送的實體頻道、其頻道化碼 和稱為$項的權重)都具有其特定的CM和PAR。 古在中,信號,以及CM和PAR都可以在每2或 耄秒的發送日艾間間隔(TTI)中變化。可以看出,對伽⑽ =本6 ’有貫體頻道參數和量化的㈣的超過二十萬的組 合’此處的每合都稱作可能健。大量的可能信號的 巨大數目使得形成嚴格—對-的CM或PAR的敢查找表 來作為k號特性的函數,對於即時的應用是不合實際的; 特別疋在以UMTS f料速率進行操作的小型低功率手持設 ,中。瞭解WTRU不可能簡單地查找CM或PAR之後,則 而要在疋可谷許的誤差之内,從信號的特性參數來對其 進行測量或估計。 ” >從實際信號測4CM或PAR是已知的。其中的重要缺 在於必須首先產生信號來進行測量。由於發射功率最終 =會作為CM和/或pAR的練來設置’目崎過測量來 叹疋功率將需要在發送前,產生魏或在至少—段時間内 的信號部分。軸在理論上這是可行的,蚊UMTS的時 200904040 間延遲要求和實際的存儲關使這種方法也不可行。 上述方法的一種變形是在從CM或PAR的“猜測,,所 計算出的功率級上產生和開始發送信號,並在隨後ΤΏ中 剩下的整個時槽中將發射功率調整為第二功率級。對第一 和第二功率_結合被計算峨得平均功率級接近在m 開始前就已知CM或PAR所選擇的功率級。 在UMTS中,在10毫秒的TTI中有15個時槽,但是 在2毫秒的TTI中只有三個時槽。假設例如對⑽或pAR 的測量需要例如10毫秒的ΤΉ的一個時槽的一些部分來完 成,則初始功率級將被設置為僅用於第一個時槽,而剩下 的14個時槽使用第二值。對於2毫秒的πι,初始功率級 將被設置為使用第一時槽,這一個時槽占TTI的三分之一, 而該TTI的剩下三分之二將使用第二值。顯然種方法 不是-致的,特別是在2毫秒的TTI的情況中。因此,需 要一種方法’能夠在開始發送信號之前,就確定CM或 PAR,以確定最大mpr和/或最小MpR,以及最終的發射 功率。 【發明内容】 提供一種用於使用通過估計出的CM或PAR的估計值 來控制發射功率的方法和裝置。該方法與直接測量CM或 PAR相反,可以應用於通過從信號參數估計CM或pAR來 確定用於計算最大MPR的最大功率衰減值(MpR)或最小 MPR。估s十CM或PAR的方法適用於任何多碼信號。 200904040 【實施方式】 下文中所涉及的術語“無線發 (rTRU),,包括但不限於使用者設備_、移= 動7者單元、尋讀、行動電話、個人數位助 理⑽Α)、電贼任何其他_的能触躲環境中進 行操作的使用者設備。The WTRU manufacturer has a more advantageous voice. It is also possible that a WTRU's design can include a maximum and a minimum MPR, and choose between the two. Regardless of riding a large MPR wire small MPR ride, the riding problem is that the WTRU must know the value of CM and/or pAR to calculate the selected MPR and if necessary (ie if wtru is operating near the highest rate), Finally use the above values to actually send the slave power. Any = multi-code signal (characterized by the transmitted physical channel, its channelization code, and the weight called the item) has its specific CM and PAR. In ancient times, the signal, as well as CM and PAR, can vary in every 2 or leap seconds of transmission time interval (TTI). It can be seen that the combination of more than 200,000 for the gamma (10) = this 6' with the channel parameters and the quantified (four) is called the possible health. The large number of possible signals makes it possible to form a strict-to-the CM or PAR dare lookup table as a function of the k-characteristic, which is impractical for immediate applications; especially for small operations operating at UMTS f-rate Low power handheld, medium. After understanding that the WTRU cannot simply look up the CM or PAR, it is measured or estimated from the characteristic parameters of the signal within the error of the QoS. > 4CM or PAR is known from the actual signal. The important difference is that the signal must be generated first to make the measurement. Since the transmission power is finally = will be set as the CM and / or pAR training疋 Power will need to generate a signal portion of Wei or at least for a period of time before transmission. The axis is theoretically feasible, and the delay requirement between 200904040 and the actual storage of UMTS is not feasible. A variant of the above method is to generate and start transmitting a signal at the calculated power level from the "guess" of the CM or PAR, and adjust the transmit power to the second power in the entire time slot remaining in the subsequent ΤΏ level. The first and second power_combinations are calculated and the average power level is close to the power level selected by the CM or PAR before the start of m. In UMTS, there are 15 time slots in a 10 millisecond TTI, but there are only three time slots in a 2 millisecond TTI. Assuming, for example, that the measurement of (10) or pAR requires some portion of a time slot of, for example, 10 milliseconds, the initial power level will be set to be used only for the first time slot, while the remaining 14 time slots are used. The second value. For a 2 millisecond πι, the initial power level will be set to use the first time slot, which is one-third of the TTI, and the remaining two-thirds of the TTI will use the second value. Obviously the method is not - in particular, in the case of a 2 millisecond TTI. Therefore, a method is needed to be able to determine the CM or PAR before starting to transmit a signal to determine the maximum mpr and/or minimum MpR, and the final transmit power. SUMMARY OF THE INVENTION A method and apparatus for controlling transmission power using estimated values of CM or PAR are provided. This method, as opposed to directly measuring CM or PAR, can be applied to determine the maximum power attenuation value (MpR) or minimum MPR used to calculate the maximum MPR by estimating CM or pAR from the signal parameters. The method of estimating s ten CM or PAR is applicable to any multi-code signal. 200904040 [Embodiment] The term "wireless transmission (rTRU)", including but not limited to user equipment _, mobile unit 7, reading, mobile phone, personal digital assistant (10) 、), electric thief Other user devices that can operate in a closed environment.

下文中所涉及的術語“基地台”包括但不限於節點 Β、站點控制器、存取點(ΑΡ)或任何其他類型的能夠在 無線環境中進行操作的周邊設備。The term "base station" as used hereinafter includes, but is not limited to, a node, a site controller, an access point (ΑΡ), or any other type of peripheral device capable of operating in a wireless environment.

第1圖是被配置成執行下面所公開的方法的WTRU 120的框圖。除了包含在典型的WTRu内的部件以外, WTRU 120還包減配置成執行所公開的方法的處理器 125 ’·與處理n 125通信的接收機126 ;與處難⑵通信 的發射機127 ;與接收機126和發射機127通信以實現^ 線資料的發送和無的天線128。WTRU無線地與基地: 110通信。 下面將描述用於根據信號的配置參數來估計信號的 發送CM和/或PAR,並使用該估計值來計算mpR的方 去配置參數包括貫體頻道的數量和類型以及配置情況。 配置情況可以定義為頻道化碼和頻道權重(稱為沒)的結 合,最佳地用於同相(I)和正交頻道(Q)部分碼。頻道 權重(對於給定業務和資料速率)、其他參數、以下所謂 的“配置”和以上的所有組合都根據3(}1>1>所定義的規範 200904040 來確定。 仏就可以疋義為疋貫體頻道和々項的組合。每一個可 能的信號都必須至少在一種配置情況中。該定義可以擴 展。例如’可以包括用於一個或多個包括配置情況的實體 頻道的一些或所有/5項的子集或有限範圍。對配置情況的 最小子集的識別疋主觀的’該配置情況規定了可接收的最 小CM和/或PAR估計誤差,該CJV[和/或par估計誤差 反過來用於MPR估計誤差。 在表1中表示了一組11個配置情況的例子。這些配 置情況限於允許多至一個DPDCH。本領域技術人員可 知,配置情況並不限於此。但是,很可能並不理想。經驗 結果表明所產生的可接受的較小估計誤差,特別是最大的 最大MPR估计誤差是小於或等於udB。表1表示了配置 情況通常由三個主要特徵來定義:1)DPDCH的最大數量 (Nmax DPDCH ); 2 )是否啟動高速(HS );和 3 )E-DPDCH 的數量和擴展因數(SF) (E-DPDCiUi@SF)。表2給出 了一個替換的映射方式。表2表示了將一些原來在表^中 所定義的情況劃分為多種情況,從而可以產生比表丨的映 射更少的誤差。特別是,其表示了最大的最大MpR估計 誤差小於或等於l.OdB。 重新參考表1,HSChan碼一攔涉及用於HS-DPCCH 的特定“SF和正交變長(〇v)兕碼,,。請注意,兕通 常為256 ’且對於OVSF,使用兩個碼(33和64)中的一 個。當第三欄(即Hs)顯示沒有(“N”)Hs時,本棚 200904040 表示為“不可用” (n/a)。FIG. 1 is a block diagram of a WTRU 120 configured to perform the methods disclosed below. In addition to the components contained within a typical WTRu, the WTRU 120 also decomments a processor 125' configured to perform the disclosed method, a receiver 126 that communicates with the processing n 125, and a transmitter 127 that communicates with the hard (2); Receiver 126 and transmitter 127 communicate to implement the transmission of the wire data and the absence of antenna 128. The WTRU communicates wirelessly with the base: 110. The transmission CM and/or PAR for estimating the signal based on the configuration parameters of the signal and using the estimated value to calculate the mpR's configuration parameters including the number and type of the channel and the configuration will be described below. The configuration can be defined as a combination of channelization code and channel weight (called no), best used for in-phase (I) and quadrature channel (Q) partial codes. The channel weight (for a given service and data rate), other parameters, the so-called "configuration" below, and all combinations above are determined according to the specification 200904040 defined by 3(}1>1> A combination of a channel and a unit. Each possible signal must be in at least one configuration. The definition can be extended. For example, 'may include some or all of the 5 or more physical channels including the configuration. A subset or a limited range of terms. Identification of the smallest subset of configuration conditions 疋 subjective 'this configuration specifies the minimum CM and/or PAR estimation error that can be received, and the CJV [and/or par estimation error is used in turn Estimating the error in MPR. An example of a set of 11 configuration cases is shown in Table 1. These configuration cases are limited to allowing up to one DPDCH. It will be appreciated by those skilled in the art that the configuration is not limited thereto. However, it may not be ideal. Empirical results indicate that the resulting less acceptable estimation error, especially the maximum maximum MPR estimation error, is less than or equal to udB. Table 1 shows the configuration. The situation is usually defined by three main characteristics: 1) the maximum number of DPDCHs (Nmax DPDCH); 2) whether to start high speed (HS); and 3) the number of E-DPDCHs and the spreading factor (SF) (E-DPDCiUi@SF ). Table 2 shows an alternative mapping method. Table 2 shows the division of some of the conditions originally defined in Table ^ into a number of cases, which can produce less error than the mapping of the table. In particular, it indicates that the maximum maximum MpR estimation error is less than or equal to 1.0 dB. Referring back to Table 1, the HSChan code block involves a specific "SF and orthogonal variable length (〇v) weight for HS-DPCCH, please note that 兕 is usually 256 'and for OVSF, two codes are used ( One of 33 and 64). When the third column (ie, Hs) shows no ("N") Hs, the shed 200904040 is expressed as "unavailable" (n/a).

E DPDCH 1,3 I或Q攔表示在該部分中’顯示I或q, E-DPDCH頻道#1和#3,其根據欄的情況來使用。S E-DPDCH 1,3 Chan碼攔’如果有的話’涉及用於涉 及頻道#1和#3的E-DPDCH的SF和OVSF碼。例如,配 置情況ό具有兩個E_DPDCH,標記為#ι和#3,該攔的剩 餘部分要麼是沒有(不可用),要麼是一個(默認為 ζ') “#1 )。大部分的配置情況都只有一個E-DPDcjj。 E-DPDCH 2,4 Chan碼欄與上面的類似,用於具有兩 個或更多E-DPDCH的情況。 I和Q欄表示在I和Q部分的/5項。在配置情況6中, β&涉及E-DPDCH頻道#1和#2,而々ed3/4涉及E-DPDCH 頻道#3和#4。 表1 Γ —- 配置 Nmax HS E-DPDCH HS e-dpdch E-DPDCH E-DPDCH I Q 情況 dpdch 麟SF Chan 碼 Ui或Q l,3Chan 碼 2,4Chan 碼 0 1 N 0 N/A N/A N/A N/A βά A 1 0 Y 1@SF>=4 256, 33 I SF,SF/4 N/A 2 0 N 1@SF>=4 N/A I N/A N/A A 3 0 Y 0 256, 33 I SF, SF/4 · N/A N/A βζβ)Λ& 4 0 Υ/ 2@SF>=4 256, 33 I SF, 4,1 Ν SF/4=4,1 ββά 5 0 Υ/ 2@SF>=2 256, 33 I 2,1 2,1 Ac^ed βοβ)α&, Ν β&ά 6 0 Υ/ 4@SF>= 256, 33 I(#D 2, 1(#1) 2, 1(#1) Ac^ed, β<^β\ί5. 11 200904040 N 2/4/2/4 1(#3) 4, 1(#3) 4, 1(#3) Ad3/4 力ed, Ad3/4 7 1 Y 〇,或 256, 64 I SF, SF/2 N/A βά„β&ζ, βζ,β\& 1@SF>=4 Ad, 8 1 Υ/ 2@SF>=4 256, 64 如果 SF, 4,2 βά”β 沈, β^β)Ά&, Ν HS=T SF/2=4, 2 ,則I,否 則為Q 9 1 Υ/ 2@SF>=2 256, 64 如果 SF, 4,2 βά,,β^ζ, Ν HS=”Y” SF/2=4, 2 •Aed, βξίά ,則I,否 則為Q 10 1 Ν 1@SF>=4 N/A Q SF,SF/2 N/A βά,,β^ζ, βζ,β^άE DPDCH 1, 3 I or Q block indicates that 'I or q, E-DPDCH channels #1 and #3 are displayed in this section, which are used according to the condition of the column. S E-DPDCH 1,3 Chan code block 'if any' relates to SF and OVSF codes for E-DPDCH involving channels #1 and #3. For example, the configuration case has two E_DPDCHs, labeled #ι and #3, and the rest of the block is either none (not available) or one (default is ζ') "#1". Most of the configuration There is only one E-DPDcjj. The E-DPDCH 2,4 Chan code column is similar to the above, for the case of having two or more E-DPDCHs. The I and Q columns indicate the/5 items in the I and Q parts. In configuration case 6, β& relates to E-DPDCH channels #1 and #2, and 々ed3/4 relates to E-DPDCH channels #3 and #4. Table 1 Γ --- Configure Nmax HS E-DPDCH HS e-dpdch E-DPDCH E-DPDCH IQ situation dpdch Lin SF Chan code Ui or Q l, 3Chan code 2, 4Chan code 0 1 N 0 N/AN/AN/AN/A βά A 1 0 Y 1@SF>=4 256, 33 I SF, SF/4 N/A 2 0 N 1@SF>=4 N/AIN/AN/AA 3 0 Y 0 256, 33 I SF, SF/4 · N/AN/A βζβ)Λ& 4 0 Υ / 2@SF>=4 256, 33 I SF, 4,1 Ν SF/4=4,1 ββά 5 0 Υ/ 2@SF>=2 256, 33 I 2,1 2,1 Ac^ed Οοβ)α&, Ν β&ά 6 0 Υ/ 4@SF>= 256, 33 I(#D 2, 1(#1) 2, 1(#1) Ac^ed, β<^β\ί5. 11 200904040 N 2/4/2/4 1(#3) 4, 1(# 3) 4, 1(#3) Ad3/4 force ed, Ad3/4 7 1 Y 〇, or 256, 64 I SF, SF/2 N/A βά„β&ζ, βζ,β\& 1@ SF>=4 Ad, 8 1 Υ / 2@SF>=4 256, 64 if SF, 4, 2 βά”β sink, β^β)Ά&, Ν HS=T SF/2=4, 2 , then I, otherwise Q 9 1 Υ / 2@SF>=2 256, 64 If SF, 4, 2 βά,, β^ζ, Ν HS=”Y” SF/2=4, 2 •Aed, βξίά , then I, otherwise Q 10 1 Ν 1@SF>=4 N/AQ SF, SF/2 N/A βά,, β^ζ, βζ, β^ά

表2 配置 情況 Nmax DPDCH HS E- DPDC H 碼@8? 附加狀態 0 1 N 0 N/A 1 0 Y 1@SF>=4 N/A 2 0 N 1@SF>=4 N/A 3 0 Y 0 N/A 4 0 Y/N 2@SF=4 N/A 5 0 Y/N 2@SF=2 N/A 6 0 Y/N 4@SF= 2/4/2/4 N/A 7a 1 Y 〇,或 1 @SF>-4 fic-βά >0 7b fic - βά 彡0 8a 1 Y/N 2@SF=4 fic - βά >0 15*Aed=5 12 200904040 8b fic -βά >0 15*Α^〜=5 8c fic -βά 彡0 15*Aed=5 8d fic -βά 彡0 9a 1 Y/N 2@SF=2 β〇 -βά >0 9b Α -βά 彡0 15*Aed=5 9c βα ~βά 彡0 15^^-5 10 1 N 1 @SF>=4 Ν/Α 表1和表2中的配置情況〇是已知的需要零最大 的普通情況。對於這種配置情況,不使用用於其他所有配 置情況的計算方法’而是簡單地將最大MPR和/或最小 MPR設置為零。 參考第2圖,表示了離線過程2〇〇的簡單版本。在下 文中還要結合第3圖進行更詳細的描述,過程2〇〇最終計 算和存儲胁WTRU的參數,以產生最大⑽卩和/或最 小MPR值。在UMTS中,實體頻道和參數以及量化值冷 的每-種组合都是可能的信號。量化值是根據信號的配 置。首先’所有可能的信號都映射到一組配置情況(21〇)。 通過使用表1最右邊兩攔所給出的資訊(1和Q),可以為 所有可能的信號產生量化值(22〇)。通過發射機模擬來測 量用於所有可能信號的CM和/或par (230)。下文中將 200904040 更詳細地描述對CM和PAR的測量。 預先計算的項α最佳地通過使用發射機模擬23〇的輪 出來確定240。最佳地對於上面定義的每一種配置情況都 確定出根據下文中的等式7所計算出的用於CM的—組α 項和/或用於PAR的一組α項。 對於每一種配置情況,發射機模擬23〇為所有可能的 信號都測量CM和PAR’(在下文中將會詳細地推導對cM 和/或PAR進行估計的數學推導),此處的信號定義為在 3GPP中量化召項220的所有可能組合。可以使用最小二 乘擬合的方法,從配置情況的所有可能信號,或從其中的 一個典型子集中,來為特定配置情況確定預先計算的〇 項。對a十鼻出的α項、配置情況和計算出的調整因數進行 計异(240)。之後,通過韌體、軟體或硬體將這些值寫入 WTRU 400 中。 第3圖是離線初始配置過程(3〇〇)的流程圖。該過 程300同時為CM和PAR都計算α項’並為配置情況確 定調整因數。這些值都存儲在WTRU (400)中,用於為 給定信號估計CM和PAR。 參考苐3圖’表示了離線過程300的詳細版本。首先, 在310根據實體頻道的特性來定義配置情況。例如,如表 1中的配置情況9所示,定義了 DPCCH、一個DPDCH(最 大的一個 DPDCH)、HS-DPCCH ( AACK 和 ACQI 設為 相等;總是發送肯定應答(ACK)和頻道品質指示Table 2 Configuration situation Nmax DPDCH HS E-DPDC H code @8? Additional state 0 1 N 0 N/A 1 0 Y 1@SF>=4 N/A 2 0 N 1@SF>=4 N/A 3 0 Y 0 N/A 4 0 Y/N 2@SF=4 N/A 5 0 Y/N 2@SF=2 N/A 6 0 Y/N 4@SF= 2/4/2/4 N/A 7a 1 Y 〇, or 1 @SF>-4 fic-βά >0 7b fic - βά 彡0 8a 1 Y/N 2@SF=4 fic - βά >0 15*Aed=5 12 200904040 8b fic - Βά >0 15*Α^~=5 8c fic -βά 彡0 15*Aed=5 8d fic -βά 彡0 9a 1 Y/N 2@SF=2 β〇-βά >0 9b Α -βά 彡0 15*Aed=5 9c βα ~βά 彡0 15^^-5 10 1 N 1 @SF>=4 Ν/Α The configuration in Table 1 and Table 2 is a known general case where zero maximum is required. For this configuration case, instead of using the calculation method for all other configuration cases, the maximum MPR and/or minimum MPR is simply set to zero. Referring to Figure 2, a simple version of the offline process 2〇〇 is shown. A more detailed description is also provided below in conjunction with FIG. 3, which ultimately calculates and stores the parameters of the threat WTRU to produce a maximum (10) 卩 and/or minimum MPR value. In UMTS, each combination of physical channels and parameters and quantized values is a possible signal. The quantized value is based on the configuration of the signal. First, all possible signals are mapped to a set of configuration conditions (21〇). By using the information (1 and Q) given by the two rightmost blocks of Table 1, a quantized value (22 〇) can be generated for all possible signals. The CM and/or par (230) for all possible signals is measured by transmitter simulation. Measurements of CM and PAR are described in more detail below in 200904040. The pre-calculated term a is optimally determined 240 by using the transmitter simulation 23 turns out. Optimally for each of the configuration scenarios defined above, a set of alpha terms for the CM and/or a set of alpha terms for the PAR calculated according to Equation 7 below are determined. For each configuration, the transmitter simulates 23 测量 measuring CM and PAR' for all possible signals (the mathematical derivation of the estimation of cM and/or PAR will be derived in detail below), where the signal is defined as All possible combinations of the summons 220 are quantified in 3GPP. You can use a least squares fit method to determine pre-computed terms for a particular configuration from all possible signals in the configuration case, or from a typical subset of them. The alpha term, the configuration, and the calculated adjustment factor for a ten nose are calculated (240). These values are then written to the WTRU 400 by firmware, software or hardware. Figure 3 is a flow chart of the offline initial configuration process (3〇〇). This process 300 calculates the alpha term for both CM and PAR and determines the adjustment factor for the configuration. These values are stored in the WTRU (400) for estimating CM and PAR for a given signal. A detailed version of the offline process 300 is shown with reference to FIG. First, at 310, the configuration is defined according to the characteristics of the physical channel. For example, as shown in configuration case 9 in Table 1, DPCCH, one DPDCH (the largest one DPDCH), HS-DPCCH (AACK and ACQI are set equal; always send an acknowledgement (ACK) and channel quality indicator are defined.

(CQI) )、E-DPCCH 和 2SF@=2 (在 SF 的兩個 e_dpdcH 14 200904040 使用在表1最右兩攔中的資訊(1和 要的單個、平方和組分内交叉/5項。從等式5的符^所需 在下文描述)匙卜讥/就中(將 ed ^ ec ^ ed {:q:/“q3}叫“〜(特;4: 疋疋任思的)。在表3中定義了十六個這種項:石、曰(CQI) ), E-DPCCH and 2SF@=2 (The two e_dpdcH 14 200904040 in SF use the information in the rightmost two blocks of Table 1 (1 and the desired single, square and component cross //5). The symbol from Equation 5 is required to be described below.) ed ^ ec ^ ed {:q:/"q3} is called "~(特;4: 疋疋任思的). Sixteen such items are defined in Table 3: Stone, 曰

k Hu必,βάϊ,V β'k Hu must, βάϊ, V β'

Ur β^βά,3ci3hs,β(ίβ&ά和 之後奴配置情況的所有可能信號(即,用於 里化的万項的所有組合)(320)。每一 3Gpp,、、的 :值對的三十種隱式的組合,Ahs= 的顯 個值,ΑΠ/Α的九個值和^ 的三十個 值’或鱗騎每他置情關72_財能的信魏 合。在此沒有列出這72900個組合。 〜、’ 使用發射機模擬來為每個配置情況的所有729⑻種可 能信號測量CM和測量99% PAR ( 330 )。在此沒有列出所 測量的145800個值。 通過使用母個配置情況的72900個可能信號和其線性 CM和線性PAR的測量值,使用等式7計算出用於估計 CM的十六個預先計算的α值和用於估計PAR的十六個預 先§十算的α值(340)。在等式8至等式7中給出了符號項; 在表3中給出了 α項的數字值。儘管可能只使用了 729〇〇 個組合的一個小的子集,但是假設在下一步中需要具有 72900行的矩陣X ’則使用整個72900個組合的完整集來 15 200904040 用於計算一種配置情況的表3。 表3 β項的函數 aCM ^PAR _ Ac -1.53154 -0.0333305 β〇ά -1.04303 +1.97253 βά -1.88422 -0.691914 _ β〇 -1.10666 -1.24791 /^hs ~~------ -0.851261 -0.642072 Λ--------- +2.7545 +2.3413 __Jed_ __ +3.39477 +1.35334 Jd2 ^ ')-- +2.85157 +2.61758 ...β〇 Λ0 · +2.47229 +2.86022 +2.37892 +2.63543 -JlPO .Ped ___ +2.33816 +1.72716 ——^ec βά __ +2.18533 +1.27585 Ad +2.95673 +2.75154 As +1.75287 +1.80679 A A +2.05286 +3.06353 凡.Ah +1.59968 +2.07734Ur β^βά, 3ci3hs, β (ίβ&ά and all possible signals of the subsequent slave configuration (ie, all combinations of the items used for lining) (320). Each 3Gpp, , , : value pair Thirty kinds of implicit combinations, the obvious value of Ahs=, the nine values of ΑΠ/Α and the thirty values of ^' or the scale riding each of his sentimental 72_ wealth of letters Wei He. There is no List these 72,900 combinations. ~, 'Use transmitter simulation to measure CM and measure 99% PAR (330) for all 729 (8) possible signals for each configuration. The 145,800 values measured are not listed here. Using the 7290 possible signals of the parent configuration and its linear CM and linear PAR measurements, use Equation 7 to calculate the sixteen pre-computed alpha values used to estimate the CM and the sixteen pre-estimates used to estimate the PAR. § The alpha value of the calculation (340). The symbol term is given in Equations 8 to 7; the numerical value of the α term is given in Table 3. Although only one of the 729 combinations may be used. a small subset, but assume that in the next step you need a matrix X' with 72,900 lines, then use the entire 72,900 combinations. Set 15 200904040 Table 3 for calculating a configuration. Table 3 Functions of the β term aCM ^PAR _ Ac -1.53154 -0.0333305 β〇ά -1.04303 +1.97253 βά -1.88422 -0.691914 _ β〇-1.10666 -1.24791 /^ Hs ~~------ -0.851261 -0.642072 Λ--------- +2.7545 +2.3413 __Jed_ __ +3.39477 +1.35334 Jd2 ^ ')-- +2.85157 +2.61758 ...β〇Λ0 · +2.47229 +2.86022 +2.37892 +2.63543 -JlPO .Ped ___ +2.33816 +1.72716 ——^ec βά __ +2.18533 +1.27585 Ad +2.95673 +2.75154 As +1.75287 +1.80679 AA +2.05286 +3.06353 Where.Ah +1.59968 +2.07734

對於每一個可能的信號,使用等式5和6 (將在下文 中爲述)所描迖的模型來估計線性CM和線性PAR(350)。 在等式12中給出了矩陣形式的計算。矩陣X是等式5的 为子,並且包括用於單個冷項的歸一化函數。矩陣Y是線 f生CM與線性par測量值與等式5的分母相乘;等式6 的模型使用了類似的形式。 口 々、不口 考的估 計誤差〇6〇)。為了進—步描述,在第6A圖和第6 中給出了 CM估計誤差的分佈(以dB形式)。在第 和第7關情縣犯形柄分佈。第^ 和第7A圖表示專式5所描述的模型, 圖 200904040 圖表不專式6所描述的模型。 之後確定所需的調整因數(370)。通過檢查可以看 出,對於等式5的模型,用於最大MPR的調整因數、在 第6A圖中的最大幅值正誤差約為0.54dB或1/0.883。如For each possible signal, the linear CM and linear PAR (350) are estimated using the models depicted in Equations 5 and 6 (described below). The calculation in the form of a matrix is given in Equation 12. The matrix X is a sub-element of Equation 5 and includes a normalization function for a single cold term. The matrix Y is the line f CM and the linear par measurement is multiplied by the denominator of Equation 5; the model of Equation 6 uses a similar form. The estimated error of the mouth and mouth is 〇6〇). For the further description, the distribution of the CM estimation error (in dB) is given in Figure 6A and Figure 6. In the 7th and 7th Guanxian County, the shape of the handle was distributed. Figures ^ and 7A show the model described in Equation 5, and Figure 200904040 shows the model described in Equation 6. The required adjustment factor (370) is then determined. It can be seen from the inspection that for the model of Equation 5, the adjustment factor for the maximum MPR, the maximum amplitude positive error in Figure 6A is about 0.54 dB or 1/0.883. Such as

果最小MPR是所需的結果,則用於最小MPR的使用CM 的s周整因數、第6A圖中的最大幅值負誤差約為_〇.71dB。If the minimum MPR is the desired result, then the s-round factor of the CM for the minimum MPR and the maximum amplitude negative error in Figure 6A are about _〇.71 dB.

用於最小MpR的使用PAR的調整因數、第7A圖中的最 大幅值負誤差約為_〇.4idB。從第6B圖和第7B圖中可以 看出,用於等式6的模型的相應值為_054dB、_〇〇8〇dB* -0.57dB。 通過使用調整因數來確定最大MPR誤差的分佈 (380),如上面所計算的,該調整因數兩者一致為〇 54dB。 請看第5A圖和第5B圖,最大mpr誤差的分佈顯示, 對於兩個模型’最大的最大MPR誤差為15犯,如果認為 其已經足夠小(在本例中是這樣的),則理論上兩個模型 都可以使用。 —作為第二標準’應當注意’如第SAg和第诏圖所 示專式5的模型的最大誤差的出現頻率,即9/72900, 低於等式6的模型,即術72_。因此,選擇等式$的 模型,且在WTRU(400)中配置⑽和調整因數⑽)。 Z換地’等式6的模型估言十CM需要較少的乘法,如果 這疋-個顯著制素的話,則可以選擇該模型。 之 現在描述對估計CM和/或PAR的推導。在已經使用 了頻道權重之後,但是在使雜升余弦和其他濾波器 17 200904040 刖,根據專式2來確定上行鏈路信號的par。 PAR = 101og(^w) = 1 〇i〇g 其中; (N, \2 (NQΣβυ + \Μ ) W'=1 Nj % ηΣα/+Σ〜2 j=\ 戶1 等式(2) /5/是用於I部分中的實體頻道的頻道權重; 是用於Q部分中的實體頻道的頻道權重; 外是I部分中的實體頻道數量;和 外是Q部分中的實體頻道數量。 根據-個實施方式,對於給定配置情況’最佳地將 CMW,(線性而不是dB形式的CM,並且沒有3GPP方 法的0.5dB量化)作為與等式2的預舰RU關的The adjustment factor using PAR for the minimum MpR and the maximum value of the negative value in Figure 7A are approximately _〇.4idB. As can be seen from Fig. 6B and Fig. 7B, the corresponding values for the model of Equation 6 are _054 dB, _ 〇〇 8 〇 dB * - 0.57 dB. The distribution of the maximum MPR error is determined by using the adjustment factor (380), which, as calculated above, agrees to be 〇 54 dB. Looking at Figure 5A and Figure 5B, the distribution of the maximum mpr error shows that for the two models, the maximum maximum MPR error is 15 and if it is considered to be small enough (in this case), then theoretically Both models can be used. - As a second criterion 'should note' the frequency of occurrence of the maximum error of the model of the equation 5 as shown in the SAg and the figure, ie 9/72900, which is lower than the model of Equation 6, ie 72_. Therefore, the model of equation $ is selected and (10) and adjustment factor (10) are configured in the WTRU (400). The model of Equation 6 is estimated to require less multiplication, and if this is a significant factor, then the model can be chosen. The derivation of the estimated CM and/or PAR is now described. After the channel weights have been used, but with the hybrid raised cosine and other filters 17 200904040, the par of the uplink signal is determined according to Equation 2. PAR = 101og(^w) = 1 〇i〇g where; (N, \2 (NQΣβυ + \Μ ) W'=1 Nj % ηΣα/+Σ~2 j=\ Household 1 Equation (2) /5 / is the channel weight for the physical channel in the I part; is the channel weight for the physical channel in the Q part; the outer is the number of physical channels in the I part; and the outer is the number of physical channels in the Q part. Embodiments, 'the best CMW, (linear rather than dB form of CM, and no 0.5 dB quantization of 3GPP method) for a given configuration case as a pre-ship RU with Equation 2

其中; 是用於每個實體祕狀際加權因數 η是用於定義總和的指米數的整數 是任意多項式的階次’和 該函數使 )2是歸一化函數 的值與任意比例的yS無關。 也可以使用與等式3中相同的函數來估計滤波器輪出 200904040 的施",其巾只有項的值與麟不同。 :於給疋配置情況的任何可能信號,使用等式3來估計 和撕"_ 4字通常會在所估計的值和所測量的值之 間產生誤差,這稱為估計誤差。 雖然心*扣為任何正紐,但是在—個實施 式中八例如疋乂*=2。經驗結果表明,通過使用為* ―’用於所有可能信號的估計誤差的範圍對於確定最大 嫩和最小嫩__受_®。因此,將 擇為大於2會赶額相複雜,且沒有明顯的 =進。因此,當將〜咖設為2時,等 Σ^οΑ, ν>ιWhere; is used for each entity. The weighting factor η is the integer used to define the sum of the number of meters is the order of the arbitrary polynomial 'and the function makes 2) the value of the normalized function and the yS of any ratio Nothing. It is also possible to use the same function as in Equation 3 to estimate the filter rotation of 200904040, which has a value different from that of Lin. : Any possible signal for a given configuration, using Equation 3 to estimate and tear "_4 words usually produces an error between the estimated value and the measured value, which is called the estimated error. Although the heart* is deducted as any positive, in an embodiment eight is for example =*=2. The empirical results show that the range of estimation errors for all possible signals by using * ―' is for determining the maximum tenderness and the minimum tenderness __ by _®. Therefore, choosing a value greater than 2 would be complicated and there would be no obvious = advance. Therefore, when the ~ coffee is set to 2, etc. Σ^οΑ, ν>

等式(4) 擴展等式4則產生了等式5 iaAj CMlim 等式(5) 權(由方根項 α項的内積的 該等式描述的CM/ί”^基本等於單個平方加 進行加權)、成分内交叉/5項與還不已知的 19 200904040 只是〇:項的值 加權的形式。該公式同樣適用於膽", 不同。 在等式6中表示了對等式5中所描述的替換模型 ,、的模型去掉了單個沒項以及有關的歸一化函數 2的分子巾的最後—項)。經驗結果㈣,對於—些配 置情況,該模型會產生比等式5的模型更少的估計誤^。 Π CM, linear ’ ϊβ:·-1βΰ; Μ ;-1Equation (4) Extends Equation 4 to produce Equation 5 iaAj CMlim Equation (5) Weight (CM/ί described by the equation for the inner product of the root term α term) is basically equal to a single square plus for weighting ), cross-sections in the component/5 and 19,04004040, which are not yet known, are just the form of the value-weighted term of the term. The formula also applies to the bold ", different. It is expressed in Equation 6 as described in Equation 5. The replacement model, the model removes the single item and the last item of the molecular towel related to the normalization function 2. The empirical result (4), for some configurations, the model will produce a model more than Equation 5 Less estimated error ^ CM CM, linear ' ϊβ:·-1βΰ; Μ ;-1

等式(6)Equation (6)

對於給定的配置情況,可以從以下來破定α項的值·· D使用發射機模擬(230)來測量所有或—組較少的典型 可此彳§號的〇14__和/或/¾凡·刪;和2)使用已知的最小 二乘擬合方法,在等式7中以矩陣的形式給出: 等式(7) α={χτχ)χχτγ 其中; X疋矩陣(已知為設計或Vandermode矩陣),每個信 行,其中,一行中的每個元素是平方、單個加權或成 分内交叉/5項的數字值。這是通過將等式5或等式6中的 符號冷I和/3Q替換為特定頻道的β項而確定的;對於具 有兩個或四個E-DPDCH的情況,每一個單個和平方的冷 ed都應當僅占X的一行’而不是兩行或四行;並且 Y是列向量’具有每個信號一個元素,其中每個部分 都分別是所測量的〇4_或扮及ear。假設將要計算用於 200904040 估計CM的α項或用於估計PAR的α項,則乘以等式5 或等式6的分母中的信號加權因數。可替換地,假設同時 要計算用於估計CM和PAR的α項,則Υ可以是具有兩 個這樣的列的矩陣:一個用於CM/Z„ear,另一個用於 P^^linear ° 下面提供了用於等式(7)中為本例計算α項的符號 項(而不是其數字值):For a given configuration, the value of the alpha term can be broken from the following. D uses the transmitter simulation (230) to measure all or a small number of typical 可14__ and/or / 3⁄4凡·除; and 2) using the known least squares fitting method, given in the form of a matrix in Equation 7: Equation (7) α={χτχ)χχτγ where; X疋 matrix (known For design or Vandermode matrices, each letter line, where each element in a row is a square, a single weight, or a numerical value that crosses /5 items within the component. This is determined by replacing the symbols cold I and /3Q in Equation 5 or Equation 6 with the β term for a particular channel; for a case with two or four E-DPDCHs, each single and squared cold Ed should only occupy one line of X 'instead of two or four lines; and Y is a column vector' with one element per signal, each of which is measured 〇4_ or dressed as ear. Assuming that the alpha term for the 200904040 estimated CM or the alpha term for estimating PAR is to be calculated, multiply by the signal weighting factor in the denominator of Equation 5 or Equation 6. Alternatively, assuming that the α term for estimating CM and PAR is to be calculated at the same time, Υ may be a matrix having two such columns: one for CM/Z„ear and the other for P^^linear° below A symbol term (rather than its numerical value) for calculating the alpha term for this example in equation (7) is provided:

C Ζ= βά\ +Pea +2Αλ2 +β〇1 +PhA«+2心2« 等式(8) 2 2 2 2 2 _爲72900 +Ac72900 +2久?72900 + 汉72900 +Α^72900 4ί: ^βά\ +ββΛ +^ed\ +β〇1 +fihs\ -jβά2 ^βεΛ +,1ββά2 +β〇2 +β}ιΛ 等式(9) \ /¾ 2 2 72900 +凡72900 + 2凡/ 7 2900 2 2 2 +爲72900 +凡 ^2900 C. ΧΓ 丨1 1 1 ^C^AACA„111111_ ^ΧΊΛ,Λ,ΟΙ^.也 A ^ ^ Α ^ ^ ^C Ζ = βά\ +Pea +2Αλ2 +β〇1 +PhA«+2心2« Equation (8) 2 2 2 2 2 _ is 72900 +Ac72900 +2久?72900 + Han 72900 +Α^72900 4ί: ^βά\ +ββΛ +^ed\ +β〇1 +fihs\ -jβά2 ^βεΛ +,1ββά2 +β〇2 +β}ιΛ Equation (9) \ /3⁄4 2 2 72900 + where 72900 + 2 where / 7 2900 2 2 2 + is 72900 + where ^ 2900 C. ΧΓ 丨 1 1 1 ^C^AACA „111111_ ^ΧΊΛ,Λ,ΟΙ^. Also A ^ ^ Α ^ ^ ^

Pec 72900 Αί/72900 fidT29QQ A: 72900 A5 72900. ^ec72900 2 72900 rt 2 々72900 〇 2 ^72900 Aw 72900 Ac72000^ 72900 Arc 7290〇/^ 72900 βεά129〇αβά12900 ☆ 72900"/« 72900 ^c7290〇/^erf 72900 ^/«72900^72900. ‘diagi^fE) 等式(10) 21 200904040 CMjineaf PAR—lineaf* Y^diagly CMJineai PARJinea^ PAR」ifwci^9QQ_ 等式(12) err = l〇l〇g(7)_i〇i〇g(7) 等式(13 )Pec 72900 Αί/72900 fidT29QQ A: 72900 A5 72900. ^ec72900 2 72900 rt 2 々72900 〇2 ^72900 Aw 72900 Ac72000^ 72900 Arc 7290〇/^ 72900 βεά129〇αβά12900 ☆ 72900"/« 72900 ^c7290〇/^erf 72900 ^/«72900^72900. 'diagi^fE) Equation (10) 21 200904040 CMjineaf PAR-lineaf* Y^diagly CMJineai PARJinea^ PAR"ifwci^9QQ_ Equation (12) err = l〇l〇g(7 )_i〇i〇g(7) equation (13)

上面例子所引用的可能信號的減少集涉及這樣的情 況’即用於可靠地計算出CC項所需的信號數量可能會比所 有可能信號的數量少幾個量級。但是,使用等式12和13, 來使用具有所有可能信號的矩陣X來計算估計誤差。通過 限制X中用於計算α項的信號數量,不會在離線處理器 200中產生明顯的節約。 Ο 等式(11) 在等式5和6中所規定的,分別用於構造矩陣丫和乂 的加權因數、數字功率(等式5和等式6的分母)、以及 每個信號的均方根幅值(在等式5的分子中的均方根項) 在特定實施方式中可以對所有信號都是相同或基本相同 的。在這種情況下,可能不需要對每個信號進行計算。而 是,兩個加權因數可以分別是對所有信號通用的常量。 如果在用於測量CM和/或PAR、並之後計算α項的 發射機模擬中的數字β項的比例等於WTRU中的數位β 項的比例,則還可以從等式5和6中去掉加權因數,並有 效地結合至α項中。 通過使用第2圖和第3圖的過程,對所有所定義的配 置情況的α項、用於每一種配置情況的調整因數和能夠最 小化最大MPR &最小MPR賴型,已經鱗式5和6 22 200904040 中所描述的兩個模型而被計算。最小化最大歷和最小 MPR的模型根據如下來計算: η對於最大MPR的情況,有三_換方絲確定能夠 取小化最大MPR估計誤差的模型。 ,第-種替換方式是,從等式5或6估計㈣ 應當被調整以使調整後的估計的CM不大於從CM的實際 測量所獲得的值。該調整因數應當是對於特定配置情況的 最大幅值正誤差;該因數應當從實際估計中減去。這樣調 整誤差的目的是防止對任何信號過高地估計。 第二種替換方式是,從等式5或6估計出的 應當被调整以使從調整後的估計的所確定的最大 MPR不大於從實際CM測量所獲得的最大MpR。以這種 方式來調整誤差的目的是防止對任何信號過高地估計最 大MPR。如下是確定調整因數的方法: 1) 對於配置中的每一個信號,使用估計的CM來確 定估計的MPR (MPR一estimated) ’並從已知的模擬的實際 CM中確定實際MPR (MPR_tme)。 2) 根據等式14來計算MPR誤差(MPR_error): MPR_error = MPR true-MPR_estimated #^((14) 3) 從MPR誤差小於〇的信號中,根據等式15來選 擇原始調整因數(adjustment_factor_raw): adj-ustmenLfactor—mw= mso(CM-estimated-cei(CM」η^0·5))·,等式(15) 其中,⑽ίο·5)的意思是向上舍入至最近的0·5。 4) 最終的調整值是等式15的值加上一個小量,ε, 23 200904040 以確保荨式15中具有最大的^恤^以的信號在使用 調整因數後,不會向上捨入至下一個〇5dB。換句話說, 使用專式16來什鼻調整因數(a(jjustment_fact〇r),其中從 MPR鎮差小於零的信號中選擇最大的。 _estimated_ceiKCM 少_ 的“專式 第二種替換方式是,使用比其他替換方式所使用的更 小幅值的調整因數,所選擇的量作為設計折中,(例如, 防止僅僅對配置情況的特定信號過高估計CM)。 對於計算最小MPR來確定最小化最小MPR估計誤差 的模型的情況,所估計的CM或PAR應當被調整以使得 調整後的CM或PAR不小於的CM或PAR的實際測量值。 調整後的因數應當是對於特定配置情況的最大幅值的負 CM或PAR估計誤差;其應當從實際估計中減去。以這種 方式來使用調整因數的目的是防止對任何信號過低估計 C1V[或PAR。可替換地,可以使用更小幅值的負調整因數, 所選擇的量作為設計折中’(例如,防止僅僅對配置情況 的特定信號過低估計CM )。 對於每一種配置情況,在任何一種方法使用了調整因 數之後,必須對該誤差對於兩個模型是否都足夠小來進行 5平價。在第5A圖、第5B圖、第6A圖、第6B圖、第7A 圖和第7B圖中給出了特定配置情況測量誤差的分佈。第 5八圖,第6A圖和第7A圖表示了等式5所描述的模型; 第5B圖,第6B圖和第7B圖表示等式6中描述的模型。 第5A圖和第5B圖表示了對特定情況的最大mpr估計誤 24 200904040 ^分佈。在第5A圖和第犯圖中,由於在最大猶計 异中的取頂(cez7)操作,該分佈高度量化了。 第6A圖和第6B圖表示了 CM估計誤差的強度.第 6A圖具有比第6B圖窄一些的強度。在第6a圖和第犯 圖中的分佈以及第第7A圖和第7B圖中的分佈基本是連 續的。第7A圖和第7B圖表示了估計PAR的誤差強度。 為了計算最大MPR’最大的最大MpR誤差應#在期望的 限制之内。可替換地,可以將在期望 CM測里誤差之間的差作為標準。但是,最佳的是使用最 大的最大MPR誤差。為了使用CM或⑽來計算最小 MPR ’極限正和貞測量誤差之_差應#在所需的範圍之 内。 對於最大MPR,根據g —雜方极賴整因數的 結果是沒有信號具有過高估計的MpR,但是一些信號具 有過低估計的MPR。使雜據第二替換方式的調整因^數 的結果是沒有信號具有過高估計的CM,但是一些信號具 有過低估計的CM。制是,具有最大正CM誤差的信號 將會具有正確估計的CM,具有最大幅值的負CM誤差的 信號將會由於最大幅值正負⑽誤差之制差而具有過低 估計的CM,其他信號將會由於一些更小的^,而具有過 低估計的CM。 對於最小MPR ’使用調整因數的結果是沒有信號會 具有過低估計的CM或PAR;―些信號財過高估計的 CM或PAR。特別是,具有最大正CM $ pAR誤差的信號 25 200904040 將會具有正確估計的CM或PAR;具有最大幅值正cm或 PAR誤差的彳§號將會由於最大幅值的正負cm誤差之間的 差而具有過高估計的CM或PAR。 估汁誤差存在兩個可能的問題:首先,由於故意的低 估和高估CM和PAR,所計算出的最小MPR可能會超過 計算出的最大MPR。在這種情況下,WTRU可能不能選 擇出MPR的值,該值能夠保證同時符合例如3Gpp的標 準的MPH和aclr的要求。其次’最大幅值正負估計誤 差之間的差越大,則根據所述方法所獲得的最小與 假設由測量崎得賊小MPR之_差誠大,從而減 小了能達到的最大發射功率。 對上述問題的兩種可能的措施是:1)可以通過選擇 ^換調整因數來使用上述折中,這樣對於—些可能較小的 木不適用所计异出的MpR ;和2)可以將特定的配 置情況劃分為兩個或更多配置航,這樣職生的估計誤 差就更小。例如’如果分析表卿於特定實體頻道,最大 的;5員產生最大的估計誤差’則使用這些$項來建立 的配置情況。 一旦已經定義了—組配置情況,且已經計算出了用於 所有配置情況.項和娜眺,則最佳地將 WTRU的表中。 你 h Ϊ考表示了 WTRU4〇〇。在每個TTI開始傳 J則、擇適當的配置情況來配置由傳輸塊的介質訪問 工,J嫩〇層所提供的資料。為了定義表1中給出的配 26 200904040 置情況集,根據用於發送傳輸塊的實體頻道的組合,以及 可能的Ε-DPDCH擴展因數來進行選擇。 不管MPR計算設備(430)計算出最大MPR、最小 MPR或以上兩者,並且,如果該設備使用PAR計算出了 最小MPR,則根據等式17估計,等式17是等式 5和等式6的簡化形式: 等式(17) 其中’ N和D分別是等式5或等式6的分子和分母,並使 用上面蜂定的配置情況的CM α項。使用等式η來估計 ^^!inear ,但疋將CAilinear替換為丨inea/a,並使用配置情況 的PAR 〇:項。之後,將和/或招穴如咖轉化為JR 形式。The reduced set of possible signals referenced in the above example relates to the situation where the number of signals required to reliably calculate a CC term may be orders of magnitude less than the number of all possible signals. However, using Equations 12 and 13, the matrix X with all possible signals is used to calculate the estimation error. By limiting the number of signals used in X to calculate the alpha term, no significant savings are produced in the off-line processor 200. Ο Equation (11), as specified in Equations 5 and 6, is used to construct the weighting factors of the matrices 乂 and 分别, the digital power (the denominator of Equation 5 and Equation 6, respectively), and the mean square of each signal. The root amplitude (the root mean square term in the numerator of Equation 5) may be the same or substantially the same for all signals in a particular embodiment. In this case, it may not be necessary to calculate each signal. However, the two weighting factors can be constants common to all signals. If the ratio of the number β term in the transmitter simulation used to measure CM and/or PAR and then calculate the alpha term is equal to the ratio of the digit β term in the WTRU, the weighting factor can also be removed from Equations 5 and 6. And effectively combined into the alpha term. By using the processes of Figures 2 and 3, the alpha term for all defined configuration cases, the adjustment factor for each configuration case, and the ability to minimize the maximum MPR & minimum MPR profile, already scaled 5 and The two models described in 6 22 200904040 are calculated. The model that minimizes the maximum and minimum MPR is calculated as follows: η For the case of the maximum MPR, there are three _ squares to determine the model that can minimize the maximum MPR estimation error. The first alternative is that the estimate from equation 5 or 6 (iv) should be adjusted so that the adjusted estimated CM is not greater than the value obtained from the actual measurement of the CM. The adjustment factor should be the most significant positive error for a particular configuration; this factor should be subtracted from the actual estimate. The purpose of this adjustment error is to prevent overestimation of any signal. A second alternative is that the estimate from Equation 5 or 6 should be adjusted such that the determined maximum MPR from the adjusted estimate is no greater than the maximum MpR obtained from the actual CM measurement. The purpose of adjusting the error in this way is to prevent the maximum MPR from being overestimated for any signal. The following is a method of determining the adjustment factor: 1) For each signal in the configuration, the estimated CM is used to determine the estimated MPR (MPR-estimated) and the actual MPR (MPR_tme) is determined from the actual CM of the known simulation. 2) Calculate the MPR error (MPR_error) according to Equation 14: MPR_error = MPR true-MPR_estimated #^((14) 3) From the signal with the MPR error less than 〇, select the original adjustment factor (adjustment_factor_raw) according to Equation 15: adj-ustmenLfactor—mw= mso(CM-estimated-cei(CM”η^0·5))·, Equation (15) where (10) ίο·5) means round up to the nearest 0·5. 4) The final adjustment value is the value of Equation 15 plus a small amount, ε, 23 200904040 to ensure that the signal with the largest size in Equation 15 is not rounded up until after using the adjustment factor. One 〇 5dB. In other words, use the special 16 to adjust the factor (a(jjustment_fact〇r), where the largest of the signals with MPR towns less than zero is selected. _estimated_ceiKCM less _ "special second alternative is to use The smaller the adjustment factor used by the other alternatives, the selected amount is compromised as a design (for example, to prevent overestimating the CM only for specific signals in the configuration). Calculate the minimum MPR to determine the minimum minimum In the case of a model of MPR estimation error, the estimated CM or PAR should be adjusted such that the adjusted CM or PAR is not less than the actual measured value of the CM or PAR. The adjusted factor should be the maximum amplitude for a particular configuration. Negative CM or PAR estimation error; it should be subtracted from the actual estimate. The purpose of using the adjustment factor in this way is to prevent C1V [or PAR from being underestimated for any signal. Alternatively, a smaller amplitude can be used. The negative adjustment factor, the selected amount is used as a design compromise (for example, to prevent CM from being underestimated only for specific signals in the configuration case). For each configuration case, After using the adjustment factor by either method, it is necessary to perform 5 parity for whether the error is small enough for both models. In Figures 5A, 5B, 6A, 6B, 7A, and 7B The distribution of measurement errors for a particular configuration is given. Figure 5, Figure 6A and Figure 7A show the model described in Equation 5; Figure 5B, Figure 6B and Figure 7B show Equation 6. Models described. Figures 5A and 5B show the maximum mpr estimation error for a particular case. 24 200904040 ^ Distribution. In Figure 5A and the first map, due to the top-of-the-range (cez7) operation The distribution is highly quantified. Figures 6A and 6B show the intensity of the CM estimation error. Figure 6A has a narrower intensity than Figure 6B. Distribution in the 6a and the first map and the 7th The distribution in Figure and Figure 7B is substantially continuous. Figures 7A and 7B show the error strength of the estimated PAR. The maximum MpR error for calculating the maximum MPR' should be within the desired limits. Alternatively The difference between the expected CM error can be used as a standard. However, It is better to use the maximum maximum MPR error. In order to use CM or (10) to calculate the minimum MPR 'limit positive and 贞 measurement error _ difference should be within the required range. For the maximum MPR, according to g - the square is extremely The result of the factor is that no signal has an overestimated MpR, but some signals have an underestimated MPR. The result of the adjustment of the second alternative is that the signal has no overestimated CM, but some signals The CM with too low estimation is that the signal with the largest positive CM error will have a correctly estimated CM, and the signal with the negative CM error of the largest amplitude will have a difference due to the difference between the positive and negative (10) errors of the maximum amplitude. For low estimated CM, other signals will have a CM that is too low estimate due to some smaller ^. The result of using the adjustment factor for the minimum MPR' is that no signal will have a CM or PAR that is underestimated; some signals are overestimated CM or PAR. In particular, the signal 25 200904040 with the largest positive CM $ pAR error will have a correctly estimated CM or PAR; the 彳 § with the largest amplitude positive cm or PAR error will be due to the maximum amplitude between the positive and negative cm errors Poorly over-estimated CM or PAR. There are two possible problems with estimating the error: First, due to the intentional underestimation and overestimation of CM and PAR, the calculated minimum MPR may exceed the calculated maximum MPR. In this case, the WTRU may not be able to select a value for the MPR that is guaranteed to meet the requirements of the standard MPH and aclr, e.g., 3 Gpp. Secondly, the greater the difference between the positive and negative estimates of the maximum amplitude, the minimum and the hypothesis obtained according to the method are measured by the small MPR of the Saki thief, thereby reducing the maximum transmit power that can be achieved. Two possible measures for the above problems are: 1) the above compromise can be used by selecting the adjustment factor, so that the MpR for the different possible woods is not applicable; and 2) the specific The configuration is divided into two or more configuration flights, so the estimation error of the students is even smaller. For example, 'If the analysis is on a specific physical channel, the largest; 5 members produce the largest estimated error' then use these $ items to establish the configuration. Once the group configuration has been defined and has been calculated for all configuration scenarios, the items and Na's are best placed in the WTRU's table. Your h reference indicates WTRU4〇〇. At the beginning of each TTI, the appropriate configuration is used to configure the media provided by the transport block, and the data provided by the J layer. In order to define the set of conditions set forth in Table 1, the selection is based on the combination of physical channels used to transmit the transport block, and possibly the Ε-DPDCH spreading factor. Regardless of whether the MPR computing device (430) calculates the maximum MPR, the minimum MPR, or both, and if the device calculates the minimum MPR using PAR, then Equation 17 is estimated according to Equation 17, Equation 6 is Equation 5 and Equation 6. Simplified form: Equation (17) where 'N and D are the numerator and denominator of Equation 5 or Equation 6, respectively, and use the CM α term of the configuration above. Use the equation η to estimate ^^!inear , but replace CAilinear with 丨inea/a and use the PAR 〇: entry for the configuration case. After that, the words and/or the points will be converted into the JR form.

如果MPR計异设備(430)計算出最大mpr,則從 dB形式的CM的估計中減去所選擇的用於計算最大MpR 的調整因數(以dB形式)。這樣就給出了用於計算最大 MPR的CM值。 如果MPR計算設備(430)使用CM計算出最小 MPR,則從dB形式的CM的估計中減去所選擇的用於計 算最小MPR的調整因數(以dB形式)。這樣的結果是使 用C1V[值計算出了最小MPR。 如果MPR計算設備(430)使用PAR計算出最小 MPR ’則從dB形式的PAR的估計中減去所選 = 用PAR來計算最小]VtPR的調整因數(dB),其結果用於 27 200904040 計算最小MPR。 如果MPR計算設備(430)計算出最大MPR,則最 佳地根據3GPP來計算最大MPR。如果MPR計算設備計 算出了最小MPR,則最佳地根據功率放大器的規定來計 算最小MPR。 如果設備計算出了最大MPR或最小MPR,而不是兩 者同’貝彳將所s十鼻出的最大MPR或最小MPR作為用來 設置發射功率的MPR值進行輸出。同時計算最大MpR和 最小MPR的設備可以選擇某個中間值來作為用於設置發 射功率的MPR值,並保持與標準和製造商的建議一致。 實際並不需要完全估計出C1V[的值,而只需要檢測出 所估計的CM值是高於還是低於一個或多個臨界值。可以 通過稍微修改等式17,如等式18,來提供一種可能的臨 界值測試,其優點是避免了等式17中的劃分操作。If the MPR metering device (430) calculates the maximum mpr, the selected adjustment factor (in dB) for calculating the maximum MpR is subtracted from the estimate of the CM in dB form. This gives the CM value used to calculate the maximum MPR. If the MPR computing device (430) uses the CM to calculate the minimum MPR, the selected adjustment factor (in dB) for calculating the minimum MPR is subtracted from the estimate of the CM in dB form. The result of this is that the minimum MPR is calculated using C1V [value. If the MPR computing device (430) uses PAR to calculate the minimum MPR' then subtract the selected = PAR to calculate the minimum [VtPR] adjustment factor (dB) from the estimate of the PAR in dB form, the result is used for 27 200904040 minimum calculation MPR. If the MPR computing device (430) calculates the maximum MPR, the maximum MPR is preferably calculated from 3GPP. If the MPR calculation device calculates the minimum MPR, the minimum MPR is optimally calculated according to the specifications of the power amplifier. If the device calculates the maximum MPR or the minimum MPR, instead of the same, the maximum MPR or the minimum MPR that the bell is out of is the output of the MPR value used to set the transmission power. Devices that calculate both the maximum MpR and the minimum MPR can select an intermediate value as the MPR value used to set the transmit power and remain consistent with the standards and manufacturer's recommendations. Actually, it is not necessary to fully estimate the value of C1V [and only need to detect whether the estimated CM value is higher or lower than one or more threshold values. A possible critical value test can be provided by slightly modifying Equation 17, such as Equation 18, which has the advantage of avoiding the division operation in Equation 17.

CMlinearT.D<N 等式(18) 其中疋的特定臨界價; <操作符是臨界 值測試,如果不等式為“真”,則指* 大於CMlinearT.D<N Equation (18) where the specific critical price of 疋; < operator is a critical value test, if the inequality is "true", then * is greater than

HinearT 表4是從3GPP TS 25_1〇1的表oa所推導出的,其 中表示了以C語言的形式給出的有效演算法,該演算法設 定了 max一MPR一dB的值和臨界值。選擇調整因數:線^ 等效的值以用於計算最大MPR。 表4HinearT Table 4 is derived from the table oa of 3GPP TS 25_1〇1, which shows an efficient algorithm given in the form of C language, which sets the value of max-MPR-dB and the critical value. Select the adjustment factor: line ^ equivalent value to calculate the maximum MPR. Table 4

200904040 1 10Λ(1.5/10)-1.412538 0.5 2~~ 10Λ(2.0/10)-1.584893 10 10Α(2.5/10)-1.778279 .---- 1.5 4~~~ 10Λ(3.0/10)=1.995262 2.0 用於計算最小MPR的專用設備演算法與計算最大 MPR的類似’根據特定數目,很可能只有一個cm和/或 PAR的臨界值,並且可以使用類似的演算法進行計算。200904040 1 10Λ(1.5/10)-1.412538 0.5 2~~ 10Λ(2.0/10)-1.584893 10 10Α(2.5/10)-1.778279 .---- 1.5 4~~~ 10Λ(3.0/10)=1.995262 2.0 The special device algorithm used to calculate the minimum MPR is similar to the calculation of the maximum MPR. 'Depending on the specific number, it is likely that there is only one critical value for cm and/or PAR, and a similar algorithm can be used for the calculation.

回到苐4圖,第4圖是被配置用於無線通信的wtru 400,由縮放電路45〇接收和處理數位使用者資料和控制 資料,以數位地縮放資料,設定其相對發射功率。可以將 數位使用者資料編碼至例如專用實體資料頻道(DPDCH ) 或增強DPDCH (E-DPDCH)的頻道中。可以將控制資料 編碼至例如專用實體控制頻道(DPCCH)、高速DPCCH (HS_DPCCH)或增強 DPCCH (E-DPCCH)的頻道中。 縮放電路450在這各個頻道中操作。 ϋ 由濾波器設備460對縮放後的資料進行濾波,由模數 轉換器(DAC) 470將濾波後的資料轉換為類比信號,並 由無線電發射機480通過天線(Tx) 490發送。WTRU的 發射機具有可調整的(即,功率可控)整體發射功率,以 及可縮放的單個頻道輸入,如第4圖中由類比增益項和數 位增益項分別表示。也可以使用其他形式的可控傳輸設 備。 根據3GPP中定義的過程,由發射功率控制單元44〇 來設定單個頻道的發射功率和整體發射功率。標稱最大發 射功率由WTRU功率級或網路來確定。WTRU功率級的 29 200904040 最大發射功率在3GPP中定義。WTRU可以自動地使用最 大MPR或小一些的設備專用最小MpR來對其最大發射功 率進行限制,該最大MPR是在3GPP所定義的範圍之内 的值。 發射功率控制單元440使用多個參數來設定發射功 率。這些參數中一個是MPR。為了計算mpr,首先根據 離線配置參數來定義配置情況,該參數是根據上述第2圖 至第3圖的描述所獲得的(41〇)。對於識別後的情況,根 據下述内容來計算調整後的估計CM和/或PAR (420)。 根據用於最大MPR和/或最小mpr的值來設置mpr (430)。最佳地,由處理設備“ο根據調整後的CM和/ 或PAR估計(420) ’或調整後的MpR估計來計算最大 MPR和/或最小mpr。如果是根據對MpR的調整來計算, 則不再對CM和/或PAR進行調整。 WTRU 400可以被構造為計算MPR中的任一個或兩 個都计异;以及從CM或PAR任一個來計算最小MPR, 這樣,可以選擇使用任意組合。CM和/或PAR的估計可 以疋預先計算的值的函數,該值由^項來表示,也可以是 所發送信號的所需相關頻道功率(β項)的函數,其中, /3項的特定函數是根據該信號的特定實體參數。對該估計 的調整可以是來自預先計算的項。 為了在WTRU 400中計算一個或兩個MpR,首先, 對於TTI ’以該信號的配置舉例,其MAC_es的頻道權重 為沒。=15’ y3d = 6’Ahs= 30 200904040 15/15 ’ AeCH =15/15 ’ Aed,=^ed/ec= 95/15。該信號的 例子是在 R4- 060176, 3GPP TSG RAN 4 Meeting #38 中的 信號U。 第二,通過使用數位縮放,WTRU400計算出以下數 位頻道權重:^c = 22,,冷d = 9,石hs=22,ySec = 22,/3 ed = 200。這些權重相互占所需比例,並且其平方和為所需 常量。 第三,通過使用表3中的^:⑽和冷,而使用等式5計 算出數位頻道權重和CM加ear的估計,為丨.0589,等於 〇.2487dB ° 第四,通過減去0.54 dB而對CM的估計進行調整, 知到約-0.29 dB。可替換地,在線性形式中,通過將1.0589 與0.883相乘來調整該估計,產生約〇93。 弟五’ CM的線性調整估計0.94小於表4中的第一線 性臨界值;因此,將最大MPR計算為〇dB。 通過第8圖進行總結,表示了通過WTRU 400計算 MPR而設置發射功率的過程8〇〇。根據配置情況,在離線 處理益中確定和處理調整因數和預先計算出的α值 (810)。在WTRIMOO中存儲這些值,以幫助WTRU4〇〇 識別配置情況(820)。一旦確定了配置情況,則計算調整 後的估計CM和/或PAR (830)。通過使用這些調整後的 估計值,計算出最大MPR和最小mpr (84〇),並設置 MPR。將mpr、理論最大功率和功率控制命令相結合 (850),從而設置發射功率(86〇)。 31 200904040 徵和部件,的^佳實施财描述了本發明的特 的其 特::::==發‘ 供的方法錢絲制。本發明提 腦程式、軟ί 用電腦或處理器執行的電 韌體是以有形的;其中所述電腦程式、軟體或 可讀存儲=:::==中的,電腦 存器、快取記鐘、半導體存儲設傷、 =硬碟和移動則之_磁竹、磁光介質和cd_r〇m 碟片和數位麵(DVD)之_光學介質。 。舉例來說,適當的處職包括,顧處理器、專用處 理。器、常規處理器、數位信號處理器(DSP)、多個微處 ^盗、與DSP核相關的一個或多個微處理器、控制器、 微控制器、專用積體電路(ASIC)、現場可編程閘陣列 (FPGA)電路、任何其他類型的積體電路㈤)和/或狀 態機。 與軟體有關的處理器可以用於實現射頻收發機,以用 於無線發射接收單元(WTRU)、使用者設備(Ug)、終端、 基地台、無線網路控制器(RNC)或任何主機電腦。WTRU 可以與採用硬體和/或軟體形式實施的模組結合使用,例如 照相機、攝像機模組、視頻電話、揚聲器電話、振動設備、 揚聲器、麥克風、電視收發機、免提耳機、鍵盤、藍牙⑧ 32 200904040 模組、調頻(FM)無線單元、液晶顯示器(LCD)顯示 單元、有機發光二極體(OLED)顯示單元、數位音樂播 放器、媒體播放器、視頻遊戲模組、網際網路流覽器和/ 或任何無線局域網(WLAN)模組。 200904040 【圖式簡單說明】 從以下對最佳實施方式的描述可叫得對本發明更 詳細的理解’魏佳實施村是以舉_方式給出的,並 且結合附圖進行理解。 第1圖是根縣發明的無線發射接收單元(WTRU) 的功能性框圖; 第2圖是離線處理器的簡化版本的框圖·, 第3圖是離線初始配置過程的詳細流程圖; 第4圖是根據一種實施方式的WTRU的框圖; 第5A圖和第5B圖是分別用於等式5的模型和等式6 的模型的兩個圖示’表示最大MPR估計誤差的分佈; 第6A圖和第6B圖是分別用於等式5的模型和等式6 的模型的兩個圖示,表示CM估計誤差的分佈; 第7A圖和第7B圖是分別用於等式5的模型和等式6 的模型的兩個圖示,表示PAR估計誤差的分佈;和 第8圖是設置發射功率的方法的流程圖。 34 200904040 【主要元件符號說明】 110 基地台 120、400、WTRU 無線發射接收單元 125 處理器 126 接收機 127 發射機 128 天線 200 離線過程 300 離線初始配置過程 440 發射功率控制單元 450 縮放電路 460 慮波器設備 470、DAC 模數轉換器 480 無線電發射機 490、Tx 天線 CM 立方度量 MPR 最大功率衰減 PAR 峰均比 35Returning to Fig. 4, Fig. 4 is a wtru 400 configured for wireless communication, in which digital user data and control data are received and processed by a scaling circuit 45 to digitally scale the data and set its relative transmit power. The digital user profile can be encoded into a channel such as a Dedicated Physical Data Channel (DPDCH) or an Enhanced DPDCH (E-DPDCH). The control data can be encoded into a channel such as a Dedicated Physical Control Channel (DPCCH), a High Speed DPCCH (HS_DPCCH), or an Enhanced DPCCH (E-DPCCH). The scaling circuit 450 operates in each of these channels. The scaled data is filtered by filter device 460, and the filtered data is converted to an analog signal by analog to digital converter (DAC) 470 and transmitted by radio transmitter 480 through antenna (Tx) 490. The WTRU's transmitter has an adjustable (i.e., power controllable) overall transmit power, and a scalable single channel input, as represented by the analog gain term and the digital gain term, respectively, in FIG. Other forms of controllable transmission equipment can also be used. According to the procedure defined in 3GPP, the transmission power and the overall transmission power of a single channel are set by the transmission power control unit 44A. The nominal maximum transmit power is determined by the WTRU power level or the network. The WTRU power level 29 200904040 Maximum transmit power is defined in 3GPP. The WTRU may automatically limit its maximum transmit power using a maximum MPR or a smaller device-specific minimum MpR, which is a value within the range defined by 3GPP. The transmit power control unit 440 uses a plurality of parameters to set the transmit power. One of these parameters is MPR. In order to calculate the mpr, the configuration is first defined according to the offline configuration parameters, which are obtained according to the descriptions of Figs. 2 to 3 above (41〇). For the identified case, the adjusted estimated CM and/or PAR (420) is calculated based on the following. The mpr (430) is set according to the value for the maximum MPR and/or the minimum mpr. Optimally, the maximum MPR and/or the minimum mpr are calculated by the processing device "o based on the adjusted CM and/or PAR estimate (420)' or the adjusted MpR estimate. If calculated from the adjustment of MpR, then The CM and/or PAR are no longer adjusted. The WTRU 400 may be configured to calculate either or both of the MPRs to be different; and to calculate the minimum MPR from either CM or PAR, such that any combination may be selected for use. The estimate of CM and/or PAR may be a function of a pre-calculated value, represented by a term, or a function of the desired correlated channel power (beta term) of the transmitted signal, where The function is based on a particular entity parameter of the signal. The adjustment to the estimate may be from a pre-computed term. To calculate one or two MpRs in the WTRU 400, first, for a TTI 'in the configuration example of the signal, its MAC_es The channel weight is no. =15' y3d = 6'Ahs= 30 200904040 15/15 ' AeCH =15/15 ' Aed,=^ed/ec= 95/15. An example of this signal is at R4- 060176, 3GPP TSG Signal U in RAN 4 Meeting #38. Second, through Using digital scaling, the WTRU 400 calculates the following digital channel weights: ^c = 22, cold d = 9, stone hs = 22, ySec = 22, /3 ed = 200. These weights take up the desired ratio and their sum of squares For the required constants. Third, by using ^:(10) and cold in Table 3, and using Equation 5, calculate the weight of the digital channel and the estimate of CM plus ear, which is 丨.0589, which is equal to 〇.2487dB ° fourth, The CM estimate is adjusted by subtracting 0.54 dB, which is known to be approximately -0.29 dB. Alternatively, in linear form, the estimate is adjusted by multiplying 1.0589 by 0.883, yielding approximately 〇93. 弟五' CM The linear adjustment estimate of 0.94 is less than the first linear threshold in Table 4. Therefore, the maximum MPR is calculated as 〇 dB. As summarized in Figure 8, the process of setting the transmit power by the WTRU 400 to calculate the MPR is shown. Depending on the configuration, the adjustment factor and the pre-calculated alpha value are determined and processed in the offline processing benefit (810). These values are stored in WTRIMOO to assist the WTRU 4 to identify the configuration (820). Once the configuration is determined. , then calculate the adjusted estimate CM and / or P AR (830). By using these adjusted estimates, calculate the maximum MPR and the minimum mpr (84〇) and set the MPR. Combine the mpr, theoretical maximum power and power control commands (850) to set the transmit power. (86〇). 31 200904040 The sum of the components, the good implementation of the invention describes the special features of the invention::::== ‘ The method of supply is Qiansi. The computer firmware or the firmware executed by the computer or the processor is tangible; wherein the computer program, software or readable storage =:::==, the computer memory, the cache Clock, semiconductor storage, / hard disk and mobile _ magnetic bamboo, magneto-optical media and cd_r〇m disc and digital surface (DVD) _ optical media. . For example, proper duties include processor and dedicated processing. , conventional processor, digital signal processor (DSP), multiple micro-stoves, one or more microprocessors associated with the DSP core, controllers, microcontrollers, dedicated integrated circuits (ASICs), on-site Programmable Gate Array (FPGA) circuit, any other type of integrated circuit (5)) and/or state machine. The software-related processor can be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (Ug), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules implemented in hardware and/or software, such as cameras, camera modules, video phones, speaker phones, vibration devices, speakers, microphones, television transceivers, hands-free headsets, keyboards, Bluetooth 8 32 200904040 Module, FM radio unit, liquid crystal display (LCD) display unit, organic light emitting diode (OLED) display unit, digital music player, media player, video game module, internet access And / or any wireless local area network (WLAN) module. BRIEF DESCRIPTION OF THE DRAWINGS A more detailed understanding of the present invention will be apparent from the following description of the preferred embodiments. 1 is a functional block diagram of a wireless transmit receive unit (WTRU) invented by Gen counties; FIG. 2 is a block diagram of a simplified version of an offline processor, and FIG. 3 is a detailed flowchart of an offline initial configuration process; 4 is a block diagram of a WTRU according to an embodiment; FIGS. 5A and 5B are two diagrams of a model for Equation 5 and a model of Equation 6 respectively representing a distribution of maximum MPR estimation errors; 6A and 6B are two diagrams of the model for Equation 5 and the model for Equation 6, respectively, showing the distribution of CM estimation errors; Figures 7A and 7B are models for Equation 5, respectively. Two diagrams of the model of Equation 6 and the distribution of the PAR estimation error; and Figure 8 is a flow chart of the method of setting the transmission power. 34 200904040 [Major component symbol description] 110 base station 120, 400, WTRU radio transmission receiving unit 125 processor 126 receiver 127 transmitter 128 antenna 200 offline process 300 offline initial configuration process 440 transmission power control unit 450 scaling circuit 460 Device 470, DAC analog-to-digital converter 480 radio transmitter 490, Tx antenna CM cubic metric MPR maximum power attenuation PAR peak-to-average ratio 35

Claims (1)

200904040 十、申請專利範圍: 1、 一種在一無線發射接收單元(WTRU)中實施的用於 計算一最大功率衰減(MPR)的方法,該方法包括: 根據一所接收的信號的特徵來從一組預先定義的配置 情況中識別一配置情況; 由一預先配置的調整因數來調整一估計的立方度量 (CM) ’其中所述CM基於一發射功率放大器立方增 益項,且戎估計的QV[從一初始配置時存儲在該 WTRU 中; 根據調整後的估計的CM來計算所述MPR ;和 使用所述MPR來設置發射功率。 2、 如申請專利範圍第1項所述的方法,其中使用所計算 的MPR與一標稱最大功率極限和至少一功率控制命 令而設置所述發射功率。 3、 如申請專利範圍第1項所述的方法,其中所述配置情 況是由該所接收的信號的一頻道化碼以及該所接收的 信號的一同相(I)頻道碼和一正交頻道碼的一 頻道權重來定義。 4、 一種包括一處理器的無線發射接收單元(WTRU),該 處理器被配置為: 根據一所接收的信號的特徵來從一組預先定義的配置 情況中識別一配置情況; 由一預先配置的調整因數來調整一估計的立方度量 (cm) ’其中所述αν[基於一發射功率放大器立方增 36 200904040 益項,且該估計的αν[從一初始配置時存儲在WTRu 中; 根據調整後的估計的αν[來計算所述mpr ;和 使用所述MPR來設置發射功率。 5、 如申請專利範圍第4項所述的WTRU,其中使用所計 算的MPR與一標稱最大功率極限和至少一功率控制 命令而設置所述發射功率。 6、 如申請專利範圍第4項所述的WTRU,其中所述配置 情況是由該所接收的信號的一頻道化碼以及該所接收 的信號的一同相(I)頻道碼和一正交頻道(Q)碼的 一頻道權重來定義。 7、 如申請專利範圍第4項所述的WTRU ’其中所述處理 器還被配置成: 設置一調整因數,該調整因數是用於一頻道的一配置 情況的一最大幅值正誤差。 8、 如申請專利範圍第7項所述的WTRU,其中一較小的 幅值調整因數被選擇。 9、 如申請專利範圍第4項所述的WTRU’其中所述處理 器還被配置成計算所述CM ’該CM作為平方單獨加 權、成分内交又的P項的一内積的一加權的形式,其 中β表示信號強度。 10、 如申請專利範圍第4項所述的WTRU,其中所述處理 器還被配置成計算所述CM,該CM作為平方單獨加 權、成分内交叉的0頊的一内積的一加權的形式,該 37 200904040 /5項包括不是成分内的歸〜化的單個㈣,其中奸 示信號強度。 11如申明專利範圍第4項所述的WTRU,其中所述處理 器還被配置成·· ~ 通過以下來確定用於最小化一最大MPR估計誤差的 一調整因數: 為該配置情況中的每一信號確定一估計的MPR和一 實際的MPR ; 通過從所述實際的MPR中減去所述估計的MPR來計 算一 MPR誤差;和 按MPR誤差小於零的信號選擇所述調整因數值。 12、 如申請專利範圍第^項所述的WTru,其中一較小 幅值的調整因數被選擇。 13、 如申請專利範圍第4項所述的WTRU,其中所述處理 器遥被配置成: 設置一調整因數,該調整因數為一配置情況的一最大 幅值負誤差。 38200904040 X. Patent Application Range: 1. A method for calculating a maximum power attenuation (MPR) implemented in a wireless transmit and receive unit (WTRU), the method comprising: from a feature of a received signal from a Identifying a configuration situation in a group of predefined configuration scenarios; adjusting an estimated cubic metric (CM) by a pre-configured adjustment factor 'where the CM is based on a transmit power amplifier cubic gain term, and the estimated QV is Stored in the WTRU in an initial configuration; calculate the MPR based on the adjusted estimated CM; and use the MPR to set transmit power. 2. The method of claim 1, wherein the transmit power is set using the calculated MPR with a nominal maximum power limit and at least one power control command. 3. The method of claim 1, wherein the configuration is a channelization code of the received signal and an in-phase (I) channel code and an orthogonal channel of the received signal. The channel weight of the code is defined. 4. A wireless transmit receive unit (WTRU) comprising a processor, the processor configured to: identify a configuration condition from a set of predefined configuration conditions based on a characteristic of a received signal; The adjustment factor to adjust an estimated cubic metric (cm) 'where the αν [based on a transmit power amplifier cube increases 36 200904040 benefit, and the estimated αν [stored in WTRu from an initial configuration; The estimated αν[to calculate the mpr; and use the MPR to set the transmit power. 5. The WTRU as claimed in claim 4, wherein the transmit power is set using the calculated MPR with a nominal maximum power limit and at least one power control command. 6. The WTRU as claimed in claim 4, wherein the configuration is a channelization code of the received signal and an in-phase (I) channel code and an orthogonal channel of the received signal. The (Q) code is defined by a channel weight. 7. The WTRU' as described in claim 4, wherein the processor is further configured to: set an adjustment factor that is a maximum amplitude positive error for a configuration of a channel. 8. The WTRU as described in claim 7 wherein a smaller amplitude adjustment factor is selected. 9. The WTRU of claim 4, wherein the processor is further configured to calculate a weighted form of the CM as a inner product of a squared weighted, component-inscribed P term. Where β represents the signal strength. 10. The WTRU as claimed in claim 4, wherein the processor is further configured to calculate the CM as a weighted form of a inner product of squared weighted, zero-crossings within the component, The 37 200904040 /5 item includes a single (four) that is not within the composition of the homing, where the signal strength of the trait. 11. The WTRU as claimed in claim 4, wherein the processor is further configured to: determine an adjustment factor for minimizing a maximum MPR estimation error by: for each of the configuration scenarios A signal determines an estimated MPR and an actual MPR; an MPR error is calculated by subtracting the estimated MPR from the actual MPR; and the adjusted factor value is selected by a signal having an MPR error less than zero. 12. WTru as described in the scope of the patent application, wherein a smaller amplitude adjustment factor is selected. 13. The WTRU as claimed in claim 4, wherein the processor is remotely configured to: set an adjustment factor that is a maximum amplitude negative error of a configuration case. 38
TW097114544A 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal TWI429214B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US91294707P 2007-04-20 2007-04-20

Publications (2)

Publication Number Publication Date
TW200904040A true TW200904040A (en) 2009-01-16
TWI429214B TWI429214B (en) 2014-03-01

Family

ID=44722256

Family Applications (4)

Application Number Title Priority Date Filing Date
TW098100276A TWI479818B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal
TW097114544A TWI429214B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal
TW103123229A TW201515497A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW101115866A TW201318365A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098100276A TWI479818B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW103123229A TW201515497A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW101115866A TW201318365A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal

Country Status (1)

Country Link
TW (4) TWI479818B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801440A (en) * 2011-05-23 2012-11-28 联发科技股份有限公司 Method and device for supplying signal measurement to emitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659540B1 (en) * 2005-01-10 2006-12-20 삼성전자주식회사 Apparatus and method for controlling reverse sending power in mobile communication terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801440A (en) * 2011-05-23 2012-11-28 联发科技股份有限公司 Method and device for supplying signal measurement to emitter
CN102801440B (en) * 2011-05-23 2015-04-15 联发科技股份有限公司 Method and device for supplying signal measurement to emitter

Also Published As

Publication number Publication date
TWI479818B (en) 2015-04-01
TW201515497A (en) 2015-04-16
TWI429214B (en) 2014-03-01
TW201318365A (en) 2013-05-01
TW200947903A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
JP5711284B2 (en) Apparatus and method for calculating maximum power reduction for UMTS signals
US9253586B2 (en) Devices, methods and computer program products for controlling loudness
JP5138702B2 (en) Determining power reduction level for transmitter
TW201101897A (en) Calculating a non-linearity metric
JP5626366B2 (en) Voice control device, voice control method, and voice control program
WO2008102829A1 (en) Communication terminal device, tfc selecting method and program
JP2013229932A (en) Method and apparatus for performing closed-loop transmit power control for fractional dedicated physical channel
TW200904040A (en) Apparatus and method for computing maximum power reduction for a UMTS signal
US20120315961A1 (en) Device for deriving a dynamic voltage scaling data profile
TWI399991B (en) Method and apparatus for reference transport channel selection
CN104768212B (en) The method and device of signal metric is provided for transmitter
CN116567511A (en) Audio processing method and system based on big data
EP2343831A2 (en) Analytical computation of cubic metric