TW200947072A - Liquid crystal display screen - Google Patents

Liquid crystal display screen Download PDF

Info

Publication number
TW200947072A
TW200947072A TW97117201A TW97117201A TW200947072A TW 200947072 A TW200947072 A TW 200947072A TW 97117201 A TW97117201 A TW 97117201A TW 97117201 A TW97117201 A TW 97117201A TW 200947072 A TW200947072 A TW 200947072A
Authority
TW
Taiwan
Prior art keywords
layer
liquid crystal
crystal display
carbon nanotube
substrate
Prior art date
Application number
TW97117201A
Other languages
Chinese (zh)
Other versions
TWI356942B (en
Inventor
Liang Liu
Kai-Li Jiang
Wei-Qi Fu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97117201A priority Critical patent/TWI356942B/en
Publication of TW200947072A publication Critical patent/TW200947072A/en
Application granted granted Critical
Publication of TWI356942B publication Critical patent/TWI356942B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

The present invention relates to a liquid crystal display screen. The liquid crystal display screen includes a first base, a second base, a liquid crystal layer, a first conductive alignment layer, a second conductive alignment layer, and at least one transparent heating layer. The first base is spaced at a distance from the second base. The liquid crystal layer is configured for being sandwiched between the first base and the second base. The first conductive alignment layer is disposed on a surface of the first base, which is adjacent to the liquid crystal layer. A surface of the first conductive alignment layer, which is adjacent to the liquid crystal layer, has a plurality of parallel first grooves. The second conductive alignment layer is disposed on a surface of the second base, which is adjacent to the liquid crystal layer. A surface of the second conductive alignment layer, which is adjacent to the liquid crystal layer, has a plurality of parallel second grooves. Arrangement directions of the first grooves are perpendicular to arrangement directions of the second grooves. Further, the transparent heating layer is disposed on a surface of the first base or the second base, which faces way from the liquid crystal layer. And the transparent conductive layer includes a plurality of carbon nanotubes.

Description

200947072 九、發明說明: ·【發明所屬之技術領域】 I 本發明涉及一種液晶顯示屏,尤其涉及一種可在低溫 下工作的液晶顯示屏。 【先前技術】 液晶顯示因爲低功耗、小型化及高質量的顯示效果, 成爲最佳的顯示方式之一。液晶顯示因爲低功耗、小型化 及高質量的顯示效果,成爲了最佳的顯示方式(請參見 ❹ Atomic-beam alignment of inorganic materials for liquid-crystal displays”,P. Chaudhari,et al.,Nature,vol 411,p56 (2〇01))。目前較爲常用的液晶顯示屏爲TN (扭曲 向列相)模式的液晶顯示屏(TN-LCD)。對於TN-LCD,當電 極上未施加電壓時’液晶顯示屏處於“OFF”狀態,光能透 過液晶顯示屏呈通光狀態;當在電極上施加一定電壓時, 液晶顯示屏處於“ON”態,液晶分子長軸方向沿電場方向 排列’光不能透過液晶顯示屏,故呈遮光狀態。有選擇地 ❹在電極上施加電壓,可以顯示出不同的圖案。 然,先前技術中的液晶顯示屏的低溫工作特性比較 差’從而極大地妨礙了液晶顯示屏在低溫環境中的使用。 造成液晶顯示屏低溫下不能正常工作的原因主要有以下兩 點:第一,液晶顯示屏的域值電壓係溫度的函數,隨著溫 度的下降,域值電壓要升高,所以,域值電壓的變化會造 成對比度的劣化。第二’液晶顯示屏係基於液晶分子狀態 的改變,而實現顯示功能的。在室溫時,所述液晶分子改 變的過程爲一種分子過程,其響應速度要比原子過程、電 7 200947072 子過程慢得多,無論上升或下降過程,都係一個由動力克 )服阻力而使液晶分子狀態變化的過程。隨著環境溫度下 •降,液晶分子的粘度加大,使得液晶分子狀態改變的阻力 :也隨之加大’響應速度就變得更慢。故,怎樣使液晶顯示 屏在低溫下正常工作成爲一個研究熱點。 先刖技術採用在液晶顯示屏基板的内側或外侧設置一 加熱層對液晶顯示屏進行溫度補償,從而使得液晶顯示屏 在低溫下工作。所述加熱層的材料通常採用銦錫氧化物透 ❿明導電膜。然而’由於銦錫氧化物透明導電臈串聯電阻較 小,加熱性能不够理想,因此採用上述加熱層的液晶顯示 屏無法有效改善低溫顯示效果。 有鑒於此,確有必要提供一種可在低溫下工作的液晶 顯示屏。 【發明内容】 一第一基體;一第二基體,所述第一基體與所述第二 ❹基體相對设置;一液晶層,設置於所述第一基體與所述第 一基體之間;—第―導電配向層設置於所述第-基體的靠 ^晶層的表面’且第—導電配向層靠近液晶層的表面包 多個平行:第一溝槽;及一第二導電配向層設置於所述 -基體的#近液晶層的表面,且第二導電配向層靠近液 曰曰曰層的表面包括多個平行的第二溝槽,所述第二導電配向 層的第二溝槽排列方向與第一導電配向層的第一溝槽排列 垂直其中,所述液晶顯示屏進一步包括至少一個透 明加熱層’該透明加熱層設置於第-基體或/和第二基體遠 8 200947072 離液晶層的表面,且所述透明加熱層包括多個奈米碳管。 · 與先前技術相比較,所述液晶顯示屏具有以下優點: \ 其一,可通過設置至少一透明加熱層對第一基板或/和第二 . 基板進行加熱,從而使得液晶顯示屏可在低溫下進行工 作。其二,由於所述透明加熱層設置於第一基板或/和第二 基板的外侧,無需改變原有的液晶顯示屏的内部結構和光 學通路,即可實現液晶顯示屏可在低温下進行工作。 【實施方式】 ® 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖1,本技術方案第一實施例所提供一種液晶 顯示屏200,其包括一第一基體202、一第一導電配向層 204、一液晶層238、一第二導電配向層224、一第二基體 222。所述第一基體202與所述第二基體222相對設置;所 述液晶層238設置於所述第一基體202與所述第二基體 222之間。第一導電配向層204設置於所述第一基體202 q 的靠近液晶層238的表面,且第一導電配向層204靠近液 晶層238的表面包括多個平行的第一溝槽208 ;第二導電 配向層224設置於所述第二基體222的靠近液晶層238的 表面,且第二導電配向層224靠近液晶層238的表面包括 多個平行的第二溝槽228,所述第二導電配向層224的第 二溝槽228排列方向與第一導電配向層204的第一溝槽 208排列方向垂直。 所述第一基體202與第二基體222應選用硬性或柔性 的透明材料,如玻璃、石英、金剛石或塑料等。本實施例 9 200947072 中’所述第一基體2〇2和第二 %^rce]1i,ln T · 土體222的材料爲三乙酸纖200947072 IX. Description of the invention: · [Technical field to which the invention pertains] I The present invention relates to a liquid crystal display, and more particularly to a liquid crystal display that can operate at low temperatures. [Prior Art] Liquid crystal display is one of the best display modes because of low power consumption, miniaturization, and high-quality display. LCD display is the best display method due to low power consumption, miniaturization and high-quality display (see ❹ Atomic-beam alignment of inorganic materials for liquid-crystal displays), P. Chaudhari, et al., Nature , vol 411, p56 (2〇01)). The more commonly used liquid crystal display is TN (Twisted Nematic) liquid crystal display (TN-LCD). For TN-LCD, no voltage is applied to the electrode. When the LCD screen is in the "OFF" state, the light energy is transmitted through the liquid crystal display; when a certain voltage is applied to the electrodes, the liquid crystal display is in the "ON" state, and the long-axis direction of the liquid crystal molecules is arranged along the direction of the electric field. Light can't pass through the liquid crystal display, so it is in a light-shielding state. Selectively applying a voltage on the electrode can display different patterns. However, the low-temperature operating characteristics of the liquid crystal display in the prior art are relatively poor, which greatly hinders the The use of liquid crystal display in low temperature environment. The main reasons for the LCD screen not working properly at low temperature are as follows: First, the field value of the LCD screen As a function of the temperature of the voltage system, as the temperature decreases, the voltage of the domain value increases. Therefore, the change of the voltage of the domain value causes the contrast to deteriorate. The second liquid crystal display is based on the change of the state of the liquid crystal molecules to realize the display function. At room temperature, the process of changing the liquid crystal molecules is a molecular process, and its response speed is much slower than that of the atomic process, the electricity process, and the process of the rise or fall is a The process of changing the state of the liquid crystal molecules with the resistance. As the ambient temperature decreases, the viscosity of the liquid crystal molecules increases, and the resistance of the liquid crystal molecules changes: the response speed becomes slower. Therefore, how It is a research hotspot to make the liquid crystal display work normally at low temperature. The first technique uses a heating layer on the inner side or the outer side of the liquid crystal display substrate to compensate the temperature of the liquid crystal display, so that the liquid crystal display works at a low temperature. The material of the heating layer is usually made of indium tin oxide transparent conductive film. However, due to indium tin oxide transparent conductive 臈The coupling resistance is small and the heating performance is not ideal, so the liquid crystal display panel using the above heating layer cannot effectively improve the low temperature display effect. In view of this, it is necessary to provide a liquid crystal display panel which can work at a low temperature. a first substrate; a second substrate, the first substrate is disposed opposite to the second substrate; a liquid crystal layer disposed between the first substrate and the first substrate; - a first conductive alignment layer a surface disposed on the surface of the first substrate and the first conductive alignment layer adjacent to the surface of the liquid crystal layer; the first trench; and a second conductive alignment layer disposed on the substrate a surface of the liquid crystal layer, and the surface of the second conductive alignment layer adjacent to the liquid helium layer includes a plurality of parallel second trenches, and the second trench alignment direction of the second conductive alignment layer is aligned with the first conductive alignment The first trench is arranged vertically, wherein the liquid crystal display further comprises at least one transparent heating layer. The transparent heating layer is disposed on the first substrate or/and the second substrate. Surface, and the transparent layer comprises a plurality of carbon nanotube heating. Compared with the prior art, the liquid crystal display has the following advantages: First, the first substrate or/and the second substrate can be heated by providing at least one transparent heating layer, so that the liquid crystal display can be at a low temperature Work under. Secondly, since the transparent heating layer is disposed on the outer side of the first substrate or/and the second substrate, the liquid crystal display can be operated at a low temperature without changing the internal structure and the optical path of the original liquid crystal display. . [Embodiment] ® The present technical solution will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , a first embodiment of the present invention provides a liquid crystal display 200 including a first substrate 202 , a first conductive alignment layer 204 , a liquid crystal layer 238 , and a second conductive alignment layer 224 . Second substrate 222. The first substrate 202 is disposed opposite to the second substrate 222; the liquid crystal layer 238 is disposed between the first substrate 202 and the second substrate 222. The first conductive alignment layer 204 is disposed on a surface of the first substrate 202 q adjacent to the liquid crystal layer 238 , and the surface of the first conductive alignment layer 204 adjacent to the liquid crystal layer 238 includes a plurality of parallel first trenches 208 ; The alignment layer 224 is disposed on a surface of the second substrate 222 adjacent to the liquid crystal layer 238, and the surface of the second conductive alignment layer 224 adjacent to the liquid crystal layer 238 includes a plurality of parallel second trenches 228, the second conductive alignment layer The second trenches 228 of 224 are arranged in a direction perpendicular to the direction in which the first trenches 208 of the first conductive alignment layer 204 are arranged. The first substrate 202 and the second substrate 222 should be made of a rigid or flexible transparent material such as glass, quartz, diamond or plastic. In the embodiment 9 200947072, the material of the first substrate 2〇2 and the second %^rce]1i, ln T · soil 222 is triacetate fiber

維素(cellulose Tnacetate,CT 基體202和第二基體22? MU t 了寸馒選地,第 W i體222的材料均冑CTA材料形 以The cellulose Tnacetate, the CT substrate 202 and the second substrate 22? MU t are selectively selected, and the material of the W ii body 222 is formed by the CTA material.

理解,所述第一基體202與第_ A 也可以不同。 弟-基體m的材料可以相同, 所述液晶層238包括多個長棒狀的液晶分子。所述液 日曰層23:的液晶材料爲先前技術中常用的液晶材料。進一 步地’逷可在第一導電配向層2〇4與第二導電配向層224 之間6又置多個支撑體(未標示),用以支撑液晶分子,防止 第=導電配向層204和第二導電配向層224對其的擠壓。 所述支撑體爲聚乙烯(polyethylene)小球,該聚乙婦小球的 直徑爲1-10微米。本實施例中,所述聚乙烯小球的直徑爲 5微米。 所述第一導電配向層204或/和第二導電配向層224可 分別包括一透明導電層和一配向層,該配向層靠近液晶層 ❹238設置,所述透明導電層設置於配向層遠離液晶層238 的表面。本實施例中,所述第一導電配向層204包括一第 一透明導電層204a和一第一配向層2〇4b ;第二導電配向 層224包括一第二透明導電層224a和一第二配向層 224b。所述第一透明導電層204a和第二透明導電層224a 通常爲一銦錫氧化物透明導電膜。所述第一配向層2〇4b、 第二配向層224b由高分子材料聚醯亞胺形成,經磨擦法, 傾斜蒸鍍SiOx膜法和對膜進行微溝槽處理法等方法處理 後,在所述第一配向層204b、第二配向層224b的表面上 200947072 形成多個溝槽,該溝槽可組成第一溝槽2〇8和第二溝槽 ' 228,用於使液晶分子定向排列。 ) 所述液晶顯示屏200進一步包括至少一透明加熱層, 該透明加熱層设置於第一基體202或/和第二基體222遠離 液晶層238的表面。本實施例中,所述液晶顯示屏2〇〇包 括一第一透明加熱層207,該第一透明加熱層2〇7爲一奈 米碳管層。所述奈米碳管層包括多個無序排列的奈米碳^ 或多個定向排列的奈米碳管。可以理解,上述的第一透明 加熱層207還可包括奈米碳管複合材料層,該複合材料層 可以爲奈米碳管、粘合劑、穩定化合物等材料組成的一透 明薄膜層。所述複合材料層具有較好的透明度和熱效率即 可。另,所述第一透明加熱層2〇7的方塊電阻需確保大於 所述透明導電層204a或224a的方塊電阻。 _優選地,所述奈米碳管層中的奈米碳管有序排列且均 勻分布。進一步地,所述奈米碳管層包括至少一層奈米碳 ❹管薄臈,該奈米碳管薄膜係從奈米碳管陣列中直接拉取獲 得。進-步地,該奈米碳管薄臈包括沿同一方向擇優取向 排=的多個奈米碳管。當所述奈米碳管層包括至少兩層奈 米碳管薄膜時,所述至少兩層奈米碳管薄膜重叠設置,: 郇的兩層奈米碳管薄膜中的奈米石炭管的排列方向具有一交 又角度a,0SC90。,具體可依據實際需求製且 戶^述奈米碳管薄膜進-步包括多個通過凡德瓦爾力首尾相 ^的奈米碳管束片段,每個奈米碳管束片段具有相等的長 又且由多個相互平行的奈米碳管束構成。所述相鄰的奈米 11 200947072 碳管束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括 •I多個長度相等且平行排列的奈米碳管,所述相鄰的奈米碳 '管之間通過凡德瓦爾力緊密結合。 所述奈米碳管層還可爲由多個奈米碳管長線緊密平行 排列組成的薄膜層。所述奈米碳管長線包括由多個通過凡 德瓦爾力首尾相連的奈米碳管束平行排列組成的束狀結 構’其中’每一奈米碳管束包括多個長度相等且平行排列 的奈米碳管。另外,所述奈米碳管長線還可包括由多個通 過凡德瓦爾力首尾相連的奈米碳管束相互扭轉組成的絞線 結構,其中,每一奈米碳管束包括多個長度相等且扭轉了 的奈米碳管。 上迤的不米奴管包括單壁奈米碳管、雙壁奈米碳管及 多壁奈米碳管中的-種或幾種。所述單壁奈米碳管的直徑 爲〇.5奈米〜10奈米,雙壁奈米碳管的直徑爲1.0夺米〜15 奈米’多壁奈米碳管的直徑爲1>5奈米〜50奈米。 ❹ 所述第-透明加熱層207可覆蓋第一基體202遠離液 表面。另還可將所述第一透明加熱層207 == 波等形狀的加熱層。所述圖形化的第 2明i口 = 207覆蓋在第一基體地遠離液晶層238的 二覆二二爲所述的方波形狀的第-透明加熱層 包括加熱部分2G7a和用 明加熱層斯 浙b。可以理解,可將第::接入外部電壓的電極引線 ―引線串聯或並=明二7的各加熱部分 艰术 <而使得第-透明加熱層 12 200947072 207具有較好的熱效率,以及使得所述液晶顯示屏2〇〇具 有較好的透明特性,進而達到了良好的顯示效果。 進而,爲了更好地實現對液晶顯示屏200進行加熱, -所述液晶顯示屏200還包括一第二透明加熱層227,該第 二透明加熱層227設置於第二基體222遠離液晶層238的 表面。所述第二透明加熱層227的材料及形狀可盥第一透 明加熱層207相同。可以理解,第—透明加熱層2〇7或/ 和第二透明加熱層227的設置方式,可根據實際需要進行 設置,只需確保能對第-基板2〇2或/和第二基板222加熱 即可。 所述液晶顯示屏200進一步包括至少一個偏振片(未 :出),該偏振片可設置於第一透明加熱層黯和/或第二 加熱層227遠離液晶層238的表面。當然,所述偏振 可设置於第-基體202與第一透明加熱層2〇7之間或/It is understood that the first substrate 202 and the _A may also be different. The material of the matrix-m may be the same, and the liquid crystal layer 238 includes a plurality of long rod-shaped liquid crystal molecules. The liquid crystal material of the liquid corrugated layer 23: is a liquid crystal material commonly used in the prior art. Further, a plurality of supports (not labeled) may be disposed between the first conductive alignment layer 2〇4 and the second conductive alignment layer 224 to support the liquid crystal molecules to prevent the first conductive alignment layer 204 and the first The two conductive alignment layers 224 are pressed therewith. The support is a polyethylene pellet having a diameter of from 1 to 10 microns. In this embodiment, the polyethylene pellets have a diameter of 5 μm. The first conductive alignment layer 204 or/and the second conductive alignment layer 224 may respectively include a transparent conductive layer and an alignment layer disposed adjacent to the liquid crystal layer 238, and the transparent conductive layer is disposed on the alignment layer away from the liquid crystal layer. The surface of 238. In this embodiment, the first conductive alignment layer 204 includes a first transparent conductive layer 204a and a first alignment layer 2〇4b; the second conductive alignment layer 224 includes a second transparent conductive layer 224a and a second alignment. Layer 224b. The first transparent conductive layer 204a and the second transparent conductive layer 224a are generally an indium tin oxide transparent conductive film. The first alignment layer 2〇4b and the second alignment layer 224b are formed of a polymer material polyimine, and are subjected to a rubbing method, an oblique vapor deposition SiOx film method, and a micro-groove treatment method on the film. A plurality of trenches are formed on the surface of the first alignment layer 204b and the second alignment layer 224b 200947072, and the trenches may constitute a first trench 2〇8 and a second trench 228 for aligning liquid crystal molecules . The liquid crystal display panel 200 further includes at least one transparent heating layer disposed on a surface of the first substrate 202 or/and the second substrate 222 away from the liquid crystal layer 238. In this embodiment, the liquid crystal display panel 2 includes a first transparent heating layer 207, and the first transparent heating layer 2〇7 is a carbon nanotube layer. The carbon nanotube layer comprises a plurality of randomly arranged nanocarbons or a plurality of aligned carbon nanotubes. It can be understood that the first transparent heating layer 207 may further comprise a carbon nanotube composite layer, which may be a transparent film layer composed of a material such as a carbon nanotube, a binder, a stabilizing compound or the like. The composite layer has good transparency and thermal efficiency. In addition, the sheet resistance of the first transparent heating layer 2〇7 needs to be larger than the sheet resistance of the transparent conductive layer 204a or 224a. Preferably, the carbon nanotubes in the carbon nanotube layer are ordered and uniformly distributed. Further, the carbon nanotube layer comprises at least one layer of nano-carbon tube, which is obtained by directly pulling from a carbon nanotube array. Further, the carbon nanotubes include a plurality of carbon nanotubes that are preferentially oriented in the same direction. When the carbon nanotube layer comprises at least two layers of carbon nanotube film, the at least two layers of carbon nanotube film are overlapped, and: the arrangement of the carbon nanotubes in the two layers of carbon nanotube film The direction has an intersection angle a, 0SC90. Specifically, according to the actual demand system, the household carbon nanotube film further comprises a plurality of carbon nanotube bundle segments passing through the van der Waals force, each of the carbon nanotube bundle segments having an equal length and It consists of a plurality of mutually parallel carbon nanotube bundles. The adjacent nano 11 200947072 carbon tube bundles are tightly coupled by van der Waals force, and the carbon nanotube bundle comprises: I plurality of carbon nanotubes of equal length and parallel arrangement, the adjacent nano carbon 'The tubes are tightly coupled by Van der Valli. The carbon nanotube layer may also be a thin film layer composed of a plurality of carbon nanotube long lines closely arranged in parallel. The long carbon nanotube line comprises a bundle structure consisting of a plurality of carbon nanotube bundles connected end to end by a van der Waals force, wherein each nano carbon nanotube bundle comprises a plurality of nanometers of equal length and parallel arrangement. Carbon tube. In addition, the long carbon nanotube wire may further comprise a twisted wire structure composed of a plurality of carbon nanotube bundles connected end to end by a van der Waals force, wherein each nano carbon nanotube bundle comprises a plurality of equal lengths and twists. The carbon nanotubes. The captains of the captain include single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The diameter of the single-walled carbon nanotube is 〇.5 nm to 10 nm, and the diameter of the double-walled carbon nanotube is 1.0 mM to 15 nm. The diameter of the multi-walled carbon nanotube is 1> Nano ~ 50 nm. The first transparent heating layer 207 may cover the first substrate 202 away from the liquid surface. Further, the first transparent heating layer 207 == a heating layer of a wave shape or the like. The patterned second surface of the second substrate is 207, and the second transparent layer covering the liquid crystal layer 238 of the first substrate is a square wave-shaped first transparent heating layer including a heating portion 2G7a and a heating layer. Zhejiang b. It can be understood that the electrode lead-to-lead connected to the external voltage can be connected in series or in the heating part of the second step 7 to make the first transparent heating layer 12 200947072 207 have better thermal efficiency, and The liquid crystal display panel 2 has good transparency characteristics, thereby achieving a good display effect. Furthermore, in order to better heat the liquid crystal display 200, the liquid crystal display 200 further includes a second transparent heating layer 227 disposed on the second substrate 222 away from the liquid crystal layer 238. surface. The material and shape of the second transparent heating layer 227 may be the same as that of the first transparent heating layer 207. It can be understood that the arrangement of the first transparent heating layer 2〇7 or/and the second transparent heating layer 227 can be set according to actual needs, and only needs to ensure that the first substrate 2〇2 or/and the second substrate 222 can be heated. Just fine. The liquid crystal display panel 200 further includes at least one polarizing plate (not shown) which may be disposed on a surface of the first transparent heating layer 黯 and/or the second heating layer 227 away from the liquid crystal layer 238. Of course, the polarization may be disposed between the first substrate 202 and the first transparent heating layer 2〇7 or

-基體222與第二透明加熱層227之間。具體設置方 式,可根據實際需要進行選擇。 另’爲了保護所述的第一透明加熱層2〇7、第二透明 第Ί 227不受損壞,還可分別在第-透明加熱層207、 所、/#月加熱層227的表面設置—透明保護層(未標示)。 可由氮切、氧切、苯丙環丁婦(⑽)、 =曰膜或㈣崎料形成,且具有—定的硬度,對第一 透明t熱層207或/和第二透明加熱層227起保護作用。 過溫度控制系統控制其加熱的溫度=:: = 13 200947072 圖如圖3所示,其包括溫度感測器10、信號處理單元20、 4數模轉換模塊30、微處理器40、繼電器50及電源60。其 ,中,溫度感測器10與信號處理單元20電連接,信號處理 .單元20與數模轉換模塊30電連接,數模轉換模塊30與微 處理器40電連接,微處理器40與繼電器50電連接。第一 透明加熱層207或/和第二透明加熱層227與繼電器50電 連接,數模轉換模塊30、微處理器40及繼電器50分別與 一電源60電連接。進一步地,數模轉換模塊30還與一參 ® 考電壓70電連接。其中,微處理器40爲一單片機系統。 以下將介紹用第一透明加熱層207或/和第二透明加 熱層227對液晶顯示屏200加熱的工作原理。 溫度感測器10設置於所述液晶顯示屏200的内部,對 液晶顯示屏200的内部溫度進行採樣,採樣後的模擬信號 在信號處理單元20進行信號放大和濾波;然後傳輸給模數 轉換模塊30進行模數轉換,轉換後得數字信號經微處理器 ❹ 40處理後,輸出一脉衝信號給繼電器50,繼電器50的開 關觸點處於吸合狀態,因而電源60與第一透明加熱層207 或/和第二透明加熱層227接通,開始對液晶顯示屏200進 行溫度補償。當加熱到一定溫度時,溫度感測器採樣的溫 度信號大於參考電壓70時,微處理器40控制繼電器50, 使透明加熱層207或227斷電,以防止液晶顯示屏200過 熱。 在接入電源後,包含有奈米碳管的第一透明加熱層 207或/和第二透明加熱層227可輻射出一定波長範圍的電 14 200947072 磁波。具體地 -定時,可以is述透明加熱層的面積大小(長度*寬度) 产,從而輕丄節電源電壓大小和透明加熱層的厚 f一ί =射出不同波錄圍的電磁波。當電源電壓的大 出的:磁二t透明加熱層的厚度和所述透明加熱層輻射 出的電磁波的波長成反比。即當電源電屋大小一定時,所 ❹ =透:熱層的厚度越厚’其輻射出電磁波的波長越短, 二:嚅可見光並產生一普通熱輻射;所述透明加熱層的 厚度越薄’其輻射出電磁波的波長越長,可以産生一紅外 熱輪射。透明加熱層的厚度一定時’電源電愿的大小和該 透明加熱層輻射出電磁波的波長成反比。即當所述透明加 熱層的厚度一定時’電源電麗越大,所述透明加熱層輻射 出電磁波的波長越短,可以發出可見光並産生一普通熱輻 射,電源電壓越小,所述透明加熱層輻射出電磁波的波長 越長’可以産生一紅外熱輻射。 奈米碳管作爲一理想的黑體結構,具有良好的導電性 Ο此以及熱穩疋性’且具有比較局的熱輕射效率。奈米碳管 的表面積大’可以很方便地製成大面積的奈米碳管薄膜。 所述奈米碳管薄膜即可作爲透明加熱層。本技術方案實施 例中的奈米碳管薄膜的面積爲900平方厘米,其中該奈来 碳管薄膜的長度爲30厘米,寬度爲30厘米。該奈米碳管 薄膜包括多個奈米碳管。將該奈米碳管薄膜連接導線接入 電源後,施加10伏〜30伏的電壓’該透明加熱層即可輕射 出波長較長的電磁波。通過溫度測量儀發現該透明加熱層 的溫度爲50°C~500°C。對於具有黑體結構的物體來說,其 15 200947072 所對應的溫度爲200°C〜450°C時就能發出人眼看不見的熱 ;-輻射(紅外線),此時的熱輻射最穩定、效率最高,所産生 的熱輻射熱量最大。 - 請參閱圖4、圖5及圖6,本技術方案第二實施例提供 的一種液晶顯示屏300包括一第一基體302、一第一導電 配向層304、一液晶層338、一第二導電配向層324、一第 二基體322。所述第一導電配向層3〇4靠近液晶層338的 f面包括多個平行的第一溝槽308;且第二導電配向層324 靠近液晶層338的表面包括多個平行的第二溝槽328,所 述第二導電配向層324的第二溝槽328排列方向與第一導 電配向層304的第一溝槽3〇8排列方向垂直。進二步地, 所述液晶顯示屏300包括至少一透明加熱層,該透明加孰 層設置於第-基體302或/和第二基體似遠離液晶層咖 的表面。本實施例中,所述液晶顯示屏300包括一第一透 明加熱層307和一笛-读為a 第一透明加熱層327,分別設置於第一 ❹土 302和第二基體322遠離液晶層338的表面。 液Γ示屏300與第一實施例的液晶顯示屏_ 設置透明加熱層對其進行加熱。其不同 之處在於,所述第一導電配向層3〇4或/和 ;生2:可二括-奈米碳管層。由於所述奈米碳嶋有3 到對液晶分子定向和導電的作用:: 叹置透明導電層,可以辟你曰_ 又…、萬 小液晶顯示屏300的厚度 曰曰顯示屏3〇0的結構和减 斤述不米石反官層中的奈米碳管有序排列且均勻分布。 16 200947072 進步地’所述奈米碳管層包括至少一層奈米碳管薄膜, •該不米奴^薄膜係從奈米碳管陣列中直接拉取獲得。進一 ,步地二該奈米碳管薄膜包括沿同一方向擇優取向排列的多 -個奈来碳管。當所述奈米碳管層包括至少兩層奈米碳管薄 膜時’所述至少兩層奈米碳管薄膜重叠設置,相鄰的兩層 ’丁、米石反S薄膜中的奈米碳管的排列方向具有一交叉角度 (X,且0把90。,具體可依據實際需求製備。具體地,所述 奈米碳管薄膜進-步包括多個通過凡德瓦爾力首尾相連的 奈米碳管束片段,每個奈米碳管束片段具有相等的長度且 由多個相互平行的奈米碳管束構成。所述相鄰的奈米碳管 束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括多個 長度相等且平行排列的奈来碳管,所述相鄰的奈米碳管之 間通過凡德瓦爾力緊密結合。所述奈米碳管薄膜中的多個 奈米碳管束和多個奈米碳管之間存在間隙,故上述奈来碳 管層具有多個平行且均勻分布的間隙。可以理解,奈米竣 Q管層上的間隙可組成第一溝槽308或第二溝槽328。 所述奈米碳管層還可爲由多個奈米碳管長線緊密平行 排列組成的薄膜層。所述奈求碳管長線包括由多個通過凡 德瓦爾力首尾相連的奈米碳管束平行排列組成的束狀結構 或由多個通過凡德瓦爾力首尾相連的奈米碳管束相互 組成的絞線結構。每-奈米碳管束包括多個長度相等且平 行排列的奈米碳管。所述奈米碳管層中的多個奈来碳 之間、多個奈米碳管之間或/和多個奈米碳管長線之間 平行且均句分布的間隙。所述間隙可用作第一溝栌3〇8 17 200947072 第二溝槽328,從而對液晶分子進行配向。所述第一導電 )配向層304和第二導電配向層324的厚度範圍分別在2〇 奈米〜5微米之間。 • 上述的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及 多壁奈米碳管中的一種或幾種。所述單壁奈米碳管的直徑 爲0.5奈米〜1〇奈米,雙壁奈米碳管的直徑爲1〇奈米〜^ 奈米’多壁奈米碳管的直徑爲1.5奈米〜5〇奈米。 進一步地,當第一導電配向層304或/和第二導電配向 層324爲一奈米碳管層時,爲防止奈米碳管層脫落,還可 在奈米碳管層的表面設置一固定層。 本實施例中,所述第一導電配向層3〇4包括一第一奈 米碳管層304a和一第一固定層3〇扑,所述第二導電配向 層324包括一第二奈来碳管層324&和一第二固定潛 3滿。戶斤述第一固定層3幡和第二固定層_分別設置 於第一導電配向層3〇4和第二導電配向層似靠近液晶層 〇 338的表面。由於第一導電配向層綱中的第一奈米碳管 層趣和第二導電配向層324中的第二奈来碳管層324a 靠近液晶層338的表面分別具有多個平行且均勾分布的間 隙’故,所述第-固定層3〇4b和第二固定層麗分別覆 盍在第一奈求碳管層304a和第二奈米碳管層遍靠近液 晶層338的表面時,會在第—固定層现和第二固定層 324b的表面形成多個平行且均勻分布的溝槽;該溝槽可分 別組成第-導電配向層綱的第一溝槽遍和第二導電配 向層324的第二溝槽328。 18 200947072 當所述固定層的材料爲類金剛石的氫化物、氮化矽、 :=定型矽的氫化物、碳化矽、二氧化矽、氧化鋁、氧化鈽、 t虱化錫、鈦酸鋅或鈦酸銦時,可採用蒸發、濺射或者等離 子增强化學氣相沉積(PECVD)生長的方法附著於第一奈米 碳管層304a和第二奈米碳管層324a的表面。當所述固定 層的材料爲聚乙烯醇、聚醯亞胺、聚甲基丙稀酸甲醋或聚 碳酸酯時;J採用甩膠法附著於第-奈米碳管層304a和第 -奈米碳管層324a的表面。所述固定層的厚度爲2〇奈米 〜2微米。 本實施例中’所述第一奈米碳管層3〇如和第二奈米碳 管層324a分別爲一個奈米碳管薄膜,且第一奈米碳管詹 3〇4a的奈米碳管的排列方向與所述第二奈米碳管層進 的奈米碳管的排列方向垂直,從而使得第一導電配向層 304的第-溝槽308與第二導電配向層似的第二溝槽想 的排列方向垂直’以便於對液晶層338中的液晶分子進行 ❹ 配向。具體地,第-導電配向層綱中的第一溝槽則沿 X軸方向平行且定向排列;第二導電配向層似中的第二 溝槽3 2 8沿Z軸方向平行且定向排列。所述的第一導電配 向層304和第二導電配向層324的厚度範圍 〜50微米之間。 丁 另,所述配向層中的多個奈米碳管係定向排列的 所述奈米碳管層具有對自然光的偏振作用,從而可以代替 先f技術中的偏振片起到偏振作用。當然,爲使得液晶顯 不屏300具有更好的偏振效果,所述液晶顯示屏卿進— 19 200947072 步包括至少一個偏振片(未 透心Μ α μ 禾不出),該偏振片可設置於第一 远明加熱層307和/或第-谏RB上也„ λ. * ^ 飞第一透明加熱層327遠離液晶層338 的表面。當然,所述偏振片也 一、采0〇L* 乃也'^又置於第一基體302與第 一透明加熱層307之間或/ 層327之間。 第一基體322與第二透明加熱 200 TrT理解’本技術方案實施例所提供的液晶顯示屏 僅爲單像素的液晶顯示屏。進—步,還可以❹ ❹ Ο 上述的單像素液晶顯示屏勘,鳩按照—狀規律設 如點陣设置,用於多像素的液晶顯示器中。該多個單 像素的液晶顯*屏可以採料用基板的方式設置即採用 ,同的大面積的第-基板、第二基板。另,還可直接將上 的多個液晶顯示屏組裝在—起,用於多像素顯示。 本技術方案實施例所述的液晶顯示屏具有以下優點: 其―,可通過設置一透明加熱層對第一基體或/和第二基體 進行加熱,從而使得液晶顯示屏可在低溫下進行工作:其 二,由於透明加熱層設置於第一基體或/和第二基體的外 側,無需改變原有的液晶顯示屏的内部結構和光學通路, 即可實現液晶顯示屏在低溫下進行工作。其三,由於所述 奈米碳管層具有良好的導電性能,故本實施例中的液晶顯 不屏採用含有奈米碳管層的配向層時,無需額外增加透明 電極層’從而可使得液晶顯示屏具有較薄的厚度,簡化液 曰日顯示屏的結構。其四,覆蓋一固定層於所述奈米碳管層 的表面’可使得所述用作配向層的奈米碳管層在與液晶材 料長時間接觸時,不脫落,從而使得所述液晶顯示屏具有 200947072 較好的配向品質。 ·,、斤述I發明確已符合發明專利之要件,遂依法 J ^出專利申請。惟,^所述者僅為本發明之較佳實施例, 不月匕以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案第 ❹構示意圖。 一實施例的液晶顯示屏的立體結 圖2為本技術方案第—實施例的透明加熱層的俯視結 構示意圖。 σ 、圖3為本技術方案第一實施例的對液晶顯示屏的進 溫度補償的工作電路示意圖。- between the substrate 222 and the second transparent heating layer 227. The specific setting method can be selected according to actual needs. In addition, in order to protect the first transparent heating layer 2〇7 and the second transparent second layer 227 from damage, they may also be disposed on the surface of the first transparent heating layer 207, the /#month heating layer 227, respectively. Protective layer (not shown). It may be formed by nitrogen cutting, oxygen cutting, benzophenone (10), 曰 film or (4), and has a certain hardness, from the first transparent t-heat layer 207 or/and the second transparent heating layer 227 Protective effects. Over temperature control system controls the temperature of its heating =:: = 13 200947072 As shown in Figure 3, it includes temperature sensor 10, signal processing unit 20, 4 digital-to-analog conversion module 30, microprocessor 40, relay 50 and Power supply 60. The temperature sensor 10 is electrically connected to the signal processing unit 20, the signal processing unit 20 is electrically connected to the digital-to-analog conversion module 30, the digital-to-analog conversion module 30 is electrically connected to the microprocessor 40, and the microprocessor 40 and the relay are connected. 50 electrical connections. The first transparent heating layer 207 or/and the second transparent heating layer 227 are electrically connected to the relay 50, and the digital to analog conversion module 30, the microprocessor 40 and the relay 50 are electrically connected to a power source 60, respectively. Further, the digital-to-analog conversion module 30 is also electrically connected to a reference voltage 70. The microprocessor 40 is a single chip microcomputer system. The operation of heating the liquid crystal display panel 200 with the first transparent heating layer 207 or/and the second transparent heating layer 227 will be described below. The temperature sensor 10 is disposed inside the liquid crystal display 200, samples the internal temperature of the liquid crystal display 200, and the sampled analog signal is amplified and filtered by the signal processing unit 20; and then transmitted to the analog to digital conversion module. 30 performs analog-to-digital conversion, and after the conversion, the digital signal is processed by the microprocessor 40, and outputs a pulse signal to the relay 50. The switch contact of the relay 50 is in a pull-in state, and thus the power source 60 and the first transparent heating layer 207. Or / and the second transparent heating layer 227 is turned on to start temperature compensation of the liquid crystal display 200. When heated to a certain temperature, when the temperature signal sampled by the temperature sensor is greater than the reference voltage 70, the microprocessor 40 controls the relay 50 to de-energize the transparent heating layer 207 or 227 to prevent the liquid crystal display panel 200 from overheating. After the power source is connected, the first transparent heating layer 207 or/and the second transparent heating layer 227 containing the carbon nanotubes can radiate a magnetic wave of a certain wavelength range. Specifically, the timing can be described as the area size (length * width) of the transparent heating layer, so that the power supply voltage and the thickness of the transparent heating layer are f ί = the electromagnetic waves recorded by different waves are emitted. When the power supply voltage is large: the thickness of the magnetic double-t transparent heating layer is inversely proportional to the wavelength of the electromagnetic wave radiated from the transparent heating layer. That is, when the size of the power supply house is constant, the thickness of the thermal layer is thicker. The shorter the wavelength of the electromagnetic wave is, the shorter the wavelength of the electromagnetic wave is emitted, and the lower the thickness of the transparent heat generating layer; the thinner the thickness of the transparent heating layer 'The longer the wavelength of the electromagnetic wave radiated, the more infrared heat can be generated. When the thickness of the transparent heating layer is constant, the size of the power source is inversely proportional to the wavelength of the electromagnetic wave radiated by the transparent heating layer. That is, when the thickness of the transparent heating layer is constant, the larger the power supply is, the shorter the wavelength of the electromagnetic wave radiated by the transparent heating layer is, the visible light is generated and a common heat radiation is generated, and the smaller the power supply voltage, the transparent heating The longer the wavelength of the layer radiating electromagnetic waves, the more infrared radiation can be generated. As an ideal black body structure, the carbon nanotubes have good electrical conductivity and thermal stability, and have a relatively high thermal efficiency. The large surface area of the carbon nanotubes can be easily fabricated into a large-area carbon nanotube film. The carbon nanotube film can be used as a transparent heating layer. The area of the carbon nanotube film in the embodiment of the present technical solution is 900 cm 2 , wherein the carbon nanotube film has a length of 30 cm and a width of 30 cm. The carbon nanotube film comprises a plurality of carbon nanotubes. After the carbon nanotube film connecting wire is connected to the power source, a voltage of 10 volts to 30 volts is applied. The transparent heating layer can directly emit electromagnetic waves having a long wavelength. The temperature of the transparent heating layer was found to be 50 ° C to 500 ° C by a temperature measuring instrument. For objects with a black body structure, the temperature corresponding to 15 200947072 is 200 ° C ~ 450 ° C can emit heat that is invisible to the human eye; - radiation (infrared), the heat radiation is the most stable and efficient The heat generated by the heat is the largest. Referring to FIG. 4, FIG. 5 and FIG. 6, a liquid crystal display panel 300 according to a second embodiment of the present invention includes a first substrate 302, a first conductive alignment layer 304, a liquid crystal layer 338, and a second conductive layer. The alignment layer 324 and a second substrate 322. The first conductive alignment layer 〇4 adjacent to the f-plane of the liquid crystal layer 338 includes a plurality of parallel first trenches 308; and the surface of the second conductive alignment layer 324 adjacent to the liquid crystal layer 338 includes a plurality of parallel second trenches 328. The second trenches 328 of the second conductive alignment layer 324 are arranged in a direction perpendicular to the direction in which the first trenches 3〇8 of the first conductive alignment layer 304 are arranged. Further, the liquid crystal display panel 300 includes at least one transparent heating layer disposed on the surface of the first substrate 302 or/and the second substrate which is remote from the liquid crystal layer. In this embodiment, the liquid crystal display 300 includes a first transparent heating layer 307 and a flute-read as a first transparent heating layer 327 disposed on the first alumina 302 and the second substrate 322 away from the liquid crystal layer 338, respectively. s surface. The liquid crystal display panel 300 is heated with the liquid crystal display panel of the first embodiment, which is provided with a transparent heating layer. The difference is that the first conductive alignment layer 3〇4 or/and 2: can be a double-carbon nanotube layer. Since the nanocarbon has 3 to the orientation and conductivity of the liquid crystal molecules:: slap the transparent conductive layer, you can open up your _ _ ..., the thickness of the small liquid crystal display 300 曰曰 display 3 〇 0 The structure and the carbon nanotubes in the anti-official layer of the scale are arranged and uniformly distributed. 16 200947072 Progressively, the carbon nanotube layer comprises at least one layer of carbon nanotube film, and the non-nano film is directly drawn from the carbon nanotube array. Further, the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction. When the carbon nanotube layer comprises at least two layers of carbon nanotube film, the at least two layers of carbon nanotube film are overlapped, and the carbon nanotubes in the adjacent two layers of the D, Mt. The arrangement direction of the tubes has an intersection angle (X, and 0 is 90. Specifically, it can be prepared according to actual needs. Specifically, the carbon nanotube film further includes a plurality of nanoparticles connected end to end by Van der Waals force. a carbon tube bundle segment, each of which has an equal length and is composed of a plurality of mutually parallel carbon nanotube bundles. The adjacent carbon nanotube bundles are tightly bonded by van der Waals force, the nanometer The carbon tube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel, and the adjacent carbon nanotubes are tightly coupled by van der Waals force. The plurality of carbon nanotube bundles in the carbon nanotube film There is a gap between the carbon nanotubes and the plurality of carbon nanotubes, so the above-mentioned carbon nanotube layer has a plurality of parallel and evenly distributed gaps. It can be understood that the gaps on the nano-Q layer can form the first trench 308 or the first Two trenches 328. The carbon nanotube layer may also be composed of multiple The long carbon wire of the carbon tube is closely arranged in parallel to form a thin film layer. The long carbon line of the carbon tube comprises a bundle structure consisting of a plurality of carbon nanotube bundles connected end to end by van der Valli force or by a plurality of van der Waals. A twisted wire structure composed of a pair of carbon nanotube bundles connected end to end. Each carbon nanotube bundle includes a plurality of carbon nanotubes of equal length and arranged in parallel. A plurality of carbon nanotubes in the carbon nanotube layer a gap between parallel, and evenly distributed between a plurality of carbon nanotubes or/and a plurality of carbon nanotube long lines. The gap may be used as the first trench 3〇8 17 200947072 second trench 328 Thereby, the liquid crystal molecules are aligned. The first conductive) alignment layer 304 and the second conductive alignment layer 324 have thicknesses ranging from 2 nanometers to 5 micrometers, respectively. • The above carbon nanotubes include one or more of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The single-walled carbon nanotube has a diameter of 0.5 nm to 1 〇 nanometer, and the double-walled carbon nanotube has a diameter of 1 〇 nanometer~^ nanometer's multi-walled carbon nanotube has a diameter of 1.5 nm. ~5〇 nano. Further, when the first conductive alignment layer 304 or/and the second conductive alignment layer 324 is a carbon nanotube layer, in order to prevent the carbon nanotube layer from falling off, a surface may be fixed on the surface of the carbon nanotube layer. Floor. In this embodiment, the first conductive alignment layer 3〇4 includes a first carbon nanotube layer 304a and a first fixed layer 3, and the second conductive alignment layer 324 includes a second nanocarbon. The tube layer 324& and a second fixed potential 3 are full. The first fixed layer 3幡 and the second fixed layer are disposed on the surface of the first conductive alignment layer 3〇4 and the second conductive alignment layer, respectively, which are close to the liquid crystal layer 338. Since the first carbon nanotube layer in the first conductive alignment layer and the second carbon nanotube layer 324a in the second conductive alignment layer 324 have a plurality of parallel and uniformly hooked surfaces respectively adjacent to the surface of the liquid crystal layer 338 Therefore, the first-fixed layer 3〇4b and the second fixed layer are respectively covered when the first carbon nanotube layer 304a and the second carbon nanotube layer are adjacent to the surface of the liquid crystal layer 338, The first-fixed layer and the surface of the second fixed layer 324b form a plurality of parallel and uniformly distributed trenches; the trenches may respectively constitute the first trench pass of the first conductive alignment layer and the second conductive alignment layer 324 Second trench 328. 18 200947072 When the material of the fixed layer is diamond-like hydride, tantalum nitride, := hydride of styling cerium, lanthanum carbide, cerium oxide, aluminum oxide, cerium oxide, tin antimony, zinc titanate or In the case of indium titanate, the surface of the first carbon nanotube layer 304a and the second carbon nanotube layer 324a may be attached by evaporation, sputtering or plasma enhanced chemical vapor deposition (PECVD) growth. When the material of the fixing layer is polyvinyl alcohol, polyimine, polymethyl methacrylate or polycarbonate; J is attached to the first carbon nanotube layer 304a and the first The surface of the carbon nanotube layer 324a. The thickness of the pinned layer is from 2 nanometers to 2 micrometers. In the present embodiment, the first carbon nanotube layer 3 and the second carbon nanotube layer 324a are respectively a carbon nanotube film, and the first carbon nanotubes are carbon nanotubes of Zhan 4〇4a. The arrangement direction of the tubes is perpendicular to the arrangement direction of the carbon nanotubes into which the second carbon nanotube layer is introduced, so that the first groove 308 of the first conductive alignment layer 304 and the second groove similar to the second conductive alignment layer The arrangement direction of the grooves is perpendicular 'to facilitate the alignment of the liquid crystal molecules in the liquid crystal layer 338. Specifically, the first trenches in the first conductive alignment layer are parallel and oriented in the X-axis direction; the second trenches 3 28 in the second conductive alignment layer are parallel and oriented in the Z-axis direction. The first conductive alignment layer 304 and the second conductive alignment layer 324 have a thickness ranging between 〜50 microns. Further, the carbon nanotube layers in which the plurality of carbon nanotubes are aligned in the alignment layer have a polarization effect on natural light, so that the polarizing plate in the prior art can be polarized. Of course, in order to make the liquid crystal display panel 300 have a better polarization effect, the liquid crystal display screen includes at least one polarizing plate (not transparent), and the polarizing plate can be disposed on The first far-right heating layer 307 and/or the first-谏RB also „λ.* ^ fly the first transparent heating layer 327 away from the surface of the liquid crystal layer 338. Of course, the polarizing plate is also 0 〇L* Also, it is placed between the first substrate 302 and the first transparent heating layer 307 or between the layers 327. The first substrate 322 and the second transparent heating 200 TrT understand the liquid crystal display provided by the embodiment of the present technical solution. It is only a single-pixel LCD screen. It can also be used for multi-pixel LCD display. The single-pixel liquid crystal display screen can be set by using the substrate for picking, and the same large-area first substrate and second substrate. Alternatively, a plurality of liquid crystal display panels can be assembled directly. Displayed in multiple pixels. The crystal display has the following advantages: It can heat the first substrate or/and the second substrate by providing a transparent heating layer, so that the liquid crystal display can work at a low temperature: Second, due to the transparent heating layer setting On the outer side of the first substrate or/and the second substrate, the liquid crystal display can be operated at a low temperature without changing the internal structure and optical path of the original liquid crystal display. Third, due to the carbon nanotubes The layer has good electrical conductivity, so when the liquid crystal display in the embodiment does not use the alignment layer containing the carbon nanotube layer, the transparent electrode layer is not required to be added, so that the liquid crystal display has a thin thickness, and the liquid is simplified. The structure of the display screen of the next day. Fourth, covering a fixed layer on the surface of the carbon nanotube layer can make the carbon nanotube layer used as the alignment layer not fall off when it is in contact with the liquid crystal material for a long time. Therefore, the liquid crystal display has a better alignment quality of 200947072. ·,, the invention of the invention has indeed met the requirements of the invention patent, and the patent application is legally based on the law. The present invention is only a preferred embodiment of the present invention, and the scope of the patent application is limited to the present invention. Any equivalent modifications or changes made by the person skilled in the art to the spirit of the present invention should be covered below. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a first embodiment of a liquid crystal display according to an embodiment of the present invention. FIG. 2 is a schematic top view of a transparent heating layer according to a first embodiment of the present technical solution. σ, FIG. 3 is a schematic diagram of a working circuit for the temperature compensation of the liquid crystal display according to the first embodiment of the present technical solution.

圖4為本技術方案第二實施例的液晶顯示屏的立體結 構示意圖。 QFig. 4 is a perspective view showing the structure of a liquid crystal display according to a second embodiment of the present invention. Q

圖5為沿圖4所示的線V-V的剖視圖。 圖6為沿圖4所示的線VI_VI的剖視圖。 【主要元件符號說明】 10 20 30 40 50 60 溫度感測器 信號處理單元 數模轉換模塊 微處理 繼電器 電源 21 200947072 參考電壓 70 · 液晶顯不屏 200, 300 第一基體 202, 302 : 第一導電配向層 204, 304 第一透明導電層 204a 第一配向層 204b 第一透明加熱層 207, 307 加熱部分 207a Ο 電極引線 207b 第一溝槽 208, 308 第二基體 222, 322 第二導電配向層 224, 324 第二透明導電層 224a 第二配向層 224b 第二透明加熱層 227, 327 ❹ 第二溝槽 228, 328 液晶層 238, 338 第一奈米碳管層 304a 第一固定層 304b 第二奈米碳管層 324a 第二固定層 324b 22Figure 5 is a cross-sectional view taken along line V-V shown in Figure 4 . Fig. 6 is a cross-sectional view taken along line VI_VI shown in Fig. 4. [Main component symbol description] 10 20 30 40 50 60 Temperature sensor signal processing unit digital-to-analog conversion module micro-processing relay power supply 21 200947072 Reference voltage 70 · LCD display screen 200, 300 First substrate 202, 302 : First conductive Alignment layer 204, 304 first transparent conductive layer 204a first alignment layer 204b first transparent heating layer 207, 307 heating portion 207a 电极 electrode lead 207b first trench 208, 308 second substrate 222, 322 second conductive alignment layer 224 324 second transparent conductive layer 224a second alignment layer 224b second transparent heating layer 227, 327 ❹ second trench 228, 328 liquid crystal layer 238, 338 first carbon nanotube layer 304a first fixed layer 304b second Carbon tube layer 324a second fixing layer 324b 22

Claims (1)

200947072 十、申請專利範園 ;:h 一種液晶顯示屏,其包括: :. 一第一基體; 一第二基體’所述第一基體與所述第二基體相對設置; 一液晶層,設置於所述第一基體與所述第二基體之間; 一第一導電配向層設置於所述第一基體的靠近液晶層 的表面’且第一導電配向層靠近液晶層的表面包括多 個平行的第一溝槽;及 —第二導電配向層^置^所述第二基體的靠近液晶層 的表面,且第二導電配向層靠近液晶層的表面包括多 個平仃的第二溝槽,所述第二導電配向層的第二溝槽 排列方向與第一導電配向層的第一溝槽排列方向垂 直; 八改良在於’所述液晶顯示屏進一步包括至少一個透 明加熱層,該透明加熱層設置於第一基體或/和第二基 ❹ 體遠離液晶層的表面,且所述透明加熱層包括多個奈 米碳管。 2. 如申凊專利範圍第1項所述的液晶顯示屏,其中,所 述透明加熱層包括一奈米碳管層,該奈米碳管層包括 多個有序排列或無序排列的奈米碳管。 3. 如申請專利範圍第2項所述的液晶顯示屏,其中,所 述奈米碳管層包括至少一層奈米碳管薄膜,該奈米碳 s薄膜包括多個沿同一方向擇優取向排列的奈碳 23 200947072 4. 如申請專利範圍第3項所述的液晶顯示屏,其中,所 .·· 述奈米碳管層包括至少兩層重叠設置的奈米碳管薄 " 膜相鄰的兩層奈米碳管薄膜中的奈米碳管的排列方 向具有一交又角度α,且〇$〇^9〇。。 5. 如申請專利範圍第2項所述的液晶顯示屏,其中,所 述奈米碳管層包括多個緊密平行排列的奈米碳管長 線’該奈米碳管長線包括多個通過凡德瓦爾力首尾相 0 連的奈米碳管束平行排列組成的束狀結構或由多個通 過凡德瓦爾力首尾相連的奈米碳管束相互扭轉組成的 絞線結構。 如申明專利範圍第1項所述的液晶顯示屏,其中,所 述透明加熱層包括奈米碳管複合材料層。 7·如申晴專利範圍第i項所述的液晶顯示屏,其中,所 述透明加熱層爲方波形狀或鋸齒波形狀。 如中請專利範圍第i項所述的液晶顯示屏,其中,該 ❹&晶顯示屏進一步包括至少一個透明保護層,該透明 保護層設置於所述透明加熱層遠離基板的表面。 9·如申請專利範圍第i項所述的液晶顯示屏,其卜該 液晶顯示屏進一步包括一溫度控制系統,該溫度控制 糸統包括温度感測器、信號處理單元、數模轉換模塊、 :處理器、繼電器及電源,其中,溫度感測器與信號 處理單兀電連接,信號處理單元與數模轉換模塊電連 接丄數模轉換模塊與微處理器電連接,微處理器與繼 電裔電連接’所述透明加熱層與繼電器電連接,數模 24 200947072 . 轉換模塊、微處理器及繼電器分別與電源電連接。 ··: 10.如申請專利範圍第9項所述的液晶顯示屏,其中,所 ’ 述溫度感測器設置於所述液晶顯示屏内。 -U.如巾請專利耗圍第1項所述的液晶顯示屏,其中,所 述第-導電配向層或/和第二導電配向層包括一透明導 電層和一配向層,該配向層靠近液晶層設置,該透明 導電層設置於配向層遠離液晶層的表面。 ❹U.如中請專利範圍第1項所述的液晶顯示屏,其中,所 述第-導電配向層或/和第二導電配向層包括一奈米碳 管層,該奈米碳管層包括多個定向排列的奈米碳管, 該多個奈米碳管之間具有多個平行且均勻分布的間 隙。 13. 如申請專利範圍第12項所述的液晶顯示屏,其中,所 述第一導電配向層或/和第二導電配向層進一步包括一 固定層,該固定層設置於所述奈米碳管層靠近液晶層 ❹ 的表面。 14. 如申請專利範圍第13項所述的液晶顯示屏,其中,第 —導電配向層中的奈米碳管排列方向與第二導電配向 層中的奈米碳管排列方向垂直。 15. 如申請專利範圍第13項所述的液晶顯示屏,其中,所 述固定層的材料爲類金剛石的氫化物、氮化矽、不定 型矽的氫化物、碳化矽、二氧化矽、氧化鋁、氧化鈽、 氧化錫、鈦酸辞、鈦酸銦、聚乙稀醇、聚醯亞胺、聚 甲基丙稀酸f酯和聚碳酸酯中的一種或幾種。 200947072 . 16.如申請專利範圍第13項所述的液晶顯示屏,其中,所 ·. 述固定層具有與奈米碳管層中的間隙相對應的溝槽, 該溝槽組成第一溝槽或/和第二溝槽。200947072 X. Applying for a patent garden;: h A liquid crystal display comprising: a first substrate; a second substrate 'the first substrate opposite the second substrate; a liquid crystal layer disposed on Between the first substrate and the second substrate; a first conductive alignment layer disposed on a surface of the first substrate adjacent to the liquid crystal layer and a surface of the first conductive alignment layer adjacent to the liquid crystal layer includes a plurality of parallel a first trench; and a second conductive alignment layer disposed on the surface of the second substrate adjacent to the liquid crystal layer, and the second conductive alignment layer adjacent to the surface of the liquid crystal layer includes a plurality of second trenches The second trench alignment direction of the second conductive alignment layer is perpendicular to the first trench alignment direction of the first conductive alignment layer; and the improvement is that the liquid crystal display further includes at least one transparent heating layer, the transparent heating layer is disposed The first substrate or/and the second base body are away from the surface of the liquid crystal layer, and the transparent heating layer includes a plurality of carbon nanotubes. 2. The liquid crystal display according to claim 1, wherein the transparent heating layer comprises a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of ordered or disorderly arranged naphthalenes. Carbon tube. 3. The liquid crystal display of claim 2, wherein the carbon nanotube layer comprises at least one layer of carbon nanotube film, the nanocarbon s film comprising a plurality of preferred orientations arranged in the same direction 4. The liquid crystal display according to claim 3, wherein the carbon nanotube layer comprises at least two layers of carbon nanotubes disposed alternately " The arrangement of the carbon nanotubes in the two-layered carbon nanotube film has an intersection angle α and is 〇$〇^9〇. . 5. The liquid crystal display of claim 2, wherein the carbon nanotube layer comprises a plurality of closely aligned carbon nanotube long wires 'the carbon nanotube long line comprises a plurality of passes through the van der Waals The bundle structure of the parallel carbon nanotube bundles of Valli's end-to-end phase is a bundle structure composed of a plurality of nano carbon tube bundles connected end to end by Van der Waals force. The liquid crystal display of claim 1, wherein the transparent heating layer comprises a carbon nanotube composite layer. The liquid crystal display panel of claim 1, wherein the transparent heating layer has a square wave shape or a sawtooth wave shape. The liquid crystal display of claim 1, wherein the ❹ & crystal display further comprises at least one transparent protective layer disposed on a surface of the transparent heating layer away from the substrate. 9. The liquid crystal display of claim i, wherein the liquid crystal display further comprises a temperature control system, the temperature control system comprising a temperature sensor, a signal processing unit, and a digital to analog conversion module, The processor, the relay and the power source, wherein the temperature sensor is electrically connected to the signal processing unit, the signal processing unit and the digital-to-analog conversion module are electrically connected, the digital-to-analog conversion module is electrically connected to the microprocessor, and the microprocessor and the relay are Electrical connection 'The transparent heating layer is electrically connected to the relay, digital mode 24 200947072. The conversion module, the microprocessor and the relay are respectively electrically connected to the power source. The liquid crystal display of claim 9, wherein the temperature sensor is disposed in the liquid crystal display. The liquid crystal display panel of claim 1, wherein the first conductive alignment layer or/and the second conductive alignment layer comprises a transparent conductive layer and an alignment layer, the alignment layer being close to The liquid crystal layer is disposed, and the transparent conductive layer is disposed on a surface of the alignment layer away from the liquid crystal layer. The liquid crystal display of claim 1, wherein the first conductive alignment layer or/and the second conductive alignment layer comprises a carbon nanotube layer, the carbon nanotube layer comprising a plurality of An aligned carbon nanotube having a plurality of parallel and evenly distributed gaps between the plurality of carbon nanotubes. 13. The liquid crystal display of claim 12, wherein the first conductive alignment layer or/and the second conductive alignment layer further comprises a fixed layer disposed on the carbon nanotube The layer is close to the surface of the liquid crystal layer ❹. 14. The liquid crystal display according to claim 13, wherein the arrangement of the carbon nanotubes in the first conductive alignment layer is perpendicular to the arrangement direction of the carbon nanotubes in the second conductive alignment layer. 15. The liquid crystal display according to claim 13, wherein the material of the pinned layer is a diamond-like hydride, a tantalum nitride, a hydride of an amorphous ruthenium, a ruthenium carbide, ruthenium dioxide, and oxidation. One or more of aluminum, cerium oxide, tin oxide, titanic acid, indium titanate, polyethylene glycol, polyimine, polymethyl methacrylate, and polycarbonate. The liquid crystal display of claim 13, wherein the fixed layer has a groove corresponding to a gap in the carbon nanotube layer, the groove forming the first groove Or / and the second groove. 2626
TW97117201A 2008-05-09 2008-05-09 Liquid crystal display screen TWI356942B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97117201A TWI356942B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97117201A TWI356942B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Publications (2)

Publication Number Publication Date
TW200947072A true TW200947072A (en) 2009-11-16
TWI356942B TWI356942B (en) 2012-01-21

Family

ID=44870223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97117201A TWI356942B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Country Status (1)

Country Link
TW (1) TWI356942B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676331A (en) * 2013-12-27 2014-03-26 京东方科技集团股份有限公司 Electric conduction orientation layers, manufacturing method, display substrate and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676331A (en) * 2013-12-27 2014-03-26 京东方科技集团股份有限公司 Electric conduction orientation layers, manufacturing method, display substrate and display device
CN103676331B (en) * 2013-12-27 2017-01-04 京东方科技集团股份有限公司 A kind of conduction oriented layer and preparation method, display base plate, display device
US10048540B2 (en) 2013-12-27 2018-08-14 Boe Technology Group Co., Ltd. Conductive alignment layer, manufacture method of the conductive alignment layer, display substrate comprising the conductive alignment layer, and display device

Also Published As

Publication number Publication date
TWI356942B (en) 2012-01-21

Similar Documents

Publication Publication Date Title
US8416351B2 (en) Liquid crystal display screen
US8811632B2 (en) Thermoacoustic device
US8253870B2 (en) Liquid crystal display screen
JP5139365B2 (en) Liquid crystal display
JP5065326B2 (en) Liquid crystal display
KR20120091053A (en) Touch screen and method for manufacturing a touch screen
TWI356251B (en) Liquid crystal display screen
TW200947072A (en) Liquid crystal display screen
TWI356253B (en) Liquid crystal display screen
TWI377396B (en) Liquid crystal display with touch panel
TWI356230B (en) Liquid crystal display screen
TW201003500A (en) Liquid crystal display with touch panel
TW201142412A (en) Liquid crystal display with touch panel
TWI356234B (en) Liquid crystal screen
TWI377414B (en) Method of making liquid crystal display screen
TWI377415B (en) Liquid crystal display screen
TWI380732B (en) Planar heating source
TW200941093A (en) Liquid crystal display screen
TWI380734B (en) Linear heater
TWI380733B (en) Planar heating source
TWI448417B (en) Linear heater
TWI360521B (en) Planar heat source
TWI427366B (en) Liquid crystal display with touch panel
TWI380731B (en) Planar heating source
TW201000395A (en) Linear heater