TWI479818B - Apparatus and method for computing maximum power reduction for a umts signal - Google Patents

Apparatus and method for computing maximum power reduction for a umts signal Download PDF

Info

Publication number
TWI479818B
TWI479818B TW098100276A TW98100276A TWI479818B TW I479818 B TWI479818 B TW I479818B TW 098100276 A TW098100276 A TW 098100276A TW 98100276 A TW98100276 A TW 98100276A TW I479818 B TWI479818 B TW I479818B
Authority
TW
Taiwan
Prior art keywords
mpr
par
maximum
wtru
equation
Prior art date
Application number
TW098100276A
Other languages
Chinese (zh)
Other versions
TW200947903A (en
Inventor
John W Haim
Kurt G Vetter
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200947903A publication Critical patent/TW200947903A/en
Application granted granted Critical
Publication of TWI479818B publication Critical patent/TWI479818B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

UMTS信號最大功率降低計算裝置及方法UMTS signal maximum power reduction calculation device and method

本申請涉及無線通信。This application relates to wireless communications.

在實際的放大器電路中,例如用在通用移動電信系統(UMTS)無線發射接收單元(WTRU)發射鏈上的放大器電路中,引發頻譜再生是由於非線性的放大器特性。術語頻譜再生描述了在功率放大器輸出端處的帶外信號能量的增加。由非線性放大器效應所產生的頻譜再生主要產生在鄰近期望發射頻道的頻道內。對於UMTS來說,對功率放大器的要求是由在期望頻道的+/-5MHz的鄰近頻道洩漏比(ACLR)來定義的。以下是放大器電壓增益特性:In practical amplifier circuits, such as those used in the general mobile telecommunications system (UMTS) wireless transmit receive unit (WTRU) transmit chain, the spectral regeneration is due to non-linear amplifier characteristics. The term spectral regeneration describes an increase in the energy of the out-of-band signal at the output of the power amplifier. The spectral regeneration produced by the nonlinear amplifier effect is mainly generated in the channel adjacent to the desired transmission channel. For UMTS, the requirements for the power amplifier are defined by the adjacent channel leakage ratio (ACLR) of +/- 5 MHz of the desired channel. The following are the amplifier voltage gain characteristics:

v o (t )=g 1v i (t )+g 2v i (t )2 +g 3v i (t )3 +...+g n v i (t )" 等式(1) v o ( t )= g 1v i ( t )+ g 2v i ( t ) 2 + g 3v i ( t ) 3 +... + g n v i ( t )" (1)

其中,g 1 vi (t )是放大器的線性增益,其餘的部分(即,g 2v i (t )2 +g 3v i (t )3 +...+g n v i (t ) n )表示非線性增益。如果信號攜帶了調變後的第三代合夥夥伴計畫(3GPP)射頻(RF),則作為交調失真的結果會產生非線性項,這會產生帶內失真項和帶外失真,帶內失真會引起誤差向量幅值(EVM)的增加,而帶外失真會引起ACLR的增加。這兩者都會造成調變品質的下降。Where g 1 vi ( t ) is the linear gain of the amplifier, and the rest (ie, g 2v i ( t ) 2 + g 3v i ( t ) 3 +... + g n v i ( t ) n ) represents a nonlinear gain. If the signal carries the modulated third-generation partnership program (3GPP) radio frequency (RF), a nonlinear term is produced as a result of the intermodulation distortion, which produces in-band distortion terms and out-of-band distortion, in-band distortion. This will cause an increase in the error vector magnitude (EVM), while out-of-band distortion will cause an increase in the ACLR. Both of these will cause a decline in the quality of the modulation.

例如UMTS版本5和版本6中的多碼信號在峰均功率中實現了增加,這會產生更大的動態信號變化。這些增加的信號變化需要更強的放大器線性化,這會產生更大的功率消耗。最近的結果表明,為dB而直接發送dB(即,信號峰值功率與平均功率的比值,也稱為峰均比(PAR))對放大器功率衰減來說並不有效。對放大器頻譜再生的分析表明,3階非線性增益項(“立方增益”)是ACLR增加的主要原因。立方項的總能量取決於輸入信號的統計分佈。For example, multicode signals in UMTS versions 5 and 6 achieve an increase in peak-to-average power, which results in greater dynamic signal changes. These increased signal changes require stronger amplifier linearization, which results in greater power consumption. Recent results have shown that direct transmission of dB for dB (ie, the ratio of signal peak power to average power, also known as peak-to-average ratio (PAR)) is not effective for amplifier power attenuation. Analysis of the spectrum regeneration of the amplifier shows that the third-order nonlinear gain term ("cubic gain") is the main reason for the increase in ACLR. The total energy of the cubic term depends on the statistical distribution of the input signal.

隨著高速上行鏈路封包存取(HSUPA)的提出,在版本6中引入了一種新的用於消除放大器功率衰減的方法,稱為立方度量(CM)。CM是基於放大器的立方增益部分。CM描述了在所觀測的信號中的立方部分與12.2kbps語音幹擾信號的比值。CM同時適用於高速下行鏈路封包存取(HSDPA)和HSUPA上行鏈路信號。統計分析表明,根據CM估計的功率降額與根據99.9% PAR的功率降額相比,表現出明顯較小的誤差分佈,其中誤差分佈是指實際功率降額與所估計的功率降額之間的差值。With the introduction of High Speed Uplink Packet Access (HSUPA), a new method for eliminating amplifier power attenuation, called Cube Metric (CM), was introduced in Release 6. The CM is based on the cubic gain portion of the amplifier. The CM describes the ratio of the cube portion of the observed signal to the 12.2 kbps speech interference signal. The CM is also applicable to High Speed Downlink Packet Access (HSDPA) and HSUPA uplink signals. Statistical analysis shows that the power derating estimated from the CM exhibits a significantly smaller error distribution compared to the power derating based on 99.9% PAR, where the error distribution is between the actual power derating and the estimated power derating. The difference.

3GPP規定了最大功率衰減(MPR)測試,其表明WTRU的最大發射功率大於或等於標稱最大發射功率,但小於所謂“最大MPR”的總量,其中最大MPR是所發送的信號的CM的函數。對於給定的功率放大器,製造商可以決定該設備需要將其最大功率限制在一些量中,在此稱為“最小MPR”,其小於最大MPR,但是與3GPP ACLR相容。雖然“最小MPR”可以被定義為是CM的函數,但是也可以替換地被定義為是PAR的特定百分比的函數。使用最小MPR而不是最大MPR來限制最大功率,使WTRU能夠以更大的最大功率來進行發射,從而使採用最小MPR的WTRU製造商具有更有優勢的競爭力。也可能某個WTRU的設計可以同時包括最大MPR和最小MPR,並在兩者之間進行選擇。The 3GPP specifies a Maximum Power Attenuation (MPR) test indicating that the WTRU's maximum transmit power is greater than or equal to the nominal maximum transmit power, but less than the total amount of the so-called "maximum MPR", where the maximum MPR is a function of the CM of the transmitted signal. . For a given power amplifier, the manufacturer can decide that the device needs to limit its maximum power to some amount, referred to herein as "minimum MPR," which is less than the maximum MPR, but is compatible with 3GPP ACLR. Although "minimum MPR" can be defined as a function of CM, it can alternatively be defined as a function of a certain percentage of PAR. Using a minimum MPR instead of a maximum MPR to limit the maximum power allows the WTRU to transmit with greater maximum power, making the WTRU manufacturer with the smallest MPR more competitive. It is also possible that a WTRU's design can include both a maximum MPR and a minimum MPR, and choose between the two.

不考慮對最大MPR或最小MPR的選擇,關鍵問題在於WTRU必須知道CM和/或PAR的值,以計算所選擇的MPR,並且如果需要的話,(即,如果WTRU是在最大功率附近操作的話),最終使用上述值來實際設定發射功率。任何多碼信號(其特徵在於發送的實體頻道、其頻道化碼和稱為β項的權重)都具有其特定的CM和PAR。Regardless of the choice of maximum MPR or minimum MPR, the key issue is that the WTRU must know the value of CM and/or PAR to calculate the selected MPR and, if so, (ie, if the WTRU is operating near maximum power) Finally, the above values are used to actually set the transmission power. Any multi-code signal (characterized by the transmitted physical channel, its channelization code, and the weight called the beta term) has its specific CM and PAR.

在UMTS中,信號,以及CM和PAR都可以在每2或10毫秒的發送時間間隔(TTI)中變化。可以看出,對UMTS版本6,有實體頻道參數和量化的β項的超過二十萬的組合,此處的每種組合都稱作可能信號。大量的可能信號的巨大數目使得形成嚴格一對一的CM或PAR的預定查找表來作為信號特性的函數,對於即時的應用是不合實際的;特別是在以UMTS資料速率進行操作的小型低功率手持設備中。瞭解WTRU不可能簡單地查找CM或PAR之後,則需要在一定可容許的誤差之內,從信號的特性參數來對其進行測量或估計。In UMTS, the signal, as well as CM and PAR, can vary in every 2 or 10 millisecond transmission time interval (TTI). It can be seen that for UMTS version 6, there are more than 200,000 combinations of physical channel parameters and quantized beta terms, each of which is referred to as a possible signal. The large number of possible signals makes it possible to form a strictly one-to-one CM or PAR predetermined lookup table as a function of signal characteristics, which is impractical for immediate applications; especially at small low power operating at UMTS data rates In handheld devices. After understanding that the WTRU cannot simply look up the CM or PAR, it needs to measure or estimate it from the characteristic parameters of the signal within a certain allowable error.

從實際信號測量CM或PAR是已知的。其中的重要缺陷在於必須首先產生信號來進行測量。由於發射功率最終可能會作為CM和/或PAR的函數來設置,因此通過測量來設定功率將需要在發送前,產生信號或在至少一段時間內的信號部分。雖然在理論上這是可行的,但是UMTS的時間延遲要求和實際的存儲限制使這種方法也不可行。It is known to measure CM or PAR from actual signals. An important drawback is that the signal must first be generated for measurement. Since the transmit power may eventually be set as a function of CM and/or PAR, setting the power by measurement will require generating a signal or a portion of the signal for at least a period of time prior to transmission. Although this is theoretically feasible, the time delay requirements of UMTS and the actual storage limitations make this approach impractical.

上述方法的一種變形是在從CM或PAR的“猜測”所計算出的功率級上產生和開始發送信號,並在隨後TTI中剩下的整個時槽中將發射功率調整為第二功率級。對第一和第二功率級的結合被計算以使得平均功率級接近在TTI開始前就已知CM或PAR所選擇的功率級。One variation of the above method is to generate and start transmitting signals at the power level calculated from the "guess" of the CM or PAR, and to adjust the transmit power to the second power level in the entire time slot remaining in the subsequent TTI. The combination of the first and second power levels is calculated such that the average power level is close to the power level selected by the CM or PAR prior to the start of the TTI.

在UMTS中,在10毫秒的TTI中有15個時槽,但是在2毫秒的TTI中只有三個時槽。假設例如對CM或PAR的測量需要例如10毫秒的TTI的一個時槽的一些部分來完成,則初始功率級將被設置為僅用於第一個時槽,而剩下的14個時槽使用第二值。對於2毫秒的TTI,初始功率級將被設置為使用第一時槽,這一個時槽占TTI的三分之一,而該TTI的剩下三分之二將使用第二值。顯然,這種方法不是一致的,特別是在2毫秒的TTI的情況中。因此,需要一種方法,能夠在開始發送信號之前,就確定CM或PAR,以確定最大MPR和/或最小MPR,以及最終的發射功率。In UMTS, there are 15 time slots in a 10 millisecond TTI, but there are only three time slots in a 2 millisecond TTI. Assuming, for example, that the measurement of the CM or PAR requires some portion of a time slot of, for example, a 10 millisecond TTI, the initial power level will be set to be used only for the first time slot, while the remaining 14 time slots are used. The second value. For a 2 millisecond TTI, the initial power level will be set to use the first time slot, which is one-third of the TTI, and the remaining two-thirds of the TTI will use the second value. Obviously, this approach is not consistent, especially in the case of a 2 millisecond TTI. Therefore, there is a need for a method that can determine the CM or PAR before starting to transmit a signal to determine the maximum MPR and/or minimum MPR, and the final transmit power.

提供一種用於使用通過估計出的CM或PAR的估計值來控制發射功率的方法和裝置。該方法與直接測量CM或PAR相反,可以應用於通過從信號參數估計CM或PAR來確定用於計算最大MPR的最大功率衰減值(MPR)或最小MPR。估計CM或PAR的方法適用於任何多碼信號。A method and apparatus are provided for controlling transmit power using estimates of estimated CM or PAR. This method, as opposed to directly measuring CM or PAR, can be applied to determine the maximum power attenuation value (MPR) or minimum MPR used to calculate the maximum MPR by estimating CM or PAR from the signal parameters. The method of estimating CM or PAR is applicable to any multi-code signal.

下文中所涉及的術語“無線發射/接收單元(WTRU)”包括但不限於使用者設備(UE)、移動站、固定或移動使用者單元、尋呼機、行動電話、個人數位助理(PDA)、電腦或任何其他類型的能夠在無線環境中進行操作的使用者設備。The term "wireless transmit/receive unit (WTRU)" as used hereinafter includes, but is not limited to, user equipment (UE), mobile station, fixed or mobile subscriber unit, pager, mobile telephone, personal digital assistant (PDA), computer Or any other type of user device capable of operating in a wireless environment.

下文中所涉及的術語“基地台”包括但不限於節點B、站點控制器、存取點(AP)或任何其他類型的能夠在無線環境中進行操作的周邊設備。The term "base station" as referred to hereinafter includes, but is not limited to, a Node B, a site controller, an access point (AP), or any other type of peripheral device capable of operating in a wireless environment.

第1圖是被配置成執行下面所公開的方法的WTRU 120的框圖。除了包含在典型的WTRU內的部件以外,WTRU 120還包括被配置成執行所公開的方法的處理器125;與處理器125通信的接收機126;與處理器125通信的發射機127;與接收機126和發射機127通信以實現無線資料的發送和接收的天線128。WTRU無線地與基地台110通信。FIG. 1 is a block diagram of a WTRU 120 configured to perform the methods disclosed below. In addition to the components contained within a typical WTRU, the WTRU 120 also includes a processor 125 configured to perform the disclosed methods; a receiver 126 in communication with the processor 125; a transmitter 127 in communication with the processor 125; The machine 126 and the transmitter 127 communicate to implement an antenna 128 for transmission and reception of wireless data. The WTRU wirelessly communicates with the base station 110.

下面將描述用於根據信號的配置參數來估計信號的發送CM和/或PAR,並使用該估計值來計算MPR的方法。配置參數包括實體頻道的數量和類型以及配置情況。配置情況可以定義為頻道化碼和頻道權重(稱為β)的結合,最佳地用於同相(I)和正交頻道(Q)部分碼。頻道權重(對於給定業務和資料速率)、其他參數、以下所謂的“配置”和以上的所有組合都根據3GPP所定義的規範來確定。A method for estimating a transmission CM and/or PAR of a signal based on a configuration parameter of a signal and using the estimated value to calculate an MPR will be described below. Configuration parameters include the number and type of physical channels and configuration. The configuration can be defined as a combination of channelization code and channel weight (referred to as beta), best used for in-phase (I) and quadrature channel (Q) partial codes. Channel weights (for a given service and data rate), other parameters, the so-called "configurations" below, and all combinations above are determined according to the specifications defined by 3GPP.

信號可以定義為是實體頻道和β項的組合。每一個可能的信號都必須至少在一種配置情況中。該定義可以擴展。例如,可以包括用於一個或多個包括配置情況的實體頻道的一些或所有β項的子集或有限範圍。對配置情況的最小子集的識別是主觀的,該配置情況規定了可接收的最小CM和/或PAR估計誤差,該CM和/或PAR估計誤差反過來用於MPR估計誤差。A signal can be defined as a combination of a physical channel and a beta term. Every possible signal must be in at least one configuration. This definition can be extended. For example, a subset or a limited range of some or all of the beta terms for one or more physical channels including configuration conditions may be included. The identification of the smallest subset of configuration conditions is subjective, which specifies the minimum CM and/or PAR estimation error that can be received, which in turn is used for the MPR estimation error.

在表1中表示了一組11個配置情況的例子。這些配置情況限於允許多至一個DPDCH。本領域技術人員可知,配置情況並不限於此。但是,很可能並不理想。經驗結果表明所產生的可接受的較小估計誤差,特別是最大的最大MPR估計誤差是小於或等於1.5dB。表1表示了配置情況通常由三個主要特徵來定義:1)DPDCH的最大數量(Nmax DPDCH);2)是否啟動高速(HS);和3)E-DPDCH的數量和擴展因數(SF)(E-DPDCH碼@SF)。表2給出了一個替換的映射方式。表2表示了將一些原來在表1中所定義的情況劃分為多種情況,從而可以產生比表1的映射更少的誤差。特別是,其表示了最大的最大MPR估計誤差小於或等於1.0dB。An example of a set of 11 configurations is shown in Table 1. These configurations are limited to allowing up to one DPDCH. Those skilled in the art will appreciate that the configuration is not limited to this. However, it may not be ideal. Empirical results indicate that the resulting less acceptable estimation error, especially the maximum maximum MPR estimation error, is less than or equal to 1.5 dB. Table 1 shows that the configuration is usually defined by three main characteristics: 1) the maximum number of DPDCHs (Nmax DPDCH); 2) whether to start high speed (HS); and 3) the number of E-DPDCHs and the spreading factor (SF) ( E-DPDCH code @SF). Table 2 shows an alternative mapping method. Table 2 shows that some of the conditions originally defined in Table 1 are divided into a plurality of cases, so that less errors than those of Table 1 can be produced. In particular, it indicates that the maximum maximum MPR estimation error is less than or equal to 1.0 dB.

重新參考表1,HS Chan碼一欄涉及用於HS-DPCCH的特定“SF和正交變長(OV)SF碼”。請注意,SF通常為256,且對於OVSF,使用兩個碼(33和64)中的一個。當第三欄(即HS)顯示沒有(“N”)HS時,本欄表示為“不可用”(N/A)。Referring back to Table 1, the HS Chan code column relates to a specific "SF and Orthogonal Variable Length (OV) SF Code" for HS-DPCCH. Note that SF is typically 256, and for OVSF, one of two codes (33 and 64) is used. When the third column (ie HS) shows no ("N") HS, this column is indicated as "unavailable" (N/A).

E-DPDCH 1,3 I或Q欄表示在該部分中,顯示I或Q,E-DPDCH頻道#1和#3,其根據欄的情況來使用。The E-DPDCH 1, 3 I or Q column indicates that in this section, I or Q, E-DPDCH channels #1 and #3 are displayed, which are used according to the condition of the column.

E-DPDCH 1,3 Chan碼欄,如果有的話,涉及用於涉及頻道#1和#3的E-DPDCH的SF和OVSF碼。例如,配置情況6具有兩個E-DPDCH,標記為#1和#3,該欄的剩餘部分要麼是沒有(不可用),要麼是一個(默認為“#1”)。大部分的配置情況都只有一個E-DPDCH。The E-DPDCH 1,3 Chan code field, if any, relates to the SF and OVSF codes for the E-DPDCH involving channels #1 and #3. For example, configuration case 6 has two E-DPDCHs, labeled #1 and #3, and the remainder of the column is either none (not available) or one (default is "#1"). Most configurations have only one E-DPDCH.

E-DPDCH 2,4 Chan碼欄與上面的類似,用於具有兩個或更多E-DPDCH的情況。The E-DPDCH 2,4 Chan code column is similar to the above for the case of having two or more E-DPDCHs.

I和Q欄表示在I和Q部分的β項。在配置情況6中,βed 涉及E-DPDCH頻道#1和#2,而βed3/4 涉及E-DPDCH頻道#3和#4。Columns I and Q represent the beta terms in the I and Q sections. In configuration case 6, β ed relates to E-DPDCH channels #1 and #2, and β ed3/4 relates to E-DPDCH channels #3 and #4.

表1和表2中的配置情況0是已知的需要零最大MPR的普通情況。對於這種配置情況,不使用用於其他所有配置情況的計算方法,而是簡單地將最大MPR和/或最小MPR設置為零。Configuration case 0 in Tables 1 and 2 is a known general case where zero maximum MPR is required. For this configuration case, the calculation method for all other configuration cases is not used, but the maximum MPR and/or the minimum MPR is simply set to zero.

參考第2圖,表示了離線過程200的簡單版本。在下文中還要結合第3圖進行更詳細的描述,過程200最終計算和存儲用於WTRU的參數,以產生最大MPR和/或最小MPR值。在UMTS中,實體頻道和參數以及量化值β的每一種組合都是可能的信號。量化值是根據信號的配置。首先,所有可能的信號都映射到一組配置情況(210)。通過使用表1最右邊兩欄所給出的資訊(I和Q),可以為所有可能的信號產生量化值(220)。通過發射機模擬來測量用於所有可能信號的CM和/或PAR(230)。下文中將更詳細地描述對CM和PAR的測量。Referring to Figure 2, a simple version of the offline process 200 is shown. As will be described in greater detail below in conjunction with FIG. 3, process 200 ultimately calculates and stores parameters for the WTRU to generate a maximum MPR and/or a minimum MPR value. In UMTS, each combination of physical channel and parameters and quantized value β is a possible signal. The quantized value is based on the configuration of the signal. First, all possible signals are mapped to a set of configuration scenarios (210). By using the information (I and Q) given in the two rightmost columns of Table 1, a quantized value (220) can be generated for all possible signals. The CM and/or PAR (230) for all possible signals is measured by transmitter simulation. The measurement of CM and PAR will be described in more detail below.

預先計算的項α最佳地通過使用發射機模擬230的輸出來確定240。最佳地對於上面定義的每一種配置情況都確定出根據下文中的等式7所計算出的用於CM的一組α項和/或用於PAR的一組α項。The pre-calculated term a is optimally determined 240 by using the output of the transmitter simulation 230. Optimally for each of the configuration scenarios defined above, a set of alpha terms for the CM and/or a set of alpha terms for the PAR calculated according to Equation 7 below are determined.

對於每一種配置情況,發射機模擬230為所有可能的信號都測量CM和PAR,(在下文中將會詳細地推導對CM和/或PAR進行估計的數學推導),此處的信號定義為在3GPP中量化β項220的所有可能組合。可以使用最小二乘擬合的方法,從配置情況的所有可能信號,或從其中的一個典型子集中,來為特定配置情況確定預先計算的α項。對計算出的α項、配置情況和計算出的調整因數進行計算(240)。之後,通過韌體、軟體或硬體將這些值寫入WTRU 400中。For each configuration, transmitter simulation 230 measures CM and PAR for all possible signals (a mathematical derivation of the estimation of CM and/or PAR will be derived in detail below), where the signal is defined as in 3GPP All possible combinations of beta terms 220 are quantified. The pre-computed alpha term can be determined for a particular configuration situation using a least squares fit method, from all possible signals of the configuration case, or from a typical subset thereof. The calculated alpha term, configuration, and calculated adjustment factor are calculated (240). These values are then written to the WTRU 400 by firmware, software or hardware.

第3圖是離線初始配置過程(300)的流程圖。該過程300同時為CM和PAR都計算α項,並為配置情況確定調整因數。這些值都存儲在WTRU(400)中,用於為給定信號估計CM和PAR。Figure 3 is a flow diagram of the offline initial configuration process (300). The process 300 calculates the alpha term for both CM and PAR and determines the adjustment factor for the configuration. These values are stored in the WTRU (400) for estimating CM and PAR for a given signal.

參考第3圖,表示了離線過程300的詳細版本。首先,在310根據實體頻道的特性來定義配置情況。例如,如表1中的配置情況9所示,定義了DPCCH、一個DPDCH(最大的一個DPDCH)、HS-DPCCH(ΔACK和ΔCQI設為相等;總是發送肯定應答(ACK)和頻道品質指示(CQI))、E-DPCCH和2SF@=2(在SF的兩個E-DPDCH等於2)。Referring to Figure 3, a detailed version of the offline process 300 is shown. First, at 310, the configuration is defined based on the characteristics of the physical channel. For example, as shown in configuration case 9 in Table 1, DPCCH, one DPDCH (the largest one DPDCH), HS-DPCCH (ΔACK and ΔCQI are set equal; always send an acknowledgement (ACK) and channel quality indication ( CQI)), E-DPCCH and 2SF@=2 (two E-DPDCHs in SF are equal to 2).

使用在表1最右兩欄中的資訊(I和Q)來確定所需要的單個、平方和組分內交叉β項。從等式5的符號中(將在下文描述),{βI1 βI2 βI3 }={βd βec βed }和{βQ1 βQ2 βQ3 }={βc βhs βec }(特定數字的指定是任意的)。在表3中定義了十六個這種項:βec ,βed ,βd ,βc ,βhs ,βec2 ,βed2 ,βd2 ,βc2 ,βhs2 ,βec βed ,βec βd ,βed βd ,βc βhs ,βc βed 和βhs βedThe information (I and Q) in the rightmost two columns of Table 1 were used to determine the required cross-β terms within the individual, square, and component. From the sign of Equation 5 (described below), {β I1 β I2 β I3 }={β d β ec β ed } and {β Q1 β Q2 β Q3 }={β c β hs β ec }( The specification of a specific number is arbitrary). Sixteen such items are defined in Table 3: β ec , β ed , β d , β c , β hs , β ec2 , β ed2 , β d2 , β c2 , β hs2 , β ec β ed , β ec β d , β ed β d , β c β hs , β c β ed and β hs β ed .

之後確定配置情況的所有可能信號(即,用於頻道的量化的β項的所有組合)(320)。每一3GPP,有βc 和βd 的數值對的三十種隱式的組合,Ahshsc 的顯式的九個值,Aececc 的九個值和Aeded /βc的三十個值,或總計對於每個配置情況的72900種可能的信號組合。在此沒有列出這72900個組合。All possible signals of the configuration (ie, all combinations of quantized beta terms for the channel) are then determined (320). For each 3GPP, there are thirty implicit combinations of pairs of values of β c and β d , nine explicit values of A hshsc , nine values of A ececc And thirty values of A ed = β ed / βc, or a total of 72,000 possible signal combinations for each configuration. These 72,900 combinations are not listed here.

使用發射機模擬來為每個配置情況的所有72900種可能信號測量CM和測量99% PAR(330)。在此沒有列出所測量的145800個值。Transmitter simulation was used to measure CM and measure 99% PAR (330) for all 72,000 possible signals for each configuration. The measured 145,800 values are not listed here.

通過使用每個配置情況的72900個可能信號和其線性CM和線性PAR的測量值,使用等式7計算出用於估計CM的十六個預先計算的α值和用於估計PAR的十六個預先計算的α值(340)。在等式8至等式7中給出了符號項;在表3中給出了α項的數字值。儘管可能只使用了72900個組合的一個小的子集,但是假設在下一步中需要具有72900行的矩陣X,則使用整個72900個組合的完整集來用於計算一種配置情況的表3。Using sixteen pre-computed alpha values for estimating CM and sixteen for estimating PAR using Equation 7 using the measured values of 72,000 possible signals and linear CM and linear PAR for each configuration case A pre-calculated alpha value (340). The symbol term is given in Equations 8 to 7; the numerical value of the α term is given in Table 3. Although it is possible to use only a small subset of 72,900 combinations, assuming that a matrix X with 72,900 rows is needed in the next step, a complete set of the entire 72,900 combinations is used to calculate Table 3 for a configuration.

對於每一個可能的信號,使用等式5和6(將在下文中描述)所描述的模型來估計線性CM和線性PAR(350)。在等式12中給出了矩陣形式的計算。矩陣X是等式5的分子,並且包括用於單個β項的歸一化函數。矩陣Y是線性CM與線性PAR測量值與等式5的分母相乘;等式6的模型使用了類似的形式。For each possible signal, the model described by Equations 5 and 6 (described below) is used to estimate the linear CM and the linear PAR (350). The calculation in the form of a matrix is given in Equation 12. Matrix X is the numerator of Equation 5 and includes a normalization function for a single beta term. The matrix Y is a linear CM and a linear PAR measurement multiplied by the denominator of Equation 5; the model of Equation 6 uses a similar form.

最佳地使用等式13來計算用於CM和PAR兩者的估計誤差(360)。為了進一步描述,在第6A圖和第6B圖中給出了CM估計誤差的分佈(以dB形式)。在第7A圖和第7B圖中給出了PAR誤差dB形式的分佈。第6A圖和第7A圖表示等式5所描述的模型,而第6B圖和第7B圖表示等式6所描述的模型。Equation 13 is optimally used to calculate an estimation error (360) for both CM and PAR. For further description, the distribution of CM estimation errors (in dB) is given in Figures 6A and 6B. The distribution of the PAR error dB form is given in Figures 7A and 7B. Figures 6A and 7A show the model described in Equation 5, while Figures 6B and 7B show the model described in Equation 6.

之後確定所需的調整因數(370)。通過檢查可以看出,對於等式5的模型,用於最大MPR的調整因數、在第6A圖中的最大幅值正誤差約為0.54dB或1/0.883。如果最小MPR是所需的結果,則用於最小MPR的使用CM的調整因數、第6A圖中的最大幅值負誤差約為-0.71dB。用於最小MPR的使用PAR的調整因數、第7A圖中的最大幅值負誤差約為-0.41dB。從第6B圖和第7B圖中可以看出,用於等式6的模型的相應值為-0.54dB、-0.080dB和-0.57dB。The required adjustment factor (370) is then determined. It can be seen from the inspection that for the model of Equation 5, the adjustment factor for the maximum MPR, the maximum amplitude positive error in Figure 6A is about 0.54 dB or 1/0.883. If the minimum MPR is the desired result, the adjustment factor using the CM for the minimum MPR, and the maximum amplitude negative error in the 6A diagram is about -0.71 dB. The adjustment factor using PAR for the minimum MPR and the maximum amplitude negative error in Figure 7A is about -0.41 dB. As can be seen from Figures 6B and 7B, the corresponding values for the model of Equation 6 are -0.54 dB, -0.080 dB, and -0.57 dB.

通過使用調整因數來確定最大MPR誤差的分佈(380),如上面所計算的,該調整因數兩者一致為0.54dB。The distribution of the maximum MPR error is determined (380) by using an adjustment factor, which, as calculated above, is consistently 0.54 dB.

請看第5A圖和第5B圖,最大MPR誤差的分佈顯示,對於兩個模型,最大的最大MPR誤差為1.5dB,如果認為其已經足夠小(在本例中是這樣的),則理論上兩個模型都可以使用。Looking at Figure 5A and Figure 5B, the distribution of the maximum MPR error shows that for the two models, the maximum maximum MPR error is 1.5 dB, if it is considered to be small enough (in this case), then theoretically Both models can be used.

作為第二標準,應當注意,如第5A圖和第5B圖所示,等式5的模型的最大誤差的出現頻率,即9/72900,低於等式6的模型,即406/72900。因此,選擇等式5的模型,且在WTRU(400)中配置α值和調整因數(390)。可替換地,等式6的模型估計CM需要較少的乘法,如果這是一個顯著的因素的話,則可以選擇該模型。As a second criterion, it should be noted that, as shown in FIGS. 5A and 5B, the frequency of occurrence of the maximum error of the model of Equation 5, that is, 9/72900, is lower than the model of Equation 6, ie, 406/72900. Therefore, the model of Equation 5 is selected and the alpha value and the adjustment factor (390) are configured in the WTRU (400). Alternatively, the model of Equation 6 estimates that the CM requires less multiplication, and if this is a significant factor, the model can be selected.

現在描述對估計CM和/或PAR的推導。在已經使用了頻道權重之後,但是在使用根升余弦和其他濾波器之前,根據等式2來確定上行鏈路信號的PAR。The derivation of the estimated CM and/or PAR is now described. The PAR of the uplink signal is determined according to Equation 2 after the channel weight has been used, but before the root raised cosine and other filters are used.

其中;β I 是用於I部分中的實體頻道的頻道權重;β Q 是用於Q部分中的實體頻道的頻道權重;N I 是I部分中的實體頻道數量;和N I 是Q部分中的實體頻道數量。Wherein β I is the channel weight for the physical channel in the I part; β Q is the channel weight for the physical channel in the Q part; N I is the number of physical channels in the I part; and N I is in the Q part The number of physical channels.

根據一個實施方式,對於給定配置情況,最佳地將CM linear ,(線性而不是dB形式的CM,並且沒有3GPP方法的0.5dB量化)作為與等式2的預濾波PAR linear 有關的函數來估計,如等式3所示:According to one embodiment, CM linear , (linear rather than CM in dB form, and no 0.5 dB quantization of 3GPP method) is optimally used as a function related to the pre-filtered PAR linear of Equation 2 for a given configuration. Estimated, as shown in Equation 3:

其中;γ j 是用於每個實體頻道的實際加權因數;n是用於定義總和的指示數的整數;N Order 是任意多項式的階次;和是歸一化函數,該函數使的值與任意比例的β無關。Where γ j is the actual weighting factor for each physical channel; n is an integer used to define the indicator of the sum; N Order is the order of the arbitrary polynomial; Is a normalization function that makes the value independent of any ratio of β.

也可以使用與等式3中相同的函數來估計濾波器輸出處的PAR linear ,其中只有項的值與用於CM linear 的不同。對於給定配置情況的任何可能信號,使用等式3來估計CM linear PAR linear 將通常會在所估計的值和所測量的值之間產生誤差,這稱為估計誤差。It is also possible to estimate the PAR linear at the output of the filter using the same function as in Equation 3, where only the value of the term is different from that for the CM linear . For any possible signal for a given configuration, using Equation 3 to estimate CM linear and PAR linear will typically produce an error between the estimated value and the measured value, which is called the estimation error.

雖然N Order 可以選擇為任何正整數,但是在一個實施方式中,其例如是N Order =2。經驗結果表明,通過使用N Order =2,用於所有可能信號的估計誤差的範圍對於確定最大MPR和最小MPR來說都是可接受的小範圍。因此,將N Order 選擇為大於2會產生額外的複雜性,且沒有明顯的性能改進。因此,當將N Order 設為2時,等式3簡化為等式4所示:Although N Order can be chosen to be any positive integer, in one embodiment it is, for example, N Order = 2. Empirical results show that by using N Order = 2, the range of estimation errors for all possible signals is an acceptable small range for determining the maximum MPR and the minimum MPR. Therefore, choosing N Order to be greater than 2 creates additional complexity with no significant performance improvements. Therefore, when N Order is set to 2, Equation 3 is simplified to Equation 4:

擴展等式4則產生了等式5。Extending Equation 4 yields Equation 5.

該等式描述的CM linear 基本等於單個平方加權(由方根項進行加權)、成分內交叉β項與還不已知的α項的內積的加權的形式。該公式同樣適用於PAR linear ,只是α項的值不同。The CM linear described by this equation is substantially equal to a weighted form of a single square weight (weighted by a square root term), an intra-component cross-β term, and an inner product of an alpha term that is not yet known. The formula also applies to PAR linear , except that the values of the alpha terms are different.

在等式6中表示了對等式5中所描述的替換模型。等式6的模型去掉了單個β項以及有關的歸一化函數(在等式5的分子中的最後一項)。經驗結果表明,對於一些配置情況,該模型會產生比等式5的模型更少的估計誤差。The replacement model described in Equation 5 is represented in Equation 6. The model of Equation 6 removes the single beta term and the associated normalization function (the last term in the numerator of Equation 5). Empirical results show that for some configurations, the model produces less estimation error than the model of Equation 5.

對於給定的配置情況,可以從以下來確定α項的值:1)使用發射機模擬(230)來測量所有或一組較少的典型可能信號的CM linear 和/或PAR l inea ;和2)使用已知的最小二乘擬合方法,在等式7中以矩陣的形式給出:For a given configuration, the value of the alpha term can be determined from: 1) CM linear and/or PAR l inea using transmitter simulation (230) to measure all or a set of fewer typical possible signals; and 2 Using the known least squares fitting method, given in matrix 7 as Equation:

α=(X T X )- 1 X T Y  等式(7)α=( X T X ) - 1 X T Y Equation (7)

其中;X是矩陣(已知為設計或Vandermode矩陣),每個信號一行,其中,一行中的每個元素是平方、單個加權或成分內交叉β項的數字值。這是通過將等式5或等式6中的符號βI和βQ替換為特定頻道的β項而確定的;對於具有兩個或四個E-DPDCH的情況,每一個單個和平方的βed都應當僅占X的一行,而不是兩行或四行;並且Y是列向量,具有每個信號一個元素,其中每個部分都分別是所測量的CM linear PAR linear 。假設將要計算用於估計CM的α項或用於估計PAR的α項,則乘以等式5或等式6的分母中的信號加權因數。可替換地,假設同時要計算用於估計CM和PAR的α項,則Y可以是具有兩個這樣的列的矩陣:一個用於CM linear ,另一個用於PAR linear Where X is a matrix (known as a design or Vandermode matrix), one line per signal, where each element in a row is a square, a single weight, or a numerical value that intersects the beta term within the component. This is determined by replacing the symbols βI and βQ in Equation 5 or Equation 6 with the β term of the specific channel; for the case of having two or four E-DPDCHs, each single and square βed should Only one row of X, not two or four rows; and Y is a column vector with one element per signal, each of which is the measured CM linear or PAR linear . Assuming that the alpha term used to estimate the CM or the alpha term used to estimate the PAR is to be calculated, multiply by the signal weighting factor in the denominator of Equation 5 or Equation 6. Alternatively, assuming that the alpha term used to estimate CM and PAR is to be calculated at the same time, Y can be a matrix with two such columns: one for CM linear and one for PAR linear .

下面提供了用於等式(7)中為本例計算α項的符號項(而不是其數字值):The symbol term (rather than its numerical value) for calculating the alpha term for this example in equation (7) is provided below:

上面例子所引用的可能信號的減少集涉及這樣的情況,即用於可靠地計算出α項所需的信號數量可能會比所有可能信號的數量少幾個量級。但是,使用等式12和13,來使用具有所有可能信號的矩陣X來計算估計誤差。通過限制X中用於計算α項的信號數量,不會在離線處理器200中產生明顯的節約。The reduced set of possible signals referenced by the above example relates to the situation where the number of signals required to reliably calculate the alpha term may be orders of magnitude less than the number of all possible signals. However, using Equations 12 and 13, the matrix X with all possible signals is used to calculate the estimation error. By limiting the number of signals used to calculate the alpha term in X, no significant savings are created in the off-line processor 200.

在等式5和6中所規定的,分別用於構造矩陣Y和X的加權因數、數字功率(等式5和等式6的分母)、以及每個信號的均方根幅值(在等式5的分子中的均方根項)在特定實施方式中可以對所有信號都是相同或基本相同的。在這種情況下,可能不需要對每個信號進行計算。而是,兩個加權因數可以分別是對所有信號通用的常量。The weighting factors used to construct the matrices Y and X, the digital power (the denominators of Equations 5 and 6), and the root mean square magnitude of each signal, as specified in Equations 5 and 6, respectively. The root mean square term in the numerator of Formula 5) may be the same or substantially the same for all signals in a particular embodiment. In this case, it may not be necessary to calculate each signal. Rather, the two weighting factors can be constants common to all signals.

如果在用於測量CM和/或PAR、並之後計算α項的發射機模擬中的數字β項的比例等於WTRU中的數位β項的比例,則還可以從等式5和6中去掉加權因數,並有效地結合至α項中。If the ratio of the number β term in the transmitter simulation used to measure CM and/or PAR and then calculate the alpha term is equal to the ratio of the digit β term in the WTRU, the weighting factor can also be removed from Equations 5 and 6. And effectively combined into the alpha term.

通過使用第2圖和第3圖的過程,對所有所定義的配置情況的α項、用於每一種配置情況的調整因數和能夠最小化最大MPR或最小MPR的模型,已經為等式5和6中所描述的兩個模型而被計算。最小化最大MPR和最小MPR的模型根據如下來計算:對於最大MPR的情況,有三種替換方式來確定能夠最小化最大MPR估計誤差的模型。By using the processes of Figures 2 and 3, the alpha term for all defined configuration cases, the adjustment factor for each configuration case, and the model capable of minimizing the maximum MPR or minimum MPR, have been Equation 5 and The two models described in 6 are calculated. The model for minimizing the maximum MPR and the minimum MPR is calculated as follows: For the case of the maximum MPR, there are three alternative ways to determine the model that can minimize the maximum MPR estimation error.

第一種替換方式是,從等式5或6估計出的CM linear 應當被調整以使調整後的估計的CM不大於從CM的實際測量所獲得的值。該調整因數應當是對於特定配置情況的最大幅值正誤差;該因數應當從實際估計中減去。這樣調整誤差的目的是防止對任何信號過高地估計CM。In the first alternative, the CM linear estimated from Equation 5 or 6 should be adjusted such that the adjusted estimated CM is not greater than the value obtained from the actual measurement of the CM. The adjustment factor should be the maximum amplitude positive error for a particular configuration; this factor should be subtracted from the actual estimate. The purpose of this error adjustment is to prevent the CM from being overestimated for any signal.

第二種替換方式是,從等式5或6估計出的CM linear 應當被調整以使從調整後的估計的CM所確定的最大MPR不大於從實際CM測量所獲得的最大MPR。以這種方式來調整誤差的目的是防止對任何信號過高地估計最大MPR。如下是確定調整因數的方法:A second alternative is that the CM linear estimated from Equation 5 or 6 should be adjusted such that the maximum MPR determined from the adjusted estimated CM is not greater than the maximum MPR obtained from the actual CM measurement. The purpose of adjusting the error in this way is to prevent the maximum MPR from being overestimated for any signal. Here's how to determine the adjustment factor:

1)對於配置中的每一個信號,使用估計的CM來確定估計的MPR(MPR_estimated),並從已知的模擬的實際CM中確定實際MPR(MPR_true)。1) For each signal in the configuration, the estimated CM is used to determine the estimated MPR (MPR_estimated) and the actual MPR (MPR_true) is determined from the actual CM of the known simulation.

2)根據等式14來計算MPR誤差(MPR_error):2) Calculate the MPR error (MPR_error) according to Equation 14:

MPR_error =MPR_true-MPR_estimated  等式(14) MPR_error = MPR_true-MPR_estimated equation (14)

3)從MPR誤差小於0的信號中,根據等式15來選擇原始調整因數(adjustment_factor_raw):3) From the signal with the MPR error less than 0, the original adjustment factor (adjustment_factor_raw) is selected according to Equation 15:

adjustment_factor_raw =max(CM_estimated-ceil (CM_true ,0.5)); 等式(15) adjustment_factor_raw = max (CM_estimated-ceil ( CM_true, 0.5)); equation (15)

其中,ceil (‧,0.5)的意思是向上舍入至最近的0.5。Among them, ceil (‧, 0.5) means round up to the nearest 0.5.

4)最終的調整值是等式15的值加上一個小量,ε,以確保等式15中具有最大的CM_estimated 的信號在使用了調整因數後,不會向上捨入至下一個0.5dB。換句話說,使用等式16來計算調整因數(adjustment_factor),其中從MPR誤差小於零的信號中選擇最大的。4) The final adjustment value is the value of Equation 15 plus a small amount, ε, to ensure that the signal with the largest CM_estimated in Equation 15 is not rounded up to the next 0.5 dB after the adjustment factor is used. In other words, Equation 16 is used to calculate an adjustment factor, where the largest is selected from signals having an MPR error of less than zero.

adjustment_factor =max(CM_estimated-ceil (CM_true ,0.5))+ε等式(16) adjustment_factor = max (CM_estimated-ceil ( CM_true, 0.5)) + ε Equation (16)

第三種替換方式是,使用比其他替換方式所使用的更小幅值的調整因數,所選擇的量作為設計折中,(例如,防止僅僅對配置情況的特定信號過高估計CM)。A third alternative is to use a smaller magnitude adjustment factor than is used in other alternatives, the selected amount being compromised as a design (eg, preventing the CM from being overestimated only for a particular signal of the configuration).

對於計算最小MPR來確定最小化最小MPR估計誤差的模型的情況,所估計的CM或PAR應當被調整以使得調整後的CM或PAR不小於的CM或PAR的實際測量值。調整後的因數應當是對於特定配置情況的最大幅值的負CM或PAR估計誤差;其應當從實際估計中減去。以這種方式來使用調整因數的目的是防止對任何信號過低估計CM或PAR。可替換地,可以使用更小幅值的負調整因數,所選擇的量作為設計折中,(例如,防止僅僅對配置情況的特定信號過低估計CM)。For the case of calculating a minimum MPR to determine a model that minimizes the minimum MPR estimation error, the estimated CM or PAR should be adjusted such that the adjusted CM or PAR is not less than the actual measured value of the CM or PAR. The adjusted factor should be the negative CM or PAR estimation error for the maximum amplitude of a particular configuration; it should be subtracted from the actual estimate. The purpose of using the adjustment factor in this way is to prevent CM or PAR from being underestimated for any signal. Alternatively, a smaller magnitude negative adjustment factor can be used, the selected amount being compromised as a design (eg, preventing CM from being underestimated only for a particular signal of the configuration).

對於每一種配置情況,在任何一種方法使用了調整因數之後,必須對該誤差對於兩個模型是否都足夠小來進行評價。在第5A圖、第5B圖、第6A圖、第6B圖、第7A圖和第7B圖中給出了特定配置情況測量誤差的分佈。第5A圖,第6A圖和第7A圖表示了等式5所描述的模型;第5B圖,第6B圖和第7B圖表示等式6中描述的模型。第5A圖和第5B圖表示了對特定情況的最大MPR估計誤差的分佈。在第5A圖和第5B圖中,由於在最大MPR計算中的取頂(cei1 )操作,該分佈高度量化了。For each configuration, after any method uses an adjustment factor, it must be evaluated whether the error is small enough for both models. The distribution of measurement errors for a particular configuration is given in Figures 5A, 5B, 6A, 6B, 7A, and 7B. Fig. 5A, Fig. 6A and Fig. 7A show the model described in Equation 5; Fig. 5B, Fig. 6B and Fig. 7B show the model described in Equation 6. Figures 5A and 5B show the distribution of the maximum MPR estimation error for a particular situation. In the 5A and 5B diagrams, the distribution is highly quantized due to the topping ( cei1 ) operation in the maximum MPR calculation.

第6A圖和第6B圖表示了CM估計誤差的強度;第6A圖具有比第6B圖窄一些的強度。在第6A圖和第6B圖中的分佈以及第第7A圖和第7B圖中的分佈基本是連續的。第7A圖和第7B圖表示了估計PAR的誤差強度。為了計算最大MPR,最大的最大MPR誤差應當在期望的限制之內。可替換地,可以將在期望限制內的極限正和負CM測量誤差之間的差作為標準。但是,最佳的是使用最大的最大MPR誤差。為了使用CM或PAR來計算最小MPR,極限正和負測量誤差之間的差應當在所需的範圍之內。Figures 6A and 6B show the intensity of the CM estimation error; Figure 6A has a narrower intensity than the 6B diagram. The distributions in Figures 6A and 6B and the distributions in Figures 7A and 7B are substantially continuous. Figures 7A and 7B show the error strength of the estimated PAR. In order to calculate the maximum MPR, the maximum maximum MPR error should be within the desired limits. Alternatively, the difference between the limit positive and negative CM measurement errors within the desired limits can be taken as a criterion. However, the best is to use the largest maximum MPR error. In order to calculate the minimum MPR using CM or PAR, the difference between the extreme positive and negative measurement errors should be within the required range.

對於最大MPR,根據第一替換方式使用調整因數的結果是沒有信號具有過高估計的MPR,但是一些信號具有過低估計的MPR。使用根據第二替換方式的調整因數的結果是沒有信號具有過高估計的CM,但是一些信號具有過低估計的CM。特別是,具有最大正CM誤差的信號將會具有正確估計的CM,具有最大幅值的負CM誤差的信號將會由於最大幅值正負CM誤差之間的差而具有過低估計的CM,其他信號將會由於一些更小的量,而具有過低估計的CM。For maximum MPR, the result of using the adjustment factor according to the first alternative is that no signal has an overestimated MPR, but some signals have an underestimated MPR. The result of using the adjustment factor according to the second alternative is that no signal has a CM with an overestimation, but some signals have a CM that is underestimated. In particular, a signal with the largest positive CM error will have a correctly estimated CM, and a signal with a negative CM error of the largest amplitude will have a CM that is too low estimated due to the difference between the maximum amplitude positive and negative CM errors, other The signal will have a CM that is too low estimate due to some smaller amount.

對於最小MPR,使用調整因數的結果是沒有信號會具有過低估計的CM或PAR;而一些信號具有過高估計的CM或PAR。特別是,具有最大正CM或PAR誤差的信號將會具有正確估計的CM或PAR;具有最大幅值正CM或PAR誤差的信號將會由於最大幅值的正負CM誤差之間的差而具有過高估計的CM或PAR。For the minimum MPR, the result of using the adjustment factor is that no signal will have a CM or PAR that is underestimated; and some signals have an overestimated CM or PAR. In particular, a signal with the largest positive CM or PAR error will have a correctly estimated CM or PAR; a signal with the largest amplitude positive CM or PAR error will have been due to the difference between the positive and negative CM errors of the maximum amplitude. Highly estimated CM or PAR.

估計誤差存在兩個可能的問題:首先,由於故意的低估和高估CM和PAR,所計算出的最小MPR可能會超過計算出的最大MPR。在這種情況下,WTRU可能不能選擇出MPR的值,該值能夠保證同時符合例如3GPP的標準的MPR和ACLR的要求。其次,最大幅值正負估計誤差之間的差越大,則根據所述方法所獲得的最小MPR與假設由測量所獲得的最小MPR之間的差就越大,從而減小了能達到的最大發射功率。There are two possible problems with estimating errors: First, due to deliberate underestimation and overestimation of CM and PAR, the calculated minimum MPR may exceed the calculated maximum MPR. In this case, the WTRU may not be able to select a value for the MPR that is guaranteed to meet the requirements of both MPR and ACLR, such as the 3GPP standard. Second, the greater the difference between the maximum amplitude positive and negative estimation errors, the greater the difference between the minimum MPR obtained according to the method and the minimum MPR obtained from the measurement, thereby reducing the maximum achievable Transmit power.

對上述問題的兩種可能的措施是:1)可以通過選擇替換調整因數來使用上述折中,這樣對於一些可能較小的信號集,不適用所計算出的MPR;和2)可以將特定的配置情況劃分為兩個或更多配置情況,這樣所產生的估計誤差就更小。例如,如果分析表明對於特定實體頻道,最大的β項產生最大的估計誤差,則使用這些β項來建立單獨的配置情況。Two possible measures for the above problem are: 1) the above compromise can be used by selecting the replacement adjustment factor, so that for some possibly smaller signal sets, the calculated MPR is not applicable; and 2) the specific The configuration is divided into two or more configurations, which results in a smaller estimation error. For example, if the analysis indicates that the largest beta term produces the greatest estimation error for a particular physical channel, then these beta terms are used to establish a separate configuration.

一旦已經定義了一組配置情況,且已經計算出了用於所有配置情況的α項和調整因數,則最佳地將其存儲在WTRU的表中。Once a set of configuration scenarios has been defined and the alpha terms and adjustment factors have been calculated for all configuration scenarios, they are best stored in the WTRU's table.

參考第4圖,表示了WTRU 400。在每個TTI開始傳輸之前,選擇適當的配置情況來配置由傳輸塊的介質訪問控制(MAC)層所提供的資料。為了定義表1中給出的配置情況集,根據用於發送傳輸塊的實體頻道的組合,以及可能的E-DPDCH擴展因數來進行選擇。Referring to Figure 4, the WTRU 400 is shown. Before each TTI begins transmission, the appropriate configuration is selected to configure the data provided by the Media Access Control (MAC) layer of the transport block. In order to define the set of configuration conditions given in Table 1, the selection is made according to the combination of physical channels used to transmit the transport block, and possibly the E-DPDCH spreading factor.

不管MPR計算設備(430)計算出最大MPR、最小MPR或以上兩者,並且,如果該設備使用PAR計算出了最小MPR,則根據等式17估計CM linear ,等式17是等式5和等式6的簡化形式:Regardless of whether the MPR computing device (430) calculates the maximum MPR, the minimum MPR, or both, and if the device calculates the minimum MPR using PAR, the CM linear is estimated according to Equation 17, which is Equation 5 and the like. The simplified form of Equation 6:

其中,N和D分別是等式5或等式6的分子和分母,並使用上面確定的配置情況的CM α項。使用等式11來估計PAR linear ,但是將CM linear 替換為PAR linear ,並使用配置情況的PAR α項。之後,將CM linear 和/或PAR linear 轉化為dB形式。Wherein N and D are the numerator and denominator of Equation 5 or Equation 6, respectively, and the CM α term of the configuration case determined above is used. Equation 11 is used to estimate PAR linear , but CM linear is replaced with PAR linear and the PAR α term of the configuration case is used. The CM linear and/or PAR linear are then converted to the dB form.

如果MPR計算設備(430)計算出最大MPR,則從dB形式的CM的估計中減去所選擇的用於計算最大MPR的調整因數(以dB形式)。這樣就給出了用於計算最大MPR的CM值。If the MPR computing device (430) calculates the maximum MPR, the selected adjustment factor (in dB) for calculating the maximum MPR is subtracted from the estimate of the CM in dB form. This gives the CM value used to calculate the maximum MPR.

如果MPR計算設備(430)使用CM計算出最小MPR,則從dB形式的CM的估計中減去所選擇的用於計算最小MPR的調整因數(以dB形式)。這樣的結果是使用CM值計算出了最小MPR。If the MPR computing device (430) calculates the minimum MPR using the CM, the selected adjustment factor (in dB) for calculating the minimum MPR is subtracted from the estimate of the CM in dB form. The result of this is that the minimum MPR is calculated using the CM value.

如果MPR計算設備(430)使用PAR計算出最小MPR,則從dB形式的PAR的估計中減去所選擇的用於使用PAR來計算最小MPR的調整因數(dB),其結果用於計算最小MPR。If the MPR computing device (430) calculates the minimum MPR using PAR, the selected adjustment factor (dB) for calculating the minimum MPR using PAR is subtracted from the estimate of the PAR in the form of dB, the result of which is used to calculate the minimum MPR. .

如果MPR計算設備(430)計算出最大MPR,則最佳地根據3GPP來計算最大MPR。如果MPR計算設備計算出了最小MPR,則最佳地根據功率放大器的規定來計算最小MPR。If the MPR computing device (430) calculates the maximum MPR, the maximum MPR is optimally calculated from 3GPP. If the MPR calculation device calculates the minimum MPR, the minimum MPR is optimally calculated according to the specifications of the power amplifier.

如果設備計算出了最大MPR或最小MPR,而不是兩者同時,則將所計算出的最大MPR或最小MPR作為用來設置發射功率的MPR值進行輸出。同時計算最大MPR和最小MPR的設備可以選擇某個中間值來作為用於設置發射功率的MPR值,並保持與標準和製造商的建議一致。If the device calculates the maximum MPR or the minimum MPR, not both, the calculated maximum MPR or minimum MPR is output as the MPR value used to set the transmission power. A device that calculates both the maximum MPR and the minimum MPR can select an intermediate value as the MPR value for setting the transmit power and remain consistent with the standards and manufacturer's recommendations.

實際並不需要完全估計出CM的值,而只需要檢測出所估計的CM值是高於還是低於一個或多個臨界值。可以通過稍微修改等式17,如等式18,來提供一種可能的臨界值測試,其優點是避免了等式17中的劃分操作。Actually, it is not necessary to fully estimate the value of CM, but only need to detect whether the estimated CM value is higher or lower than one or more threshold values. A possible threshold test can be provided by slightly modifying Equation 17, such as Equation 18, which has the advantage of avoiding the partitioning operation in Equation 17.

其中,CM linearT CM linear 的特定臨界值;操作符是臨界值測試,如果不等式為“真”,則指示CM linear 大於CM linearT Where CM linearT is a specific threshold of CM linear ; The operator is a critical value test, and if the inequality is "true", it indicates that the CM linear is greater than the CM linearT .

表4是從3GPP TS 25.101的表6.1A所推導出的,其中表示了以C語言的形式給出的有效演算法,該演算法設定了max_MPR_dB的值和臨界值。選擇調整因數的線性等效的值以用於計算最大MPR。Table 4 is derived from Table 6.1A of 3GPP TS 25.101, which shows an efficient algorithm given in the form of C language, which sets the value of max_MPR_dB and the critical value. The linear equivalent of the adjustment factor is chosen for use in calculating the maximum MPR.

用於計算最小MPR的專用設備演算法與計算最大MPR的類似,根據特定數目,很可能只有一個CM和/或PAR的臨界值,並且可以使用類似的演算法進行計算。The special device algorithm used to calculate the minimum MPR is similar to the calculation of the maximum MPR. Depending on the number, there is likely to be only one CM and/or PAR threshold and can be calculated using a similar algorithm.

回到第4圖,第4圖是被配置用於無線通信的WTRU 400,由縮放電路450接收和處理數位使用者資料和控制資料,以數位地縮放資料,設定其相對發射功率。可以將數位使用者資料編碼至例如專用實體資料頻道(DPDCH)或增強DPDCH(E-DPDCH)的頻道中。可以將控制資料編碼至例如專用實體控制頻道(DPCCH)、高速DPCCH(HS-DPCCH)或增強DPCCH(E-DPCCH)的頻道中。縮放電路450在這各個頻道中操作。Returning to Fig. 4, FIG. 4 is a WTRU 400 configured for wireless communication that receives and processes digital user data and control data by a scaling circuit 450 to digitally scale the data to set its relative transmit power. The digital user profile can be encoded into a channel such as a Dedicated Physical Data Channel (DPDCH) or an Enhanced DPDCH (E-DPDCH). The control material can be encoded into a channel such as a Dedicated Physical Control Channel (DPCCH), a High Speed DPCCH (HS-DPCCH), or an Enhanced DPCCH (E-DPCCH). The scaling circuit 450 operates in each of these channels.

由濾波器設備460對縮放後的資料進行濾波,由模數轉換器(DAC)470將濾波後的資料轉換為類比信號,並由無線電發射機480通過天線(Tx)490發送。WTRU的發射機具有可調整的(即,功率可控)整體發射功率,以及可縮放的單個頻道輸入,如第4圖中由類比增益項和數位增益項分別表示。也可以使用其他形式的可控傳輸設備。The scaled data is filtered by filter device 460, and the filtered data is converted to an analog signal by analog to digital converter (DAC) 470 and transmitted by radio transmitter 480 through antenna (Tx) 490. The WTRU's transmitter has an adjustable (i.e., power controllable) overall transmit power, as well as a scalable single channel input, as represented by the analog gain term and the digital gain term, respectively, in FIG. Other forms of controllable transmission equipment can also be used.

根據3GPP中定義的過程,由發射功率控制單元440來設定單個頻道的發射功率和整體發射功率。標稱最大發射功率由WTRU功率級或網路來確定。WTRU功率級的最大發射功率在3GPP中定義。WTRU可以自動地使用最大MPR或小一些的設備專用最小MPR來對其最大發射功率進行限制,該最大MPR是在3GPP所定義的範圍之內的值。The transmission power and overall transmission power of a single channel are set by the transmission power control unit 440 according to a procedure defined in 3GPP. The nominal maximum transmit power is determined by the WTRU power level or the network. The maximum transmit power of the WTRU power level is defined in 3GPP. The WTRU may automatically limit its maximum transmit power using a maximum MPR or a smaller device-specific minimum MPR, which is a value within the range defined by 3GPP.

發射功率控制單元440使用多個參數來設定發射功率。這些參數中一個是MPR。為了計算MPR,首先根據離線配置參數來定義配置情況,該參數是根據上述第2圖至第3圖的描述所獲得的(410)。對於識別後的情況,根據下述內容來計算調整後的估計CM和/或PAR(420)。The transmit power control unit 440 uses a plurality of parameters to set the transmit power. One of these parameters is MPR. To calculate the MPR, the configuration is first defined in terms of offline configuration parameters, which are obtained according to the description of Figures 2 through 3 above (410). For the case after the identification, the adjusted estimated CM and/or PAR (420) is calculated based on the following.

根據用於最大MPR和/或最小MPR的值來設置MPR(430)。最佳地,由處理設備430根據調整後的CM和/或PAR估計(420),或調整後的MPR估計來計算最大MPR和/或最小MPR。如果是根據對MPR的調整來計算,則不再對CM和/或PAR進行調整。The MPR (430) is set according to the value for the maximum MPR and/or the minimum MPR. Optimally, the maximum MPR and/or minimum MPR is calculated by processing device 430 based on the adjusted CM and/or PAR estimate (420), or the adjusted MPR estimate. If it is calculated based on the adjustment to the MPR, the CM and/or PAR are no longer adjusted.

WTRU 400可以被構造為計算MPR中的任一個或兩個都計算;以及從CM或PAR任一個來計算最小MPR,這樣,可以選擇使用任意組合。CM和/或PAR的估計可以是預先計算的值的函數,該值由α項來表示,也可以是所發送信號的所需相關頻道功率(β項)的函數,其中,β項的特定函數是根據該信號的特定實體參數。對該估計的調整可以是來自預先計算的項。The WTRU 400 may be configured to calculate either or both of the MPRs; and calculate the minimum MPR from either CM or PAR, such that any combination may be selected for use. The estimate of CM and/or PAR may be a function of a pre-calculated value represented by an alpha term, or a function of the desired correlated channel power (beta term) of the transmitted signal, where the specific function of the beta term Is based on the specific entity parameters of the signal. The adjustment to this estimate can be from a pre-computed item.

為了在WTRU 400中計算一個或兩個MPR,首先,對於TTI,以該信號的配置舉例,其MAC-es的頻道權重為βc =15,βd =6,Ah s=βhsc =max(ΔACK 和ΔCQI )=15/15,Aececc =15/15,Aed ,=βedc =95/15。該信號的例子是在R4-060176,3GPP TSG RAN 4 Meeting #38中的信號U。In order to calculate one or two MPRs in the WTRU 400, first, for a TTI, with a configuration example of the signal, the channel weight of its MAC-es is β c = 15, β d = 6, and A h s = β hs / β c = max (Δ ACK and Δ CQI ) = 15/15 , A ec = β ec / β c = 15/15 , A ed , = β ed / β c = 95/15. An example of this signal is the signal U in R4-060176, 3GPP TSG RAN 4 Meeting #38.

第二,通過使用數位縮放,WTRU 400計算出以下數位頻道權重:βc =22,,βd =9,βhs =22,βec =22,βed =200。這些權重相互占所需比例,並且其平方和為所需常量。Second, by using digital scaling, the WTRU 400 calculates the following digital channel weights: β c = 22, β d = 9, β hs = 22, β ec = 22, β ed = 200. These weights take up the desired ratio and their sum of squares is the required constant.

第三,通過使用表3中的αCM 和β,而使用等式5計算出數位頻道權重和CM linear 的估計,為1.0589,等於0.2487dB。Third, by using α CM and β in Table 3, the estimation of the digital channel weight and CM linear is calculated using Equation 5, which is 1.0589, which is equal to 0.2487 dB.

第四,通過減去0.54dB而對CM的估計進行調整,得到約-0.29dB。可替換地,在線性形式中,通過將1.0589與0.883相乘來調整該估計,產生約0.93。Fourth, the CM estimate is adjusted by subtracting 0.54 dB to obtain about -0.29 dB. Alternatively, in a linear form, the estimate is adjusted by multiplying 1.0589 by 0.883, yielding about 0.93.

第五,CM的線性調整估計0.94小於表4中的第一線性臨界值;因此,將最大MPR計算為0dB。Fifth, the linear adjustment estimate of CM is 0.94 less than the first linear threshold in Table 4; therefore, the maximum MPR is calculated to be 0 dB.

通過第8圖進行總結,表示了通過WTRU 400計算MPR而設置發射功率的過程800。根據配置情況,在離線處理器中確定和處理調整因數和預先計算出的α值(810)。在WTRU 400中存儲這些值,以幫助WTRU 400識別配置情況(820)。一旦確定了配置情況,則計算調整後的估計CM和/或PAR(830)。通過使用這些調整後的估計值,計算出最大MPR和最小MPR(840),並設置MPR。將MPR、理論最大功率和功率控制命令相結合(850),從而設置發射功率(860)。Summarized by Figure 8, a process 800 for setting transmit power by the WTRU 400 to calculate the MPR is shown. The adjustment factor and the pre-calculated alpha value are determined and processed in the offline processor (810) depending on the configuration. These values are stored in the WTRU 400 to assist the WTRU 400 in identifying configuration conditions (820). Once the configuration is determined, the adjusted estimated CM and/or PAR (830) is calculated. By using these adjusted estimates, the maximum MPR and the minimum MPR (840) are calculated and the MPR is set. The MPR, theoretical maximum power, and power control commands are combined (850) to set the transmit power (860).

雖然在特定組合的最佳實施例中描述了本發明的特徵和部件,但是這其中的每一個特徵和部件都可以在沒有最佳實施例中的其他特徵和部件的情況下單獨使用,並且每一個特徵和部件都可以在具有或不具有本發明的其他特徵和部件的情況下以不同的組合方式來使用。本發明提供的方法或流程圖可以在由通用電腦或處理器執行的電腦程式、軟體或韌體中實施,其中所述電腦程式、軟體或韌體是以有形的方式包含在電腦可讀存儲介質中的,電腦可讀存儲介質的例子包括唯讀記憶體(ROM)、隨機存儲記憶體(RAM)、暫存器、快取記憶體、半導體存儲設備、內部硬碟和移動磁片之類的磁介質、磁光介質和CD-ROM碟片和數位多用途光碟(DVD)之類的光學介質。Although the features and components of the present invention are described in the preferred embodiments of the specific combination, each of the features and components may be used separately without the other features and components of the preferred embodiment, and each Both features and components can be used in different combinations with or without other features and components of the invention. The method or flowchart provided by the present invention can be implemented in a computer program, software or firmware executed by a general purpose computer or processor, wherein the computer program, software or firmware is tangibly embodied in a computer readable storage medium. Examples of computer readable storage media include read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory device, internal hard disk, and mobile disk. Optical media, magneto-optical media, and optical media such as CD-ROM discs and digital versatile discs (DVDs).

舉例來說,適當的處理器包括,通用處理器、專用處理器、常規處理器、數位信號處理器(DSP)、多個微處理器、與DSP核相關的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、任何其他類型的積體電路(IC)和/或狀態機。Suitable processors include, for example, general purpose processors, special purpose processors, conventional processors, digital signal processors (DSPs), multiple microprocessors, one or more microprocessors associated with a DSP core, control , microcontroller, dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC) and/or state machine.

與軟體有關的處理器可以用於實現射頻收發機,以用於無線發射接收單元(WTRU)、使用者設備(UE)、終端、基地台、無線網路控制器(RNC)或任何主機電腦。WTRU可以與採用硬體和/或軟體形式實施的模組結合使用,例如照相機、攝像機模組、視頻電話、揚聲器電話、振動設備、揚聲器、麥克風、電視收發機、免提耳機、鍵盤、藍牙模組、調頻(FM)無線單元、液晶顯示器(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放器、媒體播放器、視頻遊戲模組、網際網路流覽器和/或任何無線局域網(WLAN)模組。The software related processor can be used to implement a radio frequency transceiver for a wireless transmit receive unit (WTRU), a user equipment (UE), a terminal, a base station, a radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules implemented in hardware and/or software, such as cameras, camera modules, video phones, speaker phones, vibration devices, speakers, microphones, television transceivers, hands-free headsets, keyboards, Bluetooth Module, frequency modulation (FM) wireless unit, liquid crystal display (LCD) display unit, organic light emitting diode (OLED) display unit, digital music player, media player, video game module, internet browser and / or any wireless local area network (WLAN) module.

110...基地台110. . . Base station

120、400、WTRU...無線發射接收單元120, 400, WTRU. . . Wireless transmitting and receiving unit

125...處理器125. . . processor

126...接收機126. . . Receiver

127...發射機127. . . transmitter

128...天線128. . . antenna

200...離線過程200. . . Offline process

300...離線初始配置過程300. . . Offline initial configuration process

440...發射功率控制單元440. . . Transmit power control unit

450...縮放電路450. . . Scaling circuit

460...濾波器設備460. . . Filter device

470、DAC...模數轉換器470, DAC. . . Analog to digital converter

480...無線電發射機480. . . Radio transmitter

490、Tx...天線490, Tx. . . antenna

CM...立方度量CM. . . Cubic measure

MPR...最大功率衰減MPR. . . Maximum power attenuation

PAR...峰均比PAR. . . Peak-to-average ratio

從以下對最佳實施方式的描述可以獲得對本發明更詳細的理解,該最佳實施方式是以舉例的方式給出的,並且結合附圖進行理解。A more detailed understanding of the present invention can be obtained from the description of the preferred embodiments.

第1圖是根據本發明的無線發射接收單元(WTRU)的功能性框圖;1 is a functional block diagram of a wireless transmit receive unit (WTRU) in accordance with the present invention;

第2圖是離線處理器的簡化版本的框圖;Figure 2 is a block diagram of a simplified version of the offline processor;

第3圖是離線初始配置過程的詳細流程圖;Figure 3 is a detailed flow chart of the offline initial configuration process;

第4圖是根據一種實施方式的WTRU的框圖;Figure 4 is a block diagram of a WTRU in accordance with an embodiment;

第5A圖和第5B圖是分別用於等式5的模型和等式6的模型的兩個圖示,表示最大MPR估計誤差的分佈;5A and 5B are two diagrams of the model for Equation 5 and the model of Equation 6, respectively, showing the distribution of the maximum MPR estimation error;

第6A圖和第6B圖是分別用於等式5的模型和等式6的模型的兩個圖示,表示CM估計誤差的分佈;6A and 6B are two diagrams of the model for Equation 5 and the model of Equation 6, respectively, showing the distribution of CM estimation errors;

第7A圖和第7B圖是分別用於等式5的模型和等式6的模型的兩個圖示,表示PAR估計誤差的分佈;和第8圖是設置發射功率的方法的流程圖。FIGS. 7A and 7B are two diagrams of the model for Equation 5 and the model of Equation 6, respectively, showing the distribution of the PAR estimation error; and FIG. 8 is a flowchart of the method of setting the transmission power.

400、WTRU...無線發射接收單元400, WTRU. . . Wireless transmitting and receiving unit

440...發射功率控制單元440. . . Transmit power control unit

450...縮放電路450. . . Scaling circuit

460...濾波器設備460. . . Filter device

470、DAC...模數轉換器470, DAC. . . Analog to digital converter

480...無線電發射機480. . . Radio transmitter

490、Tx...天線490, Tx. . . antenna

CM...立方度量CM. . . Cubic measure

MPR...最大功率衰減MPR. . . Maximum power attenuation

PAR...峰均比PAR. . . Peak-to-average ratio

Claims (4)

一種無線發射/接收單元(WTRU),其包括:一電路被配置成計算一第一最大功率衰減(MPR)及一第二MPR;其中該第一及第二MPR基於用於該WTRU之一上行鏈路發送的至少一調變類型被計算;該電路還被配置成選擇該第一或第二MPR;該電路還被配置成修改該WTRU之一最大輸出功率以回應該被選擇的第一或第二MPR;以及該電路還被配置成於一輸出功率未超過該修改的最大輸出功率時發射該上行鏈路發送。 A wireless transmit/receive unit (WTRU), comprising: a circuit configured to calculate a first maximum power attenuation (MPR) and a second MPR; wherein the first and second MPRs are based on an uplink for the one of the WTRUs At least one modulation type of the link transmission is calculated; the circuit is further configured to select the first or second MPR; the circuit is further configured to modify one of the maximum output power of the WTRU to return to the first or selected a second MPR; and the circuitry is further configured to transmit the uplink transmission when an output power does not exceed the modified maximum output power. 如申請專利範圍第1項所述的無線發射/接收單元(WTRU),其中該第二MPR基於至少一調整因數被計算。 The wireless transmit/receive unit (WTRU) of claim 1, wherein the second MPR is calculated based on at least one adjustment factor. 一種用於計算一第一最大功率衰減(MPR)的方法,該方法包括:由一無線發射/接收單元(WTRU)來計算該第一MPR及一第二MPR,其中該第一及第二MPR基於用於該WTRU之一上行鏈路發送的至少一調變類型被計算;由該WTRU選擇該第一或第二MPR;由該WTRU修改該WTRU之一最大輸出功率以回應該被選擇的第一或第二MPR;以及於一輸出功率未超過該修改的最大輸出功率時發射該上行鏈路發送。 A method for calculating a first maximum power attenuation (MPR), the method comprising: calculating, by a wireless transmit/receive unit (WTRU), the first MPR and a second MPR, wherein the first and second MPRs Calculating based on at least one modulation type for one of the uplink transmissions of the WTRU; selecting the first or second MPR by the WTRU; modifying, by the WTRU, one of the maximum output power of the WTRU to return to the selected one One or second MPR; and transmitting the uplink transmission when an output power does not exceed the modified maximum output power. 如申請專利範圍第3項所述的方法,其中該第二MPR基於至少一調整因數被計算。The method of claim 3, wherein the second MPR is calculated based on at least one adjustment factor.
TW098100276A 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal TWI479818B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US91294707P 2007-04-20 2007-04-20

Publications (2)

Publication Number Publication Date
TW200947903A TW200947903A (en) 2009-11-16
TWI479818B true TWI479818B (en) 2015-04-01

Family

ID=44722256

Family Applications (4)

Application Number Title Priority Date Filing Date
TW101115866A TW201318365A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW103123229A TW201515497A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW097114544A TWI429214B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal
TW098100276A TWI479818B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW101115866A TW201318365A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW103123229A TW201515497A (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a UMTS signal
TW097114544A TWI429214B (en) 2007-04-20 2008-04-21 Apparatus and method for computing maximum power reduction for a umts signal

Country Status (1)

Country Link
TW (4) TW201318365A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801440B (en) * 2011-05-23 2015-04-15 联发科技股份有限公司 Method and device for supplying signal measurement to emitter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154685A1 (en) * 2005-01-10 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for controlling reverse TX power in a mobile terminal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060154685A1 (en) * 2005-01-10 2006-07-13 Samsung Electronics Co., Ltd. Apparatus and method for controlling reverse TX power in a mobile terminal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Efficient design exploration and verification in HSUPA transceivers, Agilent EEsof EDA, MAy 09, 2006 Kawamura, T. ; Kishiyama, Y. ; Higuchi, K. ; Sawahashi, M. , "Investigations on Optimum Roll-off Factor for DFT-Spread OFDM Based SC-FDMA Radio Access in Evolved UTRA Uplink," International Symposium on Wireless Communication Systems, 2006. ISWCS '06, 2006 , Page(s): 383 - 387. *
Shiann-Jeng Yu, Ju-Hong Lee, "Design of partially adaptive array beamformers based on information theoretic criteria," IEEE Transactions on Antennas and Propagation, Volume: 42 , Issue: 5, Page(s): 676 - 689, 1994^&rn^ *

Also Published As

Publication number Publication date
TWI429214B (en) 2014-03-01
TW200947903A (en) 2009-11-16
TW201515497A (en) 2015-04-16
TW201318365A (en) 2013-05-01
TW200904040A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
KR101538565B1 (en) Apparatus and method for computing maximum power reduction for a umts signal
EP1617575B1 (en) Transmission power control method and device
TWI440300B (en) Pa gain state switching based on waveform linearity
JP5138702B2 (en) Determining power reduction level for transmitter
US20120069885A1 (en) Method and Apparatus Providing Signal Metric for Transmitter
US8614999B2 (en) Communication terminal device, TFC selection method, and program
US8462757B2 (en) Method for adjusting transmitter output power
WO2007108306A1 (en) Transmission power controller, mobile station, and transmission power control method and program
TWI479818B (en) Apparatus and method for computing maximum power reduction for a umts signal
US8582461B2 (en) Analytical computation of cubic metric