1356253 [0001] [0002] [0003] [0004] [0005] 097110186 100年11月23日‘核正替換頁 發明說明: 【發明所屬之技術領域】 本發明涉及一種液晶顯示屏,尤其涉及一種採用奈米碳 管作配向層的液晶顯示屏。 【先前技術】 液晶配向技術為决定液晶顯示屏優劣的關鍵技術之一, 因爲液晶配向技術的好壞會直接影響最終液晶顯示屏的 品質。南質莖的液晶顯不屏要求液晶有穩定和均勻的初 始排列,而具有誘導液晶定向排列作用的薄層稱爲液晶 配向層。 先前技術已知供液晶顯不屏使用的配向層材料有聚本乙 烯及其衍生物、聚醯亞胺、聚乙烯醇、聚酯、環氧樹脂 、聚胺酯、聚矽烷等,最常見的為聚醯亞胺。這些材料 經膜磨擦法,傾斜蒸鍍SiO膜法和對膜進行微溝槽處理 X 法(請參見 “Atomic-beam alignment of inorganic materials for liquid-crystal displays” , P. Chaudhari, et a 1. , Nature, vol 411,p56 (200 1 ))等方法處理後,可形成多個溝槽,該溝槽可使液 晶分子定向排列。 請參閱圖1中所示的液晶顯示屏100,其包括第一基體104 、第二基體112及夾在第一基體104和第二基體112之間 的液晶層118。 所述第一基體104與第二基體11 2相對設置。所述液晶層 118包括多個長棒狀的液晶分子1182。所述第一基體104 靠近液晶層11 8的表面依次設置一第一透明電極層106和 表單编號A0101 第4頁/共23頁 1003435104-0 1356253 1100年.11月23日 一第一配向層108,且第一基體1〇4的遠離液晶層118的 表面設置一第一偏光片102。所述第二基體112靠近液晶 層118的表面依次設置一第二透明電極層和一第二配 向層116,且第二基體112的遠離液晶層118的表面設置 一第二偏光片11〇。 [0006] [0007] [0008] [0009] 097110186 所述第一配向層108靠近液晶層118的表面形成有多個相 互平行的第一溝槽1082。所述第二配向層ι16靠近液晶層 118的表面形成有多個相互平行的第二溝槽1162。所述第 一溝槽1082和第二溝槽1162的排列方向相互垂直,從而 可對液晶層118中的液晶分子1182進行定向,即使靠近第 一溝槽1 082和第二溝槽1162的液晶分子1182分別沿著第 一溝槽1 082和第二溝槽1162的方向定向排列。從而使得 液晶分子1182的排列由上而下自動旋轉9〇度。 其中,所述第一偏光片102和第二偏光片11〇可對光線進 行偏振;第一透明電極層106和第二透明電極層114在液 晶顯示屏100中可起到導電的作用。但上述的多個片層結 構及其界面的存在將增加液晶顯示屏1〇〇的厚度、複雜程 度以及製造成本’降低背光源所提供光線的透過率,並 影響顯示質量。 有鑒於此,提供一種結構簡單、厚度較薄且具有較佳的 配向品質的液晶顯示屏實為必要。 【發明内容】 種液B曰顯不屏’其包括一第一基體 述第一基體與所述第二基體相對設置 於所述第一基體與所述第二基體之間 表單編號A0101 第5頁/共23頁 一第二基體,所 一液晶層,設置 一第一配向層, 1003435104-0 1356253 100年ll j 23日’梭正替換頁 該第一配向層設置於所述第一基體的靠近液晶層的表面 ,且第一配向層靠近液晶層的表面包括多個平行的第一 溝槽;及一第二配向層,該第二配向層設置於所述第二 基體的靠近液晶層的表面,且第二配向層靠近液晶層的 表面包括多個平行的第二溝槽,所述第二配向層的第二 溝槽排列方向與第一配向層的第一溝槽排列方向垂直。 其中,所述液晶顯示屏中至少一個配向層包括一個奈米 碳管層和一個固定層,該奈米碳管層包括至少一個奈米 碳管薄膜,該奈米碳管薄膜為從奈米碳管陣列中直接拉 取獲得,該奈米碳管薄膜包括多個沿同一方向排列的奈 米碳管,所述固定層設置於所述奈米碳管層靠近液晶層 的表面,所述固定層靠近液晶層的表面形成多個溝槽。 [0010] 與先前技術相比較,所述液晶顯示屏具有以下優點:其 一,由於所述奈米碳管薄膜包括多個奈米碳管,從而所 述奈米碳管薄膜具有良好的導電性能,所以奈米碳管薄 膜可代替先前技術中的透明電極層起到導電作用。故本 實施例中的液晶顯示屏採用含有奈米碳管薄膜的配向層 時,無需額外增加透明電極層,從而可使得液晶顯示屏 具有較薄的厚度,簡化液晶顯示屏的結構和製造成本, 提高背光源的利用率,改善顯示質量。其二,所述奈米 碳管薄膜設置在基體上後不需要進行機械刷磨或者其它 處理,不會産生靜電和粉塵,從而使所述液晶顯示屏具 有較佳的配向品質。其三,覆蓋一固定層於所述奈米碳 管薄膜的表面,可使得所述用作配向層的奈米碳管薄膜 在與液晶材料長時間接觸時,不脫落,從而使得所述液 097110186 表單编號A0101 第6頁/共23頁 1003435104-0 1356253 100年11月23日按正替^頁 晶顯示屏具有較好的配向品質。 【實施方式】 [0011] [0012] 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖2,圖3及圖4,本技術方案實施例所提供一種液 晶顯示屏300 ’其包括一第一基體3〇2 ; —第二基體322 ,所述第一基體302與所述第二基體322相對設置;一液 晶層338,設置於所述第一基體3〇2與所述第二基體322 之間;一第一配向層304,該第一配向層304設置於所述 第基體302的罪近液晶層338的表面,且第一配向層 3〇2靠近液晶層338的表面包括多個平行的第一溝槽308 •,及一第二配向層324 ’該第二配向層324設置於所述第 二基體322的靠近液晶層338的表面,且第二配向層324 靠近液晶層338的表面包括多個平行的第二溝槽328,所 述第二配向層324的第二溝槽328排列方向與第一配向層 304的第一溝槽308排列方向垂直。 [0013] 所述第一基體302與第二基體322應選甩硬性或柔性的透 明材料,如玻璃、石英、金剛石或塑料等。本實施例中 ,所述第一基體302和第二基體322的材料爲三乙酸纖維 素(cellulose triacetate, CTA)等柔性材料。優選 地,第一基體302和第二基體322的材料均爲CTA材料形 成。可以理解,所述第一基體3〇2與第二基體322的材料 可以相同,也可以不同。 [0014] 097110186 所述液晶層338包括多個長棒狀的液晶分子。所述液晶層 338的液晶材料爲先前技術中常用的液晶材料。所述液晶 顯不屏300中至少一個配向層包括一個奈米碳管層和一個 1003435104-0 表單編號A0101 第7頁/共23頁 1356253 _:_ 100年lli 按正替换頁 固定層,該固定層設置於所述奈米碳管層靠近液晶層338 的表面。所述奈米碳管層包括至少一個奈米碳管薄膜, 該奈米碳管薄膜為從奈米碳管陣列中直接拉取獲得。進 一步地,該奈米碳管薄膜包括奈米碳管沿同一方向擇優 取向排列的多個奈米碳管。當所述奈米碳管層包括至少 兩個奈米碳管薄膜時,所述至少兩個奈米碳管薄膜重叠 設置,該奈米碳管薄膜包括奈求碳管沿同一方向擇優取 向排列的多個奈米碳管且相鄰的兩個奈米碳管薄膜中的 奈米碳管沿同一方向擇優取向排列。具體地,所述奈米 碳管薄膜進一步包括多個通過凡德瓦爾力首尾相連的奈 米碳管束片段,每個奈米碳管束片段具有相等的長度且 由多個相互平行的奈米碳管束構成。所述相鄰的奈米碳 管束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括 多個長度相等且平行排列的奈米碳管,所述相鄰的奈米 碳管之間通過凡德瓦爾力緊密結合。所述奈米碳管薄膜 中的多個奈米碳管束和多個奈米碳管之間存在間隙,故 上述奈米碳管層具有多個平行且均勻分佈的間隙。 [0015] 所述奈米碳管薄膜中的奈米碳管包括單壁奈米碳管、雙 壁奈米碳管及多壁奈米碳管中的一種或幾種。所述單壁 奈米碳管的直徑爲0. 5奈米〜10奈米,雙壁奈米碳管的直 徑爲1. 0奈米~15奈米,多壁奈米碳管的直徑爲1. 5奈米 〜5 0奈米。 [0016] 所述液晶顯示屏300中的第一配向層304或第二配向層 324的一個配向層爲本實施例所述的奈米碳管層和固定層 ,而另一個配向層則採用先前技術的配向層。優選地, 097110186 表單編號A0101 第8頁/共23頁 1003435104-0 1356253 100年11月23日梭正替换頁 爲使所述的液晶顯示屏300具有更好的配向品質和簡單的 結構,故第一配向層304和第二配向層324均採用奈米碳 管層和固定層的結構。所述第一配向層304包括一第一奈 米碳管層304a和一第一固定層304b,所述第二配向層 324包括一第二奈米碳管層324a和一第二固定層324b。 所述第一固定層304b和第二固定層324b分別設置於第一 配向層304和第二配向層324靠近液晶層338的表面。由 於第一配向層304中的第一奈米碳管層304a和第二配向層 324中的第二奈米碳管層324a靠近液晶層338的表面分別 具有多個平行且均勻分佈的間隙,故,所述第一固定層 304b和第二固定層324b覆蓋在第一配向層304和第二配 向層324的奈米碳管層靠近液晶層338的表面時,會在第 一固定層304b和第二固定層324b的表面形成多個平行且 ^ 均勻分佈的溝槽;該溝槽可用作第一配向層304和第二配 向層324的第一溝槽3 08和第二溝槽328。 [0017] 當所述固定層的材料爲類金剛石的氫化物、氮化矽、不 定型矽的氫化物、碳化矽、二氧化矽、氧化鋁、氧化鈽 、氧化錫、鈦酸鋅或鈦酸銦時,可採用蒸發、濺射或者 電漿增强化學氣相沈積(PECVD)生長的方法附著於第一奈 米碳管層304a和第二奈米碳管層324a的表面。當所述固 定層的材料爲聚乙烯醇、聚醯亞胺、聚甲基丙烯酸曱酯 或聚碳酸酯時,可採用甩膠法附著於第一奈米碳管層 304a和第二奈米碳管層324a的表面。所述固定層的厚度 爲20奈米〜2微米。請參閱圖5,爲本技術方案實施例所獲 得的覆蓋有固定層的配向層,該配向層具有多個平行的 097110186 表單编號A0101 第9頁/共23頁 1003435104-0 1356253 100年ll·月23日·核正替换頁 溝槽,該溝槽可用對液晶分子進行配向。所述配向層包 括一個奈米碳管薄膜,該奈米碳管薄膜包括多個平行排 列的奈米碳管,所述固定層爲二氧化矽層,且厚度爲20 奈米。 [0018] 本實施例,所述第一奈米碳管層304a和第二奈米碳管層 324a分別爲一個奈米碳管薄膜,且第一奈米碳管層304a 的奈米碳管的排列方向與所述第二奈米碳管層324a的奈 米碳管的排列方向垂直,從而使得第一配向層304的第一 溝槽308與第二配向層324的第二溝槽328的排列方向垂 直。具體地,第一配向層304中的第一溝槽308沿X軸方向 平行且定向排列;第二配向層324中的第二溝槽328沿Z軸 方向平行且定向排列。所述的第一配向層304和第二配向 ' 層324的厚度範圍分別在1微米〜50微米之間。 [0019] 此外,由於所述奈米碳管層包括多個首尾相連且定向排 列的奈米碳管,從而所述奈米碳管層具有良好的導電性 能,所以奈米碳管層可代替先前技術中的透明電極層起 到導電作用。故本實施例中的液晶顯示屏300採用含有奈 米碳管層的配向層時,無需額外增加透明電極層.,從而 可使得液晶顯示屏300具有較薄的厚度,簡化液晶顯示屏 的結構和製造成本,提高背光源的利用率,改善顯示質 量。此外,所述奈米碳管層設置在基體上後不需要進行 機械刷磨或者其它處理,不會産生靜電和粉塵,從而使 所述液晶顯示屏300具有較佳的配向品質。可以理解,覆 蓋一固定層於所述奈米碳管層的表面,可使得所述用作 配向層的奈米碳管層在與液晶材料長時間接觸時,不脫 097110186 表單编號A0101 第10頁/共23頁 1003435104-0 1356253 100年11月23日按正替換頁 落,從而使得所述液晶顯示屏30 0具有較好的配向品質。 [0020] 所述奈米碳管層中的多個奈米碳管為平行排列的,故所 述奈米碳管層具有對自然光的偏振作用,從而可以代替 先前技術中的偏振片起到偏振作用。爲了使得液晶顯示 屏300具有更好的偏振效果,還可在第一基體322和/或第 二基體302遠離液晶層338的表面設置至少一個偏振片(未 示出)。 [0021] 以下結合圖6與圖7對本實施例液晶顯示屏300的工作過程 進行說明。 [0022] 如圖6所示,當沒有電壓施加在第一配向層304和第二配 向層324之間時,液晶分子的排列會依照第一配向層304 和第二配向層324的配向而定。在本實施例的液晶顯示屏 300中,所述第一配向層304和第二配向層324的配向方 向形成90度,所以液晶層338中的液晶分子的排列由上而 下會自動旋轉90度。當入射的光線L經過第一配向層304 時,由於第一配向層304的穿透軸沿Z轴方向,所以只有 偏振方向與穿透軸平行的偏振光L1通過。當偏振光L1通 過液晶分子時,由於液晶分子總共旋轉了 90度,所以當 偏振光L1到達第二配向層324時,偏振光L1的偏振方向恰 好轉了 90度。由於第二配向層324的穿透軸沿X軸方向, 即:偏振光L1的偏振方向因轉了 90度而與穿透軸平行, 從而可以順利的通過第二配向層324,此時,本實施例的 液晶顯示屏300處於通光的狀態。 [0023] 如圖7所示,當有電壓施加在第一配向層304和第二配向 097110186 表單編號A0101 第11頁/共23頁 1003435104-0 1356253 100年.11J Z3 日‘紐 層324之間時,液晶分子受電場的影響,其排列方向會傾 向平行於電場方向而變成與第一基體302垂直的狀態°此 時通過第一配向層304的偏振光L1經過液晶分子時便不會 改變偏振方向,因此就無法通過第二配向層324,此時’ 本實施例的液晶顯示屏300處於遮光的狀態。 [〇〇24] 所述的液晶顯示屏300具有以下優點:其一 ’由於所述奈 米碳管薄膜包括多個奈米碳管’從而所述奈米碳管薄膜 具有良好的導電性能’所以奈米碳管薄膜可代替先前技 術中的透明電極層起到導電作用。故本實施例中的液晶 顯示屏採用含有奈米碳管薄膜的配向層時,無需額外增 加透明電極層,從而可使得液晶顯示屏具有較薄的厚度 ,簡化液晶顯示屏的結構和製造成本,提高背光源的利 用率,改善顯示質量。其二,所述奈米碳管薄膜設置在 基體上後不需要進行機械刷磨或者其它處理,不會産生 靜電和粉塵,從而使所述液晶顯示屏具有較佳的配向品 質。其三,覆蓋一固定層於所述奈米碳管薄獏的表面, 可使得所述用作配向層的奈米碳管薄膜在與液晶材料長 時間接觸時,不脫落’從而使得所述液晶顯示屏具有較 好的配向品質。 [0025] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ’自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 097110186 【圖式簡單說明】 表單編號A0101 第12頁/共23頁 1003435104-0 1356253 100年11月23日修正替换頁 [0026] 圖1為一種先前技術的°液晶顯示屏的立體結構示意圖。 [0027] 圖2為本技術方案實施例的液晶顯示屏的立體結構示意圖 〇 [0028] 圖3為沿圖2所示的線II I-Ι II的剖視圖。 [0029] 圖4為沿圖2所示的線IV-IV的剖視圖。 [0030] 圖5為本技術方案實施例的獲得覆蓋有固定層的配向層的 掃描電鏡照片。 [0031] 圖6為本技術方案實施例的液晶顯示屏處於通光狀態的立 體結構示意圖。 [0032] 圖7為本技術方案實施例的液晶顯示屏處於遮光狀態的立 體結構示意圖。 【主要元件符號說明】 [0033] 液晶顯不屏 :100 ,300 [0034] 第_ _偏光片 :102 [0035] 第- -基體: 104, 302 [0036] 第_ -透明電 極層: 106 [0037] 第_ _配向層 :108 ,304 [0038] 第_ -溝槽: 1 082, 308 [0039] %二 二偏光片 :110 [0040] 第二基體: 112, 322 [0041] 第二透明電極層: 114 表單編號A0101 097110186 第13頁/共23頁 1003435104-0 1356253 100年11月23日·梭正替換頁 [0042] 第二配向層:116,324 [0043] 第二溝槽:1162,328 [0044] 液晶層:118,338 [0045] 液晶分子:1182 [0046] 第一奈米碳管層:304a [0047] 第一固定層:304b [0048] 第二奈米碳管層:324a [0049] 第二固定層:324b [0050] 穿透轴:309,329 097110186 表單编號A0101 第14頁/共23頁 1003435104-01356253 [0001] [0001] [0004] [0005] [0005] 097110186 November 23, 100 'Nuclear replacement page invention description: [Technical field of the invention] The present invention relates to a liquid crystal display, and more particularly to the use of The carbon nanotubes are used as the liquid crystal display of the alignment layer. [Prior Art] Liquid crystal alignment technology is one of the key technologies for determining the advantages and disadvantages of liquid crystal display, because the quality of liquid crystal alignment technology will directly affect the quality of the final liquid crystal display. The liquid crystal display of the southern stem requires a stable and uniform initial alignment of the liquid crystal, and the thin layer having the effect of inducing alignment of the liquid crystal is called a liquid crystal alignment layer. The alignment layer materials known in the prior art for use in liquid crystal display screens include polyethylene and its derivatives, polyimine, polyvinyl alcohol, polyester, epoxy resin, polyurethane, polydecane, etc., the most common being poly Yttrium. These materials are subjected to a film rubbing method, a tilted vapor deposition SiO film method, and a microchannel treatment X method for a film (see "Atomic-beam alignment of inorganic materials for liquid-crystal displays", P. Chaudhari, et a 1. After treatment by a method such as Nature, vol 411, p56 (200 1 )), a plurality of trenches can be formed which can align the liquid crystal molecules. Referring to the liquid crystal display 100 shown in FIG. 1, a first substrate 104, a second substrate 112, and a liquid crystal layer 118 sandwiched between the first substrate 104 and the second substrate 112 are included. The first substrate 104 is disposed opposite to the second substrate 11 2 . The liquid crystal layer 118 includes a plurality of long rod-shaped liquid crystal molecules 1182. The first substrate 104 is disposed adjacent to the surface of the liquid crystal layer 117, and a first transparent electrode layer 106 is sequentially disposed. Form No. A0101 Page 4 / Total 23 Page 1003435104-0 1356253 1100. November 23rd First alignment layer 108, and a first polarizer 102 is disposed on a surface of the first substrate 1〇4 remote from the liquid crystal layer 118. A second transparent electrode layer and a second alignment layer 116 are disposed on the surface of the second substrate 112 adjacent to the liquid crystal layer 118, and a second polarizer 11 is disposed on the surface of the second substrate 112 away from the liquid crystal layer 118. [0006] [0009] 097110186 The first alignment layer 108 is formed with a plurality of first trenches 1082 that are parallel to each other near the surface of the liquid crystal layer 118. The second alignment layer ι16 is formed near the surface of the liquid crystal layer 118 with a plurality of second trenches 1162 that are parallel to each other. The arrangement direction of the first trenches 1082 and the second trenches 1162 are perpendicular to each other, so that the liquid crystal molecules 1182 in the liquid crystal layer 118 can be aligned even if liquid crystal molecules are adjacent to the first trenches 1 082 and the second trenches 1162. 1182 are oriented along the direction of the first trench 1 082 and the second trench 1162, respectively. Thereby, the arrangement of the liquid crystal molecules 1182 is automatically rotated by 9 degrees from top to bottom. The first polarizer 102 and the second polarizer 11 偏振 polarize light; the first transparent electrode layer 106 and the second transparent electrode layer 114 can function as a conductive layer in the liquid crystal display 100. However, the presence of the above plurality of lamellar structures and their interfaces will increase the thickness, complexity, and manufacturing cost of the liquid crystal display panel, reducing the transmittance of light provided by the backlight and affecting the display quality. In view of this, it is necessary to provide a liquid crystal display having a simple structure, a thin thickness, and a better alignment quality. SUMMARY OF THE INVENTION A seed liquid B does not screen. It includes a first substrate. The first substrate and the second substrate are disposed opposite to the first substrate and the second substrate. Form No. A0101. / 23 pages of a second substrate, a liquid crystal layer, a first alignment layer is provided, 1003435104-0 1356253 100 years ll j 23rd ' Shuttle positive replacement page, the first alignment layer is disposed close to the first substrate a surface of the liquid crystal layer, and the surface of the first alignment layer adjacent to the liquid crystal layer includes a plurality of parallel first trenches; and a second alignment layer disposed on a surface of the second substrate adjacent to the liquid crystal layer And the surface of the second alignment layer adjacent to the liquid crystal layer includes a plurality of parallel second trenches, and the second trench alignment direction of the second alignment layer is perpendicular to the first trench alignment direction of the first alignment layer. Wherein at least one alignment layer in the liquid crystal display comprises a carbon nanotube layer and a fixed layer, the carbon nanotube layer comprises at least one carbon nanotube film, and the carbon nanotube film is from nano carbon Obtaining directly in the tube array, the carbon nanotube film comprises a plurality of carbon nanotubes arranged in the same direction, and the fixing layer is disposed on a surface of the carbon nanotube layer close to the liquid crystal layer, the fixing layer A plurality of trenches are formed near the surface of the liquid crystal layer. [0010] Compared with the prior art, the liquid crystal display has the following advantages: First, since the carbon nanotube film comprises a plurality of carbon nanotubes, the carbon nanotube film has good electrical conductivity. Therefore, the carbon nanotube film can replace the transparent electrode layer in the prior art to conduct electricity. Therefore, when the liquid crystal display panel of the embodiment adopts an alignment layer containing a carbon nanotube film, the transparent electrode layer is not required to be added, so that the liquid crystal display panel has a thin thickness, which simplifies the structure and manufacturing cost of the liquid crystal display. Improve backlight utilization and improve display quality. Secondly, after the carbon nanotube film is disposed on the substrate, no mechanical brushing or other treatment is required, and static electricity and dust are not generated, so that the liquid crystal display has better alignment quality. Thirdly, covering a fixed layer on the surface of the carbon nanotube film, the carbon nanotube film used as the alignment layer does not fall off when it is in contact with the liquid crystal material for a long time, so that the liquid 097110186 Form No. A0101 Page 6 of 23 1003435104-0 1356253 On November 23, 100, according to the positive ^ page crystal display has a better alignment quality. [Embodiment] [0012] The present technical solution will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 2, FIG. 3 and FIG. 4, a liquid crystal display 300' includes a first substrate 3〇2, a second substrate 322, and the first substrate 302 and the first The second substrate 322 is disposed opposite to each other; a liquid crystal layer 338 is disposed between the first substrate 3〇2 and the second substrate 322; a first alignment layer 304, the first alignment layer 304 is disposed on the first substrate The sin of 302 is near the surface of the liquid crystal layer 338, and the surface of the first alignment layer 3 〇 2 adjacent to the liquid crystal layer 338 includes a plurality of parallel first trenches 308 • and a second alignment layer 324 ′ the second alignment layer 324 The surface of the second substrate 322 adjacent to the liquid crystal layer 338 is disposed, and the surface of the second alignment layer 324 adjacent to the liquid crystal layer 338 includes a plurality of parallel second trenches 328, and the second trench of the second alignment layer 324 The grooves 328 are arranged in a direction perpendicular to the direction in which the first grooves 308 of the first alignment layer 304 are arranged. [0013] The first substrate 302 and the second substrate 322 should be selected from a hard or flexible transparent material such as glass, quartz, diamond or plastic. In this embodiment, the material of the first substrate 302 and the second substrate 322 is a flexible material such as cellulose triacetate (CTA). Preferably, the materials of the first substrate 302 and the second substrate 322 are both formed of a CTA material. It can be understood that the materials of the first substrate 3〇2 and the second substrate 322 may be the same or different. [0014] 097110186 The liquid crystal layer 338 includes a plurality of long rod-shaped liquid crystal molecules. The liquid crystal material of the liquid crystal layer 338 is a liquid crystal material commonly used in the prior art. At least one alignment layer in the liquid crystal display panel 300 includes a carbon nanotube layer and a 1003435104-0 form number A0101 page 7 / 23 pages 1362523 _: _ 100 years lli press the replacement page fixed layer, the fixed A layer is disposed on a surface of the carbon nanotube layer adjacent to the liquid crystal layer 338. The carbon nanotube layer comprises at least one carbon nanotube film obtained by directly pulling from a carbon nanotube array. Further, the carbon nanotube film comprises a plurality of carbon nanotubes in which the carbon nanotubes are preferentially aligned in the same direction. When the carbon nanotube layer comprises at least two carbon nanotube films, the at least two carbon nanotube films are arranged in an overlapping manner, and the carbon nanotube film comprises a carbon nanotubes arranged in a preferred orientation in the same direction. The plurality of carbon nanotubes and the carbon nanotubes in the adjacent two carbon nanotube films are arranged in a preferred orientation in the same direction. Specifically, the carbon nanotube film further comprises a plurality of carbon nanotube bundle segments connected end to end by a van der Waals force, each of the carbon nanotube bundle segments having equal lengths and a plurality of mutually parallel carbon nanotube bundles Composition. The adjacent carbon nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes of equal length and arranged in parallel, and the adjacent carbon nanotubes pass between Van der Valli is closely integrated. There is a gap between the plurality of carbon nanotube bundles and the plurality of carbon nanotube tubes in the carbon nanotube film, so that the above-mentioned carbon nanotube layer has a plurality of parallel and evenly distributed gaps. [0015] The carbon nanotubes in the carbon nanotube film include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, and the diameter of the double-walled carbon nanotube is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon nanotube is 1. 5 nm ~ 50 nm. [0016] One alignment layer of the first alignment layer 304 or the second alignment layer 324 in the liquid crystal display panel 300 is the carbon nanotube layer and the fixed layer described in the embodiment, and the other alignment layer is previously The alignment layer of the technology. Preferably, 097110186 Form No. A0101 Page 8 / Total 23 Page 1003435104-0 1356253 On November 23, 100, the shuttle replacement page is in order to make the liquid crystal display 300 have better alignment quality and simple structure, so Both the alignment layer 304 and the second alignment layer 324 are constructed using a carbon nanotube layer and a fixed layer. The first alignment layer 304 includes a first carbon nanotube layer 304a and a first fixed layer 304b, and the second alignment layer 324 includes a second carbon nanotube layer 324a and a second fixed layer 324b. The first pinned layer 304b and the second pinned layer 324b are respectively disposed on the surface of the first alignment layer 304 and the second alignment layer 324 near the liquid crystal layer 338. Since the first carbon nanotube layer 304a in the first alignment layer 304 and the second carbon nanotube layer 324a in the second alignment layer 324 respectively have a plurality of parallel and evenly distributed gaps near the surface of the liquid crystal layer 338, The first fixed layer 304b and the second fixed layer 324b cover the surface of the first alignment layer 304 and the second alignment layer 324 near the surface of the liquid crystal layer 338, and will be in the first fixed layer 304b and The surface of the second pinned layer 324b forms a plurality of parallel and uniformly distributed trenches; the trench may serve as the first trench 308 and the second trench 328 of the first alignment layer 304 and the second alignment layer 324. [0017] when the material of the fixed layer is diamond-like hydride, tantalum nitride, amorphous yttrium hydride, tantalum carbide, cerium oxide, aluminum oxide, cerium oxide, tin oxide, zinc titanate or titanic acid In the case of indium, it may be attached to the surfaces of the first carbon nanotube layer 304a and the second carbon nanotube layer 324a by evaporation, sputtering or plasma enhanced chemical vapor deposition (PECVD) growth. When the material of the fixing layer is polyvinyl alcohol, polyimine, polymethyl methacrylate or polycarbonate, it may be attached to the first carbon nanotube layer 304a and the second nanocarbon by a silicone method. The surface of the tube layer 324a. The fixing layer has a thickness of 20 nm to 2 μm. Referring to FIG. 5, an alignment layer covered with a fixed layer obtained by an embodiment of the present technical solution has a plurality of parallel 097110186. Form No. A0101 Page 9/23 pages 1003435104-0 1356253 100 years ll· On the 23rd of the month, the core replaces the page trench, which can align the liquid crystal molecules. The alignment layer comprises a carbon nanotube film comprising a plurality of parallel rows of carbon nanotubes, the anchor layer being a ceria layer and having a thickness of 20 nm. [0018] In this embodiment, the first carbon nanotube layer 304a and the second carbon nanotube layer 324a are respectively a carbon nanotube film, and the first carbon nanotube layer 304a of the carbon nanotube The alignment direction is perpendicular to the arrangement direction of the carbon nanotubes of the second carbon nanotube layer 324a, such that the first trench 308 of the first alignment layer 304 and the second trench 328 of the second alignment layer 324 are arranged. The direction is vertical. Specifically, the first trenches 308 in the first alignment layer 304 are aligned and oriented in the X-axis direction; the second trenches 328 in the second alignment layer 324 are parallel and oriented in the Z-axis direction. The first alignment layer 304 and the second alignment layer 324 have thicknesses ranging from 1 micrometer to 50 micrometers, respectively. [0019] In addition, since the carbon nanotube layer includes a plurality of carbon nanotubes connected end to end and aligned, so that the carbon nanotube layer has good electrical conductivity, the carbon nanotube layer can replace the previous carbon nanotube layer. The transparent electrode layer in the technology acts as a conductor. Therefore, when the liquid crystal display panel 300 in this embodiment adopts an alignment layer containing a carbon nanotube layer, it is not necessary to additionally add a transparent electrode layer, thereby making the liquid crystal display panel 300 have a thin thickness, simplifying the structure of the liquid crystal display panel and Manufacturing costs, improved backlight utilization, and improved display quality. In addition, after the carbon nanotube layer is disposed on the substrate, no mechanical brushing or other treatment is required, and static electricity and dust are not generated, so that the liquid crystal display panel 300 has better alignment quality. It can be understood that covering a fixed layer on the surface of the carbon nanotube layer allows the carbon nanotube layer used as the alignment layer to not take off when it is in contact with the liquid crystal material for a long time. 097110186 Form No. A0101 No. 10 Page / Total 23 pages 1003435104-0 1356253 On November 23, 100, the page was replaced by the positive replacement page, so that the liquid crystal display 30 0 has better alignment quality. [0020] The plurality of carbon nanotubes in the carbon nanotube layer are arranged in parallel, so the carbon nanotube layer has a polarization effect on natural light, so that it can be polarized instead of the polarizing plate in the prior art. effect. In order to make the liquid crystal display panel 300 have a better polarization effect, at least one polarizing plate (not shown) may be disposed on the surface of the first substrate 322 and/or the second substrate 302 away from the liquid crystal layer 338. [0021] The operation of the liquid crystal display panel 300 of the present embodiment will be described below with reference to FIGS. 6 and 7. [0022] As shown in FIG. 6, when no voltage is applied between the first alignment layer 304 and the second alignment layer 324, the alignment of the liquid crystal molecules is determined according to the alignment of the first alignment layer 304 and the second alignment layer 324. . In the liquid crystal display panel 300 of the present embodiment, the alignment directions of the first alignment layer 304 and the second alignment layer 324 are formed at 90 degrees, so the arrangement of the liquid crystal molecules in the liquid crystal layer 338 is automatically rotated by 90 degrees from top to bottom. . When the incident light L passes through the first alignment layer 304, since the transmission axis of the first alignment layer 304 is along the Z-axis direction, only the polarization L1 whose polarization direction is parallel to the transmission axis passes. When the polarized light L1 passes through the liquid crystal molecules, since the liquid crystal molecules are rotated by 90 degrees in total, when the polarized light L1 reaches the second alignment layer 324, the polarization direction of the polarized light L1 is exactly 90 degrees. Since the transmission axis of the second alignment layer 324 is along the X-axis direction, that is, the polarization direction of the polarization L1 is parallel to the transmission axis by 90 degrees, the second alignment layer 324 can be smoothly passed. The liquid crystal display panel 300 of the embodiment is in a light-passing state. [0023] As shown in FIG. 7, when a voltage is applied between the first alignment layer 304 and the second alignment 097110186 Form No. A0101 Page 11 / Total 23 Page 1003435104-0 1356253 100 years. 11J Z3 Day 'New Layer 324 When the liquid crystal molecules are affected by the electric field, the alignment direction thereof tends to be parallel to the direction of the electric field and becomes perpendicular to the first substrate 302. At this time, the polarized light L1 passing through the first alignment layer 304 does not change polarization when passing through the liquid crystal molecules. The direction is therefore unable to pass through the second alignment layer 324, and the liquid crystal display panel 300 of the present embodiment is in a light-shielded state. [24] The liquid crystal display panel 300 has the following advantages: a 'since the carbon nanotube film includes a plurality of carbon nanotubes' so that the carbon nanotube film has good electrical conductivity' The carbon nanotube film can replace the transparent electrode layer in the prior art to conduct electricity. Therefore, when the liquid crystal display panel of the embodiment adopts an alignment layer containing a carbon nanotube film, the transparent electrode layer is not required to be added, so that the liquid crystal display panel has a thin thickness, which simplifies the structure and manufacturing cost of the liquid crystal display. Improve backlight utilization and improve display quality. Second, the carbon nanotube film is disposed on the substrate without mechanical brushing or other treatment, and does not generate static electricity and dust, so that the liquid crystal display has a better alignment quality. Thirdly, covering a fixed layer on the surface of the carbon nanotube thin crucible, the carbon nanotube film used as the alignment layer can not fall off when it is in contact with the liquid crystal material for a long time, thereby making the liquid crystal The display has a good alignment quality. [0025] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. 097110186 [Simple description of the drawing] Form No. A0101 Page 12 of 23 1003435104-0 1356253 Revised replacement page on November 23, 100 [0026] FIG. 1 is a perspective view of a prior art liquid crystal display. 2 is a perspective view showing a three-dimensional structure of a liquid crystal display according to an embodiment of the present invention. [0028] FIG. 3 is a cross-sectional view taken along line II--II of FIG. 4 is a cross-sectional view taken along line IV-IV shown in FIG. 2. [0030] FIG. 5 is a scanning electron micrograph of an alignment layer covered with a fixed layer according to an embodiment of the present technology. 6 is a schematic diagram of a vertical structure of a liquid crystal display in a light-passing state according to an embodiment of the present disclosure. 7 is a schematic diagram of a vertical structure of a liquid crystal display panel in a light blocking state according to an embodiment of the present application. [Main component symbol description] [0033] Liquid crystal display screen: 100, 300 [0034] _ _ polarizer: 102 [0035] - - base: 104, 302 [0036] _ - transparent electrode layer: 106 [ 0037] _ _ alignment layer: 108, 304 [0038] _-trench: 1 082, 308 [0039] % two polarizer: 110 [0040] Second substrate: 112, 322 [0041] second transparent Electrode layer: 114 Form No. A0101 097110186 Page 13 of 23 1003435104-0 1356253 November 23, 2014 · Shuttle replacement page [0042] Second alignment layer: 116,324 [0043] Second groove: 1162 , 328 [0044] Liquid crystal layer: 118, 338 [0045] Liquid crystal molecule: 1182 [0046] First carbon nanotube layer: 304a [0047] First fixed layer: 304b [0048] Second carbon nanotube layer: 324a [0049] Second pinned layer: 324b [0050] Through-axis: 309, 329 097110186 Form number A0101 Page 14 of 23 1003435104-0